
OrgML - A domain specific language for
organisational decision-making

Souvik Barat1, Balbir Barn2,
Tony Clark3, and Vinay Kulkarni1

1 Tata Consultancy Services Research, Pune, India
{souvik.barat,vinay.vkulkarni}@tcs.com

2 Middlesex University London, UK
b.barn@mdx.ac.uk

3 Aston University, Birmingham, UK
tony.clark@aston.ac.uk

Abstract. Effective decision-making based on precise understanding of
an organisation is critical for modern organisations to stay competitive
in a dynamic and uncertain business environment. However, the state-
of-the-art technologies that are relevant in this context are not adequate
to capture and quantitatively analyse complex organisations. This paper
discerns the necessary information for an organisational decision-making
from management viewpoint, discusses inadequacy of the existing enter-
prise modelling and specification techniques, proposes a domain specific
language to capture the necessary information in machine processable
form, and demonstrates how the collected information can be used for a
simulation-based evidence-driven organisational decision-making.

Key words: Organisational decision making, Enterprise Modelling, En-
terprise Simulation, Domain Specific Language, What-if Analysis.

1 Introduction

Modern organisations continuously evaluate their status-quo and evolve to stay
competitive and economically viable in the current business environment [12].
In this endeavour, decision-makers constantly explore the answers for a range of
decision questions such as: Is the current form of the organisation appropriate to
stay ahead of competition or economically viable? If not, What kind of changes
are necessary to achieve organisational goals? Where to apply those change? and
When to apply those changes?

Predicting answers to these decision questions requires precise understand-
ing of organisational aspects, such as goals, organisational structure, operational
processes, and its operating environment [12]. But analysing all relevant aspects
and their dynamism is exceedingly complex [25] because of the inherent char-
acteristics of the modern organisation that include socio-technical characteris-
tics [21], complex and dynamic organisational structure [5], inherent uncertainty
and emergent behaviour.

2 Barat et al.

The state-of-the-practice of organisational decision-making chiefly relies on
qualitative approaches, such as discussion and interviews, with limited quantita-
tive assistance that comes from spreadsheets based data computation. The role
of the expert is paramount and excessive dependency on human intuitions and
interpretations compounded with inadequate quantitative analysis often results
in a less effective decision. This is especially true when the context is complex
and dynamic [22]. We argues a suitable quantitative approach in addition to the
qualitative and expert based approaches is a significant value add for modern
organisations.

A range of enterprise modelling and analysis techniques supporting quanti-
tative approaches exist. However, their utility is limited to a class of decision-
making as compared to a wide range of decision-making discussed in management
literature [5, 12]. For example, inferential techniques that rely on the statistical
interpretation of historical system data are suitable only for static environments
(i.e., the environmental and organisational topology are fairly static with the
time). The mathematical models, such as linear programming [10], work well for
mechanistic and monolithic systems that are not adaptive in nature. The enter-
prise models, such as ArchiMate [17], i* [27], and BPMN [26], are found to be
inappropriate for the systems that exhibit significant uncertainty and emergen-
tism. Whereas the actor technologies [1] and agent-based systems [20] fall short
of expressing the complex organisational structure and uncertainty.

We aim to advance the state-of-the-art enterprise modelling and analysis
technique to support quantitative evidence-driven decision-making. This paper
focuses on two critical aspects of organisational decision-making - (a) what and
how to capture the necessary information of an organisational decision-making,
and (b) how to analyse various decision alternatives and understand their con-
sequences prior to their implementation in reality.

We discern the necessary information of an organisational decision-making
(i.e. what to capture) by reflecting on organisational theory [4] and management
literature on decision-making [25]. Here, we present a novel approach to (a)
effectively capture the necessary information of organisational decision-making
using Domain Specific Language (DSL), termed OrgML, and (b) analyse what-if
scenario. The proposed OrgML combines two concepts: system of systems [9] and
actor model of computation [1]. Our analysis approach draws upon a bottom-up
simulation technique to understand the key characteristics of organisation such
as: autonomy, adaptability, uncertainty and emergent behaviour.

2 Problem Space - Organisational Decision Making

Management theories [5] describe decision-making using three broad concepts,
namely: decision problem, course of action and decision. The decision problem
is organisational goals that an organisation targets, courses of action is the
knowledge of alternatives that are considered and evaluated in a decision-making,
and a decision is the outcome of a decision-making, i.e., selected alternative.
The literature also considers that a decision-making cannot happen in vacuum.

OrgML - A domain specific language 3

Fig. 1: Organisational decision-making meta
model

It requires specific contextual in-
formation to evaluate the conse-
quences of potential courses of ac-
tion, i.e., develop knowledge of
consequences. Methodologically, a
decision-making is approached us-
ing four steps – (1) problem iden-
tification, i.e., defining precise de-
cision problem (2) generation of
alternative courses of action, i.e.,
development of knowledge of al-
ternatives for a decision problem, (3) evaluation of courses of action or developing
knowledge of consequences by predicting/computing the key performance indi-
cators (KPIs) from contextual information, and (4) ranking of courses of action
(i.e., consequent preference ordering) and selection of the most effective course
of action (i.e. a decision).

We represent the core concepts of organisational decision-making using a
meta-model as shown in Fig. 1. The concept of decision-making are represented
using three entities: Goal, Measures, and Lever. The concept Goal represents the
organisational goals. Measure represents the key performance indicators (KPIs)
that indicate the fulfillment of Goals. A Lever is a conceptual representation of
a course of action. We refer these derived concepts as GM-L structure.

The contextual information for decision-making is represented using two
primitive elements: Organisation and Environment. An Organisation is visu-
alised as a system that has Structure, Behaviour and State. Moreover, an organ-
isation often records its historical states, interactions, realisation of goals, and
the useful phenomena as an organisational memory [19]. We term this historical
records as Trace. Operationally, Behaviour updates the State and Trace of an
organisation.

The concepts of GM-L structure and contextual information converge at
two concepts: Lever and Measure. A Lever of a GM-L structure describes the
changes of Organisation elements that include Structure, Behaviour, and Goal.
Whereas, theMeasures are expression over Trace and State. In this formulation,
an organisational decision making is a method to develop the knowledge of con-
sequences by computing/predicting the Measures for all identified Levers (i.e.
the knowledge of alternatives), rank the Levers based on the observed Measure
values (i.e., consequent preference ordering), and select a Lever that serves the
purpose best (i.e., decision).

2.1 Characteristics and considerations

Management viewpoints perceive the characteristics of an organisation by reflect-
ing on organisational theory [12] and system theories [16]. From organisational
theory perspective, an organisation is a reactive entity (as it exchanges mes-
sages and resources with its environment). The complexity theory considers an
organisation as a complex entity because it often composes a large number of

4 Barat et al.

interdependent subsystems or elements (i.e., system of systems) in a nonlinear
way. Daft et al. further characterise an organisation as a composition of multi-
ple loosely coupled and autonomous elements [12]. The complex adaptive system
(CAS) theory [16] considers the behaviour of a complex organisation is largely
probabilistic and emerges from the interactions of the connected sub-systems
and individuals. Collectively they visualise an organisation as a complex system
of systems, where each constituent system is characterised by multiple socio-
technical properties such as: modularity, composability, autonomy, temporality,
reactiveness, adaptability, uncertainty and emergentism.

From a methodology perspective, the modelling and analysis of necessary
information witness a dilemma between the top-down versus bottom-up. In an
organisation, the goal definition mostly follow a top-down path where the top
level goals are decomposed into various unit level goals along the organisational
structure. However, describing the overall behaviour of an organisation in the
face of increasing complexity and uncertainty is a difficult proposition. The be-
haviour is known only for highly localised contexts, which suggest a bottom-up
modelling approach. From analysis perspective, the top-down (or reductionist)
viewpoint helps to reduce the complexity but not able to recognise inherent
emergentism, whereas the bottom-up analysis helps to understand the emer-
gent behaviour. Therefore, a bottom-up analysis approach that has an ability to
understand the emergentism is expected to be an effective analysis aids.

3 Proposed approach

An effective evidence-driven organisational decision-making depends on two fac-
tors: (i) an ability to capture all relevant decision-making information, such as
Goal, Measure, Lever and contextual information as shown in Fig. 1, and (ii) an
ability to perform quantitative what-if analyses. The former requires complete-
ness and expressibility, and the latter expects the analysis efficacy.

To achieve our research goal and deal with the complexities presented in the
previous section, we develop an actor-based domain specific language, termed
as OrgML, to capture relevant information, and enable a bottom-up simulation.
The key considerations for adopting actor abstraction are – actors are inherently
modular, composable, autonomous and reactive entities. Therefore, it is capa-
ble of representing system of systems and the socio-technical characteristics of
constituent systems (of a complex organisation). We extend the canonical form
of actor abstraction to capture decision-making concepts: Goal, Measure and
Lever. The primary reason for considering bottom-up simulation as analysis aid
are twofold: (a) it helps to observe the emergent behaviour of a complex system
or system of systems, and (b) it can quantitatively compute the behaviour of a
system along time dimension by advancing the simulation ‘time’. Therefore, the
consequence of all hypothetical changes representing possible Levers along time
dimension can be evaluated using simulation.

OrgML - A domain specific language 5

1 gml ::= GML { GML specification
2 goals : (goal*) Goal specification
3 measures : (measure *) Measure Specification
4 levers : (lever *) Lever specification
5 }
6 goal ::= id [description] g_expr Goal declaration
7
8 g_expr ::= { g_expr g_reln g_expr } Goal decomposition
9 | ⇒ leaf_goal Leaf level goal

10
11 g_reln ::= ‘;’ | ‘|’ | ‘→’ And , or and sequence relations
12
13 leaf_goal ::= m_exp | r_exp Quantitative & relative expression
14
15 m_exp ::= measure Measure
16 | integer | boolean | float | string Constants
17 | exp op exp Binary expression
18 | Not exp Negation
19 | fun(exp*) Function call
20 | [exp*] List of expressions
21
22 r_exp ::= [prefix] qualifier [suffix] Relative expression
23
24 prefix ::= always | never
25 qualifier ::= increase | decrease Relative operations
26 | maintain | maximise | minimise
27 suffix ::= t_exp time Time expression
28 t_exp ::= at | before | after | during
29
30 measure ::= id Measure declaration
31 lever ::= id Lever declaration

Fig. 2: Syntax of GML specification

3.1 OrgML specification

A domain specific language and a supporting language workbench [14] is pro-
posed to capture two sets of derived concepts, which we termed as: GM-L struc-
ture and contextual information. The GM-L specification language is designed
to help decision makers of the organisation to specify GM-L structure using
an intuitive and top-down manner. The organisation specification language that
represents contextual information is designed for domain experts to capture nec-
essary aspects and characteristics of an organisation in a bottom-up manner.
The expressiveness is a key characteristic of organisation specification language.
A seamless interoperability between two specification languages is established
to ensure structural and conceptual consistency as they collectively specify the
necessary information of an organisational decision-making.

GM-L specification : A concrete syntax of top-down GM-L specification is
shown in Fig. 2. It contains goals, measures and levers specifications (line 1–5).
A goal can either be decomposed into finer goals (as shown in line 8) or it can
be mapped to a measure for a leaf level goal (as shown in line 9). The decom-
position relationships (i.e., g reln) can be specified using one of the three goal
decomposition relations: and, or and sequence (as shown in line 11). A leaf level
goal to measure mapping can be specified either through a quantitative expres-
sion (i.e., m exp) or relative expression (i.e., r exp) as shown in line 13. The
quantitative expressions are mathematical and logical operators over measures
as shown in line 15–20, whereas the relative expression describes expected value
of a measure with respect to its previous instances. A set of language constructs
such as increase, decrease, maintain, maximise and minimise along with suitable

6 Barat et al.

1 orgml ::= import_stmt calendar { element *} OmgML specification
2 import_stmt ::= import (orgml_spec_name*) Import OrgML Spec
3 calendar ::= Calendar id { time* } Calendar entity
4
5 time ::= p_time Primitive time
6 | time(integer) of time Every nth occurrence
7 | time except time Not of time event
8 | [time*] Sequence of time event
9 | anytime [time*] A time from a list.

10
11 element ::= data_unit | org_unit Element types
12
13 data_unit ::= DataUnit id { (variable *) } DataUnit declaration
14
15 org_unit ::= OrgUnit id { OrgUnit declaration
16 goals: (goal*) Goal specifications
17 variables: (property *) Variables & traces
18 subscribes : (time_event_name *) Subscribed time events
19 consumes : (event [trace])* Incoming events
20 produces : (event [trace])* Outgoing events
21 actions: (action *) Action specifications
22 measures: (measure *) Measure specifications
23 levers : (lever*) Lever specifications
24 }
25
26 property ::= [(@ indicator)] variable
27 variable ::= id :: type [:= exp] Variable declaration
28
29 type ::= element_id DataUnit or OrgUnit
30 | Integer | String | Double | Date | Boolean Primitive types
31 | [type] List type
32
33 indicator ::= trace (time_event_name) Trace variable
34
35 event ::= id (parameter*) Event definition
36 parameter ::= id type
37
38 action ::= on event where condition do { stmt* } Action specification
39
40 event ::= p_event Primitive event
41 | time Time event
42 | event[exp] Number of occurrence
43 | no event Event not occurred
44 | { event* } Any event from list
45 | event between [event ,event] Event between events
46 | [event *] Sequence of events
47
48 p_event ::= id(type*) Event definitions
49
50 condition ::= {exp* } List of conditions
51
52 exp ::= variable Variable
53 | integer | boolean | string | float | date Constants
54 | exp op exp Binary expression
55 | not exp Negation
56 | fun(exp*) Function call
57 | [exp*] List of expressions
58
59 stmt ::= variable := exp Assignment
60 | new id(exp*) Create new OrgUnit
61 | p_event(exp) → id Send event
62 | probably(exp) stmt else stmt Uncertainty
63 | for (lvar:exp) do stmt Looping
64 | i f exp then stmt else stmt Conditional statement

Fig. 3: Organisation specification language syntax

prefix (such as always and never) and suffix are proposed to specify the relative
expressions (as shown in line 22 and 24–28).

Constructs measures and levers are defined as labels as shown in line 30 and
31. They are expected to be introduced in GM-L specification and explicitly
specified in organisation specification as part of interoperability.

OrgML - A domain specific language 7

Organisation specification : An organisation specification captures three key
concepts – OrgUnit, DataUnit and Calendar. An OrgUnit is conceptually an
actor that represents organisation, its constituent elements and environment in
a modular form. A DataUnit is an abstraction to represent passive elements
or data (where no behaviour is associated) of an organisation. The Calendar
represents a set of meaningful ‘time’ events of an organisation.

A concrete syntax of organisation specification is shown in Fig. 3. An or-
ganisation specification contains three sections: import, calendar and element
description (shown in line 1). The import section imports a set of OrgML files
that contain GM-L specification and other organisation specifications (enables
modular specification as shown in line 2). The calendar section defines time as
shown in line 3. A time definition can be two types – primitive time (under-
lying simulation engine decides this time interval) and composite time (can be
computed from the existing time definitions). A syntax of time specification is
presented in line 5 to 9. As shown, the time operators are – (a) nth occurrence
(e.g., start of a week is every 7th occurrence of day: week = day(7), where day
is a primitive time), (b) except (e.g., a work schedule can be defined as all days
except day 7 of a week: schedule = day except [7]), (c) a sequence of time
events (e.g., the second day of a week can be defined as 2ndDayOfWeek = [week,

day, day]), and (d) anytime is a probabilistic occurrence of a time event from
a list of events.

Element description section defines DataUnit and OrgUnit as shown in line
11. A DataUnit, defined using term data unit, contains a set of variables, where
variables are typed elements as shown in line 13 and 27. A type can be one of
the three alternatives – (i) primitive type, such as Integer and String, as shown
in line 30, (ii) a list as shown in line 31, or (iii) an user defined type, such as
DataUnit and OrgUnit as shown in line 29. An OrgUnit encapsulates its goals
(optional), state, trace, event specification and (probabilistic) behaviour. The
goal of an OrgUnit can be described using goal specification as shown in Fig. 2.
The state variables that form the state of an OrgUnit can be specified using a
set of properties (i.e., typed variables) as shown in line 17, 26–27. Traces can
be specified by augmenting a variable with ‘trace’ keyword along with a time
event (t) as shown in line 26 and 33. It implies that the marked variable will be
recorder at every time interval (t) as memory.

An OrgUnit can be cognizant of time events when it subscribes them as shown
in line 18. The subscribed time events helps an OrgUnit to exhibit temporal and
autonomous behaviours. The interactions of OrgUnits are specified using events.
An OrgUnit consumes a set of events, termed as incoming event, as shown in
line 19, and produces a set of events, termed as outgoing events, as shown in
line 20. These events can be traced (i.e., the occurrence details will be recorded)
when they are augmented with a keyword ‘trace’ as shown in line 19 and 20.

The behaviour of an OrgUnit can be specified using a set of actions (line 21),
where each action comprises a complex event specification (termed as event),
conditional statement(s) (termed as condition), and behavioural specification as
shown in line 38. The behavioural statement block (i.e., {stmt *}) of an action
it triggered when the complex event specification and conditional expression

8 Barat et al.

1 measure ::=exp@time_event display using chart_type
2
3 chart_type ::= bar | pie | line | table Chart Type
4
5 lever ::= Lever id (lever_spec*) Lever declaration
6 lever_spec ::= at event apply { lever_stmt* } Lever specification
7 lever_stmt ::= variable_name := exp Variable assignment
8 | replace p_event By p_event Event replacement
9 | ignore p_event Ignore an event

10 | deactivate action Deactivate an action
11 | omit outgoing_event Don ’t send an outgoing event

Fig. 4: Syntax of Measure and Lever specification

over state variables are evaluated as true. A complex event can be specified
using primitive events (i.e., events which are raised from OrgUnits), time events
(defined in calendar section), and complex operators on events as shown in line
40 – 46. The key operators are occurrence of an event (line 42), negation (line
43), any event from a list of events (line 44), an event between two other events
(line 45), and sequence of events (line 46). A behavioural statement (i.e., stmt
of line 38) includes six types of statements (as shown in line 59): (i) variables
assignment (line 59), (ii) creation of new OrgUnit (line 60), (iii) sending an
event (line 61), (iv) probabilistic statement involving statements (line 62), (v)
loop (line 63) and (vi) conditional statement (line 64).

As shown in line 22 and 23 in Fig. 3, a specification of an OrgUnit describes
all OrgUnit specific Measures and Levers. A detailed syntax of measure specifi-
cation is shown in lines 1–3 of Fig. 4. A measure is an expression over variables
that needs to be observed at specific time interval using a suitable visualisation
mechanism or chart type as shown in line 3 (an extensible list of options). A
Lever is a set of lever spec (line 5) where each lever spec is a tuple that contains
an event and a collection of lever statements (i.e., lever stmt). A lever stmt sup-
ports variable assignment, event replacement, ignore an incoming event, omit an
outgoing event and deactivation of an action (as shown in line 7–11). To ensure
the completeness of the overall specification, two rules are considered between
GM-L specification and organisation specification – (i) Measure consistency: all
measures of a GM-L specification should be owned by at-least one OrgUnit, and
(ii) Lever consistency : all levers of a GM-L specification should be specified by
at-least one OrgUnit.

Discussion: The concepts introduced in the proposed OrgML specification are
grounded in well understood theories in the research literature. For example,
the decomposition, moduarisation and unit hierarchy of OrgUnit are taken from
component abstraction [8]. An event driven architecture [23] is adopted to in-
troduce reactive behaviour. The concept of intentional modelling [27] is adopted
to enable goals. The complex event is traced to [24]. The goal-directed reactive
and autonomous behaviour that may result into emergentism is traced to actor
model of computation [1]. The visualisation scheme of the measures are taken
from the visualisation of temporal data model presented in [2]. The time specifi-
cation follows the notion of discrete and relative time definitions [15]. The lever
specification is derived from variability modelling concept [18]. Methodologically,

OrgML - A domain specific language 9

OrgML supports a top-down approach for defining organisational goals and a
bottom-up approach for behavioural specification.

3.2 Enabling bottom-up analysis - OrgML to Actor specification

We transform OrgML specification to actor specification for bottom-up simu-
lation and what-if analysis. We consider an actor language, termed as Enter-
prise Simulation Language (ESL) [11], as the simulation specification. However,
we define OrgML to actor specification mapping in such a way that any ac-
tor language, such as Akka [3] or Erlang [6], can be considered as simulation
specification. Conceptually, all constituent elements of an organisation, namely:
OrgUnit, DataUnit and Calendar, are mapped to a generic form of actor, which
is represented in Fig. 5.

Fig. 5: Organisational decision-making

The OrgUnit variables are
translated into actor variables,
traces are translated into actor
variables with list data-type, and
the interactions among OrgUnits
are mapped to event specifica-
tions. All incoming events and
time events are considered as in-
coming event of an actor, i.e. they
are queued into inbox of the recipient actor. The behavioural specification of
OrgML actions are translated into event specification, where complex events
are evaluated by maintaining an event trace (i.e., history of events) and pattern
matching algorithm. The statement to specify variable assignments, new actor,
looping, conditional statement and send event are supported in most of the actor
specification. Therefore, all statements can be mapped to actor specification by
suitable syntactic transformation. All probabilistic statements are guarded with
a conditional statement with a random number generation.

The measures are mapped to actor variables, which are recorded at specified
time events using a list data structure and displayed using a visual graph.

In this formulation, a DataUnit is specialised actor that contains set of state
variables. The Calendar is another type of specialised actor that contains a set of
event specifications. A calendar actor receives primitive events (from underlying
simulation engine), computes complex events, and sends complex time events to
all subscribed OrgUnits.

3.3 What-if analysis

An approach for simulation driven what-if analysis is shown in Fig. 6. An OrgML
specification that contains a set of OrgUnits, DataUnits and a Calendar is simu-
lated for times with or without a lever leverp to understand the as-is behaviour
of an organisation or the consequence of a lever leverp over time times. For
what-if analysis, the specification S of an organisation is first transformed into
a new specification Sresolved by applying a Lever specification leverp on S. The

10 Barat et al.

Fig. 6: Simulation of OrgML specification

translated specification Sresolved is then translated into an actor specification
Sactor by applying OrgML to actor specification transformation rules. Finally,
the actors of translated actor specification Sactor are executed in parallel us-
ing a simulation engine. Semantically, all translated actors concurrently process
events that include time events and incoming events from their respective inbox.
Processing involves (a) dequeue events from its inbox, (b) update of trace infor-
mation by appending processing event to its trace information, (c) evaluation of
action applicability by evaluating the event trace and state condition of action
specifications, and (d) simulation of behavioural specification of all valid actions
that result into update of state variables, event interactions and creation of new
actors. The processing of each time event computes relevant measure variables
(of all OrgUnits) and displays using specified visualisation format.

3.4 Implementation

A language workbench [14], termed as OrgML workbench, is implemented using
Eclipse Xtext technology1 to support standard language features [13]. The lan-
guage features include three mandatory features: notation, editor and semantics,
and three optional features: validation, composability and testing. In particular,
the OrgML workbench supports a text-based notation (As shown in section 3.1
and illustrated in section 4), a transformational semantics using OrgML to ESL
transformation (as discussed in section 3.2), a free-form eclipse-based editor with

1 http://www.eclipse.org/Xtext/

OrgML - A domain specific language 11

1 GML ABCUniversity {
2 goals:
3 Goal ImproveRanking [improve University Ranking] {
4 ImproveResearchQuality ; ImproveTeachingQuality
5 };
6 Goal ImproveResearchQuality ⇒ [PublicationCount > 100];
7 Goal ImproveTeachingQuality ⇒ [always minimise StudentConcerns];
8 measures:
9 Measure StudentConcerns;

10 Measure PublicationCount;
11 levers:
12 Lever ImproveAcademicStudentRatio;
13 Lever IncreaseTeachingPreparation;
14 };

Fig. 7: An illustration of GM-L structure

syntax highlighting, folding and outline features. The OrgML editors (i.e., GM-
L editor and organisation specification editor) support semantic services that
include reference resolution, error marking and live translation of valid OrgML
specification to ESL specification. In addition, it supports structural validations,
type checking, and a language unification based language composability between
GM-L specification and organisation specification.

4 Illustration

The expressibility of OrgML is illustrated using a decision making problem of a
hypothetical university, which is referred as ABC University. Consider a simpli-
fied case where ABC University is aiming to improve its teaching and research
ranking by exploring possible courses of action, such as: (i) academic and student
ratio, (ii) balance between research and teaching academics, (iii) work priorities
of the academics, (iv) appropriate timetabling, and (v) experience and academic
records of the academics.

4.1 GM-L Specification

For an illustration, we consider the stated goal of ABC University to increase
its ranking has two sub-goals: improve research quality and improve teaching
quality. We further consider that the research quality is a function of yearly
publication counts and the teaching quality is a function over student satisfac-
tion index that can be computed/predicted using the number of student queries
and complaints. A representation GM-L structure of ABC University is shown in
Fig. 7. As shown in the figure, the root goal of ABC University is captured using
‘ImproveRanking ’, which is decomposed into two leaf level goals: ‘ImproveRe-
searchQuality ’ and ‘ImproveTeachingQuality ’ using an ‘and ’ decomposition re-
lationship. The leaf goal ‘ImproveResearchQuality ’ is mapped to ‘Publication-
Count ’ measure using a quantitative expression (i.e., ‘PublicationCount ’ should
be more than 100) whereas leaf goal ‘ImproveTeachingQuality ’ is mapped to ‘Stu-
dentConcerns’ using a relative expression (i.e. value of ‘StudentConcerns’ always
should be in decreasing order). The specification also introduces two levers: ‘Im-
proveAcademicStudentRatio’ and ‘IncreaseTeachingPreparation’ for illustration.

12 Barat et al.

1 Organisation Specification :: University {
2 import GML ABCUniversity;
3 Calendar { Hour = Primitive;Day= Hour [8]; Week = Hour [40];
4 LectureSlot = [Hour [2] Of Day[2] Of Week , Hour [5] Of Day[4] Of Week];}
5
6 DataUnit Module {
7 moduleName :: String := "Software Engineering ";
8 credit ::Integer := 5;
9 }

10 . . .
11 OrgUnit Academic
12 {
13 variables:
14 academicName ::String := "Academic1 ";
15 workingHours ::Integer := 6;
16 @trace(Week) queryReceived ::Integer := 0;
17 @trace(Week) compaintsReceived :: Integer := 0;
18 propensityOfTeachingPreparation ::Integer:= 50;
19 teachingPreparation ::Integer := 0;
20 . . .
21 subscribes: Hour , Day , Week , LectureSlot; // Subscribe time event
22
23 consumes:
24 StudentQuery(Integer severity , Student student) ;
25 StudentComplaint(Integer severity , Student student);
26 PaperAcceptance(Integer paperId);
27 . . .
28 produces:
29 Resolution(String resolution) ;
30 DeliverLecture(Module module , Integer hours);
31 PaperSubmission(Integer paperID);
32 . . .
33 actions:
34 Action TeachingPreparation: on [(Sequence [Day(x), Day(y)]) and (!

LectureSlot(slot)) and (! StudentComplaint(severity2 ,student2))]
35 {
36 probably (propensityOfTeachingPreparation) {
37 teachingPreparation = teachingPreparation + 1;
38 };
39 }
40 . . .
41 measures:
42 StudentConcerns=<queryReceived ,compaintsReceived >@Week display using Line
43 PublicationsCount = acceptedPaper @Week display using Line
44 . . .
45 levers:
46 Lever IncreaseTeachingPreparation : ’Increase Teaching propensity of

academics from 50% to 80%’
47 apply [propensityOfTeachingPreparation =80; ignore StudentComplaint;];
48 }
49 OrgUnit Student { // Student Definition
50 . . . }
51 }

Fig. 8: An illustration of organisation specification

4.2 Organisation Specification

An illustrative example of organisation specification is depicted in Fig. 8. The
specification imports a GM-L specification (line 2) and contains a Calendar, a
DataUnit, and a subset of Academic OrgUnit of ABC University.

Calendar defines four time events, where Hour is associated to the ‘primitive’
time; Day and Week are specified using expressions over time events; and Lec-
tureSlot is a complex time expression that specifies two slots in a week: second
hour of Monday and fifth hour of Wednesday (shown in line 4).

A part of course Module is represented as DataUnit in line 6–9. It contains
two typed variables with assignment expressions. A subset of Academic OrgUnit
that illustrates variables, subscribed time events, consume events, produce events,
actions, measures and lever definitions is shown in line 11–48. Defined Academic

OrgML - A domain specific language 13

Fig. 9: A brief overview of simulation dashboard and what-if analysis

OrgUnit contains a set of variables where two variables are marked as trace vari-
able with time event to specify what and when to capture them as trace (line 16
and 17). An action TeachingPreparation with a complex even condition is shown
in line 34-39. It triggers in a day when no lecture slot is scheduled and no student
complaint is received by the academic (line 34). It also illustrates a probabilistic
behaviour in line 36. Two measure definitions with associated variables, time
interval and visualisation are shown in line 41–43. Measure StudentConcerns is
defined using two variables namely: query received and complaint received by
the academic. The specification indicate that these variables need to be captured
at every week and displayed using line graph.

An illustrative Lever specification is shown in line 46–47. Lever IncreaseTeach-
ingPreparation contains two lever statements – the first statement changes
propensityOfTeachingPreparation from 50% to 80% and second statement ig-
nores incoming event ‘StudentComplaint ’.

4.3 Simulation and what-if analysis

The what-if analysis is performed using a complete OrgML specification of a
department of ABC University with 30 academics and 1200 students2. First, the
specification without any lever is translated to ESL specifications using OrgML
to ESL translation rules, translated ESL specification is simulated for 52 Weeks
(i.e. one year), and the specified measures are observed. An overview of the
simulation dashboard is shown in Fig. 9. It shows the measure values of the de-
partment using a table (Fig. 9 (a)), work schedule of an academic using a table,
and work distribution of an academic using a pie chart (Fig. 9 (b)). Subsequently,
various what-if scenarios by applying levers to the initial configuration are ex-
plored. The outcomes of the what-if analyses are summarized in a table shown
in Fig. 9 (c). The observations of these explorations (rows) help to understand
the efficacy of the levers (with respect to specified goals) in a quantitative term
and arrive at an informed decision.
2 The complete specification and simulation results of the case study can be found in

Chapter 7.3 of [7]

14 Barat et al.

5 Concluding remarks

Our key contribution in this paper is a novel domain specific language that
is machine-interpretable and translates to simulation workbench to enable
evidence-based informed organisation decision-making. The deeper analysis of
the literature bought forth the core concepts, such as goal, measure and lever,
and established the importance of socio-technical characteristics, such as mod-
ularity, compositional, reactive, autonomous, intentional, uncertainty and tem-
poral behaviour, to precisely represent and comprehend a complex organisation.
From a validation perspective, our focus is on the expressiveness of OrgML in the
context of organisational decision-making, and the efficacy of its associated anal-
ysis capabilities. The key concepts of the language are validated through their
derivation from current research literature of organisation decision-making. Suf-
ficiency of expressive power of the OrgML language and analysis capability are
demonstrated through an illustrative case study. In our research, we adopted
design science methodology to develop and validated our research artifacts. We
validated our contributions using a set of case studies. Our research methodology
and other case studies are elaborated elsewhere [7]. Our validation establishes
the efficacy and utility of OrgML and associated simulation capabilities. By im-
plementing the language using established reference technology, we enabled our
research artifacts to the practitioners.

The key take away from our validation and usage in industrial context [?]
are twofold - (a) considering simulation as a decision-making aid raises its own
validity concerns particularly with respect to epistemic value of simulations, (b)
while efficacy, utility and completeness of OrgML are established, the usability of
OrgML needs to to improved. Exploring epistemological concerns raised through
decision-making aids using simulation is our next focus area. Other potential area
is to develop visual language notations to improve usability of our technology.

References

1. Agha, G.: Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, Cambridge, MA, USA (1986)

2. Aigner, W., Miksch, S., Müller, W., Schumann, H., Tominski, C.: Visualizing time-
oriented data – a systematic view. Computers & Graphics 31(3), 401–409 (2007)

3. Allen, J.: Effective Akka. O’Reilly Media, Inc. (2013)
4. Amagoh, F.: Perspectives on organizational change: systems and complexity the-

ories. The Innovation Journal: The public sector innovation journal 13(3), 1–14
(2008)

5. Anderson, D., Sweeney, D., Williams, T., Camm, J., Cochran, J.: An introduc-
tion to management science: quantitative approaches to decision making. Cengage
Learning (2015)

6. Armstrong, J.: Erlang - a Survey of the Language and its Industrial Applications.
In: In Proceedings of the symposium on industrial applications of Prolog (INAP).
p. 8 (1996)

7. Barat, S.: Actor based behavioural simulation as an aid for organisational decision
making. Ph.D. thesis, Middlesex University (2019), eprints.mdx.ac.uk/26456/

OrgML - A domain specific language 15

8. Barros, T., Ameur-Boulifa, R., Cansado, A., Henrio, L., Madelaine, E.: Behavioural
models for distributed Fractal components. annals of telecommunications-annales
des télécommunications 64(1-2), 25–43 (2009)

9. Boardman, J., Sauser, B.: System of systems-the meaning of of. In: 2006
IEEE/SMC International Conference on System of Systems Engineering. pp. 6–pp.
IEEE (2006)

10. Candes, E.J., Tao, T.: Decoding by linear programming. IEEE transactions on
information theory 51(12), 4203–4215 (2005)

11. Clark, T., Kulkarni, V., Barat, S., Barn, B.: ESL: An Actor-Based Platform for
Developing Emergent Behaviour Organisation Simulations. In: International Con-
ference on Practical Applications of Agents and Multi-Agent Systems. pp. 311–315.
Springer (2017)

12. Daft, R.: Organization theory and design. Nelson Education (2012)
13. Erdweg, S., Van Der Storm, T., Völter, M., Boersma, M., Bosman, R., Cook,

W.R., Gerritsen, A., Hulshout, A., Kelly, S., Loh, A., et al.: The state of the
art in language workbenches. In: International Conference on Software Language
Engineering. pp. 197–217. Springer (2013)

14. Fowler, M.: Domain-specific languages. Pearson Education (2010)
15. Goralwalla, I.A., Özsu, M.T., Szafron, D.: An object-oriented framework for tempo-

ral data models. In: Temporal Databases: Research and Practice, pp. 1–35. Springer
(1998)

16. Holland, J.H.: Studying complex adaptive systems. Journal of Systems Science and
Complexity 19(1), 1–8 (2006)

17. Iacob, M., Jonkers, D.H., Lankhorst, M., Proper, E., Quartel, D.D.: ArchiMate 2.0
Specification: The Open Group. Van Haren Publishing (2012)

18. Kulkarni, V., Barat, S., Roychoudhury, S.: Towards business application product
lines. In: International Conference on Model Driven Engineering Languages and
Systems. pp. 285–301. Springer (2012)

19. Levitt, B., March, J.G.: Organizational learning. Annual review of sociology 14(1),
319–338 (1988)

20. Macal, C.M., North, M.J.: Tutorial on agent-based modelling and simulation. Jour-
nal of simulation 4(3), 151–162 (2010)

21. McDermott, T., Rouse, W., Goodman, S., Loper, M.: Multi-level modeling of com-
plex socio-technical systems. Procedia Computer Science 16, 1132–1141 (2013)

22. Meissner, P., Sibony, O., Wulf, T.: Are you ready to decide? McKinsey Quarterly,
April 8 (2015)

23. Michelson, B.M.: Event-driven architecture overview. Patricia Seybold Group 2
(2006)

24. Paschke, A., Kozlenkov, A., Boley, H.: A homogeneous reaction rule language for
complex event processing. arXiv preprint arXiv:1008.0823 (2010)

25. Simon, H.A.: The architecture of complexity. In: Facets of systems science, pp.
457–476. Springer (1991)

26. White, S.A.: BPMN modeling and reference guide: understanding and using
BPMN. Future Strategies Inc. (2008)

27. Yu, E., Strohmaier, M., Deng, X.: Exploring intentional modeling and analysis
for enterprise architecture. Enterprise Distributed Object Computing Conference
Workshops (2006), doi=10.1109/EDOCW.2006.36

