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Abstract
It has long been known that Feedback Vertex Set can be solved in time 2O(w log w)nO(1) on
graphs of treewidth w, but it was only recently that this running time was improved to 2O(w)nO(1),
that is, to single-exponential parameterized by treewidth. We investigate which generalizations
of Feedback Vertex Set can be solved in a similar running time. Formally, for a class of
graphs P, Bounded P-Block Vertex Deletion asks, given a graph G on n vertices and
positive integers k and d, whether G contains a set S of at most k vertices such that each block
of G−S has at most d vertices and is in P. Assuming that P is recognizable in polynomial time
and satisfies a certain natural hereditary condition, we give a sharp characterization of when
single-exponential parameterized algorithms are possible for fixed values of d:

if P consists only of chordal graphs, then the problem can be solved in time 2O(wd2)nO(1),
if P contains a graph with an induced cycle of length ` > 4, then the problem is not solvable
in time 2o(w log w)nO(1) even for fixed d = `, unless the ETH fails.

We also study a similar problem, called Bounded P-Component Vertex Deletion, where
the target graphs have connected components of small size instead of having blocks of small size,
and present analogous results.
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1 Introduction

Treewidth is a measure of how well a graph accommodates a decomposition into a tree-like
structure. In the field of parameterized complexity, many NP-hard problems have been shown
to have FPT algorithms when parameterized by treewidth; for example, Coloring, Vertex
Cover, Feedback Vertex Set, and Steiner Tree. In fact, Courcelle [6] established a
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meta-theorem that every problem definable in MSO2 logic can be solved in linear time on
graphs of bounded treewidth. While Courcelle’s Theorem is a very general tool for obtaining
algorithmic results, for specific problems dynamic programming techniques usually give
algorithms where the running time f(w)nO(1) has better dependence on treewidth w. There
is some evidence that careful implementation of dynamic programming (plus maybe some
additional ideas) gives optimal dependence for some problems (see, e.g., [12]).

For Feedback Vertex Set, standard dynamic programming techniques give 2O(w log w)

nO(1)-time algorithms and it was considered plausible that this could be the best possible
running time. Hence it was a remarkable surprise when it turned out that 2O(w)nO(1)

algorithms are also possible for this problem by various techniques: Cygan et al. [7] obtained
a 3wnO(1)-time randomized algorithm by using the so-called Cut & Count technique, and
Bodlaender et al. [2] showed there is a deterministic 2O(w)nO(1)-time algorithm by using a
rank-based approach and the concept of representative sets. This was also later shown in the
more general setting of representative sets in matroids by Fomin et al. [11].

Generalized feedback vertex set problems. We explore the extent to which these results
apply for generalizations of Feedback Vertex Set. The Feedback Vertex Set problem
asks for a set S of at most k vertices such that G−S is acyclic, or in other words, every block
of G− S is a single edge or vertex. We consider generalizations where we allow the blocks to
be some other type of small graph, such as triangles, small cycles, or small cliques; these
generalizations were first studied in [4]. The main result of this paper is that the existence of
single-exponential algorithms is closely linked to whether the small graphs we are allowing
are all chordal or not. Formally, we consider the following problem:

Bounded P-Block Vertex Deletion Parameter: d, w

Input: A graph G of treewidth at most w, and positive integers d and k.
Question: Is there a set S of at most k vertices in G such that each block of G− S has at most
d vertices and is in P?

The result of Bodlaender et al. [2] implies that when d = 2, Bounded P-Block Vertex
Deletion can be solved in time 2O(w)nO(1). Our main question is for which graph classes P
can this problem be solved in time 2O(w)nO(1), when we regard d as a fixed constant. A
graph is chordal if it has no induced cycles of length at least 4. We show that if P consists
of only chordal graphs, then we can solve this problem in single-exponential time for fixed d.

I Theorem 1. Let P be a class of graphs that is block-hereditary, recognizable in polynomial
time, and consists of only chordal graphs. Then Bounded P-Block Vertex Deletion
can be solved in time 2O(wd2)k2n on graphs with n vertices and treewidth w.

The condition that P is block-hereditary ensures that the class of graphs with blocks
in P is hereditary; a formal definition is given in Section 2. We complement this result by
showing that if P contains a graph that is not chordal, then single-exponential algorithms
are not possible (assuming ETH), even for fixed d. Note that if P is block-hereditary and
contains a graph that is not chordal, then this graph contains a chordless cycle on ` > 4
vertices and consequently the cycle graph on ` vertices is also in P.

I Theorem 2. If P contains the cycle graph on ` > 4 vertices, then Bounded P-Block
Vertex Deletion is not solvable in time 2o(w log w)nO(1) on graphs of treewidth at most w
even for fixed d = `, unless the ETH fails.

Baste et al. [1] recently studied the complexity of a similar problem, where the task is to
find a set of vertices whose deletion results in a graph with no minor in a given collection
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of graphs F , parameterized by treewidth. When F = {C4}, this is equivalent to Bounded
P-Block Vertex Deletion where P = {K2,K3}, and the complexity they obtain in this
case is consistent with our result.

Whether this lower bound of Theorem 2 is best possible when P contains a cycle on
` > 4 vertices remains open. However, as partial evidence towards this, we note that when
P contains all graphs, the result by Baste et al. [1] implies that that Bounded P-Block
Vertex Deletion can be solved in time 2O(w log w)nO(1) when d is fixed, as the minor
obstruction set F consists of all of 2-connected graphs with d+ 1 vertices.

Bounded-size components. Using a similar technique, we can obtain analogous results
for a slightly simpler problem, that we call Bounded P-Component Vertex Deletion,
where we want to remove at most k vertices such that each connected component of the
resulting graph has at most d vertices and belongs to P. If we have only the size constraint
(i.e., P contains every graph), then this problem is known as Component Order Connec-
tivity [9]. Drange et al. [9] studied the parameterized complexity of a weighted variant of
the Component Order Connectivity problem; their results imply, in particular, that
Component Order Connectivity can be solved in time 2O(k log d)n, but is W [1]-hard
parameterized by only k or d. The corresponding edge-deletion problem, parameterized by
treewidth, was studied by Enright and Meeks [10].

I Theorem 3. Let P be a class of graphs that is hereditary, recognizable in polynomial time,
and consists of only chordal graphs. Then Bounded P-Component Vertex Deletion
can be solved in time 2O(wd2)k2n on graphs with n vertices and treewidth w.

I Theorem 4. If P contains the cycle graph on ` > 4 vertices, then Bounded P-Component
Vertex Deletion is not solvable in time 2o(w log w)nO(1) on graphs of treewidth at most w
even for fixed d = `, unless the ETH fails.

The result of Baste et al. [1] implies that when P contains all graphs, Bounded P-
Component Vertex Deletion can be solved in time 2O(w log w)nO(1). When d is not
fixed, one might ask whether Bounded P-Component Vertex Deletion admits an
f(w)nO(1)-time algorithm; that is, an FPT algorithm parameterized only by treewidth. We
provide a negative answer: the problem is W [1]-hard when P contains all chordal graphs,
even parameterized by both treewidth and k. Furthermore, two stronger lower bound results
hold, under the assumption of the ETH.

I Theorem 5. Let P be a hereditary class containing all chordal graphs. Then Bounded
P-Component Vertex Deletion is W [1]-hard parameterized by the combined parameter
(w, k). Moreover, unless the ETH fails, (1) this problem has no f(w)no(w)-time algorithm;
and (2) it has no f(k′)no(k′/ log k′)-time algorithm, where k′ = w + k.

Techniques. A pair (G,S) consisting of a graph G and a vertex subset S of G will be
called a boundaried graph, and an S-block of G is a block of G containing an edge with
both endpoints in S. The algorithm for Bounded P-Block Vertex Deletion uses
several lemmas on S-blocks of boundaried graphs (G,S), which appear in Section 3. The
key property is the following: (*) when we merge two boundaried graphs (G,S) and (H,S)
into a graph G′, to decide whether each S-block of G′ is some fixed target graph that is
chordal, it is sufficient to know, for each non-trivial block B of G[S] or H[S], some local
information about B in the S-block containing B in G or H, respectively. We think of target
graphs as labeled graphs where any two vertices in the same block have distinct labels in
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{1, . . . , d}, and the local information referred to in (*) is the set of labels of neighbors of B
in the S-block containing B. The related result is stated as Proposition 6. This will be used
to determine whether each of the S-blocks of G′ is one of the target graphs in P . After then,
to decide whether G′ is a required graph, it remains to check that the whole graph has no
chordless cycle, since there is a possibility of linking two controlled blocks by a sequence of
uncontrolled blocks in both sides G and H, and thus creating a chordless cycle in G′. This
second part can be dealt with in a similar manner to the single-exponential time algorithm
for Feedback Vertex Set, using representative-set techniques.

2 Preliminaries

We follow the terminology of Diestel [8], unless otherwise specified. A vertex v of G is a cut
vertex if the deletion of v from G increases the number of connected components. We say G
is biconnected if it is connected and has no cut vertices. Note that every connected graph on
at most two vertices is biconnected. A block of G is a maximal biconnected subgraph of G.
We say G is 2-connected if it is biconnected and |V (G)| > 3. An induced cycle of length at
least four is called a chordless cycle. A graph is chordal if it has no chordless cycles. For a
class of graphs P, a graph is called a P-block graph if each of its blocks is in P. A class C
of graphs is block-hereditary if for every G ∈ C and every biconnected induced subgraph H
of G, H ∈ C. For two integers d1, d2 with d1 6 d2, let [d1, d2] be the set of all integers i
with d1 6 i 6 d2, and for a positive integer, let [d] := [1, d]. For a function f : X → Y and
X ′ ⊆ X, the function f ′ : X ′ → Y where f ′(x) = f(x) for all x ∈ X ′ is called the restriction
of f on X ′, and is denoted f |X′ . We also say that f extends f ′ to the set X.

Block d-labeling. A block d-labeling of a graph G is a function L : V (G)→ [d] such that for
each block B of G, L|V (B) is an injection. If G is equipped with a block d-labeling L, then
it is called a (block) d-labeled graph, and we call L(v) the label of v. Two d-labeled graphs
G and H are label-isomorphic if there is a graph isomorphism from G to H that is label
preserving. For biconnected block d-labeled graphs G and H, H is partially label-isomorphic
to G if H is label-isomorphic to the subgraph of G induced by the vertices with labels in H.

Treewidth. A tree decomposition of a graph G is a pair (T,B) consisting of a tree T and
a family B = {Bt}t∈V (T ) of sets Bt ⊆ V (G), called bags, satisfying the following three
conditions: (1) V (G) =

⋃
t∈V (T ) Bt, (2) for every edge uv of G, there exists a node t of T

such that u, v ∈ Bt, (3) for t1, t2, t3 ∈ V (T ), Bt1 ∩Bt3 ⊆ Bt2 whenever t2 is on the path from
t1 to t3 in T . The width of a tree decomposition (T,B) is max{|Bt| − 1 : t ∈ V (T )}. The
treewidth of G is the minimum width over all tree decompositions of G. A tree decomposition
(T,B = {Bt}t∈V (T )) is nice if T is a rooted tree with root node r, and every node t of T is
one of the following: (1) a leaf node: t is a leaf of T and Bt = ∅; (2) an introduce node: t
has exactly one child t′ and Bt = Bt′ ∪ {v} for some v ∈ V (G) \Bt′ ; (3) a forget node: t has
exactly one child t′ and Bt = Bt′ \ {v} for some v ∈ Bt′ ; or (4) a join node: t has exactly
two children t1 and t2, and Bt = Bt1 = Bt2 .

Boundaried graphs. For a graph G and S ⊆ V (G), the pair (G,S) is a boundaried graph.
When G is a d-labeled graph, we simply say that (G,S) is a d-labeled graph. Two d-labeled
graphs (G,S) and (H,S) are said to be compatible if V (G−S)∩V (H−S) = ∅, G[S] = H[S],
and G and H have the same labels on S. For two compatible d-labeled graphs (G,S) and
(H,S), the sum of two graphs (G,S)⊕ (H,S) is the graph obtained from the disjoint union of
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G and H by identifying each vertex in S and removing an edge if multiple edges appear. We
denote by LG ⊕ LH the function from V ((G,S)⊕ (H,S)) to [d] where for v ∈ V (G) ∪ V (H),
(LG⊕LH)(v) = LG(v) if v ∈ V (G) and (LG⊕LH)(v) = LH(v) otherwise. For two unlabeled
boundaried graphs, we define the sum in the same way, but ignoring the label condition.

A block of a graph is non-trivial if it has at least two vertices. For a boundaried graph
(G,S), a block B of G is called an S-block if it contains an edge of G[S]. Note that every
non-trivial block of G[S] is contained in a unique S-block of G because two distinct blocks
share at most one vertex. Let (G,S) be a boundaried graph. We define Aux(G,S) as the
bipartite boundaried graph with bipartition (C1, C2) and boundary C2 such that (1) C1 is the
set of components of G, and C2 is the set of components of G[S], (2) for C1 ∈ C1 and C2 ∈ C2,
C1C2 ∈ E(Aux(G,S)) if and only if C2 is contained in C1. When (G,S) and (H,S) are two
compatible d-labeled graphs, Aux(G,S)⊕Aux(H,S) is well-defined, as G and H have the
same set of components on S. For a set S and a set X of subsets of S, let Inc(S,X ) be the
bipartite graph on the bipartition (S,X ) where for v ∈ S and X ∈ X , v and X are adjacent
in Inc(S,X ) if and only if v ∈ X. For a boundaried graph (G,S), when P is the partition of
the set C of components of G[S] such that two components of G[S] are in the same part if
and only if they are in the same component of G, we denote by Inc(C,P) ∼ Aux(G,S).

3 Lemmas about S-blocks

We present several lemmas regarding S-blocks. For a biconnected d-labeled graph Q, a
d-labeled graph (G,S) is block-wise partially label-isomorphic to Q if every S-block B of G is
partially label-isomorphic to Q. For two compatible d-labeled graphs (G,S) and (H,S) with
labelings LG and LH respectively, we say (G,S) and (H,S) are block-wise Q-compatible if
1. (G,S) and (H,S) are block-wise partially label-isomorphic to Q; and
2. for every non-trivial block B of G[S], letting B1 and B2 be the S-blocks of G and H

that contain B, respectively, LG(NB1(V (B)) \ S) ∩ LH(NB2(V (B)) \ S) = ∅, and, for
`1 ∈ LG(NB1(V (B)) \ S) and `2 ∈ LH(NB2(V (B)) \ S), the vertices in Q with labels `1
and `2 are not adjacent.

We describe sufficient conditions for when, given a chordal labeled graph Q, the sum
of two given labeled graphs (G,S) and (H,S), each partially label-isomorphic to Q, is also
partially label-isomorphic to Q.

I Proposition 6. Let Q be a biconnected d-labeled chordal graph. Let (G,S) and (H,S)
be two block-wise Q-compatible d-labeled graphs such that Aux(G,S)⊕Aux(H,S) has no
cycles. Then (G,S)⊕ (H,S) is block-wise partially label-isomorphic to Q.

We use the following essential property of chordal graphs.

I Lemma 7. Let F be a connected graph and let Q be a connected chordal graph. Let
µ : V (F )→ V (Q) be a function such that for every induced path p1 · · · pm in F of length at
most two, µ(p1), . . . , µ(pm) are pairwise distinct and µ(p1) · · ·µ(pm) is an induced path of Q.
Then µ is an injection and preserves the adjacency relation.

I Lemma 8. Let (G,S) and (H,S) be two compatible d-labeled graphs such that Aux(G,S)⊕
Aux(H,S) has no cycles. (1) If F is an S-block of (G,S)⊕ (H,S) and uv is an edge in F ,
then uv is contained in some S-block of G or H. (2) Suppose each S-block of G or H is
chordal. If F is an S-block of (G,S)⊕ (H,S) and uvw is an induced path in F such that u
and w are not contained in the same S-block of G or H, then v ∈ S, and there is an induced
path q1q2 · · · q` from u = q1 to w = q` in F − v such that each qi is a neighbor of v.

IPEC 2017



7:6 Generalized Feedback Vertex Set Problems on Bounded-Treewidth Graphs

Proof of Proposition 6. Let F be an S-block of (G,S)⊕(H,S). Let LG and LH be labelings
of G and H, respectively, and let L := LG ⊕ LH . We may assume |V (F )| > 3. By Lemma 8,
every edge of F is contained in some S-block of G or H. Thus, for uv ∈ E(F ), we have L(u) 6=
L(v) and the vertices with labels L(u) and L(v) are adjacent in Q. Moreover, since (G,S)
and (H,S) are block-wise partially label-isomorphic to Q, we have L(V (F )) ⊆ LQ(V (Q)).
Let µ : V (F )→ V (Q) such that for each v ∈ V (F ), L(v) = LQ(µ(v)).

To apply Lemma 7, it is sufficient to prove that if uvw is an induced path in F , then
L(u) 6= L(w) and µ(u)µ(v)µ(w) is an induced path in Q. Since (G,S) and (H,S) are
block-wise partially label-isomorphic to Q, if all of u, v, w are contained in an S-block of G
or H, then it follows from the given condition. We may assume u and w are not contained
in the same S-block of G or H. Then by (2) of Lemma 8, v ∈ S, and there is an induced
path q1q2 · · · q` from u = q1 to w = q` in F − v such that each qi is a neighbor of v.

We show that for i ∈ {1, . . . , ` − 2}, L(qi), L(qi+1), L(qi+2) are pairwise distinct, and
µ(qi)µ(qi+1)µ(qi+2) is an induced path of Q. If all of qi, qi+1, qi+2 are contained in G or H,
then they are contained in the same S-block as v, and the claim follows. We may assume qi

and qi+2 are in distinct graphs of G− S and H − S. Then the S-block containing qi, qi+1, v

and the S-block containing qi+1, qi+2, v share the edge qi+1v. Since (G,S) and (H,S) are
block-wise Q-compatible, L(qi) 6= L(qi+2) and µ(qi) is not adjacent to µ(qi+2) in Q.

We verify that µ(q1)µ(q2) · · ·µ(q`) is an induced path of Q. Suppose this is false, and
choose i1, i2 ∈ {1, 2, . . . , `} with i2 − i1 > 1 and minimum i2 − i1 such that µ(qi1) is adjacent
to µ(qi2) in Q. By minimality, µ(qi1) · · ·µ(qi2−1) and µ(qi1+1) · · ·µ(qi2) are induced paths
and have length at least 2. Thus µ(qi1) · · ·µ(qi2) is an induced cycle of length at least 4,
contradicting the assumption that Q is chordal. Therefore, µ(q1)µ(q2) · · ·µ(q`) is an induced
path of Q, and, in particular, L(u) 6= L(w) and µ(u) and µ(w) are not adjacent in Q, as
required. By Lemma 7, we conclude that F is partially label-isomorphic to Q. J

Using Lemma 8, we can also prove the following.

I Lemma 9. Let A be a set, let (G,S) and (H,S) be two compatible d-labeled graphs, and let
B be the set of non-trivial blocks in G[S]. Suppose g : B → A is a function where each S-block
of G or H is chordal, Aux(G,S) ⊕ Aux(H,S) has no cycles, and for every B1, B2 ∈ B
where B1 and B2 are contained in an S-block of G or H, g(B1) = g(B2). If F is an S-block
of (G,S)⊕ (H,S) and B1, B2 ∈ B where V (B1), V (B2) ⊆ V (F ), then g(B1) = g(B2).

I Proposition 10. Let (G,S) and (H,S) be two compatible d-labeled graphs such that
every S-block of (G,S)⊕ (H,S) is chordal. Then (G,S)⊕ (H,S) is chordal if and only if
Aux(G,S)⊕Aux(H,S) has no cycles.

Proof. We briefly sketch the proof of one direction. Suppose that Aux(G,S)⊕Aux(H,S)
has a cycle C1 − A1 − C2 − A2 − · · · − Cn − An − C1 where C1, . . . , Cn are components
of G[S]. For each i ∈ {1, . . . , n}, let Pi be the shortest path from Ci to Ci+1 in Ai, and
let vi, wi be the end vertices of Pi where vi ∈ V (Ci) and wi ∈ V (Ci+1). Let Qi be the
shortest path from wi to vi+1 in Ci+1. We may assume n > 3; it is easy when n = 2. Then
v1P1 −Q1 −P2 −Q2 − · · · −Pn −Qnv1 is a cycle in (G,S)⊕ (H,S), but is not necessarily a
chordless cycle. We claim that it contains a chordless cycle. Let x be the vertex following
v2 in P2, and let y be the vertex preceding wn in Pn. Take a shortest path P from x

to y in the path y − Qn − P1 − Q1 − x. Clearly P has length at least 2, as x and y are
contained in distinct connected components of G or H. Also, every internal vertex of P has
no neighbors in the other path of the cycle v1P1 −Q1 − P2 −Q2 − · · · − Pn −Qnv1 between
x and y. So, if we take a shortest path P ′ from x to y along the other part of the cycle
v1P1 −Q1 − P2 −Q2 − · · · − Pn −Qnv1, then P ∪ P ′ is a chordless cycle. J
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4 Bounded P-Block Vertex Deletion

We prove Theorem 1. We first focus on S-blocks of boundaried graphs (G,S). For each
non-trivial block of G[S], we guess its final shape, as a d-labeled biconnected graph, and
store the labelings of the vertices and their neighbors in the S-block of G containing it.
Collectively, we call this information a characteristic of (G,S). Using characteristics, we
control S-blocks in (G,S)⊕ (H,S), where (H,S) is a compatible d-labeled graph. By the
previous step, we may assume that every S-block of (G,S)⊕ (H,S) is in P and has at most
d vertices. Note that (G,S)⊕ (H,S) still may have a chordless cycle. By Proposition 10, if
we assume that every S-block of (G,S)⊕ (H,S) is in P, then (G,S)⊕ (H,S) is chordal if
and only if Aux(G,S) ⊕Aux(H,S) has no cycles. So, instead of keeping Aux(G,S), we
store the corresponding partition of the set of components of G[S].

For convenience, we fix an integer d > 2 and a class P of graphs that is block-hereditary,
recognizable in polynomial time, and consists of only chordal graphs. Let Ud be the set
of all d-labeled biconnected P-block graphs, where each H in Ud has labeling LH . For a
boundaried graph (G,S), we denote by Block(G,S) the set of all non-trivial blocks in G[S].

For a d-labeled graph (G,S) with a labeling L, a characteristic of (G,S) is a pair (g, h)
of functions g : Block(G,S) → Ud and h : Block(G,S) → 2[d] satisfying the following, for
each B ∈ Block(G,S) and the unique S-block H of G containing B,
1. (label-isomorphic condition) H is partially label-isomorphic to g(B);
2. (coincidence condition) for every B′ ∈ Block(G,S) with V (B′) ⊆ V (H), g(B′) = g(B);
3. (neighborhood condition) h(B) = L(NH(V (B)) \ S); and
4. (complete condition) for every w where w ∈ V (H) \ S or {w} = V (H) ∩ V (C) for some

component C of G[S], H[NH [w]] is label-isomorphic to g(B)[Ng(B)[z]] where z is the
vertex in g(B) with label L(w).

We say that the sum (G,S)⊕ (H,S) respects (g, h) if for each B ∈ Block(G,S), the S-block
of (G,S) ⊕ (H,S) containing B is label-isomorphic to g(B). The following is the main
combinatorial result regarding characteristics.

I Theorem 11. Let (G1, S), (G2, S), (H,S) be d-labeled P-block graphs such that each
(Gi, S) is compatible with (H,S), (G1, S) and (G2, S) have the same characteristic (g, h),
and Aux(G2, S)⊕Aux(H,S) has no cycles. If (G1, S)⊕ (H,S) is a d-labeled P-block graph
that respects (g, h), then (G2, S)⊕ (H,S) is a d-labeled P-block graph that respects (g, h).

Proof. We show (G2, S)⊕ (H,S) respects (g, h). Choose a non-trivial block B of G2[S], let
Q := g(B), let F be the S-block of (G2, S)⊕ (H,S) containing B, LF be the function from
V (F ) to [d] that sends each vertex to its label from G2 or H, and LQ be the labeling of Q.

We claim that F is label-isomorphic to Q. We regard F as the sum of (F ∩G2, V (F )∩S)
and (F ∩H,V (F )∩ S) and verify the conditions of Proposition 6. Using Lemma 9, for every
B′ ∈ Block(G2, S) with V (B′) ⊆ V (F ), g(B′) = Q. We also observe that Aux(F ∩G2, SF )⊕
Aux(F ∩H,SF ) has no cycles as Aux(G2, S) ⊕Aux(H,S) has no cycles. Since (g, h) is
a characteristic of (G2, S) and (G1, S) ⊕ (H,S) respects (g, h), we can confirm that both
F ∩G and F ∩H are block-wise partially label-isomorphic to Q. The second condition of
being block-wise Q-compatible follows from the fact that (G1, S) and (G2, S) have the same
characteristic (g, h). Thus, F ∩G2 and F ∩H are block-wise Q-compatible, and this implies
that F is partially label-isomorphic to Q by Proposition 6. By the ‘complete condition’ of a
characteristic, we can show that LQ(V (Q)) ⊆ LF (V (F )), so F is label-isomorphic to Q.

Lastly, we can confirm that (G2, S) ⊕ (H,S) is a d-labeled P-block graph by showing
that every non S-block of (G2, S)⊕ (H,S) is fully contained in G2 or H. We can argue this
using the fact that (G2, S)⊕ (H,S) is chordal, which is implied by Proposition 10. J
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Proof of Theorem 1. We obtain a nice tree decomposition (T,B = {Bt}t∈V (T )) of G with
root node r and width at most 5w + 4 in time O(cw · n) for some constant c using the
approximation algorithm by Bodlaender et al. [3]. For t ∈ V (T ), let Gt be the subgraph of
G induced by the union of all bags Bt′ where t′ is a descendant of t. Let Comp(t,X) be the
set of all components of G[Bt \X], and Part(t,X) be the set of all partitions of Comp(t,X).

For each node t of T , X ⊆ Bt, and a function L : Bt \X → [d], we define F(t,X, L) as the
set of all pairs (g, h) consisting of functions g : Block(t,X)→ Ud and h : Block(t,X)→ 2[d].
We say that (g, h) is valid, if (1) L is a d-labeling of G[Bt\X], (2) for each B ∈ Block(t,X), B
is partially label-isomorphic to g(B), and (3) for each B ∈ Block(t,X), L(V (B)) ∩ h(B) = ∅.
For i ∈ {0, 1, . . . , k} and (g, h) ∈ F(t,X, L), let c[t, (X,L, i, (g, h))] be the family of all
partitions X ∈ Part(t,X) satisfying the following property: there exist S ⊆ V (Gt) \Bt with
|S| = i and a d-labeling L′ of Gt−(X∪S) where (1) L = L′|Bt\X , (2) Gt−(X∪S) is a P-block
graph, (3) (g, h) is a characteristic of (Gt − (X ∪ S), Bt \X), and (4) Inc(Comp(t,X),X ) ∼
Aux(Gt − (X ∪ S), Bt \X). Such a pair (S,L′) is a partial solution with respect to X .

The main idea is that instead of fully computing c[t,M ] for M = (X,L, i, (g, h)), we
recursively enumerate a set r[t,M ] that may represent partial solutions for c[t,M ]. Formally,
for a subset r[t,M ] ⊆ c[t,M ], we denote r[t,M ] ≡ c[t,M ] if for every X ∈ c[t,M ] and a
partial solution (S,L′) with respect to X and Sout ⊆ V (G) \V (Gt) where G− (S ∪X ∪Sout)
is a d-labeled P-block graph respecting (g, h), there exists X1 ∈ r[t,M ] and a partial solution
(S′, L′′) with respect to X1 such that G−(S′∪X∪Sout) is a d-labeled P-block graph respecting
(g, h). By the definition of r[t,M ], the problem is a Yes-instance if and only if there exists
(X,L, i, (g, h)) for the root node r with |X|+ i 6 k such that r[r, (X,L, i, (g, h)] 6= ∅.

Whenever we update r[t,M ], we confirm that |r[t,M ]| 6 w · 2w−1. This will be the
application of the representative set technique developed by Bodlaender et al. [2]. For a
set S and a set A of partitions of S, a subset A′ of A is called a representative set if for
every X1 ∈ A and every partition Y of S where Inc(S,X1 ∪ Y) has no cycles, there exists a
partition X2 ∈ A′ such that Inc(S,X2 ∪ Y) has no cycles.

I Proposition 12. Given a family A of partitions of a set S, one can output a representative
set of A of size at most |S| · 2|S|−1 in time AO(1)2O(|S|).

We sketch how to update families r[t,M ] when t is an introduce node with child node t′. We
may assume (g, h) is valid, otherwise c[t,M ] = ∅.

Let v be the vertex in Bt \ Bt′ . If v ∈ X, then Gt − X = Gt′ − (X \ {v}) and
Bt \X = Bt′ \ (X \ {v}). Thus, we can set r[t,M ] := r[t′, (X \ {v}, L, i, (g, h))]. We assume
v /∈ X, and let Lres := L|Bt′\X . For (g, h) ∈ F(t,X, L), a pair (g′, h′) ∈ F(t′, X, Lres)
is called the restriction of (g, h) if (1) for B1 ∈ Block(t′, X) and B2 ∈ Block(t,X) with
V (B1) ⊆ V (B2), g′(B1) = g(B2), and if v ∈ V (B2), then every vertex in g′(B1) with label
in h′(B1) is not adjacent to the vertex in g′(B1) with label L(v), (2) for B1 ∈ Block(t′, X)
and B2 ∈ Block(t,X) with V (B1) ⊆ V (B2) and v /∈ V (B2), h′(B1) = h(B2), and (3) for
B2 ∈ Block(t,X) containing v, h(B2) =

⋃
B1∈Block(t′,X),V (B1)⊆V (B2) h(B1).

I Claim 13. For X ∈ Part(t,X), X ∈ c[t,M ] if and only if there exist a restriction (g′, h′)
of (g, h) and Y ∈ c[t′, (X,Lres, i, (g′, h′))] such that (1) v has neighbors on at most one
component in each part of Y, and (2) if v has at least one neighbor in G[Bt \X], then X is
the partition obtained from Y by, for parts Y1, . . . , Ym of Y containing components having a
neighbor of v, removing all of Y1, . . . , Ym and adding a part that consists of all components
of G[Bt \X] not contained in parts of Y \ {Y1, . . . , Ym}; and otherwise, X = Y ∪ {{v}}.
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We update r[t,M ] as follows. Set K := ∅. For a pair of functions (g′, h′), we test
whether (g′, h′) is a restriction of (g, h). Assume (g′, h′) is a restriction of (g, h). For each
Y ∈ r[t′, (X,Lres, i, (g′, h′))], we check the two conditions for (g′, h′) and Y in Claim 13, and
if they are satisfied, then add the set X described in Claim 13 to K; otherwise, skip it. The
whole procedure can be done in time 2O(wd2). After we do this for all possible candidates, we
take a representative set of K using Proposition 12, and assign the resulting set to r[t,M ].

We claim that r[t,M ] ≡ c[t,M ]. Let Gout := G− (V (Gt) \Bt), X ∈ c[t,M ], and (S,L′)
be a partial solution with respect to X , and suppose there exists Sout ⊆ V (G) \ V (Gt) where
(Gt − (X ∪ S), Bt \X)⊕ (Gout − (X ∪ Sout), Bt \X) is a d-labeled P-block graph respecting
(g, h). Every (Bt′ \X)-block of G−(S∪X∪Sout) is chordal as such a block is a (Bt\X)-block
of G− (S∪X∪Sout). Since G− (S∪X∪Sout) is chordal, by Proposition 10, Aux(Gt′− (X∪
S), Bt′ \X)⊕Aux(Gout− (X ∪Sout), Bt′ \X) has no cycles. Let Mres := (X,Lres, i, (g′, h′)).
As r[t′,Mres] ≡ c[t′,Mres], there exist Y ∈ r[t′,Mres] and a partial solution (S′, L′′) with
respect to Y such that Inc(Comp(t′, X),Y) ∼ Aux(Gt′ − (X ∪ S′), Bt′ \X) has no cycles.
By Theorem 11, G− (S′ ∪X ∪ Sout) is a d-labeled P-block graph respecting (g, h).

By the procedure, X1 where Inc(Comp(t,X),X1) ∼ Aux(Gt− (X ∪S′), Bt \X) is added
to K. And there exist X2 ∈ r[t,M ] and a partial solution (S′′, L′′′) with respect to X2 such
that G− (S′′ ∪X ∪ Sout) is a d-labeled P-block graph. Thus, r[t,M ] ≡ c[t,M ].

Total running time. We denote |V (G)| by n. Note that the number of nodes in T is O(wn).
For fixed t ∈ V (T ), there are at most 2w+1 possible choices for X ⊆ Bt, and for fixed
X ⊆ Bt, there are at most dw+1 possible functions L. Furthermore, the size of F(t,X, L) is
bounded by 2O(wd2). Thus, there are O(n · k ·max(2, d)w+1 · 2O(wd2)) tables. In summary,
the algorithm runs in time O(n · k ·max(2, d)w+1) · 2O(wd2) · k = 2O(wd2)k2n. J

5 Lower bound for fixed d

We showed that Bounded P-Component Vertex Deletion and Bounded P-Block
Vertex Deletion admit single-exponential time algorithms parameterized by treewidth,
whenever P is a class of chordal graphs. We now establish that, assuming the ETH, this is
no longer the case when P contains a graph that is not chordal.

In the k× k Independent Set problem, one is given a graph G = ([k]× [k], E) over the
k2 vertices of a k-by-k grid. We denote by 〈i, j〉 with i, j ∈ [k] the vertex of G in the i-th row
and j-th column. The goal is to find an independent set of size k in G that contains exactly
one vertex in each row. The Permutation k × k Independent Set problem is similar
but with the additional constraint that the independent set should also contain exactly one
vertex per column.

I Theorem 14. If P contains the cycle graph on ` > 4 vertices, then Bounded P-
Component Vertex Deletion, or Bounded P-Block Vertex Deletion, is not
solvable in time 2o(w log w)nO(1) on graphs of treewidth at most w even for fixed d = `, unless
the ETH fails.

Proof. To prove this theorem, we reduce from Permutation k×k Independent Set which,
like Permutation k × k Clique, cannot be solved in time 2o(k log k)kO(1) unless the ETH
fails [13]. Let G = ([k]× [k], E) be an instance of Permutation k × k Independent Set.
We assume that ∀h, i, j ∈ [k] with h 6= i, 〈i, j〉〈h, j〉 ∈ E. Adding these edges does not change
the Yes- and No-instances, but has the virtue of making Permutation k×k Independent
Set equivalent to k×k Independent Set. We also assume that ∀h, i, j ∈ [k], 〈i, j〉〈i, h〉 /∈ E,
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Se1 He1 Se2 He2 Se3 He3 Sem Hem

Figure 1 A high-level schematic of G′ and G′′. The Heis only differ by a constant number of
edges (in red/light gray) that encode their edge ei of G.

since at most one of 〈i, j〉 and 〈i, h〉 can be in a given solution. Let m := |E| = O(k4) be the
number of edges of G.

Outline. We build two graphs G′ = (V ′, E′) and G′′ = (V ′, E′′) with treewidth at most
(3d+4)k+6d−5 = O(k), and ((3d−2)k2 +2k)m vertices, where the following are equivalent:
1. G has an independent set of size k with one vertex per row of G.
2. There is a set S ⊆ V ′ of size at most (3d − 2)k(k − 1)m such that each connected

component of G′ − S has size at most d and belongs to P.
3. There is a set S ⊆ V ′ of size at most (3d− 2)k(k − 1)m such that each block of G′′ − S

has size at most d and belongs to P.
The overall construction of G′ and G′′ will display m almost copies of the encoding of an
edgeless G arranged in a cycle. Each copy embeds one distinct edge of G. The point of
having the information of G distilled edge by edge in G′ and G′′ is to control the treewidth.
This general idea originates from a paper of Lokshtanov et al. [12].

Construction. We first describe G′. As a slight abuse of notation, a gadget (and, more
generally, a subpart of the construction) may refer to either a subset of vertices or to an
induced subgraph. For each e = 〈ie, je〉〈i′e, j′e〉 ∈ E, we detail the internal construction of
He and Se of Figure 1 and how they are linked to one another. Each vertex v = 〈i, j〉 of G
is represented by a gadget He(v) on 3d− 2 vertices in G′: a path on d− 3 vertices whose
endpoints are ve

−a and ve
−b, an isolated vertex ve

+, and two disjoint cycles of length d. Observe
that if d = 4, then ve

−a and ve
−b is the same vertex. We add all the edges between He(〈i, j〉)

and He(〈i, j′〉) for i, j, j′ ∈ [k] with j 6= j′. We also add all the edges between He(〈ie, je〉)
and He(〈i′e, j′e〉). We call He the graph induced by the union of every He(v), for v ∈ V (G).
The row/column selector gadget Se consists of a set Se

r of k vertices with one vertex re
i for

each row index i ∈ [k], and a set Se
c of k vertices with one vertex ce

j for each column index
j ∈ [k]. The gadget Se forms an independent set of size 2k. We arbitrarily number the edges
of G: e1, e2, . . . , em. For each h ∈ [m] and v = 〈i, j〉 ∈ V , we link veh

−a to reh
i (the row index

of v) and veh

−b to ceh
j (the column index of v). We also link, for every h ∈ [m− 1], veh

+ to reh+1
i

and to ceh+1
j , and vem

+ to re1
i and to ce1

j . That concludes the construction (see Figure 2). To
obtain G′′ from G′, we add the edges ceh

j ceh
j+1 for every h ∈ [m] and j ∈ [k− 1]. We ask for a

deletion set S of size s := (3d− 2)k(k − 1)m.

Treewidth of G′ and G′′. For any edge e ∈ E, we set H(e) := He(〈ie, je〉) ∪He(〈i′e, j′e〉).
For any i ∈ [m− 1], we set S̃i := Se1 ∪ Sei ∪ Sei+1 , and S̃m := Se1 ∪ Sem . For each e ∈ E,
and i ∈ [k], He(i) denotes the union of the He(v) for all vertices v of the i-th row. Here is a
path decomposition of G′ and G′′:

S̃1 ∪H(e1) ∪He1(1)→ S̃1 ∪H(e1) ∪He1(2)→ . . .→ S̃1 ∪H(e1) ∪He1(k)→
...

S̃m ∪H(em) ∪Hem(1)→ S̃m ∪H(em) ∪Hem(2)→ . . .→ S̃m ∪H(em) ∪Hem(k).
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row index column index
Se1

r Se1
c

He1

row index column index
Se2

r Se2
c

He2

...

Figure 2 The overall picture of G′ and G′′ with k = 3. Dotted edges are subdivided d− 4 times;
if d = 4, they are simply edges. Dashed edges are subdivided d− 5 times; if d = 4, the two endpoints
are in fact a single vertex. Edges between two boxes link each vertex of one box to each vertex of
the other box. The gray edges in the column selectors S

eh
c are only present in G′′.

As, for any h ∈ [m], |S̃h| 6 6k, |H(eh)| = 2(3d− 2), and |Heh(i)| 6 (3d− 2)k for any i ∈ [k],
the size of a bag is bounded by maxh∈[m],i∈[k] |S̃h∪H(eh)∪Heh(i)| 6 6k+2(3d−2)+(3d−2)k =
(3d+ 4)k + 6d− 4.

Correctness. If there is an independent set I of size k in G, a solution to a Bounded
P-Component Vertex Deletion or Bounded P-Block Vertex Deletion instance
can be obtained by deleting from each He every He(v) such that v /∈ I.

We show that 2 ⇒ 1 and 3 ⇒ 1. We assume that there is a set S ⊆ V ′ of size at
most s such that all the blocks of G′′ − S (resp. G′ − S) have size at most d. We note
that this corresponds to assuming condition 3 (resp. a weaker assumption than condition 2)
holds. We show that there are at most 3d − 2 vertices of He(i) remaining in G′′ − S (or
G′ − S). Assume, for the sake of contradiction, that He(i) − S contains at least 3d − 1
vertices. Observe that He(i) − S cannot contain at least one vertex from three distinct
He(u), He(v), and He(w) (with u, v and w in the i-th row of G), since then He(i) − S
would be 2-connected (and of size > d). For the same reason, He(i) − S cannot contain
at least two vertices in He(u) and at least two vertices in another He(v). Therefore, the
only way of fitting 3d− 1 vertices in He(i)− S is the 3d− 2 vertices of an He(u) plus one
vertex from some other He(v). But then, this vertex of He(v) would form, together with
one Cd of He(u), a 2-connected subgraph of G′′ − S (or G′ − S) of size d+ 1. Now, we know
that |He(i) ∩ S| > (3d− 2)(k − 1). As there are precisely mk sets He(i) in G′ (and they are
disjoint), it further holds that |He(i)∩ S| = (3d− 2)(k− 1), since otherwise S would contain
strictly more than s = (3d− 2)k(k − 1)m vertices. Thus, He(i)− S contains exactly 3d− 2
vertices. By the previous remarks, He(i)− S can only consist of the 3d− 2 vertices of the
same He(u) or 3d − 3 vertices of He(u) plus one vertex from another He(v). In fact, the
latter case is not possible, since the vertex of He(v) would form, with at least one remaining
Cd of the 3d − 3 vertices of He(u), a 2-connected subgraph of G′′ − S (or G′ − S) of size
d+ 1. This is why we needed two disjoint Cds in the construction instead of just one. So far,
we have proved that, assuming condition 2 or condition 3 holds, for any e ∈ E and i ∈ [k],
He(i)∩S = He(vi,e) for some vertex vi,e of the i-th row of G, and for any e ∈ E, Se ∩S = ∅.
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In what follows, we show that vi,e does not depend on e. Formally, we want to show that
there is a vi such that, for any e ∈ E, vi,e = vi. Observe that it is enough to derive that, for
any h ∈ [m], vi,eh

= vi,eh+1 (with em+1 = e1). Let j ∈ [k] (resp. j′ ∈ [k]) be the column of
vi,eh

(resp. vi,eh+1) in G. We first assume condition 2 holds. For any h ∈ [m], vi,eh
eh
+ , reh+1

i ,
c

eh+1
j′ , ceh+1

j plus the path P eh+1
vi,eh+1

(between vi,eh+1
eh+1
−a and vi,eh+1

eh+1
−b ) induces a path (in

particular, a connected subgraph) of size d+ 1 in G′′ − S, unless j = j′ (with em+1 = e1).
Therefore, j = j′. As vi,eh

and vi,eh+1 have the same column j and the same row i in G,
vi,eh

= vi,eh+1 . Showing the same property under 3 is done similarly. We can now safely
define vi := vi,e and conclude by proving that {v1, v2, . . . , vk} is a clique. J
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