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Abstract
This study presents network risk parity, a graph theory-based portfolio construction methodology that arises from a thought-
ful critique of the clustering-based approach used by hierarchical risk parity. Advantages of network risk parity include: the 
ability to capture one-to-many relationships between securities, overcoming the one-to-one limitation; the capacity to leverage 
the mathematics of graph theory, which enables us, among other things, to demonstrate that the resulting portfolios is less 
concentrated than those obtained with mean-variance; and the ability to simplify the model specification by eliminating the 
dependency on the selection of a distance and linkage function. Performance-wise, due to a better representation of system-
atic risk within the minimum spanning tree, network risk parity outperforms hierarchical risk parity and other competing 
methods, especially as the number of portfolio constituents increases.

Keywords  Portfolio construction · Graph theory · Hierarchical clustering · Eigenvalues

JEL classification  G11

Introduction

The seminal asset allocation model of Markowitz (1952) has 
been the stronghold of portfolio construction since 1952. 
However, extensive research documents three main limita-
tions, namely producing unstable, concentrated, and under-
performing portfolios. Michaud (1989) provides a detailed 
exploration of these issues. The finance literature has pro-
posed numerous solutions, including the works of Black and 
Litterman (1992) and Ledoit and Wolf (2004), among others.

The literature on portfolio construction has recently 
focused on two fields of application: clustering and graph 
theory. On the clustering side, the main representative is the 
hierarchical risk parity (HRP) of de Prado (2016), which 
applies hierarchical clustering to securities based on cor-
relations. This groups similar investments while distanc-
ing dissimilar ones, with optimal allocation achieved via 

inverse-variance allocation. Raffinot (2017) further pro-
vided a comprehensive framework for portfolio construction 
employing hierarchical clustering.

Peralta and Zareei (2016) marked the pioneering step with 
the inclusion of graph theory in the portfolio construction 
literature. They demonstrated the close relationship between 
graph centrality measures and optimal portfolio weights. 
Furthermore, they designed portfolios by equally distribut-
ing capital to the most central securities in low-volatility 
periods and rebalancing to the least central securities dur-
ing high-volatility periods. Vỳrost et al. (2019) constructed 
optimal portfolios based on four graphical representations 
of securities: a complete graph, a minimum spanning tree, 
a planar maximally filtered graph, and a threshold signifi-
cance graph.

This paper aims at introducing network risk parity (NRP), 
a novel graph theory-based portfolio construction method 
that produces fully invested, long-only portfolios. We derive 
network risk parity by drawing a parallel with hierarchical 
risk parity. Indeed, while hierarchical risk parity is based on 
hierarchical clustering, Network risk parity builds portfo-
lios with graph theory. The connection point between both 
methodologies is that they calculate portfolio weights pro-
portionally to the inverse of the eigenvalues of a modified 
covariance matrix. In hierarchical risk parity, the optimal 
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weights are calculated as the inverse of each security’s vari-
ance. This variance is obtained from the main diagonal of 
a quasi-diagonal covariance matrix, which is modified to 
incorporate the hierarchical structure derived using hierar-
chical clustering. We demonstrate that the weighting system 
employed by HRP is equivalent to taking the inverse of the 
eigenvalues of the same covariance matrix, after an essen-
tial quasi-diagonalization step. On the other hand, network 
risk parity operates on a different principle. It utilizes an 
adjacency matrix based on covariances, where one set of 
eigenvectors is determined by the eigenvector centrality, a 
measure of the influence of a node in a network. In NRP, the 
optimal portfolio weights are calculated as the inverse of the 
eigenvector centrality. A softmax normalization is applied to 
these weights to ensure a fully invested, long-only portfolio.

Three advantages of network risk parity stem from 
transposing clustering-based methodologies into a graph 
theory framework. Firstly, NRP, grounded on the principle 
of eigenvector centrality, encapsulates relationships among 
securities in a one-to-many fashion, resulting from the defi-
nition of eigenvector centrality that embeds the importance 
of neighboring nodes too. Hierarchical clustering, on the 
other hand, captures only one-to-one relationships due to its 
agglomerative clustering approach, which looks at pairwise 
distances. Secondly, hierarchical clustering depends on the 
determination of a distance and a linkage function. NRP, 
instead, is based on minimum spanning tree (MST), which 
solely depends on the function used to convert correlations 
into distances. Hierarchical risk parity in particular has been 
criticized for its adoption of a single linkage function, which 
differentiates securities based on the distance of the nearest 
points within clusters, thereby causing a chaining effect that 
expands the tree and impacts portfolio weights (Papenbrock 
2011). Third, leveraging on graph theory, we can prove that 
the portfolio weights of NRP and HRP1 have a lower bound 
larger than zero, thus assigning a positive weight to each 
portfolio constituent and improving portfolio diversification, 
a pitfall of the classic mean-variance approach.

Using a bootstrapping approach, we compare the Sharpe 
ratio of NRP with that of HRP, risk parity (RP), Markow-
itz’s minimum variance optimization (MVO), and equally 
weighted (EW) portfolios. While NRP consistently outper-
forms the other methods, compared to HRP, its performance 
depends on the number of stocks in the portfolio, outper-
forming HRP as the portfolio size increases.

The rest of the paper is organized as follows: Section 2 
introduces NRP and compares it to HRP. Section 3 presents 

the empirical results in terms of bootstrapped Sharpe ratio 
and weights. Section 4 concludes and discusses future work.

Methodology

Covariance

The starting point of network risk parity, similar to most 
portfolio construction methodologies, is to estimate the 
covariance matrix of asset returns. We use hourly security 
prices and define log-returns as:

where ri,� is the return of the i-th asset at time � , pi,� is the 
price of the i-th asset at time � , and T is the number of hours 
in each month. We estimate the conditional covariance 
by employing the methodology of Barndorff-Nielsen and 
Shephard (2004), who show that conditional covariances can 
be estimated through non-parametric realized covariances, 
RCt , which converge in probability to the quadratic varia-
tion of the price process under very general assumptions. 
Thus, we calculate monthly realized covariances, RCt , as the 
aggregation of cross-products of hourly returns, such that:

This ensures positive definite realized covariance matrices 
and makes covariance fully observable and moldable with 
any time series model. The use of hourly returns in con-
structing our portfolios helps to provide a higher number of 
observations, which in turn increases the robustness of our 
covariance matrix estimation.2 It should be noted, however, 
that network risk parity is a covariance-agnostic portfolio 
construction method. While accurate covariance estima-
tion is crucial for any portfolio construction approach, the 
primary focus of this paper is not to provide an improved 
estimate of covariances.

Review of Hierarchical Risk Parity

Hierarchical Risk Parity produces portfolios from a three-
step process. Firstly, hierarchical clustering is performed on 
correlation-based distance measures, starting from the cor-
relation matrix of asset returns. Since clustering requires a 
distance measure to encapsulate the relationship between 

ri,� = ln

(

pi,�

pi,�−1

)

∀� = 1,… , T; ∀i = 1, ..., n

(1)RCt =

Nt
∑

�=1

r�r
�

�
.

1  As the process of clustering a correlation matrix can be re-written 
as a tree on a complete digraph, the weight floor applies to HRP as 
well.

2  In this study, we aggregate hourly returns into monthly covariances, 
and we assume the portfolios are rebalanced monthly.
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securities, we transform correlations into Euclidean met-
rics.3 For this transformation, Mantegna (1999) defines the 
distance di,j as di,j = 1 − �i,j

2.4 The AGNES hierarchical clus-
tering algorithm is then applied to these distances, separat-
ing securities into clusters organized in a linkage matrix. In 
the second step, the linkage matrix undergoes quasi-diag-
onalization so that the largest values align along the main 
diagonal. Finally, in the third step, optimal weights are cal-
culated as the inverse of each security’s variance, which is 
located on the main diagonal after the quasi-diagonalization 
step.

Graph theory background

For a comprehensive introduction to graph theory, refer to 
Bollobás (1998, 2001). Consider a directed weighted graph 
G = (V ,E,W) formed by a finite set of vertices V5, a set 
of directed edges E ⊂ V × V  , where each 

(

ex, ey
)

∈ E rep-
resents a link from vx ∈ V  to vy ∈ V  , and a set of weights 
W ∶ E → ℝ++ defined on each edge. Two nodes (vx, vy) ∈ V  
are said to be adjacent if there exists an edge (ex, ey) ∈ E . 
The adjacency matrix of the graph AG is defined as the 
square matrix whose entries are ai, j = wi,j if vi, vj ∈ E and 
wi,j are the weight of the edge, ai,j = 0 otherwise.

In a financial setup, a graph can be used to represent a 
financial market, wherein a security is represented by a ver-
tex, and the relationship between each pair of securities is 
represented by edges. The simplest way of measuring the 
relationships among securities is to use linear correlations. 
As in clustering, the adjacency matrix must be defined on 
a metric; hence, we apply the same di,j = 1 − �i,j

2 transfor-
mation. Moreover, the diagonal of the adjacency matrix is 
set to zero to avoid self-loops6. As such, a non-zero entry in 
the adjacency matrix indicates the existence of a financial 
relationship between pairs of securities with strength di,j.

A graph built on a correlation matrix is a complete 
digraph, which is a graph where all pairs of vertices are 
connected by a pair of unique edges. This is the source of 
the link of HRP to graph theory. However, correlation matri-
ces lack the notion of hierarchy. Simon (1991) argues that 

complex systems, such as financial markets, can be arranged 
in a natural hierarchy comprising nested substructures. The 
goal of codependence analysis is choosing which cross-secu-
rity relations really matter. From a tree representation stand-
point, this means choosing which links in the tree are signifi-
cant and removing the others. de Prado (2016) argues that 
the lack of hierarchical structure makes portfolio weights 
vary in unintended ways in an asset allocation problem. 
For this reason, complete digraphs do not add additional 
information compared to correlation matrices, while other 
subgraphs – such as spanning trees7 – can better serve finan-
cial needs by incorporating a hierarchical representation and 
choosing the links between securities that really matter.

We employ the minimum spanning tree (MST) (see 
Appendix B for a graphical representation), a subset of 
a complete digraph that includes all vertices but selects 
the minimum possible number of edges by solving 
minS

∑

e∈s W(e) , where S ≤ E is the number of links in the 
MST and e represents each link in each realization, s ∈ S . 
To find minimum spanning tees, we employ the algorithm 
by Kruskal (1956).8 It is worth noting that there are several 
parallels between Kruskal’s algorithm for minimum span-
ning trees and AGNES algorithm for hierarchical clustering. 
First, both algorithms start with a set of fully disconnected 
nodes and iteratively build clusters. Second, both algorithms 
use a greedy approach to form clusters. In Kruskal’s algo-
rithm, the edges of the graph are sorted by weight based 
on the distance between securities, and at each step, the 
algorithm adds the next edge (with the lowest weight) that 
connects two previously unconnected clusters. Similarly, in 
AGNES, at each step, the algorithm merges the two clusters 
that are closest to each other, based on some distance met-
ric. Finally, both algorithms produce a hierarchy of clusters, 
which can be visualized in the form of an MST or a dendro-
gram, respectively.

A minimum spanning tree allows quantifying how securi-
ties influence each other by means of a centrality measure. 
A centrality measure C ∶ V → ℝ+ is a function that assigns 
a non-negative value to each node such that the higher the 
value, the more the node is connected to others. One such 
centrality measure is the eigenvector centrality, accord-
ing to which a security displays a high centrality either by 
direct links to other securities or by being connected to other 
securities that are themselves highly connected. As such, the 
higher the eigenvector centrality, the more central a security 

3  The calculation of a distance measure requires that the quantities 
are Euclidean metrics, which correlations are not.
4  According to this distance measure, two pairs of securities with 
the same linear correlation but with the opposite sign are considered 
equally distant. While this is a general limitation, we regard it as 
insignificant as long as the focus is on equity returns, which generally 
exhibit positive linear correlations.
5  in this manuscript, we interchangeably use the terms "nodes" and 
"vertices" to refer to the elements of the set V.
6  A self-loop is a link that connects a vertex to itself. We eliminate 
self-loops since self-relations are insignificant in portfolio construc-
tion.

7  A spanning graph is a subgraph that contains all vertices of the 
complete graph. A tree is an acyclical and connected graph, where all 
nodes are connected by a single edge. It can be proved that every tree 
is a graph and every non-trivial graph contains at least one tree.
8  Starting from a tree in each vertex, the Kruskal’s algorithm 
removes any link with a minimum weight between the vertices, com-
bining the trees for which the link has been removed.
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is in the tree. Eigenvector centrality is based on the idea that 
a node’s importance is determined by the importance of the 
nodes that it is connected to. In formula, the eigenvector 
centrality of a node �(v) is given:

where N(v) is the set of neighbors of node v and �max is the 
largest eigenvalue.

Network Risk Parity

We derive the network risk parity methodology from a par-
allel with hierarchical risk parity, assuming that its covari-
ance matrix C is an n-dimensional diagonalized matrix with 
full-rank. Applying the spectral decomposition theorem to 
C yields:

where uj is the j-th eigenvector associated with the eigen-
value �j of matrix C. This relation leads to the eigenvector 
equation Cui = �iui , for all i = 1, ..., n . The eigenvalues �i 
and eigenvectors ui are obtained by solving the characteristic 
equation det(C − �I) = 0 . Solving for the eigenvalues yields 
(see Appendix A for the proof):

where �i are the elements of the diagonal matrix C. In other 
words, the optimal inverse-variance allocation of Hierarchi-
cal Risk Parity corresponds to the eigenvalues of the quasi-
diagonal covariance matrix C, assuming that the diagonali-
zation step effectively results in a diagonal matrix.

Rearranging the eigenvector centrality definition of the 
MST in matrix form, we have:

where � is the eigenvector of the adjacency matrix A asso-
ciated with its largest eigenvalue �max . In NRP we take a 
somewhat similar approach to HRP by using the eigenvector 
centrality and calculate the portfolio weights as:

To obtain fully invested portfolios such that 
∑

w = 1 , we 
apply the softmax normalization �(w) = ew

∑

(ew)
 . As Laloux 

(1999) showed that the largest eigenvalue of a correlation 
matrix can be seen as a representative of systematic risk, and 
as the eigenvector centrality is associated with the largest 
eigenvalue of the adjacency matrix, the eigenvector 

(2)�(v) =
1

�max

∑

v�∈N(v)

�(v�)

(3)C = UΛUT =

n
∑

j=1

�juju
T
j

(4)�i = �i, ∀i = 1, ..., n

(5)A� = �max�

(6)w∗

i
=

1

�i
∀i = 1, ..., n.

centrality can be understood as a gage of a security’s contri-
bution to systematic market risk. In the NRP approach, these 
securities are assigned lower weights in the portfolio, 
thereby aiming to minimize the portfolio’s exposure to sys-
tematic risk.

Despite both HRP and NRP use the same distance metrics 
calculated as d(i,j) = 1 − �i,j

2 , where �i,j is the Pearson cor-
relation coefficient, they result in different portfolios due to 
the different ways the notion of hierarchy is imposed on the 
correlation matrix. Hierarchical risk parity uses hierarchical 
clustering with Euclidean distance and a single linkage crite-
rion. Network risk parity, instead, uses Kruskal’s algorithm 
to build a minimum spanning tree and select the meaning-
ful interconnections between securities. Three benefits are 
associated with the latter approach.

First, in NRP relationships among securities are one-to-
many rather than one-to-one as in HRP. In fact, the eigenvec-
tor centrality takes into account the importance of neighbor-
ing nodes too. On the other hand, hierarchical clustering 
uses a one-to-one approach to cluster securities.

Second, HRP depends on the specification of a distance 
function to transform linear correlation into metrics, and 
of a distance function and a linkage function for clustering 
purposes. NRP, on the other hand, depends only on the first. 
In particular, HRP has been criticized for using the single 
linkage function, which separates objects depending on the 
distance between the two closest points within clusters. This 
causes a chaining effect that widens the tree and results in 
an unequal distribution of the portfolio weights (Papenbrock 
2011).

Third, the usage of graph theory allows us to analytically 
prove the level of concentration of the optimal portfolios, as 
will be shown.

Portfolio weights lower bound

Leveraging the concept of the degree d(v) of a vertex v in 
a graph G, defined as the number of vertices in G that are 
adjacent to v, it can be established – using the Gershgorin 
circle theorem9 - that the maximum eigenvalue �max of the 

9  The Gershgorin circle theorem provides a way to bound the eigen-
values of a square matrix with the sum of the absolute values of the 
matrix’s entries along its rows or columns. Specifically, the theorem 
states that each eigenvalue of a matrix A lies within at least one of the 
n Gershgorin disks, which are defined as follows.
  For i = 1, 2,… , n , let Ri denote the sum of the absolute values of the 
off-diagonal entries in the ith row of A, and let aii denote the diagonal 
entry of A in the ith row. Then, the ith Gershgorin disk is the closed 
disk in the complex plane with center aii and radius Ri . That is,

The Gershgorin circle theorem then states that every eigenvalue of A 
lies in at least one of the Gershgorin disks, that is,

Di = z ∈ ℂ ∶ |z − aii| ≤ Ri.
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adjacency matrix A is bounded above by the maximum 
degree d(v) of the graph. As w = �−1 and � corresponds to 
the largest eigenvalue � , then w ≥ max(d)−1 , meaning that 
all portfolio assets have a weight that is greater than the 
inverse of the maximum degree of the MST. In particular, 
as d(v) > 0 for all non-empty graphs, the optimal weights of 
NRP are lower bound by the softmax-normalized degree of 
the MST. As HRP is based on the inverse-variance alloca-
tion of a quasi-diagonalized correlation matrix which we 
show to be proportional to �−1 ,10 given that the Gershgorin 
theorem holds for any square matrix, and given that the cor-
relation matrix can be represented as a complete digraph, 
the portfolio weights of HRP have a lower bound greater 
than zero as well.

Conversely, the spectral radius of the graph �(G)11 is 
bounded by �(G) ≥

√

�max − 1 , where �max is the larg-
est eigenvalue of adjacency matrix. This suggests that the 
spectral radius can be seen as the degree of concentration 
that can occur, as the weights are inversely proportional to 
the eigenvalues, which grow larger in highly volatile peri-
ods (hence, resulting in more spread out portfolio weights). 
This lower bound mechanism contributes to creating more 
diversified, less concentrated portfolios compared to those 
derived from mean-variance optimization methods.

Of note is that the largest eigenvalue of a covariance 
matrix, a measure that varies over time, serves as a proxy 
for systematic risk (Laloux 1999), and it tends to increase 
during high-volatility regimes. Viewing this from the per-
spective of the minimum spanning tree (MST), the spectral 
radius tends to have a higher upper bound during highly 
volatile periods as the maximum eigenvalue grows higher. 
This means that as volatility increases, the spectral radius 
also increases, thereby leading to a decrease in the optimal 
portfolio weights and resulting in more diversified portfo-
lios. This ability to adapt to changing market conditions is 
a key strength of NRP and HRP. As MVO propagates the 
errors of the ill-estimated covariance matrix through its 
inversion, its performance becomes relatively worse dur-
ing highly volatile periods, due to additional concentration. 
Whereas MVO fails to perform optimally during high-vol-
atility periods (when most needed), NRP and HRP employ 
a self-defensive mechanism resulting in better-diversified 

portfolios, thanks to the dynamic adjustment of the spectral 
radius of the graph.

Empirical results

In this section, we illustrate some empirical results regard-
ing the application of network risk parity. In this section, 
we consider long-only,12 fully invested portfolios rebalanced 
at monthly frequency.13 We use the hourly prices of all the 
stocks composing the S &P 500 index from January 2010 
to March 2023, aggregated to a monthly frequency in the 
process of calculating conditional covariances. To ensure 
no look-ahead bias in our study, we implemented a roll-
ing window approach. For each monthly rebalancing, we 
utilized the past 2 years’ data. To obtain a robust result, 
we use a bootstrapping approach that randomly selects 
n = (20, 50, 100, 200) stocks – without replacement – out of 
the entire sample and iterates through 10000 simulations. 
We compare the performances of the competing methods in 
terms of the Sharpe ratio.14

Table 1 reports the average Sharpe ratios of the boot-
strapped portfolios for the different numbers of constituents. 

Table 1   Average monthly Sharpe ratios of bootstrapped portfolios for 
different numbers of constituents (best performing in boldface)

n constituents NRP HRP RP EW MV

n = 20 0.853 0.892 0.653 0.817 0.430
n = 50 0.863 0.882 0.712 0.809 0.576
n = 100 0.886 0.845 0.725 0.799 0.434
n = 200 0.891 0.866 0.723 0.794 0.396

10  Or exactly equal in case of a fully diagonalized matrix.
11  The spectral radius of a matrix is the maximum absolute value 
of its eigenvalues. More formally, if a matrix A is a square matrix 
with eigenvalues �1, �2,… , �n , the spectral radius �(A) is defined as: 
�(A) = max1≤i≤n |�i|.

12  To obtain a long-short application, the adjacency matrix would 
need to be adjusted to account for short positions, the normalization 
of weights would have to be revisited to cater for the possibility of 
negative weights, and the risk contribution calculation would require 
an overhaul to incorporate the potential negative contribution of short 
positions.
13  We aggregate hourly data into monthly realized covariance matri-
ces to ensure a more robust estimation of the covariance matrix. 
However, one must notice that NRP is agnostic to the choice of the 
covariance estimator. The different frequency granularity between 
hourly and monthly data can result in deviations from normality. 
However, the use of non-normal returns influences the portfolio opti-
mization process only for methodologies that depend on the assump-
tion of normally distributed returns, such as Markowitz’s minimum 
variance. Hierarchical risk parity and network risk parity methodolo-
gies, which are the focus of this study, do not rely on this assump-
tion. Additionally, the use of bootstrapping in our simulations helps 
to address the potential issues stemming from non-normality, as it 
allows us to capture the empirical distribution of the data.
14  Sharpe ratios are calculated following the monthly rebalancing 
scheme, hence using monthly portfolio returns and monthly standard 
deviations recorded at the time of rebalancing.

where �(A) denotes the set of eigenvalues of A.

𝜆(A) ⊆

n
⋃

i=1

Di,

Footnote 9 (continued)
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Network risk parity and hierarchical risk parity outperform 
the other methodologies in all sample sizes. In particular, 
hierarchical risk parity achieves the highest Sharpe ratio for 
smaller portfolio sizes, such as n = (20, 50) , while network 
risk parity is the best performing as the number of portfolio 
constituents increases.15 This behavior is due to the fact that 
the higher the number of portfolio constituents, the more 
the minimum spanning tree resembles a financial market in 
terms of the ability to place an asset at the center of the tree 
rather than in the periphery. This is explained by the fact that 
the MST structure used in NRP is an improved representa-
tion of systematic risk and financial markets. MST preserves 
the most significant relationships between assets, effectively 
filtering out less meaningful correlations. This approach 
enables us to uncover the market’s inherent structure by 
identifying clusters of assets that exhibit similar behavior, 
offering a more comprehensive understanding of system-
atic risk. Furthermore, financial markets are complex net-
works characterized by multidimensional inter-dependencies 
between assets. These connections extend beyond pairwise 
relationships, something the MST structure, with its graph 
representation, can capture more accurately. Therefore, the 
larger the number of portfolio constituents, the more effec-
tively the real asset connections are represented, as the MST 
can better link assets based on similarities.

Network risk parity outperforms the other competing 
methods in all portfolio sizes, while MVO is the worst per-
former across all sample sizes. In fact, MVO often leans 
toward portfolios that capitalize on idiosyncratic risk, due to 
the inversion of an ill-estimated covariance matrix that prop-
agates the errors. This often results in concentrated portfo-
lios with large weights assigned to a few assets exhibiting 
lower volatility. On the other hand, NRP and HRP strive for 
more balanced portfolios as they are specifically designed to 
distribute risk equally across all assets in the portfolio. This 
more equal risk distribution inherently aligns the portfolio 
to the broader, systematic market movements rather than 
the idiosyncratic movements of individual assets. By reduc-
ing exposure to idiosyncratic risk, these strategies are less 
susceptible to the unexpected performance of a small sub-
set of assets and therefore tend to be more stable. For NRP 
and HRP, this is further supported by the spectral radius 
acting as a self-defensive mechanism, as during periods of 
high volatility, the spectral radius also increases, thereby 
resulting in more evenly spread portfolio weights and better 

diversification. MVO, instead, during periods of high vola-
tility, results in even more concentrated portfolios, as the 
covariance matrix is even more ill-estimated.

Figure 1 illustrates the histograms of the bootstrapped 
Sharpe ratios for each asset allocation strategy against the 
performance of the equally weighted portfolio16 for the case 
n = 100.

To provide some context regarding the most severe down-
turns across the bootstrapped samples, for the worst boot-
strap simulation of each strategy, we computed the maxi-
mum drawdown using n = 20 . It was found that all portfolios 
reached their maximum drawdowns during the height of the 
COVID-19 crisis in March 2020. In particular, the NRP and 
HRP witnessed maximum drawdowns of 42% and 39%. RP 
and EW portfolios suffered a maximum drawdown of 48% 
and 46%, respectively, while MVO had the largest drawdown 
of 61%. For comparison, the S & P 500 experienced a maxi-
mum drawdown of 34% during the same COVID-19 period.

Finally, Figure 2 plots the boxplots of weights on the 
bootstrapping runs with n = 20 . We highlighted in red the 
parts corresponding to a portfolio weight of 0, as this is the 
first red flag to identify ill-concentrated portfolios. As it is 
visible, only the mean-variance allocation incurs in portfolio 
weights equal to 0 as well as several times reaches portfo-
lio weights well above 60%, hinting at poor diversification 
and major concentration. On the other hand, the weights of 
NRP and HRP appear to be better diversified and less con-
centrated, as well as exhibit a similar pattern, in light of the 
common lower bound mechanism. Risk parity, on the other 
hand, is better diversified than mean-variance, but it reaches 
peaks up to 60%.

Appendix 7 provides a commentary on the average boot-
strapped performances of the competing methods against 
the market environments that characterized the periods 
analyzed.

Conclusions

In this manuscript, we have presented network risk parity 
(NRP), a novel portfolio construction methodology based on 
graph theory. NRP serves as the counterpart to hierarchical 
risk parity (HRP), providing a complementary approach to 
portfolio allocation. By utilizing the concept of eigenvector 

15  We run a hypothesis testing on the null hypothesis that the Sharpe 
ratios of NRP are equal to those of HRP. The null hypothesis is 
rejected for all numbers of constituents at 1% significance level, 
except for n = 40 , which is only rejected at 5%.

16  Our intent is not to use the equally weighted portfolio as a bench-
mark against which an active portfolio manager is measured. Instead, 
we regard it as a fundamental performance threshold that any asset 
allocation strategy should surpass, given that it represents a simple 
allocation approach in contrast to the intricacies of competing meth-
ods.
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Fig. 1   Histograms of bootstrapped Sharpe ratios against equally 
weighted. Note: in red, we report the distribution of the Sharpe ratios 
achieved by the equally weighted portfolio, while in blue, the distri-
butions of the Sharpe ratios achieved by each asset allocation strategy 

across the bootstrapped samples. As it is visible, network risk parity 
and hierarchical risk parity are more skewed toward higher Sharpe 
ratio values, while the opposite holds for risk parity and Markowitz’s 
minimum variance

Fig. 2   Boxplots of bootstrapped weights to show the major diversi-
fication benefits associated with NRP and HRP. Note: The boxplots 
of the portfolio weights across the bootstrap run with n = 20 (chosen 
to preserve the readability of the plot). In red, we highlight the points 

where the boxplot touches a value of zero, a result that is not achiev-
able in light of the lower bound rule applicable to graph-based alloca-
tions. The trivial equally weighted case is not included



	 V. Ciciretti, A. Pallotta 

centrality and the minimum spanning tree (MST), NRP 
offers several advantages over traditional methods.

One key advantage of NRP is its ability to capture one-
to-many relationships between securities. Unlike one-to-one 
relationships captured by hierarchical clustering in HRP, 
NRP considers the importance of neighboring nodes as well. 
This broader perspective allows for a more comprehensive 
understanding of the interconnectedness and dependencies 
within a financial market.

Another advantage is the simplicity of the graph-based 
approach compared to the distance and linkage functions 
used in hierarchical clustering. NRP relies solely on the adja-
cency matrix and the MST, reducing the complexity of the 
methodology while still achieving effective risk allocation.

Furthermore, the graph theory framework of NRP allows 
for an analytically provable lower bound on the optimal 
weights of the portfolio. This lower bound ensures that the 
portfolio remains well-diversified, mitigating the risk of 
concentration on a few securities and avoiding the pitfalls 
associated with Markowitz’s minimum-variance approach.

Empirical results based on bootstrapped samples of S 
& P 500 stocks demonstrate the superiority of NRP over 
risk parity, Markowitz’s minimum-variance, and equally 
weighted portfolios in terms of the Sharpe ratio. Notably, 
the performance of NRP and HRP varies with the number 
of stocks in the portfolio, with HRP showing strength in 
smaller portfolios and NRP excelling as the number of con-
stituents increases.

Future research should test different subgraph repre-
sentations, with major focus posed on how the covariance 
matrix is estimated or forecast as well as on the inclusion 
of different asset classes other than equity. Furthermore, 
future research could focus on an exploration of covariance 
mis-estimations and the potential improvements brought by 
distance and adjacency matrices compared to sample covari-
ances. Finally, as the current formulation of network risk 
parity assumes a long-only portfolio structure, the extension 
to long-short portfolios could be an interesting avenue for 
future research.

A proof of equation (4)

In this appendix, we briefly illustrate the algebrical steps to 
prove that the optimal weights generated by hierarchical risk 
parity are proportional to the inverse of the eigenvalues of 
the modified covariance matrix.

Let’s assume that the modified covariance matrix C is 
squared, full-rank, and fully diagonal. For instance, in the 
two-dimensional case:

Applying the spectral decomposition theorem yields:

which results in = Cui = �iui,∀i = j . The eigenvalues and 
eigenvectors are obtained by solving det(C − �I)u = 0 . 
Without loss of generality, let’s assume a two-dimensional 
covariance matrix C, from where the eigenvalues are given 
by:

which results in:

and since in a 2x2 matrix the solution of the determinant is 
given by the product of the diagonal terms minus the product 
of the anti-diagonal ones, one gets:

finally, solving the second degree equation:

Hence, the two solutions are:

Generalizing to the i = 1, 2, ..., n-dimensional matrix C 
yields:

	�  ◻

B Plots of minimum spanning tree

See Figs. 3, 4.

C =

[

�1 0

0 �2

]

C = UΛUT =
∑

0<j<k

𝜆juju
T
j

det(C − �I) = det

([

�1 0

0 �2

]

−

[

� 0

0 �

])

= 0

det

[

�1 − � 0

0 �2 − �

]

= 0

(�1 − �)(�2 − �) = �2 − �(�1 + �2) + �1�2 = 0.

�1,2 =
�1 + �2 ±

√

(�1 + �2)
2 − 4�1�2

2

=

�1 + �2 ±

�

�2

1
+ �2

2
+ 2�1�2 − 4�1�2

2

=
�1 + �2 ±

√

(�1 − �2)
2

2
.

�1 =
�1 + �2 + �1 − �2

2
= �1 ∨ �2 =

�1 + �2 − �1 + �2

2
= �2.

�i = �i,∀i ∈ (1, n).



Network Risk Parity: graph theory‑based portfolio construction﻿	

Fig. 3   Minimum spanning trees. Note: On the left side, a minimum spanning 
tree obtained using the 500 components of S & P 500 in a low-volatility regime 
(November 22, 2019). On the right side (using the same scale), the same tree 
during the fallout of the Silicon Valley Bank in March 2023 (March 13, 2023), 
which triggered high volatility amid concern over systematic risk. Each node 
in these MSTs represents a stock, with the size of the node indicating its eigen-
vector centrality. This measure represents the influence of each node within the 
network, calculated considering both its direct connections and its indirect influ-
ence through its neighbors. It assigns relative scores to all nodes in the network 
based on the concept that connections to high-scoring nodes contribute more to 
the score of a node than equal connections to low-scoring nodes. Thus, a larger 

node size in the MST plot represents higher eigenvector centrality, i.e., a greater 
influence within the network. As such, in the center of the tree, highly connected 
stocks are typically found. The observable differences in the distribution of node 
sizes between the low-volatility and the high-volatility trees are due to the differ-
ences in eigenvector centralities. During periods of low volatility, markets tend 
to be more stable, and correlations between assets are generally lower and more 
evenly distributed. This results in a more uniform distribution of eigenvector cen-
trality. Consequently, the network importance is more evenly spread out. In con-
trast, during periods of high volatility, correlations between assets often increase 
significantly

Fig. 4   Small minimum spanning tree. Note: An illustrative minimum spanning 
tree representation for a set of 20 securities as of March 10, 2023. The Kruskal 
algorithm for the construction of the MST first considers the full graph, where 
each node represents a single security and every possible pair of securities is 
connected by an edge. Each edge is assigned a weight based on the distance (cor-
relation-based) between the corresponding pair of securities. Typically, a lower 
correlation results in a higher weight. The MST is then built by selecting edges 

such that the sum of the weights is minimized, and the graph remains connected 
without any cycles. In the resulting MST, each node (or stock) is connected 
to the closest node, thereby providing a visualization of the strongest relation-
ships within the portfolio. This visualization helps to highlight the principle that 
securities that are more closely related, i.e., have higher correlations, are placed 
closer together in the MST, often forming clusters that may indicate groups of 
securities that might be affected similarly by market movements
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C Commentary of the average performance 
of the competing methods

See Fig. 5.

D Comparison between NRP and HRP

See Table 2.
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Fig. 5   Average bootstrapped equity plot for each strategy. Note: This 
figure shows the equity cumulative profit function of each competing 
method as well as the performance a buy and hold on the S & P 500. 
To ease readability of the figure, we have only plotted the average 
bootstrapped scenario for the case of n = 100 constituents. Specifi-
cally – NRP: blue, HRP: red, EW: green, RP: brown, MVO: purple, 
and S & P 500: black. The period from 2010 to 2023 was marked 
by several global financial events that significantly influenced portfo-
lio performances, such as the Euro-Sovereign Crisis (2010-2012), the 
Chinese crisis in 2015, Brexit, the US-China trade war, COVID-19, 
the Russo-Ukraine 2022 war and inflationary environment, failures 

of US banks and UBS takeover of Credit Suisse. All portfolio strat-
egies were impacted due to increased volatility in these periods, in 
line with the performance of the S & P 500. However, as it is vis-
ible from the plot of the equity lines below, strategies heavily reliant 
on covariance matrix estimations, such as risk parity and Markowitz, 
have faced heightened adversity due to increased asset correlations 
and volatility. On the contrary, hierarchical risk parity and network 
risk parity strategies, have relatively mitigated some risks during this 
uncertainty. Simultaneously, equally weighted portfolios have seen 
substantial declines due to the broad-based nature of the crisis

Table 2   .

NRP HRP

Underlying theory Graph theory (MST) Hierarchical clustering
Starting quantity Covariance of asset returns Covariance of asset returns
Weight calculation Inverse of eigenvector centrality Inverse of variance
Specification dependencies Correlations as metric Correlation as metric, distance and linkage function
Minimum weight Yes Yes, as a matrix of distances is a square matrix that 

can be seen as a complete digraph
Relationships captured One-to-many due to eigenvector centrality One-to-one
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