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Abstract 

A needs analysis of canoe slalom (coach and athlete led) resulted in a reliable 

performance analysis system for training and competition. This was achieved using a 

procedure recommended by O’Donoghue & Longville (2004). Reliability tests concluded 

that errors for split-times and upstream analyses were unacceptably high if coaches or 

less trained analysts collected data due to the inconsistent application of operational 

definitions.  

 Study 2 used percentage times off the K1M and class winners as a measure of 

performance. Variability was high due to athlete, course and class differences. Race 

percentages from the 2013-16 Olympic cycle were used to test the probabilities 

associated with winning, medalling or reaching a final calculated from the 2009-12 

Olympic cycle. Signal detection theory determined an appropriate balance between the 

risk of misses and false alarms (inversely proportional) with results supporting the use of 

race percentages off the class winner, rather than the K1M, and a 50% level of probability 

for predicting gaining a medal i.e. a low rate of false alarms (maximum 6%) and a high 

hit rate (over 70% of medals correctly identified).  

Study 3 tracked athletes’ performances over time using exponentially smoothed 

ICF race points. Performance funnels were created for winning (previously won a major 

championship) and winless athletes using the median and 95% confidence intervals for 

the median. Time series plots for an athlete (from the start of their International career) 

were synchronised with the performance funnels to allow easy visualisation of 

performance. Nearly all athletes’ time series depicted a period of initial improvement 
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followed by a plateau and then deterioration in performance over a 7½ year period. 

Athletes were also classified into probable, possible and unlikely to win a future major.  

This thesis provided coaches and athletes with academically rigorous 

methodologies to aid their understanding of canoe slalom performance. 
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Chapter One: Introduction 

 

1.1 The scope of the study  

At elite levels of sports performance, the coaches have a wide access to performance 

analysis (PA) support systems, for example through the English, Scottish, Welsh and 

Irish Institutes. Carling, Reilly, & Williams (2009) stated that if athletes are to attain 

world-class levels of performance, information from a continuous assessment of training 

and competition must be made available to aid in the evaluation of how athletes are 

performing and progressing. Many of the analysts within the English Institute of Sport 

(EIS) are full-time within a sport which allows the practitioner to fully develop their role 

within a National Governing Body and benefit from a multitude of expert analysts from 

other sports within the network. An example of the role of PA service provision within 

the EIS: 

- Capturing video from competition and training. 

- Developing performance indicators (PI’s) for the sport. 

- Analysing performance based on these PI’s in competition and training. 

- Feedback of analysis within the coaching process. 

- Overseeing and managing the development of performance analysis within 

their sport. 

- Developing relationships and partnerships with external companies 

working with technology companies and Universities for research. 

- Delivering workshops and seminars on PA. 

- Working in partnership with other sport science & medical disciplines. 

 

The EIS performance analysts are working with a number of key Olympic & 

Paralympic sports. There has been a large increase in PA staff over the past 15 years 
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since the establishment of the EIS in 2002. There has also been an increase in posts 

within professional clubs such as football and rugby union. All of this is a credit to the 

development of the PA discipline, which is continuing to grow. In 2004 the British Canoe 

Slalom team invested in a full-time PA, and as a consequence of this, the practitioner was 

able to pursue a PhD alongside her work programme to ensure the methodologies and 

processes were current and progressing with academic rigour. Hughes (2004) stated that 

if we consider the role of a performance analyst in its general sense in relation to the data 

that the analyst is collecting, processing and analysing, then there are a number of 

mathematical skills that will be required to facilitate the steps in the processes:- i) 

defining performance indicators, ii) establishing the reliability of the data collected, iii) 

ensuring that enough data have been collected to define stable performance profiles, iv) 

determining which are important, v) comparing sets of data, vi) modelling performances 

and vii) prediction (Hughes, 2004). 

Canoe slalom is an extremely challenging white water-sport, demanding skill, 

stamina and courage. There are 5 classes of competition: men’s and women’s kayak class 

(K1M, K1W), men’s and women’s Canadian (singles) class (C1M, C1W) and men’s 

Canadian doubles class (C2M). The aim of all five classes is to run a white-water course 

marked by “gates” fast, and ideally without touching the gates. A “gate” consists of two 

poles, suspended over the water. There are upstream gates and downstream gates which 

are distinguished by the following colours: Green and white gates are negotiated in a 

downstream direction; red and white gates are upstream. The gates are placed so that the 

athlete must manoeuvre through cross-current waters, eddy’s and waves. A touch is 

penalised with 2 seconds and added to the athlete’s time. Therefore, if an athlete touches 
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a pole with anything - paddle, boat, buoyancy aid, helmet or any part of the body - a 2 

second penalty is imposed. Missing a gate or going through the gate in the wrong 

direction costs an athlete 50 seconds. This usually means “game over” in serious 

competition. Therefore, the task is a trade-off between a fast run and a clean run. The 

gates are positioned to test the competitor’s skill in using the water and coping with the 

demands of the water. There will be an upstream gate to test the ability to break out into 

the eddy behind a rock, then a downstream gate the far side so that the competitor must 

surf a wave to reach it before the river pushes the competitor past. It takes skill, as well as 

speed. The athletes must select and paddle a line that turns the current to their advantage. 

Therefore, the ability to read the water is essential. 

At International competitions there are qualifying heats (x 2) and finals (semi-

final and final). The slalom courses around the world are either natural or artificial. The 

majority of International and Olympic racing is competed on artificial slalom courses. 

The rules have changed dramatically over the past 10-20 years with regards to race 

format and equipment requirements. The running time for International canoe slalom has 

dropped by around 50% from an average 200s to approximately 90-120s. This has had an 

impact on the physical components of slalom racing and has also resulted in a much more 

attractive event for athletes and spectators. At many venues now, spectators can see most 

of the race from start to finish from the viewing gallery. This has also had a positive 

impact on delivering performance analysis support. Capturing video of full runs of a 

performance (60s intervals = 2 paddlers on the water at one time) is challenging in the 

outdoor environment. However, this is possible as a result in more staffing, cable length 

issues, reduction in video file size and ease of turnaround of video for coaches. Coaches 
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and performers can use video recordings to discuss reasons for certain behaviours, 

reinforce positive actions and identify areas that need improvement (Robertson, 1999). 

Video recordings can also be a useful tool in establishing and checking intra- and inter-

observer reliability. Treadwell and Lyons (1997) also stated that video enables 

researchers and sport performers to share an understanding of performance. Data is also 

rich in information and combined with video can be extremely powerful in sport. 

Understanding what the sport needs, when and why is key to impacting performance and 

performance analysis can play a crucial role in this process in sports such as canoe 

slalom. 

From the perspective of this thesis a number of issues related to canoe slalom 

were deemed influential in regard to how the research could develop. Races take place on 

courses that are significantly different from all others and each can offer a different 

challenge on different days due to the flow and currents in the water, gate placement etc. 

Substantial between race variation, in terms of race time, was therefore expected and 

meant that evaluation of race performance problematical. World records cannot exist in 

this sport, as a consequence of these course differences, meaning that performance 

evaluation is typically determined as the relative race time measured against the other 

competitors in the class or even different classes. As the K1 men’s class is the fastest 

class many coaches use the winning time in this event as the benchmark against which 

race times are compared. However, the validity of this has not been questioned although 

some coaches suggest comparing race times against the same class winner is a better 

approach. The method for evaluating the overall race times was therefore a key objective 

of this thesis although it was also recognised that this is an outcome measure and the 
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processes undertaken to achieve this time are probably more valuable from a coaching 

perspective. However, the ability to measure these processes accurately has been a 

challenge due to inadequate equipment and manpower. For example, one process 

suggested as being very important for successful canoe slalom performance is the type of 

stroke used. However, it is not a simple task to measure or indeed categorise this because 

much of what happens during a race takes place under water and to the naked eye or even 

under examination of video some subjectivity is inevitable. Factors such as blade 

velocity, force and direction require sophisticated technology, which is currently 

unavailable, to measure. Consequently, a primary aim of this thesis is to determine what 

process variables can be measured with sufficient accuracy, given technology limitations, 

to provide meaningful performance information to aid the coaching process with regard 

performance improvement. Finally, world rankings were introduced in 2006 to provide a 

measure of performance based on a rolling two-year cycle. These rankings provide 

coaches and athletes with a relatively insensitive rating as poor performance over a period 

of time may not affect the World ranking because only the five best race results 

contribute to the ranking. With lottery funding based on the number of medals a sport 

achieves at Olympic and World championships, some understanding of potential to medal 

has become an important factor for British canoe slalom. Hence some examination of the 

usefulness of the world ranking, and the variability of race performances, was deemed an 

important goal of this thesis.      
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1.2 Aim of the research 

Given the relative novelty of scientific research in canoe slalom at the outset of the study, 

the main aim of this PhD was to determine robust methods of performance analysis to 

better inform the coaching process in terms of reliable data capture, race strategy and 

team selection.  

 

1.3 Objectives of the research 

At the initialisation phase of this study canoe slalom had limited research within 

performance analysis and therefore a clear gap and opportunity to explore new and novel 

ideas to apply performance analysis techniques that could be returned back into the 

applied front line of duty. 3 main objectives were identified: 

 

1. Conduct a needs analysis on the sport of canoe slalom and develop a reliable 

performance analysis system for coaches and analysts to adopt in their day to day 

delivery. 

2. Explore the use of winning times in all classes for assessing other performances. 

3. Develop a methodology that can track individual performance over time and 

determine success or failure. 
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Chapter Two: Review of Literature 

 

2.1 Performance analysis applications to canoe slalom 

Messias, Masselli dos Reis, Ferrari & Manchado-Gobatto (2014) identified just 21 

publications involving canoe slalom (period analysed: 1971- July 2013) within 7 different 

scientific disciplines (Figure 2.1).  

 

 

 

 

 

 

 

Figure 2.1 Percentage distribution of scientific articles involving canoe slalom 

indexed by the main topics investigated (Messias et al., 2014) 

 

The number of publications of direct relevance to this thesis is much smaller 

however. Lyons (2005) mentioned some canoe slalom analysis projects at the Australian 

Institute of Sport (AIS) when describing brief examples of performance analysis in a 

variety of sporting applied contexts. This research aimed to address (1) The quantity of 

each type of paddle stroke being used, (2) The time spent working upstream and 
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downstream and (3) Effective and ineffective paddle strokes of winners and losers. An 

unspecified software system was developed to analyse canoe slalom both in training and 

competition at the International course in Penrith, Australia. It seems likely the work 

mentioned in Lyon’s paper was related to the Hunter et al. research projects discussed 

later. 

Hunter, Cochrane & Sachlikidis (2007) assessed intra-observer and inter-observer 

reliability of data gathered from a lapsed-time time-motion analysis system for canoe / 

kayak slalom (discussed further in section 2.3 of the literature review). Hunter, Cochrane 

& Sachlikidis (2008) also published an analysis of this competition which quantified the 

differences between groups of elite canoe slalom athletes based on the class they paddled 

in and the strategies used in the 2005 World Championships in Penrith, Australia. Three 

cameras captured the 10 fastest competition runs for men’s and women’s kayak and the 

men’s canoe. Gate split-times, turn times, total stroke information, left and right stroke 

information and gate errors were extracted for analysis. Unsurprisingly the top ten 

athletes in the women’s kayak were significantly (p < 0.05) slower than the top ten men’s 

kayak and men’s canoe who were not significantly different to each other. This was 

easily determined by total run time although there were some clear differences within 

certain gate sequences which can be determined by strategy, but also the different 

physical and technical demands of different classes. The splits were determined by times 

between each gate which has the danger of losing some context of the move when 

determining a time loss / gain versus another athlete. This could lead to the possibility of 

combining splits based on tactical and technical decision-making to account for the whole 

move sequence. In Hunter et al.’s paper the strategy chosen was determined by ‘sided’ 
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moves, which can be determined by left & right handedness and can be viewed as an 

advantage over the other. To keep left and right biases to a minimum the International 

Canoe Federation identify the following course criteria for International competition: 

 

20.1 The course must be entirely navigable throughout its length and provide the same 

conditions for right-handed and left-handed C1 and C2 paddlers. The ideal course should 

include: 

1. Minimum one gate-combination, which offers the competitor several options. 

2. Constant direction changes and flowing movements using the technical 

difficulties of the water (eddies, waves and rapids).  

Extract from ICF rules 2015, p29 

http://www.canoeicf.com/sites/default/files/icf_canoe_sprint_2015_0.pdf  

 

Within Hunter et al.’s (2008) study they stated that the technical sections caused 

the greatest differences between athletes even within the top ten. This is a combination of 

technical and physical capabilities to perform such moves and it was highlighted that the 

athlete should spend most of their time on these technical gate sequences on white water. 

There were also examples of a gate sequence which incorporated four possible moves, all 

with varying pro’s and con’s on time loss / gains and it was stated that further 

investigation would be needed to truly determine the exact cause of these time 

differences. A strategy decision is based on, what are the fastest moves and whether an 

athlete is capable of performing the move. This is an area where performance analysis 

http://www.canoeicf.com/sites/default/files/icf_canoe_sprint_2015_0.pdf


 

27 

 

techniques could be applied in competition to inform an athlete’s strategic plan combined 

with coaching intelligence from training on whether the athlete can perform the moves.  

Within canoe slalom racing a course design has 6 upstream gates (new rule 2013) 

that the athlete has to negotiate with the rest of the gates being downstream gates (up to 

25 gates in total). In Hunter et al. (2008) elite canoe slalom coaches highlighted the 

upstream gate as a key component to analyse winning. This was identified as a ‘turn’ and 

was divided into 4 sections (Figure 2.2). There was no clear reason for why the ‘turn’ in 

the upstream gate was separated into the respective sections. 

 

 

Figure 2.2  Division of time around an upstream gate (from Hunter, Cochrane &  

Sachlikidis, 2008)  
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The major limitation of this method was that each upstream gate is unique with 

different approaches (1st quarter) and exits (4th quarter) from the gate determined by the 

position of previous gates and the next gate required to negotiate the course. This means 

that it is impossible for the researcher to reliably distinguish when an upstream has 

started and ended (definition of terms), this problem is exacerbated when the other moves 

are incorporated into the timing splits. The 2nd and 3rd quarter events were the most 

repeatable due to the location of the gates in relation to the boat. However, the accuracy 

of the analysis of splits would have been severely compromised by using a 3-camera 

view of the race course. More cameras would improve the situation although the 

complexity of this type of analysis suggests that more accurate measuring devices such as 

timing gates or local positioning systems are needed for this type of analysis. Whilst the 

accuracy of Hunter et al.’s (2008) study has to be questioned their finding that athletes 

spent 16%, 36%, 21% and 27% in quarters 1-4 of the turn was the first attempt at 

distinguishing a potentially important measure of canoe slalom performance but, as the 

authors suggested, further research is necessary, using more accurate equipment.   

Hunter (2009) went on to study the upstream gate further by determining how the 

path chosen by the elite slalom athletes influenced the time taken to negotiate the 

upstream gate with the aim to provide critical information on technical characteristics that 

were beneficial to performance. This study focused on kayak (n=11) and canoe (n=6; 5 

right handed, 1 left handed) men athletes and interestingly the left handed paddler’s data 

was included because analysis revealed no differences between the strategies used with 

respect to the variables analysed. Total time was measured as the time taken for the head 

to travel from positions 1 to 4 and boat trajectory was defined as the mean distance 



 

29 

 

between the paddler’s head and the inside pole between positions 1 and 4. The research 

found that the absolute variability of a paddler decreased as their level of skill increased 

(as determined by total time taken), but the percentile variation remained constant. There 

didn’t appear to be different strategies performed across the two classes. Even within this 

elite population the lines of the two fastest athletes compared with those of the two 

slowest kayak (K1M) and canoe (C1M) were significantly different. It was proposed that 

athletes could produce faster times if they focused on minimizing the distance between 

their head and the inside pole combined with an appreciation of the risk of touching a 

gate.  The use of the head as an indicator of performance was assessed using an overhead 

camera, portable calibration rig and markers attached to the body, only possible during 

training but not competition.  However, the validity of this approach is questionable due 

to the small sample used, as the conclusion that the head being close to the pole was 

associated with better performance could have been due to the sample of paddlers being 

unrepresentative of paddlers in general. This small sample may also have been unduly 

influenced by the one left handed paddler included in this study. This paddler would have 

used a different technique, in comparison to the right handers even though the authors 

suggested his strategy was similar.    

Hunter et al. (2008) also investigated the number, length and types of canoe 

slalom strokes used. 67-71% of strokes were forward across all classes. There was no 

correlation between the percentage of time that athletes spent with the blade in the water 

and run time. There was evidence of dominance of stroke sidedness, for example there 

were more right sided strokes and it was suggested that this may be an indication of 

underlying limb dominance or a result of the course design. They suggested there was a 
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need for further research into profiling courses and individual athletes. This paper 

acknowledged the difficulty associated with categorising a stroke type as in canoe slalom 

many stroke types are either a combination of stroke types, take place under water and 

are therefore not possible to discern or the stroke type changes during the stroke. The 

authors suggested defining the stroke type by the most predominant action of the stroke 

but in practice this is subjective and therefore unreliable.   

Penalties were also investigated in Hunter et al.’s (2008) work and due to the low 

number of penalties in the top ten it was difficult to determine if any relationship existed 

between penalties and performance. This is a limitation of analysing one competition and 

there is scope to transfer this analysis across a number of major championships to 

understand trends and patterns. In a paper that did conduct analysis across competitions 

they stated that, clearly, it is always important for an athlete to have a ‘‘clean run’’ 

(Nibali, Hopkins & Drinkwater, 2011). In D’Angelo’s (2013) applied work he observed 

athletes he coached over the race seasons and there were examples where young 

developing athletes easily performed clean runs and others found this quite hard to 

achieve. Also some athletes performed clean runs in their 1st run and then hit penalties in 

their 2nd run and vice versa. D’Angelo (2013) stated that in a competition where there 

were a high number of clean runs this might mean that the athletes were very good 

technically or the course was less technical in design. However D’Angelo (2013) 

believed this data should not be limited to physical and technical aspects of performance 

but should be combined with understanding the individual’s psychology and philosophy.   

Green (2012), in an unpublished undergraduate dissertation, applied Hunter’s 

research to a different population of premier division canoe slalom athletes competing at 
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the 2011 UK Premier race being held at Cardiff’s (Wales, UK) International white water 

course (CIWW). There were some comparisons with Hunters work in run time 

percentages and it could be suggested that the use of percentages could inform 

differences between International and National levels. Turn time produced a medium 

correlation to overall run time in general, however when considering individual 

categories, female athletes did not show this trend and Green (2012) suggested that at a 

National level, fast turn times did not distinguish the best athletes. However, it is 

important to know that these claims were based on 1 competition and limited in-depth 

analysis. Questions could be asked whether there were International athletes competing in 

this National competition? Similarly, would specific strengths and weaknesses within a 

nation’s athletes and between the respective classes determine differences not found in 

this research? 

Nibali et al. (2011) statistically analysed the variability and predictability of elite 

competitive slalom canoe and kayak performance. They also examined home advantage 

which was found to be small.  They concluded that the variability of performance and 

smallest worthwhile enhancements in canoe slalom were larger than those of comparable 

sports and that race outcomes were largely unpredictable. They stated that one 

implication of poor predictability was that athletes with a low true ranking still had a 

reasonable chance of winning a medal; however, this could be quantified in future 

research. The variability was larger for the bottom ranked athletes resulting in the mean 

run time being longer in the final compared to the semi-final. This was a consequence of 

an uncharacteristically fast run in the semi-final which qualified the athlete for the final, 

but they were unable to repeat or improve on this run time in the final. The study 
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examined races from 2000-2007 although since 2008 the rules have changed from 

aggregate times from semi-final and final to a single race where the final run time 

determines a winner. There is scope, therefore, to investigate whether variability has 

changed as a consequence of the current competition format i.e. 2 Olympic cycles 2008-

2016 have taken place. There is also a new class, in 2010 the ICF introduced rules 

allowing women’s canoe singles (C1W) competitors at World Championships and in 

2020 they will be performing in their first Olympics.  

D’Angelo (2013) investigated ‘fast’ runs by determining the percentage off the 

winning kayak man including and excluding penalties. Excluding penalties allows the 

coach to monitor raw speed and the use of percentages allows a comparison of 

performances from competition to competition.  

 

“Collecting data and verifying it in detail with more objective  

methods of analysis allows me to confirm or disprove what I  

observe during training sessions”. 

        D’Angelo, (2013) 

 

Percentages have been largely used by coaches and National governing bodies 

(NGB’s) such as British & Australian Canoeing to measure the performance of an 

individual and have been used in team selection processes. For example British Canoeing 

(2015) stated in their published policy “For 2015 selection qualification, appropriate 

performance percentages relevant to age (Senior, U23 or U20) must be achieved as per 
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the published performance criteria”. Senior performance standards in all classes were 

worked on scores (accuracy 0.01 seconds) as a percentage off the winning K1M. For 

automatic selection an athlete needed to achieve at least three runs inside the performance 

standard (Table 2.1). For example, percentage calculation on a single run K1M winning 

time was 94.44s total and the 5th place K1W run time was 109.93 secs total, therefore the 

5th place K1W percentage was 116.4%. The Australian performance standards were 

included in Table 2.1 for a comparison where most standards are similar except for the 

K1M class. 

 

Table 2.1 Standard percentages for national team selection races 

Class K1M K1W C1M C2M C1W 

GBR Senior 

Standard 

<107% <126% <115% <126% <145% 

AUS Senior 

Standard 

<104% <125% <114% <124% <142% 

 

 With a large weighting on the use of percentages in NGB’s selection criteria’s 

research is needed to examine the variability or in applied terms the consistency of the 

percentages as a measure of performance from race to race. Are they valid percentages to 

determine performance standards? Consideration for class percentages should also be 

explored as there could be less variability within-class performances to establish more 

accurate performance standards. 
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2.2 Learning from similar sports 

Unlike many individual sports (e.g. running and jumping events in athletics) canoe 

slalom does not have world records to aim for or to be measured against. This brings 

challenges to training sessions when determining what a good performance was, and how 

this could be compared with competition performance. Canoe Slalom does have some 

similar characteristics to the following sporting examples: show-jumping, alpine slalom 

skiing, cross-country skiing, motor track racing, and skeleton. These similarities span 

across: 

- Courses venue & design changes 

- Time based moves & splits to determine time loss & gains 

- Turns & line choice 

- Tactics  & techniques for moves 

- Penalties for hitting and / or missing moves within the sports rules 

 

Arundel & Holmes (2013) compared strategies of rider / horse combinations that 

achieved clear rounds with those that didn’t. The indicator of strategy was determined by 

riding time between fences and the number of strides taken directly towards fences. 

Working with ground times between fences they found a mean absolute error of 0.18s 

which was deemed sufficiently reliable. The study did not find a speed-accuracy trade off 

as the timings between the two groups of performers were very similar. Interestingly they 

highlighted the timing of a scheduled jump as a potential limitation, i.e. competitors in 

the second half of the show jumping schedule may hold an advantage by being able to 

watch opponents. The rider could therefore revise their strategy based on the visual 
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feedback. This is a strategy that canoe slalom competition schedules allow as athletes 

perform one after another and are able to watch live on the riverbank or through the 

broadcast signal or a recorded video clip. 

 In alpine skiing Kirby (2009) stated that feedback usually comes in the form of 

video, coach’s comments and timing systems. The video and coach’s comments are 

subjective, and the timing system only provides one or a few data points. Kirby’s 

research focused on the development of the vLink racing computer which measures 

forward and lateral displacement of alpine skis and converts the displacement into real-

time audible feedback. Alpine skiing has similar challenges to canoe slalom, with 

changing environments and a highly technical sport. Not all courses will have the use of 

highly sophisticated systems such as vLink and therefore it is understandable that video 

analysis plays a primary role for providing athletes with feedback related to technique 

and tactics (Kirby, 2009). From the video the ability to compare and time performance 

enhancements is also achieved to aid coaching feedback. The challenge is how quickly 

this feedback can be provided, of which 83% of subjects in Kirby’s study stated that real-

time feedback definitely or probably helped improve their technical skills. 

In 2014 Spencer, Losnegard, Hallen & Hopkins estimated variability and 

predictability in cross country skiing using a mixed-linear modelling procedure. Variation 

was 1.1% for men and 1.3% for women suggesting a greater competition depth in the 

men’s events. Predictability was high when all athletes were considered, however it was 

hard to predict placing among the top 10 due to the small spread in ability. These 

techniques were applied to many sports such as cycling (Paton & Hopkins, 2006), track 

and field (Hopkins, 2005), swimming (Pyne, Trewin & Hopkins, 2004), rowing (Smith, 
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& Hopkins, 2011), sprint canoeing (Bonetti & Hopkins, 2010), Skeleton (Bullock, 

Hopkins, Martin & Marino, 2009), and also included canoe slalom (Nibali et al., 2011) as 

previously discussed. The focus of the research was based on practical applications that 

encouraged coaches and sport scientists to focus on improvements as little as the smallest 

worthwhile enhancements. As with canoe slalom environmental factors have an impact 

on performance outcomes in skiing. Some of these studies, where applicable, were able to 

factor in wind direction, speed, snow conditions, race terrain and altitude. However they 

stated that findings were inconsistent and this could be due to subjective ratings, for 

example snow conditions. 

 Motor car racing also has similarities to canoe slalom racing, the best driver 

(paddler) is the one that is able to drive (paddle) on a given track (course) in the shortest 

possible time (Braghin, Cheli, Melzi & Sabbioni, 2008). There is a large focus on the 

trajectory of the car with a balance between the path and speed, and the ability of the 

driver to navigate this optimal plan. Determining a speed profile can result in an 

estimation of the lap time achievable by a specific vehicle on a given track. Given the 

high profile of motor sport there is no surprise that there has been a large investment into 

research involving numerous engineering technologies to measure performance and 

develop models that identify the optimal trajectory (Braghin et al., 2008). Canoe slalom 

would benefit from such feedback however as a public funded sport in the UK, resources 

for such projects could be minimal. Therefore realistically coaches can determine the best 

possible trajectory through video, observation and timing systems of their athletes and 

others on the course. 
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 As Bullock & Hopkins (2009) identified in skeleton the tracking of race times can 

be problematic due to the variation in race time between races arising from differences in 

venues and weather rather than the athlete’s true ability. They stated that sports similar to 

skeleton could track an athlete by using their race placing or percent behind the winning 

time. It was highlighted that caution would need to be taken when using percentages as 

differences in technical demands could increase the spread in performance times and this 

measure could suffer from errors such as the assumption that the fastest run time is 

actually the fastest or even an exceptional winning performance. Bullock & Hopkins 

(2009) used the percentages off the winning time to predict an athlete’s outcome at the 

2006 Winter Olympic Games. The main aim of the study was to compare this to the 

coaches’ method of using placing. The results concluded that the percentage time behind 

the winner was superior for the men but inferior for the women. It was unclear why there 

was a difference between men and women and it was concluded that future research was 

needed as it would be unreasonable to say to coaches in the meantime that they can use 

the ranking method with women but not with the men. Furthermore this type of analysis 

using percentages off the winning time to predict an athlete’s outcome during a 

competition could be applied to canoe slalom as a method to support decisions on race 

plans and outcome goals. 

 

2.3 Reliability issues 

2.3.1 Reliability in canoe slalom 

In the area of applied performance analysis it is vital to ensure that data obtained is 

accurate and reliable within both data capture and the provision of statistics (O’Donoghue 
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& Longville, 2004). The importance of this is paramount as the data is used to impact on 

the coach’s feedback to the athletes performing. The Hunter, Cochrane & Sachlikidis, 

(2007) study analysed gate split-times (time taken between gates), touched and missed 

gates (penalties), turn times, major and minor avoidance, rolls, paddle in and out of water 

times, and stroke categorisation. This analysis was conducted by viewing video from 2 

camera positions, one covering the top section and the other covering the bottom section 

with an overlap between cameras to link the two video clips together as one whole run. 

For all time-based variables, the mean, minimum, maximum, range, standard deviation, 

error of measurement, and limits of agreement were calculated and used to indicate the 

variability and reliability of the data. For intra-observer analysis, gate split-times and turn 

times demonstrated a similar variation of 0.21s (limits of agreement). However, for inter-

observer analysis this increased to 0.39 and 0.37s. Stroke identification, which links to 

technique used (a combination of strokes make up a technique), produced 78% accuracy 

levels that increased to 81% with the inclusion of half-correct strokes. The reason for the 

intra-observer analysis being more reliable than inter-observer analysis was suggested to 

be due to slightly different interpretations of the operational definitions and differences in 

the knowledge of canoe slalom among the observers. All three observers in this study 

were relatively inexperienced in the use of the system and the definitions used because 

they had only recently been developed. It is possible, therefore, that learning was still 

taking place and the reliability results overstated the errors for fully trained observers.  

Hunter et al. (2007) also suggested that the water caused visibility problems, which 

affected the reliability, and made direct comparisons of reliability values with other 

sports, and previous research, unfair. This may be true, but irrespective of circumstances, 
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reasonable reliability is essential if the analysis data is to be used effectively. Methods for 

increasing accuracy of measurement are therefore imperative, for example, by increasing 

the number of camera positions and adjusting the camera angles. Given all the concerns 

raised above, caution must be given to the accuracy of the measurements derived for this 

study, in particular, split times and identification of strokes. Future studies will therefore 

need to consider the feasibility of collecting this type of data in relation to the equipment 

available.     

 

2.3.2 Reliability – learning from other research methodologies 

Previous research has utilised expert coaches to validate the variables collected for 

analysis (Wells, Robertson, Hughes & Howe, 2004; O’Donoghue & Longville, 2004; 

James, Mellalieu & Jones, 2005 and Choi, O’Donoghue & Hughes, 2006). For applied 

research this should be the starting point for any researcher and could expand this to 

gaining feedback from the multi-disciplinary team and the athletes.  

The majority of performance analysis research has been based on categorical data, 

sets of which are ‘tagged’ or ‘coded’ (notated) through computerised video analysis 

software programmes such as Sportscode, Dartfish and Nacsport. There are different 

levels of sophistication of the ‘tagging’ panel however there is always room for human 

error and therefore requires a high level of reliability testing. This is vital when the 

information is being used in coaching contexts to make important decisions 

(O’Donoghue, 2007) for instance around team selection. Intra- and inter-analyst tests 

should be conducted to determine the accuracy and summed data should be avoided to 

prevent invalid results (Hughes, Cooper & Nevill, 2002). Kappa (Cohen, 1960) has 
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become a useful reliability statistic to use with nominal variables because Kappa 

determines the proportion of cases where the independent observers agree excluding the 

proportion where they could have agreed by chance (Robinson & O’Donoghue, 2007). 

 For ratio data Cooper, Hughes, O’Donoghue and Nevill (2007) presented a 

method for assessing reliability based upon Bland and Altman’s (1999) suggestions for 

the non-parametric treatment of comparison data and Nevill, Lane, Kilgour, Bowes and 

Whyte (2001) who recommended that 95% of differences should be recorded within a 

reference value thought to be of ‘no practical importance’. This study resulted in a 

method that any applied analyst could adopt to assess their reliability of individual 

variables. The added benefit is that these Bland & Altman plots are clearly presentable on 

a simple XY graph and easily understood by the user. It was concluded that decisions 

about the reference value should depend upon the type and frequency of data being 

analysed and upon the context in which the data is to be used in practice.  

 

2.4 Profiling performance in sport 

There are clearly strengths and weaknesses to profiling which need to be considered prior 

to producing profiles. The dangers of having too little or too much data can prove 

challenging when attempting to produce profiles. Potter and Hughes (2001) reinforced 

the theory that the greater the database, the more accurate is the model against which to 

compare future performances. However, as Hughes, Evans & Wells (2004) stated, even 

this safeguard will have inherent disadvantages: it can be argued that as a database 

increases in size, it will become less sensitive to changes in playing patterns (Hughes et 
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al., 2004). O’Donoghue (2005) stated the following strengths could be highlighted in 

Hughes et al., (2004) work: 

 It reduces variability due to individual match effects by basing performance 

indicators on multiple match data. 

 It provides a systematic means of determining the number of matches 

(performances) required to produce stable value for a performance indicator. 

 There is flexibility in terms of the limits of error that performance indicators need 

to stabilise within. 

(O’Donoghue, 2005) 

 

On the flip side O’Donoghue (2005) highlighted some criticisms to the Hughes et al., 

(2004) work, these are: 

 As more matches (performances) are added, the limits of error relate the evolving 

mean to the eventual mean using all of the matches. By expressing the difference 

between these 2 values as a percentage of the eventual mean, the technique risks 

interpreting a meaningful difference as being tolerable. 

 The terminology that has been used can be challenged. The word “normative” 

suggests that subject data is related to normative percentiles for the performance 

indicators. This is not the case with the method proposed by Hughes et al. (2001). 

 Where we are studying the subject to determine a performance profile, we should 

recognise that some subjects will be inconsistent or erratic with respect to some 

performance indicators. The instability in such subjects is an important aspect to 

investigate and understand. 

(O’Donoghue, 2005) 
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Moving from the initial profiling studies in 1999-2001 into work presented by 

O’Dongohue (2005) and James et al., (2005) it was clear to see that early methods had 

provided motivation to discover new methods to overcome some of the problems when 

profiling performance. O’Donoghue’s (2005) method is applicable in sports such as 

athletics, swimming, cycling, canoeing, walking and triathlon where good performance is 

associated with low times or high distances achieved.  Furthermore, in these types of 

sports, performance indicators are not affected by the quality of opponents as much as 

performance indicators in formal games would be. O’Donoghue’s (2005) paper proposed 

an alternative method to Hughes et al., (2001) that represents not only the typical 

performance of a team or individual but also the spread of performances. The technique 

also relates the set of performance indicators for a team or individual to normative data 

for a relevant population of teams or individuals. There are three stages to O’Donoghue’s 

proposed method; (1) determining normative data, (2) describing the performances of the 

subjects of interest and (3) relating the performances of the subjects of interest to the 

normative data. When determining normative data O’Donoghue (2005) used percentiles 

(19 percentiles from 5% to 95%) and stated that this is a powerful means of interpreting 

the value, however be aware that there are some variables where the lower the value the 

better, some variables where higher values are better and some variables where there is an 

optimal range of values (O’Donoghue, 2005). The study involved analysing a sample of 

elite level tennis players (female and male) in stage one and a number of individual 

players to complete stages 2.  
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O’Donoghue (2005) stated there are four key advantages over the technique 

proposed by Hughes et al., (2001), these are: 

1. The technique is concise allowing all of the performance indicators to be 

displayed on a single radar chart. 

2. The technique represents the mean as well as the variability for each performance 

indicator. 

3. The performance indicators are related to performance norms for the population 

of interest. 

4. The technique can be tailored to compare the typical performances of different 

performers or to compare different types of performance by the same performer. 

 

James at al.’s (2005) work on profiling in Rugby Union also suggested an alternative 

approach to Hughes et al.’s work (2001). The method involved the specific estimates of 

population medians to be calculated from the sample data through confidence limits. 

They believed that the use of confidence limits was the most applicable methodology, 

particularly to the applied practitioner, in that performance profiles of individual and 

team behaviours could be established after collection of relatively few data sets. 

Interestingly James et al., (2005) stated that not all profiles would stabilize due to the 

variability of the data, an area considered in Hughes, Wells & Matthews, (2000) work 

when analysing different standards of play (in this case recreational levels produced 

limited stabilizing of profiles).  

O’Donoghue et al. (2008) stated that the methods of O’Donoghue (2005), Hughes et 

al. (2001) and James et al. (2005) could be criticised for not addressing the quality of the 

opposition when interpreting performance indicator value. This is a reasonable point and 

proves that performance profiling has limitations which still need to be explored within 
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the academic world of performance analysis to move the study of profiling further so that 

more appropriate techniques can be adopted based on the sports own individual ‘make-

up’. Quality of opposition is not a new phenomenon, it has been on the ‘back of the 

minds’ of many a researcher / analyst for a long time when considering their methods. In 

the notational analysis literature there are a number of studies that have considered 

quality of opposition and also quality of performance in methods. Such studies include 

Hughes et al. (2000) that analysed the different standards so that profiles for each level 

could be distinguished; Hughes and Franks (1994) also studied squash analysing different 

levels of standards and decided to analyse the first three games only, even though a 

number of the matches contained four or five games within the match. With particular 

focus on level of opposition research (Hughes and Franks, 1994; Hughes et al., 2000) 

these papers had the potential to use these ‘profiles’ when analysing individual 

performances against these profiles but this was not the aim of the studies. 

In a performance profiling review paper of James et al.’s (2005) and O’Donoghue’s 

(2005) techniques (Butterworth, O’Donoghue & Cropley, 2013) highlighted that several 

different methods of profiling have been identified, each with their own qualities, 

however, one enduring adverse trait runs in parallel throughout each; a lack of relation to 

the coaching process. Interestingly the work in Squash (Hughes et al. 2000) had this at its 

forefront and the interaction of this research to the coaching process was the catalyst. 

Looking at current day this is also the case for this research thesis within canoe slalom. 

In O’Donoghue et al.’s (2008) work the purpose of their investigation was to 

determine percentiles for British National Super League netball performances. Teams 

were classified as being in the top or bottom half of the league based on their finishing 
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position in the league table for the season of the given match and appropriate analyses 

were conducted based on these classification (Top v Top, Top v Bottom, Bottom v Top, 

Bottom v Bottom). A question arises, how would this application be used by the working 

analyst that would require profiles through the season instead of at the end of the season? 

Is there any flexibility in this approach? Do you have to update the normative profiles to 

ensure they are up to date and relevant to the group? As O’Donoghue et al. (2008) 

recommended future research with this approach on other sports needs to be explored. 

The work of James et al. (2006) analysed Tiger Woods’ outstanding record in the 

sport of golf by comparing his performances on eight performance indicators and one 

performance outcome, weighted scoring average. This was achieved by converting the 

player’s performance scores into standard scores (z scores) relative to the other 

professionals playing on the PGA tour during a particular year. Thus z scores values of 0 

represent tour average performance; values of 1 and -1 represent performance one 

standard deviation better or worse than tour average. If a normal distribution is assumed 

then 95% of players will score between -2 and +2 and 99% between -3 and +3 (James et 

al, 2006). They hypothesised that this form of analysis would enable a true relationship 

between variables to be ascertained since each value would be relative to the tour average 

and standard deviation for that variable. In conclusion it was suggested that analysing 

performance indicators relative to the other tour players provided more information 

regarding a player’s strengths and weaknesses than correlation analysis alone. This 

approach can assess performance indicators and potentially be used to profile 

performance to identify a number of areas of interest (refer to areas highlighted below). 
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To summarise from the literature there are a number of areas to consider prior to 

producing performance profiles: 

- Is it an individual profile? 

- Is it a team profile? 

- Is it a group (standard) profile? 

- What are the levels of standards? 

- What are the criteria for the level of standards? 

- What performance indicators are being used in the profile? 

- Which profiling methods meet the needs of the data being analysed? 

 

In the applied world once profiles are produced the analyst is suggesting that a 

team or individual is likely to perform based on the profile but is this ever proven and 

should we be stating with such commitment that this outcome will happen. With 

performance’s being so variable in many sports, including canoe slalom should 

performance analysts be leaning towards probability as a method to calculate the chance 

of something happening. James et al., (2005) suggested that a performance profile should 

offer some indication of future performance. In an attempt to progress performance 

profiling techniques O’Donoghue & Cullinane’s (2011) approach included the evaluation 

of players and teams, in particular quality of opponents.  The functions in their analyses 

allowed them to determine how much better or worse a player had done than would have 

been expected in a match against an opponent of the given World ranking. The main 

difficulty within their study was obtaining enough data to do a meaningful regression 

modelling exercise, a common issue in some sports analysis. In canoe slalom there are 

limited events per year and limited athletes per nation which results in low data sets to 

profile performance over time.  
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2.5 Predicting and forecasting performance techniques 

Historically, the prediction of sports performance has been a concept usually reserved for 

those associated with the betting culture (Hughes, 2004) however this can be widened to 

business, economics, politics, geology and medicine (O’Donoghue, Ball, Eustace, 

McFarlan & Nisotaki, 2016). Within Hughes’ review it rightly stated that for athletes and 

coaches predictions are often made about forthcoming opponents based upon previous 

encounters and known traits. This human prediction is however sensitive to subjective 

bias and even though the expertise of the coach is valid it is unable to compete with 

computer computations of chance and uncertainty. There has been some research that has 

tested human predictions with computer-based models (O’Donoghue & Williams, 2004; 

O’Donoghue, Dubitzky, Lopes, Berrar, Lagan, Hassan & Bairner & Darby, 2003). In fact 

O’Donoghue & Williams (2004) found a far greater range of accuracies for the human 

predictors with the most successful human correctly predicting the outcomes of 46 of the 

48 matches in the 2003 Rugby World Cup. Overall, the study provided evidence that 

computer-based methods are more successful at predicting the outcomes of International 

rugby union matches than the average human, but is not as successful as human experts. 

 More recently, O’Donoghue et al. (2016) found that match outcomes in 

International rugby union performance are more difficult to predict than in previous 

years. This could be a result of the competition structure. Their model also considered the 

quality of opposition and revealed that higher ranked teams did not do as well as 

predicted. Sport continues to be a challenge to predict due to its variability in nature. It 

was also concluded that larger data sets produced more accurate predictive models than 

smaller sets of more recent data. As stated previously not all sports have large data sets 
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that are relevant to current performance standards and therefore ineligible for statistical 

analysis. 

Suitability of time series analysis has the potential to be explored in canoe slalom. 

The analysis of time series is based on the assumption that successive values in the data 

file represent consecutive measurements taken at equally spaced time intervals (StatSoft, 

Inc., (2013). De Smith (2015) however stated that the data are often, but not always, 

measured or defined for times that have equal intervals between them. This is applicable 

to canoe slalom data as the competition dates differ each year. There are a number of 

useful examples of why time series analysis is conducted such as the ability to visually 

present data, (averages, peaks and troughs, critical turning points) and to predict and 

forecast. Most time series patterns can be described in terms of two classes of 

components, trend and seasonality. Within canoe slalom there could be an interest in 

both. The literature stated that there are no proven ‘automatic’ techniques to identify 

trend components in the time series data however if the trend is not consistently 

increasing or decreasing then the suggested route is using smoothing techniques 

(StatSoft, Inc, 2013). 

Smoothing techniques comprise of simple moving averages, exponentially 

weighted moving averages, double and triple exponential smoothing. Moving averages 

simply use more recent data and ignore the older data. For example you could use the 

previous 5 observations and keep rolling them as new data comes in. This does not 

predict peaks and troughs in the data series. The next level is to weight more recent data 

over past data (exponential smoothing). The application of this to sports performance is a 

valid one as decision-makers are interested in current form and potential for improvement 
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based on historical time series data. Another exponential smoothing technique devised by 

Holt, (1957) included an adjustment value to account for a trend in the data. The method 

was extended by Winters, (1960) to double exponential smoothing (Holt-Winters 

method) which incorporated a seasonal component to the analyses.  

In sports research there are examples in athletics research that have been 

challenged (James, 2012) for their use of linear regression to predict that women 

marathon runners would run as fast as men by 1998 (Whipp & Ward, 1992). Of course, 

progress in world records cannot be considered to be a continuous process (Kuper & 

Sterken, 2007). Nevill & Whyte, (2005) suggested a flattened S shape logistic curve was 

best for analysing world record times in m/s, showing a slow improvement at the 

beginning followed by an improvement and then back to a slow rate of improvement. 

This model clearly makes more sense than a simple linear one since there is bound to be 

some limit to human performance. James’s (2012) criticism of Nevill & Whyte’s (2005) 

model was that it did not consider the limits of human performance and therefore their 

predictions would become more inaccurate over time. Increased professionalism in sport 

leads to the saturation in the sense that recent improvements are generally smaller 

however this may not be true in sports where technology plays an important role (Kuper 

& Sterken, 2007). 

James’ (2012) predictions in real tennis concluded that to include inherent error 

related to the uncertainty of future performance suggested the use of upper and lower 

confidence limits for any predictions. Confidence intervals can be specified to be 

relatively certain of successfully predicting future performance by using a high 

percentage certainty but this will result in a large difference between lower and upper 



 

50 

 

limits. It was suggested that future studies should determine the optimum trade-off 

between certainty of prediction and acceptable range for lower and upper limits of 

performance. 

 When presenting forecasts with control limits, funnel plots were recommended by 

Spiegelhalter (2005) as a graphical aid. Spiegelhalter (2005) used the funnel for 

institutional comparisons that were public funded services and required accountability. 

They argued that a suitable form of such a control chart is the ‘funnel plot’ in which the 

observed indicator is plotted against a measure of its precision, so that the control limits 

form a ‘funnel’ around the target outcome. It was stated that a funnel plot has four 

components, (1) An indicator, (2) a target, (3) a precision parameter and (4) control 

limits. These funnels had some advantages highlighted in the research of which could be 

adapted to sports analysis, such as canoe slalom rankings: 

 The axes are readily interpretable, so that additional observations can be added by 

hand if desired. 

 The eye is naturally drawn to important points that lie outside the funnels. • There 

is no spurious ranking of institutions. 

 There is clear allowance for additional variability in institutions with small 

volume.  

 The relationship of outcome with volume can be both informally and formally 

assessed. 

 Over-dispersion can be taken into account. 

 If repeated observations are made over time then it would be possible to plot 

repeated points and join them up to show progress 



 

51 

 

 They are easy to produce within popular spreadsheet programmes. 

(Spiegelhalter, 2005) 

 More recently Rakow et al. (2015) used funnel plots to present quantitative risk 

information for major medical intervention that involved patients and family to use this 

information to make informed decisions around treatment. Initially the use of funnel plots 

was to inform clinical governance to assist managers and senior clinicians in making 

decisions about service delivery. With involving the public in decision making this 

prompted their research to examine how accurately funnel plots could be interpreted by 

the general public and how they use this information to make decisions about treatment. 

Interestingly in sport the British system which is publicly funded works closer than ever 

with the individual sports to ensure transparency on funding decision making and 

processes. This Tokyo Olympic cycle, UKSport has a dedicated Sports Intelligence team 

that works solely on tracking performance (Slot, 2017) to aid better decisions around the 

probability of winning. Funnel plots based on historical data could provide the winning 

edge and ensure smarter decisions are taken in investment.   

 Probability is an important and complex field of study (Lane & Osherson, Online 

statistics education). Nearly all reasoning and decision making takes place in the presence 

of some uncertainty (Heeger & Landy, 2010). In sport historical data can be used to 

understand the chances of something happening. Signal detection theory provides a 

precise language and graphic notation for analysing decision making in the presence of 

uncertainty (Heeger & Landy, 2010). Early research in the 1960s has used signal 

detection theory to analyse operant behaviour in Psychology (Nevin, 1969). There is also 

evidence of signal detection theory being used in medical decision-making and Heeger 
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and Landy (2010) explained its use when detecting tumour’s in a patient. There are four 

possible outcomes, two of these are correct, a ‘correct rejection’ (the tumour is absent and 

the radiologist says “no”) or a ‘hit’ (the tumour is present and the radiologist says “yes”). 

The other two are incorrect responses, a ‘miss’ (the tumour is present and the radiologist 

says “no”) or a ‘false alarm’ (the tumour is absent yet the radiologist says “yes”). 

Applying historical data and testing it against future performances could be achieved by 

using signal detection outcomes, for example sports such as canoe slalom work in cycles 

and could adopt Olympic cycles. This could also help coping with small data samples and 

could be tested yearly for changes, meaning that current data combined with historical 

data could be used to inform decision-making.  

 

2.6 Summary 

The literature review has presented previous research in many different areas, each of 

which is relevant to this thesis. Initially it was pointed out that there has been very little 

research in canoe slalom and the majority of that not relevant to this thesis. Hence the 

need to seek out techniques and methodologies that are applicable to analysing 

performance in canoe slalom. This review presented the need to be reliable in data 

collection followed by various factors of concern in profiling performance. In essence 

this is what this thesis is about, collecting reliable data and analysing it to make informed 

decisions about performance. The conundrum is that sporting performance is unreliable, 

mistakes are made, but distinguishing the errors made by athletes within an environment 

that includes a multitude of obstacles preventing perfection, is difficult but less so if we at 

least measure things properly.  
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Chapter Three: Study One 

CREATING A RELIABLE PERFORMANCE ANALYSIS SYSTEM FOR ELITE 

CANOE SLALOM 

 

3.1 Introduction 

Canoe slalom analysis typically involves identifying time losses or gains by an athlete in 

comparison to their competitors. At competition, and in training, it is common to see a 

number of coaching staff on the riverbank or behind a live video feed on a laptop with 

stopwatches and clip boards collecting time-based information to identify moves that 

were quicker and to provide objective feedback to their athlete on their performance. At 

competitions there are official timing gates, but typically these only record start, half-way 

and finish times. The use of more timing gates is not currently in place although these 

may not satisfy all coaches as different coaches want specific splits based on their own 

feedback needs. Hence coaches tend to have support staff recording times, using stop 

watches, at their specified positions with additional information such as movement type 

e.g. spin versus forward moves on gates sequences. This timing technique has obvious 

issues in relation to reliability with different people potentially providing times that are 

not recorded in exactly the same way e.g. when to stop the timer. Clear operational 

definitions for this minimises the error but individual bias and lack of precision e.g. 

viewing angle, contribute to the variability of the measurement. In an attempt to quantify 

and minimise these errors Hunter, Cochrane & Sachlikidis (2007) measured gate split-

times and turn times in canoe slalom competition using a post-event time-motion analysis 
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system. Video from 2 camera positions, one covering the top section of the course, the 

other the bottom, had overlapping images so that the two video clips could be spliced 

together to view the whole run. Intra-observer analysis for gate split-times and turn times 

had similar limits of agreement (0.21s) whilst inter-observer agreements were 0.39 and 

0.37s respectively. The three observers were relatively inexperienced in using the system 

and the operational definitions however as they had only been developed recently. Hunter 

et al. (2007) also suggested that the water caused visibility problems although the camera 

views would also have been an issue. Clearly an effort to improve the reliability of 

measurements in canoe slalom is imperative, possible for example, by increasing the 

number of cameras and adjusting the camera angles.  

 The management team of a National canoe slalom team decided to utilise the 

services of a full-time performance analyst in 2004. This thesis is a consequence of that 

decision. This chapter focusses on the preliminary steps taken to achieve the initial stages 

of providing relevant performance analysis support to satisfy the needs of both the 

coaches and athletes.    

 

3.2 Methodology 

3.2.1 Participants 

Elite canoe slalom coaches (n=10) and athletes (n=10) who were coaching or competing 

in European, Olympic & World Championships provided specific objectives for the 

performance analyst. The coaches all worked full-time for the British canoe slalom team 

and had varying years’ experience (1 to 10 years) with most being ex-International 
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athletes. Each coach had been employed on the basis of a World-wide reputation at the 

peak of International canoe slalom performance.  

3.2.2 What the coaches and athletes originally did 

All coaches had a clear view of how performance analysis (PA) could assist their role. 

They used video in training and competition to replay performances to athletes both 

during sessions and post-event. Some used video analysis software (www.dartfish.com) 

and/or Windows media player (www.microsoft.com) to aid this process e.g. slow motion, 

split screens. They also recorded section split times, again both in training and 

competition. At competitions coaches identified which sections of the course to produce 

split times for, based on specific moves and gate formations, and timed the top ranked 

athletes for analysis. These were reviewed in Microsoft Excel whilst viewing the relevant 

video which was manually located in Dartfish so that performances could be compared in 

the Analyser module. A penalty and technique analysis received little attention but was 

an area they wanted to develop. Athletes, however, considered only the use of video to 

analyse technical aspects of their performance and were not familiar with other 

performance analysis techniques such as the assessment of tactics. Only 30% of them 

used video software on their own with the reason being a lack of access to a personal 

computer of their own.  

 

  

http://www.dartfish.com/
http://www.microsoft.com/
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3.2.3  Needs analysis and the implementation of a PA data capture system for 

canoe slalom 

3.2.3.1 A developmental approach 

O’Donoghue & Longville (2004) documented a step by step procedure for developing a 

PA data capture (notation) system for netball, involving the collaboration between sports 

scientists, coaches and athletes (Figure 3.1).  

 

Figure 3.1  The development of a PA data capture system analysis (adapted from 

O’Donoghue & Longville, 2004)  

O’Donoghue and Longville (2004) highlighted the importance of communication 

between stakeholders, sharing of expertise and demonstrations of practice. To ensure this 

Introduction to Head Coach 

& Head Sport Scientist  

1st pilot system took on board 

coach’s / scientist’s views 

2nd version used feedback from 

the specialist coaches from 

each class (kayak & canoe) 

3rd version put into “real” 

practice with athletes & 

coaches (training session) 

4th version additional values 
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5th version in place for 
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process produced a system of relevance and practical use to coaches and athletes, key 

objectives were reliability within the data capture and processing and the provision of 

relevant statistics. Using O’Donoghue and Longville’s model (Figure 3.1) as a guide, the 

system developed for canoe slalom had to evolve through the testing of prototypes, 

systems tested, re-tested, changes implemented and further tests conducted until results 

and end-user feedback deemed satisfactory. These objectives were also refined to enable 

the delivery of feedback sessions during International competitions, a key requirement of 

the coaches. To facilitate the development of a feedback system O’Donoghue & 

Longville’s (2004) model was not adhered to with regard the number of iterations of the 

system, rather multiple planning meetings, system tests and output modifications were 

implemented until a satisfactory system had been developed. O’Donoghue and Longville 

(2004) highlighted the importance of reliability within both data capture, processing and 

the provision of statistics within feedback sessions during International competitions. Of 

relevance to this process was the published finding of poor reliability for timing data 

capture (Hunter, Cochrane & Sachlikidis, 2007) and the need to produce data of practical 

value to an elite team.  

3.2.3.2 Needs analysis 

One-on-one (coach/ Sport Science Officer and analyst) and group semi-structured 

meetings (multiple coaches) were held between the performance analyst, the Sport 

Science Officer, Head Coach, other coaches and athletes to determine a performance 

analysis solution. At the outset the coaches perceived the benefits of PA support would 

be:   
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 Enhance the coaching process  

 Assist in improving athletes’ performance  

 Help prepare athletes for training and competition  

 Enhance key coaching messages  

 Visually demonstrate key aspects of a performance  

 Review a performance  

The athletes also perceived the following benefits:  

 Review a run and identify time losses  

 Compare their performances with other athletes (split screen). 

 

To deliver relevant feedback, specific information was also required regarding the 

demands of the sport with coaches identifying the feedback required for three types of 

analysis:  

 Split times analysis  

 Penalty analysis (when an athlete hits a gate pole or misses a gate)  

 Technique analysis (choice of technique for different gates)  

 

More specific questions were also provided to the analyst as desirable outcomes of an 

analysis system (Table 3.1). 

 

 

 



 

59 

 

Table 3.1 Questions posed by coaches to influence PA data capture design 

Analysis type Specific information 

Split times  Who has the fastest splits on the course 

Where do time losses occur on the course 

How do individuals compare on upstream and downstream sections, 

gates, techniques 

Penalty  Compare penalty scores individually and between athletes 

Technique  What techniques/moves have other athletes chosen on specific sections 

What are the best approach trajectories for specific moves or sequences 

What are the fastest techniques for paddling through water features 

Race  Can performances in different classes be used to assess performance in a 

particular class 

Can a criterion gold standard be used to judge individual performance 

(using medallists or virtual runs) 

Can individual performance trends be measured over a time period e.g. 

a season 

Can specific courses be prepared for based on individual characteristics  

 

3.2.3.3 Identifying performance variables 

The final tagging panel (to record individual data events) allowed the capture of nine 

performance variables deemed to be performance indicators by the coaches (Figure 3.2). 

Whilst the coaches were instrumental in determining which variables were collected a 

final validation event was held prior to implementing the collection phase. This involved 

coach’s justifying why each variable was an important measure within a canoe slalom 

event, discussions took place regarding the use of each variable, why it was deemed 

important and any arguments against its inclusion.  This process agreed the variables to 

be collected (Figure 3.2) during the testing phase for the reliability of the measures. The 
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total individual run time (seconds) did not include penalties which were recorded 

separately (2 seconds for touching a gate and 50 seconds if a gate was missed. Split times 

were recorded based on coaches’ determination of the start and end points which was a 

consequence of the course design. There was no standardised methodology for this. 

Upstream and downstream techniques were defined (see Figure 3.3). Water features are 

combinations of white water identified as waves, stoppers and rapids. 

Figure 3.2 Performance variables notated for canoe slalom 
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3.2.4 PA data capture system development 

Dartfish video analysis software (Team Pro) was selected as the software platform as it 

met the coach demands i.e. allowed split screen playback, slow motion as well as a user 

defined tagging panel. 

3.2.4.1 Design 

A flowchart of the data capture system (Figure 3.3) was created to determine the tagging 

requirements for subsequent data analysis. Since split times were required each section 

had to be initially coded as a split section. Event buttons were used (in Dartfish) to “tag” 

the section position on the video, the duration of the event and other related values. For 

example, when selecting an upstream event, the operator needed to add directional 

information (left or right) the technique used and if it was situated on a water feature or 

not. Additional persistent competition information was also tagged once, e.g. athlete 

name, event, and class (Appendix 3.3).  
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Figure 3.3 Data capture for canoe slalom competitions 
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Similarly, the logic required to code penalties was identified via a flowchart (Figure 3.4).  

 

 

Figure 3.4 Breakdown of the penalty race analysis 

 

The final data capture system was designed to allow both real-time tagging but also 

other event data could be added post event (Appendix 3.1). Operator training identified 

which variables could be recorded real-time and which needed to be lapsed-time due to 

time and operator constraints (penalty and technique analysis).  

 

3.2.4.2 Equipment and operators 

Due to the location of video cameras 400m analogue video cables were used. Waterproof 

camcorder covers, mini dv recorders, network video storage, video switch box (Kramer 
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Electronics), network hub station (Netgear) along with a variety of network and 4 pin fire-

wire cables and BNC connectors made up the equipment. This required 5 operators (3 on 

cameras, 1 capturing and 1 analysing) during competitions.  

Course venues varied in size and hence the logistics for capturing full runs had to 

be organised on an individual venue basis (Figure 3.5 is an example of a man-made venue 

used to host the Sydney Olympic and 2005 World Championships).  

 

 

Figure 3.5 Example capture set-up an at International competition  

 

Camera 1 filmed the athlete from the start pool and followed the athlete down the 

course until in view of camera 2. Camera 2 and 3 followed a similar procedure to ensure 

the whole course was recorded. In the qualifying rounds one-minute intervals between 

starts meant that two athletes were on the course at the same time, semi-finals and final 

depended on the television broadcaster’s requirements resulting in intervals between one 

and five minutes. This setup meant that all athletes could be recorded over the entire 

course except in rare occasions when a race was badly compromised, and the athlete took 
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over two and a half minutes to complete the course. In this situation, the camera operators 

decided on which athlete to record based on the coach’s preferences. The positions 

adopted for the video capture was always at the discretion of the event organisers which 

meant that each team was always provided with an area although these could be brick 

buildings, scaffolding tents or even the team minibus. Some teams used these areas to both 

capture video and for coaches to provide video feedback to the athletes but the use of a 

capture base (Figure 3.6) where the three videos signals were sent via cable meant that 

video files could be edited and copied to the coaches’ laptops for athlete feedback sessions.  

 

 

 

 

 

 

 

 

Figure 3.6 Live capture base set-up at slalom competitions  

 

The analogue video signals were converted to digital via Sony Mini DV decks and 

connected using DV ports (fire-wire) to the laptops. The capture base operator used a 

video switch box to switch camera feeds to ensure the complete run of an athlete was 

recorded on one of the two laptops. Hence two video streams were recorded semi-

simultaneously on the two laptops using Dartfish video analysis software (dv import 

module) to ensure all athletes were recorded in avi format. The laptops simultaneously 
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recorded to a local and a networked external hard-drive so that the video footage could be 

accessed within 35 seconds of being captured (average video clip was 300mb). The split 

times were exported to Microsoft Excel for analysis (Appendix 3.2).  

 

3.2.5 Reliability of data  

3.2.5.1 Introduction 

Reliability in performance analysis relates to the extent to which the data collected reflect 

what happened in the event (James, Taylor & Stanley, 2007). Similarly, Atkinson and 

Nevill (1998) suggested that reliability refers to the amount of measurement error deemed 

acceptable for the effective practical use of an analysis system. In canoe slalom data is 

captured as different events where times are recorded via stopwatches (ratio data) and 

classified into different categories (nominal). These two data types require different 

approaches for determining reliability issues (James, Taylor & Stanley, 2007). For ratio 

data Bland and Altman (1986) presented a method of plotting the difference between two 

times against the average of them (named Bland and Altman plots). Mean biases and 95% 

limits of agreement for the between recording differences can then be calculated.  

For categorical data, James et al. (2002) suggested three error types 1) Operational 

errors: where the observer presses the wrong button to label an event, 2) Observational 

errors: the observer fails to code an event and 3) Definitional errors: the observer labels an 

event inappropriately. These types of error are more common when lots of events need to 

be coded relatively quickly as the analyst either misses some game events hence the record 

is incomplete or assigns wrong codes to events. Hughes, Cooper and Nevill (2002) 

presented a method for calculating the percentage error between two operators’ recordings 
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of event categories. They suggested the reliability test should be examined at the same 

depth as the subsequent data processing. This recommendation ensures that data is not 

summed for reliability calculations as this can produce invalid results. Cooper et al. (2007) 

discussed the number of performances required to generate enough data upon which to 

perform a realistic and worthwhile ‘test-re-test’ reliability study. This, of course, is 

determined by the frequency that a variable occurs in a performance as if insufficient data 

is tested the possibility exists that if one discrepancy exists between two operators the 

reliability result can be erroneously large. 

To calculate the accuracy of an analyst more than one notation is needed and 

undertaken in two ways. One person can code the same event twice (known as an intra-

analyst test) or two people can code the same event independently (inter-analyst). Both 

tests can give a good indication of analyst accuracy although the inter-analyst test has the 

advantage of detecting operational definition misinterpretations more fully since if only 

one analyst is used, and that person consistently misapplies an operational definition the 

test will suggest good accuracy.  

  

3.2.5.2 Methods for reliability tests 

Four observers (2 analysts & 2 elite coaches) recorded split times (ratio data) for canoe 

slalom runs of five International standard athletes (canoe & kayak classes) in different 

competitions and training scenarios. Mean absolute errors were calculated for real-time 

(the video of the run was watched either live or post-event using a stopwatch to time the 

events with no use of the pause function), lapsed time (events were tagged in Dartfish with 

the use of the pause function) and between real- and lapsed-time. Bland and Altman plots 

(Bland and Altman, 1986) were then used to assess for patterns where the greatest errors 
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were found. This type of plot was selected because the data was ratio and the expected 

distribution of errors (difference between observations) was random. Hence, the Bland and 

Altman plots provided a simple visual depiction of the pattern in the errors along with their 

magnitudes.   

The analysts categorised each run for gate penalties, gate type, technique, water 

features and general race information (Figures 3.3 and 3.4). However, these were always 

input into Dartfish post event after the official timings, penalties and gate types had been 

released. The subsequent tagging was always checked against the official record to ensure 

accuracy. Intra- and inter-analyst reliability tests were calculated using the chance-

corrected measure of agreement named Kappa (Cohen, 1960). This approach calculates 

expected frequencies for each cell (in the same way that Chi-square does) using the 

formula: 


 






E

EO

fN

ff


 

where Of  represents the observed frequencies on the table diagonal (concordant 

responses) and 
Ef the corresponding expected frequencies. 

The chance corrected Kappa statistic was selected for the categorical data on the 

basis that this statistic adjusts to account for guessing. Some researchers have suggested 

the weighted Kappa is better for performance analysis as this gives some credit for close 

but not exact agreements i.e. partial agreement (Robinson & O’Donoghue, 2007). 

However, this is most suitable for ordinal data where the difference between saying there 

were 3 passes instead of the correct 2 passes is less of an error than saying there were 4. In 

this classification scheme the data was nominal and hence each error was the same 

irrespective of whether the categories were listed next to each other or not.  
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3.3 Reliability results 

The mean difference (bias delta) for the intra-analyst reliability test for the real-time 

analysis of split times was 0.01s with 95% limits of agreement (-0.1s and 0.2s) and 

coefficient of repeatability (0.07s, Figure 3.7). No discernible pattern in the errors were 

evident with 51.4% of times larger for the second measurement.  

 

Figure 3.7 Intra-analyst reliability test for real-time analysis of split times 

 

The mean difference for the intra-analyst reliability test for the lapsed-time analysis 

of split times was 0.00s with 95% limits of agreement (-0.2s and 0.2s) and coefficient of 

repeatability (0.08s, Figure 3.8). No discernible pattern in the errors were evident.  
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Figure 3.8 Intra-analyst reliability test for lapsed-time analysis of split times  

 

The mean difference for the intra-analyst reliability test for the real- versus lapsed-

time analysis of split times was 0.00s with 95% limits of agreement (-0.3s and 0.3s) and 

coefficient of repeatability (0.15s, Figure 3.9). No discernible pattern in the errors were 

evident.  

 

Figure 3.9 Intra-analyst reliability test for real- versus lapsed-time analysis of split times  
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The mean difference for the inter-analyst reliability test for the real-time analysis of 

split times was 0.05s with 95% limits of agreement (-0.5s and 0.6s) and coefficient of 

repeatability (0.27s, Figure 3.10). No discernible pattern in the errors were evident with 

0.62s the maximum difference in times. 41.7% of times were larger for the second 

measurement.  

 

Figure 3.10 Inter-analyst reliability test for real-time analysis of split times  

 

 

The mean difference for the inter-analyst reliability test for the real-time analysis of 

split times was 0.02s with 95% limits of agreement (-0.4s and 0.5s) and coefficient of 

repeatability (0.23s, Figure 3.11). No discernible pattern in the errors were evident with 

three differences greater than 0.65s.  
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Figure 3.11 Inter-analyst reliability test for lapsed-time analysis of split times  

 

The mean difference for the inter-analyst reliability test for the real- versus lapsed-

time analysis of split times was -0.01s with 95% limits of agreement (-0.4s and 0.4s) and 

coefficient of repeatability (0.21s, Figure 3.12). No discernible pattern in the errors were 

evident with 0.66s the maximum difference in times. 55.4% of times were larger for the 

second measurement. 

 

Figure 3.12 Inter-analyst reliability test for real- versus lapsed-time analysis of split times 
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Gate penalties, gate type, techniques for down-stream gates, water features and 

general race information were all 100% reliably coded for both inter- and intra-analyst 

tests. The 6 techniques associated with the upstream gates had a 95.1% Kappa agreement 

for the intra-analyst test (Table 3.2).  

 

Table 3.2 Contingency table for intra-analyst reliability test of upstream techniques 
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The inter-analyst reliability test of upstream techniques had a 91.6% Kappa agreement 

(Table 3.3). 

Table 3.3 Contingency table for inter-analyst reliability test of upstream techniques 

 

 

3.3.1 Reliability discussion 

The limits of agreement identified 2.3% errors (n = 9/383) over 0.5 seconds, unacceptably 

high for canoe slalom split times. However intra-analyst’s tests using the sport’s 

performance analyst found that 96.2% of errors were less than 0.2s. At competition 

athletes and coaches view differences in split times of less than 0.3s as trivial whereas 

differences around and above 0.5s are deemed large. The inter-analyst tests found that 20% 

of errors were greater than 0.3s which would suggest that relying on coaches or less 

trained analysts to time splits would lead to unacceptable precision. This was in 

concordance with Hunter et al. (2007) who suggested a single analyst should complete all 

analyses to obtain the greatest accuracy and repeatability. This study demonstrated better 

reliability values than Hunter et al. (2007) whose limits of agreement for between gate 
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times were ≤0.21s for intra- and ≤0.39s for inter-analyst measurements. Hunter et al. only 

used two different camera positions to analyse split times compared to three in this study 

which would affect the visibility of start and end points and hence reliability. Within the 

constraints of the British canoe slalom team it was impossible to have a coding system 

which did not use coaches or less trained analysts to time splits. On this basis further 

analysis of split times was deemed unreliable and hence not continued during the lifespan 

of this thesis.  

The technique analysis found some discrepancies between and within analysts for 

the upstream gates which were reviewed and deemed caused by inconsistent application of 

the operational definitions. The coach deemed this error rate to be unacceptable for 

competition analysis and more training was provided by the coaches to improve the 

analyst’s interpretation of the operational definitions. It was also decided that a new 

approach to measuring and categorising upstream gates should be part of a future 

development plan which determined that this form of analysis was not to be continued 

within this thesis.  

 

3.4 General discussion 

Previous research has utilised expert coaches to validate the variables collected for 

analysis (Wells et al, 2004; O’Donoghue & Longville, 2004; James et al., 2005 and Choi 

et al., 2006) and this study adopted the same process. This study was a first step to 

providing a reliable system for collecting the performance variables requested by the 

coaches in canoe slalom. To a large extent this was successfully achieved although the 

reliability tests identified areas for improved learning and future development.  The system 
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has been demonstrated as suitable for collection of competition data within strict 

conditions, namely well-trained analysts collect data in a consistent manner.  

Since the British team only had one analyst this compromised data collection, at 

this point, to the extent that the only reliable data suitable for analysis within this PhD 

were the whole run times. The second study will aim in answering some of the specific 

questions posed by the coaches (Table 3.1) around race run time percentages and whether 

this can assess performance across classes and within class. This type of analysis could 

play a role during competition, for example using historical data to assist preparation for a 

final performance. 

 

3.5 Conclusions 

Canoe slalom takes place on different courses which are of different length and difficulty 

with limited access to the course for camera placement. This means that a performance 

analysis solution needs to operate within the limitations experienced at major International 

competitions. The solution developed in this study fits these constraints, albeit with more 

analysts available, and thus did not provide a reliable method for collecting some of the 

performance variables desired by the coaches. The selection of total run times for analysis 

in study 2 have the potential to determine between and within athlete differences that may 

discriminate performance at the level for developing improvements in athletes.  
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Chapter Four: Study Two 

THE USE OF WINNING RACE TIMES FOR ASSESSING OTHER 

PERFORMANCES  

 

4.1 Introduction 

In canoe slalom, there are no world records because races take place on courses of varying 

distance and conditions. It is therefore problematical for athletes and coaches to accurately 

identify the level of a performance, both in training and competition. In competition, the 

winning time of a race may be the best possible time although it is highly likely that this is 

not always the case. Similarly, the performance of the top 10 athlete’s will also vary 

between races due to the distribution of both mistakes and course features. Nibali, Hopkins 

and Drinkwater (2011) found the run-to-run variability for the top ranked athletes (men’s 

canoe, men’s kayak and women’s kayak) at different courses (World Cups, World 

Championships and Olympics, 2000 to 2007) was between 0.8% and 3.2%. A race 

winner’s time can therefore only be used as a proxy for the world’s best performance, 

although a virtual best performance using best split times could be used. A common 

approach in the applied world is to use race percentages i.e. the percentage time off the 

winner’s time, either K1 men (fastest class) or class winner, as a benchmark for best 

performance. National Governing Bodies have used percentages as a performance measure 

for National team selection without any published evidence that these standards are valid. 

D’Angelo (2013) calculated the percentage time off the K1 men (K1M) winner’s 

time for the 1991 and 2013 World Championships (Table 4.1). The reasons for the relative 

improvement in 10th position for all classes was considered due to rule changes, improved 

boats, more athletes or technical improvements. These factors could apply to all athletes of 
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course, and consequently, when considering race times in general, two factors can be 

considered to influence race times. First the race conditions, which include all technical 

factors such as equipment and training, these will vary between races, influence different 

race classes differently and may result in improvement in performances over time. 

Secondly, individual performances will vary due to a presence or absence of errors, skilful 

moves etc., with the top placed finishers likely to exhibit less errors and more skilful 

moves than the lower placed finishers. D’Angelo (2013) also showed that the number of 

penalties (both missed and hit gates) had reduced although absolute values were presented 

for different numbers of athletes making this comparison invalid.  

 

Table 4.1 Percentage times off K1 men’s winner’s time (D’Angelo, 2013)  

 
1991 World 

Championships 

2013 World 

Championships 

 1st position 10th position 1st position 10th position 

Men’s kayak (K1M)   0%   6%   0%   3% 

Men’s canoe singles (C1M) 11% 21%   7% 11% 

Men’s canoe doubles (C2M) 21% 31% 19% 26% 

Women’s kayak (K1W) 26% 39% 16% 23% 

 

D’Angelo (2013) suggested the analysis of times could include and exclude 

penalties. Excluding penalties allows the coach to monitor raw speed whereas the inclusion 

of penalties reflects the true performance level. Penalty analysis was suggested to be of 

value to coaches in Study 1 (Table 3.1) with a common perception that a “clean” run is 

either desirable or a necessity to win a race. Similarly, penalties can prevent an athlete 

making it through the heats or semi-finals into the final. Hunter et al. (2008) stated that due 
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to the low numbers of penalties in the top ten finishers it was difficult to determine if any 

relationships existed between penalties and performance. 

Nibali et al (2011) found that performances of the top athletes (finished in the top 5 

of the final) varied substantially less than athletes finishing in 6th to 10th places. Substantial 

between race variations (which is the same as within athlete variation) were deemed to be 

largely related to course difficulty differences (gate placement, water flow and depth of 

waves). Their analysis of semi-final and final times suggested very poor predictability 

(correlations between 0.1 and 0.5) between the two, purported to be due to the small 

between athlete variability (top 10 performances similar) in comparison to the large within 

athlete variability (race to race). These results led the authors to conclude that a poor semi-

final run would not preclude an athlete from performing well in the final and vice versa. 

However, the rules for competition for the races analysed in their study meant that the 

semi-final and final times were aggregated to determine finishing positions. These rules 

have subsequently changed to the current system, where the semi-final times are merely 

qualifying times for the final (top 10 generally proceed to final). It is unknown whether 

this rule change has affected times in either the semi-final or final. Nibali et al. (2011) also 

concluded that the effect of a 2 second penalty increased the variability of performances 

but the penalty offset any gains in speed. Finally, to improve a medal prospect, 

improvements of at least 0.4-0.6% were suggested.  

International Canoe Federation (ICF) rules state that a canoe slalom course should 

be navigable in around 95 seconds by K1 men. However, conditions on a given day may 

mean that the course takes longer or shorter to navigate than the course designers 

anticipated. Bullock & Hopkins (2009) used the percentages off the winning time to 

predict an athlete’s outcome at the 2006 Winter Olympic Games. Using race percentages 

has the effect of normalising between race and event differences although the underlying 
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assumption that the winning performance is the best possible time is an approximation. 

Therefore, caution is needed (Bullock & Hopkins, 2009). An analysis of race times 

between the different classes, men’s kayak (K1M), men’s canoe singles (C1M), men’s 

canoe doubles (C2M), women’s kayak (K1W) women’s canoe singles (C1W) may help to 

discern performance levels for the different classes although improvements in individual 

classes are likely to confuse the analysis.  

 Race percentages may also be more appropriate when calculated from the specific 

class rather than using the K1M time for all classes as between class variation may be 

different between events. Competitions on the circuit are also limited in numbers (1 x 

European, 1 x World Championships and 3 World Cups, increased to 5 in 2014) which 

may lack the power to enable statistical analyses. An option of combining data over a 

number of years in an attempt to model the race percentages should be explored. This 

study will use the percentage time off the winner’s time, either K1 men or class winner, to 

assess which approach is more accurate for assessing performance. Times from heats were 

excluded from analyses due to different tactics being employed i.e. the goal is to progress 

rather than produce a best time. Race finals were used to determine what it took to achieve 

a medal in 3rd place, 5th place and semi-finals used to determine what it took to qualify for 

the final (10th place). Signal detection methods were also used to estimate the likelihood of 

an athlete medalling or not based on predicted race percentages.  
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4.2 Methodology 

4.2.1 Participants 

Elite level canoe slalom athletes competing at the highest level within a governing body in 

canoe slalom from 2009 to 2016 in World Championship, World Cup & European events 

(n=49 K1M, C1M & K1W; n=45 C2M & C1W). Olympics were excluded as the rule that 

only one boat per nation for each class potentially omitted some top athletes and fewer 

boats progressed in each round compared to other races.  

 

4.2.2 Procedure 

Competition run times were the official results downloaded from each competition 

organiser’s website. Each competition had an official timing beam system 

(http://www.siwidata.com) that recorded the time from the official start to the official 

finish for each competitor. These were imported into Microsoft Excel and percentages off 

K1M & class winning times were calculated. Both SPSS and Excel were used for 

subsequent analyses to determine:  

- Characteristics of race performances; 

- Variability in race percentages using 1 standard deviation; 

- Proportional change or not between the 2012 Olympic cycle and the 2016 Olympic 

cycle using chi square analysis for comparison between K1M winner percentages 

and class percentages; 

- Predictability of race percentages using percentiles and signal detection theory. 
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Signal detection theory provides a precise language and graphic notation for analysing 

decision making in the presence of uncertainty (Heeger & Landy, 2010). In this study data 

from the 2012 Olympic cycle (events between 2009 and 2012) were used to determine the 

probability of winning a medal or not i.e. a prediction using percentages off K1M and class 

winners. Data from the 2016 Olympic cycle (events between 2013 and 2016) were then 

used to evaluate the accuracy of the predictions (Figure 4.1).  

 

Key:  Hit – 2012 data predicted an athlete’s percentage time was good enough to medal 

and the athlete did gain a medal 

False alarm – 2012 data predicted a medal but the athlete didn’t  

Miss – 2012 data predicted no medal but the athlete did medal 

Correct rejection – 2012 data predicted no medal and athlete didn’t  

 

Figure 4.1 Signal detection methodology applied to medal prediction and outcome in 

canoe slalom 

 

 Whilst both misses and false alarms were erroneous predictions it was thought that 

false alarms (specifying a target percentage to an athlete who goes on to achieve it but 

failed to gain a medal) were worse outcomes than misses (specifying a target percentage to 

an athlete who didn’t achieve it but gained a medal). In the latter case, the athlete has 

gained an unexpected medal and is very happy although this may lead to the athlete 
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considering future targets as being unnecessarily tough, Athletes who were disappointed at 

not medalling could consider false alarms from the perspective that bad advice was given 

and in an extreme situation with funding dependent on medals the analyst’s role becomes 

at risk.   

 To determine whether K1M or class, winner percentages were useful indicators of 

race performance some understanding of consistency was required. For example, does 

achieving 103% off the K1M winner percentage equate to a 3rd place finish in a different 

class, all of the time, some of the time or never. If a consistent answer to this question was 

found, then the usefulness of the winner percentage was confirmed. To determine if this 

relationship existed some rules needed to be determined and then tested against different 

data. Hence, all race times from the 2009-12 Olympic cycle were compared to the K1M 

and class winner percentages from the same competition by calculating the percentage 

time off the respective winning time. To answer the specific question above, all 3rd place 

percentages were used to calculate 25th, 50th and 75th percentiles. Thus, the frequency that 

the 3rd place race percentages fell into each of the four percentile categories (0-25, 25-50, 

50-75, 75-100) could be ascertained. These percentile boundaries were then used to 

calculate the frequency into which the 2013-16 Olympic cycle 3rd place race percentages 

fell. The two sets of frequencies were then compared using a Chi square analysis with the 

effect size calculated using Cramer’s V.   
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4.3 Results 

This section has been split into four to highlight the different approaches used to try to 

determine whether performances in canoe slalom could be measured in a valid and reliable 

manner, and if so, could coaches accurately comment on these performances in terms of 

overall time and whether they were of sufficient quality to represent a chance of making a 

final, medalling or even winning a future race.  

 Section 4.3.1 compared race times for all classes to see whether classes did perform 

differently and whether the variability in race time was related to that time. As the pattern 

fitted the prevailing view, and that of coaches, historical patterns in race times were 

ascertained (Section 4.3.2). Coaches used percentages off race winners in the belief that 

these were valid judgements of performance although opinions were divided as to whether 

using K1 Men (the fastest class) or the class winner was the best solution, neither of which 

had been subjected to rigorous scrutiny. Hence the variability of performances in relation 

to race winners were investigated to see whether race performances were changing over 

time e.g. larger improvements in some classes compared to others would suggest using 

class winners may be more appropriate than using K1 Men’s. The results suggested that 

variability was evident and hence some form of longitudinal analysis necessary to account 

for this.  

 The analysis then considered races over time (Section 4.3.3), for both one year and 

Olympic cycles (4 years). These analyses demonstrated more consistency in the variability, 

as would be expected with more data, with the two Olympic cycles (2009-12 and 2013-16) 

used to test for differences using percentiles (25th, 50th and 75th). Relatively small 

differences, which exhibited no clear pattern, were found for 23 out of the 31 comparisons.  
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 Section 4.3.4 utilised the percentile approach, expanded to 95%, 75%, 50%, 25% 

and 5%, using the Olympic cycles to assess their predictability (accuracy). Signal detection 

theory was used to compare the theorised likelihood of a race percentage gaining a medal, 

determined using the 2009-12 data, and tested to see if the percentile boundaries equated to 

success or failure during the 2013-16 cycle. To assess the best percentage to use receiver 

operating characteristic (ROC) curves (false alarms plotted against hits) and detection error 

trade-off (DET) graphs (false alarms plotted against misses) were produced. These 

analyses suggested the use of race percentages off the class winner, rather than the K1M, 

with a 50% level of probability of medalling resulting in a low rate of false alarms 

(maximum 6%) and a high hit rate (over 70% of medals correctly identified).  

4.3.1 Canoe slalom race characteristics 

The K1M winning times for 49 International race finals ranged from 69.9 to 108.0s 

(median = 92.6s, IQR = 7.6, Figure 4.2) with winning times in the other race classes 

typically exhibiting slower times but similar IQRs, excluding C1W who were introduced 

to ICF World Championship status in 2009, (C1M = 7.2, C2M = 9.1, K1W = 7.9, C1W = 

18.5). 

 

Figure 4.2 Canoe slalom winning times for finals in International competitions  

(2009-2016) 
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4.3.2 Canoe slalom race percentages off K1M winning times between 2009 and 2016 

4.3.2.1 Average performances 

In the K1M class the average percentage time off the winner varied more for the lower 

places compared to the higher ones (Figure 4.3; Figure 4.4). 

 

Figure 4.3 K1M percentage times for each final place off the K1M winning time  

(2009-2016) 

 

Figure 4.4 Percentage times for top 5 final places off the K1M winning time (2009-2016) 
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Since the 10th place in a final varied so much (due to 50 second penalties) 

subsequent analyses will only compare 1st, 3rd and 5th place race times from finals, for the 

different classes, against the class and K1M winner (at the same event). The 10th place in 

the semi-final was compared against the semi-final class and K1M semi-final winning 

times to determine what it took to make a final.  

In relation to the K1M winner (final except for 10th place which was against K1M 

semi-final winner) the percentages tended to vary more for the slower classes and lower 

places (Figure 4.5).  

 

 

 

Figure 4.5 Mean percentages for each class off the K1M winning time (2009-2016) 
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4.3.2.2 Yearly K1M performances  

There was no clear improvement in performances for 3rd, 5th or 10th places over the 8 year 

period relative to the K1M winning times (Figure 4.6). However, the variability of 

percentage times did change between years for all three positions. For example, in 2016 

the 5th place percentages off the K1M winning time averaged 102.9% (minimum 101.3% 

and maximum 107.6%). In 2014 the 10th place averaged 103.1% off the K1M semi-final 

winning time (minimum 102.2% and maximum 104.3%).  

 

 

Figure 4.6  Mean K1M percentage times off the K1M winner by place & year (10th 

place calculated from semi-final winner) 
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4.3.3 Canoe slalom race percentages off K1M and class winning times (2009 – 2016) 

 

4.3.3.1 Yearly percentages  

To assess the veracity of using the K1M or the class winning times the percentages for 1st, 

3rd, 5th and 10th places were plotted by year. C1M mean percentage time off K1M and class 

winner remained fairly constant through the 8 years (Figure 4.7) with no obvious 

improvement or decrement over time. Similarly, the variability in percentages did not 

indicate any overall pattern to suggest a trend. 

 

 

Figure 4.7  Mean C1M percentage times off the K1M winner and C1M winner by place 

& year (10th place calculated from semi-final winners) 

 

Similarly, random patterns for percentage times were found for C2M (Figure 4.8) 

and K1W (Figure 4.9).  
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Figure 4.8  Mean C2M percentage times off the K1M winner and C2M winner by place 

& year (10th place calculated from semi-final winners)  

 

 

 

Figure 4.9  Mean K1W percentage times off the K1M winner and K1W winner by 

place & year (10th place calculated from semi-final winners)  
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In the C1W class (Figure 4.10) the relatively random pattern of variability seen in 

the other classes was replicated although some improvement in percentages off both K1M 

and class winner was evident.  

 

Figure 4.10  Mean C1W percentage times off the K1M winner and C1W winner by 

place & year (10th place calculated from semi-final winners) 

 

4.3.3.2 Olympic cycles  

The lack of obvious pattern in yearly percentages led to the consideration of dividing the 

data into Olympic cycles, an obvious choice given that canoe slalom is an Olympic sport. 

This also had the effect of increasing the sample size (to 22 for most classes in 2009-12 

and 27 in 2013-16).  

Percentiles (25th, 50th and 75th) were calculated for race percentages off K1M and 

class winning times for the 2009-12 Olympic cycle. This meant that first place percentages 

could be calculated off K1M for C1M, C2M, K1W, C1W. Third, fifth and tenth place 

percentages could be calculated off K1M and class winner for K1M, C1M, C2M, K1W, 
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C1W. This equated to 31 separate analyses where race percentages for the 2013-16 

Olympic cycle were classified according to the 25th, 50th and 75th percentile boundaries 

obtained from the 2009-12 Olympic cycle i.e. the proportion of percentages that fell into 1) 

the best percentage to the 25th percentile, 2) the 25th to 50th percentile, 3) the 50th to 75th 

percentile and 4) 75th percentile to worst. Chi-square tests assessed the degree of 

independence between the two Olympic cycles although there were some instances where 

some expected counts were less than 5 (indicated by a Key stating the number of cells, 

Figures 4.12, 4.13, 4.14 and Appendices 4.1 - 4.15, 4.17 - 4.27) suggesting some caution 

in relation to the veracity of those results.  

Three patterns in the data were found, small difference between 2009-12 and 2013-

16 Olympic cycles (n = 2); slightly larger differences which exhibited no clear pattern 

between the two Olympic cycles for the different races (n = 23) and an improvement in the 

2013-16 data in comparison to 2009-12 (n = 6). These were based on the effect sizes (0.1 

small, 0.3 medium and 0.5 large; Cohen, 1992) which were colour coded in Table 4.2.  
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Table 4.2  Effect sizes for differences in frequency of percentages within percentile 

categories between the 2009-12 and 2013-16 Olympic cycles 

 

Class  Place 

Percentage 

off K1M 

winner 

Percentage 

off class 

winner 

    K1M 3rd 0.1 

 

 

5th 0.2 

 

 

10th 0.3 

     C1M 1st  0.3 

 

 

3rd 0.3 0.2 

 

5th 0.3 0.2 

 

10th 0.3 0.3 

    C2M 1st  0.2 

 

 

3rd 0.3 0.2 

 

5th 0.2 0.3 

 

10th 0.4 0.3 

    K1W 1st  0.1 

 

 

3rd 0.2 0.3 

 

5th 0.2 0.3 

 

10th 0.2 0.5 

    C1W 1st  0.7 

 

 

3rd 0.6 0.2 

 

5th 0.5 0.3 

 

10th 0.7 0.7 

    

 

Mean 0.4 0.3 

 

SD 0.2 0.1 

 

 

There were small differences in the proportion of 3rd place K1M percentages off 

the K1M winner in the four percentile categories between the 2009-12 and 2013-16 

Olympic cycles (Chi-square = 0.24, df = 3, p = 0.97, Cramer’s V = 0.07; Figure 4.11). See 

Appendix 4.16 for the other category where small differences were found.   
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Figure 4.11 Proportion of K1M’s 3rd place race percentages off the K1M winner in four 

percentile categories during the 2009-12 and 2013-16 Olympic cycles 

 

There were more 3rd place C2M percentages off the K1M winner in the slowest 

percentile category in the 2013-16 Olympic cycle compared to the 2009-12 cycle (Chi-

square = 3.35, df = 3, p = 0.34, Cramer’s V = 0.28; Figure 4.12).  

 

 

Key: 2 cells had expected counts of less than 5  

Figure 4.12 Proportion of C2M’s 3rd place race percentages off the K1M winner in four 

percentile categories during the 2009-12 and 2013-16 Olympic cycles 



 

95 

 

There were slightly more 10th place K1W percentages off the class winner in the 

fastest (<25th) and 50th to 75th percentile categories in the 2013-16 Olympic cycle 

compared to the 2009-12 cycle (Chi-square = 11.30, df = 3, p = 0.10, Cramer’s V = 0.48; 

Figure 4.13). See Appendices 4.1 - 4.15, 4.17 – 4.21, 4.23, 4.25 for the other categories 

where medium differences were found. 

 

Key: 4 cells had expected counts of less than 5  

Figure 4.13 Proportion of K1W’s 10th place race percentages off the class winner in four 

percentile categories during the 2009-12 and 2013-16 Olympic cycles 

 

There were more 1st place C1W percentages off the K1M winner in the fastest 

(<25th) percentile category in the 2013-16 Olympic cycle compared to the 2009-12 cycle 

(Chi-square = 20.62, df = 3, p < 0.001, Cramer’s V = 0.70; Figure 4.14). See Appendices 

4.22, 4.24, 4.26 & 4.27 for the other categories where large differences were found. 
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Key: 6 cells had expected counts of less than 5  

Figure 4.14 Proportion of C1W’s 1st place race percentages off the K1M winner in four 

percentile categories during the 2009-12 and 2013-16 Olympic cycles 

 

4.3.4 Predicting the probability of achieving 3rd, 5th and making the final in canoe 

slalom races using percentages off K1M and class winning times (2009 – 2016) 

 

4.3.4.1 Percentage chance  

The probability of being placed 3rd, 5th or 10th (making the final) in the 2009-12 Olympic 

cycle was calculated using the percentage times off the K1M (Table 4.3) and the class 

winning times (Table 4.4).  
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Table 4.3 The probability of making a place using percentages off the K1M winner 

(2009-12 Olympic cycle) 

 

    Percentage chance 

Class Placing 95 75 50 25 5 

K1M 3rd 100.3 101.3 102.0 103.3 105.1 

  5th 101.2 102.3 103.6 104.8 106.6 

  10th 101.9 102.7 103.3 105.5 108.6 

C1M 1st 100.7 103.4 105.0 105.9 107.9 

  3rd 105.5 106.5 107.4 108.5 110.1 

  5th 106.0 108.0 109.0 111.2 114.0 

  10th 107.8 109.5 110.3 111.6 115.6 

C2M 1st 107.7 109.8 113.8 115.9 117.8 

  3rd 109.3 112.8 115.6 117.5 120.0 

  5th 110.2 116.1 117.7 119.7 124.0 

  10th 115.2 117.8 120.9 122.6 129.3 

K1W 1st 108.4 112.0 113.2 115.0 119.0 

  3rd 111.1 114.7 116.2 118.4 121.8 

  5th 113.6 116.8 119.4 120.5 124.6 

  10th 115.4 118.6 120.1 123.7 132.3 

C1W 1st 126.5 133.1 137.1 143.8   

  3rd 135.7 140.8 146.3 153.3   

  5th 139.7 146.7 161.1 177.2   

  10th 149.7 165.4 195.6 252.1   
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Table 4.4 The probability of making a place using percentages off the class winner (2009-

12 Olympic cycle) 

 

    Percentage chance 

Class Placing 95 75 50 25 5 

K1M 3rd 100.3 101.3 102.0 103.3 105.1 

  5th 101.2 102.3 103.6 104.8 106.6 

  10th 101.9 102.7 103.3 105.5 108.6 

C1M 3rd 100.6 101.7 102.2 103.6 107.5 

  5th 101.2 102.6 104.6 105.7 109.6 

  10th 102.2 103.7 105.5 106.2 109.0 

C2M 3rd 100.4 101.1 101.7 103.0 104.4 

  5th 101.2 102.3 103.7 106.0 108.8 

  10th 102.3 104.5 105.3 107.4 114.1 

K1W 3rd 100.2 101.3 102.2 103.7 106.9 

  5th 101.6 102.8 104.1 106.3 110.5 

  10th 102.2 104.2 105.3 108.2 111.1 

C1W 3rd 101.2 104.4 105.6 108.6   

  5th 106.5 109.5 111.6 123.4   

  10th 112.7 124.8 139.7 177.8   

 

To investigate which percentage was the best to use signal detection theory was 

applied to the probability estimates for making 3rd place (medalling).  

 

4.3.4.2  Using signal detection theory to determine the most appropriate 2009- 

12 Olympic cycle probability to use 

 

The probabilities associated with making a place (Tables 4.3 and 4.4) ranged from a very 

tough percentage target (95% certain that achieving this low percentage target or better the 

athlete will achieve the predicted place) which is likely to result in a lot of athletes who 

don’t make the percentage target but do make the place i.e. misses. Conversely, using a 

very lenient percentage target (high percentage target but low (5%) chance of success) is 

likely to result in lots of athletes achieving the predicted percentage but not making the 
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place i.e. false alarms. Signal detection theory suggests the best probability to use 

minimises both misses i.e. setting the percentage target very low resulting in lots of medals 

being gained with higher percentages than the target; and false alarms (percentage target 

set too low so lots of athletes achieve the threshold but don’t make the place predicted).  

 The 2009-12 Olympic cycle percentages (off K1M and class winner) from Tables 

4.3 and 4.4 were used to categorise the 2013-16 Olympic cycle percentages into: 

 Hits - the 2013-16 race percentage made a medal and matched or bettered the 

2009-12 criterion percentage  

 Misses - the 2013-16 race percentage made a medal but was higher than the 2009-

12 criterion percentage  

 False alarms - the 2013-16 race percentage did not achieve a medal but matched or 

bettered the 2009-12 criterion percentage  

 Correct rejection - the 2013-16 race percentage did not achieve a medal and was 

higher than the 2009-12 criterion percentage 

 

 To assess the best percentage to use (95%, 75%, 50%, 25% or5%) receiver 

operating characteristic (ROC) curves (false alarms plotted against hits – green dots which 

are ideally located in the top left corner of the chart) and detection error trade-off (DET) 

graphs (the mirror image of the ROC curve where false alarms are plotted against misses – 

red dots ideally located in the bottom left corner of the chart) were produced. For example, 

the 50% probability of medalling percentage target i.e. 102.0% (Table 4.4) resulted in 

relatively few misses (6%) and false alarms (6%; red dot closest to origin in Figure 4.15). 

This probability level also resulted in a relatively high hit rate (23%; green dot in Figure 

4.15.  



 

100 

 

 

Figure 4.15 The probability of K1M making a medal in the 2013-16 Olympic cycle using 

percentages off the 2009-12 Olympic cycle class winner  

 

 

The sum of the hits and misses always equates to the percentage of athletes who 

medalled in the 2013-16 Olympic cycle. Hence a hit rate of 23% meant that 79% of all 

medals in the 2013-16 Olympic cycle were correctly predicted using this percentage. The 

other races were analysed in the same way with the percentages off the class winner 

always producing higher hit rates and less false alarms than off the K1M winner (Table 

4.5).  
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Table 4.5 Best probability value, obtained from the 2009-12 Olympic cycle, for accurately 

predicting a medal in the 2013-16 Olympic cycle  

 

    Best 

Did not 

medal Medals   

Class   probability False alarms Hit Miss Hit rate 

K1M Off K1M wnr* 50% 6% 23% 6% 79% 

C1M Off K1M wnr 25% 7% 21% 9% 70% 

 

Off class wnr* 50% 3% 23% 6% 79% 

C2M Off K1M wnr 50% 5% 14% 16% 47% 

 

Off class wnr* 50% 2% 23% 7% 77% 

K1W Off K1M wnr 75% 5% 14% 16% 47% 

 

Off class wnr* 50% 2% 20% 10% 67% 

C1W Off K1M wnr 95% 9% 22% 7% 75% 

  Off class wnr* 50% 4% 23% 7% 77% 

 

Key: * indicates superior prediction (higher hit rate and lower false alarms) between using 

K1M or class winning times 

 

There were two instances where two red dots were equidistant to the origin. On the 

basis that false alarms had been deemed more serious errors than misses the probability 

with the lowest false alarm rate was selected. For example, the 75% chance of medalling 

probability (114.7%, Table 4.3) was selected over the 50% chance (116.2%) as the false 

alarms reduced from 11% to 5% (Figure 4.16). ROC/DET graphs for all other classes are 

presented in Appendix 4.28 – 4.35. 
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Figure 4.16 The probability of K1W making a medal in the 2013-16 Olympic cycle using 

percentages off the 2009-12 Olympic K1M winner  

 

 

4.3.4.3 The stability of probability percentiles in four-year cycles  

Having assessed the veracity of using probability percentiles from the 2009-12 Olympic 

cycle to predict medal chances in the 2013-16 Olympic cycle a final question was posed in 

relation to whether using 2009-12 data determined percentages was the most appropriate 

throughout the 2013-16 Olympic cycle. An alternative approach considered was to use the 

previous 4 years’ worth of data to calculate probability percentiles i.e. in the 2014 season 

the analyst could use 2010-2013 data, in 2015 the 2011-14 data and so on.  

Medal (3rd place) percentiles for race percentages for K1M off K1M winners 

calculated in 4-year cycles suggested that the top 5% of performances had moved closer to 

theK1M winner whereas the lowest 5% had moved further away (Figure.4.17). Each class 

presented a slightly different story (Appendix 4.36 – 4.43). 
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Figure 4.17 Relative 3rd place performance off K1M winner in 4 year cycles for K1M 

4.4 Discussion 

4.4.1 Characteristics of race performances in canoe slalom 

ICF rules stated that a canoe slalom course should be navigable in around 95 seconds by 

K1M. Race times for K1M in International races between 2009 and 2016 varied between 

70s and 108s due to courses being shortened due to prevailing weather conditions or 

course designs that meant this time was impossible. The introduction of C1W in 2009 

introduced a new class where performance levels were not comparable to the other classes 

due to less experienced athletes competing although their performances have been catching 

up over time. The variability in course length and difficulty, both within and between 

classes, promoted the use of race percentages to determine performance levels. 
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4.4.2 Canoe slalom race percentages 

Percentages were produced for each class off the K1M and class winners to determine 

their appropriateness as a determinant of performance level during a race. Using the K1M 

winning time as the 100% benchmark, all other race times, from all classes, were 

converted to percentages off that time. These percentages revealed that the K1M finals 

produced relatively small differences in performance within and between races in relation 

to the other classes where the variability increased as the average performance level 

decreased. This variation was to some extent expected and was in agreement with Nibali et 

al (2011) who concluded that variability of performance in canoe slalom is greater than 

that of comparable sports. This variation did not elucidate whether performances were 

improving in time, classes were improving at different rates, different courses affected 

different classes differently or whether canoe slalom was sufficiently competitive to 

produce reasonably consistent times. Nibali (2011) presumed this variability arose from 

the technical demands of the sport. 

 The year to year distribution of race percentages for 1st (excluding K1M as this was 

always 100%), 3rd, 5th place in finals and 10th place in semi-finals (the last place to qualify 

for the final) suggested that all classes, excluding C1W, were relatively consistent with 

both within and between year and class variability not clearly demonstrating any between 

class differential in performance change and no within class change in differentiation 

between performance levels. However, if the K1M winning times were improving over 

time i.e. performance on the same course would be better in 2016 compared to 2009, but 

impossible to measure since course conditions change every race, then athlete 

improvements over time were relatively consistent across the classes with the exception of 

C1W. This new class did present improving race percentages in relation to K1M 

suggesting that this class was improving faster than any other class, the other classes were 



 

105 

 

not changing in relation to K1M. The C1W 10th place percentages off the class winner 

suggested that the gap in performance between 1st and 10th was closing over time which is 

consistent with an increasing number of athletes competing at the elite level.  

 One problem encountered when analysing the race percentages was the lack of 

data, there were only 49 International level K1M races (excluding the Olympics which 

excludes athletes due to nationality restrictions) over 8 years. The number of races is 

controlled by the ICF which sanctioned an increase in World cup events to 5 per year in 

2014. The lack of data meant that statistical methods were limited and hence the decision 

to consider performances over four-year Olympic cycles, which coincided with 

development and coaching plans for the National canoe slalom team. Future research could 

increase the number of competitions by using lower standard races which are on the canoe 

slalom race calendar. The ICF produce a ranking system which weights the quality of the 

competition and therefore could extend the analyses to assist in monitoring an athlete’s 

progress over time. 

 Chi square analyses compared the proportion of race percentages in percentile 

(25th, 50th and 75th) categories between the 2009-12 and 2013-16 Olympic cycles. The 

percentiles were calculated from the 2009-12 Olympic cycle data meaning that 

approximately 25% of the 2009-12 observations were in each of the four percentile 

categories. Whilst the Chi square test was able to assess the extent to which race 

percentages had shifted between the percentile categories, the low number of races meant 

that the assumption of minimum expected cell counts of 5 was violated on 29 occasions 

out of 31. Clearly a large amount of caution should be applied to these findings from a 

statistical standpoint. The data tended to back up what was originally thought from the 

previous analyses although there was more evidence of overall class improvement for 

C1W, new evidence that K1W’s 10th place was closing the gap on K1W’s 1st place, and a 
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consistent suggestion that performances were tending to get closer to both the race and 

K1M winning times in most events. Each of these shifts in race percentages between 2009-

12 and 2013-16 Olympic cycles would be expected if competition was getting closer due 

to more athletes competing and training in the different classes. Similarly, if advantages 

due to equipment were being eradicated the expectation would be that race times, and 

hence race percentages, would get closer.  

It was clear, however that race percentages, used in isolation to determine 

performance levels, such as ‘what it takes to make a final or medal’, was subject to error 

due to the variability in race performances, due to unknown factors, but likely to include 

within athlete variability, course variability and between class variability. For example, 

when using percentages off K1M, the course design and the number of turns at a particular 

race, could be advantageous or disadvantageous to K1M versus the other classes or 

provide no advantage to any class.  

One of the presumptions related to using the K1M or class winner was that these 

times represented something close to the best possible run time possible although this may 

not always be the case. The assumption of the winning time being nearly perfect is not too 

farfetched in that the top 10 athletes in the world are competing together and to win it is 

likely that a very good performance is needed. In this scenario when comparing between 

races and classes the race percentages would be deemed to be a fair reflection of 

performance as they are being compared to the best time. However, if a race was won by 

an inferior performance e.g. if the race conditions changed during the final resulting in an 

unfair advantage for one athlete who made some errors but still won the race, then the race 

percentages would be better than if the winner had performed at the expected level. The 

extent to which this factor influenced the results is unknown but future studies could 

consider using the virtual best (VB) times (sum of the best split times) for both K1M and 
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class. If this is considered, then questions should be raised as to how many split sections 

should be used as the more splits would equate to faster VB times but would also introduce 

more timing measurement errors. The VB method would be very time consuming if 

undertaken in event using manual methods as opposed to automatic timing gates. At this 

point in time a more cost-effective solution was to examine the probability (chance) 

associated with achieving designated race percentages. 

4.4.3 Probability of medalling in canoe slalom 

During a race there is time between performances for the athlete to compare their run 

against other competitors. The coaches and/or analyst will examine the video’s looking for 

time gains and losses to identify a realistic desired outcome and plan for their next run 

which could be a final. Probability charts off K1M (Table 4.3) and class winning times 

(Table 4.4) could be examined to determine how close a run was to a theoretical medal or 

winning performance using the percentage time off the current race winner. The coach can 

decide a risk versus reward strategy for an athlete using the percentage chance of 

medalling based on historical data (2019-12 data in this study). For example, depending on 

the percentage gain thought necessary the coach and athlete can decide to try a faster 

manoeuvre at a particular point in the race. The 2019-12 probability charts (K1M and class 

winner) were tested for their predictive ability using the 2013-16 Olympic cycle race 

results. Signal detection theory was adopted to determine the number of misses i.e. when 

the prediction stated that an achieved race percentage ‘would not medal’ but in actuality a 

medal was achieved, and the number of false alarms where the prediction ‘will medal’ was 

erroneous and the race percentage ‘did not medal’. Using this terminology, to present a 

target race percentage that has a high probability of medalling i.e. a low percentage near 

100%, there is an increased risk that athletes will have higher race percentages but still 

medal i.e. a high chance of a miss. Increasing the race percentage target i.e. lowering the 
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probability of medalling will increase the chance that an athlete will achieve the target but 

not medal i.e. a false alarm. Hence, increasing the probability of a target race percentage 

being a hit also increases the risk of a miss but decreases the chance of a false alarm. This 

approach was used to find an appropriate balance between the risk of misses and false 

alarms (they are inversely proportional) for the 2019-12 probability charts (K1M and class 

winner) using the 2013-16 Olympic cycle race results. The results unanimously supported 

the use of race percentages off the class winner, rather than the K1M, with a 50% level of 

probability of medalling resulting in a low rate of false alarms (maximum 6%) and a high 

hit rate (over 70% of medals correctly identified). Targets such as these are commonly 

used although the basis for the race percentages has not been well documented.  

 Whilst the creation of race percentage targets was based on an Olympic cycle’s 

data, further analysis could determine whether this was the most appropriate. Indeed, new 

race percentage targets were presented, but not tested, suggesting that small changes are 

likely if targets are set using the previous i.e. rolling, four year’s data as opposed to using a 

fixed four year target over the whole 4 year Olympic cycle. Targets can never be 100% 

accurate, however, since race performances are both variable and closely contested. The 

main outcome from this study is the verification that race percentages have some 

predictive validity and that percentages off class winners are more accurate than off K1M. 

However, this is limited to a small amount of competitions and the percentages do not take 

into account the quality of the field in each race. This is an area of future research that 

could be linked to O’Donoghue & Cullinane’s (2011) work on evaluating players and 

teams by determining how much better or worse a player had done then would have been 

expected in a match against an opponent of the given world ranking. In canoe slalom terms 

this could examine start lines, allow for more races to be analysed and the potential for 

athlete ratings based on a range of performance indicators. 
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4.5 Application to domestic races and training race simulations 

Athletes will compete in domestic races and training race simulations which are often 

limited in terms of the number of international paddlers at the event. This means that the 

percentages off K1M or class winner are often not comparable to international events such 

as world cups. The ability to monitor performance in these environments with world 

standard benchmarks would enhance athlete monitoring, feedback and development. To 

some extent this can be achieved by monitoring the race percentages of the athletes in a 

National team and using their virtual best run times, not strictly necessary but advisable if 

the athlete didn’t put together a great run, to estimate a theoretical international race 

winning time.  

4.6 Conclusions 

The variability in race percentages was evident throughout this study and understandable 

in terms of variation within an athlete’s performance, between course and class differences 

and within class (between athlete) performance differences. These can be considered 

sources of error when trying to establish performance norms for canoe slalom. However, 

the use of a probability measure e.g. the race percentage off the class winner achieved in 

the semi-final has a 50% chance of making a medal in the final, has a reasonable degree of 

predictive validity. This measure can be used in competition to assist performance plans 

and gauge the risk versus reward benefits. However it is advised that the percentage targets 

do need to be used with caution and combined with in event intelligence and coaching 

knowledge. The recommendation for future work is to develop race percentages further by 

exploring their application to training, determining the usefulness of virtual best times and 

to improve the predictive power of targets by determining the optimal time scale on which 

to collect data. However we are still unable to monitor an athlete’s performance accurately 
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over time using percentages in isolation and need to consider widening the number of 

competitions analysed. Therefore study 3 will focus on the evaluation of the ICF ranking 

system which uses quality factor criteria per competition. This has the potential to assist in 

developing individual profiles and tracking of performance to determine whether an athlete 

is progressing, plateauing or deteriorating.   
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Chapter Five: Study Three 

A TIME SERIES OF INDIVIDUAL PERFORMANCE IN CANOE SLALOM 

 

5.1 Introduction 

Many governments around the world are currently providing significant funding to 

enhance the chance of success in different sports. Consequently, each sport’s governing 

body needs to provide evidence to support their position, both within and between sports, 

to maximise their funding revenue. Often this is based on expectations of medalling at 

major International events such as the World Championships or Olympics. This is not 

straight forward, similar to estimating stock prices, previous performances are not a 

guarantee of future performance. In canoe slalom this may be even more problematic as 

Nibali et al. (2011) showed that the variability of performance in canoe slalom was greater 

than that of comparable sports. However, with an increased pressure to perform at the 

highest levels to secure funding a worthwhile goal would be to both monitor performance 

and estimate future potential utilising some statistical evidence. Study 1 also found that 

coaches wanted the ability to track the performance of their athletes to determine whether 

they were performing according to pre-determined targets and whether they were 

improving. 

 The ability to predict a future performance is determined by the extent to which 

future performance is a consequence of past performances (James, 2012). Furthermore, 

James (2012) outlined that this type of prediction is based on the principle that any 

performance is a consequence of prior learning, inherent skills, situational factors such as 

motivation, and in some sports the influence of the opposition. This study will apply this 

reasoning to canoe slalom racing with the proviso that relatively large variations in 
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performance (Nibali et al., 2011) and small numbers of events per year will limit the use of 

inferential statistics. Similarly, inappropriate statistics would provide false or unreliable 

results. For example, Whipp & Ward (1992) used a linear regression model to predict that 

women marathon runners would run as fast as men by 1998, subsequently proven 

inaccurate and queried by James (2012) as to why this model was used. Nevill & Whyte 

(2005) suggested a flattened S shape logistic curve was best for analysing world record 

times in m/s, showing initial slow improvement followed by rapid improvement and then 

back to a slow rate of improvement. This model clearly makes more sense than a simple 

linear one since there is bound to be some limit to human performance, a linear model 

predicts that at some point in the future running events will take no time at all! James 

(2012) suggested that Nevill & Whyte’s (2005) model also did not consider the limits of 

human performance and therefore their predictions would become more erroneous over 

time. James’ (2012) predictions in real tennis were concluded to include inherent error 

related to the uncertainty of future performance suggesting the use of upper and lower 

confidence limits for any predictions. In the case of a prediction for an individual’s future 

real tennis performance James suggested that 95% confidence limits were too lenient and 

consideration for lower levels of confidence were recommended. 

  

5.1.1 Smoothing algorithms 

In business, predicting future performance based on previous performances is often 

achieved using a smoothing algorithm. The simplest form of this predicts the next value in 

a sequence using the average of all previous performances. This places equal weight on all 

previous observations and is only appropriate if performances do not vary a lot i.e. they are 

relatively stable. An extension of this involves only using more recent performances and 
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ignoring past ones i.e. a moving average. This can involve using the previous 3, 5 or any 

other number (k) of previous observations on which to calculate the average. This method 

does not predict peaks and troughs very well however with larger values of k having a 

greater smoothing effect. Smaller values of k place more weight on the recent observations 

and the moving average therefore tracks fluctuations in the data better. The next 

progression in terms of prediction involves weighting more recent performances over past 

ones i.e. exponential smoothing. Consider the situation where early data shows no 

improvement whereas at some point in time improvements are obvious. By weighting 

more recent performances over more historical ones, since older ones have less relevance, 

achieves better forecasts, particularly when trying to remove random variations, i.e. noise, 

from the data. However, these types of smoothing algorithm, as well as the moving 

averages approach perform poorly when there is a trend in the data.  

 An alternative approach, to counter the limitations of basic smoothing algorithms 

i.e. they do not cope with upwards or downward trends very well, was devised by Holt 

(1957) who included an adjustment to account for a trend in the data as a function of time. 

Holt’s method also allows the trend to change with the addition of each new observation. 

The Holt (1957) method was later extended to the Holt-Winters method, also known as 

double exponential smoothing (Winters, 1960) to consider seasonal variations that repeat 

each periodic cycle i.e. a year, quarter or any other time frame. This method was not 

implemented for the canoe slalom data as repeated seasonal variations were not expected.  

 Some concern has been raised about outliers in a data set (e.g. Gelper, Fried & 

Croux, 2010) as they have an undue influence on the prediction equations. In canoe 

slalom, athletes who receive a 50 second penalty at a race are invariably awarded ICF 

points that are very large and usually outliers in the historical record for that athlete. 

However, if an athlete gained better points in the semi-final than the final their semi-final 
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points would be used as their ranking points for this race (ICF, 2015). If an outlier was 

present, Gelper et al., (2010) suggested three basic choices could be implemented in a 

smoothing equation i.e. do not adjust the data (as per ICF rules), remove the outlier from 

the data or replace it with a value considered more representative of the athlete’s typical 

performance.  

In study 1, coaches identified the need to know whether an athlete was on track 

(according to their performance targets) and whether there was potential to identify trends 

in performance, such as consistency, loss of form or improvements. The ICF use a world 

ranking system based on an athlete’s 5 best (ICF approved events) results over 2 years. A 

ranking formula uses a quality factor based on the level of the best five competitors at the 

competition unless it is a World class event where the factor is always zero, and the 

competitor’s race result (Section 5.2.2.1). The World ranking points is therefore, a 

smoothed performance measure, being relatively insensitive to individual race points. This 

study will utilise smoothing techniques to individual ICF race points gained by athletes to 

identify more sensitive evaluations of current form and progression over time. Data will be 

presented graphically over time as many of the broad general features of a data series can 

be seen visually and the human eye can be a very sophisticated data analysis tool 

(Montgomery et al., 2015). Smoothed race points will be used to create a performance time 

series for an athlete with a view to supporting decision-making for talent identification and 

team selection. 
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5.2 Methodology 

5.2.1 Participants 

All ICF World ranked K1Men (K1M) canoe slalom athletes competing at International 

races between 2006 and 2016 were eligible for analysis. Races included, ICF World cup, 

ICF World championships, ICF ranking races & continental championships (n=180). 

5.2.2 Procedure 

Ranking points for individual K1M races (2006-2016) were obtained from the National 

Governing body although they were also accessible through the official ICF website 

(https://www.canoeicf.com/icf-canoe-slalom-world-ranking). ICF points are calculated at 

each event with points calculated for each individual phase (heats, semi-final or final) and 

the lowest of the potential 3 scores awarded to the athlete (Section 5.2.2.1). Ranking points 

were imported into Microsoft Excel for analysis using smoothing algorithms and funnel 

analysis which are explained in Sections 5.2.2.2 & 5.2.2.3. 

5.2.2.1 ICF Race Points formula 

ICF race points are used to calculate World ranking points (since 2009), calculated as the 

average of an athlete’s 5 best race points over two years (before 2013 the best 3 race points 

were averaged). The formula for ICF race points is:  

Race Points = Phase Offset + ((150 * Race time) / Race time of Leader)  

– 150 + Quality Factor 

 

Key: Phase Offset is 0 for a final, 10 for a semi-final and 20 for the heats  

Quality Factor is the average ICF World ranking points of the five best 

athletes competing at the event 
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 Athletes who received a DNS (did not start) in both heats runs are not considered in 

the Quality Factor calculation. The major events, ICF World Cups, World Championships 

and Olympic Games are always given a Qualify Factor of 0.00. The phase offset is used to 

allow athletes who made the finals to generally rank better than athletes who finished in 

the semi-final and those better than athletes who finished in the heats.  

 

5.2.2.2 Smoothing algorithms for canoe slalom 

In this study the formula for producing a simple exponential smoothing forecast was: 

 

𝐹𝑡+1 = 𝛼𝑌𝑡 + (1 − 𝛼)𝐹𝑡                                            Equation 1 

Key: 𝐹𝑡+1 is the forecast at t+1; 𝛼 is the smoothing constant with a value between 0 and 1; 

𝑌𝑡 is the ICF race points at time t; 𝐹𝑡 is the forecast at time t (the smoothed value at 

time t) 

 

 The above formula can be rearranged to: 

𝐹𝑡+1 = 𝐹𝑡 +  𝛼(𝑌𝑡 − 𝐹𝑡)                                            Equation 2 

 

Hence the basis of a new prediction (at t+1; Equation 2) was the previous forecast 

(𝐹𝑡) plus the difference between the actual ICF race points (𝑌𝑡) and the predicted ICF race 

points (𝐹𝑡) i.e. the error of the previous prediction, adjusted by 𝛼 (the smoothing constant). 

On this basis, the exponential smoothing forecast learned from previous forecasts. If the 

value of the smoothing constant was near to 1 then recent values in the time series were 

weighted heavily in comparison to the previous forecast whereas values nearer to 0 

weighted the previous forecast more heavily than the most recent value. The error 
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associated with different values for the smoothing constant were compared using the root 

mean square error 

𝑅𝑀𝑆𝐸 = √∑(𝑦𝑡−𝑦̂2)
2

𝑛
                                                 Equation 3 

 

 Exponential smoothing can be used on small data sets and were hence applicable 

for the small number of canoe slalom International events. They were also easy to 

implement but are limited in that the forecasts tend to lag behind the actual data. An 

alternative approach, to counter this limitation i.e. they do not cope with upwards or 

downward trends very well, was devised by Holt (1957) who included an adjustment to 

account for a trend in the data as a function of time (referred to here as 𝑇𝑡, Equation 4)  

𝐹𝑡+1 = 𝛼𝑌𝑡 + (1 − 𝛼)(𝐹𝑡 + 𝑇𝑡)                                      Equation 4 

 

 As for the simple exponential smoothing forecast (Equation 1) the value of 𝛼 (the 

smoothing constant) could vary between 0 and 1 but the trend function could forecast a 

continual growth or decline in performance. To illustrate this, consider a K1M athlete who 

has just joined the senior tour after a successful junior career. The expectation is that his 

performance would improve over the season and his International Canoe Federation (ICF) 

points awarded at each event (based on finishing position and quality of the field) would 

tend to improve (lower points being better). Suppose the athlete was awarded 60 points in 

a race in July, the expectation from the coaches was that he would be awarded 50 points in 

the next race, he went on to get 40 points. In terms of the forecast two extreme views are 

possible. The forecast was good and the race outcome an anomaly which suggests not 

changing the forecast for the next race i.e. he will improve by 10 points and hence gain 30 

points next race. Alternatively, if there was minimal faith in the forecasting the actual 
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performance could be selected and hence the prediction of 40 points next time out 

(“tomorrow will be the same as today” principle). These two extremes suggest the athlete 

would achieve between 30 and 40 points although a more pragmatic approach would 

suggest somewhere in between i.e. use a value between 0 and 1 in Equation 4.   

 Holt’s method also allows the trend 𝑇𝑡 to vary with time:  

 (𝑇𝑡 = 𝛽(𝐹𝑡 − 𝐹𝑡−1) + (1 − 𝛽)𝑇𝑡−1                                 Equation 5 

Key: 𝛽 is the smoothing constant for the trend, with a value between 0 and 1.  

 

 Holt’s method for forecasting a series with a linear trend thus allowed the trend to 

change with the addition of each new observation. However, when an upward or 

downward shift in the time series was expected both the level and slope were adjusted 

using different smoothing constants for both. This allowed an adjustment to the rate at 

which the level and trend were tracked. The level estimate was calculated with:  

 

𝐿𝑡 = 𝛼𝑌𝑡 + (1 − 𝛼)(𝐿𝑡−1 + 𝑇𝑡−1)                                    Equation 6 

 The trend estimate was then calculated with: 

 

𝑇𝑡 =  𝛽(𝐿𝑡 − 𝐿𝑡−1) + (1 − 𝛽)𝑇𝑡−1                                   Equation 7 

 Finally, to calculate a forecast m steps into the future:  

 

𝐹𝑡+𝑚 = 𝐿𝑡 + 𝑚𝑇𝑡                                                   Equation 8 

 

 To use these equations both the smoothed values (Equation 6) and the trend 

estimates (Equation 7) needed to be initialised. A number of ways to do this are possible. 

𝐿1 could be set to 𝑌1 and 𝐿2 to 𝑌2 to initialise the smoothed values and 𝑇2= 𝑌2- 𝑌1 used to 



 

119 

 

initialise the trend estimates. Another option, when more data is available, is to start the 

initialisation process at some point such as at the end of the first or second year and use the 

average values for level and trend. For this study the first five ICF race points for an 

athlete were used to calculate the trend (𝑇𝑡) using the slope function in Excel and the level 

(𝐿𝑡) using the intercept function. Five ICF race points was selected as this was the 

minimum number of races to determine World ranking points. If an outlier was present, 

usually due to a 50 second penalty for the elite athletes, the data was not adjusted and the 

smoothing equation applied as normal.  

 The RMSE (Equation 3) was calculated for each permutation of 𝛼 (between 0 and 

1) for the exponential smoothing equation (executed using a macro to record the multiple 

keystrokes) with the lowest value used to select the 𝛼 value. Similarly, the solver tool was 

used to calculate the best values of  𝛼 and 𝛽 to minimise the RMSE for the Holt equation. 

These values were used for subsequent comparisons between the two smoothing methods.  

 

5.2.2.3 Performance funnels 

To track an athlete’s progress over time and determine if an athlete was on target to win 

their first race, exponentially smoothed ICF race points were compared to a performance 

funnel. This was envisaged in a similar way to Spiegelhalter (2005) who suggested that a 

‘funnel plot’ could be a form of control chart where an observed indicator was plotted 

against a measure of its precision. The purpose of such a plot being to visually identify 

differences between performances involving high and low error for example. Similarly, De 

Smith (2015) suggested that time series analysis has advantages in being able to visually 

present data to observe averages, peaks and troughs and critical turning points.  
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The basis for the use of a performance funnel here was that it was hypothesised that 

athlete’s performances would change over time i.e. variability would change, potentially 

becoming smaller as performances improved. A plot of some measure of performance 

would therefore resemble a funnel if this was the case. On this basis, a ‘winners’ funnel 

was created based on the exponentially smoothed ICF race points for all athletes that first 

entered International competitions from January 2006 and went on to win a race at some 

point in time (n = 11). Similarly, a ‘winless’ funnel was created based on the ICF race 

points for all athletes that first entered International competitions from January 2006 but 

didn’t go on to win a race up to September 2016 when they had to be ranked in the 

World’s top 40 (n = 16).  

The ‘winners’ & ‘winless’ funnels were created by synchronising each time series 

at the month each athlete achieved their first ICF world ranking i.e. their 5th race was set as 

month zero. Data for each subsequent month were presented using the median and 95% 

confidence limits (95% CL) for the median (as suggested by James et al., 2008) as the data 

distributions were typically non-normal, suggesting a non-parametric approach.  

 

5.3 Results 

5.3.1 Winning K1M athletes  

Nineteen athletes won races between 2006 and 2016, 11 of which debuted after 2006 and 

were included in the study with the 8 athletes who debuted before 2006 excluded. One of 

the excluded athletes dominated the top of the podium with 22% of the total wins (n = 50) 

at the major championships during this time (Figure 5.1).   
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    Key:                       

Figure 5.1  The number of wins per K1M athlete at the major championships between 

2006 and 2016  

 

Of the 11 winning athletes, 55% (n = 6) won their first major championship at the 

venue for which they competed (home advantage) and 4 of these were won within 3 years 

of their first ICF world ranking (Figure 5.2). 

 

      Key:                       

Figure 5.2  The number of years to an athlete’s (n = 11) first major championship win 

between 2006 and 2016 

debut after 2006 debut before 2006 

home win away win 
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5.3.2 Applying smoothing algorithms to canoe slalom  

Great race to race variation in ICF ranking points per race were evident (see Figure 5.3 for 

an example) suggesting some form of smoothing to the time series data to aid 

interpretation of any trends. 

 

Figure 5.3 Time series of ICF ranking points per race for an athlete (17)  

 

There was typically a reasonably strong relationship (r = 0.62, large effect size) 

between an athlete’s current World ranking and their race points (Figure 5.4) although 

outliers were often present.  
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Figure 5.4  Relationship between athletes’ world ranking and race points at an 

International ICF competition 

Similarly, an athlete’s individual race points tended to bear little resemblance to 

their ICF World ranking points over time as World ranking points were calculated from 

the best five races over two years i.e. over smoothed (Figure 5.5). 

 

Figure 5.5  ICF World ranking and individual race points for an athlete (15) at ICF 

International competitions  

Exponential smoothing and Holt’s method were used to produce smoothed race 

points using the RMSE to determine the best 𝛼 and 𝛽 coefficients to use. The exponential 
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method tended to be less sensitive to outliers and produce a more representative time series 

than Holt’s (Figures 5.6 - 5.8).  

Holt’s method tended to over fit any outliers (Figure 5.6).    

 

Figure 5.6 Time series of an athlete’s (5) race points, smoothed race points and World 

ranking   

 

Exponential smoothing adequately dealt with a variety of changes in direction 

(Figure 5.7).  
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Figure 5.7 Time series of an athlete’s (16) race points, smoothed race points and 

World ranking  

 

For an athlete showing a relatively steady improvement in World ranking the 

exponential smoothing more accurately portrayed performance fluctuations than either 

Holt’s method or the World ranking points (Figure 5.8). The time series plots for a further 

13 athletes are presented in Appendices 5.1 - 5.13.  

 

 

Figure 5.8 Time series of an athlete’s (17) race points, smoothed race points and 

World ranking  
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5.3.3 Performance funnels for winning & winless athletes  

To compare an athlete’s performance over time against expected values, funnels were 

created for athletes who had won a race and for winless athletes. The exponential 

smoothing algorithm was used to adjust each athlete’s race points although different values 

of 𝛼 had been selected due to the RMSE values. On reflection, this was thought to add 

unnecessary complexity and a lack of clarity for future use in the applied setting. On this 

basis the 𝛼 values selected by the lowest RMSE were inspected. Any values lower than 0.3 

or greater than 0.7 were ignored as being too extreme and the average of all other values 

(0.4) selected as the constant value for 𝛼 to be used for all subsequent analyses.  

The funnel for athletes who had won a race (n = 11; Figure 5.9) indicted that poor 

performances became less frequent over time (lower 95% CL decreasing in an exponential 

manner up to 5½ years) whereas both the median and upper 95%CL remained fairly 

constant. Increased variability was evident from 5½ years.    

 

Figure 5.9 An exponentially smoothed performance funnel for winning athletes (n = 

11) starting from their first World ranking  
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 The funnel for winless athletes (N = 16; Figure 5.10) indicted relatively linear 

improvements up to 6 years with some signs of decreasing performance from this point.  

 

Figure 5.10 An exponentially smoothed performance funnel for winless athletes (n=16) 

starting from their first World ranking  

 

Both funnels were overlaid to compare winning and winless performances (Figure 

5.11). Winless athletes very rarely had exponentially smoothed race points as good as the 

median for winning athletes with the biggest separation in the two performances occurring 

after 4 years.  

 

Figure 5.11 Exponentially smoothed performance funnels for winning (n = 11) and 

winless (n = 16) athletes starting from their first World ranking  
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 5.3.3.1 Time series of a winner’s performances 

The time series plots of exponentially smoothed race points for all major winners tended to 

exhibit periods of improvement, times where improvements were countered by poorer 

performances (plateau) and periods of deteriorating performance.  

The exponentially smoothed race points of the world number 1 (as of Sept 2016; 

Athlete 5) improved consistently during the first two years of competition around which 

time this score approximated the median of the winning funnel (Figure 5.12). Except for a 

very poor performance at about 3½ years his performances closely fitted the winning 

funnel up to his first major championship victory after 6 years.  

 

 

Key      major championship win 

Figure 5.12 Time series of the World no.1 (Sept 2016) athlete’s (5) exponentially 

smoothed race points to their first major championship win in relation to 

winning and winless funnels 

 

The 2016 Olympic champion (Athlete 17) improved linearly over the first 4 years 

after which time his score approximated the median of the winning funnel (Figure 5.13). 
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Over the next two years, he only raced the summer season and then went on to win his first 

major championship.  

 

   Key      = major championship win 

Figure 5.13  Time series of the Olympic champion (August 2016) athlete’s (17) 

exponentially smoothed race points to their first major championship win in 

relation to winning and winless funnels  

 

On his 2nd appearance, and prior to achieving an ICF World ranking, athlete (3) 

won a major championship, hence it is not visible on the time series chart (Figure 5.14). 

His smoothed race points tended to improve over the first 4 years, predominately better 

than the upper 95% CL for the winning funnel, and another major win. A two-year period 

of relative decreasing performance culminated in two more major wins. Consistently good 

performance over the next two years also culminated in another major win before a 

gradual decrement in performance. A further 8 winning athletes are presented in 

Appendices 5.14-5.21. 
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Key      = major championship win 

Figure 5.14  Time series of an athlete’s (3) exponentially smoothed race points to their 

first major championship win in relation to winning and winless funnels  

 

5.3.3.2 Time series of likely, possible and unlikely future winners 

All athletes were classified against 3 performance criteria based on whether they were 

improving, their improvements were countered by poorer performances (plateau) or their 

performances were deteriorating. These trends were put into the perspective of the winning 

and winless funnels to classify athletes as likely, possible or unlikely to win a major in the 

future. 

55% of the 11 previous winners and 25% of 16 winless athletes were likely to win 

a future race (Figure 5.15) because they were improving towards, or had plateaued at, a 

sufficient performance level. Athletes who had plateaued at a sufficient performance level 

(31% of winless athletes) were deemed to be possible future winners. 45% of previous 

winners and 44% of winless athletes whose performances were deteriorating were deemed 

unlikely to win in the future. 
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Figure 5.15  The likelihood of an athlete winning a major championship   

 

5.3.3.2.1 Time series of a likely winner 

After just under 3 years of competing athlete A demonstrated a relatively linear 

improvement in his exponentially smoothed race points to a performance level indicative 

of a likely future major win (Figure 5.16).  

 

Figure 5.16  Time series of a likely future major championship winner’s (Athlete A) 

exponentially smoothed race points in relation to winning and winless 

funnels  
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5.3.3.2.2 Time series of a possible winner 

Athlete C has reasonably consistently achieved exponentially smoothed race points 

at the median or better for the winning funnel throughout his career (Figure 5.17). This 

consistently high level of performance suggests a future major win is possible. 

 

Figure 5.17  Time series of a possible future major winner’s (Athlete C) exponentially 

smoothed race points in relation to winning and winless funnels  

 

5.3.3.2.3 Time series of an unlikely winner 

Athlete E gradually improved over the first 4 years to a performance level around 

the median for the winning funnel (Figure 5.18). A 2-year period of relatively deteriorating 

performance countered by some improvement was followed by a year of deteriorating 

performance suggesting a major win in the future is now unlikely. A breakdown for all 

other athletes likely, possibly and unlikely to win are presented in Appendices 5.22-5.34. 
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Figure 5.18  Time series of an unlikely future major winner’s (Athlete E) exponentially 

smoothed race points in relation to winning and winless funnels  

 

5.4 Discussion 

5.4.1 Application of smoothing algorithms 

There were clear challenges, due to the high variability in performances (Nibali, et al, 

2011), to assessing an athlete over time using raw individual ICF race points. It was 

therefore understandable that the ICF use a World ranking system based on the best of 5 

races over a period of 2 years. This method enables athletes to discard their worst 

performances and in some instances still maintain a high ICF ranking even when their 

‘current form’ was relatively poor. Similarly, the 2 year window allows an athlete who was 

not selected for a National team to maintain an ICF ranking, even though they were unable 

to compete in the major championships (World Cups, Continental / World Championships 

and Olympics). The ICF World ranking, however, due to the possibility of ignoring poor 

performances, does not facilitate discerning changes in performance over shorter periods 

of time and can therefore be described as a highly smoothed performance measure in 

relation to individual race performances. Indeed, when the relationship between ICF World 
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ranking and individual race points was assessed it was clear that a positive relationship 

existed (best athletes in the world tended to finish high in races) but poor individual race 

performances were possible for top athletes (albeit less often) as well as bottom rated 

athletes.  

 The use of smoothing algorithms was explored to produce a performance measure 

which was more sensitive to current form than World ranking points but would enable 

time series patterns to be discerned i.e. unlike race points. The Holt and exponential 

smoothing algorithms were applied using the smallest RMSE value to determine the 

smoothing constants. When these were plotted alongside the ICF World ranking and 

individual race points it was evident that both methods could track performance although 

the Holt method produced larger variations, especially after large peaks or troughs in the 

data series. Through observations of a number of athletes (n=16), the exponential 

smoothing algorithm highlighted clear changes in performance level where the trajectory 

of performance matched the race data better than the Holt method. However the RMSE 

varied between athletes and sometimes suggested that the algorithm should weight past 

performances much more highly than recent ones. This caused the smoothed line to be 

more similar to the World ranking than was hoped for. Indeed, for the purpose of this 

study the idealised line would have been somewhere between the stability of the World 

ranking and the variability of the race points. On this basis, a constant value (0.4) for the 

smoothing constant was selected to reflect the hypothesised ideal and match the values 

determined by the lowest RMSE. This value gave slightly more weight to the most recent 

forecast over the most recent race points. The specificity of the fixed smoothing constant 

value also had benefits for the applied world in that its operationalisation was reliable 

between analysts and coaches. The exponential smoothing algorithm was thus used to 

generate performance funnels which could be used to put an athlete’s performance into 



 

135 

 

perspective relative to the time series of previous major winners (winning performance 

funnel) and the time series of athletes who had never won a major (winless performance 

funnel). Time series analysis also has advantages in being able to visually present data to 

observe averages, peaks and troughs and critical turning points (De Smith, 2015).  

 

5.4.2 Winners and winless performance funnels 

Performance funnels based on winners and winless athletes’ exponentially smoothed race 

points were created using 95% confidence limits of the median, deemed the most suitable 

approach for non-normal data distributions (James et al, 2005). Furthermore, presenting 

the confidence limits, as a form of funnel plot, provided a visual graphical aid for 

comparison (Spiegelhalter, 2005). The use of funnel plots has been deemed successful in 

various sectors including the public sector where medical decisions were presented 

(Rakow, et al., 2015). These authors also suggested that future funnel plots could involve 

interactive graphics that allow different control limits, or different confidence intervals, to 

be displayed on request, as determined by a particular decision being required. This 

interactivity could also be incorporated into future funnel plots for use in the applied world 

of canoe slalom.  

The winners and winless performance funnels tended to suggest that athlete’s 

performances, funnels were based on descriptive statistics of all eligible athletes, 

incrementally displayed less variability over time from the outset of their International 

careers up to some point in the future when greater variability reoccurred. These funnels 

were used as a comparison against an individual’s time series of exponentially smoother 

race points to estimate the likelihood of future success. These funnels were limited to the 

extent that data for this study was only obtainable from 2006 and there were relatively few 
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races within the International calendar. Furthermore, athletes that debuted before 2006 

were not included in the data analysis, because this data was unobtainable, meaning that 

the eight athletes who had 28 winning performances during the data analysis period (2006-

2016) were not included in the construction of the winner’s performance funnels.  

The winning and winless funnels overlapped for the initial 4 years of International 

competition with the degree of overlap diminishing over time. This time period 

corresponded to the gradual eradication of very poor performances by the winning athletes, 

hence the improvement seen in the lower 95% CL of the winners funnel. Whilst both 

funnels depicted the typical improvement in performance seen by internationally ranked 

canoe slalom athletes (typically over the first 5 to 6 years of competing), only athletes 

performing around the median level for the winners funnel could be reasonably accurately 

considered as potential winners. Performances lower than these values may just as likely 

depict upper levels of performance for athletes who would never go on to win a major 

race.  

The next 18 months to two years (years 4 to 6) typically saw continued 

improvement in the performance funnels with clear demarcation between the two up until 

the 6-year mark. During this period athletes could be reasonably accurately (95% 

certainty) classified as future major winners or not based on their exponentially smoothed 

race points. Similarly, the final 18 months (years 6 to 7½) of the performance funnels 

tended to depict slightly decreasing performance levels which were differentiated for 

winner’s and winless athletes.  
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5.4.2.1 Variability of the time series of a major winner’s performances 

The individual athletes (n=11) whose performances determined the winners performance 

funnel displayed individual variation, as would be expected, but a reasonably well defined 

overall pattern through the 7½ period during which they were assessed. This pattern 

involved an initial period of improvement (typically between 3 and 6½ years), a period of 

greater variability where very good performances were countered by some poorer 

performances (a plateau of up to 4 years) and periods of deteriorating performance (after 6 

years on average). There were two outliers in this group which included an athlete who 

won a major in his first season of competing prior to racing in 5 events and with a World 

ranking outside 100. His profile therefore didn’t include an initial period of improvement 

as his performance was consistently excellent from the start i.e. defined as in the plateau 

phase. The other outlier also displayed this trend but didn’t win for nearly four years of 

International competitions. Winning their first major more often occurred during the initial 

period of improvement, either in the first 3 years of competing (n = 4) or after 6 years (n = 

2). However, the athletes (n = 5) who won their first major during their plateau phase 

typically did so after between 4 and 6 years of competing, excluding the outlier previously 

mentioned. Just one athlete won a major race after moving into the performance decline 

phase (5th win of career).  

 Some of the variability in major race winner’s performances can be explained by 

the fact that individual athletes need to be selected by their National team to compete at the 

major championships. This means that for the stronger nations World class athletes may 

not be selected for the major events whereas weaker athletes may get a chance for other 

nations. Athletes from top nations may have fewer opportunities to gain the best race 

points due to non-selection and therefore win major races with a seeming lack of 

experience and ability (Athlete 3 in this study won in his first season). Future research 
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could consider developing performance funnels for different nations (as suggested by 

Rakow, et al., 2015). Similarly, the positive impact of racing at home was demonstrated in 

this study with 56% (n = 6) of major winning athletes winning their first major at a home 

venue. Nibali, et al, (2011) showed that athletes competing at home courses improved their 

performance time by 0.3 - 0.8%. There may, therefore, be utility in comparing race 

performance funnels for home and away performances to determine whether athletes are 

adversely affected (choke) or improve their performance due to home advantage factors.  

5.4.2.2 Identifying potential winners 

Athlete’s time series of their exponentially smoothed race points were examined to predict 

future performance over time in terms of the potential for winning future major races. The 

basis for this being whether the most recent part of the time series was improving, had 

plateaued or the performances were deteriorating. This observation was supplemented by 

examination against the performance funnels for winners and winless athletes. On this 

basis athletes were classified as either probable to win a major, possible or unlikely. The 

extent to which these classifications were accurate was not tested due to the time frame in 

which the classification was made and the availability of future data on which to test the 

predictions. This should, however, be done in the future to enable more accurate modelling 

procedures to be adopted. For example, with more data and more athlete tracking, the 

extent to which previous performance levels, recent trends in the data and other factors 

such as age of the athlete determine future winners could be explored. Larger data sets 

may indicate the appropriateness of when to assess an athlete’s performance path as 

different time points are likely to vary in the ability for prediction. A signal detection 

approach (see Study 2) could help ascertain this as well as to determine which aspects of a 

performance profile best reflects future winners. For example, does a consistently high 
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level of performance (plateau) signal the likelihood of a major win better or worse than a 

rapidly improving profile. 

This study was limited by a relatively small sample meaning that a “surprise” 

major championship winner (deemed an outlier in this study) may reflect a small but 

consistently occurring phenomenon. The limited data meant that non-statistical methods 

were employed for predictions i.e. trends were graphically presented (winners and winless 

performance funnels) against which individual athlete’s time series of exponentially 

smoothed race points were compared and patterns visible to the human eye discerned 

(Montgomery et al, 2015). Larger data sets would enable statistical methods such as 

control charts, logistic regression (win or no win) or cluster analysis (heterogeneity of 

variables between winning and losing athletes) to aid discerning the important variables 

that help predict future major winners.   

Some athletes exhibited different profiles season to season and year to year 

suggesting that there may have been a seasonal component to their performance. Future 

studies may therefore be improved by adopting the Holt-Winters method, also known as 

double exponential smoothing (Winters, 1960). This was not the case in this study 

although this may have been a consequence of the small sample size.   

 The use of performance funnels based on major winners and winless athletes 

provided some context against which performances could be assessed. However the 

availability of data (race points were first awarded at races from 2006 with the purpose of 

creating World rankings) meant that individual athletes were compared against their peers, 

including themselves, in this study. Future studies will be able to compare athletes against 

past performances to assess the extent to which previous performances reflect current 

performances. However, in this type of future performance prediction (e.g. Neville James) 
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it is clear that changes in performance over time due to maturation i.e. equipment, sports 

science support etc. render any prediction liable to error. Acknowledgement of this error in 

terms of a probability estimate for any prediction is therefore preferable. Similarly, the 

recognition of context behind a performance outcome is important. Hence in canoe slalom 

a race where a gate had been hit and a two second penalty applied could be accounted for 

within a prediction. At a practical level coaches develop race strategies with their athletes 

on the basis that a risky manoeuvre may be required to win a race final but hitting a gate 

would result in no medal at all. In sports determined by fine margins this is inevitable but 

modelling performance without consideration of the finer points of race strategy introduces 

more error into the prediction. Future studies should therefore consider the use of finer 

grained performance variables such as upstream and downstream moves, penalties and 

course design factors into models used to determine future performances.  

 

5.5 Conclusions 

A method for tracking individual race performance in canoe slalom using exponential 

smoothing algorithms was successfully applied. This method provided the analyst with a 

more sensitive measure of performance variation compared to World ranking points, 

which were based on the best 5 performances over a two year period, or race points which 

varied too much and did not facilitate the discerning of a trend. Performance funnels were 

created using median and 95% confidence intervals for previous major winners and 

winless athletes who had reached the top 40 in the World rankings. These provided a 

visual representation of performance over time that could be used to compare individual 

athletes against. Trends (improvement, plateau and decreasing performance) were evident 

in reasonably consistent ways that suggested these could be used to support talent 
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identification and athlete selection. However strategic planning based on these 

performance funnels would not be without risk and therefore until more robust methods 

are developed the performance funnels should be used as a guide to future performance 

along with other, perhaps more multi-disciplinary team and individual information.  
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Chapter Six: General Discussion 

 

6.1 Reflections on the thesis 

These studies came about as a consequence of the researcher becoming the first analyst to 

work with British Canoeing as an employee of the English Institute of sport. At the outset 

there was a desire from both organisations to develop PA with an applied emphasis from 

the sport but a more mixed approach from the employer who encouraged and supported 

the PhD study. Study one reflected these goals with a needs analysis and system 

development the starting point for this new collaboration. Within the sport the coaches 

embraced this direction and along with the head of science and the senior elite athletes the 

needs of the sport were identified. This was a crucial process as PA was little understood 

within the sport and the potential direction unknown. The timeline of this thesis reflects the 

development of PA which has since increased the number of support staff, increased the 

PA support and adopted a multi-disciplinary approach with far more sophisticated 

equipment routinely used to capture data. These developments can be partly attributed to 

the success of the pioneering work presented in this thesis. Without buy-in from the 

coaches and athletes these developments and the subsequent growth of PA in this sport 

would not have taken place. It was the acknowledgement of the importance of the coach-

analyst relationship that shaped the evolution of the PhD with the implicit understanding 

that all processes had to have worth in the minds of the coaches. Balancing this with the 

need for academic rigour was always the challenge. Hence this thesis attempted to answer 

two fundamental questions posed by Groom, Cushion & Nelson (2011), namely ‘what of 

PA’ and ‘how’ to best implement PA within the coaching process.  

Study one described the process of developing a reliable system for collecting the 

performance variables, deemed important by the coaches, in canoe slalom. Coach and 
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athlete feedback suggested split sections (timed), techniques (moves) and overall race 

times were important variables and so the method of collection of this data was devised 

and assessed using reliability tests. Overall race times were published at race events using 

timing gates but were collected at practice using stop watches. Errors less than 0.2s were 

deemed acceptable as coaches believed differences less than this value were meaningless. 

Following extensive practice intra-analyst (the PA) tests found acceptable errors for timing 

the split sections live and post event (3.8% were over 0.2s). However inter-analyst tests 

(coaches and PA interns) found 20% of differences were greater than 0.3s. Similarly, the 

technique analysis for upstream gates found 95.1% (Kappa agreement) for the intra-analyst 

and 91.6% for the inter-analyst tests. These results supported Hunter et al.’s (2007) 

contention that it was necessary to use one well-trained analyst to collect this type of data 

reliably. In practice this was not possible as the one full-time analyst could not collect all 

of this type of data. Consequently, the analysis of split sections and techniques continued 

to be developed but within the time frame of the PhD thesis were not sufficiently rigorous 

to be included. The result of this piece of work supported the development and exploration 

of using advancements in technology that could overcome this limitation. In 2013 British 

Canoeing with support from UKSport and EIS invested in a Local Positioning System that 

enhanced quality of video positions and split timings for coaching analysis. Within British 

Canoeing investment has been made with timing gates, GPS and local positioning 

measurement systems (LPM) that can automatically track and time an athlete’s 

performance now available at Lee Valley. Future research studies will no doubt use these 

systems along with wireless and mobile technology to identify stroke patterns and micro 

analyse performance.  

 Given the constraints after Study 1 it was decided to focus on race times for Study 

2. The coaches routinely used percentages off the K1M winner, both in training and 
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competitions, on the basis that between and within course difficulties were not uniform. 

Some debate existed between the coaches on the merits of using percentages off the K1M 

(assumed close to the best possible run time) or the class winner and this formed the basis 

of Study 2. This type of analysis was problematical in that the variability in race times, and 

hence percentages, were due to course, class and athlete differences. Course and class 

variation were therefore sources of error when attempting to establish athlete performance 

levels. Indeed, Nibali et al. (2011) identified variability as a key factor when analysing and 

interpreting canoe slalom performances. The 2019-12 probability charts (K1M and class 

winner) were tested for their predictive ability using the 2013-16 Olympic cycle race 

results. Signal detection theory was adopted to determine the number of misses i.e. when 

the prediction stated that an achieved race percentage ‘would not medal’ but in actuality a 

medal was achieved, and the number of false alarms where the prediction ‘will medal’ was 

erroneous and the race percentage ‘did not medal’. This approach was used to find an 

appropriate balance between the risk of misses and false alarms (they are inversely 

proportional). The results unanimously supported the use of race percentages off the class 

winner, rather than the K1M, with a 50% level of probability of medalling resulting in a 

low rate of false alarms (maximum 6%) and a high hit rate (over 70% of medals correctly 

identified). Signal detection theory can be adapted to other sports performance questions 

that require using historical data to inform decision making processes. The power of 

probability over guaranteed outcomes is a realistic method to adopt as sport in many ways 

is unpredictable. Whilst the creation of race percentage targets was based on an Olympic 

cycle’s data, further analysis could determine whether this was the most appropriate. For 

example, new race percentage targets were presented, but not fully tested, suggesting that 

small changes are likely if targets are set using the previous i.e. rolling four year’s data, as 

opposed to using a fixed four-year period such as a 4-year Olympic cycle. Since the 
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evaluation of race percentages, the coaches have adopted the use of class percentages as a 

key measure of performance and are exploring the use of virtual best times based on a 

standardised ‘world’s best’ criteria (e.g. top x boats in final and semi-final). 

Study 2 was based on a relatively small number of competitions, but this was to 

some extent inevitable, and no account was taken regarding the quality of the field at each 

race. Race percentages could be further explored in relation to their application to training 

and in conjunction with virtual best times (best split times for all athletes combined).  

On the basis of the main limitation of Study 2, namely the lack of eligible 

competitions, and the need to monitor an athlete’s performance over time, the ICF ranking 

system which used a quality factoring algorithm per competition was considered a logical 

source of data for the Study3. The need to track an athlete over time was driven by UK 

Sport who required evidence based performance records and targets to determine funding 

across the Olympic sports. Study 3 therefore attempted to derive a methodology for 

tracking an athlete over time, with some contextual basis to allow comparisons and 

predictions to be made. The ICF race points were considered the best performance 

measure as the quality of the athletes competing at an event were factored into them. This 

enabled more races to be analysed and overcame some of the difficulties previously 

encountered in Study 2. At the outset it was recognised that individual athletes tended to 

perform better than expected, as expected or relatively poorly at races, probably due to the 

small differences in performance that determined race outcomes. This meant that simply 

producing a time series of race points gained did not portray trends very easily. The ICF 

also produced a world ranking based on the best 5 race points gained over a two-year 

period. This essentially was a smoothed version of race points, although this measure was 

not sensitive to individual race performances. To rectify this situation, a smoothing 

algorithm approach was adopted in Study 3 with the aim of providing a sensitive but 
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understandable measure of performance over time. The best technique was found to be an 

exponential smoothing algorithm with a constant smoothing coefficient of 0.4. To make 

this time series more understandable a funnel plot using the median and 95% confidence 

interval of the median s was created using previous major winners and winless athletes 

who were ranked in the World’s top 40. All time series plots were synchronised at the 

point when an athlete gained their first World ranking i.e. after 5 competitions. Athlete 

profiles were then examined over time against the winners and winless performance 

funnels. This novel approach provided indications of an athlete’s progress over time where 

periods of improvement, plateau and decreases in performance were evident to the extent 

that predictions of future performance could be made. However, these techniques require 

more refinement and consideration of factors so far not tested e.g. the impact of penalties, 

choice of techniques, home advantage etc. In study 3 it was concluded that modelling 

performance without consideration of the finer points of race strategy introduced more 

error into the prediction. Because of this the coaches and analysts in canoe slalom are now 

examining finer grained performance variables such as upstream and downstream moves, 

penalties and course design. Over time as the data increases these factors can be tested in 

the performance models to determine future successful performances. Also, with more data 

signal detection techniques could be applied to assess the validity of any predictions. 

These smoothing methods and funnel plots could also be applied to Study 2’s race 

percentages to compare the suitability in tracking performance over time. 

 

6.2  Conclusion 

This research has contributed positively to the sport of canoe slalom and to the discipline 

of performance analysis. The sport has clearly grown its use and reliance upon 

performance analysis and has since invested money to develop more in the future. This 
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thesis has explored canoe slalom at the elite level where results determine funding and 

funding facilitates development. Fortunately, the period in which this thesis has been 

undertaken has seen great success for British canoe slalom. Advances in procedures and 

methodologies have been pioneered in this thesis but the future has great potential for 

developing these far more due to technological advances and an increase in man hours 

devoted to PA in this sport. The future of canoe slalom is, however, multi-disciplinary and 

sports science support will impact areas such as mental toughness and lifestyle, 

physiological and biomechanical improvements as well as PA and coaching interventions.  
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Appendices 

Appendix 3.1 Manipulating data linked to video within Dartfish tagging module 

 

 

Appendix 3.2 An example of the split times that was exported from Dartfish tagging 

software to Microsoft Excel for further analysis and visualisation 

Athlete Run Splits Overall 

    1 2 3 4 5 6 7 8 9 10 11 12 13 

Run 

time Pens Total 

                                    

Athlete A Run 1 12.5 2.2 4.2 2.7 17.8 1.8 4.8 2.1 16.3 2.3 13.2 2.5 7.2 89.5   89.5 

Athlete A Run 2 12.3 2.0 2.8 2.9 18.6 1.4 5.1 2.4 17.7 2.4 12.6 2.2 7.1 89.8   89.8 

Athlete B Run 1 12.0 2.1 2.9 2.9 18.7 1.8 5.3 2.2 16.6 2.8 13.1 2.4 7.4 90.3   90.3 

Athlete B Run 2 12.2 2.2 3.1 4.0 17.4 1.6 5.2 2.7 15.6 2.5 12.6 2.8 6.5 88.5   88.5 

Athlete C Run 1 12.4 2.2 2.8 2.3 18.2 1.8 5.3 2.4 15.8 3.1 12.8 2.5 7.0 88.5   88.5 

Athlete C Run 2 13.1 2.0 2.6 2.8 19.5 1.5 5.5 2.2 16.4 2.6 12.8 2.3 7.0 90.4   90.4 

Athlete D Run 1 12.3 1.9 3.4 2.5 18.2 1.6 5.0 2.1 16.8 2.4 12.2 1.8 7.2 87.3 2.0 89.3 

Athlete D Run 2 11.9 2.0 3.1 1.8 18.6 1.6 5.4 2.1 16.2 2.3 11.9 2.5 6.7 86.0 2.0 88.0 

                                    

Virtual 

Best   11.9 1.9 2.6 1.8 17.4 1.4 4.8 2.1 15.6 2.3 11.9 1.8 6.5 81.9   81.9 

Key: Green box = fastest split; Bold = penalty 
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Appendix 4.1  Proportion of race times for K1M 5th place off the K1M winner across 

Olympic cycles 

 

 
Key: 3 cells had expected counts of less than 5. There were more 5th place K1M 

percentages in the slowest percentile category and slightly less in the 75th – 50th & 

50th – 25th percentile in the 2016 Olympic cycle compared to the 2012 cycle (Chi-

square = 2.64, df = 3, p = 0.45, Cramer’s V = 0.23).  

 

Appendix 4.2  Proportion of race times for K1M 10th place off the K1M winner across 

Olympic cycles 

 

 
 

Key: 4 cells had expected counts of less than 5. There were more 10th placed K1M 

percentages in the 75th & 50th percentile category in the 2016 Olympic cycle 

compared to the 2012 cycle (Chi-square = 3.12, df = 3, p = 0.37, Cramer’s V = 

0.26).  
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Appendix 4.3  Proportion of race times for C1M 1st place off the K1M winner across 

Olympic cycles 

 

 
 

Key: 4 cells had expected counts of less than 5. There were more 1st placed C1M 

percentages  in the slowest (>75th) percentile category in the 2016 Olympic cycle 

compared to the 2012 cycle (Chi-square = 5.92, df = 3, p = 0.11, Cramer’s V = 

0.35).  

 

Appendix 4.4  Proportion of race times for C1M 3rd place off the K1M winner across 

Olympic cycles 

 

 
Key: 5 cells had expected counts of less than 5. There were more 3rd placed C1M 

percentages  in the slowest (>75th) percentile category in the 2016 Olympic cycle 

compared to the 2012 cycle (Chi-square = 5.8, df = 3, p = 0.12, Cramer’s V = 0.34. 
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Appendix 4.5  Proportion of race times for C1M 3rd place off the C1M winner across 

Olympic cycles 

 
 

Key: 3 cells had expected counts of less than 5. There were less 3rd placed C1M 

percentages  in the slowest (>75th) percentile category in the 2016 Olympic cycle 

compared to the 2012 cycle (Chi-square = 2.65, df = 3, p = 0.5, Cramer’s V = 

0.23). 

 

Appendix 4.6 Proportion of race times for C1M 5th place off the K1M winner across 

Olympic cycles. 

   

 
 

Key: 4 cells had expected counts of less than 5. There were more 5th placed C1M 

percentages in the slowest percentile category (>75th & 75th) in the 2016 Olympic 

cycle compared to the 2012 cycle (Chi-square = 4.79, df = 3, p = 0.19, Cramer’s V 

= 0.31). 
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Appendix 4.7 Proportion of race times for C1M 5th place off the C1M winner across 

Olympic cycles. 

 

 
 

Key: 3 cells had expected counts of less than 5. There were more 5th placed C1M 

percentages in the 50th percentile category in the 2013-2016 Olympic cycle 

compared to the 2009-2012 cycle (Chi-square = 2.00, df = 3,  p = 0.57, Cramer’s V 

= 0.20). 

 

Appendix 4.8 Proportion of race times for C1M 10th placing semi-final off the K1M 

semi-final winner across Olympic cycles 

 
 

 

Key: 2 cells had expected counts of less than 5. There were more semi-final 10th placed 

C1M percentages in the slowest (>75th) percentile category in the 2016 Olympic 

cycle compared to the 2012 cycle (Chi-square = 3.25, df = 3, p = 0.36, Cramer’s V 

= 0.26. 



 

158 

 

Appendix 4.9 Proportion of race times for C1M 10th placing semi-final off the C1M semi-

final winner across Olympic cycles 

 

 
 

Key: 2 cells had expected counts of less than 5. There were less semi-final 10th placed 

C1M percentages in the 75th percentile category in the 2016 Olympic cycle 

compared to the 2012 cycle (Chi-square = 5.03, df = 3, p = 0.17, Cramer’s V = 

0.32). 

Appendix 4.10 Proportion of race times for C2M 1st place off the K1M winner across 

Olympic cycles 

 

 
 

Key: 2 cells had expected counts of less than 5. There were more 1st placed C2M 

percentages in the slowest (>75th) & 50th percentile category in the 2016 Olympic 

cycle compared to the 2012 cycle (Chi-square = 2.33, df = 3, p = 0.51, Cramer’s V 

= 0.23). 
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Appendix 4.11 Proportion of race times for C2M 3rd place off the C2M winner across 

Olympic cycles 

 
 

 

Key: 4 cells had expected counts of less than 5. There were more 3rd placed C2M 

percentages in the slowest (>75th) percentile category in the 2013-2016 Olympic 

cycle compared to the 2009-2012 cycle (Chi-square = 1.21, df = 3,  p = 0.75, 

Cramer’s V = 0.17). 

 

Appendix 4.12 Proportion of race times for C2M 5th place off the K1M winner across 

Olympic cycles 

 
 

Key: 2 cells had expected counts of less than 5. There were more 5th placed C2M 

percentages in the slowest (>75th) and less in 75th percentile category in the 2016 

Olympic cycle compared to the 2012 cycle (Chi-square = 2.23, df = 3, p = 0.53, 

Cramer’s V = 0.23). 
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Appendix 4.13 Proportion of race times for C2M 5th place off the C2M winner across 

Olympic cycles 

 

 
 

Key: 4 cells had expected counts of less than 5. There were more 5th placed C2M 

percentages in the 50th percentile category in the 2013-2016 Olympic cycle 

compared to the 2009-2012 cycle (Chi-square = 4.87, df = 3,  p = 0.18, Cramer’s V 

= 0.33). 

 

Appendix 4.14 Proportion of race times for C2M 10th placing semi-final off the K1M 

semi-final winner across Olympic cycles 

 

 
Key: 4 cells had expected counts of less than 5. There were less semi-final 10th placed 

C2M percentages in the fastest (<25th) and slower (75th) percentile category in the 

2013-2016 Olympic cycle compared to the 2009-2012 cycle (Chi-square = 6.81, df 

= 3, p = 0.08, Cramer’s V = 0.39). 



 

161 

 

Appendix 4.15 Proportion of race times for C2M 10th placing semi-final off the C2M 

semi-final winner across Olympic cycles 

 

 
 

Key: 2 cells had expected counts of less than 5. There were less semi-final 10th placed 

C2M percentages in the 50th percentile category in the 2013-2016 Olympic cycle 

compared to the 2009-2012 cycle (Chi-square = 4.28, df = 3, p = 0.23, Cramer’s V 

= 0.31). 

Appendix 4.16 Proportion of race times for K1W 1st place off the K1M winner across 

Olympic cycles 

 
 

 

Key: There were small differences in the proportion of 1st place K1W percentages off 

the K1M winner between the 2012 Olympic cycle and 2016 Olympic cycle (Chi-

square = 0.79, df = 3, p = 0.85, Cramer’s V = 0.13). 
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Appendix 4.17 Proportion of race times for K1 women’s 3rd place off the K1 men’s 

winner across Olympic cycles 

 

 
 

 

Key: 1 cell had expected counts of less than 5. There were less 3rd placed K1W 

percentages in the 50th & less in the slowest percentile category in the 2013-2016 

Olympic cycle compared to the 2009-2012 cycle (Chi-square = 1.46, df = 3, p = 

0.69, Cramer’s V = 0.17). 

Appendix 4.18 Proportion of race times for K1W 3rd place off the K1W winner across 

Olympic cycles 

 
 

Key: 5 cells had expected counts of less than 5. There were more 3rd placed K1W 

percentages in the 75th percentile category in the 2013-2016 Olympic cycle 

compared to the 2009-2012 cycle (Chi-square = 3.93, df = 3, p = 0.27, Cramer’s V 

= 0.28). 
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Appendix 4.19 Proportion of race times for K1W 5th place off the K1M winner across 

Olympic cycles 

 
 

Key: 2 cells had expected counts of less than 5. There were more 5th placed K1W 

percentages in the slowest (>75th) and less in the 75th percentile category in the 

2013-2016 Olympic cycle compared to the 2009-2012 cycle (Chi-square = 2.59, df 

= 3, p = 0.46, Cramer’s V = 0.23). 

  

Appendix 4.20 Proportion of race times for K1W 5th place off the K1W winner across 

Olympic cycles 

 
 

 

Key: 3 cells had expected counts of less than 5. There were more 5th placed K1W 

percentages in the 75th percentile category in the 2013-2016 Olympic cycle 

compared to the 2009-2012 cycle (Chi-square = 3.47, df = 3, p = 0.33, Cramer’s V 

= 0.27). 
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Appendix 4.21 Proportion of race times for K1W 10th placing semi-final off the K1M 

semi-final winner across Olympic cycles 

 
 

Key: 2 cells had expected counts of less than 5. There were less semi-final 10th placed 

K1W in the slowest (>75th) percentile category in the 2013-2016 Olympic cycle 

compared to the 2009-2012 cycle (Chi-square = 2.62, df = 3, p = 0.45, Cramer’s V 

= 0.23). 

Appendix 4.22 Proportion of race times for C1W 3rd place off the K1M winner across 

Olympic cycles 

 

 
 

Key: 6 cells had expected counts of less than 5. There were significantly more 3rd placed 

C1W percentages in the fastest (<25th) percentile category in the 2016 Olympic 

cycle compared to the 2012 cycle (Chi-square = 15.38, df = 3, p = 0.002, Cramer’s 

V = 0.59).  
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Appendix 4.23 Proportion of race times for C1W 3rd place off the C1W winner across 

Olympic cycles 

 
 

Key: 3 cells had expected counts of less than 5. There were more 3rd placed C1W 

percentages in the fastest (<25th) percentile category in the 2016 Olympic cycle 

compared to the 2012 cycle (Chi-square = 1.66, df = 3, p = 0.65, Cramer’s V = 

0.19). 

 

Appendix 4.24 Proportion of race times for C1W 5th place off the K1M winner across 

Olympic cycles 

 
 

Key: 5 cells had expected counts of less than 5. There were more 5th placed C1W 

percentages in the fastest (<25th) percentile category in the 2016 Olympic cycle 

compared to the 2012 cycle (Chi-square = 12.41, df = 3, p = 0.01, Cramer’s V = 

0.53). 
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Appendix 4.25 Proportion of race times for C1W 5th place off the C1W winner across 

Olympic cycles 

 
 

Key: 3 cells had expected counts of less than 5. There were less 5th placed C1W 

percentages in the slowest (>75th) percentile category in the 2016 Olympic cycle 

compared to the 2012 cycle (Chi-square = 4.44, df = 3, p = 0.22, Cramer’s V = 

0.31). 

 

Appendix 4.26 Proportion of race times for C1W 10th placing semi-final off the K1M 

semi-final winner across Olympic cycles 

 

 
 

Key: 6 cells had expected counts of less than 5. There were significantly more 10th 

placed C1W percentages in the fastest (<25th) percentile category in the 2016 

Olympic cycle compared to the 2012 cycle (Chi-square = 18.51, df = 3, p = 0.00, 

Cramer’s V = 0.66). 
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Appendix 4.27 Proportion of race times for C1W 10th placing semi-final off the C1W 

semi-final winner across Olympic cycles 

  

 
 

Key: 6 cells had expected counts of less than 5. There were significantly more 10th 

placed C1W percentages in the fastest (<25th) percentile category in the 2016 

Olympic cycle compared to the 2012 cycle (Chi-square = 17.81, df = 3, p = 0.00, 

Cramer’s V = 0.66). 

 

Appendix 4.28 The probability of C1M making a medal in the 2013-16 Olympic cycle 

using percentages off the 2009-12 Olympic K1M winner 
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Appendix 4.29 The probability of C1M making a medal in the 2013-16 Olympic cycle 

using percentages off the 2009-12 Olympic cycle class winner  

 

 

Appendix 4.30 The probability of C2M making a medal in the 2013-16 Olympic cycle 

using percentages off the 2009-12 Olympic K1M winner 
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Appendix 4.31 The probability of C2M making a medal in the 2013-16 Olympic cycle 

using percentages off the 2009-12 Olympic class winner 

 

 

Appendix 4.32 The probability of K1W making a medal in the 2013-16 Olympic cycle 

using percentages off the 2009-12 Olympic K1M winner 
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Appendix 4.33 The probability of K1W making a medal in the 2013-16 Olympic cycle 

using percentages off the 2009-12 Olympic class winner 

 

 

Appendix 4.34 The probability of C1W making a medal in the 2013-16 Olympic cycle 

using percentages off the 2009-12 Olympic K1M winner 
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Appendix 4.35 The probability of C1W making a medal in the 2013-16 Olympic cycle 

using percentages off the 2009-12 Olympic class winner 

 

 

Appendix 4.36  Relative 3rd place performance off K1M winner in 4 year cycles for C1M 
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Appendix 4.37 Relative 3rd place performance off K1M winner in 4 year cycles for C2M 

 

Appendix 4.38  Relative 3rd place performance off K1M winner in 4 year cycles for K1W 
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Appendix 4.39 Relative 3rd place performance off K1M winner in 4 year cycles for C1W 

 

Appendix 4.40 Relative 3rd place performance off class winner in 4 year cycles for C1M 
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Appendix 4.41 Relative 3rd place performance off class winner in 4 year cycles for C2M 

 

 

Appendix 4.42 Relative 3rd place performance off class winner in 4 year cycles for K1W 
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Appendix 4.43 Relative 3rd place performance off class winner in 4 year cycles for C1W 

 

 

Appendix 5.1  Time series of an athlete’s (3) race points, smoothed race points and World 

ranking   
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Appendix 5.2  Time series of an athlete’s (6) race points, smoothed race points and World    

ranking   

 

 

 

 

 

Appendix 5.3 Time series of an athlete’s (7) race points, smoothed race points and World  

ranking   
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Appendix 5.4  Time series of an athlete’s (12) race points, smoothed race points and 

World ranking   

 

 

 

 

Appendix 5.5  Time series of an athlete’s (14) race points, smoothed race points and 

World ranking   
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Appendix 5.6  Time series of an athlete’s (15) race points, smoothed race points and 

World ranking   

 

 
 

 

 

 

Appendix 5.7  Time series of an athlete’s (18) race points, smoothed race points and 

World ranking   
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Appendix 5.8 Time series of an athlete’s (19) race points, smoothed race points and 

World ranking   

 

 

 

 

Appendix 5.9  Time series of an athlete’s (A) race points, smoothed race points and World 

ranking   
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Appendix 5.10  Time series of an athlete’s (B) race points, smoothed race points and 

World ranking   

 

 

 

 

 

 

Appendix 5.11  Time series of an athlete’s (C) race points, smoothed race points and 

World ranking   
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Appendix 5.12  Time series of an athlete’s (D) race points, smoothed race points and 

World ranking   

 

 
 

 

 

 

 

 

Appendix 5.13  Time series of an athlete’s (E) race points, smoothed race points and 

World ranking   

 

 

 



 

182 

 

Appendix 5.14  Time series of an athlete’s (6) exponentially smoothed race points to 

their first major championship win in relation to winning and 

winless funnels 

 

 

 

Appendix 5.15  Time series of an athlete’s (7) exponentially smoothed race points to 

their first major championship win in relation to winning and 

winless funnels 
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Appendix 5.16  Time series of an athlete’s (12) exponentially smoothed race points 

to their first major championship win in relation to winning and 

winless funnels 

 

 

 

Appendix 5.17  Time series of an athlete’s (14) exponentially smoothed race points 

to their first major championship win in relation to winning and 

winless funnels 
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Appendix 5.18  Time series of an athlete’s (15) exponentially smoothed race points 

to their first major championship win in relation to winning and 

winless funnels 

 

 

 

Appendix 5.19  Time series of an athlete’s (16) exponentially smoothed race points 

to their first major championship win in relation to winning and 

winless funnels 
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Appendix 5.20  Time series of an athlete’s (18) exponentially smoothed race points 

to their first major championship win in relation to winning and 

winless funnels 

 

 

 

Appendix 5.21  Time series of an athlete’s (19) exponentially smoothed race points 

to their first major championship win in relation to winning and 

winless funnels 
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Appendix 5.22 Time series of a likely future major championship winner’s (Athlete 

B) exponentially smoothed race points in relation to winning and 

winless funnels 

 

 

Appendix 5.23 Time series of a possible future major winner’s (Athlete D) 

exponentially smoothed race points in relation to winning and 

winless funnels 
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Appendix 5.24 Time series of a possible future major winner’s (Athlete F) 

exponentially smoothed race points in relation to winning and 

winless funnels 

 

 

 

Appendix 5.25 Time series of a possible future major winner’s (Athlete F) 

exponentially smoothed race points in relation to winning and 

winless funnels 
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Appendix 5.26 Time series of a possible future major winner’s (Athlete H) 

exponentially smoothed race points in relation to winning and 

winless funnels 

 

 

Appendix 5.27 Time series of a likely future major winner’s (Athlete F) 

exponentially smoothed race points in relation to winning and 

winless funnels 
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Appendix 5.28  Time series of an unlikely future major winner’s (Athlete J) 

exponentially smoothed race points in relation to winning and 

winless funnels 

 

 

Appendix 5.29  Time series of an unlikely future major winner’s (Athlete K) 

exponentially smoothed race points in relation to winning and 

winless funnels 
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Appendix 5.30  Time series of an unlikely future major winner’s (Athlete L) 

exponentially smoothed race points in relation to winning and 

winless funnels 

 

Appendix 5.31  Time series of an unlikely future major winner’s (Athlete J) 

exponentially smoothed race points in relation to winning and 

winless funnels 
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Appendix 5.32  Time series of an unlikely future major winner’s (Athlete J) 

exponentially smoothed race points in relation to winning and 

winless funnels 

 

 

 

Appendix 5.33  Time series of a likely future major winner’s (Athlete O) 

exponentially smoothed race points in relation to winning and 

winless funnels 
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Appendix 5.34  Time series of an unlikely future major winner’s (Athlete P) 

exponentially smoothed race points in relation to winning and 

winless funnels 

 

 

 

 

 

 


