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Abstract. We provide a model in the Isabelle Infrastructure framework
of the recently published German Corona-virus warning app (CWA). The
app supports breaking infection chains by informing users whether they
have been in close contact to an infected person. The app has a decentral-
ized architecture that supports anonymity of users. We provide a formal
model of the existing app with the Isabelle Infrastructure framework to
show up some natural attacks in a very abstract model. We then use the
security refinement process of the Isabelle Infrastructure framework to
highlight how the use of continuously changing Ephemeral Ids (EphIDs)
improves the anonymity.

1 Introduction

The German Chancellor Angela Merkel has strongly supported the publication of
the mobile phone Corona-virus warning app (CWA; [14]) by publicly proclaiming
that “this App deserves your trust” [2]. Many millions of mobile phone users in
Germany have downloaded the app with 6 million on the first day. CWA is one
amongst many similar applications that aim at the very important goal to “break
infection chains” by providing timely information to users of whether they have
been in close proximity to a person who tested positive for COVID-19.

The app was designed with great attention on privacy: a distributed archi-
tecture [15] has been adopted that is based on a very clever application design
whereby clients broadcast highly anonymized identifiers (ids) via Bluetooth and
store those ids of people in close proximity. Infected persons report their infec-
tion by uploading their ids to a central server, providing all clients the means to
assess exposure risk locally, hence, stored contact data has never to be shared.

The Isabelle Infrastructure framework [11] allows modeling and analyzing
architecture and scenarios including physical and logical entities, actors, and
policies within the interactive theorem prover Isabelle supported with temporal
logic, Kripke structures, and attack trees. It has been applied for example to
Insider analysis in airplanes [12], privacy in IoT healthcare [4], and recently also
to blockchain protocols [10].



The technical advantage of modeling an application in the Isabelle Insider
framework lies in (a) having explicit representations of infrastructures, actors
and policies in a formal model that (b) allows additional automated verification
of security properties with CTL, Kripke structures and Attack Trees within the
interactive theorem prover Isabelle.

The app now in use in Germany has been developed based on a protocol pro-
posed by the DP-3T project [16]: A sophisticated security concept conceived by
experts in the field that has strong claims with regard to mathematical support
[17] [p2]. However, there has, as of yet, to our knowledge no formal verification
been involved. Even if a “post-production” formal specification seems pointless,
it allows to reveal weak points of the architecture, show that the measures that
have been conceived are suitable to cover those weak points, or to what extent
trade offs have to be made due to inherent vulnerabilities. The protocol im-
plemented by the framework CWA resembles only the most basic of the three
protocols proposed by the DP-3T project. Hence, a formal verified model that
stresses the impact or limits of certain security measures might give more weight
to appeals like [19] to adopt the more sophisticated protocols.

The contributions of this paper are (a) formal re-engineering of CWA (b)
providing an additional security and privacy analysis with interactive theorem
proving certification of a novel view on the system architecture including actors,
locations, and policies, (c) a formal definition of a security refinement process
that allows to improve a system based on attacks found by the attack tree
analysis and (d) an application of the refinement to improve security of the
CWA specification.

In this paper, we first provide some background in Section 2: we give a
brief overview of related works and the protocol of CWA (Section 2.1). We then
introduce the Isabelle Infrastructure framework (Section 2.2). Next, we present
our model (Section 3) and analysis of privacy and attacks (Section 3.4). The
found attack on the first abstract specification motivates refinement. The formal
definition of refinement for the Isabelle Infrastructure framework is introduced
and illustrated on CWA (Section 4) before drawing some conclusions (Section
5).

The formal model in the Isabelle insider framework is fully mechanized and
proved in Isabelle (sources available [5]).

2 Background and related work

2.1 DP-3T and PEPP-PT

We are mainly concerned with the architecture and protocols proposed by the
DP-3T (Decentralized Privacy-Preserving Proximity Tracing) project [16]. The
main reason to focus on this particular family of protocols is the Exposure Notifi-
cation Framework (ENF), jointly published by Apple and Google [1], that adopts
core principles of the DP-3T proposal. This API is not only used in CWA but
has the potential of being widely adopted in future app developments that might
emerge due to the reach of players like Apple and Google.
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There are, however, competing architectures noteworthy, namely protocols
developed under the roof of the Pan-European Privacy-Preserving Proximity
Tracing project (PEPP-PT) [21], e.g. PEPP-PT-ROBERT [22], that might be
characterized as centralized architectures.

Neither DP-3T nor PEPP-PT are synonymous for just one single protocol.
Each project endorses different protocols with unique properties in terms of
privacy and data protection.

There is a variety of noteworthy privacy and security issues. The debate
among advocates of centralized architectures and those in favor of a decentral-
ized approach in particular yields a lot of interesting material detailing different
attacks and possible mitigation strategies: [23], [20], [18].

In terms of attack scenarios, we focus on, what might be classified as deanonymi-
sation attacks: Tracking a device (see [18][p9], [23][p8]) and identifying infected
individuals ([18][p5], [23][p9]).

Basic DP-3T architecture Upon installation, the app generates secret daily
seeds to derive so-called Ephemeral Ids (EphIDs) from them. EphIDs are gener-
ated locally with cryptographic methods and cannot be connected to one another
but only reconstructed from the secret seed they were derived from.

During normal operation each client broadcasts its EphIDs via Bluetooth
whilst scanning for EphIDs broadcasted by other devices in the vicinity. Col-
lected EphIDs are stored locally along with associated meta-data such as signal
attenuation and date. In DP-3T the contact information gathered is never shared
but only evaluated locally.

If patients test positive for the Corona-virus, they are entitled to upload
specific data to a central backend server. This data is aggregated by the backend
server and redistributed to all clients regularly to provide the means for local risk
scoring, i. e., determining whether collected EphIDs match those broadcasted by
now-confirmed Corona-virus patients during the last, e. g., 14, days.

In the most simple (and insecure) protocol proposed by DP-3T this basically
translates into publishing the daily seeds used to derive EphIDs from. The pro-
tocol implemented by ENF and, hence, CWA adopts this low-cost design [15].
DP-3T proposes two other, more sophisticated protocols that improve privacy
and data protection properties to different degrees but are more costly to imple-
ment. Figure 1 illustrates the basic system architecture along with some of the
mitigation measures either implemented in CWA or proposed by DP-3T.

2.2 Isabelle Infrastructure framework

The Isabelle Infrastructure is built in the interactive generic theorem prover Is-
abelle/HOL [13]. As a framework, it supports formalization and proof of systems
with actors and policies. It originally emerged from verification of insider threat
scenarios but it soon became clear that the theoretical concepts, like temporal
logic combined with Kripke structures and a generic notion of state transitions

3



Broadcasting
& Scanning

EphIDs, CTD

Diagnosis Keys
PHS Employee

Backend Server

Content Delivery System

Encounters
(EphIDs, CTD)

EphID
generation

Exposure
scoring

Publish
aggregated
keys

Download keys

Upload keys

TLS

TLS

TAN for verification

Obfucating dummy uploads

Random order

Cuckoo Filter
Out-of-band

channel

Provide
authorization
(e.g. TAN)

Encryption

PHS:
CTD:
TLS:
EphIDs:

DATA
DATA

Public Health Authority
Contact Time Data
Transport Layer Security
Ephemeral IDs

(Publicly) accessible data
Local data

Mitigation and security
measures

Signed Content

Fig. 1. Decentralized privacy-preserving proximity tracing protocol of CWA

were very suitable to be combined with attack trees into a formal security engi-
neering process [3] and framework [7]. Figure 2 gives an overview of the Isabelle
Infrastructure framework with its layers of object-logics – each level below em-
beds the one above showing the novel contribution of this paper in blue on the
top.

Kripke structures, CTL, and Attack Trees The Isabelle framework has
now after various case studies become a general framework for the state-based
security analysis of infrastructures with policies and actors. Temporal logic and
Kripke structures build the foundation. Meta-theoretical results have been es-
tablished to show equivalence between attack trees and CTL statements [4]. This
foundation provides a generic notion of state transition on which attack trees
and temporal logic can be used to express properties. The main notions used in
this paper are:

– Kripke structures and state transitions:
Using a generic state transition relation 7→, Kripke structures are defined as
a set of states reachable by 7→ from an initial state set, for example

Kripke {t. ∃ i ∈ I. i →∗ t} I

– CTL statements:
For example, we can write

K ` EF s

to express that in Kripke structure K there is a path on which the property
s (a set of states) will eventually hold.
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– Attack trees:
The datatype of attack trees has three constructors: ⊕∨ creates or-trees and
⊕∧ creates and-trees. And-attack trees l⊕s∧ and or-attack trees l⊕s∨ consist
of a list of sub-attacks – again attack trees. The third constructor creates a
base attack as a pair of state sets written N(I,s). For example, a two step
and-attack leading from state set I via si to s is expressed as

` [N(I,si),N(si,s)]⊕(I,s)
∧

– Attack tree refinement, validity and adequacy:
Attack trees have their own refinement (not to be mixed up with the system
refinement presented in this paper as introduced in the next section). An
abstract attack tree may be refined by spelling out the attack steps until a
valid attack is reached:
`A :: (σ:: state) attree).
The validity is defined constructively (code is generated from it) and its
adequacy with respect to a formal semantics in CTL is proved and can be
used to facilitate actual application verification as demonstrated her in the
stepwise system refinements.

Instantiation of Framework The formal model of CWA uses the Isabelle
Infrastructure framework instantiating it by reusing its concept of actors for
users and smartphones whereby locations correspond to physical locations. The
Ephemeral Ids, their sending and change is added to Infrastructures by slightly
adapting the basic state type of infrastructure graphs and accordingly the seman-
tic rules for the actions move, get, and put. The details of the newly adapted
Infrastructure are presented in Section 3. Technically, an Isabelle theory file
Infrastructure.thy builds on top of the theories for Kripke structures and
CTL (MC.thy), attack trees (AT.thy), and security refinement (Refinement.thy).
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Thus all these concepts can be used to specify the formal model for CWA, ex-
press relevant and interesting properties, and conduct interactive proofs (with
the full support of the powerful and highly automated proof support of Isabelle).
All Isabelle sources are available online [8].

Refinement An additional feature that has been integrated into the Isabelle In-
frastructure framework motivated by security engineering formal specifications
for IoT healthcare system is an extension of the formal specification process
introducing refinement of Kripke structures [7,11]. It refines a system model
based on a formal definition of a combination of trace refinement and structural
refinement (or datatype refinement). The definition allows to prove property
preservation results crucial for an iterative development process. The refine-
ments of the system specification can be interleaved with attack analysis while
security properties can be proved in Isabelle. In each iteration security qualities
are accumulated while continuously attack trees scrutinize the design. One of
the contributions of this paper is to explore different concepts of refinement: the
formal expression of refinement, enables to pin down (i.e. exemplify) different
concepts of refinement (data refinement, action refinement, trace refinement (aka
spec refinement) and combinations thereof with concrete attack scenarios.

3 Modeling and analyzing CWA

3.1 Infrastructures, Policies, and Actors

The Isabelle Infrastructure framework supports the representation of infrastruc-
tures as graphs with actors and policies attached to nodes. These infrastructures
are the states of the Kripke structure.

The transition between states is triggered by non-parameterized actions get,
move, and put executed by actors. Actors are given by an abstract type actor

and a function Actor that creates elements of that type from identities (of type
string written ’’s’’ in Isabelle). Actors are contained in an infrastructure
graph type igraph constructed by its constructor Lgraph.

datatype igraph =

Lgraph (location × location)set

location ⇒ identity set

identity ⇒ (string set × string set × efid)

location ⇒ string × (dlm × data) set

location ⇒ efid set

actor ⇒ location ⇒ (identity × efid) set

In the current application of the framework to the CWA case study, this graph
contains a set of location pairs representing the topology of the infrastructure
as a graph of nodes and a functionthat assigns a set of actor identities to each
node (location) in the graph. The third component of an igraph assigns the
credentials to each actor: a triple-valued function whose first range component
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is a set describing the credentials in the possession of an actor and the second
component is a set defining the roles the actor can take on; most prominently
the third component is the efid assigned to the actor. This is initially just a
natural number but will be refined to actually represent lists of Ephemeral Ids
later when refining the specification.

datatype efid = Efid nat

The fourth component of the type igraph assigns security labeled data to loca-
tions, a feature not used in the current application. The second to last component
assigns the set of efids of all currently present smart phones to each location of
the graph. The last component finally denotes the knowledge set of each actor
for each location: a set of pairs of actors and potential ids.

Corresponding projection functions for each of the components of an infras-
tructure graph are provided; they are named gra for the actual set of pairs of
locations, agra for the actor map, cgra for the credentials, lgra for the data at
that location, egra for the assignment of current efids to locations, and kgra for
the knowledge set for each actor for each location.

In CWA, the initial values for the igraph components use two locations pub
and shop to define the following constants (we omit the data map component
ex locs).

ex_loc_ass ≡ (λ x. if x = pub then {’’Alice’’, ’’Bob’’, ’’Eve’’}

else (if x = shop then {’’Charly’’, ’’David’’}

else {}))

ex_creds ≡ (λ x. if x = ’’Alice’’ then ({}, {}, Efid 1) else

(if x = ’’Bob’’ then ({},{}, Efid 2) else

(if x = ’’Charly’’ then ({},{}, Efid 3) else

(if x = ’’David’’ then ({},{}, Efid 4) else

(if x = ’’Eve’’ then ({},{}, Efid 5)

else ({},{},Efid 0))))))

ex_efids ≡ (λ x. if x = pub then {Efid 1, Efid 2, Efid 5}

else (if x = shop then {Efid 3, Efid 4} else {}))

ex_knos ≡ (λ x. (if x = Actor ’’Eve’’ then (λ l. {} else (λ l. {})))

These components are wrapped up into the following igraph.

ex_graph ≡
Lgraph {(pub, shop)} ex_loc_ass ex_creds ex_locs ex_efids ex_knos

Infrastructures are given by the following datatype that contains an infrastruc-
ture graph of type igraph and a policy given by a function that assigns local
policies over a graph to all locations of the graph.

datatype infrastructure = Infrastructure igraph

[igraph, location] ⇒ policy set

There are projection functions graphI and delta when applied to an infras-
tructure return the graph and the local policies, respectively. The function
local policies gives the policy for each location x over an infrastructure graph
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G as a pair: the first element of this pair is a function specifying the actors y

that are entitled to perform the actions specified in the set which is the second
element of that pair. The local policies definition for CWA, simply permits all
actions to all actors in both locations.

local_policies G ≡
(λ x. if x = pub then {(λ y. True, {get,move,put})}

else (if x = shop then {(λ y. True, {get,move,put})} else {}))

For CWA, the initial infrastructure contains the graph ex graph with its two
locations pub and shop and is then wrapped up with the local policies into the
infrastructure Corona scenario that represents the “initial” state for the Kripke
structure.

Corona_scenario ≡ Infrastructure ex_graph local_policies

3.2 Policies, privacy, and behaviour

Policies specify the expected behaviour of actors of an infrastructure. They are
given by pairs of predicates (conditions) and sets of (enabled) actions. They are
defined by the enables predicate: an actor h is enabled to perform an action a

in infrastructure I, at location l if there exists a pair (p,e) in the local policy
of l (delta I l projects to the local policy) such that the action a is a member
of the action set e and the policy predicate p holds for actor h.

enables I l h a ≡ ∃ (p,e) ∈ delta I l. a ∈ e ∧ p h

The Privacy protection goal is to avoid deanonymization. That is, an attacker
should not be able to disambiguate the set of pairs of real ids and EphIDs. This
is abstractly expressed in the predicate identifiable.

identifiable eid A ≡ is_singleton{(Id,Eid). (Id, Eid) ∈ A ∧ Eid = eid}

The predicate identifiable is used to express as the global policy ‘Eve cannot
deanonymize an Ephemeral Id eid using the gathered knowledge’:

global_policy I eid ≡
¬(identifiable eid

((
⋂

(kgra(graphI I)(Actor ’’Eve’’)‘(nodes(graphI I))))

- {(x,y). x = ’’Eve’’}))

3.3 Infrastructure state transition

The state transition relation uses the syntactic infix notation I →i I’ to denote
that infrastructures I and I’ are in this relation. To give an impression of this
definition, we show first the rule defining the state transition for the action get.
Initially, this rule expresses that an actor that resides at a location l (a @G l)
and is enabled by the local policy in this location to “get” can combine all ids
at the current location (contained in egra G l) with all actors at the current
location (contained in agra G l) and add this set of pairs to his knowledge set
kgra G using the function update f(l := n) redefining the function f for the
input l to have now the new value n.
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get data: G = graphI I =⇒ a @G l =⇒ enables I l (Actor a) get =⇒
I’ = Infrastructure

(Lgraph (gra G)(agra G)(cgra G)(lgra G)(egra G)

((kgra G)((Actor a) := ((kgra G (Actor a))(l:=

{(x,y). x ∈ agra G l ∧ y ∈ egra G l})))))

(delta I)

=⇒ I →n I’

Another interesting rule for the state transition is the one for move whose struc-
ture resembles the previous one.

move: G = graphI I =⇒ a @G l =⇒ a ∈ actors_graph(graphI I) =⇒
l ∈ nodes G =⇒ l’ ∈ nodes G =⇒ enables I l’ (Actor h) move =⇒
I’ = Infrastructure (move_graph_a a l l’ (graphI I))(delta I)

=⇒ I →i I’

The semantics of this rule is embedded in the function move graph a that adapts
the infrastructure state so that the moving actor a is now associated to the target
location l’ in the actor map agra and not any more at l and also the association
of efids is updated accordingly.

move_graph_a n l l’ g ≡
Lgraph (gra g)

(if n ∈ ((agra g) l) ∧ n /∈ ((agra g) l’) then

((agra g)(l := (agra g l) - {n}))(l’ := (insert n (agra g l’)))

else (agra g))

(cgra g)(lgra g)

(if n ∈ ((agra g) l) ∧ n /∈ ((agra g) l’) then

((egra g)(l := (egra g l) - {efemid (cgra g n)}))

(l’ := (insert (efemid (cgra g n))(egra g l’)))

else egra g)

(kgra g)

Based on this state transition and the above defined Corona scenario, we define
the first Kripke structure.

corona_Kripke ≡ Kripke { I. Corona_scenario →∗ I } {Corona_scenario}

3.4 Attack analysis

For the analysis of attacks, we negate the security property that we want to
achieve, usually the global policy.

Since we consider a predicate transformer semantics, we use sets of states to
represent properties. The invalidated global policy is given by the set scorona.

scorona ≡ {x. ∃ n. ¬ global_policy x (Efid n)}

The attack we are interested in is to see whether for the scenario

Kripke scenario ≡ Infrastructure ex_graph local_policies
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from the initial state Icorona ≡{corona scenario}, the critical state scorona

can be reached, that is, is there a valid attack (Icorona,scorona)?
For the Kripke structure corona Kripke we first derive a valid and-attack

using the attack tree proof calculus.

` [N(Icorona,Corona),N(Corona,Corona1),N(Corona1,Corona2),

N(Corona2,Corona3),N(Corona3,scorona)]⊕(Icorona,scorona)
∧

The sets Corona, Corona1, Corona2, Corona3 are the intermediate states where
Bob moves to shop and Eve follows him collecting the Ephemeral Ids in each lo-
cation. The collected information enables identifying Bob’s Ephemeral Id.

The attack tree calculus [4] exhibits that an attack is possible.

corona_Kripke ` EF scorona

We can simply apply the Correctness theorem AT EF to immediately prove this
CTL statement. This application of the meta-theorem of Correctness of attack
trees saves us proving the CTL formula tediously by exploring the state space in
Isabelle proofs. Alternatively, we could use the generated code for the function
is attack tree in Scala (see [4]) to check that a refined attack of the above is
valid.

4 Refinement

Intuitively, a refinement changes some aspect of the type of the state, for exam-
ple, replaces a data type by a richer datatype or restricts the behaviour of the
actors. The former is expressed directly by a mapping of datatypes, the latter is
incorporated into the state transition relation of the Kripke structure that cor-
responds to the transformed model. In other words, we can encode a refinement
within our framework as a relation on Kripke structures that is parameterized
additionally by a function that maps the refined type to the abstract type. The
direction “from refined to abstract” of this type mapping may seem curiously
counter-intuitive. However, the actual refinement is given by the refinement that
uses this function as an input. The refinement then refines an abstract to a more
concrete system specification. The additional layer for the refinement can be for-
malized in Isabelle as a refinement relation vE . The relation mod trans is typed
as a relation over triples – a function from a threefold Cartesian product to bool,
the type containing true and false only. The type variables σ and σ′ input to
the type constructor Kripke represent the abstract state type and the concrete
state type. Consequently, the middle element of the triples selected by the re-
lation mod trans is a function of type σ′ ⇒ σ mapping elements of the refined
state to the abstract state. The expression in quotation marks after the type
is again the infix syntax in Isabelle that allows the definition of mathematical
notation instead of writing mod trans in prefix manner. This nicer infix syntax
is already used in the actual definition. Finally, the arrow =⇒ is the implication
of Isabelle’s meta-logic while −→ is the one of the object logic HOL. They are
logically equivalent but of different types: within a HOL formula P , for example,
as below ∀x.P−→Q, only the implication −→ can be used.
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refinement :: (σ Kripke × (σ’ ⇒ σ) × σ’ Kripke) ⇒ bool ("_ v( ) _")

K vE K’ ≡ ∀ s’ ∈ states K’. ∀ s ∈ init K’.

s →∗σ′ s’ −→ E(s) ∈ init K ∧ E(s) →∗σ E(s’)

The definition of K vE K’ states that for any state s′ of the refined Kripke
structure that can be reached by the state transition in zero or more steps from
an initial state s of the refined Kripke structure, the mapping E from the refined
to the abstract model’s state must preserve this reachability, i.e., the image of
s must also be an initial state and from there the image of s′ under E must be
reached with 0 or n steps.

4.1 Property Preserving System Refinement

A first direct consequence of this definition is the following lemma where the
operator ‘ in E‘(init K’) represents function image, that is the set, {E(x).x ∈
init K’}.
lemma init_ref: K vE K’ =⇒ E‘(init K’) ⊆ init K

A more prominent consequence of the definition of refinement is that of property
preservation. Here, we show that refinement preserves the CTL property of EFs
which means that a reachability property true in the refined model K’ is already
true in the abstract model. A state set s′ represents a property in the predicate
transformer view of properties as sets of states. The additional condition on
initial states ensures that we cannot “forget” them.

theorem prop_pres:

K vE K’ =⇒ init K ⊆ E‘(init K’) =⇒
∀ s’ ∈ Pow(states K’). K’ ` EF s’ −→ K ` EF (E‘(s’))

It is remarkable, that our definition of refinement by Kripke structure refinement
entails property preservation and makes it possible to prove this as a theorem
in Isabelle once for all, i.e., as a meta-theorem. However, this is due to the
fact that our generic definition of state transition allows to explicitly formalize
such sophisticated concepts like reachability. For practical purposes, however,
the proof obligation of showing that a specific refinement is in fact a refinement
is rather complex justly because of the explicit use of the transitive closure
of the state transition relation. In most cases, the refinement will be simpler.
Therefore, we offer additional help by the following theorem that uses a stronger
characterization of Kripke structure refinement and shows that our refinement
follows from this.

theorem strong_mt:

E‘(init K’) ⊆ init K ∧ s →σ′ s’ −→ E(s) →σ E(s’)
=⇒ K vE K’

This simpler characterization is in fact a stronger one: we could have s→σ′s′

in the refined Kripke structure K’ and ¬(E(s)→σE(s′)) but neither s nor s′ are
reachable from initial states in K’. For cases, where we want to have the simpler
one-step proviso but still need reachability we provide a slightly weaker version
of strong mt.
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theorem strong_mt’:

E‘(init K’) ⊆ init K ∧ (∃ s0 ∈ init K’. s0 →∗ s)

∧ s →σ′ s’ −→ E(s) →σ E(s’) =⇒ K vE K’

This idea of property preservation coincides with the classical idea of trace refine-
ment as it is given in process algebras like CSP. In this view, the properties of a
system are given by the set of its traces. Now, a refinement of the system is given
by another system that has a subset of the traces of the former one. Although
the principal idea is similar, we greatly extend it since our notion additionally
incorporates refinement. Since we include a state map σ’⇒σ in our refinement
map, we additionally allow structural refinement: the state map generalizes the
basic idea of trace refinement by traces corresponding to each other but allows
additionally an exchange of data types. As we see in the application to the case
study, the refinement steps may sometimes just specialize the traces: in this case
the state map σ’⇒σ is just identity.

In addition, we also have a simple implicit version of action refinement. In
an action refinement, traces may be refined by combining consecutive system
events into atomic events thereby reducing traces. We can observe this kind of
refinement in the second refinement step of CWA considered next.

4.2 Refining the Specification

Clearly, fixed Ephemeral Ids are not really ephemeral. The model presented
in Section 3 has deliberately been designed abstractly to allow focusing on the
basic system architecture and finding an initial deanonymization attack. We now
introduce “proper” Ephemeral Ids and show how the system datatype can be
refined to a system that uses those instead of the fixed ones.

For the DP-3T Ephemeral Ids [17], for each day t a seed SKt is used to
generate a list of length n = 24 ∗ 60/L, where L is the duration for which the
Ephemeral Ids are posted by the smart phone

EphID1 || ... || EphIDn = PRG(PRF(SKt,‘‘broadcast key’’))

“where PRF is a pseudo-random function (e.g., HMAC-SHA256), “broadcast
key” is a fixed, public string, and PRG is a pseudorandom generator (e.g. AES
in counter mode)” [17].

From a cryptographic point of view, the crucial properties of the Ephemeral
Ids are that they are purely random, therefore, they cannot be guessed, but
at the same time if – after the actual encounter between sender and receiver
– the seed SKt is published, it is feasible to relate any of the EphIDi to SKt

for all i ∈ {1, . . . , n}. For a formalization of this crucial cryptographic property
in Isabelle it suffices to define a new type of list of Ephemeral Ids efidlist

containing the root SKt (the first efid), a current efid indicated by a list
pointer of type nat, and the actual list of efids.

datatype efidlist = Efids "efid" "nat" "efid list"
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We define functions for this datatype: efidsroot returning the first of the three
constituents in an efidlist (the root SKt); efids index giving the second com-
ponent, the index of the current efid; efids inc ind applied to an efidlist

increments the index; efids cur returning the current efid from the list and
efids list for the entire list (the third component).

The first step of refinement replaces the simple efid in the infrastructure
type by the new type efidlist. Note, that in the new datatype igraph this
change affects only the third component, the credentials to become

identity ⇒ (string set × string set × efidlist)

The last two components, the set of currently present efids, and the knowledge
set, remain the same and still operating on the simple type efid. The refined
state transition relation implements the possibility of changing the Ephemeral
Ids by the rule for the action put that resembles very much the rule for get.
The important change to the infrastructure state is implemented in the function
put graph efid that increases the current index in the efidlist in the cre-
dential component cgra g n for the “putting” actor identity n and inserts the
current efid from that credential component into the egra component, the set
of currently “present” Ephemeral Ids at the location l.

put_graph_efid n l g ≡
Lgraph (gra g)(agra g)

((cgra g)(n := (credentials (cgra g n), roles (cgra g n),

efids_inc_ind(efemid (cgra g n)))))

(lgra g)

((egra g)(l := insert (efids_cur(efemid (cgra g n)))(egra g l)))

(kgra g)

We can now apply the refinement by defining a datatype map from the re-
fined infrastructure type InfrastructureOne.infrastructure to the former
one Infrastructure.infrastructure.

definition refmap :: InfrastructureOne.infrastructure ⇒
Infrastructure.infrastructure

where refmap I =

Infrastructure.Infrastructure

(Infrastructure.Lgraph

(InfrastructureOne.gra (graphI I))

(InfrastructureOne.agra (graphI I))

(λ h. repl_efr

(InfrastructureOne.cgra (graphI I)) h)

(InfrastructureOne.lgra (graphI I))

(InfrastructureOne.egra (graphI I))

(λ a. λ l.

(λ (x,y).(x, efids_root(efemid(InfrastructureOne.cgra (graphI I) x))))

‘(InfrastructureOne.kgra (graphI I)) a l))

This is then plugged into the parameter E of the refinement operator allowing
to prove corona Kripke vrefmap corona KripkeO where the latter is the refined
Kripke structure.

13



Surprisingly, we can still prove corona KripkeO `EF scoronaO by using the
same attack tree as in the abstract model: if Bob moves from pub to shop, he is
vulnerable to being identifiable as long as he does not change the current efid.
So, if Eve moves to the shop as well and performs a get before Bob does a put,
then Eve’s knowledge sets permits identifying Bob’s current Ephemeral Id as
his.

Second refinement step The persistent attack can be abbreviated informally
by the action sequence [get,move,move,get] performed by actors Eve, Bob,
Eve, and Eve again, respectively. How can a second refinement step avoid that
Eve does the last get by imposing that after the first move of Bob a put action
must happen before Eve can do another get? A very simple remedy to exclude
this attack is to bind a put action after every move. We can implement that
change by a minimal update to the function move graph a (see Section 3) by
adding an increment (highlighted in the code snippet) of the currently used
Ephemeral Id before updating the egra component of the target location.

move graph a n l l’ g ≡ ...

(l’ := insert (efids_cur( efids inc ind(efemid (cgra g n))))(egra g l))...

This is an action refinement because the move action is changed. It is a refine-
ment, since any trace of the refined model can still be mapped to a trace in the
more abstract model just omitting a few steps (the refinement relation is defined
using the reflexive transitive closure →∗.

5 Summary and discussion of relevance of the approach

We can establish in our formal framework an attack that even a system using
changing Ephemeral ids can be broken if the attacker physically follows a victim.
This is a basic attack on anonymity: a user’s connection between his Ephemeral
Ids and personal details (Iphone MAC or name) is revealed to the attacker. The
protection goal of privacy is thereby destroyed.

When establishing the attack we start from a simplistic scenario that does
not use Ephemeral Ids but fixed ids. In this (over)simplified model the attack
is established. We then define a formal Refinement calculus for the Isabelle In-
frastructure framework to refine the attack to a system with Ephemeral Ids that
change in fixed time intervals obfuscating the relationship between user and his
pseudonym1.

Now, the refinement shows that although the Ephemeral Ids change regularly
the same attack that has been identified on the very abstract level (fixed ids)
persists. The refinement allows refining the datatype (Id 7→ EphID) but also
delivers the usual trace refinement (behaviours of the refined systems are a subset
of the traces of the abstract system). This persistence of the attack precisely

1 We identify the smartphone and the user which might be also recognized by his
appearance (face)
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shows which part of the system behaviour is responsible for the attack. In a
second refinement step using action refinement based on this insight from the
(repeated) attack, we can exclude the dangerous attack trace.

Clearly, the abstract attack we establish is obvious on an informal level but
the persistence of the attack on the refined system is less obvious. The remedy
by a second refinement step is an evident restriction of the system behaviour
which gives a clear specification of a system secured against this attack. The
use of formal methods therefore lies not in the discovery of an obvious attack
on a simplified system but in showing how a formal specification including se-
curity refinement can lead to a stepwise improvement that is accompanied by
formal proof in the Isabelle Infrastructure framework. The solution to exclude
the attack in the second refinement step binds the action move together with a
put action. This shows that besides datatype refinement and trace refinement
our Refinement calculus also entails action refinement. This action refinement
is implemented implicitly by changing the effects of the actions in the seman-
tic state transition relation. In future work, we could think about making the
action refinement more explicit by considering a relationship between semantic
rules or by refining the refinement notion to a more explicit layer of protocol
steps – similar to what has been done in previous applications of the Isabelle
Infrastructure framework for example to Auction protocols [9] or the Quantum
Key Distribution [6].

The security refinement in general might seem pointless, as in the first step
of refinement the attack persists and even though the second refinement gets
rid of this specific attack, it doesn’t exclude the reachability of the attack goal
altogether (if the attacker Eve gets Bob on his own in a location she can map
all used EphIDs to him). However, the refinement makes the system relatively
more secure in that for a larger number of traces the abstract attack does not
work anymore2. It is important to emphasize that security refinement is a cyclic
process that improves security but does not usually terminate (like a loop) with
a fixed point of 100% secure system. In a refined model new detail may give rise
to new attack possibilities. These additional attacks can be identified using the
Attack Tree calculus and trigger further refinement steps.
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