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Abstract
Computational and mathematical models play important roles in proffering solutions to infectious diseases. Economic development and
human health in Africa continues to decline as a result of the menace of infectious diseases. No doubt, Africa can be a haven of economic
stability with a healthy population but not until this challenge is overcome. The significance of computational and mathematical
modelling to the control of diseases cannot be overemphasized. Hence, an extensive study on the impact of computational and
mathematical modelling to the control of infectious diseases in Africa is a timely study. Specifically, the scope of our study focused on
four life-threatening infectious diseases common in Africa namely: The ebola virus disease, HIV/AIDs, typhoid fever and malaria. It discuss
the modelling as applied to these infectious diseases, the results obtained and the future potential of each modelling technique. The
severity and devastating effect of these diseases on both economic and human health in Africa informed our decision of this study.
Despite the limitations inherent in existing models, strikingly revealed was the evidence that a combination of several control strategies
yielded a better result than the use of a single control strategy. In conclusion, the knowledge of computational and mathematical
modelling has improved the approach in managing and combating the transmission of infectious diseases. It has also helped in predicting
risks of major outbreaks in Africa.
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INTRODUCTION

Pathogens are the causative agents of infectious diseases.
These diseases can be transmitted by contact from persons to
persons. The modes of transmissions vary from bites by insects
or animals, to the usage of infected equipments or the
consumption of contaminated food and water1. Presently, the
negative impact of infectious diseases (IFDs, henceforth) in
Africa cannot be ignored as the economic development and
public health of citizens in Africa continues to be on the
decline2.

Africa has the opportunity of achieving a stable economy,
strong, healthy and vibrant population if effective solutions
are proffered to the menace of IFDs. The aim of this study is to
identify and discuss the significance and applicability of
computational and mathematical models to controlling
infectious diseases in Africa.

According to a 2012 World Health Organization (WHO)
Regional committee report for Africa, 63% of mortality in the
African region was due to incidences of IFDs. The HIV/AIDS,
malaria, tuberculosis, diarrhoea and other forms of child
related diseases accounted for 88% of these deaths. Other
IFDs such as ebola, cholera, meningitis, poliomyelitis and viral
haemorrhagic fevers have also topped the list of contributors
to the loss of lives in the African region1.

In various attempts to overcome the health challenges
and unstable economy currently affecting some countries
within the African region, many prevention and control
programmes have been adopted.

These programmes range from emergency intervention
programmes, regional surveillance, timely vaccination and the
adoption of disease prevention guidelines to vector control
strategies and the application of mathematical and
computational modelling techniques.  These programmes are
still being implemented as measures for preventing the
emergence, resurgence and transmission of IFDs in Africa3.

In this study, it present an extensive study of different
mathematical and computational models and a comparative
study of the impact of these models to the control of IFDs
transmission in the African region with particular emphasis
and focus on killer IFDs such as Ebola Virus Disease (EVD,
hence forth), HIV/AIDS, malaria and tuberculosis. The criteria
used for assessing the quality of each model reviewed in this
study are the generalizability criteria for model evaluation. This
criterion depicts a model to be good and effective where the
model satisfies its original aim alongside, offering good
predictors of future trends and observations4.

MATERIALS AND METHODS

Mathematical and computational models: A mathematical
model adopts mathematical concepts and descriptions to
represent the behaviour of a system or real world situation. A
computational model on the other hand, describes a system
through algorithms and simulations. A computational model
is applied  in  computational  science  where  the need for
large  computational  resources  is  required  for  the  study of
the  characteristics   of   complex   systems   by simulation.
Previous studies conducted by McKenzie et al.5, Day et al.6,
Moghadas et al.7, Grassly and Fraser8 and Arino et al.9 have
revealed the role of computational and mathematical models
in combating the spread of IFDs. It has also highlighted the
initiation of control interventions and other interventions
capable of truncating further recurrences of IFDs and thus
preserving a healthy populace from the adverse effects of
such IFDs.

The study of Chowell and Nishiura10 revealed how
mathematical modelling was applied at estimating the risk of
a major outbreak of Ebola Virus Disease (EVD) and an
evaluation of the effect of basic control measures on the
spread of the disease. In their study Chowell and Nishiura10,
the new number of ebola cases for the 2014 ebola outbreak
was modelled mathematically using Eq. 1 and 2, while the
basic reproduction number R0 was given as shown in Eq. 3-5.

The number of new cases (i) at calendar t is modelled as
follows:

i(t) = k exp(rt) (1)

where, k is a constant, as the observed data are cumulative I(t),
the above Eq. 1 is integrated from the start time of exponential
growth to the latest time t. This results into Eq. 2:

(2) 0

k
I(t) exp(rt) exp(rt )

r
 

(3)0
0R  

(4)     0 0 a0 I 0 r a0 a0R = β 1 γ + γ +l 1 γ γ (γ +γI)  

R0 = Rcomm+Rhosp (5)

where,  Rcomm = γ0/(γa0+γl) and Rhosp = γ0l0 (1/γr) (γa0/γa0+γl).
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In addition, from a mathematical point of view, Nishiura
and Chowell11 defined the force of infection of Ebola Virus
Disease (EVD) as 8(t) depicted in Eq. 6:

(6)
0

(t) (s) (s)i(t s)ds


    

This finally yielded a measure of the risk of infection in a
susceptible population. Nishiura and Chowell11 also provided
a comparative analysis of ebola virus disease, influenza and
measles with respect to their rate of infectiousness per
generation of cases. Ebola virus disease was found to be
almost similar in terms of rate of transmission to influenza.
Though infections per unit time of ebola virus disease was
found to be lesser than that of influenza. The aim of their
study was to compare infectiousness among different
infectious diseases in order to describe different infectiousness
concepts. The applicability of their study can help forecast the
transmission rate of ebola, thus providing a suitable platform
for timely intervention, towards the control of the infectious
disease.

In the study conducted by Lessler  et  al.12  they provided
seven challenges associated with using infectious diseases
models to inform data collection. According to their study12,
the challenges are inherent in the synergy between using
infectious disease models to inform data collation. It was
noted, however, that if such challenges are overcome, it will
provide new insight and also help tremendously improve on
how infectious disease threats are dealt with.

In another study, Weitz and Dushoff13 applied the
mathematical epidemiology toolkit to analyze the effects and
consequences of post-death transmissions of ebola on
individuals who are still alive. In their study, the identifiability
problem was revealed as the reason for the lack of confidence
with inferring underlying disease parameters from early-stage
incidence data. From a control standpoint, they showed how
a reduction in post-death transmissions can ultimately lead to
a reduction in the overall spread of the ebola epidemic. They
also stated that when significant attention is concentrated on
the proportion of post-death transmissions it can help
evaluate a cocktail of control strategies and forecast or
estimate the trend of the epidemic.

Role and applications of computational and mathematical
models in IFD transmission and control in Africa
Ebola virus disease: In 1976, the emergence of EVD was
simultaneously observed in Sudan and the Democratic
Republic of Congo (DRC)14. The  name  ebola  was  traced  back

and coined from the location of its first occurrence in
Yambuku village, very close to the ebola river in DRC14. Since,
1976 until year 2013, in Africa, report has it that a total of 2,316
human cases have been in occurrence of which, 1,595 deaths
have been confirmed15.

It has also been revealed that in, 2014 alone, a total of
24,788 human cases leading to 10,251 deaths have been
reported15. Not surprising that in August, 2014, WHO declared
ebola a public health emergency of international concern14.
There is no known cure for ebola and no licensed ebola
vaccine is in existence yet. There exist package of
interventions such as surveillance, good laboratory services,
safe burials, case management and social mobilization to help
control the outbreak and spread of the disease14.

Studies on modelling have played significant roles in
sensitizing the public of the dangers associated with an
epidemic. It has also provided insights into the impact of
present and future control measures. Lewnard et al.16,
developed a transmission model to assess and ascertain the
impact of non-pharmaceutical interventions from the
international community through contact tracing, provision of
new EVD treatment and management centres and the
provision of household protective kits. The knowledge of how
these interventions can be applied individually or collectively
to prevent future EVD outbreaks and deaths in Liberia was also
presented.

The model developed  by  Lewnard  et  al.16 predicted
1,975 EVD cases and 1,315 resulting deaths as against the
figures from the Liberian Ministry of Health and Social Welfare
which reported 1,635 EVD cases and 1,081 deaths16.

Discussing individually and as a group the 3 intervention
strategies earlier mentioned the model revealed the
relationship between EVD treatment centres and case
ascertainment. Here, the impact of introducing new EVD
treatment centres depended on an acceleration of case
ascertainment. Protective kits alone however, could not
guarantee maximum protection from EVD but might be able
to reduce the spread of the disease under conditions where
the capacity of EVD treatment centres had been exceeded.
The model showed further that augmenting EVD treatment
centres and case ascertainment with protective kits between
October 31, 2014-December 15, 2014 had the potential to
increase  the   number    of    EVD    cases    prevented  from
81,627-97,940 based on kit quality16. Even though the model
had the following limitations (i) Status quo ascertainment was
unknown, (ii) The notion that all persons infected with ebola
(both dead and alive) contributed equally to the rate of
transmission, (iii) That EVD cases indentified in Montserrado
from June-October  2014  were  acquired  within  Montserrado 
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and (iv) Ebola was not transmitted during sanitary burials,
findings showed that the number of proposed EVD centres
from international commitments was insufficient in dealing
with the number of expected cases and deaths. Clearly, this
transmission model’s findings reflect the purpose for its design
and uncertainty errors were accounted for using a Bayesian
framework, thus it can say the model passes the
generalizability criteria.

Atangana and Goufo17 developed a model describing the
transmission of ebola for a given West African country first by
using the classical derivative which talks about the rate of
change as an approximation of the real velocity of the object
under consideration.

According to Atangana and Goufo17, the rate of change of
susceptible population was given as a mathematical
differential equation depicted as:

(7)dS (t)
iS (t)I(t) sR(t) N

dt
   

while the rate of change of infected group was given as:

(8)dI (t)
iS (t)I(t) dI (t) rI (t)

dt
   

The rate of recovery was described with an ordinary
mathematical differential equation represented by:

(9)dR(t)
rI(t) sR(t)

dt
 

and finally, the rate of change in death was given by:

(10)dD(t)
dI(t) N

dt
  

The classical derivative was then modified to account for
time scale and fractional order, this was called the beta
derivative. In the formulation of the model, the rate of death
caused by ebola the infected, the susceptible and the rate of
recovery  were   accounted   for.   The   model  was solved
numerically via an iteration method with simulations carried
out in terms of data and time for different values of beta. The
model as a function of the order of the derivative showed a
more realistic result for all beta values less than 0.5. In
conclusion, the model revealed that in the absence of any
form of  adequate  prevention  and  control,  regardless  of  the

number of infected, the entire nation could be wiped out
within the speed of light17.

Fasina et al.18 applied a dynamic transmission model to
study the impact of forceful interventions in swiftly preventing
an EVD outbreak in Nigeria. Fasina et al.18 conducted a
stochastic EVD outbreak simulations based on an earlier
simplified model developed by legrand19.

In their model design, a transmission tree was analyzed to
estimate the case fatality rate, the number of infected
healthcare workers and the average number of secondary
cases by generation of the disease. With the use of two
compartments, infectious individuals in the community were
separated from those who had been selected and placed in
isolation in hospital. With the use of epidemic models, they
projected the size of the outbreak in Nigeria in a situation
where control interventions had been carried out at different
dates, thereby estimating the number of cases averted by an
early start of interventions18. Legrand et al.19 developed a
stochastic EVD simulations. They modelled a population by
placing the population into five groups namely ( i)  Susceptible
individuals, (ii) Exposed individuals, (iii) Infectious individuals,
(iv) Hospitalized individuals and (v) Individuals removed from
isolation after recovery or disease-induced death. Stochastic
simulations of the transmission model were implemented in
an attempt to predict and project the size of the outbreak in
Nigeria especially in a situation where interventions had been
initiated at different dates. It is also to estimate the number of
cases prevented by an early start of these interventions. Based
on EVD epidemiology, certain parameters were set such as
incubation period of 6-12 days, infectious period of 5-7 days
and a case fatality of 35-50%. Furthermore, the average time
from when symptom starts to diagnosis was put at 5 days
prior to the implementation of interventions. The basic
reproductive number was determined by adjusting the
baseline transmission rate for an effective population size of
10 million (10,000,000).  At the beginning of interventions, the
average time from symptom onset to diagnosis was adjusted
to 1 day while the infectiousness of hospitalized individuals
was adjusted by 80% to show the tightening of infection
control routines in hospital environment relating to levels
before the occurrence of the index case. Starting with the
introduction of the index case, followed by 12 local individuals
exposed by the index case, 200 stochastic simulations were
performed. The timing of start of interventions for the
simulated outbreak was put at 3 days in line with the Nigerian
outbreak response and then 10, 20, 30, 40 and 50 days. The
model concluded with the following: (i) That the size of the
simulation outbreak agreed with the Nigerian outbreak when
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interventions were rapidly instituted on day 3 of the outbreak
and (ii) The outcome of delayed interventions in the
simulation outbreak indicated the need for quick and forceful
control measures. This model  clearly  revealed  the  impact  of
forceful implementation of control interventions in reducing
the spread of EVD in Nigeria. Since this agreed with the initial
aim of the model, it can be inferred that the model met the
generalizability criterion.

Fisman et al.20 applied an Exponential Adjustment model
to the study of ebola virus disease. They integrated incidence
decay into the Exponential Adjustment model (IDEA)21 to
formulate a mathematical model that is a useful prognostic
tool for epidemic processes especially in situations when data
is not sufficient. Fisman et al.21 applied this model to the ebola
epidemic in order to observe mathematically trends of
epidemic growth, evaluate the degree to which control
interventions were likely to influence epidemic size and
duration.

The model was represented by some mathematical
difference equations with discrete time steps as depicted in
Eq. 11-13.

St+1 = St-Ret It (11)

It+1 = Ret It (12)

Rt+1 = Rt+It (13)

The model proved to be ideal for studies with limited
ebola epidemiological data. The model had a good fitting to
data. In conclusion, the model showed that in a case where
there was inadequate effective control measures, epidemic
increased to tens and maybe hundreds, of thousands of
people which was obviously similar to the case in Liberia as at
the time of writing. The model satisfied the generalizability
criterion for a good model.

As a result of challenges encountered from previous
studies9,22,24 , House25 used a different technique by developing
a model that focused on time between outbreaks, number of
deaths and final number of cases, for all 24 ebola outbreaks as
detailed by WHO14. The modelling process commenced with
modelling the start of a new outbreak as a memory less
poisson process with a rate 8. Next was the assumption that
each new outbreak had a case fatality ratio derived from a
beta distribution and lastly, the final size model was a function
of two parts: (i) A geometrically distributed number of cases,
A and (ii) A branching process model of human-to-human
transmission26, 27. All aforementioned models were fitted with
Bayesian  Markov   Chain   Monte    Carlo    with   uninformative

priors28 and a simulation study was carried out to test
identifiability. Augmenting the final size data by an outbreak
of an unknown size caused the model to be refitted.

The likelihood function for the transmission model was
represented by Eq. 14:

L(D|p, q) = Πi Pr [K = Ki]|p, q] (14)

The likelihood for the new outbreak model was presented
by Eq. 15:

(15)
N T( T) e

L(D | )
N!


 

The results from the model on ebola transmission
dynamics showed that (1) Even though the rate of new
epidemics and case fatality ratio were both high, there was a
notable difference from outbreak to outbreak, (2) The effective
basic reproductive ratio for individual-to-individual
transmission was just less than 1 and (3) An extremely large
variability in the final size of outbreaks was observed. The
model showed a basic reproductive ratio <1, a fast rate of new
outbreaks and a high case fatality ratio which it had set out to,
thus satisfying the generalizability criterion.

After a critical analysis of the predictions by the model
Lewnard et al.16 developed and the observation of a
pessimistic prediction of the growth rate of the epidemic as of
October 2014.

Chowell   et   al.22,   improved   upon   the   study   of 
Lewnard et al.16. There was a calibration of the mechanistic
model developed by Lewnard et  al.16  to an epidemiological
data of cases and deaths. Applying data from constantly
changing epidemic in Liberia,  Chowell  et  al.22   showed that
an integration of simple logistic growth models with
traditional mechanistic models can be used to evaluate
predictions in situations where epidemiological data are
insufficient. This forecast tallied with recent field reports from
at least two counties in Liberia. The model also revealed the
need for the total effective susceptible population size as
being a dynamic variable instead of a fixed quantity due to
changes in population behaviour and the effect of control
interventions. Validation is a very important process that has
to be conducted on models.

A further validity check was conducted on the model and
saw the fitting of the model to data from Sierra Leone and
Guinea which reveal a consistent reduction in the final size
predictions for both countries with estimated effective
reproduction numbers of 1.2 and 1.4, respectively.
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Rivers et al.29 conducted a study on the impact of
interventions on the ebola epidemic in Sierra Leone and
Liberia. They developed a compartmental model that
described the natural history and epidemiology of ebola. The
model was further transformed into a deterministic version
and validated using least-squares optimization. Besides a
mathematical description of the model, the model was
transformed into a stochastic model by implementing the
Gillespie's algorithm30   with a tau-leaping approximation. The
findings of this model were interesting.

The findings revealed that some form of coordinated
intervention was important for the near term. The model also
showed that the outbreak was at the point where it could least
be controlled and this agreed with predictions by other
models. Identifying infected ebola individuals via intensified
contact tracing and placing them in isolation with dedicated
care, proved to be the most effective combined control
strategy. Also, the use of a hypothetical pharmaceutical
intervention impacted on mortality. Even though these
interventions reduced the number of ebola cases, they were
not sufficient enough to stop the progress of the epidemic.

The  focus  of  the  study  conducted  by  Althaus  et  al.24

was on the quantification of the effects of early interventions
in order to reduce the spread and transmission of ebola. It was
also to determine the risk of a single undetected case leading
to a new outbreak. The EVD transmission model was described
with a set of ordinary mathematical differential equations as
shown below in Eq. 16-20:

(16)dS
(t)SI

dt
 

(17)dE
(t)SI E

dt
  

(18)dI
E I

dt
   

(19)dR
(1 f ) I

dt
  

(20)dD
f I

dt
 

Comparing  the  risks  of  an  outbreak   emanating from
a single  undetected   case   in   Nigeria    with     ongoing    EVD

transmission in other West African countries showed that
Nigeria had a much higher risk of 89%. Even though the basic
reproduction number of the model was quite high (that is,
9.10) because it was calculated for just the index case the net
reproduction number was reduced below 15 days as a result
of the swift implementation of control measures after the
arrival of the index case. The model however, suffered from
the following structural limitations: (i) By applying a
deterministic model to an outbreak of just 20 cases, stochastic
effects  may  have  influenced  the  outcome  of  the epidemic,
(ii) There was the assumption that EVD cases were equally
infectious throughout the infectious period, (iii) There was no
differentiation between transmission in health-care
environments and in the community, (iv) All control
interventions were considered together and their
implementation were assumed to have contributed to the
exponential drop in the transmission rate and (v) The
transmission clusters in Lagos and Port Harcourt were taking
as a single outbreak with the assumption that control
measures had similar effect in both locations. In conclusion,
the model revealed that the transmission potential of index
cases can be quantified in the absence of the number of
secondary cases. The model also described the time window
for successful prevention of new EVD outbreaks caused
through air travel.

In the study of the transmission dynamics of the ebola
haemorrhagic fever, Legrand et al.19 developed a stochastic
compartmental model using epidemiological data obtained
from two different outbreaks (a 1995 outbreak in DRC and
2000 outbreak in Uganda). The model took into consideration,
the spread of EVD in different epidemiological terrains such as
illness in the community, hospitalisation and traditional burial
while estimating the basic reproduction number. This was
estimated as 2.7 in both outbreaks. Being a stochastic model,
individuals were thus grouped into the following classes: (i)
Susceptible: Those infected with ebola due to contact with
infectious case, (ii) Exposed: Infected individuals not showing
symptoms yet, (iii) Symptomatic individuals in the community,
(iv) Infectious individuals now hospitalised, (v) Dead cases with
the potential to transmit the virus during burials and (vi) Those
either cured, dead or buried, hence having no potential for
further transmission. The impact of control measures was
explored by simulating the model under different epidemic
scenarios using the Gillespie’s first reaction method31. Here, a
key parameter considered was the immediate response to the
use of control interventions. Just as the authors initially set out
to understand and suggest where control interventions could
be effective, the model concluded by showing that increased
hospitalisation rate reduces the future epidemic size. This
further satisfied the generalizability criterion.
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A spatial-agent based model for incorporating both
detailed geographical and demographic data from Liberia was
developed by Merler et al.32. Amongst things that were
modelled are; mobility of individuals not affected by EVD,
those seeking for help in health care institutions, individuals
caring for infected persons who have not been admitted into
a hospital and the number of funeral attendees. These
categories of individuals were classified into geographically
chosen and randomly allocated households to match the
population density projections on a grid of 3,157 cells
covering Liberia. Calibration of the model was done using a
Markov Chain Monte Carlo approach. This has enabled the
estimation of transmission parameters and the investigation
of the effectiveness of control measures such as the availability
of treatment centres, practice of safe burial procedures and
the use of household protection kits. The model showed that
the decline in the number of new cases both at country and
county levels was due largely to the increasing number of
treatment centres, practice of safe burials and the effective
distribution of household protection kits. The impact of the
model is visible in the fact that it provided a means of
evaluating the available control measures as well as providing
insight into the role each control measure played in the
reduction of incidence cases reported since September 7,
2014. The model can also offer predictions of future burden of
the epidemic and the number of ebola virus cases. The model
did show potential for being used for evaluating
pharmaceutical interventions as well.

Chowell et al.33, applied a simple mathematical model to
study the effects of the early detection of ebola. From their
study, they highlighted that in situations where there were no
vaccines or effective drugs for the disease, a useful way of
controlling the spread of the disease was by identifying
infected individuals early enough in order to truncate the
transmission of the disease.

Chowell et al.10 discovered that there was a strong
correlation  between   the   effect   of   early    detection   of
pre-symptomatic infections and the effectiveness of isolation
of infected individuals.

The result  produced  from  their  study  has  the  potential
to initiate effective control measures against the spread of
EVD. Finally, the results obtained by Chowell et al.10 suggested
an  integrative  strategy  that  combines  early  diagnosis  of
high-risk  individuals,  health  workers,  care  givers,  at the pre-
symptomatic stage with public health strategies to improve
the speed and efficiency of isolation of infected patients as a
guaranteed means of rapidly reducing the transmission of
ebola. This model also satisfies the generalizability criterion.

Webb and Browne34, conducted a study by applying a
mathematical model to model the 2014-2015 ebola epidemic

in Sierra Leone and Guinea. They incorporated the age of
infection into their model to monitor the transmission of the
infection. Mathematical model simulations indicated that
successive removal of infected individuals resulted in a
reduction of the severity of the epidemic. This model satisfies
the generalizability criterion because it achieved positive
results and it provided insight into reducing the ebola
epidemic.

Camacho et  al.35, applied a mathematical model of EVD
to estimate the variations in the extent of transmissions of
ebola virus in the nine most affected district of Sierra Leone
between the period 10th August, 2014 and 18th January,
2015. They used their mathematical model to study the
patterns of transmission in different regions and to finally
evaluate whether bed capacity was enough to meet up with
future demands of ebola cases. With their mathematical
model, they were able to estimate the number of ebola cases
that would occur up till March, 2015 and made meaningful
comparison with the expected number of beds and expected
future capacity of ebola cases.

Agusto et al.36, designed a mathematical model and
applied the model to estimate the population-level impact of
basic non-pharmaceutical measures against the outbreak of
ebola. Some unique features of this particular model were the
incorporation of the effects of traditional belief systems and
customs, disease transmissions within healthcare settings and
among ebola-deceased patients. They were able to perform
sensitivity analysis in order to determine the parameter that
had the most effect on disease transmission. The model was
parameterized by using data from Guinea. The model
concluded by showing that reduction in new ebola cases can
be achieved by  increasing  health-worker’s  daily  shifts  from
8-24 h, restricting hospital visitation to 1 h and by sensitizing
the populace to abandon detrimental traditional/cultural
belief systems. One of the discovery by Agusto et  al.36  is the
impact or the contribution of traditional/cultural beliefs to the
spread of the (EVD). This model was able to produce good
results.

Typhoid fever: Typhoid fever is caused by the bacterium
Salmonella  typhi.  Its  mode of transmission is through
ingested contaminated food or drink. Such contaminations
can be from the faeces or urine of infected individuals37. The
disease can affect different organs of the human body and it
can also lead to complications. In worst case scenario, it can
lead to death38.

Mushayabasa et  al.39  revealed through a mathematical
model that in malaria affected regions,  a  typhoid epidemic
has  the   tendency   of   causing   higher   cumulative  cases  of
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dually-infected patients. These patients exhibit the clinical
symptoms of both malaria and typhoid than singly-infected
persons showing the clinical symptoms of either malaria or
typhoid.

In course of developing the model,  Mushayabasa  et  al.39

performed separate studies on the transmission dynamics of
malaria and typhoid. Using compartmental models for the
studies, the typhoid model integrated both typhoid treatment
and typhoid carriers. The total population was subdivided into:
The susceptible S, the infectious I, the treated/recovered R and
the chronic enteric carriers C. In the malaria aspect of the
model, the model by Li40 was adopted to reveal the
transmission dynamics between humans and Plasmodium
falciparum. In the final co-infection model the human
population consists of the following mutually exclusive
compartments: The susceptible, those exposed to malaria
only, infectious persons infected only with malaria, infectious
persons infected only with typhoid, singly-infected typhoid
carriers, those infected with typhoid and exposed to malaria,
dually-infected persons with malaria and typhoid and showing
clinical symptoms of both diseases, typhoid carriers exposed
to malaria, dually-infected typhoid carriers who show clinical
symptoms of malaria only and the recovery population. From
analysis, the typhoid model revealed the possession of
globally stable states, whereas, the malaria model did reflect
a backward bifurcation phenomenon.

In a related study, Mushayabasa41 investigated the impact
of vaccination on the long term transmission dynamics of
typhoid fever. He applied a mathematical model to the study
conducted in the Kassena-Nankana district of Upper East
region of Ghana. The model (a derivative of the SIR model
developed by Adetunde42) incorporated both a vaccinated
class and the viral dynamics. The host population was
subdivided into five different classes namely: Susceptible S (t),
Vaccinated V(t), Infective I(t), Carriers C(t) and Recoveries R(t).
The total population was presented as N = S+V+I+C+R. The
model formulated by Mushayabasa took the form as depicted
in Eq. 21-25:

S’ = Λ-αSI-(φ+µ)S+ωV (21)

V’ = φS-(ω+µ)V (22)

I’ = αSI-(β+b+σ+µ)I (23)

C’ = βI-(γ+µ+d)C (24)

R’ = γC+bI-µR (25)

The model showed that the vaccine induced
reproduction and the no-vaccine reproduction numbers,
respectively gave threshold conditions that determined the
occurrence of typhoid fever in the community. Knowledge of
these threshold conditions had the potential of giving insights
into the outcome of the use of vaccination as a measure of
control. Finally, the model concluded with the view that
vaccination was a necessary control strategy if the rate of
cumulative new typhoid cases in the district was to reduce.
Furthermore, the government and the public health sector
were encouraged to carry out vaccination of susceptible
individuals in order to minimise typhoid-induced mortality
and prevalence.

In another study, Mushayabasa et al.43 evaluated the
effect of drug resistance on the transmission dynamics of
typhoid fever by applying a mathematical model. In the
design of the model, the host population was distributed into:
Susceptible, sensitive strain non-symptomatic infectious
persons, drug-resistant infectious carriers and drug-resistant
symptomatic infectious carriers. The model worked on the
assumption that infection could only result from direct contact
with an infectious individual. Another assumption was that
recruited individuals were supposed to be susceptible, though
this might not always be the case. In the study, it was revealed
that in the event of an outbreak with more drug-sensitive
cases than drug-resistant cases, about 10-15 months would be
required before symptomatic drug-resistant cases would
outnumber all typhoid cases.

The  model  further  showed  that  with  the increase in
drug-resistant typhoid cases, alongside the potential of it
outnumbering drug-sensitive cases on the long run, there
would be a high prevalence of typhoid in the community.

Mushayabasa developed a deterministic model to model
the impact of optimal screening on the transmission dynamics
of typhoid fever44. He focused his interest in a model with
relevant biological detail, reflecting multiple control strategies
and implementing an optimal control theory. In the process of
formulating the model, the total population at time t, was
subdivided into six mutually-exclusive compartments namely,
susceptible, exposed, symptomatic infectious, chronic enteric
carriers, screened typhoid patients and the recovered. In the
final outcome of the model, it was evident that the
implementation of optimal control strategies could effectively
control and/or eliminate the spread of typhoid fever in the
event of an epidemic in the community. The model further
revealed the need for quarantining only symptomatic
individuals in an event where an outbreak has spanned over
150 days. The model  has  its  limitation  of  assuming  that  the
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spread of the disease was only possible via human contact.
Nevertheless, the model revealed that screening symptomatic
and asymptomatic infectious patients was only ideal for the
short term but in the long term, attention should be paid to
only symptomatic infectious individuals,  thereby reducing
cost and managing the spread of the disease. In this regard,
the   model   achieved   the   aim   which   it   set   out  to during
formulation, thus satisfying the generalizability criterion.

Further study was conducted by Mushayabasa45 on the
assessment of the impact of treatment and educational
campaigns on the transmission dynamics of typhoid in
Zimbabwe. This study birthed the development and analysis
of a deterministic model for the control of typhoid outbreak.
The model considered the saturated incidence rate of the
disease during the modelling process. Categories of human
population for this model are: The susceptible, latently
infected individuals and the infectious individuals. The model
revealed that early treatment drastically reduced the amount
of new typhoid cases as compared to the treatment on the
infected. With an over 40% consistency rate of effective
educational campaign, the model predicted that typhoid
could be controlled. Thus, educational campaigns are good
indicators to controlling infectious diseases. The model had its
own limitations. These include: (i) Assumption that
transmission was via human contact only (ii) Assumption that
recruited individuals are susceptible, which was not the case
in all communities. The model revealed that an integrative
approach of educational campaign and proper treatment can
produce significant effect in combating typhoid fever.

Mushayabasa et al.43 in 2013 analysed the impact of
carriers, direct and indirect transmission on the prevalence of
typhoid fever. They used a mathematical model to conduct
the analysis. The model was useful in calculating the basic
reproductive number, as well as investigated the global
stability. Sensitivity analysis, on the other hand on the
reproductive number, revealed that typhoid prevalence was
significantly determined from indirect transmission as
opposed to direct transmission. This model satisfied the
generalizability criterion of a good model.

In another study, a  novel  mathematical  model of
typhoid-malaria co-infection dynamics was developed by
Mutua et al.46. The model is a dual-purpose model. Through
the mathematical analysis of the model, they were able to
specifically identify unique features associated with each type
of disease and their corresponding co-infections. The
development of their model, provided them the opportunity
to identify specific thresholds related to the global dynamics
of  each   disease.   The   analysis  conducted  with  their  model

informed them of the possibility of applying concurrent
interventions, thereby leading to the possible eradication of
the diseases. The case study for their study was the Eastern
Province of Kenya. Simultaneous management of both
diseases hold great promises in dealing with co-epidemics.
Their model also satisfied the generalizability criterion.

HIV/AIDS: Human Immunodeficiency Virus (HIV) is a virus that
fights and weakens the immune system and weakens one’s
ability to combat infections and diseases47. The transmission
of the virus is majorly through body fluids that affect specific
cells of the immune system. It is commonly transmitted
through unprotected sexual intercourse. It could also be
transmitted through the sharing of needles or injections with
an infected patient. During child conception, development,
child birth and breastfeeding, HIV can also be transmitted
from an infected mother to a child47. The HIV advances to
Acquired Immunodeficiency Virus (AIDS) at an advanced
stage.

Mathematical modelling has contributed immensely to
the understanding of the dynamics of HIV infections and
transmissions48-55. McCluskey49 developed a mathematical
model for HIV/AIDs staged progression and amelioration. The
model developed by McCluskey had varying population sizes,
admission into the susceptible class was proportional to the
active population class. The model also made provision for
people infected with the disease to undergo amelioration by
translating from more advanced stages of the infection to less
advanced stages of infection. Equations that depict these
characteristics are as shown in the subsequent sections. The
differential equation for the active population subgroups was
given by Eq. 26:
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where, b is the rate constant for new individuals entering into
the susceptible state of the population under study. The rate
constant for death not directly related to the disease is
denoted by d (which was assumed non-negative). The average
number of contacts made by a susceptible individual per time
 is c. For m = 1,........,r, $m is the probability that a new infection
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results from the interaction between a susceptible and an
infective class. By applying proportional mixing, the force of
infection is given by: 

r
m

m
m 1
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c S

N



McCluskey49 constructed a Lyapunov function in a bid to
determine local stability of disease free equilibrium. He
defined the tri-diagonal matrix.

Cassels  et   al.50  developed a mathematical model for HIV
transmission. The aim of their study was to predict population-
level outcomes from individual-level inputs.

They provided an equation as shown in Eq. 27:

RO = βcD (27)

where, RO represents the expected number of secondary
infections generated by the first individual. The RO is a function
of biological and behavioural factors. Thus, for a
homogeneous population, it defined in Eq. 27.

Auvert et al.56 developed a stochastic model: A modified
form of the simulation model SimulAIDS57-59 to study the
significance of sexual behaviour and biological factors on the
transmission dynamics of HIV in sub-Saharan Africa. The
model incorporated several parameters that provided a detail
description of sexual behaviour, thus allowing for easy
identification of specific factors that most strongly influenced
the HIV outbreak. The SimulAIDS:  A Monte-Carlo simulation
model was applied to select certain demographic and sexual
behavioural characteristics. A generic Sexually Transmitted
Disease (STD) was also included in the simulation model. In
the study, sexual behaviour was discussed in the context of
one  of   three   types   of   heterosexual   partnerships   namely
one-off, short-term and long-term. The results of the model
revealed that the disparities in sexual behaviour was
potentially responsible for the differences in HIV prevalence in
sub-Saharan Africa. The results of the model also revealed that
the number of men involved in non-spousal relationships,
including meetings with commercial sex workers and having
short term partners, was the major determinant amongst
others in the spread of HIV. So far, the model realized its
objectives of examining the significance of sexual behaviour
and the role of  biological  factors  in  the  spread  of  HIV in
sub-Saharan Africa, thus meeting the requirements of the
generalizability criterion.

Karrakchou et al.51 utilised an existing mathematical
model developed by Gumel  et  al.60  to predict the number of

cell-free HIV in the blood during typical course of HIV infection.
In their study, the authors investigated the optimal strategy for
administering anti-viral drug therapies in combating HIV
infection. The authors focused on studying the basic role of
chemotherapy treatment in managing the reproduction rate
of the virus. In a bid to achieving this aim, Karrakchou et al.51

conducted  an   analysis   of   the    interactions    of  healthy
CD4+T cells and infected CD4+T cells. The existence and
uniqueness of an optimal control pair in administering drug
therapies for the control of HIV infection was revealed through
numerical simulations using Gauss-Seidel first order implicit
finite difference method.

A brief description of the Gauss-Seidel method61 reveals
that it is an iterative technique that can help to solve a square
system of n linear equations with unknown x. The following
equations reveal how this method is implemented:

Ax = b (28)

Equation 28 is defined by this iteration:

L×x
(k+1) = b-Ux(k) (29)

where, xk is the kth approximation or iteration of x, xk+1 is the
next or k+1 iteration of x and the matrix A is decomposed into
a lower triangular component L* and a strictly upper triangular
component U62: 

A = L*+U

In details, writing out A, x and b, we have that:

(30)
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The system of linear equations can be re-written as: 

L*x = b-Ux (31)

The Gauss-Seidel method now solves the left hand side of
this expression for x, using previous value for x on the right
hand side. This may be written analytically as:
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(32)(k 1) 1 (k)
*x L (b Ux )  

Taking advantage of the triangular form of L*, the
elements of x(k+1) can be sequentially computed by applying
forward substitution to produce:
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The procedure is generally continued until the changes
made by an iteration are below some tolerance, such as a
sufficiently small residual.

Comparing disease transmission prior and after
chemotherapy treatment revealed the vital role chemotherapy
played in suppressing viral reproduction, as well as improving
the immune system. In conclusion, the application of the
model showed that shortly after the commencement of
treatment, the growth of uninfected T cells and the reduction
in viral population becomes evident. This also satisfied the
generalizability criterion.

In order to achieve a decline in HIV incidence, it is
essential for the case reproduction to be kept below 164.
Granich et al.65 used a hypothetical model to investigate the
effect of a universal voluntary HIV testing and immediate
intervention with antiretroviral therapy (ART) strategy on the
case reproduction number and the long-term dynamics of the
HIV outbreak. The model was developed under the
assumption that all HIV transmission was heterosexual and
data from a South African outbreak served as the source for
the hypothetical test case of a generalised epidemic used. The
model also studied what conditions were necessary for the
elimination of HIV. The model revealed the potential for
transitioning from the endemic phase to the elimination
phase within 5 years of commencement of ART. Furthermore,
the model showed that the case reproduction number and
mortality could decline to less than 1 on full implementation
of the strategy. The model however, was constrained by the
lack of much better data to guarantee the acceptability and
uptake of universal voluntary HIV testing, the infectiousness of
those on ART, adherence, behavioural transformation upon
commencement of ART and the degree of emergence of
resistance. The ability of the model to satisfy its initial aim
suggests its satisfaction of the generalizability criterion.

Hallett et al.66 developed a mathematical model that
provided a mechanistic description of the interactions
between sexual behaviour and transmission through a
population reflecting these natural epidemiological dynamics

and the effects of ART. Utilizing a simulation model in a
Bayesian framework in combination with HIV prevalence and
sexual behaviour data, the aforementioned hypothesis was
evaluated. This was done to establish the fact that decline in
HIV prevalence has a strong link to changes in sexual
behaviour.

The definition of the model was established by a set of
ordinary differential equations and solved through numerical
computations using a user-defined software. The model is
specified by the following set of differential equations as
obtained  from  the study of  Hallett  et  al.66:

(34)
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The model categorised people starting sex into one of
three sexual behavioural groups namely: Those in spousal
relationships, those in long-term casual relationships and
those with multiple numbers of sexual partners. Furthermore,
the parameters of the model indicated for separately each
gender, the proportion of the population entering each group,
the relative rates of partner change for each group and the
average rate of partner change across all groups. Application
of the model to data from Zimbabwe showed strong evidence
for changes in risk behaviour impacting the course of HIV
epidemics, thus altering the natural course of the HIV
epidemic. The modelling analysis however is limited by the
assumption of a model that adequately reflects HIV
transmission in a population and a model set on identifying
changes in risk behaviour that have occurred after the
epidemic has peaked. The model having fulfilled its initial aim,
 satisfies the generalizability criterion.
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Mushayabasa and Bhunu67 studied the connection
between HIV and cholera in a cholera-endemic population.
The total human population for this study was categorised
into the  following:  Susceptible  individuals  those  infected
with cholera only, those infected with HIV only and those
infected with both cholera and HIV. With a deterministic
compartmental  model,  the  authors  revealed  that in a
cholera-endemic environment, HIV infection is linked with the
increased risk of cholera infection and Vice-versa. Further
numerical analysis of the model showed that under different
start up conditions, the number of cholera only cases
outnumbered both HIV only cases and dual cases. The model
met the criteria for a good model as it satisfied its aim.

Blower and Wagner68 incorporated realism into the
existing HIV transmission model by Granich et al.65 to study the
impact on the HIV outbreak in South Africa (SA) of (i) A
universal test and treat strategy and (ii) Realising universal
access to treatment. The model in contrast to Granich et al.65,
predicted  the   possibility   of   HIV  elimination  in  SA within
40 years at a cost of ~$12 billion more than realising universal
access. It was clear that an under-estimation of the survival
time on treatment and ignoring the risk of resistance
contributed to the under-estimation of the control
reproduction    number.     The     model    further   showed that
~1.5 million  people   would   need   second-line    regimens 
after 20 years under the realisation of universal access in
contrast to an ~2 million under a universal test and treat
strategy. As a result of the huge cost involved in implementing
a universal test and treat strategy, the authors suggested the
need for achieving universal access to treatment as quickly as
possible, especially in resource constrained countries. Also, the
universal access to treatment was shown to be a very effective
'treatment as prevention' strategy that could bring the HIV
outbreak in SA close to elimination as well as reducing
infection by  ~4  million  after  20  years and ~11 million after
40 years. The model also met the criteria of a good model
having fulfilled its aim.

Boily et  al.69  applied  a  integrated  mathematical
modelling approach to study and evaluate a large-scale of HIV
prevention interventions. Their mathematical model was
embedded within a Bayesian framework. Empirical and
behavioural data were sought from different subpopulations
where the interventions were needed. The results obtained
from their research showed that it could be applied in the
design of large-scale future interventions and the results will
be more beneficial to public health interventions.

Malaria: Malaria is a critical and life-threatening disease
ravaging Africa and some other parts of the world. The disease
is caused by Plasmodium parasites. The parasite is transmitted

to an individual from a bite by an infected female anopheles
mosquito. According to WHO, in 2013 alone, malaria caused
about 584,000 deaths among African children70. Still, another
1.5-3 million deaths of non-immune individuals occur on a
yearly basis.  Despite the preventable and curable nature of
the diseases, non-immune migrants still stand a high risk of
infection upon indiscriminate exposure. Hence, the need for
increased prevention and control strategies that would
dramatically reduce the burden of the disease on the
population.

Tumwiine  et  al.71  developed  a model that allowed for
the recruitment of individuals through immigration of
infective migrants. The design of the model assumed a
population with a constant influx rate 7 occuring via birth or
by immigration, with a fraction ø considered to be infective
and the remaining 1-ø as susceptible. Also assumed by the
model, is the fact that no immigrant entered the immune
class. The rate at which the human hosts got infected by the
infected mosquitoes and the rate at which the susceptible
mosquitoes got infected by the human hosts were used to
model the horizontal transmission of the disease. The model
categorised the population sizes of the human hosts as being
susceptible, infected or temporally immuned, while the female
mosquito host was subclassed into the susceptible and the
infected. In conclusion, the model revealed the important role
migration played in the transmission dynamics of malaria with
recommendation on the need to consider these roles in the
formation of public health control policies. This model also
satisfies the generalizability criterion.

Considering the role of temporal immunity on the
transmission dynamics of malaria in a human host and the
mosquito vector, Tumwiine et al.72 yet developed another
model with standard incidence for the transmission dynamics
of malaria in a human host and the mosquito vectors whereby
the pool of susceptible individuals were refilled by immunity
loss to the disease and newborns. The total population of the
model was categorised into the following: (a) The number of
susceptible human hosts at time t, (b) The number of infected
human hosts at time t, (c) The number of partially immune
human hosts at time t, (d) The number of susceptible
mosquito vectors at time t and (e) The number of infected
mosquito vectors at time t. The model assumed the following:
(a) A bite from the infectious female mosquito on the human
host leads to the development of malaria, (b) A bite from an
infected female mosquito on an infected human host is
ignored, (c) Bites in human hosts is carried out randomly, (d)
Immunity gained by recovered human hosts is only temporal
and as such can be lost, thereby making them susceptible
again to re-infection, (e) Susceptibility to infection for all
newborns is possible, however, vertical transmission is absent,
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(f) The lifecycle of mosquitoes end in death from infection and
(g) There is variability in total human and mosquito
populations overtime. The model also revealed that loss of
immunity did not affect the basic reproduction number and
that the disease is eliminated as long as the basic reproduction
number stays < =  1. However, a basic reproduction number
>1, causes  instability  in  the  disease-free  equilibrium point
with the endemic rising to a unique equilibrium point.  At this
stage, it becomes possible for a re-invasion as the disease is
never eliminated. The model concluded with the
recommendation  that  focus  be  placed  more  on treatment
and reduction on the contact between mosquito vector and
the human host in order to reduce the basic reproduction
number. Thus, the need for more effective drugs, treated bed
nets and insecticides to clamp down on the mosquito
population. Model again satisfies the requirements of the
generalizability criterion.

Ducrot et al.73 in a bid to distinguish between
susceptibility, the exposedness and the infectivity of the
human host in the transmission dynamics of malaria,
developed a deterministic mathematical model with two host
types in the human population, with the ultimate goal of
preventing malaria in areas of low, intermediary and high
transmissions. The non-immune host was defined to be
vulnerable as it could suffer and/or die of malaria, whereas, the
semi-immune host was defined to have at one time or the
other acquired immunity even if immunity lost along the way.
Also, the  semi-immune  host  type  was  considered  to be
non-vulnerable and above death from malaria but could still
suffer from malaria. Immunity rather than the age of the
individual formed the basis for the structuring of population
based on the fact that both children and adult share same risk
of malaria disease and infection depending their previous
infection experiences74,75. The non-immune population was
modelled as a susceptible-exposed-infectious-susceptible
type until some non-immune becomes semi-immune and
stays so for the rest of life, now taking on a susceptible-
exposed-infectious-recovered-susceptible model type. On the
other hand, the mosquito population was modelled as a
susceptible-exposed-infectious type. The model worked under
the assumptions that (a) Both human and mosquito
populations were born susceptible, (b) The immigration of
non-immune to a non-immune susceptible class at rate p and
the immigration of semi-immune to a semi-immune
susceptible class at rate 1-p and (c) The immigration of the
exposed, infectious and immuned humans were ignored.
Simulating the model using realistic parameter values
compatible with  malaria  with  a  basic  reproductive  number
close to one, the model showed backward bifurcation. Further
evaluation of the model using parameters that correspond to

a stable area of transmission such as seen in most parts of
Africa, the model showed a unique endemic state solution
that was locally asymptotically stable. In other words, for the
elimination of malaria, simultaneous target of control on the
non-immune and semi-immune or mosquito population was
required, as well as the continous elimination of 88.70% of
susceptible mosquitoes at birth. In an area of low or
intermediary transmission however, the model showed that it
was possible to eliminate malaria through targeted control on
a specific host type. Also, in an area of high transmission,
targeted control on the non-immune group can eliminate
malaria. The model further revealed the role of vaccines in
controlling malaria in areas where malaria transmission varies
year in year out. The model further suggests the elimination of
mosquitoes where it is not possible to target control on either
the non-immune or semi-immuned hosts. Because a small
disturbance in the ecology of a given area could re-establish
malaria in any of the three populations, the model
recommends keeping the basic reproductive number within
a domain such that the equilibrium point is asymptotically
stable. The model is considered to be good model as it
satisfied its initial aim.

Oluwagbemi et al.76 developed AnoSpex: A stochastic,
spatially-explicit computational model for the metapopulation
dynamics of anopheles mosquitoes. The model is an
integration of mathematical and computational methods. For
instance, the cumulative physiological development CDt for a
given cohort of age n and time t, was given76 as:

(35)
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Besides, the model helped to model anopheles mosquito
movements by adapting knowledge from cellular automata
and applying the Von Neumann neighbourhood algorithm.
There exist a random selection of one of the possible four
directions for any dispersing anopheles mosquito. A
mathematical formula was adopted to estimate the distance
between one residential property and another. The distance
between one residential property and another is given76 as d:

(36)   2 2
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Where each residential property within a grid is
represented by the coordinates is  represented  by  (pj,  pi)  and
(qj, qi). Besides, AnoSpEx76 model adopted the enzyme kinetics
equations77-79 for the stepwise transition of immature stages
of anopheles mosquitoes from one level to the other77-79.
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The model also consists of growth algorithms for each
developmental stage of the malaria vector. The model was
developed using C++ codes in a visual C++ integrated
development environment. Majority of AnoSpEx codes were
newly written and integrated with few Skeeter Buster 80 codes.
The model is also rich and parameterized with field data.
Weather data was obtained from Macha, Zambia. Data for
three species of mosquitoes were collected namely:
Anopheles gambiae, Anopheles funestus and Anopheles
arabiensis.  A   preliminary   validation   of   AnoSpEx  with  CDC

(Center for Disease Control) traps, HLC (Human Land
captures), CBT (Cattle-baited traps) mosquito data revealed
that AnoSpEx predicted similar trend with real-life female
anopheles mosquito collection data, thus revealing that the
model is good and a potential tool to further develop and
implement additional control and novel eradication strategies
for malaria.

RESULTS

The results section shows the model types that have been
reviewed, the classification of infectious disease for each
model type, the criterion applied, the references and remarks.
These results are highlighted in Table 1-4. It should be noted
that there are numerous articles in existence for each category
of infectious disease, however, only able to review a selected
number out of the existing articles on the modelling of ebola,
typhoid fever, HIV/AIDS and malaria.

Table 1: Results showing some collections of reviewed modelling articles for EVD
Model types IFDs Criterion Authors and references Applicability to IFDs (remarks)
Mathematical models Ebola Generalizability Nishiura and Chowell10,11 Good
Mathematical model Ebola Generalizability Weitz and Dushoff13 Good
Mathematical model Ebola Generalizability Lewnard et al.16 Good
Mathematical model Ebola Generalizability Atangana and Goufo17 Good
Mathematical model Ebola Generalizability Fasina et al.18 Good
Mathematical model Ebola Generalizability Fisman et al.21 Good
Computational and mathematical model Ebola Generalizability House25 Good
Computational and mathematical model Ebola Generalizability Chowell et al.22 Good
Mathematical model Ebola Generalizability Rivers29 Good
Mathematical model Ebola Generalizability Althaus et al.24 Good
Computational model Ebola Generalizability Merler et al.32 Good
Mathematical model Ebola Generalizability Chowell et al.33 Good
Computational and mathematical model Ebola Generalizability Webb and Browne34 Good
Computational and mathematical model Ebola Generalizability Camacho et al.35 Good
Computational and mathematical model Ebola Generalizability Agusto et al.36 Good

Table 2: Results showing some collections of reviewed modelling articles for typhoid fever
Model types IFDs Criterion Authors and references Applicability of IFDs (remarks)
Mathematical models Typhoid fever Generalizability Mushayabasa et al.39,41,43, Mushayabasa44,45 Good
Mathematical model Typhoid fever Generalizability Adetunde42 Good
Mathematical model Typhoid fever Generalizability Mutua et al.46 Good

Table 3: Results showing some collections of reviewed modelling articles for HIV/AIDS
Model types IFDs Criterion Authors and references Applicability to IFDs (remarks)
Mathematical models HIV/AIDS Generalizability McCluskey49 Good
Mathematical model HIV/AIDS Generalizability Cassels et al.50 Good
Computational model HIV/AIDS Generalizability Tameru52 Good
Computational model HIV/AIDS Generalizability Wang et al.54 Good
Mathematical model HIV/AIDS Generalizability Eaton et al.55 Good
Computational model and simulation HIV/AIDS Generalizability Auvert56

Computational model and simulation HIV/AIDS Generalizability Robinson et al.57,58 Good
Mathematical model HIV/AIDS Generalizability Gumel et al.60 Good
Mathematical model HIV/AIDS Generalizability Karrakchou et al.51 Good
Mathematical model HIV/AIDS Generalizability Granich et al.65 Good
Mathematical model HIV/AIDS Generalizability Hallett et al.66 Good
Mathematical model HIV/AIDS Generalizability Mushayabasa and Bhunu67 Good
Mathematical model HIV/AIDS Generalizability Blower and Wagner68 Good
Mathematical model HIV/AIDS Generalizability Boily et al.69 Good
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Table 4: Results showing some collections of reviewed modelling articles for malaria
Model types IFDs Criterion Authors and references Applicability to IFDs (remarks)
Mathematical models Malaria Generalizability Tumwiine et al.71,72 Good
Mathematical model Malaria Generalizability Ducrot et al.73 Good
Mathematical model Malaria Generalizability Andersen et al.74 Good
Computational and mathematical model Malaria Generalizability Oluwagbemi et al.76 Good

DISCUSSION

Our review of study manuscript covered some of the
existing study  on computational and mathematical modelling
of infectious diseases such as malaria, ebola, HIV/AIDS and
typhoid fever. From the results obtained in Table 1-4, it is
evident that computational and mathematical modelling play
very significant roles in proffering control measures to
infectious diseases such as malaria, typhoid, ebola and
HIV/AIDS. The models reviewed met the criteria for a good
model as they all satisfied their aims and goals.

CONCLUSION

In conclusion, computational and mathematical
modelling has influenced the management of IFDs in Africa.
Prior to the introduction of prevention and control strategies
for stemming the tide of IFDs in Africa, 63% of total deaths was
attributed to IFDs with the economic and human health in
Africa declining continuously. With the aid of computational
and mathematical modelling as a preventive and control
strategy, Africa today has improved in combating the spread
of IFDs, thereby reducing the adverse effect of infectious
diseases on the populace. The risk of a major outbreak of
infectious disease can now be predicted, as well as estimate
the trend of an epidemic and the consequence of standard
control measures on the transmission of IFDs. Furthermore,
modelling has shown the importance of timing of
intervention, what type and the location where such
interventions are needed.

SIGNIFICANT STATEMENT

This study is important in that, it provides health
professionals and stake holders of Non-Governmental Health
Organizations, proper understanding of the applicability of
computational and mathematical modelling towards
controlling the menace of infectious diseases in Africa. The
study also revealed knowledge that provides a common
collaborative platform for computer scientists and
mathematicians to solve public health problem by proffering
solutions to some of the most devastating infectious diseases.
Finally,  this  study  acts  as  a  reference  point  that  allows  the

scientific community access to some of the study on the
application of computational and mathematical modelling
towards the control and management of infectious diseases.
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