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Abstract—Key update and residence management have been
investigated as an effective solution to cope with desynchronisa-
tion attacks in Mobility Management Entity (MME) handovers.
In this paper, we first analyse the impacts of the Key Update
Interval (KUI) and MME Residence Interval (MRI) on handover
processes and their secrecy performance in terms of the Number
of Exposed Packets (NEP), Signaling Overhead Rate (SOR)
and Outage Probability of Vulnerability (OPV). Specifically, the
bounds of the derived NEP and SOR not only capture their
behaviours at the boundary of the KUI and MRI, but also
show the trade-off between the NEP and SOR. Additionally,
through the analysis of the OPV, it is shown that the handover
security can be enhanced by shortening the KUI and the
desynchonisation attacks can be avoided with high-mobility users.
The above facts accordingly motivate us to propose a Multi-
objective Optimisation (MO) problem to find the optimal KUI
and MRI that minimise both the NEP and SOR subject to the
constraint on the OPV. To this end, two scalarisation techniques
are adopted to transform the proposed MO problem into single-
objective optimisation problems, i.e., an achievement-function
method via Fractional Programming (FP) and a weighted-sum
method. Based on the derived bounds on NEP and SOR, the
FP approach can be optimally solved via a simple numerical
method. For the weighted-sum method, the Firefly Algorithm
(FA) is utilised to find the optimal solution. The results show
that both techniques can solve the proposed MO problem with
a significantly reduced searching complexity compared to the
conventional heuristic iterative search technique.

Index Terms—Handover security; desynchronisation attacks;
multiobjective optimisation; firefly algorithm

I. INTRODUCTION

Aiming to provide packet-switched traffic with seamless
mobility, high quality of service and minimal latency, han-
dovers play an important role in every cellular communication
system. As a recent standard for high data rate communication
in telecommunications, the 4th Generation (4G) Long-Term
Evolution (LTE) supports two types of handovers including
intra-LTE and inter-LTE Mobility Management Entity (MME)
handovers [1]–[3]. In the intra-MME handover, i.e. when a
User Equipment (UE) moves from a source to a target eNodeB
within the same MME, the source eNodeB provides the target
eNodeB with a new session key to be used after handover. The
session keys are used to encrypt messages, i.e. user data and
signaling packets, exchanged between a UE and its serving
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eNodeB [4]. The new key is generated from the current one
by either utilising a one-way function, a.k.a. backward key
separation process, or adding fresh materials to the process of
generating the new one, a.k.a. forward key separation process.

As eNodeBs are exposed to the public locations and the
internet-protocol-architecture nature of the network, handover-
key management process is vulnerable to attacks deployed
by bogus eNodeBs [5]. Such attacks are referred to as
desynchronisation attacks [6] which aim to prevent target
eNodeBs from adding the fresh materials thus breaking the
forward key separation process. Consequently, the attacker
can either decipher the communications between a genuine
eNodeB and a UE or compromise all future keys between
specific UEs and eNodeBs for further active attacks. To
prevent desynchronisation attacks, the authors of [7] proposed
an approach with double authentication. However, both source
and destination nodes are required to generate keys, which
causes double signaling overhead. Fortunately, the effects of
desynchronisation attacks will be terminated at the next update
of the root key when handover key materials are generated
from scratch instead of deriving from previous keys [8]. In
addition to desynchronisation attacks, Denial-of-Service (DoS)
attacks, which is beyond the scope of this work, can occur
when the UE initiates a detach/attach request during handover
to de-register with the old network and re-register with the new
one for uninterrupted service.1 In order to protect against these
DoS attacks, an authentication process can be employed for a
secure channel between the eNodeB and UE in these phases
[10], [11]. The authentication handover and key agreement can
be further enhanced with a cross-layer approach over software-
defined wireless network [12] where both non-cryptographic
and cryptographic information were exploited to cope with
latency and security issues.

When an inter-MME handover is carried out for a UE,
the root key is automatically updated or regenerated. As a
result, all security risks related to the inter-MME handover
are eliminated [8]. On the other hand, when an intra-MME
handover is performed for the UE, the root key is not updated.
In fact, the UE and its serving MME will decide when
to regenerate the root key during the residence duration of
the UE within that serving MME. Clearly, the intra-MME
handovers are vulnerable to desynchronisation attacks. Apart
from different approaches for authentication process, see e.g.
[10]–[12], the desynchronisation attacks can still occur when

1A detailed description of the registration and de-registration policies in
mobile networks can be referred to in [9].
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the root key is not promptly updated in response to the arrival
of the UE. Therefore, this paper will focus on tackling the
desynchronisation attacks for the intra-MME handovers.

In order to tackle the desynchronisation attacks, in [13], the
author first modeled the reliability of typical cryptographic
infrastructures, their related failure rates, the failure tolerance
of the cryptographic keys, and the accepted error-bound. Then
a framework was introduced to maximise the lifetime of the
key while bounding the risk of key exposure in the presence of
the aforementioned faults. Determining the root Key Update
Interval (KUI) has been identified as an effective solution to
tackle the desynchronisation attacks, see e.g. [8], [13], [14].2

To that end, a mathematical model was developed in [8] to
represent the average Number of Exposed Packets (NEP) be-
tween two root key updates and the average value of Signaling
Overhead Rate (SOR).3 It was shown that the security of intra-
MME handovers can be enhanced by minimising the NEP so
as to eliminate the desynchronisation attacks. However, such
NEP’s reduction requires a higher SOR which is undesired
and even unfeasible in practice. To address this dilemma, the
conventional approaches in [8], [13], [14] aimed to minimise
SOR given a required NEP. In this paper, we consider a
different approach to simultaneously minimise both the NEP
and SOR. To the best of our knowledge, this is the first
work addressing the SOR and NEP concurrently where a
Multiobjective Optimisation (MO) framework [16], [17] is
adopted to capture as well as to find a set of Pareto optimal
solutions, i.e. Pareto frontier, for our problem.

Generally, there is no single solution that simultaneously
optimises conflicting objectives in an MO problem. However,
there exists a set of Pareto optimal solutions, i.e. Pareto
frontier [16]. The most suitable/desirable solution to the de-
signer/decision maker is selected from the Pareto frontier.
Methods to obtain the Pareto frontier of an MO problem
can be mainly classified into two types, i.e. scalarisation ap-
proaches and non-scalarisation approaches. In the scalarisation
approaches, the preferential information about objectives is
known in advance, e.g. defined by the designer/decision maker,
an MO problem is then converted into a Single-objective
Optimisation (SO) problem by either optimising one objective
and considering other objectives as constraints, see e.g. ε-
constraint method [18], [19], elastic constraint method [20],
[21], or aggregating all objectives in a single objective, see e.g.
weighted sum method [22], [23], min-max method [24], [25],
goal programming [26]–[28], compromise programming [29],
[30], and achievement function method (AFM) [31], [32]. On
the other hand, in the non-scalarisation approaches, the priority
information about objectives is not known in advance. In such
case, nature inspired/generic algorithms are usually adopted
to generate the Pareto frontier by simultaneously optimising
all objectives. The scalarisation approaches attain the Pareto

2An overview of various kinds of attacks in mobile networks can be referred
to in [15] where desynchronisation attack is the one against handover key
management and the selection of an optimal root KUI is shown to be an
approach to mitigate the effect of such attack.

3The SOR is defined as the number of bits for individual authentication
among the UEs, the MME and the home subscriber server/authentication
centre during intra-MME handovers.

frontier by repeatedly solving several SO problems, each of
which is formed with a different value of priorities amongst
objectives, while the non-scalarisation approaches obtain the
Pareto frontier by directly solving the MO problem. However,
the non-scalarisation approaches require significantly higher
computational capacity than the scalarisation approaches.
Moreover, when the number of objectives increases, the non-
scalarisation approaches perform worse than the scalarisation
approaches. In this work, we adopt scalarisation approaches
to solve our proposed MO problem.

In this paper, we first investigate the impacts of not only
KUI but also MME Residence Interval (MRI) on the handover
performance in terms of NEP and SOR. In order to evaluate
the secrecy performance of the handover mechanism, we also
analyse the Outage Probability of Vulnerability (OPV) which
is defined as the probability that the handover is at-risk caused
by desynchronisation attacks.4 The derived OPV as well as
the bounds of the NEP and SOR facilitate the finding of the
optimal KUI and MRI to minimise both the NEP and SOR
using various approaches. The main contributions of this paper
can be summarised as follows:
• Upper and lower bounds of NEP and SOR are derived

with respect to KUI and MRI. The derived bounds
provide insightful meanings of the NEP and SOR ex-
pressions. They not only capture the behaviours of the
NEP and SOR at the boundary values of the KUI and
MRI, but also verify that there exists a trade-off between
the NEP and the SOR.

• The OPV is derived as a function of both the KUI and
MRI given a vulnerable period threshold. It is shown that
the OPV monotonically increases as either the KUI or
the MRI increases. This accordingly indicates that the
desynchronisation attacks can be eliminated when the
MRI lasts for a short time; otherwise, the OPV can be
reduced by shortening the KUI to enhance the handover
security.

• An MO problem is proposed to find the optimal KUI and
MRI that minimise both the NEP and SOR subject to the
constraint on the OPV. Observing the properties of the
derived bounds on NEP and SOR motivates us to adopt
an achievement function method [16, Definition 4.28] to
scalarise the proposed MO problem, i.e. transforming the
proposed MO problem into an SO problem, as the ratio
of the normalised NEP to the normalised SOR. In fact,
the transformed SO problem is also a Fractional Pro-
gramming (FP) problem. Thanks to the derived bounds
of the NEP and SOR, the FP problem can be solved via a
simple numerical method, which hereafter is referred to
as the boundary-based FP. The boundary-based FP can
avoid the conventional exhaustive search of the KUI, e.g.
in [8], which in turn reflects the novelty of our work in
deriving the aforementioned bounds. Hence, adopting our
proposed boundary-based FP approach instead of utilising
the standard method in [8] to tackle desynchronisation

4This work is extended from [33] where only the impacts of the KUI and
MRI were considered on the optimisation of handover security performance.
We now take a further step with the analysis of the OPV and the proposal of
two approaches for solving the developed MO problem.
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Fig. 1: Timing diagram of MME residence with key update
and vulnerable attack periods [8].

attacks in intra-MME handovers5 results in not only
a reduced complexity but also an improved reliability.
Furthermore, given a constraint on the maximal OPV, the
maximum values of the KUI and MRI can be obtained,
which are helpful in verifying the appropriateness of the
derived optimal KUI and MRI.

• As a metaheuristic approach, Firefly Algorithm (FA) is
adopted as a second approach to solve another scalarised
version of the proposed MO problem which is a weighted
sum of the normalised NEP and SOR, hereafter it is
referred to as the FA approach. The FA approach is shown
to provide a quick convergence of the fireflies towards the
optimal values after a small number of generations, and
thus promising to provide a self-adjusting and adaptive
MME handover.

The rest of this paper is organised as follows: Section II
describes the system model of a typical MME handover in
LTE networks. The bounds of NEP and SOR with respect
to KUI and MRI are derived in Section III, followed by the
analysis of OPV in Section IV. Sections V and VI sequentially
present FP and FA methods for optimising the KUI and MRI.
Numerical and simulation results are presented in Section VII
to validate the concepts and findings. Finally, Section VIII
draws the main conclusions from this paper.

II. SYSTEM MODEL

Figure 1 illustrates the timing diagram of an MME residence
in a typical LTE network [8]. Consider the following times
in a chronological order τ1, τ2, τ3 and τ4. A UE enters an
MME area at τ1 and leaves at τ4. An intra-MME handover
over X2 interface between eNodeBs is investigated, while the
signalling of UE association between eNodeB and the MME is
offered via S1 interface [34].6 When an intra-MME handover
is occurred, a new session key is generated by applying a one-
way function to the current session key. In order to prevent
irrelevant eNodeBs from deriving a new session key from

5Our solution is not required for standard inter-MME handover since the
root key is automatically updated or regenerated during this process.

6Details of mechanism considered for intra-handover over X2 interface
can be referred to in [34] where X2 Application Protocol (X2AP) was
introduced for the handover process between eNodeBs. Specifically, the
mobility management in the X2AP between the master eNodeB (MeNB)
and the secondary eNodeB (SeNB) consists of the following elementary
procedures: Handover preparation, Sequence number status transfer, UE
context release, and Handover cancel.

the current session key, i.e., maintaining the forward-key-
separation process, fresh materials are added to the process
of creating the key. However, under certain circumstances,
handover key management cannot guarantee the forward-key-
separation process against variant attacks by bogus eNodeBs
[8], a.k.a. desynchronisation attacks. Fortunately, the desyn-
chronisation attack will be terminated when the root key is
updated.

In Fig. 1, a desynchronisation attack and a root key update
requested by the UE are assumed to take place at τ2 and
τ3, respectively.7 As a part of handover preparation, the
UE performs measurements of the received signals from the
neighboring eNodeBs and sends the measurement reports to
the source eNodeB to identify the target cell(s) for handover
[36]. During this phase, the uplink and downlink channels for
LTE Radio Resource Control (RRC) connection establishment
procedure are secured for sharing the measurement reports
between the UE and eNodeB, controlling the key sharing, sig-
nalling of handover requests, and acknowledgement between
eNodeBs.

Let us denote the MRI and KUI by tR and tU , respectively.
As shown in Fig. 1, tR = τ4 − τ1 and tU = τ3 − τ1.
Furthermore, let tu = τ3 − τ2 and tr = τ4 − τ2 denote
two key exposure intervals with reference to the key update
time and the MME exiting time, respectively. The effect of a
desynchronisation attack can be eliminated at the time when
either updating key or the UE leaves the MME. It is therefore
crucial to determine the optimal KUI and MRI to alleviate the
desynchronisation attacks. The vulnerable period, denoted by
tc, is accordingly determined by

tc = min{tu, tr}. (1)

Note that if the desynchronisation attack occurs after the key
is updated, i.e. τ3 ≤ τ2, then there is only the second key
exposure interval as regards the MME exiting time, and thus
tc = tr.

In order to model the interval time of key update, following
the same approach as in [8], let us assume that KUI, i.e.
tU , follows an exponential distribution [37] with a rate of
µu.8 For modelling variant duration and mobility of UEs in
various environment, the MRI, i.e. tR, is assumed to follow a
gamma distribution [38] which is a general type of statistical
distribution with a shape parameter of k and a rate of µr.9

Here, µu and µr represent the key update rate and mobility
rate of UEs, respectively. The average KUI, denoted by TU ,

7Depending the capacity of the eNodeB, the handover of multiple UEs can
be executed simultaneously by grouping them together via group handover as
in [35]. In this work, we considered an intra-MME handover of an UE with a
desynchronisation attack. The work however can be extended for the case of
multiple UE handovers where the desynchronisation attacks at different UEs
can be treated individually by utilising different KUIs correspondingly.

8Exponential distribution is used to model the KUI due to its memoryless
property in describing the time interval between events which occur indepen-
dently with a constant rate [37], [38].

9Gamma distribution has been shown to be a good approximation for the
cell residence time distribution considering user mobility in cellular networks
[39].
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TABLE I: Summary of main notations

Notation Meaning
τi, i = 1, 2, 3, 4 UE arrival time, attack time, key update time and UE

departure time, respectively
tR and tU MME residence interval (MRI) and key update in-

terval (KUI), respectively
tr and tu key exposure intervals with reference to key update

time and MME departure time, respectively
tc vulnerable period
TR and TU average MRI and average KUI, respectively
k and µr shape parameter and rate of gamma distribution

representing MRI
µu rate of exponential distribution representing KUI
E[·] expectation operator
N and S number of exposed packets (NEP) and signalling

overhead rate (SOR), respectively
λp average arrival rate of packets exchanged between

UE and eNodeB
ρ number of bits for authentication
Po outage probability of vulnerability (OPV)
τth vulnerable interval threshold
FX [·] cumulative distribution function (cdf) of a random

variable X
Γ(z) and Γ(a, z) gamma function and upper incomplete gamma func-

tion, respectively
α required maximum OPV
ν(x) ratio of the normalised NEP to the normalised SOR
δ relative important factor
w1 and w2 weighting factors
I(x, y) light intensity of a firefly at (x, y)
I0 original light intensity of source
γ light absorption coefficient
βi,j attractiveness of a firefly i with respect to a firefly j

with distance ri,j
φ randomisation parameter
NF and Gmax number of fireflies and maximum generation, respec-

tively

and the average MRI, denoted by TR, are thus given by [37],
[38]

TU , E[tU ] =
1

µu
, (2)

TR , E[tR] =
k

µr
, (3)

where E[·] denotes the expectation operator.

Remark 1 (The appropriateness of gamma distribution for
modelling MRI). It can be noticed in (3) that TR → ∞ if
µr → 0 and TR → 0 if µr → ∞. This accordingly means
that there is no handover when the UEs are immobile, while
the MRI is very short in case that the UEs move very fast.
A further notice is that the gamma distribution is skewed by
2/
√
k [40] depending on the shape parameter, and thus can

be exploited to reflect the asymmetry of the mobility of the
UEs. For example, as illustrated in [39], k = 2.31 for the UE
with an average speed of 50 km/h. These facts indeed verify
that the gamma distribution is an appropriate modelling for
the MRI.

In this work, we aim to find the optimal MRI and KUI, i.e.
to decide optimal times to regenerate the root key, to tackle
desynchronisation attacks. Key sharing mechanisms are out of
the scope of our work. For convenience, the main notations
used in the paper are listed in Table I.

III. BOUNDS OF NEP AND SOR

During the vulnerable period, i.e. tc, user data and signaling
packets exchanged between the UE and eNodeB are exposed
to eavesdroppers. An approach to mitigate desynchronisation
attacks during an MME handover is to minimise the number
of exposed packets (NEP) between two root key updates.
However, such reduced NEP is achieved at a cost of higher
signaling overhead rate (SOR) in terms of the number of bits
for authentication. In this section, the NEP and SOR are first
analysed to show their impacts on the security of the MME
handover. Their contradictory behaviours are then deduced,
which leads to the development of optimisation problems in
Sections V and VI. The average NEP, i.e. E[N ], and the
average SOR, i.e. E[S], can be expressed as in [8], i.e.

E[N ] =
λp
µu

(
1− µr

µuk

(
1−

(
µr

µu + µr

)k))
, (4)

E[S] =
ρ

1

µu
+

k

µr

, (5)

where λp is the mean arrival rate of packets exchanged
between the UE and eNodeB; and ρ is the number of bits in
the messages for individual authentication among the UEs, the
MME and the home subscriber server/authentication centre.

In order to provide the insightful meanings of the above
expressions, let us derive the limits of the average NEP and
SOR as the average root KUI TU and MRI TR approach 0 and
∞. The findings are presented in the following three lemmas:

Lemma 1. The average NEP, i.e. E[N ], is an increasing func-
tion of TU ∈ (0,∞), which is lower bounded by N (TU )

min = 0
and upper bounded by

N (TU )
max =

λp(k + 1)

2µr
. (6)

Proof. See Appendix A.

Lemma 2. The average NEP, i.e. E[N ], is an increasing
function of TR ∈ (0,∞), which is upper bounded by

N (TR)
max =

λp
µu
, (7)

while it is lower bounded by

N
(TR)
min =

λp
µu

(
1 +

µr
µu

log

(
µr

µu + µr

))
(8)

when k → 0 and N (TR)
min = 0 when µr →∞.

Proof. See Appendix B.

Lemma 3. The average SOR, i.e. E[S], is a decreasing
function of both TU ∈ (0,∞) and TR ∈ (0,∞), in which
both are lower bounded by 0, while they are upper bounded
by

S(TU )
max =

ρµr
k

=
ρ

TR
, (9)

S(TR)
max = ρµu =

ρ

TU
. (10)
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Proof. From (5), it can be shown that E[S] decreases as either
TU = 1/µu or TR = k/µr increases. Also, E[S] → 0 when
either TU →∞ or TR →∞, and thus it is lower bounded by
0. When TU → 0, i.e. µu → ∞, we obtain the upper bound
of E[S] as

S(TU )
max = lim

µu→∞
E[S] =

ρ
k
µr

=
ρ

TR
. (11)

Similarly, when TR → 0, i.e. µr/k → ∞, E[S] is upper
bounded by

S(TR)
max = lim

µr/k→∞
E[S] =

ρ
1
µu

=
ρ

TU
. (12)

This completes the proof.

Lemmas 1, 2 and 3 indicate that reducing either the KUI
or MRI lowers the risk of security breaches, i.e. reducing
NEPs, at the cost of an increase in signaling overhead.
Hence, minimising the average NEP over either TU or TR
is contradicting with minimising the average SOR. In Section
V, we introduce a method to find optimal values of TU and
TR in order to balance between the two conflicting objectives.

IV. ANALYSIS OF OUTAGE PROBABILITY OF
VULNERABILITY

Apart from analysing NEP and SOR as in Section III, it
is critical to investigate the security of MME handover. This
section analyses the OPV of the key update and MME resi-
dence management processes. Here, the OPV is defined as the
probability that the handover is harmed by desynchronisation
attacks, i.e. when the vulnerable period of the handover is
longer than a threshold value. Letting Po denote the OPV of
the handover process, we have

Po , Pr{tc > τth}, (13)

where tc is a vulnerable period and τth is a vulnerable interval
threshold.10

As described in Section II, tc = min{tu, tr}, where tu =
τ3 − τ2, tr = τ4 − τ2. The OPV in (13) can be computed by

Po = Pr{min{tu, tr} > τth}
= Pr{min{τ3 − τ2, τ4 − τ2} > τth}

(14)

Note that the KUI, i.e. tU , and MRI, i.e. tR, are given by
tU = τ3 − τ1 and tR = τ4 − τ1. Therefore, tc can also be
determined by min{tU , tR} and (14) can be rewritten using
order statistics as

Po = Pr{min{tU , tR} > τth}
= Pr{tU > τth}Pr{tR > τth}
= (1− FtU (τth)) (1− FtR(τth)) ,

(15)

where FX [·], X ∈ {tU , tR}, denotes the cumulative distri-
bution function (cdf) of a random variable X . We have the
following finding:

10The vulnerable interval threshold τth is set according to the practical
handover requirement in different network models to maintain its security
against desynchronisation attacks. For example, a small τth should be
considered for a dense network where desynchronisation attacks are likely
to occur.

Lemma 4. The OPV of MME handover is determined by

Po =
Γ(k, µrτth)

Γ(k)
e−µuτth , (16)

where Γ(z) ,
∫ ∞
0

e−ttz−1dt, <{z} > 0, is the gamma

function [41, eq. (8.310.1)] and Γ(α, z) ,
∫ ∞
z

e−ttα−1dt

is the upper incomplete gamma function [41, eq. (8.350.2)].

Proof. See Appendix C.

Corollary 1. Given k is a positive integer, the OPV can be
obtained by

Po = e−(µu+µr)τth

k−1∑
i=0

(µrτth)i

i!
. (17)

Proof. When k is a positive integer, the gamma function and
upper incomplete gamma function in (16) can be computed
by [41, eq. (8.339.1) & eq. (8.352.2)], i.e.

Γ(k) = (k − 1)!, (18)

Γ(k, µrτth) = (k − 1)!e−µrτth

k−1∑
i=0

(µrτth)i

i!
. (19)

Substituting (18) and (19) into (16), we obtain (17).

Remark 2 (A lower OPV with either a lower KUI or a lower
MRI). In fact, from (17), it can be easily shown that Po
monotonically decreases as either µu or µr increases. Since
TU = 1/µu and TR = k/µr, we can deduce that Po increases
over TU and TR. This accordingly means that a short MRI
results in a lower OPV and the desynchronisation attacks can
also be eliminated by shortening the KUI. In other words, a
more secure handover can be obtained with either a high-
mobility user or a fast key update.

V. BOUNDARY-BASED FRACTIONAL PROGRAMMING FOR
OPTIMISING KUI & MRI

As shown in Sections III and IV, the average NEP, i.e.
E[N ], and OPV, i.e. Po, increase while the average SOR, i.e.
E[S], decreases as either the KUI, i.e. TU , or the MRI, i.e.
TR, increases (see Lemmas 1, 2, 3 and 4). In other words,
either a short and frequent KUI or a short MRI causes a waste
of signalling overhead, but helps reduce the risk of security
breaches with small NEP and OPV. This essentially becomes
a constrained optimisation problem of finding optimal values
of TU and TR in order to balance between the NEP and the
SOR subject to the constraint of the OPV.11

We first bring the average NEP and SOR into the same scale
by defining the following normalised functions

N(x) ,
E[N ]

N
(x)
max

, (20)

S(x) ,
E[S]

S
(x)
max

, (21)

11The optimisation also holds for the key update rate µu since TU is
inversely proportional to µu (see (2)).
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where x ∈ {TU , TR}; E[N ] and E[S] are given by (4) and (5),
respectively; and N (TU )

max , S(TU )
max , N (TR)

max and S(TR)
max are derived

in Section III by (6), (9), (7) and (10), respectively. We can
thus rewrite (20) and (21) as (22) (on the top of next page)
and

S(x) =


TR

x+ TR
if x = TU ,

TU
x+ TU

if x = TR,
(23)

respectively.
Finding an optimal x that minimises both functions S(x)

and N(x) is actually solving the following bi-objective opti-
misation problem [16]:

min
x∈[0,∞)

{S (x) , N (x)} (24)

s. t.
Po(x) ≤ α, (25)

where α denotes the required maximum OPV to guarantee
the handover security and Po(x), x ∈ {TU , TR}, is given
by (16) in Lemma 4. Note that optimising the KUI and
MRI are two separate optimisation problems of TU and TR,
respectively. Here, for brevity, we have grouped these two
problems into one as shown in (24) when x = TU or x = TR.
Specifically, considering the scenario that the shape parameter
of the gamma distribution of the MRI, i.e. k, is a positive
integer number, Po(x) can be determined using Corollary 1
as follows

Po(x) =


e−(1/x+µr)τth

∑k−1
i=0

(µrτth)i

i!
if x = TU ,

e−(µu+k/x)τth
∑k−1
i=0

(kτth/x)i

i!
if x = TR.

(26)
From Lemmas 1, 2 and 3, it can be verified that S(x)

and N(x) are also decreasing and increasing functions, re-
spectively, with respect to x. Those properties stimulate us
to scalarise the proposed MO problem (24) by forming an

achievement function [16, Definition 4.28] ν(x) ,
N(x)

S(x)
as

the ratio of the normalised NEP to the normalised SOR. It will
be shown latter in this section that adopting the achievement-
function method leads to a simple numerical approach using
the derived bounds of the NEP and SOR. From (22) and (23),
ν(x) can be written by (27) (on the top of next page).

Furthermore, let us denote δ as the relative importance factor
determined by the network operator as the ratio of the average
NEP to SOR.12 The MO problem in (24) can be transformed
into the following SO problem to find the optimal solution x
while balancing the two conflicting objectives and satisfying
the OPV constraint (see (25)).

min
x∈(0,∞)

x (28)

s. t.
ν(x) ≥ δ, (29)

12Lowering the signaling overheads beyond a certain point increases the
risk of other attacks on the network entities. By varying the important factor
δ, the Pareto frontier for the proposed MO problem can be attained. Hence,
the operator/decision maker can select a suitable operation point from the
Pareto frontier satisfying the required value of signaling overhead.

Po(x) ≤ α. (30)

In fact, problem (28) is also a FP. According to [16,
Theorem 4.29], the optimal solution to the FP (28) is also the
optimal solution to the original MO problem (24). Solving the
above optimisation problem, we have the following boundary-
based FP problem:

Lemma 5 (FP Method). The optimal TU and TR can be
obtained as follows

xopt = x|ν(x) = δ ∧ x ≤ xmax, (31)

where x ∈ {TU , TR} and xmax is found by solving Po(x) = α.

Proof. It can be shown that ν(x), x ∈ {TU , TR}, is an
increasing function with respect to x since S(x) and N(x)
are decreasing and increasing functions, respectively, over x.
The optimal solution to (28), i.e. xopt, can be thus obtained
by solving the equation ν(x) = δ where ν(x) is given by
(27). Additionally, as noted in Remark 2, the OPV increases
as either the KUI or the MRI increases, i.e. Po(x) increases
over x. Therefore, given the constraint (30) on the required
maximum OPV, we can determine the maximum value of x,
i.e. xmax, by solving Po(x) = α where Po(x) is given by
(26). This accordingly means that in order to guarantee the
OPV requirement, the optimal values of the KUI and MRI
should also not exceed these maximum values. The Lemma is
proved.

Corollary 2. The optimal value xopt in (31) can be found only
when 0 < δ ≤ δmax, where δmax = ν(xmax) and Po(xmax) =
α.

Proof. The proof can be straightforwardly obtained with the
notice from Lemma 5 that ν(x) monotonically increases over
x and with the constraint x ≤ xmax.

Remark 3 (Impacts of relative important factor between NEP
and SOR). It can be noticed that, if δ → 0, then solving (31),
i.e. ν(x) → 0, means N(x) → 0 and S(x) → 1. Similarly,
if δ → ∞, then we need to solve ν(x) → ∞, i.e. S(x) → 0
and N(x) → 1. Furthermore, from Corollary 2, the relative
important factor should be restricted in a specific range, i.e.
δ ∈ (0, δmax], which can be determined through the OPV
constraint.

For clarity, the finding of the optimal KUI and MRI with
the proposed boundary-based FP is summarised in Algorithm
1.

In order to examine the practicality of the proposed FP
algorithm, let us consider the following example:

Example 1. A UE experiences intra-MME handover with the
following parameters: the mean packet arrival rate λp = 64
kbits/s, the number of bits in authentication message ρ = 1
kbits, the relative importance factor δ = 0.3, the required
maximum OPV α = 0.01, the vulnerable interval threshold
τth = 5 seconds and the shape parameter k = 1. By employing
Algorithm 1, it can be arrived at TU = 1.8 seconds when
TR = 6 seconds, while TU = 2.5 seconds when TR = 8
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N(x) =


2kx

(k + 1)TR

(
1− x

TR

(
1−

(
kx

kx+ TR

)k))
if x = TU ,

1− TU
x

(
1−

(
kTU

x+ kTU

)k)
if x = TR,

(22)

ν(x) =


2kx(x+ TR)

(k + 1)T 2
R

(
1− x

TR

(
1−

(
kx

kx+ TR

)k))
if x = TU ,

x+ TU
TU

(
1− TU

x

(
1−

(
kTU

x+ kTU

)k))
if x = TR.

(27)

Algorithm 1 (Fractional Programming Algorithm)
1: Input: k, τth, α and δ ∈ (0, δmax] (see Corollary 2)
2: Find x ∈ {TU , TR}: ν(x) = N(x)/S(x) = δ
3: where ν(x) is given by (27)
4: Determine xmax: Po(xmax) = α (see Lemma 5)
5: where Po(x), x ∈ {TU , TR}, is given by (26)
6: if x ≤ xmax then
7: xopt = x
8: else
9: xopt = xmax

10: end if
11: Output: TU,opt, TR,opt

seconds. This accordingly means that, in order to mitigate
desynchronisation attacks, the KUI should be less than 1.8
seconds and 2.4 seconds when the duration that the UE
stays within an MME, i.e. MRI, is 6 seconds and 8 seconds,
respectively.

A graphical illustration of the relationship between the
normalised NEP and the normalised SOR is shown in Fig. 2.
In Fig. 2(a), S(TR) is plotted versus N(TR), while S(TU ) is
plotted versus N(TU ) in Fig. 2(b) with respect to various µr
and k. As stated in Lemma 5, for every value of δ, the optimal
values of TR and TU are the crossing points between the line
S(x) = N(x)/δ and the curve S(N(TR)) and S(N(TU )) in
Figs. 2(a) and 2(b), respectively. Also, these illustrations verify
the notice in Remark 3 as δ approaches either 0 or ∞.

Remark 4 (Reduced complexity via FP approach). It can be
observed that, by deriving the bounds of the average NEP and
the average SOR in Section III, the optimisation problem in
(28) can be easily solved by a numerical method. Specifically,
the proposed FP approach can provide optimal KUI and
MRI by solving two equations, as stated in Lemma 5, rather
than performing exhaustive searches as in the conventional
approach, e.g. [8]. This not only helps reduce the complexity
in finding the optimal solutions, but also improves the relia-
bility with numerical approach, which accordingly reflects the
novelty of our work in finding the bounds for the NEP and
SOR in Section III.
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Fig. 2: (a) S(TR) versus N(TR) with TU = 3 seconds; (b)
S(TU ) versus N(TU ) with ρ = 1 kbits and λp = 64 kbits/s.

VI. FIREFLY ALGORITHM FOR OPTIMISING KUI & MRI

In this section, we adopt a popular weighted-sum method to
scalarise the MO problem into an SO problem. To that end, the
scalarised version of the MO problem (24) can be formulated
as the following SO problem:

min
TU ,TR

f(TU , TR) = w1N(TU , TR) + w2S(TU , TR) (30)

s. t.

Po(TU , TR) ≤ α, (31)

where w1 and w2 are weighting factors satisfying w1 +w2 =
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1.13 For convenience, let us denote the value set of (TU , TR)
by (x, y) which can be regarded as spatial coordinates of a
point in 2D. From (22), (23) and (26) with a notice that µr =
k/TR, we can rewrite the objective (30) and constraint (31)
by replacing x = TU and y = TR as follows:

min
x,y

f(x, y) =

{
w1

[
1− x

y

(
1−

(
kx

kx+ y

)k)]
+ w2

x

x+ y

}
(32)

s. t.

e−(1/x+k/y)τth
k−1∑
i=0

(kτth)i

yii!
≤ α (33)

According to [16, Theorem 3.11], the optimal solution to
the SO problem (32) is also the optimal solution to the
MO problem (24). Given preferential information of w1 and
w2, it is very challenging to derive a numerical method to
solve the above SO problem (32). Fortunately, nature-inspired
metaheuristic algorithms can be exploited to obtain the optimal
solution. Specifically, FA has recently emerged as one of
the powerful biologically inspired algorithms to solve various
optimisation problems [42] by offering more naturally and
efficiently environmental awareness in decision making and
learning processes. Although there are various evolutionary
algorithms to deal with diverse optimisation problems [43],
such as genetic algorithm [44], [45], ant colony optimisation
algorithm [46], [47], particle swarm optimisation algorithm
[48], [49], etc., the FA is shown to be more natural and
efficient compared to the other counterparts [42]. It is noted
that FA has been proposed to cope with the MO problems
in various applications, for instance, pressure vessel design
[50], flowshop scheduling problems [51], economic emissions
load dispatch problems [52], structural optimisation [53] and
telecommunications [54]. Due to the above facts, the FA is
exploited in this work to solve the proposed problem (32). In
the following, the FA is briefly introduced, followed by its
adaptation for the MO problem under investigation.

A. Firefly Algorithm (FA)

Fireflies, a.k.a. lightning bugs, produce short and rhythmic
flashing lights to not only attract mating partners and potential
preys, but also help in defensive vigilance. With about 2000
species of fireflies, the pattern of their flashes is unique for
different species with different flashing rate and duration.
By observing the fundamental functions of the flashes and
their light intensity at various distances, the flashing light can
be formulated to model the objective function which can be
solved with FA.

In order to describe the FA, for simplicity, the flashing
characteristics of fireflies are firstly idealised as follows [42]:

i) All the fireflies are unisex and thus can attract each other
irrespective of their sex;

13By varying the weighting factors w1 and w2, the Pareto frontier for
the proposed MO problem can be attained. From the Pareto frontier, the
operator/decision maker can select a suitable operation point satisfying the
required value of signaling overhead to eliminate the risk of other attacks on
the network entities.

ii) Attractiveness of the fireflies is proportional to their
brightness, while inversely proportional to the distance
between them;

iii) The brightness of a firefly is affected by the topography of
the objective function. For a maximisation problem, the
brightness is simply proportional to the objective function
value, while for a minimisation problem, the brightness
can be represented by the reciprocal of the objective
function value.

It is noted that the light intensity received at a specific node
of distance r with respect to a light source varies as

I(r) = I0e
−γr2 , (34)

where I0 is the original light intensity of the source and γ
is the light absorption coefficient which is dependent on the
transmission medium assumed to be fixed. According to the
second rule of the FA, the attractiveness of a firefly i with
respect to a firefly j can be similarly formulated as follows

βi,j = β0e
−γr2i,j , (35)

where β0 is the attractiveness at rij = 0 and the distance
between a firefly i at (xi, yi) and a firefly j at (xj , yj) is
determined by the Euclidean distance as

ri,j =
√

(xi − xj)2 + (yi − yj)2. (36)

Additionally, the random movement of a firefly j towards a
more attractive firefly i is modeled as [42]

xj = xj + βi,j(xi − xj) + ϕ

(
Ux −

1

2

)
, (37)

yj = yj + βi,j(yi − yj) + ϕ

(
Uy −

1

2

)
, (38)

where Ux and Uy are uniformly distributed random numbers
in the interval (0, 1) and ϕ is randomisation parameter which
is assumed to vary in (0, 1].

B. Optimising KUI & MRI with FA

Adopting the FA approach in solving the MO problem in
(32), the light intensity of a firefly at (x, y) is represented by
the reciprocal of the objective function,14 i.e.

I(x, y) =

{
w1

[
1− x

y

(
1−

(
kx

kx+ y

)k)]
+ w2

x

x+ y

}−1
(39)

Let NF and Gmax denote the number of fireflies and their
maximum generation, respectively. The FA approach for find-
ing the optimal KUI and MRI subject to the constraint on the
OPV is carried out as in Algorithm 2.

14The reciprocity of light intensity and objective function is stated in the
third rule of FA in previous subsection when the considered optimisation
problem is a minimisation problem.



9

Algorithm 2 (Firefly Algorithm)
1: Input: Gmax, NF , φ, γ, α, τth, k, w1, w2

2: Generate initial population (g = 1) of NF fire-
flies {(x1, y1), (x2, y2), . . . , (xNF

, yNF
)} satisfying

{Po(x, y) ≤ α} (see (33))
3: Determine the light intensity at all fireflies {Ii(xi, yi)},
i = 1, 2, . . . , NF , using (39)

4: repeat
5: for i = 1 to NF do
6: for j = i+ 1 to NF do
7: if Ij > Ii then
8: Move firefly i towards firefly j with new posi-

tion (x′i, y
′
i) (see (37) and (38))

9: if Po(x′i, y′i) ≤ α then
10: Update attractiveness between fireflies (see

(35))
11: Update light intensity at fireflies w.r.t. new

position
12: xopt = x′i, yopt = y′i
13: else
14: Move firefly i back to the original position
15: end if
16: end if
17: end for
18: end for
19: Rank all fireflies in ascending order of their light

intensity
20: g ← g + 1
21: until (g ≤ Gmax)
22: Output: TU,opt = xopt TR,opt = yopt

TABLE II: Simulation parameters

Parameter Value(s)
λp 64 kbits/s
ρ 1000 bits
µr {1/6, 1/8, 1/10, 1/12} [sec−1] with k = 1
µu {1/2, 1/4, 1/6, 1/8} [sec−1]
α {0.01, 0.001}
τth {0 : 20} [sec]
NF 20
Gmax 50
φ 0.3
γ 1

VII. NUMERICAL RESULTS

In this section, we first present numerical results of three
performance metrics, including NEP, SOR and OPV, followed
by the optimisation of the KUI and MRI for the handover
security key management using FP and FA approaches. The
values of typical parameters used in the numerical evaluations
are provided in Table II unless otherwise stated.

A. The impacts of KUI and MRI on NEP Performance

Figures 3(a) and 3(b) sequentially plot the average NEP, i.e.
E[N ] [bits], as a function of KUI, i.e. TU [s], and MRI, i.e.
TR [s], respectively. It is assumed that the mean arrival rate of
packets exchanged between the UE and eNodeB is λp = 64
kbits/s. In Fig. 3(a), various scenarios of TR ∈ {6, 8, 10, 12}
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Fig. 3: (a) E[N ] versus TU w.r.t. TR; (b) E[N ] versus TR
w.r.t. TU .
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Fig. 4: E[N ] versus TR w.r.t. k → 0.

seconds in respect of the variants of mobility rate µr ∈
{1/6, 1/8, 1/10, 1/12} given a fixed shape parameter k = 1,
while in Fig. 3(b), TU is assumed to be in {2, 4, 6, 8} seconds.
The upper bounds are plotted using (6) and (7) derived in
Lemmas 1 and 2, respectively. It can be observed in both
Figs. 3(a) and 3(b) that all the simulation results approach the
derived bounds and the average NEP increases as either TU
or TR increases.

Moreover, considering the scenario of a very small shape
parameter of gamma distribution, i.e. k → 0, Fig. 4 shows
another illustration of the average NEP as a function of the
MRI with respect to various values of k ∈ {0.02, 0.05, 0.1}.
The KUI is set as 2 seconds and other parameters are similarly
set as in Fig. 3(b). It can be observed in Fig. 4 that all the
NEP curves are lower bounded by (8) and such bound is
tighter as k is closer to 0. The above observations accordingly
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Fig. 5: (a) E[S] versus TU w.r.t. TR; (b) E[S] versus TR w.r.t.
TU .

verify the statements in Lemmas 1 and 2 regarding the
monotonic increase property of E[N ] over TU and TR as well
as confirming the derived bounds of E[N ].

B. The impacts of KUI and MRI on SOR Performance
Investigating the impacts of KUI and MRI on the SOR

performance, Figs. 5(a) and 5(b) plot the average SOR, i.e.
E[S] [bits/s (bps)], versus TU [s] and TR [s], respectively.
Similar to Fig. 3, TR is assumed to vary in {6, 8, 10, 12}
seconds in Fig. 5(a), while in Fig. 5(b), TU is set in {2, 4, 6, 8}
seconds. The number of bits for authentication between entities
in the network is set as ρ = 1000 bits. It can be seen that the
average SOR decreases to 0 as either TU or TR increases and
they are all bounded by (9) and (10) when TU and TR approach
to 0, respectively. These verify the findings in Lemma 3 about
the monotonic decrease property of E[S] over TU and TR.

C. The Outage Probability of Vulnerability
Analysing the secrecy performance of MMI handover, Fig. 6

shows the OPV, i.e. Po as a function of vulnerable interval
threshold, i.e. τth. Specifically, with regard to the KUI and
MRI, we assume that TU varies in {2, 4, 6, 8} seconds and
TR = 8 seconds in Fig. 6(a), while TR ∈ {6, 8, 10, 12}
seconds and TU = 3 seconds in Fig. 6(b). It can be observed in
these figures that an improved performance with a lower OPV
is achieved when either the KUI or the MRI is short, which
accordingly verifies the statement in Remark 2. Additionally,
the analytical results in Lemma 4 with the closed-form ex-
pression (17) in Corollary 1 are shown to be consistent with
the simulation results.
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Fig. 6: OPV versus vulnerable interval threshold w.r.t. (a) TU ;
(b) TR.

D. Optimal KUI and MRI with FP Approach

In order to find the optimal KUI and MRI that minimise
the NEP and SOR subject to OPV constraint, as stated in
Lemma 5, we first find the maximal TU and TR. Figs. 7(a)
and 7(b) plot the maximal TU , i.e. TU,max, and maximal TR,
i.e. TR,max, respectively, as the functions of the vulnerable
interval threshold, i.e. τth, with respect to two scenarios of
OPV constraint α ∈ {0.01, 0.001}. In these two subfigures,
TU,max and TR,max are determined by solving Po(x) = α
where x ∈ {TU , TR} and Po(x) is given by (26). It can be
observed that, in order to achieve a stricter OPV requirement
with a lower α, either a shorter KUI or MRI is required. This is
also reflected from the observation in Fig. 6. Also, in Fig. 7(a),
TU,max is shown to decrease as TR increases. This is due to
the fact that an increased TR causes a higher OPV and thus
TU should be reduced to achieve the required OPV.

Given the maximal KUI and MRI in Fig. 7 subject to the
constraint on the OPV, Figs. 8(a) and 8(b) sequentially plot
the optimal values of TU and TR, i.e. TU,opt and TR,opt,
versus the relative importance ratio between NEP and SOR,
i.e. δ, using the proposed FP approach. For comparison, an
exhaustive search approach in [8] is included in Fig. 8. In
this exhaustive search approach, a running step size of 0.05
second is assumed, while in the FP approach, by exploiting
the bounds of E[N ] and E[S] in Figs. 3 and 5, the normalised
NEP and SOR can be determined, and thus the optimal TR
and TU , i.e. TR,opt and TU,opt, can be solved numerically by
(31) in Lemma 5. It is assumed that the target maximum OPV
is α = 0.01 and the vulnerable interval threshold is τth = 5
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Fig. 7: (a) Maximal TU versus τth; (b) Maximal TR versus
τth.
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Fig. 8: (a) Optimal TU versus δ; (b) Optimal TR versus δ.
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seconds. As shown in Corollary 2, it is necessary to determine
the condition of δ to meet the OPV requirement. Therefore, in
Figs. 8(a) and 8(b), the maximal δ, i.e. δmax, is also illustrated
for various scenarios of TU and TR.

In Figs. 8(a) and 8(b), it can be seen that TR,opt and TU,opt
increase as δ increases up to δmax. In fact, a higher NEP
is required over the SOR to achieve a higher δ. This means
the security is of lower priority compared to the signalling
overhead. Therefore, the optimal intervals TU,opt and TR,opt
must be long enough to provide a lower E[S] while they
result in a higher E[N ]. This observation verifies the notice
in Remark 3 regarding the impact of δ as δ varies from 0
to ∞. This also reflects the observations in Figs. 3 and 5
regarding the contradictory between E[N ] and E[S] when
increasing either TU or TR. Furthermore, it can be observed
that there is a gap between TU,opt and TR,opt in the proposed
FP compared to those in the conventional exhaustive search
approach. This accordingly verifies the statement in Remark 4
regarding the effectiveness of the proposed solution in finding
the exact optimal values of TR and TU over the conventional
approach which relies solely on the use of empirical data.

E. Optimal KUI and MRI with FA Approach

Considering the minimisation of the weighted sum of NEP
and SOR as shown in (30), we implement FA approach in
MATLAB. Note that finding the optimal KUI and MRI is
equivalent to finding x and y to maximise the light intensity
in FA, i.e. reciprocal of the weighted sum (see (39)). Fig. 9
illustrates the 3-D shaded surface plot of the reciprocal of the
weighted sum, i.e. I(TU , TR). It is assumed that TU and TR
vary in the range [1, 8] seconds. Let us consider 20 fireflies,
i.e. NF = 20, flying in a 2-D coordinate grid in which the
coordinates (x, y) of the fireflies correspond to the values of
TU and TR to be optimised.

In order to illustrate the operation of the FA in solving
the MO problem, Fig. 10 plots the location of 20 fireflies
at different stages/generations. The FA is carried out as in
Algorithm 2 where the randomisation parameter, the light
absorption coefficient and the maximum generation are set as
ϕ = 0.3, γ = 1 and Gmax = 50, respectively. Specifically, in
Fig. 10(a), the initial population of fireflies are generated over
the 2-D grid with a notice that their location should satisfy the
OPV constraint (33) where the the target maximum OPV and
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Fig. 10: Location of 20 fireflies: (a) initial population; (b) after 5 generations; and (c) after 50 generations.

the vulnerable interval threshold are α = 0.01 and τth = 5
seconds, respectively. It can be observed in Fig. 10(b) that the
fireflies can quickly aggregate in a dense group after only 5
iterations and the optimal location of the firefly having the
maximum light intensity can be found after 50 iterations as
shown in Fig. 10(c).

A comparison between FP and FA approaches is sum-
marised in Table III where α ∈ {0.1, 0.01} and τth ∈
{4, 5, 6, 7, 8} seconds. For fair comparison, it is assumed that
δ = 1 in FP method and w1 = w2 = 0.5 in FA method.
The FA is first implemented to find the optimal KUIs and
MRIs in different scenarios. Then, for each value of the
obtained KUI with the FA, we implement the FP method to
find the corresponding optimal MRI. It can be seen that the
optimal MRIs are different with 2 approaches; however, they
both result in a closed weighted sum of NEP and SOR, i.e.
f(TU , TR). It is also shown in Table III that both the FP and
FA approaches require shorter KUI and MRI for a target OPV,
i.e. α, as the vulnerable interval threshold, i.e. τth, decreases.
This is due to the fact that a lower τth results in a higher OPV
(see Fig. 6), and thus, as noted in Remark 2, a shorter KUI
and MRI are required to reduce the OPV to achieve its target.
Notice that the optimal values in the FA are found so as to
minimise the weighted sum of two objectives, while those in
the FP are for minimising the fraction of these two objectives.
The above observations accordingly verify the effectiveness of
the FA in finding the optimal KUIs and MRIs to minimise the
weighted sum of two objectives with high reliability and quick
convergence.

VIII. CONCLUSIONS

In this paper, OPV has been derived along with the bounds
of NEP and SOR to not only facilitate the normalisation
functions in the optimisation problem but also characterise the
monotonicity properties of the NEP, SOR and OPV over the
KUI and MRI. It has been shown that the NEP and SOR are
respectively increasing and decreasing functions of both the
KUI and MRI, while either a short KUI or MRI helps reduce
the OPV for an enhanced handover security.

Aiming at minimising the NEP and SOR while still main-
taining the OPV constraint, an MO problem has been intro-
duced to find the optimal KUI and MRI to balance these two
conflicting objectives. Since there is no single solution to the
MO problem with conflicting objectives, it is critical to com-
bine these two objectives into a single objective. Specifically,
we have considered two approaches where the objectives can
be expressed in the form of either a fraction or a weighted
sum.

In the FP approach, the MO problem has been converted
to an SO problem where the optimal solutions can be found
via a simple numerical method, while in the FA approach, the
MO problem has been considered as the minimisation of the
weighted sum of the NEP and SOR. Both approaches have
shown to provide a lower complexity rather than performing
heuristic exhaustive searches. In particular, a quick conver-
gence can be achieved with the FA when the fireflies move
quickly towards the optimal values after a small number of
generations, and thus is promising to provide a self-adjusting
and fast MME handover with enhanced security and lower
complexity in practice. A possible extension of this work
is to investigate the practical issues of the MME handover
key management when employing the proposed approaches to
cope with the desynchronisation attacks.

APPENDIX A
PROOF OF LEMMA 1

From (4), it can be easily shown that E[N ] decreases as
µu increases, and thus E[N ] is an increasing function over
TU since TU = 1/µu. The lower bound of E[N ] can thus be
determined when TU → 0, i.e. µu →∞, as

lim
µu→∞

E[N ] = 0. (40)

The upper bound of E[N ] can be computed by applying
L’Hospital’s Rule when TU →∞, i.e. µu → 0. Let us define

f1(µu) , 1− µr
µuk

(
1−

(
µr

µu + µr

)k)
, (41)

g1(µu) , µu. (42)
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TABLE III: Comparison between FP and FA approaches in solving the MO problem

Required OPV Vulnerable interval threshold FP Method with δ = 1 FA Method with w1 = w2 = 0.5
i.e. α i.e. τth (TU , TR) (TU , TR)

α = 0.1

τth = 4s (3.09, 3.45)s (3.09, 3.96)s
τth = 5s (3.30, 3.68)s (3.30, 4.22)s
τth = 6s (4.29, 4.78)s (4.29, 5.49)s
τth = 7s (4.33, 4.83)s (4.33, 5.55)s
τth = 8s (4.89, 5.45)s (4.89, 6.26)s

α = 0.01

τth = 4s (1.58, 1.76)s (1.58, 2.02)s
τth = 5s (1.84, 2.05)s (1.84, 2.36)s
τth = 6s (2.30, 2.56)s (2.30, 2.94)s
τth = 7s (2.35, 2.62)s (2.35, 3.00)s
τth = 8s (2.64, 2.94)s (2.64, 3.38)s

f(TU , TR) = 0.4728 f(TU , TR) = 0.4716

Substituting (41) and (42) into (4), we have

lim
µu→0

E[N ] = λp lim
µu→0

f ′1(µu)

g′1(µu)
= λp lim

µu→0
f ′1(µu). (43)

We continue by calculating f ′1(µu) as follows:

f ′1(µu) =
µr
kµ2

u

− µk+1
r

k

1

µ2
u (µu + µr)

k
− µk+1

r

µu (µu + µr)
k+1

,
f2(µu)

g2(µu)
,

(44)

where

f2(µu) = µr (µu + µr)
k+1 − µk+1

r (µu + µr)− kµuµk+1
r ,

(45)
g2(µu) = kµ2

u (µu + µr)
k+1

. (46)

Substituting (44) into (43), we then have

lim
µu→0

E[N ] = λp lim
µu→0

f ′2(µu)

g′2(µu)
= λp lim

µu→0

f3(µu)

g3(µu)
, (47)

where
f3(µu) , (k + 1)µr(µu + µr)

k − µkr , (48)

g3(µu) , kµu(µu + µr)
k [2(µu + µr) + (k + 1)µu] . (49)

Similarly, we can arrive at

lim
µu→0

E[N ] = λp lim
µu→0

f ′3(µu)

g′3(µu)
= λp lim

µu→0

f4(µu)

g4(µu)
(50)

where
f4(µu) , (k + 1)µr(µu + µr)

k−1, (51)

g4(µu) , (µu + µr)
k [(k + 3)µu + 2µr]

+ kµu(µu + µr)
k−1 [(k + 3)µu + 2µr]

+ µu(µu + µr)
k(k + 3).

(52)

Finally, we obtain

lim
µu→0

E[N ] = λp lim
µu→0

f ′4(µu)

g′4(µu)
=
λp(k + 1)

2µr
. (53)

Equivalently, (40) and (53) can be stated as

N
(TU )
min = lim

TU→0
E[N ] = 0, (54)

N (TU )
max = lim

TU→∞
E[N ] =

λp(k + 1)

2µr
. (55)

Hence, the Lemma is proved.

APPENDIX B
PROOF OF LEMMA 2

From (4), it can be shown that E[N ] increases as either k
increases or µr decreases. Therefore, E[N ] is an increasing
function over TR since TR = k/µr.

Considering both k and µr, we have the following cases:
i) k →∞ or µr → 0: we have TR →∞, and thus

N (TR)
max = lim

k→∞
E[N ] = lim

µr→0
E[N ] =

λp
µu
. (56)

ii) k → 0: we have TR → 0 and

N
(TR)
min = lim

k→0
E[N ] =

λp
µu

(
1− µr

µu
lim
k→0

f5(k)

g5(k)

)
, (57)

where

f5(k) , 1−
(

µr
µu + µr

)k
, (58)

g5(k) , k. (59)

It can be seen that f5(k) → 0 and g5(k) → 0 as k → 0. By
taking the derivative of both f5(k) and g5(k) following the
L’Hospital’s Rule, we can obtain N (TR)

min as in (8).
iii) µr →∞: we have TR → 0 and

N
(TR)
min = lim

µr→∞
E[N ] =

λp
µu

(
1− 1

kµu
lim

µr→∞

f6(µr)

g6(µr)

)
,

(60)
where f6(µr) has the same form as f5(k) in (58) and

g6(µr) = 1/µr. (61)

It can be seen that f6(µr) → 0 and g6(µr) → 0 as µr →
∞. Similarly, using the L’Hospital’s Rule, we can show that
N

(TR)
min = 0 as µr →∞.
Summarising the above cases, the Lemma is proved.

APPENDIX C
PROOF OF LEMMA 4

As described in Section II, the KUI, i.e. tU , is modeled by
an exponential distribution with a rate of µu and the MRI,
i.e. tR, is described by a gamma distribution with a shape
parameter of k and a rate of µr. The cdfs of tU and tR are
given by [38]

FtU (x) = 1− e−µux (62)

FtR(x) =
γ(k, µrx)

Γ(k)
, (63)
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respectively, where Γ(z) ,
∫ ∞
0

e−ttz−1dt, <{z} > 0,

is the gamma function [41, eq. (8.310.1)] and γ(α, z) ,∫ z

0

e−ttα−1dt is the lower incomplete gamma function [41,

eq. (8.350.1)].
Substituting (62) and (63) into (15), we have

Po =

(
1− γ(k, µrτth)

Γ(k)

)
e−µuτth . (64)

Note that γ(α, z) = Γ(α)−Γ(α, z) [41, eq. (8.356.3)], where

Γ(α, z) ,
∫ ∞
z

e−ttα−1dt is the upper incomplete gamma

function [41, eq. (8.350.2)]. We can further rewrite (64) as

Po =
Γ(k, µrτth)

Γ(k)
e−µuτth . (65)

The Lemma is proved.
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