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1. Introduction

The question of whether asset returns are predictable is important not only from the theoretical

(asset-pricing) perspective but also from the practical (market-timing) perspective. An important

concern is whether in-sample or instead out-of-sample econometric methods should be used to

assess the predictability of returns. According to Ashley, Granger, and Schmalensee (1980,

p. 1149), “the out-of-sample forecasting performance” provides “the best information” and

should therefore be preferred. More recently, Inoue and Kilian (2004) argue that out-of-sample

tests are less able to reject a false null hypothesis; that loss of power is due to splitting the finite

sample into an in-sample estimation period and an out-of-sample evaluation period, although

the authors acknowledge there is a role for out-of-sample methods in choosing the best (though

possibly misspecified) forecasting model among the few competitors. Hence most attention in

the recent literature on returns predictability has focused on out-of-sample forecasting methods

and inference (see, among others, Goyal and Welch, 2003; Rapach and Wohar, 2006; Campbell

and Thompson, 2008; Kolev, 2008; Welch and Goyal, 2008; Rapach, Strauss, and Zhou, 2010).1

Out-of-sample methods involve splitting the available data into an in-sample estimation pe-

riod, which is used to produce an initial set of regression estimates, and an out-of-sample forecast

evaluation period over which forecasts are generated and then both evaluated (in terms of some

specified criterion of goodness) and compared with results from competing models (West, 2006,

p. 106). The natural question that arises in this context is just how the sample should be split

into these two periods. This paper considers a set of 21 predictors (including those used in the

influential paper of Welch and Goyal, 2008). We demonstrate that some such splits yield results

indicating that returns are not predictable whereas other splits lead to the opposite conclusion.

That is: for any given predictor and any given data set, the derived predictability of returns is

sensitive to where the sample is split between the estimation and forecast evaluation subsamples.

To address this problem and resolve contradictory findings, we propose two simple (but com-

1Apart from equity premium predictability, another interesting and active field of finance addresses whether
mean-variance optimization improves on the naive 1/N portfolio allocation rule on an out-of-sample basis
(DeMiguel, Garlappi, and Uppal, 2009; Kirby and Ostdiek, 2012). The issues we raise as well as our proposed
inferential methods are applicable also to this problem—provided the expected portfolio return under the null (e.g.,
with naive 1/N portfolio weights) and the expected portfolio return under the alternative (e.g., with mean-variance–
optimal weights) can be written as a regression function of the returns of the underlying assets constituting the
portfolio. Britten-Jones (1999) shows how mean-variance optimization can be recast as a regression problem.
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putationally intensive) methods that do not suffer from this dependence on the choice of split date.

The first approach is to report in graphical form the out-of-sample predictability results for every

possible sample split. Thus we report the p-values for the Clark and West (2007) mean squared

prediction error–adjusted (MSPE-adj) statistic for every possible sample split, where the sample

split date τ falls within the interval [int(.05T ),T−int(.05T )]; here int(·) denotes the argument’s

integer part. It follows that neither the in-sample estimation period nor the out-of-sample evalu-

ation period ever contains less than 5% of the total number T of observations. Computationally,

we determine the p-value by generating 9999 bootstrap samples under the null of no predictabil-

ity and then calculating the t-statistic associated with the MSPE-adj for each τ; let us call this

with t(MSPE-adj)τ to emphasize that one such statistic goes with each individual sample split

indexed by τ . Then the p-value for each sample split τ is the fraction of bootstrap samples for

which the bootstrap t-statistic is larger than the t-statistic calculated from the original data for the

corresponding τ .

The second approach is to calculate, again across all possible sample splits, some summary

statistic of an out-of-sample predictability criterion and then, via a bootstrap procedure, to deter-

mine (for inferential purposes) the distribution of that statistic under the null hypothesis of no

return predictability. Thus we calculate meanτ{t(MSPE-adj)τ} and maxτ{t(MSPE-adj)τ}, the

mean and the maximum taken over τ . In this way we capture the entire sequence of statistics

t(MSPE-adj)τ for each τ . We evaluate the 15 predictors considered in Welch and Goyal (2008)

and six additional, behavioral predictors (that end up failing to predict the equity premium). We

show that some of the traditional forecasting variables work very well for some sample splits. The

satisfactory (albeit episodic) performance of traditional predictors is in contrast to the widespread

failure of behavioral predictors. The hypothesis that investor sentiment predicts future stock re-

turns is a plausible one, and it is not unreasonable to suppose that such sentiment can be measured

(howsoever imperfectly) by behavioral factors. Yet of all the behavioral sentiment variables we

examine, only one is predictive of the equity premium: Equity Share in New Issues.

We can summarize as follows the issues at hand and our paper’s contributions.

1. Scholars who are interested in such general questions as “Are stock returns predictable?” and

who want to use out-of-sample methods should not take the sample split date as given. We
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propose two methods of dealing with this sample split problem: (i) report the results for each

possible sample split; or (ii) calculate a statistic that is invariant to the chosen sample split

within any given set of possible sample splits.

2. We document that conclusions about stock market predictability when using out-of-sample

methods are strongly dependent on the choice of a sample split date. In fact, a researcher

may derive evidence supporting (or refuting) predictability simply by adjusting the sample

split date. We also show that traditional predictors of stock returns exhibit satisfactory perfor-

mance often but not for all sample splits; in contrast, behavioral predictors hardly ever exhibit

satisfactory performance.

3. As soon as one allows any possible sample split to be chosen (e.g., via the mean or maximum

of results based on various forecasting criteria taken across all possible sample splits), most

debates over competing in- or out-of sample methods and splits become moot. Results from

using in-sample methods are in broad agreement with those from using sample split–invariant

out-of-sample methods.

4. We show how to construct out-of-sample predictability tests that (i) are sample split invari-

ant and (ii) control for data mining. Using this out-of-sample, sample split independent joint

test of predictive power of 21 predictors we reject the null hypothesis of no predictability -

contrary to results of Welch and Goyal (2008).

5. We provide Monte Carlo evidence to support the validity of our bootstrap-based inference.

Four other works are closely related to this paper. Hubrich and West (2010) and Clark and

McCracken (2012) propose taking the maxima of various statistics for simultaneously judging

whether a small set of alternative models that nest a benchmark model improve upon the bench-

mark model’s MSPE. After completing this paper, we became aware of independent and contem-

poraneous work by Rossi and Inoue (2012) and Hansen and Timmermann (2012). Both of these

papers examine in great detail the theoretical econometric properties of the sample split problem.

Rossi and Inoue derive the theoretical distribution of (general) sample split–invariant mean and

maximum tests; Hansen and Timmermann propose a “minimum p-value” approach to sample

split–invariant inference.

For nested model comparisons, such as our paper’s asset pricing application, Rossi and Inoue
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(2012) propose taking either the mean or the maximum over all possible sample splits of the Clark

and McCracken (2001) ENC-NEW test statistic. Rossi and Inoue characterize and tabulate the

distributions of their mean and maximum tests. We show via Monte Carlo experiments that their

tabulated null distributions poorly approximate the true null distributions for asset pricing appli-

cations such as ours. Take, for example, our Monte Carlo simulation where calibration is based

on time-series properties of the dividend-to-price ratio (with 1200 time-series observations). At

the 5% nominal significance level, the Rossi and Inoue (2012) mean test statistic has empirical

size of 9.81%; similarly, at the 5% nominal significance level their maximum test statistic has em-

pirical size of 13.25%. So for a predictor with the time series properties of the dividend-to-price

ratio their test over-reject the true null even for samples as large as 1200 observations.

Hence our paper differs from both Rossi and Inoue (2012) and Hansen and Timmermann

(2012) along several dimensions. First, we employ bootstrap techniques so that we can evaluate

empirically the null distributions of the mean and maximum tests. Doing so renders our test-

ing procedure robust not only to the nearly nonstationary behavior of the predictors (since the

autoregressive parameters of the predictive variables are approximately 1) but also to the high

correlation between innovations of the predictive variables and innovations of the predicted term

(e.g., returns). Note that those high correlations and also predictor nonstationarity are charac-

teristic of real-world financial data. Second, we evaluate comprehensively the out-of-sample

forecasting performance of 21 equity premium predictors; we find that it is possible to predict

the equity premium and also show that the distributions of test statistics are not pivotal. Hence,

we argue that any sample split independent test based on a theoretical distribution that is not a

function of the predictor’s autoregressive parameter and of the correlation between innovations

of predictor and predictand (like those derived by Rossi and Inoue and by Hansen and Timmer-

mann) will not work well in practice. Third, we show that our bootstrap procedure allows one

to control for data-mining issues by evaluating the joint forecasting ability of a set of predictive

variables. Such control is not feasible under the approaches adopted by Rossi and Inoue (2012)

and Hansen and Timmermann (2012).

Several limitations of this study are worth mentioning. First, we study only single predictors;

that is, we do not study combinations of them (as in Welch and Goyal, 2008; Rapach, Strauss,
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and Zhou, 2010), including combinations based on principal components (e.g., Neely, Rapach,

Tu, and Zhou, 2014). Neither do we follow Welch and Goyal by looking at rolling regressions.

Also, recent research indicates that the accuracy of traditional predictors (e.g., ratio of dividend to

price) can be improved by enlarging the predictive information set with the information implied

by derivative markets (Binsbergen, Hueskes, Koijen, and Vrugt, 2011; Golez, 2014; Kostakis,

Panigirtzoglou, and Skiadopoulos, 2011). To keep the number of variables that we study tractable

we do not include these refinements in our study. Finally, we limit ourselves to standard ordinary

least-squares (OLS) regressions that incorporate neither the economic gains nor the utility gains

of potential investors. All these extensions should be tractable when pursued within the frame-

work described here, and they constitute a fruitful research agenda.

2. Methodology and data

Following much of the extant literature, we estimate OLS bivariate predictive regressions. In

particular, we regress the equity premium—constructed as the return on the S&P 500 index (in-

cluding dividends distributions) minus the risk-free rate, Rt≡ (Rm−R f )t—on a constant and on

a lagged value of a predictor

Rt =β0+β1Xt−1+ut . (1)

The predictor X is one of the variables listed in Table 1 (in Section 2.5), depending on the speci-

fication. The β s are population parameters (to be estimated), and u is a disturbance term.

2.1. In-sample predictability

The in-sample predictive ability of X is assessed via the t-statistic corresponding to b1 , the OLS

estimate of β1 in equation (1). Under the null hypothesis that Xt−1 is uncorrelated with Rt , the

expected returns are constant and β1 = 0 (the sign of β1 is typically suggested by theory). The

tables presented in this paper are agnostic concerning whether the alternative hypothesis is one-

or two-sided and simply report t-statistics associated with the estimates. The estimated slopes for

all variables are in the direction predicted by theory and so, roughly speaking, one can consider a

t-statistic whose absolute value exceeds 1.65 to be significant either at the 10% significance level
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for the two-sided alternative or at the 5% significance level for the one-sided alternative.

When predictive regressions employ a highly persistent predictor whose innovations are corre-

lated with those in the predictand, severe small-sample biases may occur (Mankiw and Shapiro,

1986; Stambaugh, 1986; Nelson and Kim, 1993; Stambaugh, 1999). To test whether the in-

sample results could be an artifact of this small-sample bias, we follow the bias correction

methodology of Amihud and Hurvich (2004). The model is defined over the whole sample

t=1,2,...,T ,

Rt =β0+β1Xt−1+ut , (2)

Xt =µ+ρXt−1+wt ; (3)

where the disturbances (ut ,wt) are serially independently and identically distributed as bivariate

normal, and the autoregressive coefficient in equation (3) is less than 1.

We shall use superscript c to denote a bias-corrected estimator. First, we estimate equation (3)

to obtain the OLS estimator r of ρ . We can then use r to compute the bias-corrected estimator of

ρ as follows:

rc=r+
1+3r

T
+

3(1+3r)
T 2 . (4)

This bias-corrected estimator rc is, in turn, used to compute the corrected residuals ŵc
t of equa-

tion (3):

ŵc
t =Xt−(m+rcXt−1),

where m is the OLS estimator of µ .2

Next, we run an auxiliary regression of Rt on an intercept, Xt−1 and ŵc
t . In this auxiliary regres-

sion, let bc
1 (resp., f c) be the OLS estimator of the slope parameter on Xt−1 (resp., on ŵc

t ). Here

bc
1 is the bias-corrected estimator of β1, our variable of interest.

Finally, to conduct inferences based on β1 we need the bias-corrected standard error (SE) of

bc
1, which is given by

[SEc(bc
1)]

2=[ f c]2∗[1+3/T+9/T 2]2∗[SE(r)]2+[SE(bc
1)]

2, (5)

2The choice of estimator m does not affect the predictive regression slope’s bias.
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where SE(r) denotes the usual OLS standard error of r produced by any regression package and

SE(bc
1) denotes the usual OLS standard error of bc

1, which comes as a direct output from the

auxiliary regression of Rt on an intercept, Xt−1 and ŵc
t .

2.2. Out-of-sample predictability: Fixed sample split date

We generate out-of-sample predictions by the following recursive scheme. First we split the avail-

able sample into an in-sample estimation period and an out-of-sample evaluation period. Let T

denote the total number of observations and let dates run from 1 to T inclusive. As described in the

Introduction, we fix a date τ∈ [int(.05T ),T−int(.05T )]. We use the first period, [1,τ−1], for the

in-sample estimation and use the second period, [τ,T ], for making out-of-sample predictions. For

time t, we use Rpn,t =b0,t−1 to denote the null model prediction and Rpa,t =b0,t−1+b1,t−1Xt−1 to

denote the alternative model prediction. Here “pn” stands for “prediction with the null imposed”

(i.e., when b1 is constrained to be 0), and “pa” stands for “prediction under the alternative” (i.e.,

using equation (1)).

The b-values are estimated by OLS using data no more recent than one period before the fore-

cast is made. Thus the first prediction under equation (1) is Rpa,τ = b0,τ−1+b1,τ−1Xτ−1, where

each b is estimated using only data points from t = 1 through t = τ−1. The second prediction

is Rpa,τ+1 = b0,τ +b1,τXτ , where the b-values are estimated using only data points from the 1st

period though the τth period. The last prediction is Rpa,T = b0,T−1+b1,T−1XT−1; here each b is

estimated using only data points from period 1 though period T−1.

In this way we obtain, for each fixed τ , a sequence of predictions under the null model and also

a sequence of predictions under the alternative model. As an informal measure of the predictive

regression’s out-of-sample performance, we calculate the out-of-sample R-squared of Campbell

and Thompson (2008):

R2
os(τ)=1−∑t=τ,...,T (Rt−Rpa,t)

2

∑t=τ,...,T (Rt−Rpn,t)2 (6)

(here “os” stands for “out-of-sample”).

We formally test the null hypothesis—that equation (1) does not improve on the historical av-

erage return—by employing the Clark and West (2007) mean squared prediction error–adjusted
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statistic:

MSPE-adj(τ)=
∑t=τ,...,T{(Rt−Rpn,t)

2−[(Rt−Rpa,t)
2−(Rpn,t−Rpa,t)

2]}
∑t=τ,...,T 1

. (7)

Clark and West (2007) observe that under the null that β1 = 0, the alternative model in eq. (1)

estimates additional parameters whose population values are 0, and that the estimation induces

additional noise. Hence under the null hypothesis the MSPE of the alternative model is expected

to be larger than the null model’s. These authors propose an adjustment to the alternative model’s

MSPE. In equation (7), the term in brackets is the adjusted MSPE of the alternative model. We

calculate the t-statistic associated with equation (7); following Clark and West, we denote it

t(MSPE-adj)τ . We regress the quantity in braces in equation (7) on a constant; the t-statistic

from this regression, t(MSPE-adj)τ , is calculated for each sample split τ .

Clark and West (2007, p. 298) justify the approximate normality of their t(MSPE-adj)τ statis-

tic by observing that its null distribution obeys the following inequalities across a large set of

simulations: (90th percentile) ≤ 1.282 ≤ (95th percentile); and (95th percentile) ≤ 1.645 ≤

(99th percentile). In these expressions, the percentiles refer to the distribution of the t(MSPE-adj)τ

statistic under the null of no predictability (i.e., the t-ratio associated with MSPE-adj). Indeed,

these inequalities are usually satisfied in our bootstrap simulations. Figure 1 (left) shows the pre-

dictor for which the previous inequalities are most often violated, which is the dividend-to-price

ratio. This figure plots the 90th, 95th and 99th percentiles of the bootstrap null distribution of

t(MSPE-adj)τ for each sample split date τ; the horizontal lines at 1.2815, 1.6448, and 2.3263

mark the respective percentiles in the standard normal distribution. All violations of these in-

equalities are slight, so is reasonable to infer that predictability is approximately normal.

More troublesome is that, for the other predictive variables, the corresponding plots look like

Figure 1 (right, for the Equity Share in New Issues’ predictor).3 For these 20 predictors, the in-

equalities in Clark and West (2007, p. 298) are satisfied yet the approximately normal inference is

usually too conservative. In particular: for most of the sample splits τ and most of the predictive

variables, the 90th percentile of the bootstrap null distribution of t(MSPE-adj)τ is slightly less

3We present only some of the plots in order to conserve space; all plots are available from the authors upon
request.
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Figure 1: Plots of the 90th, 95th, and 99th percentiles of the null distribution of t(MSPE-adj)τ
statistic versus τ (the start of the out-of-sample forecasting exercise), together with straight
horizontal lines at 1.2815, 1.6448 and 2.3263 that mark the respective percentiles in the standard
normal distribution, when the Dividend to Price Ratio (left) and the Equity Share in New Issues
(right) are used as a predictor of the Equity Premium.

than 1—instead of about 1.282 (the 90th percentile in the standard normal distribution).

We therefore eschew the normal approximation of Clark and West (2007) and instead use

bootstrapping to calculate the t(MSPE-adj)τ statistic’s p-value at each sample split. The p-value

for t(MSPE-adj)τ , which we shall denote pv(τ), is calculated by drawing 9999 bootstrap sam-

ples under the null hypothesis of no predictability and, for each draw, calculating t(MSPE-adj)τ .

Then pv(τ) is the fraction of times that this statistic calculated from the null distribution bootstrap

sample is greater than the same statistic calculated from the original data.

After calculating R2
os(τ) and pv(τ) for each possible sample split date τ , we can construct a

graph that plots those two calculated terms against τ . This graph contains all the information

needed to assess how well an investor making decisions in real time would have done, on an

out-of-sample basis, by using the predictor in question starting at sample split date τ .

2.3. Out-of-sample predictability: Invariant to sample split date

If the aim is to distill into a single indicator whether the equity premium is predictable on an out-

of-sample basis, then one can construct a summary statistic of the distribution of t(MSPE-adj)τ

across the sample split dates τ . For instance, Roy’s (1953) union-intersection principle dictates

that we do not reject the null of no predictability if none of the t(MSPE-adj)τ statistics reject it.
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We shall therefore reject that null only if at least one of the t(MSPE-adj)τ rejects the null for at

least one τ . Formally, that approach is equivalent to using

maxτ{t(MSPE-adj)τ} (8)

as a test statistic; alternatively, we could use

meanτ{t(MSPE-adj)τ} (9)

as a test statistic.

There is no clear basis ex ante for preferring one of equations (8) and (9) over the other, since

the null distribution is not known for either test statistic. Hence we determine the null distribu-

tion of both the maximum and the mean statistics just displayed by generating 9999 bootstrap

samples under the null of no predictability. After computing the two statistics for each of these

bootstrap samples, we calculate the p-value of the maximum (resp. mean) test statistic by count-

ing how often the bootstrap maximum (resp. mean) statistic is larger than the maximum (resp.

mean) statistic calculated from the original data. As before, the bootstrap samples are generated

while imposing the null hypothesis of no predictability.

2.4. Bootstrap procedure: Description

To generate our 9999 bootstrap samples under the null hypothesis of no predictability, we follow

Mark (1995), Kilian (1999), Rapach and Wohar (2006), and Welch and Goyal (2008). (For a

general treatment of bootstrap hypothesis testing, see MacKinnon, 2009—especially its section

on the residual bootstrap.) We use the original data to estimate equations (2) and (3) by ordinary

least squares and then store the residuals (ût and ŵt) for resampling.4 Next we use the original

data to estimate equations (2) and (3) via OLS while imposing the null hypothesis of no pre-

dictability (β1 =0); the resulting restricted estimates are denoted β̃0, µ̂ , and ρ̂ and are stored for

4Rapach and Wohar (2006, p. 237) resample the restricted model residuals (i.e., the residuals when β1 = 0);
Welch and Goyal (2008, p. 1462) resample the unrestricted residuals. According to MacKinnon (2009, p. 195),
“there might be a slight advantage in terms of power if we were to use unrestricted rather than restricted residuals.”
We therefore opt to resample the unrestricted residuals.
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later use to generate bootstrap data under the null.

The sample is restricted in that Xt is available only for times t=0,...,T and Rt is available only

for times t=1,...,T . To initiate the recursion in equation (3), we randomize (with equal probabil-

ity) over dates t = 0,...,T , denote the draw t0, and set Xb
0 =Xt0 . Then we randomize again with

equal probability but now with replacement over dates t = 1,...,T ; we use t∗ to signify a single

draw from this randomization. For one bootstrap round we generate T such draws. Then we set

ub
t = ût∗ and wb

t = ŵt∗ for t =1,...,T , thereby drawing (with replacement) the residuals ût and ŵt

as a pair that are matched by t to preserve their cross correlation. For each bootstrap round, we

generate Rb
t = β̃0+ub

t and Xb
t = µ̂+ ρ̂Xb

t−1+wb
t for t = 1,...,T . Finally, the 9999 bootstrap sam-

ples generated under the null of no predictability are obtained by following the same procedure

another 9999 times. We estimate the unrestricted model in equations (2) and (3) for each of the

9999 bootstrap-generated data sets on Rb
t and on Xb

t and then calculate, for each set, the statistics

described previously: R2
os(τ) and t(MSPE-adj)τ for each τ as well as maxτ{t(MSPE-adj)τ}

and meanτ{t(MSPE-adj)τ}. These 9999 replicates of each are used to estimate each statis-

tic’s distribution under the null hypothesis of no predictability. For example, we evaluate the

p-value of the maximum statistic by checking for how many of the 9999 bootstrap samples

maxτ{t(MSPE-adj)τ} is larger than maxτ{t(MSPE-adj)τ} calculated for the original data.

2.5. Data

The equity premium measure that we use, Rt ≡ (Rm − R f )t , is based on monthly returns on

the S&P 500 index, including dividends. The end-of-month values are a series provided by

the Center for Research in Security Prices for the period January 1926 to December 2010; we

subtract the risk-free rate, defined as the contemporaneous 1-month US Treasury bill (T-bill) rate.

We study the predictive performance of 21 variables. Of these, the first 15 are from Welch and

Goyal (2008) and are downloaded from Amit Goyal’s website. The remaining six are behavioral

predictors; they are downloaded from Jeffrey Wurgler’s Web page.

Summary statistics for the equity premium and for all of the predictors are given in Table 1.
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Table 1: Summary statistics.
Variable Mean Std. Dev. Min. Max. T

Equity Premuim, (Rm - Rf) 0.0062 0.0559 -0.2877 0.4162 1020

Variables downloaded from Amit Goyal’s web site

Dividend to Price Ratio -3.3239 0.4511 -4.524 -1.8732 1021
Dividend Yield -3.3197 0.4494 -4.5313 -1.9129 1020
Book to Market Ratio 0.5868 0.2654 0.1205 2.0285 1021
Earnings to Price Ratio -2.7141 0.4255 -4.8365 -1.775 1021
Dividend Payout Ratio -0.6097 0.3229 -1.2247 1.3795 1021
Treasury Bill Rate 0.0366 0.0306 0.0001 0.163 1021
Long Term Yield 0.053 0.028 0.0182 0.1482 1021
Long Term Return 0.0047 0.0239 -0.1124 0.1523 1020
Term Spread 0.0163 0.0131 -0.0365 0.0455 1021
Default Yield Spread 0.0114 0.0071 0.0032 0.0564 1021
Default Return Spread 0.0003 0.0132 -0.0975 0.0737 1020
Inflation Lagged 2 Months 0.0024 0.0053 -0.0208 0.0574 1021
Net Equity Expansion 0.0191 0.0246 -0.0575 0.1732 1009
Stock Variance 0.0025 0.005 0.0001 0.0558 1021
Cross Sectional Premium 0.0004 0.0024 -0.0042 0.0077 788

Variables downloaded from Jeffrey Wurgler’s web site

Dividend Premium -2.2399 16.2884 -50.23 32.9 600
Number of IPOs 26.2516 23.6031 0 122 612
Average First-day IPO Returns 16.3867 20.0237 -28.8 119.1 612
NYSE Share Turnover 0.5084 0.3665 0.105 1.738 636
Closed-end Fund Discount 8.9577 7.4353 -10.91 25.28 548
Equity Share in New Issues 0.1827 0.1092 0.0167 0.6349 636

3. Results

3.1. In-sample predictability

Table 2 reports the in-sample regression results. The predictand is always the equity premium,

and the predictor variable is named at the start of each row. We estimate equation (1) by OLS;

the b1 value, the t-statistic for that value, and the R-squared from estimating equation (1) are

given in (respectively) the first, second, and third data columns of the table.

The fourth column reports the bias-corrected estimator bc
1 of β1 from the predictive regression,

calculated as explained in Section 3 (cf. Amihud and Hurvich, 2004), and the fifth column
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reports the tc-statistic (= bc
1/[SEc(bc

1)]). The values in the sixth column are for r, the OLS

estimate of the autoregressive parameter ρ in equation (3); the seventh column gives rc, the

bias-corrected estimator of ρ . The table’s last column reports f , an unbiased estimator of

[Cov(ut ,wt)]/[Var(wt)] (Amihud and Hurvich, 2004, Lemma 1).

Table 2: In-sample predictive regressions estimates, and bias corrected in-sample estimates.

b1 t-stat R-sq bc
1 tc-stat r rc Cov(ut ,wt)/Var wt

Dividend to Price Ratio 0.0087 2.26 0.0050 0.0050 1.28 0.99 1.00 -0.96
Dividend Yield 0.0101 2.59 0.0066 0.0098 2.51 0.99 1.00 -0.08
Book to Market Ratio 0.0196 2.98 0.0087 0.0157 2.38 0.98 0.99 -1.01
Earnings to Price Ratio 0.0088 2.13 0.0044 0.0063 1.54 0.99 0.99 -0.62
Dividend Payout Ratio 0.0018 0.34 0.0001 0.0015 0.28 0.99 1.00 -0.08
Treasury Bill Rate -0.0966 -1.69 0.0028 -0.1011 -1.77 0.99 1.00 -1.14
Long Term Yield -0.0750 -1.20 0.0014 -0.0862 -1.38 1.00 1.00 -2.86
Long Term Return 0.1153 1.57 0.0024 0.1155 1.57 0.04 0.04 0.25
Term Spread 0.1823 1.37 0.0018 0.1823 1.37 0.96 0.96 0.01
Default Yield Spread 0.4105 1.67 0.0027 0.3733 1.52 0.98 0.98 -9.67
Default Return Spread 0.1378 1.03 0.0011 0.1382 1.04 -0.12 -0.12 0.57
Inflation Lagged 2 Months -0.3491 -1.06 0.0011 -0.3503 -1.07 0.55 0.55 -0.46
Net Equity Expansion -0.1455 -2.03 0.0041 -0.1461 -2.04 0.97 0.98 -0.16
Stock Variance -0.2039 -0.58 0.0003 -0.2142 -0.61 0.62 0.63 -3.65
Cross Sectional Premium 2.1014 3.03 0.0115 2.0595 2.96 0.98 0.98 -3.44
Dividend Premium 0.0000 0.07 0.0000 -0.0000 -0.17 0.98 0.99 -0.00
Number of IPOs -0.0000 -0.38 0.0002 -0.0000 -0.35 0.86 0.87 0.00
Average First-day IPO Returns 0.0000 0.33 0.0002 0.0000 0.36 0.67 0.68 0.00
NYSE Share Turnover -0.0022 -0.46 0.0003 -0.0023 -0.48 0.97 0.98 -0.02
Closed-end Fund Discount 0.0001 0.20 0.0001 0.0001 0.26 0.96 0.97 0.00
Equity Share in New Issues -0.0402 -2.58 0.0104 -0.0404 -2.59 0.69 0.69 -0.02

An examination of Table 2 reveals that, even after bias correction, many variables remain

significant in-sample predictors of the equity premium. At the same time, not even a liberal

cut-off point for “significant” (e.g., 1.28) and carrying out a one-sided test at the 10% level are

enough to make the following variables significantly predictive: Dividend Payout Ratio, Default

Return Spread, Inflation Lagged 2 Months, Stock Variance, Dividend Premium, Number of

IPOs, Average First-day IPO Returns, NYSE Share Turnover, and Closed-end Fund Discount.

Predictors that appear to be significant at better than the 5% level (i.e., even when we consider

the test to be two-sided) are Dividend Yield, Book to Market Ratio, Net Equity Expansion, Cross

Sectional Premium, and Equity Share in New Issues; all of these variables have bias-corrected
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t-statistics greater than 2 in absolute value (fifth column of Table 2). With the lone exception

of Equity Share in New Issues, all of the predictors that have a bias-adjusted t-statistic greater

than 2 also have an autoregressive root greater than 0.97—that is, fairly close to 1. Curiously

enough, the bias corrections make a big difference only for Dividend to Price Ratio and Earnings

to Price Ratio and matter somewhat for Book to Market Ratio; note that these three are exactly

the variables by which such corrections were motivated in the first place. The bias correction

has little effect on the other 18 predictors.

The behavioral variables—Dividend Premium, Number of IPOs, Average First-day IPO

Returns, NYSE Share Turnover and Closed-end Fund Discount —are not statistically significant

predictors of the equity premium when judged by the in-sample criterion (with or without bias

corrections).

Overall, we have evidence that a large number of variables are statistically significant

predictors of the equity premium, even after bias corrections are applied.

3.2. Out-of-sample inference about predictability: Invariant to sample split

date

Table 3 presents, side by side, the in-sample results and the out-of-sample (split sample–

invariant) results on predictability. Column [1] gives the bias-corrected in-sample t-statistic, and

column [2] gives the probability that a standard normal variable is larger than the absolute value

of that tc-statistic. Column [3] reports meanτ{t(MSPE-adj)τ}, where the mean is computed

over τ; column [4] gives the bootstrap-determined p-value of the previous column’s statistic.

Analogously, column [5] reports maxτ{t(MSPE-adj)τ} with the maximum taken over τ; its

bootstrap-determined p-value is given in column [6].

The following observations can be made about the results reported in Table 3.

• None of the variables that are in-sample insignificant at the 10% level are significant at the

10% level in the two out-of-sample tests. Results of the in-sample bias-corrected test and of

the out-of-sample, sample split–invariant tests are in broad agreement.

• All but one of the predictors appear to be somewhat “less significant” when judged by the two
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Table 3: The in-sample bias corrected t-statistic (column 1) is followed by its p-value (column
2). The out-of-sample sample split invariant meanτt(MSPE−adj)τ (column 3) is followed
by its bootstrap determined p-value (column 4). The out-of-sample sample split invariant
maxτt(MSPE−adj)τ (column 5) is followed by its bootstrap determined p-value (column 6).

tc ← p-value meanτt ← p-value maxτt ← p-value

Dividend to Price Ratio 1.2817 0.1000 1.3838 0.0451 2.7530 0.0514
Dividend Yield 2.5106 0.0060 1.4412 0.0197 2.8287 0.0129
Book to Market Ratio 2.3800 0.0087 0.7450 0.1233 2.4635 0.0609
Earnings to Price Ratio 1.5410 0.0617 0.7922 0.1135 2.1455 0.1170
Dividend Payout Ratio 0.2827 0.3887 -1.3445 0.9333 -0.0266 0.8496
Treasury Bill Rate -1.7667 0.0386 0.8038 0.0903 1.7881 0.1380
Long Term Yield -1.3796 0.0839 0.7718 0.0989 1.6793 0.1728
Long Term Return 1.5738 0.0578 0.7897 0.1029 1.4374 0.2240
Term Spread 1.3675 0.0857 0.6290 0.1273 1.4914 0.2154
Default Yield Spread 1.5188 0.0644 0.1110 0.2893 1.4789 0.2297
Default Return Spread 1.0364 0.1500 -0.0611 0.3528 0.2500 0.7138
Inflation Lagged 2 Months -1.0671 0.1430 -0.4874 0.5523 0.5439 0.5930
Net Equity Expansion -2.0350 0.0209 -0.3316 0.4658 1.2130 0.3260
Stock Variance -0.6112 0.2705 -0.7976 0.7147 -0.3131 0.9179
Cross Sectional Premium 2.9554 0.0016 1.4509 0.0205 2.4760 0.0297
Dividend Premium -0.1682 0.4332 0.2934 0.2151 1.3407 0.2717
Number of IPOs -0.3466 0.3644 0.0124 0.3341 1.1921 0.3188
Average First-day IPO Returns 0.3578 0.3603 -0.0266 0.3351 1.3230 0.2596
NYSE Share Turnover -0.4836 0.3143 -0.4910 0.5476 0.0106 0.8267
Closed-end Fund Discount 0.2571 0.3985 0.1304 0.2727 1.1134 0.3626
Equity Share in New Issues -2.5853 0.0049 1.3748 0.0285 1.9659 0.0929

out-of-sample tests.5

• Dividend to Price Ratio is the only variable that appears “more significant” when judged by

the two out-of-sample criteria than by the in-sample criterion.

• The two out-of-sample criteria agree in a rough sense. In particular, their p-values are usually

within a multiple of 2.

• There are five variables for which the in-sample bias-corrected t-statistic exceeds 2 in absolute

value (fifth column of Table 2): Dividend Yield, Book to Market Ratio, Net Equity Expansion,

Cross Sectional Premium, and Equity Share in New Issues. Of these, only Net Equity

5A test statistic is either significant or insignificant at the chosen (a priori) significance level (e.g., 5%). It
follows that such modifiers as “less” or “more” or “very” (in)significant are, strictly speaking, abuses of statistical
terminology. Such wording serves as shorthand for a longer statement; for example, a claim that some predictor
is “less significant” judged by test X than by test Y is supposed to mean that if the null hypothesis were true, the
probability of observing as large or larger Y as actually observed is smaller than the probability of observing as
large or larger X as actually observed.
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Expansion is insignificant out-of-sample. Each of the other four variables is significant at the

5% level by at least one of the two out-of-sample criteria.

• Every variable shown to be “very insignificant” in-sample (here, having the in-sample bias-

corrected t-statistic’s p-value exceed 15%) is shown to be “even more insignificant” by the two

out-of-sample statistics (i.e., the p-values for the two out-of-sample statistics exceed 30%).

Overall, we do not find much disagreement between in-sample and out-of-sample predictabil-

ity criteria—provided the latter are invariant to the choice of sample split date. The bias-corrected

in-sample t-test as well as the mean and the maximum out-of-sample tests all tell much the same

story as regards whether the equity premium is or is not reliably predicted by a given variable.

3.3. Bootstrap null distribution: Selected percentiles of mean and maximum

statistics

For our proposed out-of-sample meanτ{t(MSPE-adj)τ} and maxτ{t(MSPE-adj)τ} sample

split–invariant tests, p-values are a function of the test statistic’s observed value and also of

its bootstrap determined null distribution. As a result, Table 3 is not informative regarding the

distributions of the mean and maximum statistics under the null hypothesis of no predictability.

Yet we are interested in such questions as: What do the null distributions of these two statistics

look like? Are the mean and maximum statistics pivotal, or do they depend on the parameters of

the (bootstrap) data-generating process?

Suppose we found a single null distribution for the mean statistic across all 21 predictors

and also a single null distribution for the maximum statistic across those same predictors. In

that case, our proposed statistics would be pivotal and independent of the parameters used to

generate the data. If, on the contrary, we found the null distributions to be considerably different

across the 21 predictors, the implication would be that the two statistics are not pivotal and so

are sensitive to those data-generating parameters.

Table 4 reports the 90th, 95th, and 99th percentiles of the bootstrap determined null distribu-

tion of the mean and maximum statistics. We can make the following remarks regarding the null

distributions of the sample split–invariant meanτ{t(MSPE-adj)τ} and maxτ{t(MSPE-adj)τ}

statistics reported in that table.
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Table 4: The 90th, 95th, and the 99th percentiles of the bootstrap null distribution for our
meanτ [t(MSPE−adj)τ ] and maxτ [t(MSPE−adj)τ ] sample split invariant statistics, together with
the OLS estimate ρ̂ of the autoregressive parameter in eq.(3) and the correlation between the
residuals in eq.(2) and eq.(3).

meant90 meant95 meant99 maxt90 maxt95 maxt99 ρ̂ Corr(ût ,ŵt)

Dividend to Price Ratio 1.0194 1.3464 1.9006 2.4700 2.7584 3.3726 0.99 -0.98
Dividend Yield 0.7398 1.0694 1.7019 1.9404 2.2846 2.9325 0.99 -0.08
Book to Market Ratio 0.8566 1.2002 1.8243 2.2068 2.5456 3.1729 0.98 -0.83
Earnings to Price Ratio 0.8513 1.1801 1.7814 2.2284 2.5810 3.1719 0.99 -0.84
Dividend Payout Ratio 0.7748 1.1038 1.7740 2.0050 2.3316 2.9493 0.99 -0.01
Treasury Bill Rate 0.7506 1.0681 1.7385 1.9486 2.3087 2.9246 0.99 -0.03
Long Term Yield 0.7632 1.1166 1.7847 2.0014 2.3532 3.0198 0.98 -0.12
Long Term Return 0.8055 1.1507 1.7940 1.8994 2.2129 2.7914 0.04 0.13
Term Spread 0.7614 1.0887 1.7607 1.9315 2.2600 2.8933 0.96 -0.04
Default Yield Spread 0.7615 1.1121 1.7419 1.9691 2.2842 2.8938 0.98 -0.25
Default Return Spread 0.7815 1.1261 1.7596 1.9044 2.2201 2.8275 -0.15 0.11
Inflation Lagged 2 Months 0.8093 1.1607 1.7556 1.9101 2.2208 2.8156 0.52 -0.03
Net Equity Expansion 0.7761 1.1037 1.7784 1.9469 2.3134 2.9186 0.97 -0.06
Stock Variance 0.8330 1.1597 1.7575 1.9730 2.2711 2.8478 0.60 -0.36
Cross Sectional Premium 0.7797 1.0876 1.7025 1.9584 2.2737 2.8716 0.98 -0.03
Dividend Premium 0.7507 1.0860 1.7068 1.9992 2.3322 2.9943 0.96 -0.27
Number of IPOs 0.7866 1.1126 1.7594 1.9368 2.2736 2.9246 0.89 0.09
Average First-day IPO Returns 0.8000 1.1293 1.7643 1.9031 2.2460 2.8650 0.61 0.15
NYSE Share Turnover 0.7674 1.1086 1.7464 1.9773 2.3083 2.9197 0.96 -0.02
Closed-end Fund Discount 0.7598 1.1011 1.7463 1.9704 2.2945 2.9526 0.97 0.13
Equity Share in New Issues 0.8175 1.1506 1.7459 1.9185 2.2423 2.8515 0.63 -0.07

It seems reasonable to suppose that the meanτ{t(MSPE-adj)τ} and maxτ{t(MSPE-adj)τ}

statistics are pivotal because their null distributions do not depend strongly on the parameters of

the bootstrap data-generating process. The percentiles under the null hypothesis of no predictabil-

ity across the 21 focal predictors are similar, and they are not more dissimilar across predictive

variables than are the percentiles of t(MSPE-adj)τ . Under conditional homoskedasticity,

t(MSPE-adj)τ is known to be pivotal with respect to the parameters of the data-generating pro-

cess and for the type of forecasting regressions considered here (Clark and McCracken, 2001).6

However, the bootstrap distributions generated under the null of no predictability depend to

6The null distribution of the t(MSPE-adj)τ statistic does depend on the constant to which the ratio of evaluation
data points to estimation data points converges as the sample size grows to infinity. The assumption that this ratio
is constant is not supported by our calculations for each possible sample split. Of course, statistical behavior as
the sample size approaches infinity is an abstraction with no clear meaning in practice; our sample is always finite.
Hence the only question is whether or not this abstraction yields an accurate approximation for the samples that are
typically available.
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some extent on the correlation between the error term in equation (2) and that in equation (3).

More specifically: the higher the correlation, the higher the percentiles of the null distribution

for the corresponding predictor. Thus the previous point’s conjecture might just as well turn out

to be false.

If we are comfortable (for exploratory purposes) with the rough sense in which t(MSPE-adj)τ

is approximately normal for a fixed sample split, then we can propose the following rough crite-

rion: if the data-based meanτ{t(MSPE-adj)τ} is greater than 1 (resp., 1.5, 2), then the bootstrap

sample split–invariant test would likely reject the null of no predictability at the 10% (resp.,

5%, 1%) level of significance. Similarly, we can say that if the data-based maxτ{t(MSPE-adj)τ}

is greater than 2 (resp., 2.5, 3) then the sample split–invariant bootstrap test would probably

reject the null of no predictability at the 10% (resp., 5%, 1%) level of significance. Even a rule

of this approximate nature could save some programming and simulation time, though it must

be used with an eye toward the in-sample results. From Table 3 we see that the in-sample test

of predictability for a given variable is extremely informative about the complete out-of-sample

simulation outcomes.

3.4. Summarizing out-of-sample predictability in graphical form

Figure 2 displays complete information on a real-time investor’s investment outcomes as a func-

tion of the sample split. Each sub-figure within Figure 2 presents the out-of-sample R-squared

and the bootstrap-determined p-value for the MSPE-adj t-statistic for each sample split date

τ ∈ [int(.05T ),T − int(.05T )]. For each τ we bootstrap the t(MSPE-adj)τ statistic, rather than

the MSPE-adj(τ) statistic, because the former is pivotal and the latter is not. MacKinnon (2009)

emphasizes that one should bootstrap pivotal quantities whenever possible because doing so

yields an asymptotic refinement: the error in rejection probability committed by the pivot-based

bootstrap test is of lower order in the sample size than is the error in rejection probability of the

asymptotic test based on the same pivot (Beran, 1988; Hall, 1992).

The 21 sub-figures show how well an investor (starting in, say, January 2000; the actual

years plotted vary depending on data availability) would have done by using each of our 21

focal predictors—as compared with using the recursive mean—to forecast the equity premium
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out-of-sample. The following list offers brief comments about the out-of-sample predictive

success of each variable as a function of the sample split date τ . (When discussing overall

in-sample and sample split–invariant out-of-sample inference about predictability, we refer

always to the results in Table 3. We discuss the predictors in Figure 2 consecutively from left to

right, and down Figure 2.)

The (log of the) Dividend to Price Ratio is a reasonably accurate out-of-sample predictor of

the equity premium. It loses predictive power around year 1973, but it regains power in the late

1990s and at the start of the new millennium. Then, from about year 2002, it is once again unable

to outperform the recursive mean. The sample split–invariant mean and maximum tests show

that the dividend-to-price ratio outperforms the recursive mean overall. This is the only variable

for which our out-of-sample tests reject the null of no predictability at better significance levels

than does the in-sample test. The out-of-sample R-squared is negative for the most part; it

becomes positive only for a short period around year 2000. The (log of the) Dividend Yield

displays the same predictive pattern as Dividend to Price Ratio. All tests—in-sample and

sample split–invariant out-of-sample—show this predictor to be significant at better than the 2%

significance level.

The Book to Market Ratio loses predictive power around January 1950 and regains it

only for a short period around the start of the new millennium. Although the in-sample tests

of predictive power for Book to Market Ratio and Dividend Yield have similar p-values, the

out-of-sample tests yield conflicting results for these two variables; thus, for most of the sample

splits, the book-to-market ratio would not have been a accurate predictor for an investor making

decisions in real time. However, that ratio would have been helpful to an investor starting to time

the market a few months before or after January 2000.

The (log of the) Earnings to Price Ratio lost out-of-sample predictive power shortly after

year 1950 and has never regained it. As expected, both the mean and the maximum sample

split–invariant out-of-sample tests show this variable to be only marginally significant. The (log

of the) Dividend Payout Ratio has never been an accurate out-of-sample predictor of the equity

premium for the simple reason that it consistently underperforms the recursive mean benchmark.

The Treasury Bill Rate outperforms the recursive mean benchmark out-of-sample until the

20



start of the 1970s but never thereafter. This predictor is shown to be marginally significant by the

sample split–invariant out-of-sample tests. The Long Term Yield exhibits forecasting patterns

strongly similar to the T-bill rate, which suggests that these two variables capture the same

information regarding the economy’s future state. We expected to see a dramatic difference

between the two since the Great Recession started; their continued similarity is puzzling given

that short-term US debt has in recent years come to resemble money (Cochrane, 2011), an asset

that differs from long-term debt.

The Long Term Return outperforms the recursive mean from the mid-1950s until the

mid-1970s. The Term Spread outperforms the recursive mean until the start of the 1970s. This

variable’s sample split–invariant mean statistic has a p-value of .14 and its maximum statistic

has a p-value of .21. It is probably fair to interpret Figure 2 as indicating that the term spread is

actually a better out-of-sample predictor than our two out-of-sample tests would suggest.

The Default Yield Spread is an accurate out-of-sample predictor of the equity premium from

the mid-1950s to the mid-1960s. Thereafter, it fails to outperform the recursive mean benchmark.

The Default Return Spread exhibits stable but unimpressive out-of-sample performance. The

Lagged Inflation has never been a accurate out-of-sample predictor of the equity premium.

The Net Equity Expansion is one of the few variables that the in-sample test shows to be a

significant predictor of the equity premium. However, all of the out-of-sample evidence points

to unimpressive out-of-sample predictive performance when compared with the recursive mean.

This is the variable on which in-sample tests and sample split–invariant out-of-sample tests

disagreed the most.

The Stock Variance has never been an accurate out-of-sample predictor of the equity

premium.

The Cross Sectional Premium (Polk, Thompson, and Vuolteenaho, 2006) is an excellent

predictor according to both in-sample and out-of-sample tests. Note, however, that data for the

cross-sectional premium is not available for recent years; hence we cannot say how this variable

would have performed during the last decade or so.

The (log) Dividend Premium has outperformed the recursive mean only sporadically:

around the mid-1960s and around January 2000. The Number of Initial Public Offerings
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nearly outperforms the recursive mean in late 1960s. In general, this variable seems not to

be an accurate out-of-sample predictor of the equity premium. The Average First-day IPO

Returns comes close to outperforming the recursive mean around January 2000, but overall

it is not an accurate out-of-sample predictor. The NYSE Share Turnover is not an accurate

predictor of the equity premium on an out-of-sample basis. The Closed-end Fund Discount is

a poor out-of-sample predictor of the equity premium, which is surprising in light of how much

attention this variable has received as an indicator of sentiment (Zweig, 1973; Lee, Shleifer,

and Thaler, 1991; Neal and Wheatley, 1998). The Equity Share in New Issues is a reliable

predictor of the equity premium when judged by any in-sample or out-of-sample criterion. It

loses predictive power for most of the 1990s but regains it in later years.

We can summarize the preceding analysis in two main points, as follow. First, there are

periods during which the equity premium is difficult to predict and so a forecaster can hardly do

any better than simply using the recursive mean. From the mid-1970s until the mid-1990s, for

example, reliable predictors are hard to find; in fact, the only variables of any use in this time span

are the Cross Sectional Premium and the Equity Share in New Issues. (Even so, there are a num-

ber of sample split dates τ during this period for which those two predictors fail to outperform

the recursive mean.) This finding has implications for “combination” forecast methods such as

those proposed by Rapach, Strauss, and Zhou (2010). Such a method works for most sample

split dates because it “irons out” parameter instability across models and model uncertainty. Yet

there seem always to be some sample split dates for which good predictors are hard to find, and

it is an open question whether forecast combination can deliver superior performance when few

(a fortiori none) of the constituent predictors can improve on the recursive mean benchmark.7

Second, the observed predictive patterns are fairly similar across variables derived from

related economic intuition. Predictors reflecting economic fundamentals, i.e., dividend/price,

dividend yield, book/market, earnings/price) exhibit strikingly similar forecasting patterns. The

“interest rate” variables (T-bill rate, long-term yield, long-term return, term spread, default return

7Rapach, Strauss, and Zhou (2010) start their out-of sample forecasting exercises in the first quarters of 1965,
1976, and 2000. One can infer from the preceding analysis of each variable that the first quarter of 1976 is the
most challenging split date; nonetheless, significant individual predictors can be found even for that choice. Not
surprisingly, these authors find that particular sample split to generate the weakest (though still significant) result.
Hence an intriguing question is whether a forecast combination technique could deliver superior performance for
a date on which none of the individual predictors could.
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spread, default yield spread, and inflation) likewise exhibit closely similar forecasting patterns.

Another group of variables that exhibit similar predictive patterns includes net equity expansion,

the number of IPOs, and the equity share in new issues. In short: the graphs plotted in Figure 2

confirm our expectation that economically similar variables display similar patterns of predictive

strength and weakness, versus the recursive mean, as a function of the chosen sample split date.

3.5. Out-of-sample inference about predictability: Invariant to sample split

date and robust to data mining

When testing the ability of financial variables to predict stock returns, data mining is a serious

concern.8 Lo and MacKinlay (1990) and Foster, Smith, and Whaley (1997) stress this issue for

in-sample tests of security returns predictability. Until recently, out-of-sample tests have been

viewed as a viable preventive against data mining. However, Inoue and Kilian (2004) and also

Rapach and Wohar (2006) argue that data mining should be of concern also in out-of-sample

tests of predictability, and especially when a large number of predictive variables is considered.

They suggest addressing this problem by using corrected critical values obtained via a bootstrap

procedure.

More recently, Hubrich and West (2010) and Clark and McCracken (2012) propose taking

the maxima of various statistics for simultaneously judging whether a small set of alternative

models that nest within a benchmark model improve upon that benchmark model’s MSPE. Clark

and McCracken (2012) propose a fixed-regressor “wild” bootstrap procedure for evaluating the

sampled distributions of the maximum statistics they study.

In this paper we consider only the variables surveyed by Welch and Goyal (2008) plus a few

behavioral predictors. Although we do not use data-mining methods to detect viable predictors,

data mining still could be a concern given that we study so many (21) variables. That is, their sheer

number makes it more likely that one or more exhibit, just by chance, a statistically significant

association with the predictor. Inoue and Kilian (2004), Rapach and Wohar (2006), and Clark

and McCracken (2012) present ideas that are relevant to our own paper’s data-mining issues.

8We are grateful to an anonymous referee for proposing tests that are not only sample split–invariant but also
robust to data mining.
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So far, our bootstrap procedure has assumed that the predictive power of each variable is tested

separately. That we examine 21 possible predictors actually increases the chances of coming

to a wrong conclusion. Therefore, when testing predictability we control for data mining by

applying to our test statistic the ideas first proposed by Inoue and Kilian (2004) and also used by

Rapach and Wohar (2006).

For this purpose, we start by specifying the null hypothesis as H0 : β j
1 = 0 for all j, where

j = 1,...,21 indexes the variables being tested for predictive power. We specify the alternative

hypothesis as H1 : β j
1 ̸= 0 for some j, where β j

1 is the slope in equation (2) when the predictive

variable is X j
t .

As in-sample test statistics, we use the maximum and the mean of the square of the in-sample

t–statistic for testing that the slope is 0 across the variables of interest for a two sided test.

Note that in such bivariate regressions the square of that in-sample t-statistic is numerically

equivalent to the F-statistic from testing for whether that slope is 0. In other words, we use both

max j=1,...,21{t2
β̂ j

1
}, where t2

β̂ j
1

is the square of the t-statistic corresponding to β̂ j
1 (we will call this

statistic max-t-squared), and mean j=1,...,21{t2
β̂ j

1
} (or mean-t-squared). We use the square of the

t-statistic because this is a two-sided test.

Our two out-of-sample test statistics are as follows.

1. mean j=1,...,21{meanτt j(MSPE-adj)τ}, also known as the double mean. In words, we take the

mean across the 21 variables of the sample split–invariant mean statistic; this is a “double”

mean because we first average across sample split dates and then average across variables.

2. max j=1,...,21{maxτt j(MSPE-adj)τ}, or the double max. Here we take the maximum across

the 21 variables of the sample split–invariant max statistic; it is a “double” max because we

first take the maximum across sample split dates and then across variables.

Inoue and Kilian (2004) derive asymptotic distributions for their maximum in-sample and out-

of-sample statistics under the null hypothesis of no predictability. But since the limiting distribu-

tions are generally data dependent, these authors recommend that bootstrap procedures be used

in practice. Our bootstrap method (described in Section 2.4) is used—while imposing the null hy-

pothesis H0 :β j
1 =0 for all j=1,...,21 in the bootstrap data-generating process—to determine the

null distributions of our mean-t-squared, max-t-squared, double mean, and double max statistics.
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The results are reported in Table 5. The in-sample data-mining–robust test based on

mean-t-squared (mean j=1,...,21{t2
β̂ j

1
}) rejects the hypothesis of no predictability at any standard

significance level, and the max-t-squared statistic (max j=1,...,21{t2
β̂ j

1
}) rejects the same hypothe-

sis at the 6% significance level. Similarly, the out-of-sample data-mining–robust double mean

test rejects the null hypothesis (of no predictability) at any level and the double max text fails to

reject the null at standard significance levels (yet since the p-value of .16 is relatively low, there

is some evidence against the null).

Table 5: The mean-t-squared (mean j∈1,...,21t2
β̂ j

1
), max-t-squared (max j∈1,...,21t2

β̂ j
1
) , double mean

mean j∈1,...,21[meanτt j(MSPE−adj)τ ] and double max max j∈1,...,21[maxτt j(MSPE−adj)τ ] test
statistics (column 1), their bootstrap determined p-value (column 2) and the 90th, 95th and 99th
percentiles of the bootstrap determined null distribution of the respective statistic (last three
columns).

Statistic p-value 90pctile 95pctile 99pctile

mean-t-squared 2.8473 0.0000 1.4553 1.6007 1.9365
max-t-squared 9.1607 0.0647 8.3271 9.6241 12.6491
double mean 0.3231 0.0003 -0.0639 0.0041 0.1532
double max 2.8287 0.1627 3.0051 3.2067 3.7371

In sum, three of our four predictability tests that control for data mining reject the null

hypothesis of no predictability. This conclusion is evidently not driven by the distinction

between in-sample and out-of-sample testing, and it runs counter to Welch and Goyal’s (2008)

claim of no predictability.

This extension of our bootstrap method to sample split–invariant out-of-sample inference that

is also robust to data mining demonstrates the flexibility of our method—especially as compared

to the tests proposed by Rossi and Inoue (2012) and Hansen and Timmermann (2012).

4. Monte Carlo experiments: Validity of the bootstrap procedure

In this section we use Monte Carlo experiments to study the validity of our bootstrap procedure.

We also examine how accurate is the distribution characterized and tabulated by Rossi and

Inoue (2012). Throughout, we assume that the sample split date τ falls within the interval

[int(.15T ), T − int(.15T )]. This choice reflects our intention to compare this test procedure
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to the one described by Rossi and Inoue (2012), who do not tabulate critical values for

τ∈ [int(.05T ),T−int(.05T )].

When studying the 21 predictors we use τ ∈ [int(.05T ),T− int(.05T )] because (a) the predic-

tor with the smallest sample size has 548 observations and (b) traditional predictors such as the

dividend-to-price ratio have about 1020 observations available. We consider int(.05×548)=27

to be a sufficient sample size for deriving an initial set of parameter estimates or reliable out-

of-sample averages. We remark that the Rossi and Inoue (2012) distributions being tabulated

only for certain intervals renders their method less attractive because an empiricist would be con-

strained by those particular tabulations; our bootstrap method does not suffer from that limitation.

All our Monte Carlo experiments are calibrated to the moments of the actual data. We start

by estimating the systems in equations (2) and (3) for a given predictor (e.g., dividend/price).

We estimate the system parameters via ordinary least squares and then store them. Let β̂0, β̂1,

µ̂ , ρ̂ , Std(ût), Std(ŵt) and Corr(ût , ŵt) be the respective unrestricted estimates, including the

parameters and the residuals. Let β̃0 be the restricted estimate with β1 = 0 imposed (i.e., the

unconditional average of the equity premium).

For each Monte Carlo round we initiate the recursion in equation (3) by drawing with equal

probability from the actual sample path of Xt and setting Xm
0 equal to that value (here the super-

script m = 1,2,... identifies the Monte Carlo round). Then we generate Xm
t = µ̂ + ρ̂Xm

t−1 +wm
t

for t = 1,...,T . For each t we generate a bivariate normal vector of true errors [um
t ,w

m
t ] that is

serially independent and identically distributed (i.i.d.) and whose covariance matrix is calibrated

to have the same parameters as the covariance matrix of the residual vector [ût , ŵt ]. Thus

Std(ût)=Std(um
t ), Std(ŵt)=Std(wm

t ), and Corr(ût ,ŵt)=Corr(um
t ,w

m
t ).

If we generate Monte Carlo data under the null hypothesis, then Rm
t = β̃0 + um

t ; that is, the

equity premium is just the sample’s average equity premium plus the error term. If we generate

data under the alternative hypothesis, then Rm
t = β̂0+β̂1Xm

t−1+um
t .

In this section our Monte Carlo experiments are calibrated to the moments of equa-

tions (2) and (3), where the dividend-to-price ratio plays the role of Xt . In particular,

Corr(um
t ,w

m
t )=−0.9768, Std(um

t )= .0557, Std(wm
t )= .0565, and ρ̂ = .9931. Recall that, in the-

ory, the dividend-to-price ratio cannot be nonstationary in the population ρ <1. Since the price is
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simply the discounted sum of future dividends, it follows that the dividend-to-price ratio cannot

just drift away (up or down) to infinity; the dividend and the price series must be co-integrated.

Yet when equations (2) and (3) are calibrated to the dividend/price ratio, their respective systems

will—in small samples—be rather ill behaved and “nonstationary looking”. Perhaps it would be

more accurate to say “in finite samples” given that T =1020 is not really that small.

In Experiment 1, we generate 300 Monte Carlo paths of length T = 1020 under the null

hypothesis (of no return predictability) that Rm
t = .0062+um

t , Xm
t =−.0240+ .9931Xm

t−1+wm
t ,

and Corr(um
t ,w

m
t ) = −0.9768. Then, for each of those Monte Carlo paths we carry out 300

bootstrap replications as described in Section 2.4. For each sample path and across the 300

replications we determine the 90th, 95th, and 99th percentiles—in the bootstrap distribution

generated under the null—of the statistics meanτ{t(MSPE-adj)τ} and maxτ{t(MSPE-adj)τ}.

In other words, for each Monte Carlo path we repeat exactly the same bootstrap procedure

described in Section 2.4 and applied to the 21 predictors.

Now, if the calculated maxτ{t(MSPE-adj)τ} statistic for the Monte Carlo path is larger than

the 90th percentile of the bootstrap distribution of that statistic, then we record rejection at the

10% significance level. We proceed analogously for the 5% and 1% significance levels and then

proceed likewise for meanτ{t(MSPE-adj)τ}. The number of Monte Carlo and bootstrap repli-

cations is fairly low because the computational burden quickly becomes an obstacle (recall that

each calculation must be performed 300×300 times. We experimented with various numbers of

bootstrap replications (100, 190, 300, 999, 2999, 9999) and assembled the results as in Table 3.

Overall we find that more than 999 replications seldom yield non-negligible differences but that

fewer than 300 replications nearly always yield erratic results. The ideal scenario would involve

performing 999 bootstrap replications on 999 Monte Carlo paths rather than 300 by 300.

Table 6 shows that our bootstrap tests are slightly oversized but still fairly accurate. The mean

test has better size than the maximum test. At the 10% nominal significance level, the mean

(resp. max) test’s actual size is 11% (resp. 13.67%). At the 5% nominal significance level, the

mean (resp. max) test’s actual size is 6.67% (resp. 8.00%).

In Experiment 2 (under the null hypothesis of no return predictability) we generate 10000

Monte Carlo paths in the same way as in Experiment 1 but independent of the paths in that
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Table 6: Panel A contains the Monte Carlo determined actual size of our mean and maximum
tests at the stated significance level. For each of 300 Monte Carlo paths, sample size T = 1020,
the given statistic is calculated, say meanτt. Then for this given Monte Carlo path 300
bootstrap replications are used to calculate, e.g., the 90th percentile of the meanτt null bootstrap
determined distribution. If the original meanτt exceeds the 90th percentile of the bootstrap
null distribution for this Monte Carlo path, the test rejects at the 10% significance level, and
the average of this rejection indicator is calculated across the 300 Monte Carlo paths. Similar
procedure is followed for the max statistic and for the other significance levels. Panel B: reports
the average and the standard deviations of say 90th percentile in the null bootstrap distribution of
the statistics across the 300 Monte Carlo rounds. Note that for each Monte Carlo round the 90th
percentile of say the mean statistic is a number and only this number is used as a cut off point to
determine the rejection of the test. Panel B simply reports the average of these numbers across
Monte Carlo rounds, in other words, the numbers in Panel B are not used to determine rejection
in Panel A at this stage. τ∈ [int(.15T ),T−int(.15T )].

panel A panel B

rejection rate at bootstrap critical values
significance level 10% 5% 1% 90pctile 95pctile 99pctile
meanτt 11.00% 6.67% 1.67% mean(respective percentile) 1.0060 1.3650 2.0200

stdev(respective percentile) 0.1100 0.1270 0.2020
maxτt 13.67% 8.00% 2.67% mean(respective percentile) 2.1320 2.5010 3.1560

stdev(respective percentile) 0.1510 0.1650 0.2100

previous experiment. Here, however, we do not generate the bootstrap distributions for each

Monte Carlo round and instead simply use as critical values the averages reported in panel B of

Table 6. For example, from Experiment 1 we have the 90th percentile (a number) of the bootstrap

distribution of (say) meanτ{t(MSPE-adj)τ} for each of the 300 Monte Carlo rounds. We take

the average of these 300 numbers (1.0060) and report that value in panel B of Table 6 and also in

panel D of Table 7. Then, for each of the 10000 Monte Carlo rounds, we reject the null hypothesis

of Experiment 2 (at the 10% significance level) if the calculated meanτ{t(MSPE-adj)τ} statistic

exceeds 1.0060. Finally, the rejection rate is the average number of rejections across the 10000

paths.

Table 7 shows that the size of our bootstrap tests is close to the nominal significance level.

In particular, that size is more accurate than in Table 6; this result suggests that the oversized

Table 6 tests were due in part to an insufficient number of Monte Carlo and bootstrap replications.

Here again, our mean bootstrap test has better size than our maximum test. At the 5% nominal

significance level, the mean (resp. max) bootstrap test’s actual size is 5.52% (resp. 6.42%); at the

1% nominal significance level, the mean (resp. max) test’s actual size is 1.07% (resp. 1.35%).
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Table 7: Panel C contains the Monte Carlo determined actual size of our mean and maximum
tests, and of the mean L and max L tests of Rossi and Inoue (2012) at the stated significance level.
For each of 10000 Monte Carlo paths of size T =1020 the given statistic is calculated, say mean
L (Rossi and Inoue, 2012, eq.(11) p. 436) and max L (Rossi and Inoue, 2012, eq.(10) p.436).
Then for this given Monte Carlo path the calculated statistic is compared to the respective
percentile of the null distribution. If the original statistic exceeds the 90th percentile of the null
distribution for this Monte Carlo path, the test rejects at 10% significance level, and the average
of this rejection indicator is calculated across the 10000 Monte Carlo paths. For the mean L
and max L tests the critical values of the null distribution are taken from Rossi and Inoue (2012,
Table 2(b) p.438). For meanτt and maxτt the critical values are taken from Experiment 1, Table
6 Panel B mean(respective percentile). Panel D: repeats the average of say 90th percentile in the
null bootstrap distribution of the statistics across the 300 Monte Carlo rounds in Experiment 1,
and this average percentile is used as a critical value in all of the 10000 Monte Carlo rounds here.
τ∈ [int(.15T ),T−int(.15T )].

panel C panel D

rejection rate at theoretical critical values
significance level 10% 5% 1% 90pctile 95pctile 99pctile
mean L 16.60% 9.81% 2.76% mean L 0.8620 1.4560 2.8620
max L 21.39% 13.25% 4.23% max L 2.0430 3.0640 5.6200

rejection rate at bootstrap critical values
significance level 10% 5% 1% 90pctile 95pctile 99pctile
meanτt 11.12% 5.52% 1.07% mean(respective percentile) 1.0060 1.3650 2.0200
maxτt 12.40% 6.42% 1.35% mean(respective percentile) 2.1320 2.5010 3.1560

In Table 7 we can also see that the tests proposed by Rossi and Inoue (2012) are grossly

oversized and perform worse than our tests. For example: at the 5% nominal significance level,

their mean L test (Rossi and Inoue, 2012, eq. (11)) has actual size of 9.81% and their max L test

(Rossi and Inoue, 2012, eq. (10)) has actual size of 13.25%; at the 1% nominal significance level

the corresponding values are 2.76% and (respectively) 4.23%.9

In Experiment 3, we generate 300 Monte Carlo paths of length T =1020 under the alternative

hypothesis (of return predictability) that Rm
t = .0353+ .0087Xm

t−1+um
t calibrated to the sample

OLS estimates for the dividend-to-price ratio, where Xm
t = −.0240 + .9931Xm

t−1 + wm
t and

Corr(um
t ,w

m
t ) = −0.9768. Then we repeat the procedure from Experiment 1. Experiment 3

9Rossi and Inoue (2012) characterize the distributions of mean L and max L statistics and then tabulate those
distributions in their Table 2(b) for the case of a recursive forecasting scheme. The Monte Carlo experiments that we
conduct, e.g., panel C of Table 7, indicate that the distribution tabulated by Rossi and Inoue is a poor approximation
for asset pricing applications. A high autoregressive parameter of the predictor (e.g., ρ >.9) shifts the distributions
of mean L and max L sharply to the right, even for large sample sizes such as 1020 time-series observations. The
problem is even worse for combinations where ρ is close to unity and the absolute value of Corr(um

t ,w
m
t ) is high. Yet

in asset pricing applications, ρ near 1 and large Corr(um
t ,w

m
t ) are more the rule than the exception. All traditional

predictors (dividend/price, dividend yield, book/market, earnings/price, etc.) have such time-series properties.
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Table 8: Description of Table 6 applies with the only difference being that the Monte Carlo paths
of size T =1020 here are generated under the alternative hypothesis: Rm

t = .0353+ .0087Xm
t−1+

um
t . Notice that if the test procedure is consistent it must reject the incorrect null hypothesis.

panel A panel B

rejection rate at bootstrap critical values
significance level 10% 5% 1% 90pctile 95pctile 99pctile
meanτt 84.67% 66.67% 24.00% mean(respective percentile) 1.0020 1.3600 2.0100

stdev(respective percentile) 0.1120 0.1370 0.1980
maxτt 77.67% 59.00% 22.67% mean(respective percentile) 2.1210 2.4950 3.1700

stdev(respective percentile) 0.1600 0.1630 0.2130

establishes that our tests are consistent in that they do reject the incorrect null hypothesis. The

rejection rates in Table 8 are equivalent to the empirical power of our test under the alternative

hypothesis that β1= .0087.

Table 9: Description of Table 7 applies with the only difference being that the Monte Carlo paths
of size T =1020 here are generated under the alternative hypothesis: Rm

t = .0353+ .0087Xm
t−1+

um
t . Notice that if the test procedure is consistent it must reject the incorrect null hypothesis.

panel C panel D

rejection rate at theoretical critical values
significance level 10% 5% 1% 90pctile 95pctile 99pctile
mean L 98.27% 93.39% 62.61% mean L 0.8620 1.4560 2.8620
max L 99.05% 94.26% 63.71% max L 2.0430 3.0640 5.6200

bootstrap
rejection rate at bootstrap critical values

significance level 10% 5% 1% 90pctile 95pctile 99pctile
meanτt 86.71% 66.46% 21.92% mean(respective percentile) 1.0060 1.3650 2.0200

stdev(respective percentile) 0.1100 0.1270 0.2020
maxτt 79.37% 58.20% 20.00% mean(respective percentile) 2.1320 2.5010 3.1560

stdev(respective percentile) 0.1510 0.1650 0.2100

In Experiment 4, we generate 10000 Monte Carlo paths of length T = 1020 under the

alternative hypothesis (of return predictability) that Rm
t = .0353 + .0087Xm

t−1 + um
t before

repeating the procedure from Experiment 2. Experiment 4 also confirms that our tests are

consistent. The mean L and max L tests of Rossi and Inoue (2012) appear to have greater power;

yet because their tests are considerably oversized as seen in Table 9, such a comparison is

misleading. One can easily construct a test with 100% power: if one calculates any test statistic

but rejects all resulting values, then that test’s power will always be 100%.
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5. Conclusion

The recent literature on equity premium predictability has focused on out-of-sample evaluation

methods. These methods require the researcher to choose a sample split date that divides the

data into an in-sample estimation period and an out-of-sample evaluation period. Because the

sample split date is always treated as a priori given, reported out-of-sample predictability results

are germane only to the particular date used by the researcher.

In this paper we document that conclusions about predictability in this context are strongly

dependent on the choice of a sample split date. In fact, this dependence is so prevailing

that—with respect to proven in-sample equity premium predictors—a researcher may derive

evidence supporting (or refuting) predictability simply by adjusting the sample split date. Hence

there are many sample splits indicating strong out-of-sample predictability but also many other

splits that indicate no evidence of such predictability.

We describe two ways of addressing this unfortunate state of affairs. The first approach is

simply to plot (graph) the out-of-sample predictability results for every possible sample split. In

this paper we plot the (bootstrap-determined) p-value of the MSPE-adj statistic, as well as the

out-of-sample R-squared, against each possible sample split date τ ∈ [int(.05T ),T− int(.05T )],

where T is the total number of observations.

The second approach is to calculate the maximum and the mean of the set of the t-statistics

associated with the MSPE-adj for each possible sample split. We let t(MSPE-adj)τ denote the

t-statistic associated with the MSPE-adj, and we take both the maximum and the mean of that

term calculated across each possible sample split date τ . We determine the null distribution of

the mean and the maximum statistics via a bootstrap procedure that imposes the null hypothesis

of no predictability. In this second approach we distill the complete set of t(MSPE-adj)τ values

for each τ ∈ [int(.05T ), T − int(.05T )] into two numbers: the mean and the maximum of the

set. In this way we produce two tests of out-of-sample predictability—one each based on the

mean and the maximum—that are invariant to the choice of a sample split date. We also provide

Monte Carlo evidence that our bootstrap approach to inference is valid.

Each of these proposed approaches has advantages. The graphical approach transmits all

the relevant information on out-of-sample performance, and the human eye can absorb this
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information quickly. The second approach yields a general test of out-of-sample predicability

that has the advantage of being easily compared to the test of in-sample predictability.

We apply each approach to a comprehensive set of 21 equity premium predictors. We find

occasionally impressive out-of-sample predictability for most of the traditional variables. That

is to say, many investors making decisions in real time could have benefitted from forecasts

given by traditional predictors on an out-of-sample basis. We find that results from the in-sample

test of predictability agree, by and large, with our two proposed out-of-sample tests—which

are invariant to the sample split date. Finally, we extend these results by demonstrating how to

construct out-of-sample tests of predictability that are not only sample split invariant but also

robust to data mining.

The most important conclusions to be drawn from this work can be summarized as follows.

On the one hand, there are widely varying results reported for out-of-sample predictability

tests that differ only in the chosen sample split date. On the other hand, there are but minor

disagreements between in-sample predictability test results and results from our proposed (mean

and maximum) sample split–invariant out-of-sample predictability tests. All three of these tests

tell the same story about predictability: when split-invariant tests are used, the equity premium

is well forecast by only few traditional predictors on an out-of-sample basis.
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