
Citation: Alam, A.; Shah, P.; Trestian, R.;

Ali, K.; Mapp, G. Energy Efficiency

Optimisation of Joint Computational

Task Offloading and Resource

Allocation Using Particle Swarm

Optimisation Approach in Vehicular

Edge Networks. Sensors 2024, 24, 3001.

https://doi.org/10.3390/s24103001

Academic Editors: Omprakash

Kaiwartya and Tomás Mateo

Sanguino

Received: 28 March 2024

Revised: 3 May 2024

Accepted: 8 May 2024

Published: 9 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Energy Efficiency Optimisation of Joint Computational Task
Offloading and Resource Allocation Using Particle Swarm
Optimisation Approach in Vehicular Edge Networks
Amjad Alam * , Purav Shah , Ramona Trestian, Kamran Ali and Glenford Mapp

Faculty of Science and Technology, Middlesex University London, The Burroughs, London NW4 4BT, UK;
p.shah@mdx.ac.uk (P.S.); r.trestian@mdx.ac.uk (R.T.); k.ali@mdx.ac.uk (K.A.); g.mapp@mdx.ac.uk (G.M.)
* Correspondence: aa4423@live.mdx.ac.uk

Abstract: With the progression of smart vehicles, i.e., connected autonomous vehicles (CAVs), and
wireless technologies, there has been an increased need for substantial computational operations
for tasks such as path planning, scene recognition, and vision-based object detection. Managing
these intensive computational applications is concerned with significant energy consumption. Hence,
for this article, a low-cost and sustainable solution using computational offloading and efficient
resource allocation at edge devices within the Internet of Vehicles (IoV) framework has been utilised.
To address the quality of service (QoS) among vehicles, a trade-off between energy consumption
and computational time has been taken into consideration while deciding on the offloading process
and resource allocation. The offloading process has been assigned at a minimum wireless resource
block level to adapt to the beyond 5G (B5G) network. The novel approach of joint optimisation of
computational resources and task offloading decisions uses the meta-heuristic particle swarm optimi-
sation (PSO) algorithm and decision analysis (DA) to find the near-optimal solution. Subsequently,
a comparison is made with other proposed algorithms, namely CTORA, CODO, and Heuristics, in
terms of computational efficiency and latency. The performance analysis reveals that the numerical
results outperform existing algorithms, demonstrating an 8% and a 5% increase in energy efficiency.

Keywords: energy efficiency; meta-heuristic algorithm; vehicular edge computing; particle swarm
optimisation; nature-inspired algorithm; task offloading; computation resource allocation; vehicular
edge computing

1. Introduction

With the rapid development of wireless technologies and the Internet of Things (IoT) in
the field of vehicular networks, there is an increasing need for computational operations to
process large amounts of data collected through sensors and other communication systems
in connected and autonomous vehicles (CAVs) [1]. These computational operations are
required by the vehicles’ onboard systems to manage complex tasks such as route planning,
immersive gaming, and vision-based object detection [2]. In addition to the computationally
demanding requirements, these applications have significant energy consumption and are
delay-sensitive [3,4]. This lowers the overall mileage endurance of the vehicle and affects
the quality of service (QoS) as well. However, it is quite tough to fulfil the computational
demand of CAVs due to their limited onboard computational power and energy presence.

Offloading the tasks to computational offloading technologies like vehicle cloud com-
puting (VCC), vehicular fog computing (VFC), and vehicular edge computing (VEC) is
now an alternative approach to solving the above issues [5]. Although cloud computing
infrastructure has been around for a while, resource-intensive applications still have draw-
backs, which include costly bandwidth problems, increased latency, and jitter. VFC and
VEC computing are two examples that are employed to the edge idea to bring cloud-like
resources closer to users. VFC uses adjacent cars as its computing node to determine

Sensors 2024, 24, 3001. https://doi.org/10.3390/s24103001 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24103001
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-7975-9973
https://orcid.org/0000-0002-0113-5690
https://orcid.org/0000-0001-5301-9125
https://doi.org/10.3390/s24103001
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24103001?type=check_update&version=1

Sensors 2024, 24, 3001 2 of 18

the best resources [6]. However, a few limitations with fog computing include resource
constraints, problems with mobility, and changeable network circumstances [7]. VFC has
challenges like coping with optimal performance across a diverse set of vehicles due to the
heterogeneity of the vehicles, as it lacks standardisation and interoperability. VFC also has
security and privacy concerns due to the exchange of sensitive data between vehicles and
fog nodes [8].

Multi-access edge computing in a vehicular environment (i.e., vehicular edge com-
puting) has now been used to achieve the demands of low-latency data transmission and
computational activities. This is typically seen in base stations that are positioned close to
edge devices [9]. VEC works in a wider range of traffic and mobility scenarios. Hence, the
energy optimisation issue can be addressed by using computational offloading technology
using VEC computing where tasks are being offloaded for computation toward the edge
servers [4,10]. To regulate resource allocation and the trade-offs between energy efficiency
and delay management, this article considers the VEC approach. VEC has been taken
into consideration as part of a four-layer system framework to enable granular control
over VEC functions, including perception, storing, processing, and communication. The
minimum assignable resource block (RB) has been taken into consideration to increase the
allocation efficiency and resource management performance, as wireless communication
plays a major role in the system’s quality of service. In addition, the mobility rate has been
considered as a reference variable for this article to address the spectrum’s drift taking
place under different moving speeds.

1.1. Contributions

The key contributions of this article are listed as follows.

1. A novel four-layer VEC framework is proposed that facilitates more granular control
over real-time computation, storage, compatibility, and interconnection of the Het-
VNets. The use of a four-layer VEC framework will support scalability and would
provide better vehicle-related system resources.

2. This article aims to increase overall system energy efficiency by maximising resource
allocation and task offloading considering energy constraints.

3. The PSO algorithm has been used for resource allocation and decision analysis (DA)
has been used in making optimal decisions towards task offloading. The results has
been compared against CTORA, CODA, and Huestristics.

1.2. Paper Organisation

The rest of the paper is organised as follows: Section 3 presents the four-layered VEC
system framework and the vehicular computation offloading model in VEC (system model).
The resource allocation problem formulation and methodology are presented in Section 4.
Section 5 illustrates the proposed task offloading and resource allocation scheme. Section 6
presents a comprehensive set of simulation data and interpretation of results, with Section 7
concluding our findings and presenting future directions.

2. Related Works

There has been a significant amount of research on task offloading and VEC in recent
years within the context of heterogeneous vehicle networks (HetVNets). The aim is to
maximise resource utilisation, enhance performance, and achieve energy efficiency. In
study [11], two heuristic-distributed and context-aware task offloading approaches (ran-
dom and exhaustive) have been modelled in order to manage the delay. An online task
scheduling method was employed for effective tasks in the edge cloud in [12]. This model
was proposed to reduce the communication delay pool. In another study presented in [13],
the allocation of computational resources was based on VEC and combined the efficient
use of fifth-generation (5G) and short-range communication. In [14], joint optimisation
of resource allocation and load balancing was considered in a multi-server multi-user
vehicle network. In [15,16], multi-objective optimisation was used to reduce the energy

Sensors 2024, 24, 3001 3 of 18

consumption of edge devices and the execution time of computational tasks while pre-
serving privacy. In the work presented in [17], a reinforcement learning-based scheme
was implemented on Edge Cloud to find optimal routes for task offloading. In a study
from [18], weighted energy consumption was considered in optimising task loading for
mobile users. It examined Orthogonal Frequency Division Multiple (OFDM) access and
Time Division Multiple (TDM) access with resource allocation on Mobile Edge Computing
(MEC). Ref. [19] focused on utilising the mobile edge server by proposing a contract-based
computational resource allocation and task offloading. In another study [20], an optimal
portion of the workload is considered for offloading, taking factors like workload execution,
data transmission, and latency into account. Task offloading and resource allocation are
subjects of consideration in many edge computing research studies that address energy
efficiency. In [21], optimised resource allocation between the cloud and fog to minimise
energy use under different latency constraints. The emphasis on profit optimisation for
edge-cloud service providers was presented in [22], where the maximum response time
limit and service-level agreements to estimate revenue and penalty costs for each activity
were considered. While the above studies focus on low-latency networks and address
high-reliability issues such as energy saving, limited onboard vehicle energy has not been
thoroughly addressed. In [23], Chang et al. proposed a computational offloading decision
optimisation (CODO) to determine the optimal portion of workload to be offloaded based
on the dynamic states of energy consumption and latency in workload execution; however,
the handover issue was not addressed.

Incorporating cellular and wireless technology, [24] proposed a hybrid VEC in a 5G
network for real-time traffic management to maximise the total offloading rate. They
addressed a joint power allocation problem, subchannel assignment, and joint task distribu-
tion. Ref. [25] presented a low-complexity online algorithm that concurrently determines
CPU-cycle frequencies for mobile execution, transmission power for computation offload-
ing, and offloading decisions. The primary objective was to minimise the long-term average
execution cost in MEC. The study presented in [26] on downlink spectrum resource man-
agement for VEC considered transmission power management among WiFi access points,
resource allocation among vehicles, and spectrum slicing in base stations. In some of
the above-mentioned studies (e.g., [3,13,14]), the focus was on reducing vehicle energy
consumption alongside computational offloading. In other studies (e.g., [12,16,18]), the em-
phasis was on latency management along with the task offloading issue, without concerns
for vehicle energy efficiency. Many studies employed a centralised optimisation method
as a prior solution, leading to an issue where the computational complexity dramatically
increases with the number of vehicles. This complexity issue can be addressed by adopting
a distributed approach to manage energy efficiency and latency. In [27], Fan et al. proposed
a joint computational task offloading and resource allocation scheme (CTORA) to minimise
the total task processing delay through task scheduling, channel allocation, and computing
resource allocation for the vehicles and RSU; however, the work did not make use of 5G.

In [28], a distributed context-aware assignment of tasks is being considered on vehic-
ular networks using a heuristic algorithm to minimise delay. The article [29] combined
convolutional neural networks (CNN) with proximal policy optimisation to provide a
workload offloading method. They considered tasks lacking strict latency requirements
or execution priorities. Ref. [30] examined a task offloading problem involving parked
cars acting as servers, using blockchain for decentralised offloading. They proposed and
solved this problem using the game system to minimise users’ overall payments. In [31], a
Bayesian coalition game to improve energy efficiency and computing resource utilisation
in a vehicle cloud was presented. Ref. [32] took into consideration the task offloading issue
to reduce the edge server’s communication load. They applied game theory to choose
appropriate channels and select the best offloading strategies.

However, some earlier research examined approaches to optimise work offloading or
computing resource allocation without optimising both at the same time. For example, the
studies reported in [28,29] only looked at task offloading; they neglected to consider com-

Sensors 2024, 24, 3001 4 of 18

puting resource allocation, even though each vehicle was frequently given a variety of com-
putationally demanding real-time tasks. Moreover, task offloading optimisation—which
entails unloading the entire work to the MEC server—was ignored in the research in [30,31].
Each vehicle that engages in task offloading chooses whether to unload and where its work
will be processed. As a result, vehicles share constrained computing and communication
resources. To improve system performance, the job offloading and resource allocation
strategies must be optimised. Furthermore, most studies on vehicle task offloading ignore
an important component of task offloading and resource allocation with stringent latency
limits and energy requirements. We developed a multi-vehicle task offloading game that
takes vehicle movement into account in addition to task deadlines and energy consumption
constraints, which sets it apart from earlier task offloading techniques for VEC.

Overall, the main research gaps identified are represented below in Table 1.

Table 1. Research gaps.

Works Cited Contribution Gaps

[12,16,18] Emphasis was on latency management along with
the task offloading issue No concern for vehicle energy efficiency

[24] Proposed a hybrid VEC in a 5G network to
maximise the total offloading rate

No concern for joint optimisation of
resource allocation

[25,26] Efficient task offloading employed and
resource allocation

No joint optimisation on task offloading and
resource allocation

[27,28] Optimisation of task offloading and
resource allocation Optimisation was focused only on MEC server

In this article, we propose using a meta-heuristic Particle Bee Colony Swarm Optimisa-
tion (PSO) and decision analysis (DA) algorithm to minimise the overall energy consumption
by jointly optimising the computational task offloading and resource allocation algorithm.

We have analysed the computation efficiency problem for CAVs by making an opti-
mised decision on allocating resources and deciding where to upload the tasks. However,
designing an efficient offloading approach is tough due to the highly dynamic scenario.
Along with the mobility factor, other factors like the required CPU cycle, task data size,
and energy consumption will impact the transmission rate and computation efficiency
drastically. In this article, computation efficiency has been used as a performance metric
which is the ratio of computed bits to the total energy consumed.

We take into considerations the previously mentioned CTORA and CODO for comparison.

3. VEC System Framework and System Model

Figure 1 below illustrates the 4 layers of the VEC system architecture, i.e., the percep-
tion layer, processing layer, transport layer, and application layer.

Figure 1. VEC system framework.

In Figure 1, the perception layer has been developed to include two types of sen-
sors: an external and an internal system. The internal sensors of CAVs include cameras,
millimetre wave radar, Lidar, and other devices, which are the primary focus of current

Sensors 2024, 24, 3001 5 of 18

technology. The external sensors, on the other hand, provide extended sensor information
from neighbouring vehicles, infrastructure sensors, and the Internet data. The situation
awareness capabilities of this layer will aid CAV in planning and decision-making [33]. The
communication with all types of vehicles on the road and other RSU units is supported by
the transport layer, which is the second layer of our 4-layer approach. The processing layer
consists of a storage system, computation offloading service strategy, and decision system.
It is primarily responsible for the gathering, processing, and offloading of computations.
Intense applications such as intelligent traffic signal management, route planning, and
other real-time vehicular onboard Virtual Reality/Augmented Reality (VR/AR), as well
as driver behaviour recognition, which can offer immersive services for human–vehicle
interactions, are managed by the top application layer.

For vehicle-to-infrastructure (V2I) communication, we consider that each RSU and
vehicle can support both cellular (5G-NR-V2X) and millimetre wave-based communication
systems. Each RSU and vehicle is equipped with multiple antennas to enable communica-
tion over 5G links and mmWave as shown in the system model represented in Figure 2. The
communication speed depends on the distance between the RSU and the vehicle. Using
mmWave-based V2X within the range of 300 m, a throughput of up to 10 Gb/s can be
achieved. Therefore, we have considered a cellular link range to 200 m and mmWave
communication range to 150 m [34].

Figure 2. System model.

3.1. System Topology

In the proposed network we have taken n number of vehicles and m number of
roadside units (RSU’s) in a unidirectional road. The coverage or communication range for
all the RSUs has been considered as r. Each RSU is integrated with an edge server consisting
of Redge computing resources. The vertical distance between the RSU and the road has
been considered as v. The sets of vehicles have been represented as X = 1, 2, 3, . . . , n
and the set of RSU’s is represented as Y = 1, 2, 3, . . . , m. Here, we need to consider that

Sensors 2024, 24, 3001 6 of 18

each vehicle has some computation tasks that need to be either offloaded to the VEC
server or should be computed locally. The offloading decision set is represented here as
A = loc, vec. Any vehicle n ∈ X will connect to RSU m ∈ Y, provided that the vehicle is in
the coverage region of the RSU. In this article, the vehicular offloading strategy is defined
as S = si|si ∈ [sloc

i , svec
i], sk

i ∈ 0, 1, : i ∈ X, j ∈ [loc, vec].

3.2. Mobility Model

Since the vehicle speed will change dynamically with time along the road, every
vehicle has been assigned a random speed vs. chosen from the Gaussian probability density
function. Due to the practical nature of traffic, the velocities are bounded away from zero
and cannot be negative such as in a congested traffic where vehicles can stop due to traffic
signals. Free-flow traffic is considered. As such, a truncated Gaussian probability density
function (PDF) applied using the below formula (Equation (1)) with V ϵ (Vmin, Vmax) where
Vmin = µ − 3σ and Vmax = µ + 3σ;

f̂V(v) =
2 fV(v)

Err(Vmax−µ

σ
√

2
)− Err(Vmin−µ

σ
√

2
)

(1)

where fV(v) = [1/(σ
√

2π)]exp(−(v − µ)2/(2σ2)) which is the Gaussian PDF. Err() is the
error function, σ is defined as a standard deviation of vehicular speed, µ is the average
speed, Vmax is the maximum velocity, Vmin is the minimum velocity, and v is the random
chosen velocity of the vehicle [35].

From Equation (1), a corresponding speed (µv) has been derived, and it lies between
(Vmin, Vmax), i.e., Vmin ≤ µv ≤ Vmax [35].

µv =
Err(Vmax−µ

σ
√

2
)− Err(Vmin−µ

σ
√

2
)

2
σ
√

2π

∫ Vmax
Vmin

exp(− (v−µ)2

2σ2)

v dv

(2)

where Err() is the error function, σ is defined as a standard deviation of vehicular speed, µ
is the average speed, Vmax is the maximum velocity, and Vmin is the minimum velocity [35].

The task must be completed before the vehicle leaves the connected RSU and moves
to the next RSU on the road. Hence, it is important to know the vehicle’s duration of
stay within the connected RSU coverage area. Therefore, the vehicle stay time can be
expressed as

thold
i =

2
√

r2 − p2

vi
(3)

where p is the vertical distance between the road and RSU, the communication radius of its
connected RSU is r, and vi is the velocity of a vehicle.

3.3. Communication Model

mmWave Mode: Each RSU and vehicle is assumed to be installed with directional
antenna to have antenna gain. Hence, the transmission rate of vehicle U′

i can be expressed as

U
′
i = Bmmlog2(1 + SNRi,j) (4)

where SNRi,j is the SNR between associated RSU j ∈ Y in the mmWave mode and the
vehicles i ∈ X and is outlined below in Equation (5) [36].

SNRi,j = (Pi,j − 10log10(Bmm)− 10λlog10([r
Li
r
− Li]))−SFα − 69.6− amm + Amax

i Amax
j (5)

where Pi,j is vehicle i’s transmission power over its corresponding RSU, Bmm is the mmWave
channel, λ is the path loss exponent, [r Li

r − Li] is the distance travelled by vehicle, Li denotes

Sensors 2024, 24, 3001 7 of 18

the current position of vechiclei, r is the communication radius of its connected RSU, SFα

is the shadow fading which has been set to 4 dB in line of sight (LOS), Amax
i is the vehiclei

antenna gain, Amax
j is the RSUj antenna gain, and amm is the Gaussian noise [37,38].

Cellular Mode: In V2I communication, the cellular link is under NR-V2X. More
demanding QoS requirements than those supplied by Cellular V2X can be met by so-
phisticated V2X applications that NR-V2X can support. Within 5G technology, NR-V2X
guarantees enhanced performance in relation to throughput, latency, dependability, con-
nection, and mobility [39].

The data transmission rate between vehicle i ∈ X and the RSU j ∈ X m is derived as

U
′
i = Bcclog2(1 +

Pi,j ∗ d ∗ |Ω|2

g2
cc

) (6)

where d is

d = (r(
Li
r
− Li)

−θ) (7)

Bcc is the cellular channel bandwidth, Pi,j is the transmission power of the vehicle i ∈ X,
j ∈ Y, Li represent the vehicle’s current position, g2

ccis the Gaussian noise, θ is the path loss,
and |Ω|2 is the uplink channel fading coefficient [40].

3.4. Computational Model

We can assume that each vehicle will have a computational task along with a maximum
acceptable delay, i.e., Ti = Ci, di, tmax

i , where Ci = di ∗ Ki; di represents the size of the data
block, Ki represents the service co-efficient of the vehicle, Ci is the computational resource
required to complete the task Ti, and tmax

i represents the maximum acceptable delay for
that task. The threshold acceptable delay should be less than the stay time of the vehicle
within the coverage area of the connected RSU. Hence, the acceptable delay will be min
[tmax

i , thold
i].

1. Local computational time and energy consumption: If the vehicles need to compute
the task locally, then the time taken, and the energy consumed to complete the task are
presented below.

tlocal
i =

Ci

αlocal
i

(8)

and
elocal

i = Ci ∗ τi (9)

where αlocal
i is the vehicle own computing resource, and τi represents the energy consumed

per task.
2. Time and energy consumption on the VEC: The vehicles need to offload the task to

VEC, if the local computation is not feasible. Here, we need to add the uplink transmission
time along with VEC execution time. Hence the time taken and the energy consumed to
complete the task on VEC are presented below.

tVEC
i =

Ci

αVEC
i

+
di
Ui

(10)

where αVEC
i is the computational resource assigned to any connected vehicle by VEC, and

Ui is the vehicle upload data transmission rate.
The total energy consumed in the system (Ei), i.e., energy consumed by the vehicle

i ∈ X, while offloading the task to VEC and energy consumed on VEC while executing the
assigned task by the vehicle i.

Ei = elocal
i + pi ∗

di
Ui

+ ∆Eloss (11)

Sensors 2024, 24, 3001 8 of 18

where Pi represents the average transmission power of vehiclei, and ∆Eloss is the energy
lost due to the multipath fading effect.

3. Energy time tradeoff (ETT): In optimisation or decision-making situations, ETT is
defined as the weighted sum of energy consumption and task execution time to reflect the
tradeoff between the utilisation of energy resources and the time to accomplish a specific
objective, i.e., the vehicle’s task computation requirement. Hence, the ETT for any vehicle i
for local computation can be represented as

ETTlocal
i = β ∗ elocal

i + γ ∗ tlocal
i ; ETT f or local computing (12)

ETTVEC
i = β ∗ eVEC

i + γ ∗ tVEC
i ; ETT f or VEC computing (13)

where β and γ indicate weights of task executing time and energy consumption for vehicle
i such that 0 ≤ β ≤ 1 and 0 ≤ γ ≤ 1.

In the above ETT for local and VEC computing, the values of β and γ can be selected
by the vehicle according to the priority needed on energy or time. For example, vehicles
can select a higher β value, if they have a higher energy priority or can select a higher
γ value if they have a higher time priority.

In addition to ETT for local and VEC computing, we also need to find max(ETTlocal
i)

which is the task’s maximum energy consumption and tolerable delay, if executed locally.
We also need to find max(ETTVEC

i) which is the task’s maximum energy consumption and
tolerable delay on VEC, if executed on VEC.

max(ETTlocal
i) = β ∗ emax(local)

i + γ ∗ tmax(local)
i ; (14)

max(ETTVEC
i) = β ∗ emax(VEC)

i + γ ∗ tmd
i ; (15)

where tmd
i is the maximum manageable or acceptable delay

4. Offloading decision-making function: The vehicle needs to decide whether the
tasks should use its local computational resources or to offload to VEC. For making this
decision, the below functions are used to guarantee the execution within the maximum
acceptable delay.

(1) Decision Function for local execution: The local computing decision function
DFlocal

i for a vehicle i can be represented as

DLocal
i = ln(1 + max(max(ETTlocal

i)− ETTlocal
i)− ψb(max(ETTlocal

i) (16)

provided that max(ETTlocal
i) < ETTlocal

i , where ψ is used to keep the condition satisfied
that ETFlocal

i should be less than sVEC
i ∗ ETTVEC

i . The function b(.) is used as a boolean
function that will either return 0 if max(ETFlocal

i) < ETTlocal
i is false, or it is equal to 1, if it

is true.
(2) Decision Function for VEC execution: The VEC computing decision function for a

vehicle i can be represented as DFVEC
i for a vehicle i

DVEC
i = µi ∗ ln(1 + max(max(ETTVEC

i)− ETTVEC
i))− (1 − µi) ∗ ζvec ∗ αVEC

i (17)

where ζvec is the unit per computing cost on VEC, µi is the weight coefficient of the decision
function, and αVEC

i is the resource allocation on VEC for a vehicle [41].

4. Problem Formulation and Methodology

In this section, we need to frame the total computational efficiency which is defined as
the ratio of the total computed bits to the vehicle’s energy usage. The total computation
efficiency (TE) of the whole system can be framed as

Sensors 2024, 24, 3001 9 of 18

TE =
X

∑
i=1

Y

∑
j=1

DFj
i ∗ Sj

i ∗ Ti

Ei
(18)

We now need to address energy efficiency and computational enhancement of the
whole system. The goal of optimisation is to minimise the total energy consumption of the
system by maximising the total efficiency function (TE) in Equation (16). In order to achieve
this, we create an optimisation problem that maximises the system’s utility by optimising
resource allocation and the task offloading technique which can be expressed as

max(TE) (19)

provided that the following requirements are met such that

sVEC
i (max(ETTVEC

i)) + slocal
i (max(ETTlocal

i)) ≥ sj
i ∗ ETT j

i (20)

R1: ∑X
i=1 αvec

i ≤ RVEC
i , ∀i ∈ X

R2: slocal
i + sVEC

i ≤ 0 where R = {αvec
1 , αvec

2 , αvec
3 , αvec

4 αvec
X } is all the resource allocation

on VEC, and S = {s1, s2, s3. . . sn} is the execution vehicle offloading strategy.
As the above Functions (17) and (18) involves sum-of-ratio maximisation, the Particle

Swarm Optimisation (PSO) algorithm [42] has been used for computation resource allo-
cation. The decision analysis (DA) algorithm has been used for the vehicles’ offloading
decisions. Once the offloading decisions take place, then the optimisation of compu-
tation resource allocation on VEC takes place using the Particle Swarm Optimisation
(PSO) algorithm.

After the resource allocation stage, the DA algorithm modifies the task offloading
mechanisms until an optimal point is reached. To maximise the utility of each offloading
vehicle, the computation resource allocation of VEC computing must be optimised once all
vehicles have made their offloading decisions. The system reaches the nearly ideal solution
through mutual iteration and reaches a steady state.

Particle Swarm Optimisation (PSO) Algorithm

Particle Swarm Optimisation (PSO) is a computational approach used in computer
science to optimise a problem by repeatedly attempting to improve a candidate solution in
relation to a specified quality metric. To obtain an improved solution, the particle swarm
optimisation technique uses a cluster of particles. By using a population of potential
solutions, referred to as particles in this instance, and manipulating their position and
velocity inside the search space, it solves the problem. Using basic formulas, these particles
are shifted around in the search space. Both the best-known position of the entire swarm
and the particles themselves serve as guides for their travels in the search space. These
will eventually start to direct the swarm’s motions as better sites are found. A workable
solution is eventually found if the procedure is repeated [42]. Additionally, in this method,
N particles are initialised by the population, and each particle has a unique position a,
velocity va, and personal best position Pbesti

.
As stated above, every particle updates its position and velocity, particularly by

learning from gbesti
and Pbesti

, the global and personal best positions. The new positions
can be represented by the following equation.{

vanew =δ∗(vaold , xaold , pbesti
, gbesti

)

xanew = xaold + vanew
(21)

From the above Equation, xanew and vnew
a indicate the position and new velocity of the ath

particle in the present iteration where δ represents the velocity updating approach in PSO.
In the next equation, xold

a and vold
a are considered as the position and velocity of the old ath

particle in the preceding iterations. It was noticed that if xnew
a was better than the previous

Sensors 2024, 24, 3001 10 of 18

old position, then the new best position is replaced by xnew
a . Consequently, for particles that

find a better position, their counts are reset, whereas for the particles that fail to update
pbesti

, their count will be significantly increased.
In the next step for performing a better search, the particles with better fitness values

are selected. Further, the fitness value for every particle is computed on the basis of the
best position with the following equation.

f it(xa) =

1

1+ f (pbesti
)
, i f f (pbesti

) ≥ 0

f it(xa) = 1 + | f (pbesti
)|, otherwise

(22)

The probability pa for the selection of the ath particle is calculated as the following equation.

Pa = f it(xa)/
n

∑
a=1

f it(xa) (23)

The particles were selected on the basis of probability pa by utilising the roulette
method. Further, the particles which have better pbesti

can possibly be selected. When
assuming that the sth particle xa was selected, Equation (26) will be utilised for generating
the new position xnew

s . If this new position was better than pbests, then the pbests will
be replaced by xnew

s . Subsequently, and for particles that fail to update their pbests, their
counter will be significantly increased.

The particles that fail to update its pbesti
in some iterations are considered exhausted

and are abandoned. Velocity and position as well as pbesti
are randomly initialised in the

search space.
So the position and velocity updating equations in PSO algorithm can be represented

with the following equation.{
vnew

a = w.vold
i + c.rand.(pbestτa − xold

a)

xnew
a = xold

a + vnew
a

(24)

In the above equation, rand indicates the random vector within [0, 1], w indicates the
inertia weight, and c is said to be the learning factor. τa and pbestτa indicate the index vector
for the ath particle.

5. Our Proposed Task Offloading and Resource Allocation Scheme
5.1. Task Offloading

The decision of the vehicle to offload a task depends on its offloading demands and
offloading strategies of other vehicles. In this paper, the use of the decision analysis (DA)
algorithm will help to make the decision feasible and ensure convergence, thereby making
an optimal decision.

The DA method is used to formulate the multivehicle computing problem. In this
problem, every vehicle is considered as a player and has needs for computational tasks.
Players in this game will create a decision tree to maximise the payoff (i.e., resource utility).
For vehicle i, the decision strategy function is given as D(si, s−i), where s−i = (s1, s2. . . , si−1,
si+1,. . . , sn) denotes the other vehicles’ offloading strategies except vehicle i. The objective
of each vehicle is to choose a valuable offloading strategy.

The task offloading strategy DA is described as

max
si

D(si, s−i) = svec
i ∗ Dvec

i + sloc
i ∗ Dloc

i (25)

where vehicle set is n, and the set of offloading strategies of vehicle i is denoted by Di.
Therefore, all vehicles calculate the expected payoff and look for the maximum pay-

off. Through mutual iteration, the system enters into a steady state and achieves the
near-optimal solution.

Sensors 2024, 24, 3001 11 of 18

5.2. Computation Resource Allocation

This section aims to maximise the vehicles’ utility by offloading the tasks to the VEC
server and the optimum resource allocation can be derived by the using the below formula.

max
R

Σ µi ∗ ln(1 + max(max(ETTVEC
i)− ETTVEC

i))− (1 − µi) ∗ ζvec ∗ αVEC
i (26)

For solving the above resource allocation problem, we have used the particle swarm
optimisation (PSO) algorithm which is a metaheuristic optimisation algorithm [42] in
which a population of particles (i.e., vehicles), each of which represents a possible solution
to an optimisation problem which direct the search process towards the best solution.

The process of the PSO optimisation has been presented in Algorithm 1 below.

Algorithm 1: Resource allocation and offloading strategy

Decision Strategy Calculation using DA method

1. To start with n number of vehicles, i.e., X = {1, 2, 3, . . . , N}
2. for all vehicle i ϵ X repeat

3. calculate the offloading strategy using Equation (15) (Solving using DA method)
4. if (DVEC > Dlocal) DVEC = 1 and Dlocal = 0
5. if (DVEC < Dlocal) thenDVEC = 0 and Dlocal = 1
6. calculate the total energy of the system, i.e., TE from Equation 16

7. end of for

Resource Allocation Calculation using PSO method

8. Starting with again n number of vehicles, i.e., X = {1, 2, 3, . . . , N} and
Problem Formulation: Considering other factors as stated in Section 3.4: Ti = Ci, di, tmax

i ,
where Ci = di ∗ Ki; di represents the size of the data block, Ki represents the service
co-efficient of the vehicle, Ci is the computational resource required to complete the task
Ti, and tmax

i represents the maximum acceptable delay for that task.
9. Particle Representation: Randomly choose a swarm of particles, for each parti-
cle, initialise position and velocity (particle’s position represent parameters such as
vehicle speed).
10. Define the fitness function, often denoted as f(xi), i = 1, , N; where x represents
a particle’s position in the search space (Here fitness function related to the objective of
the optimisation problem).
11. Let pbesti be current best position, let also gbest be current best position among
all particles.
12. while the convergence condition is not satisfied do
13. for each index i = 1→N do
14. Determine the global best position gbesta among all particles
15. Update the particle velocity va and the position xa using vi(t + 1) = ω* vi(t) + c1
r1(pbesti − xi(t)) + c2 *r2*(gbest − xi(t))
16. Update new position f(xt+1

i) = xt
i + vi(t + 1)

17. Evaluate the fitness of each particle’s new position using the fitness function: If
xnew

i is better than pbesti then step 10 otherwise step 11
18. pbesti = xt+1

i
19. Evaluate the fitness of each particle’s new position using the fitness function: If
xnew

i is better than pbesti then step 12 otherwise step 13
20. gbesti = xt+1

i
21. endIf
22. endfor
23. Return the best solution found, represented by the global best position gbesti
for obtaining resource allocation as specified in Equation (18).

r1 and r2 are random numbers. c1 and c2 are cognitive and social parameters, respec-
tively. ω is the inertia weight. vi(t) is the velocity of particle i at time t. gbest is the global

Sensors 2024, 24, 3001 12 of 18

best particle among all particles, and pbesti is the personal best position of particle i. Finally,
xi(t) is referred as the current position of particle I [42].

6. Results

In our system model, RSUs broadcast beacon messages to all the vehicles on computa-
tion resource information in their communication range. All the vehicles also periodically
share their relevant information with the RSUs, and once the connection is established,
communication goes into the unicast mode between the RSUs and vehicles. In this simula-
tion, we have ignored communication overhead, as the size of the message is too small in
comparison to the higher bandwidth used in 5G NR-V2X.

Performance Analysis

Using MATLAB software, 2022b the performance of the proposed algorithm has been
evaluated in comparison with different algorithms, i.e., the computation task offloading and
resource allocation (CTORA) algorithm, the computation offloading decision optimisation
(CODO) algorithm, and the heuristic scheme algorithm.

Our proposed work is evaluated against the CTORA, CODO, and heuristic scene algorithm.
The heuristic scheme [43] allows work to be offloaded to the VEC server when a

vehicle’s time and energy restrictions cannot be met by doing computation locally. In this
algorithm, other cars are not taken into consideration throughout this process. In the CODO
scheme [44], the tasks are either performed locally or offloaded to the VEC server using the
computation offloading decision optimisation scheme. The primary distinction between
our proposed method and CODO is that our method took mmWave communication into
account. Finally, the CTORA method [45] solely focuses on optimising the decisions related
to offloading inside a specific computing resource.

In this section, we present the numerical findings of our proposed algorithm. In this
scenario, vehicles are simulated to move in a single direction. We have considered six RSUs
in a line, and each RSU has a VEC server along with it. In the simulation, we have used
[15, 20] GHz as the computation resource for each vehicle.

The detailed settings of other simulation parameters are summarised in Table 2.

Table 2. Table below represents all the simulation parameters used in this article.

Parameter Used Value

Cellular link Bandwidth 25 MHz
mmWave Bandwidth 250 MHz

Number of RSUs’ 6
RSU coverage length 250 m

Communication range for mmWave and
cellular links 150 and 250 m

Input data size [30, 80] kB
Maximum latency constraint [0.1, 1] s

Vehicles arrival rates 0.1 vehicles per second
Vehicle (Vi) transmission rate ((pi)) 1.5 W

Average velocity of Vehicles 45 km/h
Computational resource price/VEC 0.05 4/GHz

Vehicle Antenna gain (Ai) 20 db
RSU antenna gain (Aj) 20 db

Energy consumption/computing unit 2 × 10−10 w
Input data size [30, 60] kB

Path loss exponent (λ) 3.1

Figure 3 shows the computational efficiency with respect to the number of vehicles and
illustrates the impact of communication performance with the varying number of vehicles
on computational efficiency. For these results, the data size of the task has been kept at
1 kilobit, and the vehicle speed has been maintained at 45 km per hour. The locations of the

Sensors 2024, 24, 3001 13 of 18

vehicles around the RSU have been considered random. Upon analysis of the results, it can
be observed that as the number of vehicles increases, computational efficiency decreases
for all algorithms as well as the proposed algorithms. The decrease in computational
efficiency is attributed to various factors such as the location of the vehicles, SNR, and task
data size. Depending on the vehicle’s location, the signal-to-noise ratio decreases with the
increased vehicle distance from the RSU. Computational efficiency also depends on the
communication technology, such as the use of mm waves and cellular waves. From the
results, it can be seen that the CODO Scheme performs worse due to its lack of utilisation of
mm wave communication. Additionally, it is observed that the heuristic scheme performs
better than the CODO scheme and provides better performance until the vehicle count
exceeds 95. Finally, it is also evident that our proposed scheme performs the best of all,
even when the number of vehicles is up to 95, but there is slight fall in the performance
after 95.

Figure 3. Computation efficiency vs. varying number of vehicles for communication performance.

In Figure 4, the computational efficiency is analyzed with respect to the required
computational data size used during communication. It can be observed from the re-
sults that our proposed scheme performs better than the others, i.e., CODO and CTORA.
Furthermore, it is evident that as the required computing data size increases, the compu-
tational efficiency decreases due to various reasons. Firstly, processing times and latency
increase as a result of handling higher data quantities, demanding more processing power
and memory. Secondly, higher data volumes may potentially cause network congestion,
requiring more bandwidth to send and receive data packets, leading to packet loss and
re-transmissions. Additionally, the need for more sophisticated data compression, routing,
and management methods due to larger data sizes further increases computational cost.
In Figure 4, it can be seen that the computational efficiency for our proposed scheme is
closer to the others when the required computing data size is smaller. However, as the
computation data size increases, our proposed scheme exhibits a decrease in computational
efficiency; although, it remains superior to others. In the heuristic approach, offloading
decisions are made by vehicles if energy constraints and local computation time fail to
meet requirements, resulting in lower and relatively unchanged computational efficiency.
The local computation is deemed the best option when the required computing data size is
smaller, as offloading depends on available bandwidth and channel gain between the RSU
and vehicles. Conversely, offloading to the VEC server becomes the preferred option when
the required computing data size increases.

Sensors 2024, 24, 3001 14 of 18

Figure 4. Computation efficiency vs. computing data size needed.

Figures 5–7 illustrate the computational efficiency when the number of vehicles ranges
from approximately 2 to 20, maintaining an average speed of 25 km/h, 45 km/h, and
65 km/h, respectively. In this analysis, the required computational data size remains
constant and uniform across all vehicles. Notably, the heuristic schemes operate at a
diminished capacity, as vehicles tend to prioritise local computation to minimise practical
tolerable delay in Figure 5. Conversely, other schemes, namely CODO and CTORA,
perform commendably, alongside our proposed scheme. In Figures 6 and 7, the efficacy of
our proposed scheme surpasses that of CODO and CTORA, attributed to the integration
of mmWave communication and optimised resource allocation strategies, enhancing the
overall performance and efficiency and shows a stable gain. A slight gain has been observed
in Figures 6 and 7 for Heuristic method, but the gain is too low in comparison to other
models. Similar trend is been observed in Figures 6 and 7, for CODO, CTORA, and our
proposed model where an average speed of 45 km/h and 65 km/h has been taken into
consideration. Notably, our proposed model does shows similar gain. Our suggested
scheme also works well in conjunction with CODO and CTORA, the other two schemes.
Hence, it shows that the use of the PSO algorithm does help in optimised resource allocation
and thereby improving the overall performance and efficiency.

Figure 8 presents an analysis of computational efficiency with regard to the maximum
tolerable delay. The findings indicate a notable trend: as the maximum tolerable delay
increases, there is a corresponding decrease in the total energy consumption. In this
context, both the CODO, CTORA, and our proposed algorithm exhibit a strong performance
compared to heuristic approaches. This can be attributed to their shared strategy of
prioritising the offloading of most tasks to the VEC server when the maximum tolerable
delay is set at 2. Conversely, the heuristic algorithm tends to favour local computation
once the maximum tolerable delay surpasses 2. A distinguishing feature of our proposed
algorithm is its superior performance when compared to other algorithms (heuristic, CODO,
and CTORA) as the maximum tolerable delay increases further. Despite this advantage,
the performance gap of our proposed algorithm aligns closely with that of the CODO and
CTORA algorithms; although, the disparities widen slightly by 8% and 5%, respectively.
This suggests that our proposed algorithm maintains competitiveness and performed well,
particularly in scenarios with higher maximum tolerable delays.

Sensors 2024, 24, 3001 15 of 18

Figure 5. Computation efficiency vs. varying the number of vehicles under speed of 25 km/h.

Figure 6. Computation efficiency vs. varying the number of vehicles under under speed of 45 km/h.

Figure 7. Computation efficiency vs. varying the number of vehicles under under speed of 65 km/h.

Sensors 2024, 24, 3001 16 of 18

Figure 8. Computational efficiency vs. maximum acceptable latency.

7. Conclusions

Within the context of a tradeoff between computing time and energy consumption,
we examined a vehicle’s strategy to offload duties in order to maximise computation
efficiency in this research. We combined job offloading and computation resource allocation
to construct the computation efficiency problem. Our PSO approach combined with the
DA method allowed us to accomplish an efficient resource allocation and task offloading.
In addition, we made use of mmWave and cellular link in the 5G NR-V2X communication
paradigm to enhance system communication latency and performance. According to the
numerical results, the suggested technique shows an increase in computation efficiency
adhering to energy and computation time limits. Hence, the comparison of different
algorithms with respect to the proposed algorithm, i.e., the PSO optimisation algorithm,
is shown in Figures 4–7. Among them, the average energy consumption of the PSO
algorithm shows an enhancement in all. In comparison, we can see that the proposed
algorithm (PSO algorithm) consumed less energy in comparison to CTORA, CODO, and
heuristic; however, CTORA and CODO seems to be the same or very close at the start,
but on the further end of each result, our proposed model showed an enhancement in
comparison to other algorithms. In general, the suggested method, PSO optimisation with
the DA method demonstrates superior performance compared to other algorithms, while
keeping 1KB packet sizes. We would expand our research in the future to investigate
and use other optimisation approaches such as Sequential Quadratic Programming (SQP)
or the Genetic Algorithm approach to enhance the long-term delay performance and
fortify the job offloading procedure along with the combined use of mmWave and 5G
NR communications.

Author Contributions: The Conceptualization of the novel approach was done by A.A. and K.A. The
Methodology section of the article was completed by A.A., P.S., R.T. and G.M. The software simula-
tions were performed by A.A. under the guidance of K.A. and P.S. The system model validations
were completed by A.A., P.S. and K.A., with formal analysis being presented by K.A. and G.M.; A.A.
performed a thorough investigation with resources provided by P.S. The original draft was written
by A.A. and K.A. with extensive review and editing support from P.S. and R.T. The supervisory team
for A.A. included K.A., P.S., R.T. and G.M. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was conducted as part of the UKIERI-SPARC project titled “DigIT—Digital
Twins for Integrated Transportation Platform”. The grant number is UKIERI-SPARC/01/23.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Sensors 2024, 24, 3001 17 of 18

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Jo, K.; Kim, J.; Kim, D.; Jang, C.; Sunwoo, M. Development of autonomous car—Part II: A case study on the implementation of an

autonomous driving system based on distributed architecture. IEEE Trans. Ind. Electron. 2015, 62, 5119–5132. [CrossRef]
2. Lin, S.; Zhang, Y.; Hsu, C.; Skach, M.; Haque, M.; Tang, L.; Mars, J. The architectural implications of autonomous driving:

Constraints and acceleration. In Proceedings of the Twenty-Third International Conference on Architectural Support for
Programming Languages and Operating Systems, Williamsburg, VA, USA, 24–28 March 2018; pp. 751–766. [CrossRef]

3. Ashok, A.; Steenkiste, P.; Bai, F. Vehicular cloud computing through dynamic computation offloading. Comput. Commun. 2018,
120, 125–137. [CrossRef]

4. Feng, J.; Liu, Z.; Wu, C.; Ji, Y. Mobile edge computing for the internet of vehicles: Offloading framework and job scheduling. IEEE
Veh. Technol. Mag. 2018, 14, 28–36. [CrossRef]

5. Mao, Y.; You, C.; Zhang, J.; Huang, K.; Letaief, K. A survey on mobile edge computing: The communication perspective. IEEE
Commun. Surv. Tutor. 2017, 19, 2322–2358. [CrossRef]

6. Hu, Y.; Patel, M.; Sabella, D.; Sprecher, N.; Young, V. Mobile edge computing—A key technology towards 5G. ETSI White Pap.
2015, 11, 1–16.

7. Zhang, X.; Zhang, J.; Liu, Z.; Cui, Q.; Tao, X.; Wang, S. MDP-based task offloading for vehicular edge computing under certain
and uncertain transition probabilities. IEEE Trans. Veh. Technol. 2020, 69, 3296–3309. [CrossRef]

8. Raza, S.; Wang, S.; Ahmed, M.; Anwar, M. Others A survey on vehicular edge computing: Architecture, applications, technical
issues, and future directions. Wirel. Commun. Mob. Comput. 2019, 2019, 3159762.

9. Fog Computing. The Internet of Things: Extend the Cloud to Where the Things are. Cisco White Pap. 2015, 3.
10. Li, X.; Dang, Y.; Chen, T. Vehicular edge cloud computing: Depressurize the intelligent vehicles onboard computational

power. In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA,
4–7 November 2018. [CrossRef]

11. Gu, B.; Zhou, Z. Task offloading in vehicular mobile edge computing: A matching-theoretic framework. IEEE Veh. Technol. Mag.
2019, 14, 100–106. [CrossRef]

12. Pu, L.; Chen, X.; Mao, G.; Xie, Q.; Xu, J. Chimera: An energy-efficient and deadline-aware hybrid edge computing framework for
vehicular crowdsensing applications. IEEE Internet Things J. 2018, 6, 84–99. [CrossRef]

13. Zhao, J.; Li, Q.; Gong, Y.; Zhang, K. Computation offloading and resource allocation for cloud assisted mobile edge computing in
vehicular networks. IEEE Trans. Veh. Technol. 2019, 68, 7944–7956. [CrossRef]

14. Dai, Y.; Xu, D.; Maharjan, S.; Zhang, Y. Joint load balancing and offloading in vehicular edge computing and networks. IEEE
Internet Things J. 2018, 6, 4377–4387. [CrossRef]

15. Xu, X.; Xue, Y.; Qi, L.; Yuan, Y.; Zhang, X.; Umer, T.; Wan, S. An edge computing-enabled computation offloading method with
privacy preservation for internet of connected vehicles. Future Gener. Comput. Syst. 2019, 96, 89–100. [CrossRef]

16. Saif, F.; Latip, R.; Hanapi, Z.; Alrshah, M.; Shafinah, K. Workload Allocation Towards Energy Consumption-delay Trade-off in
Cloud-fog Computing using Multi-objective NPSO Algorithm. IEEE Access 2023, 11, 45393–45404. [CrossRef]

17. Wu, C.; Liu, Z.; Liu, F.; Yoshinaga, T.; Ji, Y.; Li, J. Collaborative learning of communication routes in edge-enabled multi-access
vehicular environment. IEEE Trans. Cogn. Commun. Netw. 2020, 6, 1155–1165. [CrossRef]

18. You, C.; Huang, K.; Chae, H.; Kim, B. Energy-efficient resource allocation for mobile-edge computation offloading. IEEE Trans.
Wirel. Commun. 2016, 16, 1397–1411. [CrossRef]

19. Zhang, K.; Mao, Y.; Leng, S.; Vinel, A.; Zhang, Y. Delay constrained offloading for mobile edge computing in cloud-enabled
vehicular networks. In Proceedings of the 2016 8th International Workshop on Resilient Networks Design and Modeling (RNDM),
Halmstad, Sweden, 13–15 September 2016; pp. 288–294. [CrossRef]

20. Bi, J.; Wang, Z.; Yuan, H.; Zhang, J.; Zhou, M. Cost-Minimized Computation Offloading and User Association in Hybrid Cloud
and Edge Computing. IEEE Internet Things J. 2024, 11, 16672–16683. [CrossRef]

21. Jafari, V.; Rezvani, M. Joint optimization of energy consumption and time delay in IoT-fog-cloud computing environments using
NSGA-II metaheuristic algorithm. J. Ambient Intell. Humaniz. Comput. 2023, 14, 1675–1698. [CrossRef]

22. Lahlou, L.; Tata, C.; Kara, N.; Leivadeas, A.; Gherbi, A. Edge-cloud online joint placement of Virtual Network Functions and allocation
of compute and network resources using meta-heuristics. J. Ambient Intell. Humaniz. Comput. 2023, 14, 7531–7558. [CrossRef]

23. Zhou, Z.; Feng, J.; Chang, Z.; Shen, X. Energy-efficient edge computing service provisioning for vehicular networks: A consensus
ADMM approach. IEEE Trans. Veh. Technol. 2019, 68, 5087–5099. [CrossRef]

24. Patsias, V.; Amanatidis, P.; Karampatzakis, D.; Lagkas, T.; Michalakopoulou, K.; Nikitas, A. Task allocation methods and
optimization techniques in edge computing: A systematic review of the literature. Future Internet 2023, 15, 254. [CrossRef]

25. Pervez, F.; Sultana, A.; Yang, C.; Zhao, L. Energy and latency efficient joint communication and computation optimization in a
multi-UAV assisted MEC network. IEEE Trans. Wirel. Commun. 2023, 23, 1728–1741. [CrossRef]

http://doi.org/10.1109/TIE.2015.2410258
http://dx.doi.org/10.1145/3173162.3173191
http://dx.doi.org/10.1016/j.comcom.2017.12.011
http://dx.doi.org/10.1109/MVT.2018.2879647
http://dx.doi.org/10.1109/COMST.2017.2745201
http://dx.doi.org/10.1109/TVT.2020.2965159
http://dx.doi.org/10.1109/ITSC.2018.8569286
http://dx.doi.org/10.1109/MVT.2019.2902637
http://dx.doi.org/10.1109/JIOT.2018.2872436
http://dx.doi.org/10.1109/TVT.2019.2917890
http://dx.doi.org/10.1109/JIOT.2018.2876298
http://dx.doi.org/10.1016/j.future.2019.01.012
http://dx.doi.org/10.1109/ACCESS.2023.3266822
http://dx.doi.org/10.1109/TCCN.2020.3002253
http://dx.doi.org/10.1109/TWC.2016.2633522
http://dx.doi.org/10.1109/RNDM.2016.7608300
http://dx.doi.org/10.1109/JIOT.2024.3354348
http://dx.doi.org/10.1007/s12652-021-03388-2
http://dx.doi.org/10.1007/s12652-023-04587-9
http://dx.doi.org/10.1109/TVT.2019.2905432
http://dx.doi.org/10.3390/fi15080254
http://dx.doi.org/10.1109/TWC.2023.3291692

Sensors 2024, 24, 3001 18 of 18

26. Fan, X.; Gu, W.; Long, C.; Gu, C.; He, S. Optimizing Task Offloading and Resource Allocation in Vehicular Edge Computing Based
on Heterogeneous Cellular Networks. IEEE Trans. Veh. Technol. 2023, 1–13. [CrossRef]

27. Fan, W.; Su, Y.; Liu, J.; Li, S.; Huang, W.; Wu, F.; Liu, Y. Joint task offloading and resource allocation for vehicular edge computing
based on V2I and V2V modes. IEEE Trans. Intell. Transp. Syst. 2023, 24, 4277–4292. [CrossRef]

28. Hussain, M.; Azar, A.; Ahmed, R.; Umar Amin, S.; Qureshi, B.; Dinesh Reddy, V.; Alam, I.; Khan, Z. SONG: A multi-objective
evolutionary algorithm for delay and energy aware facility location in vehicular fog networks. Sensors 2023, 23, 667. [CrossRef]

29. Zhang, C.; Wu, C.; Lin, M.; Lin, Y.; Liu, W. Proximal Policy Optimization for Efficient D2D-Assisted Computation Offloading and
Resource Allocation in Multi-Access Edge Computing. Future Internet 2024, 16, 19. [CrossRef]

30. Li, C.; Chen, Q.; Chen, M.; Su, Z.; Ding, Y.; Lan, D.; Taherkordi, A. Blockchain enabled task offloading based on edge cooperation
in the digital twin vehicular edge network. J. Cloud Comput. 2023, 12, 120. [CrossRef]

31. Hua, W.; Liu, P.; Huang, L. Energy-efficient resource allocation for heterogeneous edge-cloud computing. IEEE Internet Things J.
2023, 11, 2808–2818. [CrossRef]

32. Fan, W.; Hua, M.; Zhang, Y.; Su, Y.; Li, X.; Wu, F.; Liu, Y. Game-Based Task Offloading and Resource Allocation for Vehicular Edge
Computing with Edge-Edge Cooperation. IEEE Trans. Veh. Technol. 2023, 72, 7857–7870. [CrossRef]

33. Huang, T.; Liu, J.; Zhou, X.; Nguyen, D.; Azghadi, M.; Xia, Y.; Han, Q.; Sun, S. V2X Cooperative Perception for Autonomous
Driving: Recent Advances and Challenges. arXiv 2023, arXiv:2310.03525.

34. Liu, X.; Yang, L.; Liao, T.; Luo, Z.; Yu, D.; Yue, G. Measurements and Analysis of Millimeter-Wave Propagation from In-station to
Out-station in High-Speed Railway between Train and Trackside. IEEE Trans. Wirel. Commun. 2023. [CrossRef]

35. Okello, K.; Mwangi, E.; Abd El-Malek, A. Connectivity probability analysis for VANETs with big vehicle shadowing. In
Proceedings of the 2023 International Symposium on Networks, Computers Furthermore, Communications (ISNCC), Doha,
Qatar, 23–26 October 2023; pp. 1–6. [CrossRef]

36. Ren, S.; Zhao, J.; Zhang, H.; Li, X. Connectivity Analysis with Co-Channel Interference for Urban Vehicular Ad Hoc Networks.
Electronics 2023, 12, 2021.

37. Ziemer, R.E.; Tranter, W.H. Principles-of-Communications, 7th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2015; Volume 12.
Available online: https://physicaeducator.files.wordpress.com/2018/03/principles-of-communications-7th-edition-ziemer.pdf
(accessed on 22 August 2023).

38. Giordani, M.; Zanella, A.; Higuchi, T.; Altintas, O.; Zorzi, M. Performance study of LTE and mmWave in vehicle-to-network
communications. In Proceedings of the 2018 17th Annual Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net), Capri,
Italy, 20–22 June 2018; pp. 1–7. [CrossRef]

39. Qin, P.; Wang, Y.; Cai, Z.; Liu, J.; Li, J.; Zhao, X. MADRL-Based URLLC-Aware Task Offloading for Air-Ground Vehicular
Cooperative Computing Network. IEEE Trans. Intell. Transp. Syst. 2023, 1–14. [CrossRef]

40. Wang, H.; Li, X.; Ji, H.; Zhang, H. Federated offloading scheme to minimize latency in MEC-enabled vehicular networks. In
Proceedings of the 2018 IEEE Globecom Workshops (GC Wkshps), Abu Dhabi, United Arab Emirates, 9–13 December 2018;
pp. 1–6. [CrossRef]

41. Zhang, J.; Xia, W.; Yan, F.; Shen, L. Joint computation offloading and resource allocation optimization in heterogeneous networks
with mobile edge computing. IEEE Access 2018, 6, 19324–19337. [CrossRef]

42. Chen, X.; Tianfield, H.; Du, W. Bee-foraging learning particle swarm optimization. Appl. Soft Comput. 2021, 102, 107134. [CrossRef]
43. Kuo, T.; Li, D. Gbho: A gain-based heuristic offloading algorithm in vehicular edge computing. In Proceedings of the 2022 IEEE

95th Vehicular Technology Conference: (VTC2022-Spring), Helsinki, Finland, 19–22 June 2022; pp. 1–7.
44. Xu, X.; Xue, Y.; Li, X.; Qi, L.; Wan, S. A Computation Offloading Method for Edge Computing With Vehicle-to-Everything. IEEE

Access 2019, 7, 131068–131077. [CrossRef]
45. Chen, X.; Jiao, L.; Li, W.; Fu, X. Efficient Multi-User Computation Offloading for Mobile-Edge Cloud Computing. IEEE/ACM

Trans. Netw. 2016, 24, 2795–2808. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TVT.2023.3345364
http://dx.doi.org/10.1109/TITS.2022.3230430
http://dx.doi.org/10.3390/s23020667
http://dx.doi.org/10.3390/fi16010019
http://dx.doi.org/10.1186/s13677-023-00496-6
http://dx.doi.org/10.1109/JIOT.2023.3293164
http://dx.doi.org/10.1109/TVT.2023.3241286
http://dx.doi.org/10.1109/TWC.2023.3329133
http://dx.doi.org/10.1109/ISNCC58260.2023.10323804
https://physicaeducator.files.wordpress.com/2018/03/principles-of-communications-7th-edition-ziemer.pdf
http://dx.doi.org/10.23919/MedHocNet.2018.8407093
http://dx.doi.org/10.1109/TITS.2023.3342271
http://dx.doi.org/10.1109/GLOCOMW.2018.8644315
http://dx.doi.org/10.1109/ACCESS.2018.2819690
http://dx.doi.org/10.1016/j.asoc.2021.107134
http://dx.doi.org/10.1109/ACCESS.2019.2940295
http://dx.doi.org/10.1109/TNET.2015.2487344

	Introduction
	Contributions
	Paper Organisation

	Related Works
	VEC System Framework and System Model
	System Topology
	Mobility Model
	Communication Model
	Computational Model

	Problem Formulation and Methodology
	Our Proposed Task Offloading and Resource Allocation Scheme
	Task Offloading
	Computation Resource Allocation

	Results
	Conclusions
	References

