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Abstract 

Medical imaging plays an important role in modem medicine. With the increasing 

complexity and information presented by medical images, visualisation is vital for 

medical research and clinical applications to interpret the information presented in these 

images. The aim of this research is to investigate improvements to medical image 

visualisation, particularly for multi-dimensional medical image datasets. A recently 

developed medical imaging technique known as Electrical Impedance Tomography (EIT) 

is presented as a demonstration. To fulfil the aim, three main efforts are included in this 

work. 

First, a novel scheme for the processmg of brain EIT data with SPM (Statistical 

Parametric Mapping) to detect ROI (Regions of Interest) in the data is proposed based 

on a theoretical analysis. To evaluate the feasibility of this scheme, two types of 

experiments are carried out: one is implemented with simulated EIT data, and the other 

is performed with human brain EIT data under visual stimulation. The experimental 

results demonstrate that: SPM is able to localise the expected ROI in EIT data correctly; 

and it is reasonable to use the balloon hemodynamic change model to simulate the 

impedance change during brain function activity. 

Secondly, to deal with the absence of human morphology information in EIT 

visualisation, an innovative landmark-based registration scheme is developed to register 

brain EIT image with a standard anatomical brain atlas. 

Finally, a new task typology model is derived for task exploration in medical image 

visualisation, and a task-based system development methodology is proposed for the 

visualisation of multi-dimensional medical images. As a case study, a prototype 

- x -



visualisation system, named EIT5DVis, has been developed, following this methodology. 

to visualise five-dimensional brain EIT data. The EIT5DVis system is able to accept 

visualisation tasks through a graphical user interface; apply appropriate methods to 

analyse tasks, which include the ROI detection approach and registration scheme 

mentioned in the preceding paragraphs; and produce various visualisations. 
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Chapter 1: Introduction 

Chapter 1 Introduction 

1.1 Background 

Dr. Wilhelm Kornrad Roentgen discovered the X-ray in late 1895, and that led into a 

new era in the practice of medicine: it is now possible to look into the human body 

without having to open it (Morton and Hammer 1896). X-ray imaging is the oldest and 

perhaps the commonest medical imaging technique. Several other medical imaging 

approaches developed afterwards. Medical imaging plays an important role in modern 

medicine. With the increasing complexity and information presented by these images, 

visualisation is vital for medical research and clinical applications to interpret the 

information presented in these images. In this background section, an overview of 

medical imaging methods is presented fIrst. Then a description of a particular medical 

imaging method, Electrical Impedance Tomography (EIT), which is used as a case study 

in this work, follows. Finally, an introduction on the visualisation ofEIT images is given. 

1.1.1 Overview of Medical Imaging Methods 

Medical imaging methods can be divided into two global categories: anatomical and 

functional (Maintz and Viergever 1998). Anatomical medical imaging methods depict 

primarily morphology of subjects; functional medical imaging methods represent 
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Chapter 1: Introduction 

information on the metabolism of the underlying anatomy. In the following, major 

medical imaging methods are introduced according to this classification. 

1.1.1.1 Anatomical Medical Imaging Methods 

Anatomical medical imaging methods generally include X-ray imaging, Computed 

Tomography (CT), Magnetic Resonance Imaging (MRI), Ultrasound imaging and 

Terahertz imaging. An introduction of these methods follows. 

X-ray Imaging 

X-ray image is formed by the interaction of X-ray photons with a photon detector. The 

photons emitted by an X-ray tube enter a patient, where they may be scattered, absorbed 

or transmitted without interaction. The photon detector records the transmitted photons 

and creates the image. X-ray imaging is very good at detecting problems in the bones, 

chest, and spine. It is difficult to distinguish soft tissue by X-ray imaging, and it is not 

possible to resolve spatial structures along the direction of X-ray propagation with this 

kind of image. 

Computed Tomography 

Computer Tomography (CT) was developed based on conventional X-ray imaging. 

Conventional X-ray images provide 2D projection of 3D objects, Computer 

Tomography has 3D resolution. With Computed Tomography, a planar slice of the body 

is defined and X-rays are passed through it only in directions that are contained within, 

and are parallel to the plane of slice. The resulting images show the human anatomy in 

section with a spatial resolution of about lmm. Tissues, which could not be resolved on 

conventional transmission X-ray imaging, can be identified on CT reconstructions. CT 

scans are quick and accurate. It is commonly used on the head and abdomen scans. The 

- 2 -



Chapter 1: Introduction 

main drawback of CT scans is that it involves exposure to radiation in the form of X­

rays. 

Magnetic Resonance Imaging 

Magnetic Resonance Imaging (MRI), which is based on the principles of Nuclear 

Magnetic Resonance (NMR), exploits the magnetic properties of hydrogen nuclei within 

the body (Mattson and Simon 1996). By detecting the signals of protons in hydrogen 

atoms and then locating their positions using a magnetic coil, MRI allows doctors to 

view images of organs and soft tissues within the body. The spatial resolution of MRI is 

a function of imaging time and signal-to-noise ratio. In clinical applications, the 

resolution is usually 1 ~3mm. MRI has been playing a vital role to study brain anatomy 

and their abnormalities. MRI can also be used to diagnosing problems of cardiovascular, 

spine, and joints. The advantage of MRI over other imaging modalities is obvious: MRI 

does not involve exposing the patient to ionising radiation; it is non-invasive and can 

create various contrasts to study different types of brain tissues. However, being placed 

in the MRI scanner can induce significant claustrophobia in some patients. Patients with 

certain kinds of medical devices - for example, pacemakers - cannot receive MRI. 

Besides these, MRI technology is extremely complex and expensive. 

Ultrasound Imaging 

Ultrasound imaging uses high-frequency (3~10 MHz) sound waves and their echoes. 

High-frequency sound pulses are transmitted into the body using a probe. The sound 

waves travel into the body and hit a boundary between tissues (e.g. between fluid and 

soft tissue, soft tissue and bone). The reflected waves are picked up by the probe and 

relayed to the machine, which displays the distances and intensities of the echoes on the 

screen, forming a two dimensional image. Ultrasound is a useful way of examining 

many of the body's internal organs. In particular, ultrasound has progressively become 

an indispensable obstetric tool and plays an important role in the care of pregnant 
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Chapter 1: Introduction 

women. Ultrasound imaging uses no ionising radiation and provides real-time imaging. 

It is non-invasive, painless, cheap, widely available and easy to use. Nevertheless, 

ultrasound imaging still has some limitations: Ultrasound has difficulty in penetrating 

bone and therefore can only see the outer surface of bony structures and not what lies 

within. Ultrasound waves do not pass through air, therefore, in an evaluation of the 

stomach, small intestine and large intestine may be limited. 

Terahertz Imaging 

Terahertz imaging harnesses radiation called terahertz rays, which sit between 

microwaves and infrared in the electromagnetic spectrum, and typically include 

frequencies between 0.1 THz and 20 THz. Terahertz rays pass easily through most non­

metals and can reveal both the structure and composition of the target. The dominant 

method of the terahertz imaging is TPI (Terahertz Pulsed Imaging) (Hu and Nuss 1995; 

Zhang 1997). The first medical applications of TPI is expected to be in dentistry (Ciesla, 

Arnone et al. 2000). Another important area where TPI may have benefits is in 

identifying surface cancers. One of the major advantageous of TPI relative to X-ray, 

MRI, and other conventional imaging technologies is that it provides terahertz spectral 

characteristics of the sample at each pixel in its image. TPI is non-ionising, has sub­

millimetre lateral resolution and its frequencies scatter far less than infrared or optical 

frequencies. However the penetration depth of terahertz in biological tissue is limited to 

the order of millimetres. This will influence the focus of research into its medical 

applications. 

1.1.1.2 Functional Medical Imaging Methods 

Different from the structural information provided by CT, MRI or Ultrasound imaging, 

the information provided by functional medical imaging can reveal some physiological 

activity, which can provide a much earlier detection measure for certain forms of disease 
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Chapter 1: Introduction 

than do anatomical changes over time. Functional medical imaging methods usually 

include Single Photon Emission Computed Tomography (SPECT), Positron Emission 

Tomography (PET), Functional Magnetic Resonance Imaging (fMRI), 

Electroencephalogram (EEG), Magnetoencephalography (MEG) and Electrical 

Impedance Tomography (EIT). An simple explanation of these methods follows. 

Single Photon Emission Computed Tomography 

Single Photon Emission Computed Tomography (SPECT), which is a nuclear medicine 

approach, involves the use of radioisotopes such as 99mTc to assess metabolic activity 

in various regions of the body (FrankIe, Slifstein et al. 2005). The radioisotopes decay 

and emit a single gamma ray per nuclear disintegration from within the patient. A 

gamma camera collects these rays, which enable pictures to be reconstructed of where 

the gamma rays originated. From these pictures, the function of a particular organ or 

system can be determined. Typical applications of SPECT include the functional 

evaluation of the brain, heart, skeleton, liver, lung and kidneys. 

Positron Emission Tomography 

Positron Emission Tomography (PET) is another nuclear medical imaging technique, 

developed 10-20 years later than SPECT. In PET imaging, a radio pharmaceutical, such 

as fluorodeoxyglucose, which includes both glucose and a radioactive element, is 

injected into the body. The positron emitted from a radioactive element will travel less 

than one millimetre and then annihilates with an electron, producing a pair of photons in 

opposite directions. PET scanner detects this pair of gamma ray photons and 

reconstructs the signals into images. 

Generally, PET is used to determine the presence and severity of cancers, neurological 

conditions, and cardiovascular disease. Compared with SPECT, PET has a higher spatial 

resolution (5 x5x5 mm) and a similar temporal resolution (about 40 seconds). Compared 
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Chapter 1: Introduction 

with X-ray or CT, the radioactivity in PET and SPECT is very short-lived, so the 

radiation exposure is extremely low. However, SPECT tracers are long lasting compared 

to PET. The PET process needs an on-site cyclotron to produce the short-lived 

radioisotopes for scanning. This facility is very expensive and few institutes can afford it. 

Functional Magnetic Resonance Imaging 

Functional Magnetic Resonance Imaging (fMRI) , which was first demonstrated as an 

extension of anatomical MRI in 1991 (Belliveau, Kennedy et al. 1991), measures the 

quick, tiny metabolic changes that take place in the brain. The metabolism in an active 

part of the brain responsible for particular tasks will increase, which will require 

additional oxygen. Therefore, there will be an increase in oxygenated blood flow 

(oxyhemoglobin) to this local brain area. Oxyhemoglobin is diamagnetic like water and 

cellular tissue. Deoxyhemoglobin is more paramagnetic than tissue. MRI is able to 

detect a small difference between these two and provide a Blood-Oxygen Level 

Dependent (BOLD) signal. 

In routine practice, fMRI is often used in planning brain surgery. FMRI can also enable 

the detection of strokes at a very early stage, help physicians monitor the growth and 

function of brain tumors and guide the planning of radiation therapy. FMRI images of 

brain and other head structures are clear and detailed because of its high spatial 

resolution (2.5mm) and temporal resolution (2-5 seconds). FMRI imaging involves less 

pain, does not involve radiation, or require injection or ingestion of any substance. 

Another advantage of fMRI is the natural correspondence to MRI structural 

images, which provides an anatomic basis to the functional localization. Although the 

occurrence of fl\.1RI has challenged PET's supremacy in the field of functional imaging, 

it seems impossible for fl\.1RI to take over PET. The main reason is that PET has a 

unique facility which is not possible with fl\.1RI, it is that many kinds of different 

molecules can be radioactivity tagged, and then correspondingly detected using the PET 
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Chapter I: Introduction 

scanner. This enables the study of a variety of different metabolites, which extrapolates 

to different cognitive functions. 

Electroencephalogram 

Electroencephalography (EEG) is a technique that measures the brain function by 

analysing the scalp electrical activity. EEG recordings are obtained by placing electrodes 

on the scalp. Local current flows are produced when brain cells (neurons) are activated. 

The small electrical signals detected by the scalp electrodes are amplified thousands of 

times, then displayed on paper or stored in computer memory. 

By identifying abnormal patterns such as spikes, sharp waves, EEG is often used to 

diagnose epilepsy, sleep disorders, stroke, tumours, head injuries and brain death. EEG 

is also widely used to study the brain organization of cognitive process such as 

perception, memory, attention, language, and emotion. EEG is non-invasive, no 

radiation, cheap and the equipment is portable. Unlike Techniques as SPECT, PET, and 

fMRI measuring neuronal activity in a relatively indirect manner, that is they detect 

changes in metabolism or blood flow that are coupled to neuronal activity, EEG records 

the electric fields that are directly generated by neuronal activity. In comparison to 

temporal resolutions of seconds to minutes for SPECT, PET and fMRI, EEG can track 

neuronal activity millisecond by millisecond. The major drawbacks of EEG are its poor 

spatial resolution (about a few centimetres), and that it can only measure activity on the 

cerebral cortex. The electrical activity inside the head is undetectable with EEG. In 

addition, from mathematical point of view, the reconstruction of EEG images is non-

umque. 

Magnetoencephalography 

Magnetoencephalography (MEG) is based on the principle that all electric currents 

generate magnetic fields according to the right-hand rule. Accompanying the neuronal 
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Chapter 1: Introduction 

activation, local current flows are produced in the brain. Some of these flows are 

longitudinal and form the main source of the extra cranial magnetic fields. These 

magnetic signals, which are extremely weak and vary from 1 IT to 100 pT, are detected. 

Nowadays MEG is used in numerous hospital laboratories to investigate brain disease 

such as epilepsy, stroke, Parkinson's disease, Alzheimer's disease and, to perform pre­

surgical mapping. Clinical applications of MEG are increasing, and quite a few centres 

have adopted MEG as a standard tool for pre-operation, non-invasive investigations 

(Gratta, Pizzella et al. 2001). Similar to EEG, MEG is non-invasive, does not involve 

radiation, and measures neuronal activity directly. MEG has a millisecond temporal 

resolution that is comparable to EEG. Theoretically, MEG has somewhat better spatial 

resolution than EEG because magnetic fields pass unaffected through the tissue of the 

head, but this benefit is partly cancelled by the greater distance imposed between MEG 

sensors and the brain. Source localization in MEG is still limited by the non-uniqueness 

of the inverse problem, which becomes increasingly troublesome as the number of signal 

generators increases. Some reports indicated that MEG could provide spatial 

discrimination of 2mm. Contrary to the cheapness and portability of EEG, MEG is 

costly and can only be carried out in a special magnetically shielded environment. 

1.1.2 Electrical Impedance Tomography 

Electrical Impedance Tomography (EIT) is a relatively new imaging technique with 

applications in medicine. EIT images the interior of human body based on electrical 

measurements made on the surface. The fust impedance image was published by 

Henderson and Webster (Henderson and Webster 1978). They used a 2D matrix of 100 

electrodes on the back of the thorax and a single large electrode on the front to produce a 

transmission image of the tissues. The first published tomography images were 

presented by Brown and his colleagues in 1983 (Barber and Brown 1984). They used a 
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Chapter 1: Introduction 

rmg with 16 electrodes, with current injection between adjacent electrodes, and 

reconstructed the images with a back-projection method. 

EIT images will be used as a typical demonstration in this research, thus a relatively 

detailed introduction on EIT imaging is given in the following subsections, which 

include its physiological basis, imaging procedure, imaging instrumentation, and 

applications. The advantages and disadvantages of EIT imaging are also described by 

comparing with other major medical imaging methods. 

1.1.2.1 Physiological Basis of EIT Imaging 

Table 1.1: Resistivities of different tissues 

[From: (Barber and Brown 1984)] 

Tissue Resistivity (Om) 

CSF 0.65 

Blood 1.5 

Liver 3.5 

Skeletal muscle (longitudinal) 1.25 

Skeletal muscle (transverse) 18.00 

Myocardium (longitudinal) 1.6 

Myocardium (transverse) 4.24 

Neural tissue 5.8 

Gray matter 2.84 

White matter 6.82 

Lungs (out / in) 7.27/23.63 

Fat 27.2 

Bone 166 

The physiological basis of EIT imaging is that different tissues have different 

impedances. The human body can be considered as a composite volume conductor 

comprising a number of spatially distributed tissues with differing electrical properties 

(Geddes and Baker 1967; Plonsey 1984). EIT is sensitive to changes in electrical 

conductivity and produces images of the distribution of impedance within the tissues. 

Unlike metallic conductors, electrical conduction within biological tissues is due to the 
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Chapter 1: introduction 

movement of ionic rather than electronic charge carriers (Plonsey 1969). Table 1.1 lists 

the values of impedances for different tissues. This shows that there is a large resistivity 

contrast between tissues in the body. For example, bone has a resistivity of 166 !lm 

while blood is a much better conductor at only 1.5 !lm. 

1.1.2.2 EIT Imaging Procedure 

During EIT Imaging, impedance signals are generated and collected using a set of 

electrodes placed on the imaged object or a part of the body. Electrodes usually form a 

ring in 2D imaging or are equally spaced around the imaging field in 3D measurement. 

A current source is applied between either an adjacent or opposite (across the object) 

pair of electrodes, and voltage signals are measured on all other electrode pairs in turn. 

Sequential pairs are then used for the current injection until all possible combinations 

have been used. Figure 1.1 illustrates signal generation and collection in an EIT imaging 

system. 

o -- 1 E electrodes 
around surface 01 
the imaged body 

'J---~oltage measurement 

Figure 1.1 Signal generation and collection in an EIT imaging system 

With the injected current and the measured voltages on the boundary, impedance or its 

reciprocal, conductivity, inside the object is estimated by reconstruction. An EIT 

reconstruction approach usually includes two parts: the solution ofJorward problem and 

the solution of inverse problem. The boundary voltages are linked to the object ' 
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conductivity by known physical laws (Somersalo, Cheney et al. 1992). Such a 

relationship is called a forward operator. The inverse operator, which given the voltages 

would return the conductivity, is not known in the general case. For an accurate EIT 

reconstruction it is a prerequisite to have a model capable of predicting the voltages on 

electrodes for a given conductivity distribution (Lionheart 2004). 

1.1.2.3 EIT Imaging Instrumentation 

EIT imaging systems are generally about the size of a video recorder, but some may be 

larger. They usually comprise a box of electronics and a PC. Connection to the subject is 

usually made by coaxial cables a meter or two long, and ECG (electrocardiogram) type 

electrodes are placed in a ring or rings on the body part of interest.(Holder 2005) Up to 

now, only one commercial medical EIT system (Maltron International Ltd) is available 

although some research systems have been duplicated many times (Brown 2003). EIT 

systems used in medical research can be classified into three types: absolute, dynamic 

and spectroscopic (Boone, Lewis et al. 1994). 

Absolute EIT imaging, sometimes referred to as static imaging, is an attempt to quantify 

the conductivity of an object in an absolute way. Usually, a current is applied though 

many electrodes in a pattern designed to maximise sensitivity. Examples of this kind of 

EIT system include the ACT or ACT3 systems from the Renssalaer Technical Institute 

in the USA (Saulnier, Blue et al. 2001). 

A dynamic EIT system collects data over time to observe relative changes in impedance­

time difference imaging. The Sheffield Mark 1 system is an example of a dynamic EIT 

system. This is a 2D system, using 16 electrodes with the applied current of 5mA at 51 

kHz (Barber and Seagar 1987). The UCLH Mark 1 b system is another time difference 

EIT imaging system that can use up to 64 independent electrodes. This system, which 

was designed specially for brain EIT imaging, employs a single impedance-measuring 
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circuit and multiplexer so that electrode combinations may be addressed flexibly using 

software installed on a laptop (see Figure 1.2). The system is a single frequency one, and 

can be set up to supply 18 different frequencies between 77 Hz and 225 kHz. The 

current recording protocol requires 258 measurements to be made for the acquisition of 

one image, which takes just about one third of a second (Yerworth, Bayford et al. 2002). 

External 

box 
Base 
box 

Figure 1.2 Schematic diagram and a photo of UCLH Mklb EfT system 

[From: (Yerworth, Bayford et al. 2002) ] 

Figure 1.3 VCLH Mk2 EITS system and the author as a subject 

Spectroscopic or multiple frequency EIT imaging systems allow images of frequency­

dependent impedance changes to be obtained. This can take the form of imaging the 

difference between two frequencies or injecting current at many frequencies and 

deriving parameters which can summarise the frequency dependent Cole Parameters. 

The Sheffield Mk3 .5 system is an example of an EITS (Electrical Impedance 

Tomography Spectroscopy) System, where eight electrodes are used in an adjacent 

drive/receive protocol to deliver sine waves at frequencies between 2 kHz and 1.6 MHz 
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(Wilson, Milnes et al. 2001). A new multi-frequency EIT design has been developed at 

UCL, which adapts the Sheffield Mark 3.5 system for use with up to 64 electrodes 

(Yerworth, Bayford et al. 2003). The UCLH Mk2 EITS system, which injects currents 

from 2 kHz to 1.6 MHz, composes of a power supply, a base box and a headnet. Figure 

1.3 shows a photo of the author of this thesis in an experiment using the UCLH Mk2 

EITS system. 

1.1.2.4 Potential Clinical Applications of EIT 

Currently, EIT is not in routine biomedical use. Research results imply many possible 

applications, which include gastrointestinal function, pulmonary measurement, breast 

tumours, and brain function. 

Gastrointestinal function 

The most promising clinical use of EIT is in the measurement of gastric emptying, 

which is an important test in the management of some gastric disorders. A meal can be 

used as a label and then EIT is used to measure the rate of gastric emptying (A v ill, 

Mangnall et al. 1987; Mangnall, Barnish et al. 1988). The utility of EIT imaging in 

pyloric stenosis (Nour, Mangnall et al. 1993) and gastroesophageal reflux (Ravelli and 

MilIa 1994) has also been demonstrated. 

Pulmonary measurement 

Lung tissue has a resistivity which is about five times greater than most other soft tissues 

in the thorax. This resistivity increases considerably with inspiration as the alveoli swell 

and electrical currents have to flow around them. By imaging this change in resistivity, 

the distribution of ventilation can be seen. A review of the experimental and clinical 

application of EIT imaging for lung was published by Frerichs (Frerichs 2000). The 
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research in Sheffield shows that EIT pulmonary measurement can be applied to both 

adults and neonates (Eyuboglu, Brown et al. 1989; Brown, Barber et al. 1994; Brown, 

Primhak et al. 2002a; Brown, Primhak et al. 2002b). 

Breast tumours 

Early detection and treatment of breast tumours increases the survival rate amongst 

women who develop breast cancers. Because the electrical properties of tumour cells, 

particularly malignant ones, are very different to the surrounding normal tissue (Joines, 

Zhang et al. 1994), several EIT groups have been developing EIT systems that could be 

used to image breast tumours and cysts. A EIT research group in Moscow has produced 

3D tomographic images of in vivo breast tissue amongst women with different hormonal 

status using a circular grid of 256 electrodes (Cherepenin, Karpov et al. 2002; Kerner, 

Paulsen et al. 2002). The EIT group at Dartmouth College has developed a multi­

frequency EIT system for breast imaging (Soni, Hartov et al. 2004). 

Brain function 

In brain EIT imaging, functional impedance changes with time may occur through three 

main mechanisms: a) cells outrun their energy supply and swell, which cause tissue 

impedance rises by tens of percent over minutes (Holder 1992a; Holder 1992b); b) blood 

volume and flow increase during normal functional activity, which decrease the local 

brain impedance by a few percent over minutes (Adey, Kado et al. 1962; Tidswell, 

Gibson et al. 2001 a; Tidswell, Gibson et al. 200 1 b); c) during neuronal depo larisation, 

ion channels open in the dendritic membrane causing its resistance to decrease a few 

percent over tens of milliseconds (Liston 2004). 

Unfortunately, EIT imaging of brain function is obviously challenged by the low 

conductivity of the skull, since much of the current is shunted through the scalp and does 

not enter the brain compartment (Rush and Driscoll 1969; Malmivuo and Plonsey 1995). 
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The EIT research group in UCL (University College of London) has been addressing 

this problem over the past decade: one of the significant progresses having been made is 

using diametric excitation, which means the current injecting electrodes need to be 

diametrically opposed to each other across the head, instead of adjacent excitation, 

where the current is injected through two adjacent electrodes. The sensitivity of the 

diametric excitation is approximately 100 times more than that of the adjacent excitation 

(Bayford, Boone et al. 1996). To date, studies have applied EIT to measure functional 

brain activity during strokes (Holder 1992a; Clay and Ferree 2002), cortical spreading 

depression (Holder 1992b; Boone, Lewis et al. 1994), visual evoked responses (Holder, 

Rao et al. 1996; Tidswell, Gibson et al. 2001 b; Ahadzi, Gilad et al. 2004) and epilepsy 

(Rao, Gibson et al. 1997; Fabrizi, Sparkes et al. 2004). 

1.1.2.5 Advantages and Disadvantages of EIT Imaging 

EIT imaging has several advantages over other current medical imaging methods: 

• It is relatively cheap. The Sheffield Mk 3.5 system costs around £15,000. 

• It is safe. EIT provides a non-invasive method to probe the body using non­

ionising radiation. There are no known hazards attached to its use. Therefore, it is 

possible for long-term monitoring of physiological function with ElI. 

• It is relatively portable and allows use at the bedside. 

• It has good temporal resolution. For instance, the UCLH Mkl bElT system can 

take more than 600 measurements per second, which corresponds to about 3 

images a second using 31 electrodes and 258 electrode combinations (Yerworth, 

Bayford et al. 2002). Furthermore, EIT can, in principle, record thousands of 

images per second. Because neuronal depolarisations, which underlie all mental 

processes, last only a few milliseconds, EIT is probably the only existing 

imaging technique with the potential to image these events directly. 

• It images the electrical properties of tissue that are not provided by other medical 

imaging techniques. 
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The main disadvantage of EIT is its poor spatial resolution. This problem is related to 

the number of electrodes used (Seagar, Barber et al. 1987). However, it is not a case of 

simply increasing the number of electrodes to overcome this problem. This is due to the 

practical difficulties of applying large numbers of electrodes to the body, the associated 

complexity of the electronics which can accurately measure signals with large dynamic 

range, and the computational difficulties of processing vast quantities of data. 

The description in section 1.1.1 and 1.1.2 reveals that different medical imaging methods 

are based on separate physical interactions of energy with biological tissues and thus 

provide measurements of different physical properties of biological structures or 

functions. Different imaging approaches have different advantages and disadvantages, 

and so have particular application areas in medicine. It is possible that two (or more) 

tissues similar in one physical property may well differ widely in another. So almost 

without exception, new imaging techniques always come to be regarded as 

complementary rather than replacing existing ones. It is quite reasonable that all these 

imaging modalities exist together in one health centre. As a conclusion, table l.2 

outlines some of the main characteristics of the imaging approaches. 

Table 1.2: Summary of medical imaging methods 

Anatomicall Spatial Temporal Ionising 
Portable Cost* Method 

Functional Resolution Resolution Radiation 

X-ray anatomical fewcm - yes no 1 

CT anatomical 1 mm - yes no 2 

MRI anatomical 1-3mm - no no 3 

Ultrasound anatomical 0.6 mm - no yes 1 

Terahertz anatomical 200 JllIl - no no 2 

SPECT functional 9mm 40 secs yes no 2 

PET functional 5mm 40 secs yes no 4 

fMRI functional 2.5 mm 2-5 secs no no 3 

EEG functional fewcm few rnsecs no yes 1 

MEG functional fewcm few rnsecs no no 3 

EIT functional fewcm few rnsecs no yes 1 

* Because the costs ofinstrtunentation for dIfferent Imagmg methods change accordmg to theIr type and 

application, they are rated on a 4-point price scale, where' I ' represents the cheapest case and '4' is the 

most expensive one. 
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1.1.3 Visualisation of EIT Images 

When a current is flowing between two electrodes applied to a body, clearly the flow of 

that current is three-dimensional. So if a two-dimensional ring of electrodes is applied to 

an object, the measurements are sensitive to off-plane conductivity variations. Therefore 

EIT is inherently three-dimensional. In spite of these considerations, for some other 

reasons, 2D imaging is very common in EIT, particularly in the early stage of EIT 

research. For 2D EIT imaging, reconstructed results can be displayed as 2D images 

directly. Presentation of these images is relatively straightforward, and will not be 

discussed here. 

With the development of EIT imaging, especially the progress of reconstruction 

algorithms, the EIT imaging trend has moved towards 3D in recent years (Goble, 

Cheney et al. 1992; Metherall, Barber et al. 1996; Vauhkonen, Vauhkonen et al. 1999; 

Polydorides and Lionheart 2002). Dynamic EIT imaging systems conduct measurements 

during a time interval, therefore a temporal-spatial EIT dataset, which is 4D, can be 

reconstructed by using a 3D reconstruction algorithm at each sample time point. 

Similarly, spectroscopic EIT imaging systems are able to produce 4D image datasets as 

well. Furthermore, if a spectroscopic EIT imaging system is adopted to examine 

impedance variation during a time interval, a spectral-temporal-spatial EIT dataset, 

which is 5D, will be obtained after reconstruction. Visualisation of EIT image datasets 

with three or more dimensions is more challenging than the two dimensional case. In the 

following, commonly used visualisation methods for EIT images are mentioned fIrst, 

then researches on EIT visualisation are reviewed, fmally, the challenges of EIT 

visualisation are summarized. 
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1.1.3.1 Commonly Used Visualisation Methods for EIT Images 

To understand the normally used visualisation methods for EIT images, some typical 

cases from the EIT literatures are described first. 

Case 1: Visualisation of multi- frequency EIT images of breast [From: (Soni, Hartov et 

al. 2004)] 

In this case, the multi-frequency breast EIT images were collected with a single 

array of 16 electrodes at ten discrete frequencies in the range 10kHz - 1 MHz. The 

electrode array was placed at various planes on the breast during the measurement. The 

reconstruction results are four-dimensional with three dimensions for space and one 

dimension for frequency. Some figures are presented in the paper to visualise the results. 

In the top schematic of those figures, the location and positions of an irregular mass and 

various planes of data acquisition are illustrated. Below, conductivity and permittivity 

images corresponding to each imaging plane at the excitation frequency are presented. 

Case 2: Visualisation of functional EIT (f-EIT) and absolute EIT (a-EIT) images of lung 

diseases [From: (Hahn, Just et al. 2006)] 

The dataset involved in this case was acquired by applying EIT imaging on four 

patients with different lung diseases. The measurements were conducted at a rate of 13 

frames per second for a period of 60 seconds. Using different reconstructed techniques, a 

series of f-EIT images and a-EIT images were obtained. The reconstructed f-EIT and a­

EIT images are four-dimensional, with three dimensions for space and one dimension 

for time. To visualise the lung EIT images, the authors presented CT scans of those 

patients in the left column images in the figure, where areas marked by green dashed 

lines are expected to be ventilated; areas marked by red dashed lines indicate high air 

content; areas marked by blue dashed lines correspond to a higher absorption of x-rays 

due to inflltration. The middle column displays mean f-EIT images, and the right column 

shows mean a-EIT images with white dashed lines marking the lung areas. 
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Case 3: Visualisation of EIT images of cardiac activities [From: (Isaacson, Mueller et al. 

2006)] 

In this case, data corresponding to cardiac activities were collected by placing 

electrodes of the EIT imaging instrument around the circumference of a human chest , 

and then reconstructed into a series of 2D cross-section EIT images of the torso. 

Therefore, the reconstructed dataset is three-dimensional, where one dimension is time 

and the other two are used to describe a location in the measured plane. Isaacson et al. 

adopted a sequence of 24 consecutive images to visualise the impedance change during 

one cardiac cycle. At the same time, a movie view of the sequence images is provided 

online as another visualisation approach for the dataset. 

The above examples reveal that, although EIT datasets may have different dimensions 

(e.g. in above cases, the EIT datasets are 4D or 3D), they are generally displayed as a 

series of 2D slices, which is a traditional visualisation method for medical tomography 

images. The 2D slice display approach is able to illustrate some important information in 

EIT datasets, while it also has some natural shortcomings, especially when it is adopted 

to visualise datasets with more than three dimensions. Taking the preceding cases as 

examples again, in case 1, the displayed figures presented images corresponding to the 

excitation frequency. If images at ten frequencies are visualised simultaneously, there 

would be too many small images to be understood properly by the observer. Similarly, in 

case 2, for each subject, the figure provided only displays the mean f-EIT and a-EIT 

images at one single cross section instead of the whole series of images at different 

sections. 

Except for the 2D slice display method, some other approaches are also used to enhance 

the visualisation: In case 1, the ROI (Region of Interest), the location for an irregular 

mass, is highlighted with black slashes or discrete dots. In case 2, the ROIs are marked 

out with dashed lines in different colours and anatomical information corresponding to 
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the ElI imaging area is presented as reference. In case 3, animation is used to reveal 

impedance change along a time interval. 

1.1.3.2 Researches on EIT Visualisation 

Visualising multi-dimensional ElI datasets by a series of 2D slices is a relatively simple 

method. Radiologists usually have some experience of understanding this form of 

presentation and are able to mentally construct the corresponding 3D situation in the 

patient's body. Ihis construction largely depends on personal experience, it would be 

helpful to use some advanced visualisation approach to perform this kind of task 

automatically. Furthermore, before ElI can be used as a routine tool with patients, it is 

necessary to develop a convenient visualisation interface for clinical decision making. 

Nowadays, most researches in ElI field aim to improve ElI reconstruction algorithms 

and imaging instruments, while some efforts have been given to improve the 

visualisation of ElI images. In the following, some researches made in the ElI 

visualisation area are introduced. 

Ell volume visualisation in the University of Salford 

According to the literature search, Briggs and colleagues from the University of Salford 

in UK published the first paper specific to ElI visualisation (Briggs, A vis et a1. 2000). In 

the paper, Briggs et a1. presented a volumetric visualisation result for a sub-dataset 

corresponding to one sample time point in a temporal-spatial (4D) ElI dataset. Ihe 

temporal-spatial dataset represents impedance changes in the brain during visual evoked 

responses. 

Briggs et a1. were pioneers for ElI visualisation. However, the visualisation result 

presented in their paper looks relatively rough. First, the outline of the volumetric 
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visualisation, which should be head-shaped ideally, looks more like a cylinder. Secondly, 

it is not easy to identify regions of interest in this view. Finally, Briggs et al. aimed to 

present a system to visualise ElT dataset volumetrically in real-time, and described that 

the rendering rates of the system were l.16 - 4.55Hz for every frame and changed 

according to the rendering methods adopted. Unfortunately, these rates did not include 

the time needed to reconstruct ElT image data from the measured boundary data, which 

is a serious bottleneck for real-time ElT imaging systems. 

Visualisation features in EIDORS 

ElDORS (Electrical Impedance Tomography and Diffuse Optical Tomography 

Reconstruction Software) is a software suite for image reconstruction in EIT and DOT 

(Diffuse Optical Tomography). It aims to provide a freely distributable and modifiable 

software for image reconstruction of electrical or diffuse optical data (Adler and 

Lionheart 2006). After publications of the first and second version in 2000 and 2002, 

ElDORS (version 3) moves its attention away from basic reconstruction algorithms, and 

focuses on issues such as mesh generation, electrode modelling, electrode error detection 

and visualisation. 

Although ElDORS was not developed for ElT visualisation particularly, it still presented 

some exciting features in visualisation. First, volumetric visualisation is realized based 

on Matlab to view the FEM (Finite Element Mesh) model and conductivity changes. 

Secondly, arbitrary two-dimensional slices through a volume can be generated. Finally, 

EIDORS includes a function to write data into the VTK (Visualisation Toolkit) format, 

which allows further visualisation using Mayavi (Ramachandran 2003). Mayavi is a 

general visualisation software developed in Python with using VTK for visualisation 

support. Mayavi provides various methods, such as, 2D slice, 3D volume rendering, 3D 

surface rendering, isosurface detection, and animation, to visualise 3D or 4D image 

datasets. 
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EITviewer 

EITviewer was fIrst mentioned in a short abstract (van Genderingen and Verbunt 2005) 

in the proceeding of the 6th EIT conference held in London, 2005 . EITviewer was 

developed to be a clinical visualisation tool for thoracic EIT. It includes a region-of-

interest analysis function. The authors of EITviewer claimed that "data can be visualised 

and adapted easily with a user-friendly interface (in EITviewer)". Unfortunately, there 

are no further details about its visualisation approaches or visualisation result 

demonstrations that have been published in any paper or are available online until the 

thesis is written. 

NIM image display software 

NIM image display software was developed by the ueL EIT research group for the 

visualisation of 4D temporal-spatial EIT dataset. Two main views provided by NIM are 

Orthogonal display and Time series display . 
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Figure 1.4 An illustration of orthogonal display in NIM software 

- 22 -



Chapter 1: introduction 

The orthogonal image viewer displays three orthogonal slices of a temporal-spatial EIT 

dataset at one sample time point, centred at the point indicated by the cross hairs. The 

time series of the pixel value at that cross hair is indicated in the pixel profile graph on 

the lower right of the view. The time point of the image displayed is indicated by a red 

line on the pixel profile graph. Figure 1.4 is an illustration of the orthogonal display in 

NIM. 

The time series display presents a temporal-spatial dataset as a 2D image matrix. Each 

column of the matrix, which can be composed of a stack of transverse, coronal, or 

sagittal image planes, corresponds to a sample time point. Each row of the matrix 

describes a series of2D images on a particular plane along the whole sample time period. 

Figure 1.5 demonstrates a time series display composed of transverse image planes. 
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Figure 1.5 A time series display composed of transverse image planes in NIM software 

With NIM software, a 4D EIT dataset can be visualised in various ways interactive ly. It 

is possible to display the three most significant planes in one view. But the visuali sation 
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approaches provided by NIM are 2D based. Mental effort is necessary to understand the 

spatial situation included in the dataset. 

As a summary, table 1.3 lists the advantages and shortcomings of the research work 

mentioned above. Each work achieved some progresses and inevitably has some limits. 

More work needs to be done to improve the visualisation of EIT image datasets. 

Furthermore, with the development of EIT imaging technology, new challenges are 

presented for EIT visualisation, as discussed in the next section. 

Table 1.3: Summary of previous research work in EIT visualisation 

Dimensions 
of Progresses Shortcomings 

input dataset 

EIT First applying volumetric 
Visualisation results are 

Irelatively rough; 
visualisation 

40 
~isualisation to EIT images; Excluding image; 

10 Real-time visualisation econstruction time from the 
Salford Uni. system. eal-time system. 

Volumetric visualisation by 
surface rendering; No volume rendering; 

EIDORS 3D 
Arbitrary 20 slicing; Specific function is needed 
Interact with a general for the interaction with 

~isualisation software - Mayavi. 
lMayavi. 

EITviewer N/A 
Region-of-interest analysis; N/A 
User-friendly interface. 

Displaying three orthogonal Visualisation methods are 

NIM 4D 
IPlanes in one view; ~D based; 

Presenting 40 dataset as a No volumetric visualisation. 
~D image matrix. 

1.1.3.3 Challenges on EIT Visualisation 

Visualisation is a tool to prompt EIT research and is necessary for EIT clinical 

applications. To develop a successful EIT visualisation system, advanced visualisation 

approaches in computer science must be adopted; currently available visualisation 
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systems for other medical images should be referred. The most important, special 

challenges brought up by EIT images must be faced. Three main challenges included in 

EIT visualisation are described below. 

Identification of Regions of Interest (ROI) 

Pulletz et al. (Pulletz, Genderingen et al. 2006) pointed out that one of the essential 

issues in the process of regional lung function evaluation by EIT is to defme appropriate 

Regions of Interest (ROI) within the EIT scan. In fact, as the usability of EIT imaging to 

other parts of human body has developed, the identification of ROI is essential for all 

them, not just for lung functional EIT images. 

To date, there is only limited data available on the approaches to ROI definition in EIT 

images, which can be classified into two main types. The first type is based on the 

calculation of the pixel values (Smallwood, Hampshire et al. 1999; Frerichs, 

Dudykevych et al. 2001; Frerichs, Bodenstein et al. 2005). The selection of a proper 

edge criteria value is the key issue for this kind of method: too low values of the edge 

criterion would make the selected ROIs too large and vice versa. The second kind of 

method defmes ROI as a simple geometrical object (Victorino, Borges et al. 2004; 

Odenstedt, Lindgren et al. 2005). Pulletz et al. demonstrated that, for ROI defmition in 

lung functional EIT images, the first kind of approach is more convenient than the later 

one (Pulletz, Genderingen et al. 2006). Nevertheless, defming the ROI suitably is still a 

challenge for EIT researchers. 

Combination of anatomical information with EIT images 

Faes et al pointed out that, "clearly it is not anatomical information that will sell EfT, 

and therefore we have to sell EfT as the imaging modality of physiological function" 

(Faes, Genderingen et al. 2006). However, even EIT aims to be used as a functional 
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imaging method, and supposing that ROI in EIT images can be identified properly, it 

would be unacceptable if the anatomical information corresponding to the functional 

information cannot be seen by the clinicians. 

To deal with the absence of anatomical information in EIT images, researchers tried to 

display a simple structure schematic (as used in case 1 in section 1.1.3.1) or anatomical 

information obtained by other imaging methods (as adopted in case 2 in section 1.1.3.1) 

simultaneously with EIT images. Besides these two relatively intuitive methods, more 

sophisticated approaches are still under development. However, to link anatomical 

information with functional information included in EIT dataset is another challenge for 

EIT visualisation. 

Visualisation of 50 EIT data 

As mentioned at the beginning of section 1.1.3, EIT imaging is able to collect spectral­

temporal-spatial data, which is five-dimensional. In the medical image visualisation area, 

researchers usually process three-dimensional spatial datasets or four-dimensional 

temporal-spatial datasets. To date, no publication on the visualisation of five­

dimensional spectral-temporal-spatial datasets has been found in the literature review. 

Therefore, handling 5D EIT datasets in a visualisation system is another challenge to be 

solved. 

1.2 Aim and Objectives 

The background introduction described above shows that medical imaging technology is 

progressing continuously: new imaging methods are coming up; traditional imaging 

modalities are providing more accurate and complex information. As a vital tool for 

medical research and clinical application, medical image visualisation needs to be 
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improved simultaneously to keep pace with the development of medical Imagmg 

technology. One particular phenomena appearing in medical imaging is that the 

dimension of the result dataset is increasing. In other words, former medical imaging 

may produce 2D, or ID datasets, while information collected by modem medical image 

approaches generally need 3D, 4D, or even 5D datasets to be processed. How to 

visualise those multi-dimensional medical image datasets is the research topic of this 

thesis. It. is worth noting that medical images obtained through different imaging 

modalities, or even collected by the same imaging method but corresponding to different 

parts of human body, have different features, and different challenges may be presented 

in the visualisation of different kinds of medical images. Such differences will affect the 

selection of particular visualisation methods to some extent. The research work 

mentioned in this thesis is mainly focussed on EIT images of the brain. The aim of this 

research is to investigate improvements to medical image visualisation, particularly for 

multi-dimensional medical image datasets. And EIT images of the brain are presented as 

a demonstration. 

In order to fulfil this aim, the following objectives were to be achieved: 

• 

• 

• 

To propose a method to defme ROI in functional brain EIT images 

To develop a registration scheme to combine human morphology information 

obtained by other imaging modality with brain EIT images 

To derive a system development methodology for the visualisation of multi­

dimensional medical images, and construct a prototype visualisation system for 

five-dimensional brain EIT datasets 
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1.3 Outline of the Thesis 

This thesis is composed of six main chapters. The fIrst chapter provides a background 

introduction and motivation for this research project. 

In the second chapter, published literature on visualisation is reviewed from three 

aspects: first, an overview of visualisation in different applications is presented; then, 

approaches for medical image visualisation are surveyed; fmally, the state of art for 

exploratory visualisation is mentioned. 

The third chapter concentrates on the fIrst objective of this research. That is, by 

evaluating the feasibility of processing brain EIT data with an existing statistical analysis 

method, a ROI defInition approach is proposed for 4D spatial-temporal brain EIT images. 

Furthermore, experiments based on simulated and clinical EIT data are described and the 

experimental results are analysed. 

Chapter four details an innovative landmark-based registration scheme to register brain 

EIT dataset with a standard anatomical brain dataset. 

The last objective of this research is fulfIlled in chapter fIve. In detail, a novel task 

typology model is derived for task exploration, a task-based system development 

methodology is proposed for the visualisation of multi-dimensional medical image data, 

and a prototype visualisation system, named EIT5DVis, is developed according to this 

methodology for the visualisation of 5D brain EIT datasets. 

The thesis concludes with chapter six in which this work is assessed, and the fmal 

conclusions and suggestions for further research are discussed. 
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Chapter 2 Literature Review of Visualisation 

2.1 Overview of Visualisation 

Visualise -- "To form a mental vision, image, or picture of (something not visible or 

present to the sight, or of an abstraction); to make visible to the mind or imagination." 

[The Oxford English Dictionary, 1989] 

Visualisation has been an efficient way to communicate both abstract and concrete ideas 

since the dawn of humanity. The first application of visualisation can be traced back to 

cave painting in prehistoric times. Today, we see an increasing and diverse application 

of visualisation ranging from more traditional areas such as geography, medicine and 

weather to more recent and exotic areas such as bioinformatics and Web visualisation. In 

this thesis, visualisation just refers to computer visualisation, which may be the most 

important development for the visualisation field ever, if no other explanation is given. 

According to the importance of displaying a physical "thing", visualisation can be 

divided into two classes: information visualisation and scientific visualisation. 

Information visualisation tends to deal with abstract quantities such as football scores, 

electrical voltages, fluctuating exchange rates. These quantities relate to real things, but 

there is little to be gained, for example, by displaying pictures of pound notes when 

trying to communicate fast changing exchange rates to a currency dealer. In scientific 
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visualisation what is seen primarily relates to, and represents visually, something 

"h . 1" Th h f1 '. p YSIca. us, t e ow of water In a pIpe, the nature of the weather in a mountain 

area, and the physiological change in a body are usually - and usefully - displayed 

directly superimposed on, or at least close to, a realistic representation of the physical 

thing (Spence 2001). At the same time, there is currently no clear consensus on the 

boundaries between these two terms of visualisation. Inevitably some overlaps exist 

between these two. Many visualisation techniques can be applied in both situations. This 

section will review applications of visualisation in different areas by sorting them into 

information visualisation and scientific visualisation. 

2.1.1 Information Visualisation 

Information visualisation can be defined as: "the use of computer-supported, interactive, 

visual representations of abstract data to amplify cognition" (Card, Mackinlay et al. 

1999). The main design challenge in information visualisation is the mapping of 

complex, non-spatial, abstract data onto cognitively useful forms. Software visualisation, 

network visualisation, and bioinformatics visualisation, are three typical information 

visualisations. 

2.1.1.1 Software Visualisation 

Software visualisation is defmed as the use of the crafts of typography, graphic design, 

animation, and cinematography with modern human-computer interaction technology to 

facilitate both the human understanding and effective use of computer software (Price, 

Baecker et al. 1993). Software visualisation techniques are widely used in the areas of 

software maintenance, reverse engineering, and re-engineering, where typically large 

amounts of complex data need to be understood and a high degree of interaction between 

software engineers and automatic analyses is required. 
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In creating a software visualisation tool, several inherent tasks are present, which mainly 

include: data collection, data analysis, storage of both raw and processed data, and data 

display (Kraemer and Stasko 1993). A number of display facilities have been associated 

with debugging tools, performance evolution tools, and program visualisation systems. 

These include: program graphs, communication graphs, statistical displays, memory 

access displays, bar-scope views, XY plots, application-specific and abstract displays. 

2.1.1.2 Network Visualisation 

Network information visualisation involves gaining insight into the network structure 

and understanding the users' behaviour patterns. With the explosive growth of the 

Internet, network structure visualisation efforts focus on visualising the global network 

topology of the entire Web. With the goal of ''understanding the organization," these 

efforts visualise the connectivity of major traffic servers around the world. In the past 

decade, some researchers have explored visualisation methods to help understand usage 

data and identify major traffic patterns. To some extend, understanding the users' 

behaviour patterns is more important than understanding the Web's structure (Chi 2002). 

A network consists of hierarchical nodes and links, where a node represents a data point, 

and a link represents a relationship between two nodes. Much of the work done in 

network visualisation came about from graph drawing. Most interface representations 

include two-dimensional or three-dimensional node-and-link diagrams:. Some 

visualisation techniques add animation, distortion, and a tightly-coupled overview 

window to reveal even more information about a network. 
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2.1.1.3 Bioinformatics Visualisation 

Bioinformatics is a newly emerging interdisciplinary research area which aims to exploit 

information technology in biological data analysis. With the data explosion in biology, 

especially as the genome sequencing projects proceed, scientists have gained access to 

tremendous amounts of biological information. Due to the difficulties inherent in 

understanding large quantities of data, information visualisation techniques have become 

an attractive option for the field of bioinformatics. Using information visualisation, 

researchers can see experimental results more clearly than by simply viewing raw 

numbers. 

Bioinformatics visualisations generally should provide biologists with data overviews, 

followed by the ability to study Regions of Interest (ROI) in detail, within the context of 

the overall data set and to highlight patterns within the data (Dadzie and Burger 2005). A 

number of visualisation methods and techniques already exist for complex data analysis, 

both within and outside of the field ofbioinformatics, including 2D and 3D scatter plots, 

parallel coordinates, 2D and 3D hierarchical graphs, information maps, and physical 

space metaphors such as rooms, windows and desktops. Hyperbolic or fish-eye views 

aid detailed study ofROI especially in large data sets. 

2.1.2 Scientific Visualisation 

Scientific visualisation is typically constructed from measured or simulated data 

representing objects or concepts associated with phenomena from the physical world. As 

such, the data and, hence, its derived visual representations represent objects that exist in 

aID (one-dimensional), 2D, or 3D object space. Scientific visualisation strives to 

display measurements of physical quantities so the underlying physical phenomena can 

be interpreted accurately, quickly, and without bias. In the following sections, 

geographic visualisation and flow visualisation are mentioned as two examples of 
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scientific visualisation. In a later section, medical visualisation, which is the core of this 

thesis and one of the most important domains for scientific visualisation, is detailed. 

2.1.2.1 Geographic Visualisation 

Geographic Visualisation (GVis), sometimes called cartographic visualisation, integrates 

principles from cartography, geographic information systems (GIS), and Exploratory 

Data Analysis (EDA) in the development and assessment of visual methods that 

facilitate the exploration, analysis, synthesis, and presentation of geo-referenced 

information. 

The goal of cartographic visualisation is the understanding of spatial information and 

knowledge through interactive visual display. Researchers have developed numerous 

recommendations and software tools to enhance geographic visualisation, which can be 

categorized as query, re-expression, multiple views, linked views, animation, and 

dimensionality (Kraak 1999). 

2.1.2.2 Flow Visualisation 

In fluid dynamics, it is critically important to see the patterns produced by flowing fluids. 

While most fluids (air, water, etc.) are transparent, their flow patterns are invisible 

without using some special methods. Flow visualisation is the art of making these 

patterns visible. Flow visualisation has always been a significant area of scientific data 

visualisation; it has also been one of the most challenging areas, especially when looking 

at volumetric data. 

Three different approaches are widely used in flow visualisation (Laramee, Weiskopf et 

al. 2004): Direct flow visualisation: This category of techniques uses a translation that is 
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as direct as possible for representing flow data in the resulting visualisation. The result is 

an overall picture of the flow. Common approaches are drawing arrows or colour coding 

for velocity. Geometric flow visualisation: These approaches often fITst integrate the 

flow data and use geometric objects in the resulting visualisation. The objects have a 

geometry that reflects the properties of the flow. Examples include streamlines, 

streaklines, and timelines. Not all geometric objects are based on integration. Another 

useful geometric approach is generating isosurfaces, e.g., with respect to an isovalue of 

pressure or magnitude of velocity. Dense, texture-based flow visualisation: A texture is 

computed that is used to generate a dense representation of the flow. A notion of where 

the flow moves is incorporated through co-related texture values along the vector field. 

In most cases this effect is achieved through filtering of texels according to the local 

flow vector. Texture-based methods offer a dense representation of the flow with 

complete coverage of the vector field. 

In conclusion, this section reviewed visualisation applications in some typical areas by 

classifying them into two types. Visualisation researchers meet different challenges 

related to the natural features of different application fields. Each field has its own 

suitable visualisation approach. At the same time, many visualisation methods can be 

adopted in more than one field. Medical visualisation is a very important domain in 

scientific visualisation. The research presented in this thesis is a specific project in this 

domain. Therefore, a more detailed literature review on medical image visualisation 

follows in the next section. 

2.2 Approaches for Medical Image Visualisation 

The practice of medicine has always relied upon visualisations to study the relationship 

of anatomic structure to biologic function and to detect and treat disease and trauma that 

disturb or threaten normal life processes CRobb 2000). Traditionally, these visualisations 
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have either been direct, via surgery or biopsy, or indirect, requiring extensive mental 

reconstruction. With the development of medical imaging methods, imaging has become 

an essential component in medical research and clinical practice. For example, 

virologists generate 3D reconstructions of viruses from micrographs, radiologists 

identify and quantify tumours from MRl and CT scans, and neuroscientists can detect 

regional metabolic brain activity from PET and fMRl scans. Analysis of these diverse 

image types requires advanced visualisation tools. 

A variety of methods have been developed for image visualisation. Most of them are 

transferable between different application areas, and may also be applied to the special 

case of medical images. From different perspectives, visualisation in medicine can be 

divided into different catalogues. For example, Solaiyappan grouped them into three 

classes: illustrative visualisation, investigative visualisation, and imitative visualisation 

(Solaiyappan 2000). This section reviews approaches for medical image visualisation 

based on dimensions of datasets involved in the process. 

2.2.1 Terminology 

As Wong and Bergeron mentioned in their survey of Multi-Dimensional Multi-variate 

Visualisation (MDMV), the MDMV literature suffers from ill-defmed and inconsistent 

terminology, the term dimensionality is especially overloaded (Wong and Bergeron 

1997). A similar situation exists in medical image visualisation, therefore a clarification 

of the terminologies used in this thesis is presented. 

Dimension and Variate 

To defme the dimension and variate of a medical image dataset, a functional view of the 

data structure is adopted. A function is a relation between two or more variables such 

that the values of some variables, which are dependant variables, are dependent on, 
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determined by, or correspond to values of the other variables, which are independent 

variables. An image dataset can be divided into two conceptually different parts: one 

part defmes the context in which the data is obtained, while the other part represents 

results of measurements, observations, calculations, etc. obtained in that context. From 

the functional view, the image dataset structure can be presented as: 

(2.1) 

Where XI' X2 ,"', xn are independent variables, which defme the measurement 

context in the dataset; n is the number of independent variables. 

S l' S 2" ", S m are dependent variables, which present measurement results in the 

dataset; m is the number of dependent variables. 

f is a data function, which describes the correspondence between measurement 

context and results. 

In this thesis, the dimension of an image dataset is defmed as the number of independent 

variables in the dataset, and dependant variables included in the dataset are termed as 

variates. 

Multi-dimensional & Multi-variate 

The prefix, 'multi', is frequently interchanged with another prefix, 'hyper'. In statistics 

literatures, the prefix multi means two or more, indicating a natural breakpoint between 

one and two dimensions in probabilistic methods. For the breakpoint between three and 

four (or beyond), sometimes the prefix hyper is used, and sometimes the prefix multi is 

adopted. In this thesis, the expression multi-dimensional is chosen to refer to 

dimensionality of four or more. Datasets with four or more dimensions are multi­

dimensional datasets correspondingly. While, the term multi-variate is defmed as more 

than one variate, the dataset having two or more variates is a multi-variate dataset. 
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After the terminology definition, the following sections will review approaches for 

medical image visualisation by classifying them into four categories according to the 

number of dimensions and variates of the processed dataset. These are one-, two-, or 

three-dimensional, and multi-dimensional and multi-variate. 

2.2.2 One-dimensional Visualisation 

An one-dimensional (l D) medical image dataset can be described as: 

s = f(x) (2.2) 

where s represents imaging results, x stands for the only independent variable 

to define the measurement context, which is usually time. 

The commonest visualisation form for a one-dimensional image dataset is to present it as 

a waveform, which can be seen on such devices as ECG (Electrocardiogram) monitors 

and EEG (Electroencephalography) equipments. This form of visualisation is quite 

elementary, while it is a convenient and powerful tool for conveying the physiological 

property of the subject. By observing these waveforms, clinicians can rapidly understand 

the present state of the subject and possibly deduce the trend condition during a clinical 

intervention. These early developments obviously indicated the potential benefits of 

visualisation in medicine. 

2.2.3 Two-dimensional Visualisation 

A two-dimensional (2D) image dataset can be presented as: 

s = f(x,y) (2.3) 

where s stands for the imaging results, x, yare two independent variables to 

defme measurement context, which are commonly two orthogonal coordinates in 

Cartesian space and used as pixel positions in visualisation. 
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Although modem X-ray imaging is able to provide images in three-dimensions, the 

emergence of X-ray imaging once announced the arrival of two-dimensional medical 

image datasets. It is easy to display two dimensional medical datasets on a piece of paper 

or a monitor screen. Approaches have been developed to enhance image features that 

otherwise may have been ignored. In the following, three typical examples of those 

approaches, which are interpolation, 2D contours detection, and 2D texture mapping, are 

reviewed. 

In medical images, the number of pixels might vary according to imaging modality, and 

it is usually in the range of 128 X 128 to 512 X 512. The resolution of computer displays 

is usually high, above 72 pixels/inch. If viewing the measurement results directly on the 

screen, the displayed images will be relatively small. To enlarge these images to a proper 

display size, different interpolation techniques are developed. Interpolation is able to 

create a continuous presentation of discrete image data. Commonly used interpolation 

approaches include nearest-neighbour interpolation, linear interpolation, B-splines 

interpolation, and sinc interpolation. 

Manipulation of an entire 2D image appears to be a cumbersome approach when the 

feature of interest could be delineated through contour lines. Both manual and automatic 

techniques were developed to define contours. Contour detection algorithms work either 

in the spatial or frequency domain of an image. Examples of spatial filters for contour 

detection include the Roberts' Cross (Roberts 1965), Sobel filter (Sobel 1970), Prewitt 

filter (Prewitt 1970), and Canny filter (Canny 1983; Canny 1986). Frequency domain 

filters include the ideal high pass filter and the high pass Butterworth filter (Fisher, 

Perkins et al. 1996). 

Texture mapping is a concept introduced in computer graphics for providing high visual 

realism in a scene (Haeberli and Segal 1993). An image (the texture) is added (mapped) 
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to a shape in the scene, like a decal pasted to a flat surface. This reduces the amount of 

computing needed to create the realistic effects when each time the elements appear in 

the scene. The way the resulting pixels on the screen are calculated from the texels 

(texture pixels) is governed by texture filtering. In medical image visualisation field, 

texture mapping contributes to realism and speed. 

2.2.4 Three-dimensional Visualisation 

A three-dimensional (3D), or volumetric, image dataset can be described as: 

s = f(x,y,z) (2.4) 

where s represents imaging results; x,y,z are three independent variables to 

defme measurement context, which are usually three orthogonal coordinates in Cartesian 

space and are able to be used as voxel positions in visualisation. 

Modern anatomical medical imaging methods generally produce three-dimensional 

datasets. With the constant improvement to imaging instrumentations, medical imaging 

resolution can be quite high, which consequently makes the size of volumetric dataset 

very large. Another important factor in the development of three-dimensional 

visualisation is that the data has one dimension more than the computer display. 

Visualising three-dimensional medical datasets efficiently has been an active research 

area for many years. Different techniques have been developed, which can be classified 

into two main categories: 2D display and 3D rendering. 

3D rendering of volumetric medical datasets can be further divided into different types 

from different perspectives. It can be classified as indirect and direct methods (Csebfalvi 

2001): for indirect volume rendering, there is a preprocessing step to convert the dataset 

to an intermediate representation, such as a surface model or a presentation in another 

domain; direct volume rendering methods process the dataset without generating any 

intermediate representation and assigning optical properties directly to the voxels in 
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spatial domain. 3D rendering approaches can also be grouped into another two types: 

surface rendering and volume rendering (Kaufman 2000; Tian, Bao et al. 2003): surface 

rendering techniques construct surfaces in the dataset fIrst and then render these surfaces 

into displayable images; volume rendering techniques display the volumetric data sets in 

their entirety. In this review, the later classification is adopted. 

In the following, 2D display for 3D datasets is mentioned fIrst. Then surface rendering 

techniques are introduced. Next, volume rendering methods are described. Finally, a 

comparison between surface rendering and vo lume rendering for vo lumetric 

visualisation is conducted. 

2.2.4.1 2D Image Generation and Display 

A three-dimensional medical image dataset can be obtained by either imaging a series of 

cross sections or a 3D reconstruction from measurements. Traditionally, radiologists 

check 2D tomography images on a light box. It is natural to adopt this light box viewing 

method to 3D dataset before volume visualisation is available. Even in an innovative 

visualisation system, 2D slice presentation is still a necessary feature, because there are 

many situations in which identifIcation, generation, and display of the optimal image 

plane are critical. 

2D image generation and display techniques aim to avoid the structure positioning and 

scanner orientation restrictions of most imaging systems and present important features 

in a clear, unrestricted view. Descriptions of three types of 2D image generation 

approaches, orthogonal sectioning, oblique sectioning and curved sectioning follows. 
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Orthogonal sectioning 

The 3D nature of volumetric dataset, when isotropic, allows for simple and efficient 

computation of images that lie along the non-acquired orthogonal orientation of the 

volume (Glenn, Johnston et al. 1975). For example, in CT imaging, transverse images 

are reconstructed directly after measurement, coronal or sagittal images can be displayed 

by orthogonal sectioning after some processing, such as deconvolution, to the dataset. 

Oblique sectioning 

A desired 2D image may not be parallel to an orthogonal orientation in which the 3D 

volume image was acquired, but is more likely to lie along an arbitrarily orientated plane 

at some oblique angle to the orthogonal axes of the volume image (Robb 1999). 

Although geometric principles describing planes oblique to an orthogonal image data set 

are well understood, the specification of the orientation and efficient generation of the 

oblique image in volumetric image dataset require additional visualisation and 

computation techniques (Rhodes, Glenn et al. 1980; Bates, Hanson et al. 1998). 

Curved sectioning 

It is quite often in medical image dataset that objects of interest may have curvilinear 

morphology and not located entirely within a single plane, and orthogonal or oblique 

sectioning cannot capture them in a single 2D image. This restriction can be overcome 

using curved sectioning techniques (Robb 1999; Kanitsar, Fleischmann et al. 2002). 

With this technique, a trace along an arbitrary path defmes a set of pixels that have a 

corresponding row of voxels through the volume image. Each row of voxels for each 

pixel on the trace can be displayed as a line of a new image, which corresponds to the 

curved planar structure lying along the trace. The curved plane can be viewed through 

projection, stretching and straightening (Kanitsar, Fleischmann et al. 2002). 
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2.2.4.2 Surface Rendering 

In the 1980s, no rendering techniques were available for the visualisation of volumetric 

data directly. The existing computer graphics methods, like ray tracing or z-buffering, 

had been developed for geometrical models rather than for volume data sets. Therefore, 

there was a need to convert the volume defined in a discrete space into a geometrical 

representation and rendering it with methods developed in computer graphics domain. 

This approach is called surface rendering. 

The key step in surface rendering is to construct surfaces in a vo lume. Early surface 

reconstruction methods were based on the traditional image-processing techniques, such 

as edge detection and contour connection (Artzy, Frieder et al. 1980; Udupa 1982). The 

most important milestone in this research direction was the marching cubes algorithm 

(Lorensen and Cline 1987). In the following, the main algorithms for surface 

reconstruction in volume data are introduced. 

Contour connection 

,Before the introduction of isosurface techniques, contour connection approaches were 

widely used in visualisation of volumetric dataset. In a semiautomatic or manual method 

the contours of structures of interest were identified on single slices first. Geometrical 

algorithms were then used to connect the contours of adjacent slices in order to form a 

closed surface (Meyers, Skinner et al. 1992; Arvo and Novins 1994; Meyers 1994). 

Enhancements to this technique include the generation of meshes with more or less 

uniformly shaped triangles, which could be reduced in size (and detail) by standard mesh 

reduction algorithms (Fuchs, Kedem et al. 1977). The major problem of this kind of 

surfacing technique was the handling of branches in the objects' structures (Shantz 

1981 ). 
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Marching cubes 

The Marching Cubes technique (Lorensen and Cline 1987) is the best established 

isosurface extraction approach. It is called "marching cubes" because it marches through 

all the cubic cells and generates a local triangular mesh inside those cells which are 

intersected by an isosurface. This algorithm does not rely on image processing 

performed on the slices and requires only one parameter, a density threshold, to defme 

the isosurface. 

The marching cubes algorithm provides a fast and easy way to get a high-resolution 3D 

surface from serial sections up to a complete 3D object. However, it is computationally 

expensive. This time consuming process motivated researchers to come up with 

acceleration strategies (Wilhelms and Gelder 1992; Itoh and Koyamada 1994; Montani, 

Scateni et al. 1994a; Livnat, Shen et al. 1996; Li and Agathoklis 1998; Delibasis, 

Matsopoulos et al. 1999). Furthermore the number of triangles produced by the method 

in a typical set of volume image data is very high, the decimation of triangle number was 

another problem (Shekhar, Fayyad et al. 1996). The original marching cubes technique 

suffered from the problem of ambiguities in the surface construction scheme, which 

would result in holes in the extracted surfaces. Further research work has been done to 

correct this problem (Nielson and Hamann 1991; Matveyev 1994; Montani, Scateni et al. 

1994b). 

Dividing cubes 

Dividing cubes algorithm, which is also developed by Cline and Lorensen (Cline, 

Lorensen et al. 1986), is a variation of marching cubes algorithm. As the resolution of 

the 3D medical data increases, the number of triangles generated with the marching 

cubes algorithm approaches the number of pixels in the displayed image. The dividing 

cubes algorithm eliminates the scan conversion step and approximates the polygons with 

points. 
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Surface producing for noisy data 

Isosurface extraction works very successfully for volume image data with high signal-to­

noise ratio, which allows effective classification of constituent structures. However 

when the data are noisy or when the structure cannot be segmented well, results of 

isosurface extraction (e.g. marching cubes) could become unpredictable. Elastic surface 

approaches were proposed to solve the problems. These surfaces are sometimes called 

balloons, for their expanding properties, or shrink-wrapping surfaces with elastic 

properties, or, in general, deformable surface. These techniques usually tend to be 

computationally intensive because of their iterative steps. "Statistical" surface is another 

approach that attempt to produce efficient results for noisy data. It employs space 

partitioning techniques based on local statistical measurements to produce a mean 

estimated surface within a given error deviation. This technique may not preserve the 

topology connectivity that deformable techniques could provide. 

2.2.4.3 Volume Rendering 

Volume rendering methods provide direct visualisation of volume images without the 

need for prior surface construction or object segmentation, and preserving the values and 

context of the original image data. The optical attributes like color, opacity, or emission 

are assigned directly to the voxels. The pixel colours in the displayed image depend on 

the optical properties of the voxels intersected by corresponding viewing rays. 

Volume rendering can be achieved using an image-order, an object-order, or a domain­

based technique. The image-order methods produce the image pixel-by-pixel by casting 

a ray though each pixel and re-sampling the volume along the viewing rays. The object­

order methods process the volume voxel-by-voxel by projecting them onto the image 

plane. The domain-based methods transform spatial volume into an alternative domain 

first, and a projection is then generated directly from that domain. In the following, 

typical algorithms included in the three kinds of methods are presented. 
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2.2.4.3.1 Image-order methods 

Image-order volume rendering algorithms, which represent a backward mapping scheme. 

cast rays from each pixel in the image plane through the volume data to determine the 

final pixel value. They are also called volume ray casting techniques and are similar to 

the common computer graphics polygon- or surface-rendering procedure of recursive 

ray tracing, with the difference that secondary reflection and refraction rays are not 

spawned. During the process to accumulate all data points along a ray with appropriate 

weights and to produce an aggregate value that is projected on the viewing plane, 

different techniques can be adopted. Some of those techniques are mentioned below. 

Binary ray casting 

The first generation of image-order volume rendering methods were developed for 

binary volumetric data. One of these techniques, binary ray casting, (Tuy and Tuy 1984), 

detects the first intersection of the ray with data volume, and so can show the outer 

surface of the data without the need to explicitly perform boundary detection and 

hidden-surface removal. 

Discrete ray casting 

Instead of traversing a continuous ray and determining the closest data sample for each 

step with a zero-order interpolation function, as in the previously mentioned binary ray 

casting algorithm, a discrete representation of the ray could be traversed, which is 

referred to as discrete ray casting (Yagel, Cohen et al. 1992). In this method, a ray is 

discretixed into a 6-, 18-, or 26-connected path, which is based upon the three adjacent 

relationships between consecutive voxels along the path. 
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Density integral 

The purpose of a volume ray casting model is to define the geometry of the rays cast 

through the volumetric data. To generate the displayed image, the pixel values are 

assigned appropriate intensities "sampled" by the rays passing everywhere through the 

scene (volume of data). Different ray functions are used to determine the contribution of 

a voxel to the final image. One possibility is to calculate each pixel value as the density 

integral of the voxels along the corresponding viewing ray. 

Maximum intensity projection 

Maximum Intensity Projection (MIP) (Sakas, Grimm et al. 1995) is another method to 

calculate the pixel intensity. As the name suggests, the maximum intensity value 

encountered along each ray is projected on the viewing plane. This projection is capable 

of revealing some internal parts of the data, specifically those with high density, such as 

blood vessels in MRI data. 

Local maximum intensity projection 

The main limitation of MIP is that it cannot adequately depict the spatial relationships of 

overlapping objects. In order to avoid this problem, Sato (Sato, Shiraga et al. 1998) 

proposed a technique called Local Maximum Intensity Projection (LMIP). Different 

from MIP, LMIP assigns the first local maximum, which is above a predefmed threshold, 

along the corresponding viewing ray to each pixel. 

Acceleration techniques for volume ray casting 

Volume ray casting is able to generate images of high quality, while sampling data 

volume along the viewing rays at equidistant locations is computationally expensive. 

Several acceleration techniques have been proposed in order to speed up the process. 

Some approaches are exploiting the fact, that there are regions in the volume data set 
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that do not contribute to the fmal image (Yagel and Shi 1993; Sramek and Kaufman 

2000). Other approaches try to optimize the method viewing rays are sampled, either by 

taking the final image into account, or by using adaptive sampling strategies (Kreeger, 

Bitter et al. 1998; Ogata, Ohkami et al. 1998; Wan, Kaufman et al. 1999). Also the way, 

viewing rays are traversed through data volume are subject to acceleration approaches 

(Yagel and Kaufman 1992; Law and Yagel 1996). Although these acceleration 

techniques yield a significant reduction in rendering times, volume ray casting (without 

a tradeoff in image quality) is far from being an interactive technique. 

2.2.4.3.2 Object-order methods 

Different from image-order algorithms, object-order volume rendering methods 

represent a forward mapping scheme. Here each voxel in the volume is processed to 

determine its contribution to the fmal image. In its simplest form, an object-order 

algorithm loops through the volume data, projecting each voxel onto the image plane. 

There are two orders in which the volume is traversed: back-to-front or front-to-back. 

According to back-to-front projection, if two voxels project to the same pixel on the 

image plane, the first processed voxel must be farther away from the image plane than 

the second one. In front-to-back methods, voxels are traversed in the order of increasing 

distance from the image plane. The first object-order methods, similarly to the early 

image-order methods, aimed to render binary volumes. More sophisticated object-order 

methods are not restricted to the rendering of binary volumes. In the following, two 

typical object-order volume rendering approaches: splatting algorithm and sheer warp 

factorization methods, are described. 

Splatting algorithm 

The splatting algorithm (Westover 1990) computes the contribution of a voxel, In 

volume data, to a displayed image by a process called splatting. The splatting process 
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convolves a voxel with a filter that distributes the voxel's value to a neighbourhood of 

pixels (Westover 1989). The fmal displayed images are composed by accumulating 

"splatted" footprints ofvoxels on the image plane. 

The splatting approach supports incremental rendering in back-to-front or front-to-back 

order. In principle, the splatting algorithm can achieve the same image quality as a ray 

caster provides. The advantages of splatting over ray casting are twofold: fIrst, ray 

casting requires access to volume voxels along the viewing ray, while splatting 

algorithm traverses voxels sequentially in the same order as they are stored in memory, 

so the cache coherency is exploited; secondly, with splatting, smooth surfaces can be 

rendered without staircase artefacts, unlike the case of ray casting. The main drawback 

of splatting comparing with ray casting is that, images generated by splatting are blurred, 

while sharp object boundaries can be reserved with ray casting. 

It has been showed that the splatting algorithm can be optimized by using strategies such 

as sparse data sets, (Laur and Hanrahan 1991; Mueller and Yagel 1996; Huang, Mueller 

et al. 2000; Orchard and Moller 2001). Further researches on splatting techniques are 

focused on the reduction of aliasing artefacts, (Swan, Mueller et al. 1997; Mueller, 

Moller et al. 1998) and the improvement of the visual quality of images (Mueller, Moller 

et al. 1999). 

Shear warp factorization method 

The shear warp factorization method was introduced by Philippe Lacroute and Marc 

Levoy (Lacroute and Levoy 1994). This object-order volume rendering approach aimed 

to avoid the expensive computation of ray-casting algorithms and achieve some 

advantages involved in image-order methods. In this technique, the voxels are 

rearranged such that the nearest face of the volume becomes axis aligned with an off­

screen image buffer with a fIxed scale of voxels to pixels (shearing of the volume data 

set). The volume is then rendered into this buffer using the far more favorable memory 
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alignment, ftxed scaling and blending factors. Once all slices of the volume have been 

rendered, the buffer is then warped into the desired orientation and scale in the displayed 

image (warping the image). 

Shear warp rendering is capable of generating images of reasonably sized data volumes 

at interactive frame rates, but at the cost of less accurate sampling and potentially worse 

image quality compared to ray casting. To further speed up the rendering, several 

acceleration techniques have been developed, such as, parallel rendering approaches 

(Lacroute 1996; Jiang and Singh 1997; Schulze and Lang 2002), and optimized sparse 

data representations (Csebfalvi 1999). 

2.2.4.3.3 Domain-order methods 

Traditionally, displayed images for volume datasets are rendered in the spatial domain. 

Volumetric datasets can also be transformed into an alternative domain and rendered 

from that domain. This kind of approach belongs to domain-order volume rendering, 

which generally includes frequency domain, compression domain, and wavelet domain 

volume rendering. 

Frequency domain volume rendering 

Frequency domain Volume Rendering (FVR) was first proposed by Levoy and 

Malzbender (Levoy 1992; Malzbender 1993). The motivation for FVR is that the Fourier 

Projection-Slice Theorem allows 2D projections of 3D data sets to be generated using 

only a 2D slice of the data in the frequency domain Although the calculation of the 3D 

Fourier transform is very time-demanding, it has to be performed only once in a 

preprocessing step. Afterwards, an arbitrary projection of the volume can be generated 

by a relatively cheap 2D inverse Fourier transformation of a single slice. This inverse 

transformation can be rapidly executed even on low-end hardware. In the final image, 
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each pixel contains the density integral along the corresponding viewing ray, thus FVR 

can be considered as an X-ray simulation. 

FVR reduces the rendering complexity from O(N 3
), which ordinary volume rendering 

methods usually have, to O(N2 log N) for a volume of size N 3 • The main drawback of 

this approach is the lack of depth information, since for the calculation of density 

integrals, a distance-dependent weighting function or an opacity manipulation cannot be 

used. An algorithm had been presented to replace much of the missing depth and shape 

indications by performing shading calculations in the frequency domain during slice 

extraction (Totsuka and Levoy 1993), but the images generated by FVR are still not 

comparable with those generated by spatial domain based methods. 

Compression domain volume rendering 

Considering the large amount of volume data, compression methods are usually applied 

to improve the efficiency. There are four possible approaches to integrate visualisation 

and compression: decompression before rendering, on-the-fly rendering during 

decompression, on-the-fly decompression during rendering, and rendering in the 

compression domain (Yang 2000). Compression domain rendering approaches perform 

volume rendering from compressed data without decompressing the entire data set, and 

therefore reduces the storage, computation, and transmission overhead of otherwise large 

vo lume data. 

One of the first compression domain volume rendering was presented by Ning and 

Hesselink (Ning and Hesselink 1992; Ning and Hesselink 1993). Later progress in this 

field include dividing volume data into subcubes and replacing discrete cosine transform 

used in the JPEG still image compression algorithm with discrete Fourier transform 

(Avila, He et al. 1994; Chiueh, Yang et al. 1997). The subcube-based scheme not only 

achieves higher compression efficiency by exploiting local coherency, but also improves 
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the quality of resultant rendered images because it approximates the occlusion effect on 

a subcube by subcube basis. 

Wavelet domain volume rendering 

A wavelet is a fast-decaying function with zero averaging. The attractive features of 

wavelets are that they have local property in both spatial and frequency domains, and 

can be used to fully represent volumes with a small number of wavelet coefficients. 

The flISt application of wavelet to volume rendering was presented by Muraki (Muraki 

1993). In Muraki's algorithm, the volume dataset is transformed into a wavelet 

expression by using a decreasing 3D orthogonal wavelet. The main shortcoming of this 

approach is that the rendering speed of the wavelet expression data is slow. Westermann 

(Westermann 1994) introduced a method for the approximation 0 f vo lume rendering 

integrals by taking advantage of the sparse representation of a signal projected into a 

wavelet basis, and suggested that the choice of "right" basis function would give the best 

trade-off between rendering time and compression rate. Gross and Lippert (Gross, 

Lippert et al. 1995; Gross, Lippert et al. 1997) described approximate solutions of the 

low-albedo volume rendering equation in wavelet spaces and introduced two methods 

for wavelet domain rendering of volume data sets. Horbelt (Horbelt, Unser et al. 1999) 

further extended Gross's volume wavelet rendering methods by computing splats via an 

orthogonal projection operator. Yu and Chang (Yu, Chang et al. 2004; Yu, Chang et al. 

2005) presented a fast rendering algorithm for foveated volumes by processing it directly 

in the wavelet domain. 

As a summary, the hierarchy of approaches mentioned in this section is presented in 

figure 2.1. In the next section, a comparison between the two 3D rendering methods: 

surface rendering and volume rendering, is conducted. 
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Figure 2.1 Hierarchy scheme of visualisation methods for 3D medical image data 

2.2.4.4 Comparison of Surface Rendering and Volume Rendering 

In the early stages, surface rendering was commonly used for three-dimensional medical 

dataset visualisation, but recent advances in hardware and software technology have 

made it possible to use volume rendering. Both surface rendering and volume rendering 

have some advantages and disadvantages. 

The advantage of surface rendering lies in the relatively small amount of surface data. 

After the determination of the surface representation, a fast rendering speed and 

interactive manipulation is available with surface rendering. Standard computer graphics 

techniques can be applied, including shading models. In addition to the advantages, the 

following disadvantages are inherent to the surface rendering algorithm. First, the 

determination of the surface representation is time-consuming and has to be performed 

each time a threshold is changed. Second, since only a surface representation is used, 
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much of the information contained within the data is lost during the rendering process. 

Third, in the case where the anatomical structures of interest cannot be extracted with a 

unique threshold, surface rendering may be difficult to use. 

Volume Rendering retains all of the volume data during rendering, and all acquired 

voxels may contribute to each rendered image. This provides the capability to section the 

rendered image and visualise the actual image data in the volume image, and to make 

voxel value-based measurements for the rendered image. Also, transparency can be 

assigned to VIew internal structures or structures in the background, and three­

dimensional unambiguous images are obtained with good depth indications. Some 

disadvantages of volume rendering are; First, volume rendering is computationally 

expensive, which could result in less interactive rendering. Even on high-end 

workstations volume rendering is still relatively slow. Second, volume rendering blends 

the data over a range suitably weighted by a transfer function. However, in its original 

form, it does not take into account the spatial connectivity between various structures in 

the data, thus making it sometimes difficult to select a particular structure of interest. 

Third, determination of the optimal settings is difficult because of the large number of 

parameters that can be set, possibly leading to over visualisation. 

A comparison between the main features of surface rendering and volume rendering is 

given in table 2.1. In clinical practice, it is the application that determines which 

rendering method should be applied. For example, Soyer and Heath (Soyer, Heath et al. 

1996) indicated that maximum intensity projection appeared to be an satisfactory 

technique to perform 3D imaging of intrahepatic venous structures with helical CT data 

when slices 8 nun thick overlapping every 4 nun are used. Hong and Freeny (Hong and 

Freeny 1999) proposed that 3D volume rendering is superior to MIP and shaded-surface 

displays in the depiction of pancreaticoduodenal arcades and dorsal pancreatic arteries. 

Van Ooijen and van Geuns (van Ooijen, van Geuns et al. 2003) demonstrated that 

volume rendering produces images of higher quality than those produced with surface 
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rendering for the visualisation of the coronary artery tree. At the same time, Kuszyk and 

Heath (Kuszyk, Heath et al. 1996) illustrated both volume rendering and surface 

rendering had some limitations for 3D visualisation of skeletal pathology. Fishman and 

Ney (Fishman, Ney et al. 2006) emphasized that it is important that radiologists 

understand when and how each technique should be used. 

Table 2.1: Comparison between surface rendering and volume rendering 

Features Surface Volume 
rendering rendering 

Using surface to present volume data Yes No 

Retaining the whole volume data during rendering No Yes 

Rendering speed Fast Slow 

Supporting standard computer graphics techniques Yes No 

Transparency can be assigned to view internal structure No Yes 

Rendered images can be sectioned to present the actual 
No Yes 

volume data inside 

Parameters need to be settled during rendering Simple Complex 

Rendering methods are continuously progressing. One opinion is that, as the speed and 

cost of image-processing hardware improve, the relatively rapid processing of surface 

rendering will become less of an advantage. Hardware-assisted real-time volume 

rendering and improved segmentation techniques promise to make volume rendering a 

more practical and widely used tool (Shahidi, Lorensen et al. 1996). Meanwhile, many 

techniques have been investigated to combine the strengths of surface rendering and 

vo lume rendering and reduce their weaknesses. Shell rendering technique is a notable 

one among them (Udupa and Odhner 1993). Nevertheless, it seems that one particular 

rendering approach will not replace all others. The future will more likely see an 

integration of many approaches into one manageable toolbox (Tietjen, Isenberg et al. 

2005). Volume rendering will be an important component in the toolbox, but not the 

only one. 
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2.2.5 Multi-dimensional and Multi-variate Visualisation 

A multi-dimensional and multi-variate (MDMV) image dataset can be presented as: 

(2.5) 

where s l' S 2" . " S m are variates in the dataset, and m ~ 2. In the medical imaging 

domain, the method usually collects one type of physical property associated with 

biological structures or functions. Consequently, only one variate included in an imaging 

dataset. Because different imaging approaches provide complementary information, it is 

common to fuse features from different imaging modalities. Such fused data include 

more than one variate. 

xl' x 2 ," " X n are independent variables, which compose the dimensions of the 

dataset, and n ~ 4. The four commonest dimensions in a medical dataset are three 

orthogonal coordinates in Cartesian space and time. Frequency is the other constantly 

used dimension. 

MDMV visualisation techniques can be categorized in different ways. Possible criteria 

for such a categorization include the type and/or dimensionality of the data, the 

dimensionality of the visualisation technique, and the goal of the visualisation. In this 

section, general approaches for MDMV visualisation are introduced, and then 

visualisation methods for two typical MDMV datasets in medical image field, spatial­

temporal datasets and multi-variate datasets, are described. 

2.2.5.1 General Approaches for MDMV Visualisation 

Various approaches have been developed to visualise MDMV datasets. Some of these 

techniques attempt to show all dimensions and all variates visually as one display, some 

try to reduce the dimensionality of the dataset before visualisation, whereas others allow 

the user to select subsets for display. 
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Approaches show all dimensions and all variates as one 

display 

This section highlights approaches showing all dimensions and all variates as one 

display. The advantage of this kind of visualisation is an overview of the dataset can be 

presented directly. However, if the data size is too big, for the limited size of computer 

of monitor, results obtained by these methods will be unreadable. Typical approaches 

belonging to this type include Scatterplot matrix, Hyperbox, Parallel Coordinates, and 

Grand Tour Methods. 

Scatterplot matrix 

The scatterplot matrix has been an extensively used MDMV visualisation technique in 

the statistics community. Assuming an n -dimensional dataset, a scatterplot matrix is an 

arrangement of (n 2 
- n) /2 pairs of two dimensional plots in which rows and columns of 

the matrix share common scales. Each plot in a scatterplot matrix is identified by its row 

and column numbers in the matrix. Dependencies between variables can be obtained by 

scanning a row (or column) and visualising how one variable is plotted against all others. 

Scatterplot matrices provide simple representations of discrete data. An advantage is that 

the different dimensions are treated identically; but a decision is expected from the user 

how the data must be structured for presentation purposes. Despite its popularity in 

statistics MDMV visualisation applications, the original inventor of this method is 

unknown (Cleveland 1993). 

Hyperbox 

A hyperbox is a 2-dimensional depiction of an n -dimensional box (Alpern and Carter 

1991). An n-dimensional hyperbox is made of 112 lines and n( n - 1) /2 faces. For each 
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line in a hyperbox, there are n - 1 other lines with the same length and orientation. The 

length and slope of the line are arbitrary, and both of them can be mapped to the data 

variables for visualisation. Lines with the same length and orientation form a direction 

set, each variable is mapped to one direction. Each face of the hyperbox can be used to 

plot data of two variables such as a scatterplot or a line plot. To support data analysis, 

variables can be selected by cutting the hyperbox along each direction set. 

Hyperbox is a more powerful tool compared to the scatterplot matrix in the sense that it 

is possible to map variables to both the size and shape of each facet. It also gives 

scientists the option to emphasize some of the more important variables. The design of 

the hyperbox requires practice to understand it. Furthermore, because of the unusual 

aspect ratio (which is defmed as the height of data rectangle divided by the width) 

presented on some facet, some plots may not be able to convey the right information. 

Parallel Coordinates 

In a parallel coordinates system (Inselberg and Dimsdale 1987; Inselberg, Reif et al. 

1987; Inselberg and Dimsdale 1990), the axes of a multi-dimensional space are defmed 

as parallel vertical lines separated by a distance d . A point in Cartesian coordinates 

corresponds to a polyline in parallel coordinates. 

It is claimed that, under certain conditions, parallel coordinates can allow visualisation 

of three dimensional time series data better than Cartesian coordinates (Inselberg and 

Dimsdale 1990). Parallel coordinates can also be used to study correlations among 

variables in MDMV data analysis. One of more promising applications of parallel 

coordinates in MDMV visualisation is that, by noting the locations of the intersection 

points, an approximation of the relationships between each pair of variables can be 

revealed. The problem with this technique is the limited space available for each parallel 

axis. The display can rapidly darken with even a modest amount of data. 
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2.2.5.1.2 Dimensionality reduction 

In the visualisation of MDMV dataset, dimension reduction may be necessary to 

produce a k -dimensional data set from a given n -dimensional one, where usually n is 

very large and k should be much smaller than n. Some commonly used dimensionality 

reduction techniques include Principal Component Analysis (PCA), Multidimensional 

Scaling (MDS), Self-Organizing Maps (SOM), BLOB and H-BLOB algorithm, and 

HyperCell. 

Principal Component Analysis 

Principal Component Analysis (PCA) is a linear transformation that transforms the data 

to a new coordinate system such that the greatest variance by any projection of the data 

lies on the first coordinate (called the first principal component), the second greatest 

variance on the second coordinate, and so on. (Anderson and Anderson 1984; Smith 

2002) 

PCA can be used for dimensionality reduction in a dataset while retaining those 

characteristics of the dataset that contribute most to its variance, by keeping lower-order 

principal components and ignoring higher-order ones. Such low-order components often 

contain the "most important" aspects of the data. But this is not necessarily the case, 

depending on the application. PCA is a popular technique in pattern recognition and 

image compression. 

Multidimensional Scaling 

Multidimensional Scaling (MDS) (Kruskal and Wish 1978; Bentley and Ward 1996; 

Wong and Bergeron 1997) is a non-linear method for projecting n-Dimensional data to a 

reduced number of dimensions. An MDS algorithm starts with a matrix of item-item 
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similarities, and then assigns a location of each item in a low-dimensional space, suitable 

for graphing or 3D visualisation. 

N-D data points can, for example, be represented as 2-D display points. The MDS 

algorithm attempts to make the 2-D display points accurately reflect the relationships 

that exist between the corresponding n-D points by iteratively evaluating the level of 

Stress in the configuration (high stress means the 2-D relationships are poorly correlated 

with the n-D relationships) and moving the 2-D points in a direction of reduced stress. 

Self-Organizing Map 

Self-Organizing Map (SOM) (Kohonen 1990; Kohonen, Oja et al. 1996) was first 

described by the Finnish Professor Teuvo Kohonen and is thus sometimes referred to as 

a Kohonen map. SOM is an effective visualisation approach of high-dimensional data. It 

converts complex, nonlinear statistical relationships between high-dimensional data 

items into simple geometric relationships on a low-dimensional (typically two­

dimensional) display. SOM compresses information while preserving the most important 

topological and metric relationships of the primary data items on the display, 

In the basic SOM algorithm, an N-dimensional reference vector is associated with each 

cell in the two-dimensional lattice or "map". After random initialization, the reference 

vectors are updated during a training phase by making repeated passes over the input 

data set. As each input record is encountered, the reference vector with the smallest 

Euclidean distance (i.e. the reference vector most similar to current input vector) IS 

allowed to adjust or "learn" such that it more closely represents the input vector. 

SOM and MDS are iterative refmement/optirnization processes that attempt to adjust 

weights or positions until a certain criteria is met (for example, the distances or 

similarities between points in 2-D is a good approximation of the N-D 
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distances/similarities). Variations in the starting conditions and distance or similarity 

measures can have significant impact on the results of these methods. 

The resulting display coordinates obtained through dimensionality reduction, unlike in 

the raw data-driven techniques, have no semantic meaning. Instead they can be viewed 

as supplemental dimensions to the original data set. peA assumes that the majority of 

the variation in a data set will be well embodied in the fIrst few principal components, 

which is not always the case. MDS and SOM, like all iterative optimization procedures, 

are not guaranteed to be optimal, and the results are generally not unique. 

BLOB and H-BLOB Algorithm 

BLOB and H-BLOB algorithms (Gross, Sprenger et al. 1997; Sprenger, Brunella et al. 

2000) cluster large data sets in Euclidian space, in which data objects can be represented 

as n-dimensional vectors. The vector representation enables one to calculate simplified 

representations of complex data sub-regions at interactive rates. The results of BLOB 

and H-BLOB algorithms can be visualised in 2D or 3D space. 

BLOB and H-BLOB algorithms use implicit surfaces for visualising data clusters. The 

authors of the algorithms pointed out that the majority of algorithms and systems 

treating cluster visualisation are limited to drawing a simple shape for each data object, 

with the actual clustering by the perceptual system of the user. The previous work on 

BLOB was an attempt to explicitly represent clusters by exhibiting them in an enclosing 

surface, but this and other previous work was restricted to visualising results of 

partitioning cluster algorithms, rather than hierarchical ones. H-BLOB discovers and 

visualises hierarchical clustering structures (cluster trees) in a two-staged approach. In 

the first one, called the analytical clustering step, an agglomerative hierarchical 

algorithm computes a cluster-tree by partitioning data objects into a nested sequence of 

subsets. The second stage involves the computation of a single enclosing shape for each 

cluster in combination with the visualisation process. The enclosing shape for the cluster 
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is a BLOB implicit surface that approximates the outline of the included data objects as 

closely as possible. A separate surrounding surface is computed for each cluster at each 

hierarchy level. 

HyperCell 

HyperCell (Santos and Brodlie 2002) is a dimension reduction method for the 

visualisation of multidimensional scalar functions. The basic concept is to represent the 

function by means of dynamic orthogonal low-dimensional (1 D, 2D, or 3D) subspaces, 

called Cells. 

Initially the user defmes an N-dimensional region of interest, in which the data can be 

visualised. Then the user interactively creates cells by selecting up to three dimensions 

from the function domain. A cell can be visualised using a standard visualisation 

algorithm such as isosurface or volume rendering. To comprehend the function as a 

whole, several individual dynamic cells need to be investigated to build up a mental 

image of it. 

The author argued that the visualisation of the multidimensional function through 

several three-dimensional dynamic subspaces reduced the overall complexity of the 

problem, since the human mind is not trained to create a mental image of complex 

functions defined in N -space (N ~ 4). 

2.2.5.1.3 Approaches show subset of a dataset 

Approaches to visualising MDMV datasets by showing subsets of the dataset are usually 

achieved with two methods: one is to use multiple views of the data, each 

communicating a subset of the dimensions, e.g. HyperSlice; the other is to embed or 
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combine data dimensions to form composite spatial dimensions, which include 

approaches like Hierarchical Axis, Dimension Stacking, and Worlds within Worlds. 

HyperSlice 

HyperSlice is a method for the visualisation of scalar functions of many variables (van 

Wijk and van Liere 1993). The central concept of hyperSlice is the representation of a 

multi-dimensional function as a matrix of orthogonal two-dimensional slices. 

HyperSlice defines a focal point of interest C::: (cp c2 ,···,cJ and a set of scalar 

widths Wi' where i ::: 1, 2,···, n. Only data within the range R ::: [c; - Wi /2, c
i 

+ Wi /2] 

are displayed in the panel matrix. The rest of the data only appears if the user steers the 

focal point near it. Like the coordinate system used in the scatterplot matrix, a 

hyperSlice panel is identified by a horizontal and a vertical coordinate. For an off­

diagonal panel i, j such that i 7:- j, the color or grey shade shows the value of the scalar 

function that results from fixing the values of all variables except i and j to the values 

of the focal point, while varying i and j over their ranges in R. The diagonal panels 

show a graph of the scalar function versus one variable which changes over the range 

inR. 

The most important improvement of hyperSlice over the traditional scatterplot matrix is 

the concept of interactively navigating in the data around a user defmed focal point. The 

user can change the focal point by interacting with any of the panels. 

Hierarchical Axis 

The conventional way to describe a three dimensional Euclidean space is by using three 

orthogonal axes. In hierarchical axis (Mihalisin, Gawlinski et al. 1990; Mihalisin, Timlin 

et al. 1991 a; Mihalisin, Timlin et al. 1991 b), axes are laid out horizontally in a 
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hierarchical fashion. Different metrics are used for each independent variable. 

Hierarchical axis technique maps 'n' independent variable dimensions on to a single 

hierarchical horizontal axis and plots a single dependent variable on the vertical axis. 

The hierarchical axis technique can plot as many as twenty variables in one screen. For 

data with a larger number of records, i.e., larger than the number of columns of pixels on 

the display screen, a technique called subspace zooming is introduced. A display of 

multivariate data involves a series of panels, where the number of panels is equal to the 

number of variates. Each panel displays data from two hierarchical axes, ordered from 

the' slowest to the fastest. This can be considered as a tree structure with the panel 

showing the slowest axis as the root. The other panels are nodes. A subspace is a sub­

tree of the root. A series of panels is a path of the tree. Only the root panel is static, and 

only one path is shown at a time. The panels of the other paths are hidden until the user 

interactively clicks the specific data of any non-terminal panel to select another subspace 

(sub-tree). 

The hierarchical axis approach is based on visual statistical analysis of either discrete 

variables or continuous variables that have been sampled on, or binned to, a regular n­

dimensional lattice. It was been shown that this approach worked for such data 

visualisation tasks as the location of maxima, minima, saddle points, and other features, 

as well as for visually fitting multivariate data and the visual determination of dominant 

and weak or irrelevant variables. 

Dimension Stacking 

Dimension Stacking (LeBlanc, Ward et al. 1990) is a variant of the hierarchical axis 

technique where each element of the fastest axis is a one dimensional histogram. In 

dimension stacking, each element is a two dimensional xy-plot. If the data has an odd 

number of variables, a dummy variate is added. The values of a dependent variable can 

be plotted as color/grey intensity in each of the squares. Otherwise, each of the two 
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dimensional plots can be a simple scatterplot. It is possible to interactively adjust what 

ranges of values each dimension takes and the form in which the dimensions are 

displayed. A major advantage of dimension stacking over hierarchical axis is that no 

extra functions or rules, such as 'sum', is needed to plot the data. 

Worlds within Worlds 

The Worlds within Worlds technique (Feiner and Beshers 1990a; Feiner and Beshers 

1990b) visualises multi-dimensional data by nesting dimensions together with a 

maximum of three variables being shown at each level, to generate an interactive 

hierarchy of displays. The slowest three axes are represented only by a display of three 

orthogonal axes. A three dimensional power glove is used interactively to define a 

position in the space defmed by these three axes. A new set of these axes appears at this 

point. The glove can then be used to pick a point in this space. This continues until all 

variables are defined. At the lowest level the final variable can be displayed as a surface 

in the innermost world. 

To use this technique properly, users have to know what they are looking for as most of 

the information is not visible in the initial display. This interactive process tends to be 

difficult and tedious because there are too many possible combinations of variate 

mappmgs. 

Table 2.2 summarises the advantageous and limitations of each method mentioned in 

this section. In the next section, approaches for the visualisation of four-dimensional 

spatial-temporal datasets, which is the commonest multi-dimensional medical image 

dataset, are described. 
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Table 2.2: Summary of visualisation methods for MDMV datasets 

Method Advantageo us/F eatures Limitations 

Show all dimensions and An overview of the dataset is Displayed results may be 
all variates as one display presented directly. unreadable if the data size is 

big. 

Scatterplot matrix 

Hyperbox 

Parallel coordinate 

Dimensionality reduction 

Principle component 
analysis 

Multidimensional 
scaling 

Self-organizing map 

BLOB and H-BLOB 

Hypercell 

Different dimensions are Not suitable for continuous 
treated identically. 

Variables can be mapped to 
both the size and shape of each 
facet of the hyperbox; 

Some variables can be 
emphasized and others can be de­
emphasizzed. 

Able to study correlations 
among variables in MDMV data 
analysis. 

Visualisation methods for 
three- (or less) dimensional 
dataset can be applied to view 
MDMV dataset. 

Linear transformation; 
Able to retain characteristics 

of a dataset that contribute most 
to its variance. 

Iterative optimization 

Iterative optimization; 
Preserving the most important 

topological and metric 
relationships of the primary data 
items in the display. 

data 

Difficult to understand; 
The unusual aspect ration 

may not be able to convey the 
right information. 

Limited space available for 
each parallel axis. 

Resulted display coordinates 
generally have no semantic 
meanmg. 

Can not be used in the case 
that the original coordinates of 
a dataset is orthogonal to each 
other. 

Non-linear transformation; 
Sensiti ve to the start 

condition and distance I 
similarity measure. 

Non-linear transformation; 
Sensitive to the start 

condition and distance I 
similarity measure. 

Cluster large datasets 
Euclidian space 

Limited to drawing a simple 
m shape for each data object, and 

the actual clustering being done 
by the user's perceptual system. 

To comprehend the function 
Suitable for the visualisation as a whole, one needs to 

of multi-dimensional scalar investigate several individual 
functions. dynamic cells to build up a 

mental image of it. 
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Using multi-view of data, each 
communicating a subset of the 

Show subset of a dataset dataset; Absence of an overview of 
Embedding or combining data data 

dimensions to form composite 
spatial dimensions. 

Hyperslice 
Interactively navigating in the 

data around a user defined focal 
point. 

N independent variables are 
Hierarchical axis mapped to a single hierarchical Different matrix are used for 

horizontal axis. each independent variable. 

No extra function or rule is 
needed to plot the data; 

Dimension stacking Interacti vely adjust what 
ranges of value each dimension 
takes and the form in which the 
dimensions are displayed. 

World within world Interactive hierarchy display 
Interactive process tends to 

be difficult and tedious. 

2.2.5.2 Visualisation of Spatial-temporal Datasets 

Studying dynamic aspects of physiological change in the human body is critical for the 

advances of medical research. State-of-art medical imaging instruments allow accurate 

measurement of physiological processes in spatial and temporal domains, which could 

provide scientists with a new view of how conditions develop and change over time and 

lead to improved diagnosis or treatment. However, an increasingly challenging problem 

scientists facing is how to effectively explore and understand the resulting spatial­

temporal data, or time-varying volume data, which is large in space and time. Currently, 

radiologists interested in temporal information from some imaging modalities must 

manually compare 2D images acquired at different times on a slice-by-slice basis. Such 

comparisons are difficult and time consuming; thus, not frequently done, particularly 

when the volumes are not aligned or the quantity of images is very large. Furthermore, 

2D slices provide little information about 3D structure or rates of change. 
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Existing research on information animation has regarded animation as providing one 

more dimension; enabling 4D graphs by adding motions to 3D graphs. Some researchers 

even argue that the effect of animation is more than the fourth dimension: motions 

produce certain cognitive effects and appropriate use of motions empowers users in 

exploratory data analysis (Nakakoji, Takashima et al. 2001). Nevertheless, animation is 

the commonest approach for the visualisation of spatial-temporal data. 

The task of rendering 4D spatial-temporal data is by nature very time consummg, 

because multiple volumes must be acquired, processed and rendered at interactive rates. 

How to improve the rendering speed and reduce a dataset's storage requirement without 

removing fine features in the data is central to animation visualisation research for 

spatial-temporal data. Considering the substantial temporal coherence characteristic of 

time-varying volume data, which means, a great percentage of voxel values do not 

change, or change very slowly over time, different algorithms are developed for fast 

rendering: Dobashi (Dobashi, Cingoski et al. 1998) proposed a rendering method by 

using orthonormal wavelets to encode time coherency; Ma (Ma, Smith et al. 1998) 

described a method using quantisation of scalar values to reduce the space required to 

store the volume, octrees to encode spatial coherence and differencing to exploit time 

coherence; Shen (Shen and Johnson 1994) used differencing in order to detect changes 

between successive volumes, that is to say, the first volume in the series is fully rendered 

by ray-casting and subsequently the image is updated by casting rays only from pixels 

that corresponding to changed areas in the volume; Silver (D.Silver and Wang 1998) 

identifies features of interest and tracks them in time; Anagnostou (Anagnostou, 

Atherton et al. 2000) presented a fast rendering approach based on the Shear-Warp 

factorisation, where reduction in storage space is achieved by detecting the changed 

areas within each volume and compressing them. Time-coherence is exploited by 

detecting and rendering the changes in every volume, and spatial-coherence is exploited 

by utilising a data structure that allows easy volume updates and stores information 

about the empty space within each volume. 
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Beside traditional animation displays, some researchers combine animation with 

techniques generally used for flow visualisation to present spatial-temporal medical 

image datasets (Tory, Rober et al. 2001). This method is more suitable where 

expectations of how activity should flow are clear, a flow simulation model can be used 

to calculate a flow vector; otherwise, it is not obvious that the derived flow vector will 

provide useful information. 

2.2.5.3 Visualisation of Multi-variate Dataset 

From functional view, a dataset with m variates can be treated in two ways: as a single 

function associating the independent variables with different combinations of values of 

these m variates, shown as: 

(2.6) 

or as m functions associating the independent variables with individual values of these 

m variates, which can be presented as: 

Sl = !(xp x2 ,",xJ 
S2 = !(xp x2 ,",xJ 

(2.7) 

Consequently, all approaches suitable for the visualisation of uni-variate datasets can be 

applied to multi-variate datasets by using them simultaneously to each variate and 

presented as individual images. Turning to medical domains, as mentioned at the 

beginning of section 2.2.5, multi-variate medical image data is usual obtained by fusing 

data from different modalities; naturally, it is feasible to visualise each variate 

corresponding to different physiological properties in different displays concurrently, 

while the individual presentation of variates weaken their correspondence established by 

fusing. 
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Apart from the approaches to visualise each variate simultaneously, Glyph is another 

powerful and widely used technique for the visualisation of multi-variate datasets. 

Glyphs (also referred to as icons) are graphical entities that convey one or more data 

values via attributes such as shape, size, color, and position. 

A glyph consists of a graphical entity with p components, each of which may have r 

geometric attributes and s appearance attributes. Typical geometric attributes include 

shape, size, orientation, position, and direction/magnitude of motion, and appearance 

attributes contain color, texture, and transparency. Attributes can be discrete or 

continuous, scalar or vector, and mayor may not have a distance metric, ordering 

relation, or absolute zero. The process of creating a glyph thus becomes mapping one or 

more data variables for a data entry to one or more geometric and/or appearance 

attributes of one or more components of a graphical entity. A variety of glyphs have 

been proposed and used in visualisation, such as, profiles, starts, stick figure icons, trees, 

faces, arrows, polygons, etc. 

Once a glyph has been designed and generated from a data entry, it must be placed at a 

location in display space (2D or 3D). The position attribute can be very effective in 

communicating data attributes or improving the detection of similarities, differences, 

clustering, outliers, or relations in the data. Ward (Ward 2002) presented an excellent 

survey on glyph placement strategies, and also concluded some general guidelines for 

selecting a placement strategy. 

As pointed out by Ward (Ward 2002), although it is a popular method for conveying 

information visually, glyphs are not without limitations in the communication of 

multivariate data. Most, if not all, mappings introduce biases in the process of 

interpreting relationships between dimensions. There are also limitations based on the 

media being used to communicate the information. Screen space and resolution are 

limited, and displaying too many glyphs at once can lead to either overlaps (which can 

- 69-



Chapter 2: Literature Review ofYisualisation 

hinder accurate discernment of individual dimensions) or very small glyphs (though, 

dense packing can form texture patterns for global analysis). Finally, a glyph is not a 

global technique; glyphs are spread discretely on images, so the images appear cluttered. 

Up to now, this chapter had reviewed applications of visualisation in different research 

areas and approaches for medical image visualisation. With the development of science, 

the application of visualisation had been extended from data illustration and description 

to become an important tool in data exploration and analysis. This new type of 

visualisation is named exploratory visualisation, which will be reviewed in the next 

section. 

2.3 Exploratory Visualisation 

This section IS composed of two mam parts. First, an overview of exploratory 

visualisation is presented from two aspects: exploratory visualisation with related 

researches, and design of exploratory visualisation. Secondly, a particular problem in 

exploratory visualisation, task typology, which is a focus of the research work presented 

in this thesis, is described. 

2.3.1 Overview of Exploratory Visualisation 

Scientists have studied multivariable visualisation since 1782 when Crome used point 

symbols to show the geographical distribution in Europe of 56 commodities (Collins 

1993). As the science progress in various aspects, more and more data of large 

proportions, with many variates and multiple dimensions occured. Physicians, physicists, 

mathematicians, and other scientists examined, explored, and analyzed data to gain 

insight into problems. Data exploration and analysis have become crucial steps in 

scientific research. Algorithmic analysis can be used to quickly and accurately process 
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data to identify patterns and outliers, and it is commonly dependent on having a 

computational model of the phenomena of interest. The problem is that the observer may 

not know what is exactly required, or may not be able to set fixed parameters and 

thresholds to effectively guide the algorithmic analysis. Alternatively, using 

visualisation techniques to explore and understand complex, high-dimensional data is an 

efficient way to combine human intelligence with the immense brute force computation 

power available today. Consequently, visualisation has been treated as not only a method 

for illustration and description, but also a part of the entire data exploration and analysis 

process (Springmeyer, Blattner et al. 1992; Weibel and Buttenfield 1992). 

Exploratory visualisation enables the user to test scenarios and investigate possibilities. 

The user may change various parameter values of a visualisation system that in turn will 

alter the appearance of the result. Furthermore, the user may generate additional 

windows that contain the visual result of the new parameters so that different ideas can 

be compared side-by-side (Roberts 2004A). 

2.3.1.1 Exploratory Visualisation and Related Researches 

Although with different emphasis, some research domains are related to exploratory 

visualisation, which include Exploratory Data Analysis (EDA) and Data Mining (DM). 

Exploratory Data Analysis (EDA) was defmed by John Tukey (Tukey 1977). Although 

EDA emerged from statistics, it is not a set of specific techniques, but more a philosophy 

of how data analysis should be carried out. As Tukey saw it, EDA was a return to the 

original goals of statistics, i.e. detecting and describing patterns, trends, and relationships 

in data. 

The concept of EDA is strongly associated with the use of graphical representation of 

data. Most EDA techniques are graphical in nature with a few quantitative techniques 
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(Andrienko and Andrienko 2006). The reason for the heavy reliance on graphics is that 

by its nature, the main role of EDA is to explore, and graphics gives the analysts 

opportunity to do so. Moreover, Tukey's exploratory data analysis signified a new era of 

scientific data visualisation (Wong and Bergeron 1997). It shows how to visually 

decode/explore information from the data. 

Data Mining (DM), also known as Knowledge Discovery in Databases (KDD), has been 

defmed as "The nontrivial extraction of implicit, previously unknown, and potentially 

useful information from data" (Frawley, Piatetsky-Shapiro et al. 1992). It is a recent 

topic in computer science but applies many older computational techniques from 

machine learning and statistics to visualisation techniques. Unlike data analysis, data 

mining is not based or focused on an existing model, which is to be tested or whose 

parameters are to be optimized. 

The application of visualisation techniques in the context of data mining falls into two 

categories: one uses exploratory visualisation techniques to support a knowledge 

extraction goal or a specific mining task; the other utilises visualisation to display the 

results of a mining algorithm, such as a clustering process or a classifier, and thus 

enhances the user comprehension of the results (Ferreira de Oliveira and Levkowitz 

2003). 

2.3.1.2 Design of Exploratory Visualisation 

The objective of visualisation design is to match data for specific applications to the 

most appropriate visualisation techniques. There are many visual design guidelines and a 

basic principle could be Shneiderman's visual information seeking Mantra: "overview 

first, zoom and filter, then details-on-demand" (Shneiderman 1996). While this is only a 

starting point in trying to design an exploratory visualisation system, efforts have been 
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made to study exploratory visualisation design. In the following, some typical work in 

this field is mentioned. 

Bertin (Bertin 1983) was among the first to take an extensive and systematic approach to 

visualziation. Through a detailed semiotic analysis, Bertin developed a taxonomy of 

graphic displays and a set of principles for graphics design. As a pioneer, his work has 

provoded many great insights and is very useful in practice. Mackinlay (Mackin lay 1986) 

described an automated graphical presentation design method for relational information 

based on similar ideas as Bertin's, in which the system chooses the "optimal" 

visualisation techniques. Wilkinson (Wilkinson 1999) described a system with seven 

orthogonal components and described a set of grammatical rules for defining graphics. 

By orthogonal, Wilkinson meant there were seven graphical component sets whose 

elements were aspects of the general system and that every combination of aspects in the 

product of all these sets was meaningful. Wikinson's rules are proposed particularly for 

the development and application of statistical graphics. 

In order to address usability issues in more detail, some visualisation design techiniques 

include user objectives (or tasks) exploration. The frrst effort to analyse user objectives 

is made by Bertin, who proposed a typology about possible analysis tasks based on two 

notions: "question types" and "reading levels"(Bertin 1983). Wehrend and Lewis 

(Wehrend and Lewis 1990) proposed a scheme for classifying visualisation problems 

and developed a "catalog" for users to look up and share visualisation techniques for 

specified data types and tasks. The methodology presented by Roberston (Robertson 

1991) includes the context of use and allows users to choose the best visualisation of the 

data with objective, directed display design methods, or to match representation to the 

intrinsic characteristics of data and goals for its interpretation. Zhang (Zhang 1996) 

developed a general theoretical framework for RIDs (Relational Information Displays), 

which included four components: dimensional representations, a representational 

taxonomy, a task taxonomy, and a mapping principle for the relation between 
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representations and tasks. Espinosa and his colleagues (Espinosa, Hendrickson et al. 

1999) stated that the study of a user's tasks should yield usable information for 

visualisation design and developed a methodology for designers to consider user needs 

when developing visualisation systems. 

2.3.2 Task Typology for Exploratory Visualisation 

As mentioned by Qian et al (Qian, Wachowicz et al. 1997), a generalized view of the 

process of data analysis includes three steps. Initially an analyst has an information need. 

This need can be described by stating what is known (or given) and what is to be found. 

In order to fmd the needed information, the analyst plans a sequence of operations to be 

applied to the data. Finally, she/he tries to perform these operations using the available 

tools. At the same time, the preceding review about exploratory visualisation design 

demonstrated that many researchers take task analysis as an essential part to be 

considered in design process. Various approaches are available to explore possible tasks 

in data analysis and visualisation, and different task taxonomies have been suggested. 

Generally speaking, a task typology cannot be right or wrong: any classification is right 

to the extent of its serving the purpose for which it was devised. In the following, some 

main work in the task typology domain is reviewed. 

2.3.2.1 Bertin's Task Typology and Improvements Based on This 

Typology 

As a pioneer, Bertin (Bertin 1983) proposed a typology about possible analysis tasks 

based on two notions: "question types" and "reading levels": 

"_ there are as many Types of Questions as components in the information: 

_ for each type there are Three Level of Reading: the elementary level, the 

intermediate level, and the overall level: 
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- any question can be defined by its types and level. " 

Bertin also pointed out that "their analysis permits knowing in advance the totality of the 

questions which any given information can generate" (Bertin 1983). The advantage of 

Bertin's task typology is that it directly relates tasks to components of data. Such a 

feature is very convenient for a tool or application developer: having a particular data set, 

the developer can easily anticipate the questions that may potentially arise and care 

about appropriate support for finding answers to them. Bertin's typology was introduced 

for arbitrary data, other researchers improved this typology and made it more suitable for 

different environment. 

Koussoulakou et al (Koussoulakou and Kraak 1992) pointed out that, for spatial­

temporal data, the concept of the three reading levels defmed by Bertin can be utilised 

for the temporal component in the same manner as it is done for the spatial component. 

By applying the three reading levels independently to both spatial and temporal 

dimensions, Koussoulakou classified nine kinds of questions about spatial-temporal data. 

Peuquet (Peuquet 1994) also specifically considers spatial-temporal data. In order to 

include a time-based representation, Peuquet expended the dual spatial representational 

framework into a Triad framework in which information is stored relating to Where (the 

location-based view), What (the object-based view), and When (the time-based view). 

Accordingly, the Triad framework permits the user to pose three basic kinds of questions: 

When+ Where-> What; When+ What-> Where; Where+ What-> When. 

Blok (Blok 2000) distinguished questions related to describe a variety of phenomena in 

the spatial-temporal environment into four main categories by two orthogonal 

dimensions: one dimension is used to describe the length of time senes, the other 

dimension divide exploratory tasks into "identification" and "comparison". Although 

Blok's framework does not aim to predict all the questions that may arise, it proposed a 

new concept to reflect the difference between identification and comparison, which was 
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not enclosed by Bertin's typology. Within the same question type and reading level an 

analyst may need to examine a single element (set) or to compare or relate two or more 

elements (sets). 

2.3.2.2 Task Typologies Other Than Bertin's Work 

Considering that Bertin's theory involve the static presentation of information, 

Shneiderman (Shneiderman 1996) proposed a Task by data Type Taxonomy (TTT) for 

dynamic display. In TTT, data are classified into seven types: one-, two-, three­

dimensional data, temporal and multi-dimensional data, and tree and network data. 

Furthermore, seven tasks are defmed: overview, zoom, filter, details-on-demand, relate, 

history, and extracts. 

Qian et al (Qian, Wachowicz et al. 1997) described a taxonomy of operations using a 

set-based information model that is application and data model independent. Such 

operations integrate both GIS functionality and visualisation tasks at the operational 

level. 

Zhou (Zhou and Feiner 1998) introduce a visual task taxonomy that interfaces high-level 

presentation intents with low-level visual techniques. In this approach, visual tasks 

describe presentation intents through their visual accomplishments, and suggest desired 

visual techniques through their visual implications. Each visual task is described by two 

parts: an act and a set of arguments to act on. 

2.3.2.3 Task Typology Research in Sankt-Augustin 

The research group lead by Andrienko in Sankt-Augustin, Germany, have designed and 

developed software tools and systems for visualisation for more than ten years. Their 
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work is mainly concentrated on spatial-temporal geographic data. Significant 

achievements have been made in that group. This section will focus on their progress in 

the development of task typology for exploratory visualisation. 

The first classification of analytical tasks developed by this group depends on which 

aspect of a spatial phenomenon varies with the time and what kind of view is required 

with respect to time. (Andrienko, Andrienko et al. 2000) claimed that exploratory 

analysis tasks can be classified according to two dimensions. One dimension reflects 

which temporal characteristic is in the focus of exploration: existence of spatial objects, 

location of spatial objects, shape and size of spatial objects, or thematic data associated 

with those objects. The other dimension concerns whether an analyst is interested to see 

the state of the data at some moment of time (snapshot), or how data changed at a 

moment' t2 ' as compared to some another moment' tl " or what happened during the 

interval [tl, t2] . 

Later, they combined their research result with Bertin's theory (and its developments) 

and proposed a cubic data exploratory task typology for spatial-temporal data 

(Andrienko, Andrienko et al. 2003). Recently the task model was further refmed and 

presented in the book "Exploratory analysis of spatial and temporal data"(Andrienko and 

Andrienko 2006). More details about this task typology will be introduced in Chapter 5 

of this thesis. 

In summary, this chapter reviewed the literature on visualisation. The research progress 

presented in this chapter and background depicted in chapter one constitute a basis for 

the research work conducted by the author of this thesis. The other chapters of this thesis 

will concentrate on the achievements made by the author on the visualisation of multi­

dimensional medical image datasets. 
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Chapter 3 ROI Location for Brain EIT Images by 

Statistical Processing 

As pointed out in section 1.2, the first objective of this research is to propose a method 

to defme ROI (Regions of Interest) in functional brain EIT images. The relevant 

literature review presented in section 1.1.3.3 shows that there are only limited data 

available on the approaches to ROI definition in EIT images. Alternatively, ROI 

locations for other type of neuroimages have been widely researched for many years. 

Statistically based algorithms have significant advantages in the processing of brain 

medical images. So this chapter starts with an introduction on statistical processing for 

functional medical images. Within this introduction, a particular approach - SPM 

(Statistical Parametric Mapping) stands out: SPM has been applied worldwide and 

almost become a standard for the processing of fMRI data. The second section of this 

chapter presents a survey of SPM. Then a theoretical analysis about the feasibility of 

using SPM to process EIT data is conducted and a scheme to process EIT data in SPM is 

proposed. Next, two types of experiments are carried out. Finally, some conclusions are 

shown at the end of this chapter. 
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3.1 Introduction to Statistical Processing for 

Functional Medical Images 

Statistical processing has been an important method and been widely applied to different 

aspects of medical imaging, such as, reconstruction, registration, and segmentation. 

Statistical methods for dealing with random events and processes can be used to model 

the mechanisms that cause image degradation. During functional imaging of the brain, or 

neuroimaging, the induced changes of regional neural activity are very subtle, repeat 

observations and statistical methods are generally required for reliable detection. 

Functional neuroimaging data is seldom viewed directly, instead it is subject to elaborate 

statistical processing flrst (Nielsen and Hansen 2000). 

As a pioneer, Duffy and his colleagues (Duffy, Bartels et al. 1981) proposed signiflcance 

probability mapping to analyse topographic maps of brain electrical activity imaged by 

EEG. In the late 1980s and early 1990s, research of functional brain images was mainly 

done with PET. Since the middle of 1990s, most researchers moved their attention from 

PET to fMRI. Consequently, several statistical packages have been developed for the 

analysis of fMRI images. Gold et al (Gold, Christian et al. 1998) presented an excellent 

review about fMRI statistical software packages, which included: AFNI 2.01 (Analysis 

of Functional NeuroImages) (Cox 1996), SPM96 (Statistical Parametric Mapping) 

(Friston, Frith et al. 1991), STIMULATE 5.0 (Strupp 1996), Yale (Skudlarski, Lacadie 

et al. 1995), MEDIMAX 2.01 (Infographics Group 1995), FIASCO (Functional Imaging 

Analysis Software-Computational Olio) (Eddy, Fitzgerald et al. 1996), MEDx 2.0 

(Sensor Systems Inc. 1996), and FIT (Functional Imaging Toolkit) (Arnholt 1997). It is 

clear that each package contains many useful features; but they are neither 

comprehensive nor interchangeable. The choice of which package to adopt would 

basically depend on the interests and goals of each user. Gold also pointed out that SPM 

had been widely used for PET analysis and also became a popular choice for tMRI 
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analysis (at that time, fMRI just began to take over PET as a main method for brain 

functional imaging). 

The SPM suite and associated theory was originally developed by Karl Friston. SPM'94 

was the fIrst major revision of the SPM software. Later versions, including SPM'95, 

SPM'96, SPM'99, and SPM2, are based on SPM'94, and represent the ongoing 

theoretical advances and technical improvements. The latest version of SPM is SPM5, 

which was released in December 2005. The research in SPM is still active. SPM has 

been applied worldwide and almost become the standard for the processing of fMRI data. 

In the next section, more details about SPM are given. 

3.2 Overview of Statistical Parametric Mapping 

Statistical Parametric Mapping (SPM) refers to the construction of spatially extended 

statistical processes to test hypotheses about regionally specifIc effects (Friston, Frith et 

al. 1991). SPM is generally used to identify functionally specialized brain regions and is 

the most prevalent approach to characterizing functional anatomy and disease-related 

changes. 

With SPM, the analysis of functional neuroimaging data involves many steps that can be 

broadly divided into three parts: 

• Spatial processing 

• Estimating parameters of a statistical model 

• Making inferences about those parameter estimates with their associated 

statistics 

In the past, SPM has come to refer to the conjoint use of General Linear Model (GLM) 

and Gaussian Random Field (GRF) theory to analyse and make classical inferences 
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about spatially extended data through statistical parametric maps. GLM theory is used to 

estimate parameters that could explain data in exactly the same way as in conventional 

analysis of discrete data. GRF theory is used to resolve the multiple comparison problem 

that ensues when making inferences over a volume of the brain. (Friston 2002) 

In the following subsections, the statistic theory for SPM is introduced fIrst. The three 

parts of SPM are described from statistic estimation, statistical inference, to spatial 

processing. This review is mainly based on the SPM course notes provided by the 

Wellcome Department ofImaging Neuroscience (Course_Notes 1997), the Human Brain 

Function book (Richard, Friston et al. 1997), the SPM99 User Manual (Veltman and 

Hutton 2001), and the SPM theory introduction provided on the Cambridge University 

Imaging Website (Brett 1999). 

3.2.1 Statistic Theory for SPM 

From the statistical perspective, SPM includes two main parts: Parameter Estimation 

and Hypothesis Inference (or Test). Through parameter estimation, a statistical model is 

established for every voxel. Then all these models are combined together to construct a 

spatially extended statistical process. Based on this spatially extended statistical process, 

some statistical variants can be formed and hypothesis tests will be performed on the 

distribution probability of these variants. 

3.2.1.1 Parameter Estimation 

In SPM, the same model form is applied to every voxel simultaneously, with different 

parameters for each voxel. The observed values of a voxel under experimental 

conditions are considered as a response variable, and the experimental conditions are 

described with a series of explanatory variables. The General Linear Model (GLM) is 
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used to express the response variable in terms of a linear combination of the explanatory 

variables plus an error term. Subsequently, parameters in the linear model can be 

achieved by least squares estimates. 

Underlying the GLM is an assumption that the error term is normally distributed. With 

this assumption, the least square estimates for parameters in the general linear models 

are the maximum likelihood and the best linear unbiased estimates; in addition, the 

estimated parameters are normally distributed as well. From this it follows that linear 

components of the estimated parameters can be assessed by comparing with a t (or F) 

distribution. Consequently, a three dimensional statistical image, or 'map', formed of 

thousands of correlated t or F statistics is obtained. This map is named a statistical 

parametric map. 

3.2.1.2 Hypothesis Inference 

The statistical image obtained from parameter estimation contains a large number of 

voxels so that it is not directly interpretable. It is obvious that performing a statistical 

test at each and every voxel engenders a large false-positive rate using conventional and 

unadjusted thresholds to declare an activation as significant. Hence, a null hypothesis 

that no activation accounting for the experimental conditions appeared at each voxel is 

made. Under this null hypothesis, the statistical image can be transformed and 

considered as a Gaussian Random Field (GRF). 

In Gaussian Random Field, a series of statistical variables based on different inference 

levels can be constructed. By testing the statistical probability of these variables, the 

'unlikeness' of these statistical variables is interpreted as regionally specific effects, 

attributable to the experimental context. 
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3.2.2 Statistical Estimation 

Statistical estimation is the foundation of statistical inference. In this section, three main 

aspects in statistical estimation are described, which include an introduction on the GLM, 

an explanation of Design Matrix in the GLM model, and how to defme the statistical 

variables for the construction of GRF. At the end of this section, the underlying 

assumption of GLM is analysed. 

3.2.2.1 The General Linear Model 

For a response variable xi} (i = 1, 2,··· I indexes the observations (scan); j = 1,2,··· J 

indexes the voxels), gik (k = 1, 2,··· K) are explanatory variables relating to the 

conditions under which the observation i was made. General Linear Model explains the 

response variable in terms of a linear combination of the explanatory variables, plus an 

error term: 

(3.1) 

Where 13kj presents the k th unknown parameters for voxel j; 

e .. denotes the errors which are assumed independent and identically distributed 
IJ 

normally. 

For a selected voxel: 

XI gIl g12 glk 131 el 

x2 g21 g22 g2k 132 
+ 

e2 (3.2) = 

XI gil g12 glK 13K el 

Equation (3.2) can be written in matrix form: 
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X=G/3+§. (3.3) 

Where X has one column for each voxel j and one row for each scan i; 

G is a Design Matrix composed of coefficients gik' the Design Matrix has one 

row for each scan and one column for every effect in the model; 

/3 presents the parameter matrix where /3
j 

is a column vector of parameter for 

voxel j; 

§. is a matrix of normal distributed error terms. 

Least Squares Estimates of /3 can be calculated by: 

P = (G T Gr 1 G-1X (3.4) 

3.2.2.2 The Design Matrix 

Design Matrix G contains both covariates and indicator variants reflecting the 

experimental design. In PET and fMRI images, covariates generally present global CBF 

(Cerebral Blood Flow), time, plasma prolactin level, etc; indicator variables usually 

mention the level of factor (e.g. condition, subject, session, etc) under which the 

response variable is measured. 

Each column of G has an associated unknown parameter in the vectors pj • Some of 

these parameters will be of interest (e.g. In PET and fMRI imaging, the effect of a 

particular sensormoter or cognitive condition, or the regression coefficient of regional 

CBF on reaction time); the remaining parameters will be of no interest and refer to 

confounding effects. 
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3.2.2.3 Statistical Variables to Construct the GRF 

With the assumption that the error term G m General Linear Model IS normally 

distributed: 

(3.5) 

The parameter estimates are normally distributed as well: 

(3.6) 

From this it follows that for f a column vector of K weights, ~T p, which is a linear 

compounds of the parameter estimates, is normally distributed as well: 

(3.7) 

The residual vanance (j 2 IS estimated by the residual mean square, which is X 2 

distributed: 

2 
-2 2 XI-P 0' -0' --

I-P 
(3.8) 

Where P = rank( G) . 

Furthermore, p and a2 are independent (Fisher's law). Thus, a pre-specified hypothesis 

concerning linear compounds of the linear compounds of the model parameters 1/ ~ can 

be assessed using: 

(3.9) 

That is, the hypothesis H: (/ f3 = d can be assessed by comparing 

(3.10) 

with a Student's t-distribution having (I - P) degrees of freedom. 
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3.2.2.4 Parametric Assumptions 

Underlying the general linear model is an assumption that the error tenn is nonnally 

distributed. There are a number of reasons for being confident that the data obtained 

with imaging devices (particularly PET) confonn to Gaussian distributions: 

The image reconstruction process in PET, back projection, can be thought of in tenns of 

convolving the underlying distribution of radiodecay events with itself many times. The 

underlying distribution is approximately Poisson and by central limit theory the 

univariate distribution of intensity values in the back projected image will be Gaussian. 

This argument does not however allow for non Gaussian behaviour of the physiological 

component in functional images (although there is no reason to suppose they are not 

Gaussian); however a reasonable argument can be made that the univariate behaviour of 

the fmal measurements will be Gaussian. This is because of explicit and implicit 

convolutions of the original distributions in the early parts of data processing [e.g. ramp 

and Hanning filtering in frequency space (i.e. convolving in Cartesian space) during 

reconstruction and Gaussian smoothing of images as a pre-processing step]. 

3.2.3 Statistical Inference 

3.2.3.1 The Gaussian Random Field 

Gaussian Random Field (GRF) theory deals with the mUltiple comparisons problem in 

the context of continuous, spatially extended statistical fields. It provides a method of 

correcting the p-value that takes into account that neighbouring voxels are not 

independent by virtue of continuity in the original data. 
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There are two assumptions underlying the use of the GRF correction: 

1. The error fields (but not necessarily the data) are a reasonable lattice 

approximation to an underlying random field with a multivariate Gaussian 

distribution. 

2. These fields are continuous, with a twice-differentiable autocorrelation function. 

The only ways in which these assumptions can be violated is if: 

1. The data are not smoothed, (with or without sub-sampling of the data to preserve 

resolution), violating the reasonable lattice assumption. 

2. The statistical model is mis-specified so that the errors are not normally 

distributed. 

3.2.3.2 Inference level 

To make inferences about regionally specific effects, the SPM is thresholded, usmg 

some height and spatial extent thresholds that are specified by the user. Some statistical 

variables and their distribution probability p are constructed in the Gaussian random 

field. These p-values are based on the probability of obtaining c, or more, clusters with k, 

or more, voxels, above a threshold u in a statistical parametrical map. The p-values can 

be derived that refer to different inference levels: 

1. Set-level inferences 

Set-level inferences assume that the number of clusters compnsmg an observed 

activation profile is highly unlikely to have occurred by chance in the Gaussian random 

field and is a statement about the activation profile, as characterized by its constituent 

regions. 

2. Cluster-level inferences 

- 87-



Chapter 3: ROI Location for Brain EIT Images by Statistical Processing 

Cluster-level inferences are a special case of set-level inferences that are obtained , 

when the number of clusters c = 1. 

3. Voxel-Ievel inferences. 

Voxel-Ievel inferences are special cases of cluster-level inferences that result when 

the cluster can be small (i.e. k = 0). Voxel-Ievel tests permit individual voxels to be 

identified as significant, whereas cluster and set-level inferences only allow clusters or 

sets of clusters to be declared significant. 

Using a theoretical power analysis (Poline, Friston et al. 1995) of distributed activations, 

set-level inferences are generally more powerful than cluster-level inferences and that 

cluster-level inferences are generally more powerful than voxel-Ievel inferences. The 

price paid for this increased sensitivity is reduced localizing power. 

3.2.4 Spatial Processing 

In SPM, the analysis of neuroimaging data generally starts with a senes of spatial 

transformations. These transformations aim to reduce the artificial variance components 

in the voxel time-series that are induced by movement or shape differences among a 

series of scans. 

The spatial processing usually starts with a realignment to 'undo' the effects of subject 

movement during the scanning session. After realignment the data is then transformed 

using linear or non-linear warps into a standard anatomical space. Finally, the data is 

usually spatially smoothed before entering the analysis process. 
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3.2.4.1 Realignment 

Realignment in SPM is usually performed in two steps: 

• First, estimating six parameters of an affme 'rigid-body' transformation that 

minimizes the (sum of squared) differences between each successive scan and a 

reference scan (usually the first or the average of all scans in the time series). 

• Then, applying the transformation by re-sampling the data using tri-linear, sine 

or cubic spline interpolation. 

For most imaging modalities this procedure is sufficient to realign scans to, in some 

instances, a hundred microns or so (Friston, Ashbumer et al. 1995). However, in fMRI, 

even after perfect realignment, movement-related signals can still persist. This calls for a 

further step in which the data are adjusted for residual movement-related effects. 

3.2.4.2 Spatial Normalization 

After realigning the data, a mean image of the series, or some other co-registered (e.g. a 

Tl-weighted MRI) image, is used to estimate the warping parameters that map it onto a 

template that already conforms to a standard anatomical space. 

This estimation can use a variety of models for the mapping, including: 

• A 12-parameter affme transformation, where the parameters constitute a spatial 

transformation matrix. 

• 

• 

Low frequency basis spatial functions (usually a discrete cosme set or 

polynomials), where the parameters are the coefficients of the basis functions 

employed. 

A vector field specifying the mapping for each control point. 

- 89-



Chapter 3: ROI Location for Brain Err Images by Statistical Processing 

3.2.4.3 Smooth 

The motivations for smoothing the data are threefold: 

• Potentially increase signal to noise ratio 

• Inter-subject averaging 

• Increase validity of SPM 

In SPM, smoothing is done by convolving the images with a 3D Gaussian Kernel. 

With previous spatial processing, realignment and normalisation do not change voxel 

values but simply relocate them, while after smoothing each voxel effectively becomes 

the result of applying a weighted region of interest. 

3.3 Statistical Processing for ROI location in Brain EIT 

Images 

As shown in section 1.3.3, identification of ROI (Regions of Interest) is a challenge for 

EIT visualisation. The preceding description reveals that SPM is a leading statistical 

analysis package to analyse neuroimages and locate regions in the brain which are 

activated during measurements. As brain EIT imaging can also create neuro image s, it 

seems plausible to apply SPM to identifying ROI in brain EIT images. While the SPM 

method and software are only designed for PET/SPECT and fMRI neuroimages, there 

has been very little research effort to combine SPM method with brain EIT image 

analysis. In this section, the methodology to process brain EIT data with SPM is 

proposed. Experimental results and further discussion are presented in the next section. 
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3.3.1 Scheme of Processing Brain EIT Data with SPM 

As mentioned in section 3.2, to some extent, SPM can be considered as a combination of 

General Linear Model (GLM) and Gaussian Random Field (GRF). The underlying 

principle of GLM is an assumption that: 

• The error term in the GLM is normally distributed . 

Similarly, there are two hypotheses underlying the use of GRF correctly and the only 

way in which these assumptions can be violated is if: 

• The data is not smoothed. 

• The statistical model is mis-specified so that the errors are not normally 

distributed. 

Based on these criteria, the following conclusions can be drawn: to investigate if it is 

reasonable to use SPM to process image data, two examinations must be performed - the 

fIrst is to prove that the data is smoothed; the second is to correctly specify the statistical 

model and then test if the error term in the GLM is normally distributed. 

For brain EIT imaging data, it is assumed that it is smoothed. Different from other 

tomography approaches, the initial reconstruction result of 3D brain EIT imaging is a 3D 

volume dataset instead of a stack of 2D slices. In order to get the sliced data, the initial 

reconstructed data is interpolated and rasterized, which makes the final EIT image data 

smoothed. At the same time, the spatial smoothing function provided in the spatial 

normalization step of SPM processing can be used as a backup method to ensure the 

smoothness of EIT imaging data. 

Friston (Friston, Holmes et al. 1995) pointed out that data obtained with image devices 

are commonly uniform to Gaussian distribution. Even if the original physiological 

measurements were not Gaussian, after the explicit and implicit convolutions during 
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reconstruction and smoothing of image as a pre-processing step, they will be (nearly). 

From another point of view, according to the Central Limit Theorem, which points out if 

an error such as & is a sum of errors from several sources no matter what the , 

probability distribution of the separate errors may be, their sum & will have a 

distribution that will tend more and more to the normal distribution as the number of 

components increase. Thus there is a tendency for errors that occur in many real 

situations to be normally distributed. Therefore, it is sensible to conclude that the voxels 

in brain ElT image data are normally distributed. Furthermore, if the experimental 

effects in ElT imaging are correctly specified, the error term in the GLM should also be 

normally distributed. 

Start 

Calculate observations 

No 

End 

Figure 3.1 Scheme for the processing of EIT data 

The previous theoretical analysis demonstrates that, it is possible for EIT imaging data to 

satisfy the underlying assumptions of GLM and GRF. So it is reasonable to use SPM to 

process ElT imaging data, and a scheme is proposed to illustrate how to process brain 
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EIT data with SPM (see figure 3.1). Before testing the practicality of this scheme with 

some experiments, some points which should be particularly considered in the 

processing are mentioned below. 

3.3.2 Mode Selection 

In SPM, although the same statistical theory is utilised for the processing ofPET/SPECT 

data and fMRI data, different analysis modes are provided for them, because of the 

different features included in these two types of data. Therefore, to process a new type of 

neuroimages in SPM, the primary step is to decide which analysis mode should be 

adopted or be employed as a basis. 

Generally, PET analysis is a little simpler than fMRI analysis. For PET, the observations 

(voxel values), are nearly independent, (which means that signal generated for the voxel 

value for one scan has more or less decayed to negligible levels by the time of next scan), 

for the relevant long time interval. However, the time spacing between fMRI scans 

within a scan session is often very short; in this case the signal that generated one scan 

may still be presented at the time of the next, so temporal autocorrelation occurs. To 

counter this, SPM provides a temporal smoothing function, which swamps the unknown 

autocorrelation with a known one, and so allows accurate adjustment of the statistical 

thresholds. 

Furthermore, the "PET mode" is more flexible: it makes no assumptions about the data. 

The "fMRI mode" assumes that background voxels have intensity below a set 

percentage of the maximum intensity and global normalization is required. 

From another point of view, "fMRI mode" can access to the hemodynamic modelling 

function based on Balloon Model. The authors of SPM concluded that a Balloon Model 

was sufficient to account for the nonlinear behaviours of the dynamic changes in 
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deoxyhemoglobin content during brain activation observed in real time series (Glaser, 

Friston et al. 2003), and adopted this model in SPM software. The Balloon Model was 

proposed in (Buxton, Wong et al. 1998). Calculations based on this model show 

pronounced transients in the deoxyhemoglobin content and the Blood Oxygenation 

Level Dependent (BOLD) signal measured with functional MRl. Figure 3.2 illustrates 

the variety of time courses that can be produced by the Balloon Model. 
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Figure 3.2 Variety of time course calculated by Balloon Model. 

Considering the flexibility, the "PET mode" is chosen for the processing of brain EIT 

data. In the experiments described in section 3.4, two types of EIT data will be used: 

one is simulated brain EIT data, and the other is previously published human brain EIT 

data that (TidsweU, Gibson et al. 2001b), obtained from adult subjects during visual 

stimulation. For a voxel in simulated data, the impedance value at each sample point is 

specified precisely. There is no interaction between values at different time points. And 

the observations can be treated as independent. The time spacing between the selected 

human EIT data is 25 seconds. And with such a relatively long time interval, it is 

reasonable to treat these EIT observations independently. Therefore, temporal smoothing 

is not necessary for the experimental data. EIT can, in principle, record thousands of 

images per second, but modem brain EIT imaging instruments only need tenths of a 
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second to acquire an image. In that case, any temporal smoothing should be performed 

as pre-processing. 

Considering the hemodynamic model, fMRI measures BOLD signal caused by dynamic 

changes in both blood oxygenation and blood volume during brain function, while EIT 

measures brain impedance changes. During visual stimulation, brain impedance changes 

are mainly caused by blood volume and flow increasing in the low time resolution 

collection environment (Tidswell, Gibson et al. 2001 b). It is sensible to conclude that 

blood volume change instead of the BOLD signal should be used in EIT analysis. This 

means it may not be suitable to apply the hemodynamic modelling function provided by 

SPM to EIT data directly. From this point of view, the inaccessibility of PET mode to 

this function is not a disadvantage for the processing of brain EIT data. 

After choosing the analysis mode, subsequent steps for the processing of neuroimage 

data with SPM are: spatially normalising the data; specifying the Design Matrix and 

other parameters. Then, the statistical model is estimated and statistical inference is 

carried out. 

3.3.3 Spatial Processing for EIT Data 

As mentioned in section 3.2.4, processing in SPM usually starts with a series of spatial 

transformations which aim to reduce artefactual variance components in the time-series. 

These variances are generally induced by head movements of the subject among a series 

of scans or shape differences among scans for different subjects. In EIT imaging, the 

electrodes are fixed directly to the skin of the body part to be imaged, they move with 

the subject; and images are normally reconstructed onto a dimensionally stationary 

mathematical model, hence no image realignment is required. In practice, skin may 

move over the underlining structure, which leads to errors in image reconstruction, but 

this cannot be corrected by image realignment. 
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Even without movement, EIT images may be spatially distorted, either due to out of 

plane impedance changes in 2D image reconstruction (Rabbani, Hassan et al. 1996) or 

mismatches between the model used for the forward solution, and real shape (Jain, 

Isaacson et al. 1997; Bagshaw, Liston et al. 2003). Electrode position, the conductivity 

and dimensions of distinct layers, e.g. the skull (Liston, Bayford et al. 2004), can all 

contribute to such errors. Some of these are compensated for by the use of different 

imaging methods; others may be reduced by improving the forward model. Nevertheless, 

such compensation is beyond the scope of SPM. 

3.3.4 Testing the Distribution of Error Terms 

According to equation 3.3, the error term in General Linear Model can be expressed as: 

G =X -GfJ (3.11 ) 

After parameter estimation, errors of each voxel at each sample point, i.e. observations 

of the error term, can be calculated. 

To test if a sample of data came from a normally distributed population, there are 

generally two methods: one is graphical assessment by plotting residuals; the other is 

usmg some statistics to provide a numerical measurement. In practical regreSSIOn 

situations a detailed examination of the corresponding residuals plots is usually 

informative, and the plots will almost certainly reveal any violation of assumptions 

serious enough to require corrective action (Draper and Smith 1981). While the 

effectiveness of graphical assessment is ensured by large sample size, The Chi-square 

'goodness-of-fit' test is the most frequently used statistic approach to examine if a 

sample of data came from a population with a specific distribution. An attractive feature 

of chi-square test is that it can be applied to any univariate distribution for which you 

can calculate the cumulative distribution function. The Chi-square test requires a 

sufficient sample size, usually more than 30, in order for the approximation to be valid. 
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The Chi-square test is adopted in the experiments described in section 3.4 to test the 

distribution of error term. In the following, an overview of how to use the Chi-square 

test in this thesis is presented. 

For every voxel, observations of the error term are sorted and divided into K groups. 

Each group i has a maximum value MA; and a minimum value MI;, and M~_l = Ml
j

• 

To test the null hypothesis H 0 : P; = p; , the test statistic TS in Chi-square test is: 

TS = f (N; _e;)2 

;=1 e; 
(3.12) 

Where i = 1, ... ,K indexes the group 

N; = np; is the observed frequency for group i , n is the sample size 

e; = np; is the expected frequency for group i, n is the sample size. 

In this thesis, Chi-square test is used to examing whether the error term conforms to 

normal distribution, so the expected frequency for group i IS: 

f
MA; 1 (x - fl)2 

p; = .j2;;;i exp( - 2)dx 
MI; 27r(j2 20-

(3.13) 

Where fl is the mean of the error distribution 

(j 2 is the variance of the error distribution 

Mean fl and variance cy 2 of the error term can be obtained with Maximum Likelihood 

Estimation. 

The degrees of freedom df of the Chi-square distribution, which approximates the test 

statistic TS , can be calculated with: 

df = K-I (3.14) 
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Let xi-I a denote a Chi-square random variable having (K -1) degrees of freedom 

which will exceed this value with probability a , then the approximated significance 

level a test of the null hypothesis Ho against the alternative HI is as follows: 

{
Reject Ho 

Do not reject H 0 

if TS ~ xi-I a 

otherwise 

3.4 Experiments and Discussions 

(3.15) 

In order to verify the feasibility of processing brain ElI data with SPM, two types of 

experiments are carried out and described in the following sections: the first is 

implemented with simulated ElI data, and the second is performed with human ElI data 

under visual stimulation. Discussion based on each set of experimental results follows. 

3.4.1 Experiment with Simulated EIT Data 

ElI researchers usually use three types of data: simulated data, phantom data and human 

data. During the collection of human or even phantom data, there are always some 

unpredictable factors that degrade image quality. With the intention of making the data 

more controllable and to facilitate the evaluation of experiment results, simulated data 

was used at the first step of the experiments. In the following, the procedure to create 

simulated ElI data is described first, then how the simulated data are analysed in SPM 

according to the scheme proposed in section 3.3.1 is depicted. 

3.4.1.1 Creation of simulated EIT Data 

As pointed out in section 1.1.2, in brain ElI imaging, functional impedance changes 

over a sample time of minutes may be caused by cells swelling or blood volume and 
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flow increase. The simulated datasets are created to imitate the conductivity change 

caused by the blood volume and flow increasing. Obviously, during practical imaging, 

there is always noise included. In order to model those noise effects, three types of 

simulated datasets are generated. 

Type I - Noise-free Dataset 

This type of dataset aims to model an ideal situation: which is how the impedance 

changes over time is precisely known, and no noise is induced by the imaging equipment. 

The size of the simulated dataset is 200x200x200x36 (x,y,z,t) , which means there are 

36 sample time points, and a volume dataset with size 200x200x200 (mm) is generated 

corresponding to each sample time point. The time interval is one second during the fIrst 

three sample time points, and changes to one third of a second afterwards. Coordinates 

of these datasets are defIned as (referring to human head): x increases from left to right, 

y increases from posterior to anterior, and z increases from inferior to superior. x, y, 

and z values are changed from -100 to 100 (mm). The zero point (0, 0, 0) is defmed as 

the centre of brain. 

In the simulated datasets, the human brain is simplified as a sphere with constant 

impedance value. The blood volume and flow increasing region, which is the Region of 

Interest (ROI) in the simulated data, is also defmed as a sphere. This ROI is centred at 

point (0, -40, 0), and is 40mm in diameter (see fIgure 3.3(a)). A function is used to 

express the impedance change ratio in the ROI: 

t _course = 1+(3xt-0.55xt 2 +0.025 xt3)/l00 (3.16) 
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Figure 3.3(b) is a plot of this function . As mentioned in section 1.1.2, blood vo lume and 

flow give changes in the local brain impedance by a few percent. In the simulated 

dataset, the impedance change ratio is less than five percent . 

L 
z 

~ 1 1 
0 

~ 
~ 
(I) 1.05 

F A 
c: c: 
til 

'y .c 
0 
(I) 
0 c: 
til 
"0 

X (I) 

0.95 
R 

Q 

E 0 2 4 6 8 10 12 14 
Time (Seconc ) 

(a) (b) 

Figure 3.3 ROI in the simulated datasets 

(a) Scheme of the impedance change area; (b) Plot of the impedance change ratio in ROI 

As described in section 1. 1.2, the EIT reconstruction approach includes two steps: the 

solution of forward problem and the solution of inverse problem. To create a simulated 

dataset, first the boundary voltages are calculated by solving forward problem. Then a 

volume imaging dataset is reconstructed from these boundary voltages with TSVD 

(Truncated Singular Value Decomposition) reconstruction algorithm. The solid line in 

the flow chart in figure 3.4 illustrates the procedure to produce a noise-free type dataset. 

Type 11- True-noise Dataset 

In practice, it is almost impossible to precisely describe impedance changes happening 

in human brain. And usually, only a outline of impedance change can be deduced. In 

order to simulate this situation, the second type of dataset, the true-noise dataset, is 

created by adding some noise before the solution of forward problem (see point A in 

figure 3.4). The other parts for true-noise dataset are same as the noise-free dataset. 
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Defined Impedance Value 

r------------------------------ --------___________________ @ ____ ~ Add noise here to create 
I boundary-noise data ~-_--L __ _ 

Boundary Data 

Solve the Inverse Problem 
(TSVD) 

Volume EIT Image Data 

Figure 3.4 Procedure to create simulated EIT data 

Type III - Boundary-noise Dataset 

In addition to the unpredictability of the impedance change value, there is another noise 

source in practical measurements: the noise induced by imaging equipment. In order to 

imitate this environment, A third type of dataset: boundary-noise dataset was produced, 

this uses a similar procedure as the creation of true-noise dataset, but more noise IS 

added after the solution of forward problem (see point B in figure 3.4)_ 

Table 3.1: Scheme of the simulated datasets with 14 time sample points 

Dataset No. Noise type Noise ratio 

Dataset 1 Noise free --

Dataset 2 True noise 10% 

Dataset 3 True noise 20% 

Dataset 4 Boundary noise 2% 

Dataset 5 Boundary noise 5% 
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Adjusting the nOIse ratio, different datasets can be produced. Table 3.1 presents an 

overview of the datasets used in the experiments described in this section. Figure 3.5 

illustrates a two-dimensional time series display of selected transverse planes (where 

z = 0) in these datasets. 
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Figure 3.5 2D time series display of transverse planes (z=O) in the simulated datasets 

Observing the time series display corresponding to the fIrst dataset, it is easy to fmd a 

global maximum. This is a single local maximum in this dataset. The area around this 

maximum position shows where the blood volume and flow increases, which is the ROI 

in this dataset. In the second and the fourth datasets, although not as easy as the fIrst 

dataset, it is not diffIcult to fmd out the ROI. While in the third and the fifth datasets, 

especially in the fifth dataset, there is more than one local maximum. It would be 

difficult to decide which one is the ROI if the information on how these datasets were 

created was unavailable. 
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3.4.1.2 Design Matrix Specification 

With the decision to select PET mode and not to use spatial normalization for brain EIT 

data (see the details in section 3.3.2 and section 3.3.3), the construction of a Design 

Matrix is a key step for each EIT dataset to be analysed with SPM. 

In SPM, both PET and fMRl modes provide different choices to form any Design Matrix, 

these are classified according to factors considered in the analysis, such as conditions, 

subjects, and sessions. In the estimated datasets, only one subject is considered and no 

experiment condition change is included. Therefore, the second design type in PET 

mode - "Single-subject: covariates only" - is selected as a framework for a Design 

Matrix, where the conductivity change and scan time are defined as covariates in the 

initial Design Matrix. Other main parameters used in the experiments were set as shown 

in table 3.2. The meaning of each parameter included in this table can be briefly 

explained as: the threshold in analysis setup is used to exclude voxels whose value is 

less than the thresho ld from statistical analysis; Global calculation stands for the method 

adopted to calculate the global impedance change during the imaging procedure; Mask 

with other contrast represents if any other contrast is used simultaneously in this 

statistical inference step; the threshold in the result setup is used to compare with 

probability of the statistic; extend threshold is used to determine that, when a cluster is 

identified as significant, how many voxels must be included in it; Visualisation overlays 

defmes how the SPM analysis results are displayed. 

Table 3.2: Parameters setting for the test of simulated EIT datasets 

Analysis Setup ... 
Threshold l-Inf 
Global calculation ... I Mean voxel value 

Results Setup ... 
Mask with other contrast(s) no 
Threshold (T or p value) 0.01 
& extent threshold (voxels) 1 
Visualisation overlays ... sections 
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3.4.1.3 Testing the Distribution of Error Terms 

With a specified Design Matrix, the statistical model is estimated. Error terms are then 

calculated according to equation (3.11). In this subsection, results of using Chi-square 

test to examine the distribution of error terms are given. 

To make sure that there are at least 80% of the observed frequency N
j 

exceed 5 in the 

test, the 36 observations of error terms are divided into 7 groups, thus the degrees of 

freedom in the test is: df = 7 - 1 = 6 . For significance level a = 0.005, X~. 0.005 = 18.55 . 

Using the methods mentioned in section 3.3.4, the test statistic TS is calculated for 

every voxel in each dataset, and then compared with X~. 0.005' Table 3.3 presents an 

overview of the test results. The second column in table 3.3 is total number of voxels 

being statistically estimated in SPM. The third column describes the number of voxel 

whose TS is greater than X~. 0.005 , which equals to 18.55, and so whose normal 

distribution assumption is rejected. The last column displays the rejected ratio in this 

dataset. As the results show, all the reject ratios are less than 2%. Consequently, it is 

sensible to draw a conclusion that the error terms are normally distributed in the 

specified GLM. 

Table 3.3: An overview of Chi-square test results 

Dataset No. trotal Voxel IV oxel Number 
lPercentage 

\Number :(TS ~ X;,O.005) 

Dataset 1 193046 2461 1.27% 
Dataset 2 229816 3976 1.73% 
Dataset 3 232771 3586 1.54% 
Dataset 4 210479 3389 1.61% 
Dataset 5 229586 3753 1.63% 
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According to the scheme defmed in section 3.3.1, once the error terms are normally 

distributed, it is not necessary to refme the initial Design Matrix. Then the next step 

should be statistical inference. 

3.4.1.4 Statistical Inference Results and Discussion 

SPM provides different methods to display inference results. The one chosen in this 

thesis is to overlay the results on orthogonal sections of processed image data. Figure 3.6 

shows the statistical analysis results. In each result, except the one for dataset 1, there is 

a closed zone highlighted by SPM, which seems to cover the same region as defmed for 

impedance variation. To test if it is true, the centroid of the highlighted zone and the 

specified impedance variation area are compared. 

Table 3.4: Analysis of centroids in results set I 

Dataset No. Central Voxel Variation Percentage 

Dataset 1 - - -
Dataset 2 (-7,-35,-2) (-7,5,-2) 3.5% 
Dataset 3 (-5,-42,-4) (-5,-2,-4) 2.5% 
Dataset 4 (-4,-37,1) (-4,3,1) 2% 
Dataset 5 (-2,-41,2) (-2,-1,2) 1% 

As defmed in section 3.4.1.1, the centroid of the impedance change region locates at 

point (0, -40,0). The central voxel (rounded centroid position) for each highlighted zone 

is calculated and listed in the second column of table 3.4; the third column in this table 

presents variation between the calculated central voxel and the centroid of the defmed 

impedance change region. Dividing the variation by 200 (because x, y and z coordinate 

all change from -100 to 100 in the simulated data), the variation percentage is obtained. 

The last column in table 3.4 shows the biggest variation percentage among three 

coordinates. Typically confidence level can be set as 95%. In these tests, all the 
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percentage variations are less than 5%. So it is reasonable to draw a conclusion that SPM 

correctly located the centroid of the changed impedance region. 

Dataset 1 

Dataset 2 

Dataset 4 

x 

~2 
Y 

Coordinate~ 

of the sections 

Dataset 3 

Dataset 5 

Figure 3.6 Statistical processing results set I 

sectl·on 3.4.1.1 , the specified impedance change region In each As mentioned in 

. . ·d t · a1 however areas marked by SPM varies among the dataset Simulated dataset IS I en IC , 
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A possible reason is the smoothing effect included in EIT reconstruction processing, 

which blurs the sharp change at the edge of impedance variation region. Voxels in this 

blurred area have same impedance change tendency as voxels in the specified region, 

while their changing amplitudes are smaller. At a specified probability threshold, some 

voxels in the blurred area are marked as statistically significant conforming to the 

defmed function. If there is some noise added in, some voxels in the blurred area, which 

have similar or smaller amplitude to the amplitude of noise, will not be included in the 

highlighted zone again, no matter how low the probability threshold is. 

In our experiments, same probability threshold, which was 0.01, was used for each 

dataset. This made the area of marked zone change a lot: the higher amplitude of the 

noise, the smaller the highlighted zone. How to choose a suitable probability threshold 

for different datasets is an important topic that needs to be investigated in future work. 

Besides the probability threshold, there is another threshold used in SPM analysis: voxel 

value threshold. By using the value threshold, voxels whose value are less than this 

threshold will not be included in the statistical calculation. In the preceding tests, the 

voxel value threshold was set as "-Inf' (see table 3.2), which means all the voxels in the 

simulated dataset are included in the statistical analysis. If the previous explanation 

about the change of highlighted area in the test results is correct, adjusting the value 

threshold hopefully can enclose the highlighted region in the fIrst dataset. Therefore, 

another set of tests were conducted by specifying the value threshold to "ten percent of 

the maximum value". Figure 3.7 shows the updated test results. 

Comparing the two result sets, it is easy to find out that the most significant change 

occurred in the first dataset: a well defmed area was marked by SPM in the second set of 

test. No obvious changes happen to results corresponding to other datasets. The central 

voxel (rounded centroid position) of each highlighted region in the second set of test is 
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listed in table 3.5. Similar to the first set of experiments, the percentage variations for all 

centroids are less than 5%. 

Dataset 1 

Dataset 2 Dataset 3 

Dataset 4 Dataset 5 

~ ,------,----, r----==-r----, 

Figure 3.7 Statistical processing results set II 
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Table 3.5: Analysis of centroids in results set 2 

Dataset No. Centrol Voxel Variation Percent 

Dataset 1 (-37,9,1) (3,9,1) 4.5% 
Dataset 2 (-39,-8,0) (1,-8,0) 4% 
Dataset 3 (-42,-6,-3) (-2,-6,-3) 3% 
Dataset 4 (-37,-3,2) (3,-3,2) 1.5% 
Dataset 5 (-42,-3,0) (-2,-3,0) 1.5% 

3.4.2 Experiment with Human Visual Stimulation Reconstructed 

EIT Images 

The preceding section demonstrated with simulated datasets that it is reasonable to 

utilize SPM to analyze brain EIT images according to the proposed scheme. In this 

section, a further verification is conducted by using SPM to analyze human brain EIT 

data. 

3.4.2.1 Introduction to the Human Visual Stimulation Reconstructed 

EIT Images 

Before the analysis of human brain EIT data with SPM, the procedure about how the 

boundary impedance data is obtained and the image data is reconstructed are depicted 

below. 

3.4.2.1.1' Boundary Impedance Data Acquisition 

The used human brain EIT data was obtained with a modified HP4284A impedance 

analyzer from subjects during visual stimulation. This data was previously published and 

more details can be found in Tidswell's paper (Tidswell, Gibson et al. 2001 b). In the 
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following, a simple introduction on how the boundary impedance data was collected is 

gIVen. 

The visual stimulation experiment lasted 6min and 15sec with a scalp impedance dataset 

acquired every 25sec. This allowed 15 EIT image datasets to be acquired. The visual 

stimulus was presented for 75sec in each experiment through the observation of a 0.6 0 

checkerboard oscillating at 8Hz on a black and white monitor placed 70cm in front of 

the subject. Baseline conditions before and after the stimulus were darkness. 14 subjects 

took part in this experiment, while one recording was rejected from further analysis due 

to excess noise from movement artefact. 

3.4.2.1.2 Image Reconstruction 

••••••••••••• 
• ••••••• 

Subject number 

-1 -05 0 05 

Impedance change 
(arbitrary units) 

Fig 3.8 Re-reconstructed human brain EfT images for the ninth frame of 13 subjects 

In the original paper, Tidswell (Tidswell, Gibson et al. 200 1 b) reconstructed EIT linages 

from the acquired boundary impedance data with human head modelled a 
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homogeneous sphere. With the technology development, advanced reconstruction 

algorithms for EIT imaging of brain function have been proposed, e.g., reconstruction 

algorithm with human head modelled as a concentric sphere (Liston 2004), 

reconstruction algorithm with human head modelled as an anatomically realistic mesh 

(Bayford, Gibson et al. 2001; Bagshaw, Liston et al. 2003), and nonlinear reconstruction 

algorithm (Horesh, Bayford et al. 2004; Yerworth, Horesh et al. 2004). The EIT images 

used in this analysis were obtained by re-reconstructing the boundary impedance 

datasets collected by Tidswell with human head modelled as an anatomically realistic 

mesh. Figure 3.8 illustrates the re-reconstructed images for the ninth frame of 13 

SUbjects. 

3.4.2.2 Hemodynamic Model and Design Matrix for the Human 

Brain EIT Images 

Principally, during visual stimulation, the visual cortex is active and so more blood is 

needed in that area. An increase of regional Cerebral Blood Volume (rCBV) will 

decrease cortical impedance because blood has a lower impedance than the surrounding 

cortex (Ranck 1963; Geddes and Baker 1967). Ideally, EIT should be able to reveal 

these impedance changes in that area. However, according to Tidswell's analysis based 

on the originally reconstructed images, only in 9 out of 13 subjects, significant 

impedance changes (which means the impedance changes roughly coincide with the 

experimental condition changes) were seen in areas near the visual cortex. And 

impedance changes in 4 out of the 9 subjects are increased, which cannot be explained 

by blood volume increase (Tidswell, Gibson et al. 200 I b). Although the algorithm used 

in re-reconstructed generally performs better than the original one, no significantly 

improved conclusion can be drawn ~ased on the re-reconstructed images. 

Several factors affect the accuracy of EIT imaging: the noise introduced by the imaging 

instrument; the inaccurate modelling of the head; temporal blurring of the impedance 
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response in the images, and so on. Generally, statistical analysis methods are good at 

dealing with random events and processes, they are ideal to be used to model the 

mechanisms that cause image degradation and enable a more reliable detection of 

changes in brain. Based on the positive results obtained by processing simulated brain 

EIT images in SPM, further analyse is conducted to analysis these human brain EIT 

datasets with SPM. 

Following the methodology proposed in section 3.3, PET mode is adopted in this 

analysis. Although PET mode is not accessible for the hemodynamic modelling function 

for BOLD signal measured with fMR!, the blood volume function calculated by Balloon 

Model can be enclosed in PET analysis mode as a covariate in the Design Matrix. As a 

contrast, another Design Matrix is applied in the experiment, which uses stimulus 

function instead of the blood volume function as a covariate. In the following, 

experiments using Design Matrix including stimulus function IS mentioned as 

experiment series I, and the experiments using Design Matrix including blood volume 

function is named experiment series II. Other main parameters used in the experiments 

were set as shown in table 3.6. 

Table 3.6: Parameters setting for the test of human brain EIT datasets 

Analysis Setup ... 
Threshold I -Inf 
Global calculation ... I Mean voxel value 

Results Setup ... 
Mask with other contrast( s) no 
Threshold (T or p value) 0.1 
& extent threshold (voxels) 1 
Visualisation overlays ... sections 

After the defmition of Design Matrix, statistic estimation can be carried on within SPM. 

According to the scheme suggested in section 3.3.1, before the statistical inference, error 

terms should be calculated and test on their distributions should be executed, and the 

Design Matrix should be adjusted if necessary. While, within the human brain EIT 
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datasets, only 15 sample values are available for each error term. This sample size is too 

small for any method to effectively test if a population confIrms to a certain distribution. 

Therefore, the distribution tests for error terms have to be ignored, and statistic inference 

is conducted directly after statistic estimation. 

3.4.2.3 Statistical Inference Results and Discussion 

As for the simulated data, the inference results of human brain EIT data are displayed by 

overlaying them on orthogonal sections of the processed data. Figure 3.9 illustrates the 

results, where the human brain EIT images are presented in greyscale in three orthogonal 

planes and the areas highlighted by SPM are superimposed in colour. 

From the experimental results, it can be observed that, when using stimulus function as a 

covariate, four out of thirteen subjects (subject number 1, 2, 6, 10) appear to have 

explainable impedance change near the visual cortex area; and when using blood volume 

function as a covariate, seven out of thirteen subjects (subject number 1, 2, 4, 6, 9, 10, 13) 

appear to have explainable impedance change near the visual cortex area. Tidswell 

(Tidswell, Gibson et al. 200 1 b) once described that, in fIve out of thirteen subjects, 

explainable impedance changes were seen. 

Tidswell's conclusion was drawn only based on individual observation of time-series 

images. In our experiments, explainable impedance change areas were deduced basing 

on a statistical criterion, as mentioned above, the threshold probability is fIxed as 0.1 for 

all subject and both series of experiments. Comparing with experiment series I, sensible 

ROIs are revealed for more subjects (subject number 4, 9, 13) in experiment series II. 

Turning to the subjects whose ROIs have been detected in both series of experiments 

(subject number 1, 2, 6, 10), the regions highlighted in experiment series II are generally 

more signifIcant, referring to the functional area defmition of human brain (see figure 

3.8). As a whole, it is reasonable to conclude that, with properly defmed Design Matrix, 
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SPM is suitable to reveal ROIs in human brain EIT images. Furthermore, it seems 

correct to use balloon hemodynamic change model to simulate the impedance change 

during brain function activity. 

MOIor eon.x 
/ Scm.tIe s.noory Ar •• I 

Secondary : PrOnAry 
Visual Visual 
Areas Cortex 

Figure 3.8 Functional area of human brain 

It is also noticed that, in datasets for six subjects (subject number 3, 5, 7, 8, 11 , 12), there 

are no regions near visual cortex, or even no regions in the whole brain, have been 

marked as explainable ROIs in both experiment series. Even for the explainable ROIs 

highlighted in the seven subjects, there are some differences between those ROIs and the 

visual cortex in human brain. Many factors may account for this failure. First of all, the 

data adopted in our experiments is not up-to-date. Those data was measured by HP 

4282A analyzer, which is not an instrument specially designed for brain EIT imaging 

and can only obtain an image every 25sec. According to the hemodynamic model 

(balloon model), the blood volume change caused by normal function in the brain almost 

comes back to baseline in 20sec. So, the low temporal resolution will affect the 

efficiency of blood volume function used in the Design Matrix. While, unfortunately, 

these data are the only available human brain EIT data for this research. However, there 

is no reason to say that the EIT imaging did not detect activations occurred in the visual 

cortex during the visual stimulation experiment. 

Secondly, although the data used in the experiments are re-reconstructed with a 

relatively new algorithm, the quality of the new EIT images is still not very satisfactory. 

The reason is twofold. On the one side, the collected boundary impedance data is rough, 
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as mentioned in the Chinese old saying, "Even the smartest housew ife cannot cook 

without rice". On the other side, although the new reconstruction algorithm models 

human head as an anatomically realistic mesh instead of a homogenous sphere, it does 

not consider the difference head shape of different individuals. So, if the measured 

impedance change were produced by impedance changes in the expected site of cortical 

activity, the inaccurate reconstruction algorithm, electrode positioning errors, system 

errors of the instrument, and measurement noise, can all cause errors of localisation in 

the [mal images. 

Thirdly, instead of the assumption that visual stimulus will increase rCBV in visual 

cortex and therefore decrease the impedance value in that area, the patterns of human 

cortical impedance changes under visual stimulus may be complex; perhaps there are 

multiple impedance changes due to cell swelling, increased rCBV and decreased rCBV 

within and away from the functionally stimulated cortex. Considering the low spatial 

resolution, EIT images represent a combination of mUltiple changes. Consequently, 

these multiple changes might not be independently localized; or other functions, which 

can precisely describe these situations, should be included in the Design Matrix. 

Subject 
Number 

1 

Results with experimental condition 
used as a covariate 
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2 

3 

4 

5 
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6 

7 
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10 
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11 

12 

13 

Figure 3.9 StatisticaJ processing results for human brain EJT datasets 

- 119 -



Chapter 3: ROI Location for Brain EIT Images by Statistical Processing 

3.5 Conclusion 

This chapter aimed to achieve the frrst objective of this research: to propose a method to 

defme ROI in functional brain EIT images. An introduction of statistical processing for 

functional medical images and SPM techniques is presented frrst. Then a new scheme 

for the processing of four-dimensional temporal-spatial brain EIT data with SPM to 

detect ROI in the data is proposed based on a theoretical analysis in section 3.3. To 

evaluate the feasibility of this scheme, two types of experiments are carried out: one is 

implemented with simulated EIT data, and the other is performed with human brain EIT 

data under visual stimulation. The experimental results demonstrated two facts: SPM is 

able to localise the expected ROI correctly; it is reasonable to use balloon hemodynamic 

change model to simulate the impedance change during brain function activity. 
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Chapter 4 Registration of Brain EIT Images with 

Anatomical Brain Data 

4.1 Introduction 

Image registration is a fundamental task in image processing used to overlay two (or 

more) images taken, for example, at different times, from different viewpoints, and/or by 

different sensors. Medical image registration has been widely studied and utilized in four 

main kinds of applications: combining information obtained from different imaging 

modalities; aligning temporal sequences of images for monitoring changes in size, shape, 

or image intensity over time intervals that might range from a few seconds to several 

months or even years; relating preoperative images and surgical plans to the physical 

reality of the patient in the operating room during image-guided surgery or in the 

treatment suite during radiotherapy; and relating images from different subjects to a 

standard atlas for cohort studies (Hill, Batchelor et al. 2001). 

As described in section 1.1.2, EIT imaging is a relatively new medical imaging method 

with high temporal resolution and poor spatial resolution. Little anatomical information 

is included in EIT imaging dataset. Clinicians usually have abundant knowledge about 

human morphology; the understanding of EIT images could be enhanced by visualising 

EIT imaging data in an anatomical context. Therefore, to develop a registration scheme 
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to combine human morphology information with brain EIT images is the second 

objective of this research. The work presented in this chapter aims to achieve this 

objective. 

Following this introduction, the next section of this chapter is an overview of medical 

image registration; then a scheme for the registration of brain EIT images with an 

anatomical brain dataset is proposed; next, experiments are described and discussion 

based on the experimental results is conducted; finally, a conclusion of this chapter is 

drawn. 

4.2 Overview of Medical Image Registration 

Generally, medical image registration is realized in three steps: first, a number of 

features are selected from the images and correspondence is established between them; 

then a transformation function is determined; fmally, with the estimated transformation 

function, one image is transformed and resampled to align with the other one. Over the 

years, a broad range of registration techniques have been developed, which can be 

categorized with respect to various criteria. A criterion, which is adopted in this 

overview, is the features that algorithms are based on. Features used in registration can 

be sorted into two main groups: geometric features and voxel intensity. Consequently, 

registration algorithms can be classified into geometric feature based registration 

methods or voxel intensity based registration methods. 

4.2.1 Geometric Feature Based Registration Methods 

The most widely used geometric features in registration are points and surfaces, though 

lines and extreme points identified using differential geometric operators are also used. 

Landmark-based, or point-based, registration involves identifying corresponding points 
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in the images to be aligned, registering the points and inferring the image transformation 

from the transformation determined from the points. Landmark-based registration is 

versatile in the sense that it, at least in theory, can be applied to any image, no matter 

what the object or subject is. The difficulty of this kind of method is the identification of 

corresponding landmarks, which is a segmentation procedure technically, and usually 

requires some user interaction. 

In surface-based registration, the surfaces are commonly represented by a set of points, 

contours drawn on a series of slices, or many triangular patches. The registration 

transformation is determined by iteratively transforming one surface or each point on 

one surface until the best match is found by some criteria. 'Head-and-hat' algorithm 

(Levin, Pelizzari et al. 1988; Pelizzari, Chen et al. 1989) and Iterative Closest Point (ICP) 

algorithm (Besl and McKay 1992 ) are two most famous surface-based registration 

approaches. Surface-based registration uses more of the available data than landmark 

identification, and supposes to be more robust and accurate. However, this kind of 

algorithm is sensitive to starting positions, and maybe prone to choose wrong solutions 

or local minima. 

Deformable model based registration IS another type of geometric feature based 

registration approach. 2D deformable models, i.e., deformable curves, appear in 

literature as snakes or active contours; 3D deformable models are sometimes referred to 

as nets. Deformable model based registration makes use of energy to describe the 

distortion in images. The registration is achieved by locating the minimum energy state 

in an iterative fashion. To ease the physical modelling, the data structure of deformable 

models is often represented using localized functions such as splines, instead of a point 

set. Deformable models are best suited to find local curved transformations between 

images, and less so for finding (global) rigid or affme transformations. Deformable 

models are in theory very well suited for inter-subject and atlas registration. A drawback 
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of deformable models is that they often need a good initial position in order to properly 

converge, which is generally realised by (rigid) pre-registration ofthe images involved. 

4.2.2 Voxel Intensity Based Registration Methods 

Voxel intensity based registration methods calculate the registration transformation 

directly from the voxel intensity values in the images rather than from geometrical 

structures derived from the images. The fIrst and most important step in this kind of 

registration is to measure voxel similarity between the images. With the similarity 

measure, an optimization algorithm is used iteratively to fmd the transformation that 

maximizes or minimizes the value of the measure, as appropriate. 

SSD (Sum of Squared intensity Difference) and SAD (Sum of Absolute Difference) are 

two commonly used similarity measures in the earliest voxel intensity based registration 

methods. The SSD and SAD measures make the implicit assumption that after 

registration, the images differ only by Gaussian noise. During the registration process, 

alignment is adjusted until the smallest SSD or SAD is found. CC (Correlation 

Coefficient) is a basic statistical similarity measure for registration. CC-based 

registration assumes that there is a linear relationship between the intensity values in the 

images. During the registration course, one image is moved with respect to the other 

until the largest value of the correlation coefficient is found. SSD, SAD, and CC all can 

just be used to measure voxel similarity between images from same modality. 

PIU (Partitioned Intensity Uniformity), which was proposed by Woods et al. (Woods, 

Mazziotta et al. 1993), is the fIrst successful application of a voxel similarity based 

algorithm to the registration of images from different modalities, although it has never 

been widely applied for registration other than MRI-PET images. PIU algorithm 

assumes that "all pixels with a particular MR pixel value represent the same tissue type 

so that values of corresponding PET pixels should also be similar to each other". It 
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partitions the MRI image into 256 separate bins based on the intensity value of the MRI 

voxels, and then seeks to maximize the uniformity of the PET voxel values within each 

bin. 

By thinking of registration of images as attempting to maximize their shared information. 

measure of information can be used as a registration metric. A typical example of this 

kind of metric is MI (Mutual Information), which was originally introduced by Shannon 

(Shannon 1948) and proposed for intermodality medical image registration by 

researchers in Leuven, Belgium (Collignon, Maes et al. 1995; Maes, Collignon et al. 

1997)) and MIT in the USA (Viola 1995; Wells, Viola et al. 1996) simultaneously and 

independently. MI can qualitatively be thought of as a measure of how well one image 

explains the other, and is maximized at the optimal alignment. MI measure is broadly 

used in various image registration problems. Particularly, in multimodality medical 

registration, MI technique has become a standard reference (Zitova and Flusser 2003). 

4.3 A Scheme for the Registration of Brain EIT Images 

with an Anatomical Brain Dataset 

As pointed out at the beginning of section 4.2, image registration starts from feature 

selection. However, as a prerequisite, the images to be registered should be decided 

initially. Therefore, before the discussion on feature selection and registration scheme, 

the first part of this section aims to pick up a suitable anatomical brain atlas for EIT 

images. 
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4.3.1 The Anatomical Brain Atlas 

The motivation of registering EIT images with another imaging dataset is to deal with 

the absence of anatomical information in EIT imaging. There are two questions which 

require answering in the selection of the anatomical image dataset. First, which modality 

should the dataset be imaged from? Secondly, with a selected imaging modality, which 

dataset should be adopted in the registration? 

In section 1.1, various anatomical medical imaging modalities have been introduced. 

Among those modalities, both CT and MRI can provide good structure information of 

human body with millimetre resolution. Furthermore, images obtained from CT scan 

include high quality information about bones, but not suitable for tissue visualisation. 

However, different tissues can be identified more clearly in images obtained from MRI 

imaging than those from CT, although MRI images are less sensitive to changes inside 

bones. Human brain is composed within the skull of different tissues, such as, grey 

matter, white matter and CSF (Cerebral Spinal fluid) functional activities revealed by 

brain EIT imaging generally appear in the tissues. Therefore it is more suitable to choose 

MRI images as an anatomical context in the visualisation of brain EIT images. 

Beside millions of clinical MRI images stored in different hospitals all over the world, 

there are various MRI datasets that have been applied as reference data on different 

occasions, such as, MRI dataset for the Digital Human, Montreal BrainWeb reference 

datasets. In this research, a high-quality high-resolution Montreal BrainWeb reference 

dataset is adopted as the MRI brain atlas. The advantages of Montreal BrainWeb 

reference dataset over other MRI reference data is that, this MRI dataset is created by 

simulation, so it avoids the distortion which is usually found in MRI imaging (Collins 

and Zijdenbos 1998). Montreal Brain Web reference datasets have been widely used as a 

standard reference data ("ground truth") for anatomical brain mapping and quantitative 

brain image analysis methods. From another point of view, once the modality of the 
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anatomical atlas is decided, the selection of particular atlas dataset has limited effect on 

the registration scheme. That is to say, same scheme can be used to register brain EIT 

images with different MRl reference dataset with minor adjustments. 

Currently, the BrainWeb contains simulated brain MRl data based on two anatomical 

models: a normal one and the one with mUltiple sclerosis. For both of these, full 3D 

volume data have been simulated using three sequences (TI-, T2-, and PD(Proton 

Density)- weighted) and a variety of slice thicknesses, noise levels, and levels of 

intensity non-uniformity. The dataset applied to this research is from its normal brain 

model, with parameters set as: Modality = TI, Intensity Non-Uniformity = 20%, Noise = 

3%, Phantom_name = normal, Slice_thickness = Imm, and Protocol = ICBM. 

4.3.2 Feature Selection 

As described in section 4.2, features used in medical image registration can be grouped 

into two kinds: geometric features and voxel intensity. Different features are suitable for 

different situations. Generally, geometric feature based registration methods are 

recommended when the local structural information is more significant than the 

information carried by the image intensity. They allow registering images of completely 

different nature and can handle complex between image distortions. On the other side, 

voxel intensity based registration methods use the full image context instead of relatively 

sparse extracted information throughout the process. They are theoretically more flexible 

and can avoid the difficulty to detect the respective features. Furthermore, MI (Mutual 

Information) technique, which is specific voxel intensity based registration method, has 

become a standard reference in multimodal medical registration. 

Considering the significance of MI technique in multimodality medical registration, it is 

attractive to apply MI technique in the registration of brain EIT images and MRl 

reference dataset. Mutual information measures the statistical dependency between two 
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datasets. It can be thought of as a measure of how well one image explains the other, and 

is maximized at the optimal alignment. Because of the low spatial resolution in EIT 

images, currently, it is almost impossible to "explain" the anatomical information 

included in MRI images with the functional impedance information included in EIT 

images, and vice versa. That is to say, it is very difficult to register EIT and MRI with 

MI technique by optimizing the statistical dependency between their voxel intensities. 

Other voxel similarity measures like SSD, SAD, and CC assume that images differ only 

by Gaussian noise or a linear relationship between the intensity values in the images. 

They cannot be used to measure the voxel similarity between images from different 

modalities. In brief, voxel intensity is not a suitable feature for the registration of brain 

EIT images and MRI reference dataset. Therefore, geometric features will be used in this 

registration. 

Voxel intensities in EIT image represent the impedance change or absolute impedance 

value with a poor spatial resolution. It is very difficult to use those intensities as a 

registration feature directly. Moreover, it is hard to select any geometric meaningful 

features inside the brain in an EIT image and find out their correspondences in a MRI 

image. However, there is some geometric information that can be traced on the brain 

surface in EIT images. As mentioned in section 1.1.2, EIT imaging for human brain is 

conducted with electrodes attached to scalp (as shown in figure 1.3). Currently, thirty­

one electrodes are used in brain EIT imaging (as illustrated in figure 4.1). Twenty-seven 

of the thirty-one electrodes, which will be called twenty-seven system electrodes later, 

are located according to the international 10-20 system for EEG electrode placement 

(Binnie, Rowan et al. 1982). The fundamental of the 10-20 system is the positions of 

four basic fiducial points: nasion, inion, left preaurical point, and right preaurical point. 

The other four in the thirty-one electrodes, which will be called four additional 

electrodes, are added to optimize current distribution in the brain: two of them are 

placed on the mastoid bones behind each ear, and the other two are placed over the base 

of the occiput. The positions of those thirty-one electrodes and the four basic fiducial 

- 128 -



Chapter 4 Registration of Brain EIT Images with Anatomical Brain Data 

points are projected on the surface of the head mesh used in the reconstruction algorithm. 

EIT reconstruction produces volumetric impedance data wrapped by the head mesh. The 

impedance value at each voxel in an EIT image dataset is obtained by rasterising the 

corresponding volumetric impedance data. There is a direct mapping between the 

coordinates used in the head mesh and the reconstructed image dataset: the axes in the 

two coordinates have same directions but different units. So, with the positions of the 

thirty-five landmarks on the head mesh, it is relatively easy to identify the position of 

those landmarks in EIT images. Then, the next question is whether it is possible to 

identify positions corresponding to the thirty-five point features in MRl images. 

Figure 4.1 Electrode distribution in brain EIT imaging 

Viewed from above the head. The electrodes taken from the International 

10-20 system are labelled according to that system. The four additional 

electrode positions are labelled with 1-4 separately. 

Among the thirty-five point features, the four additional electrodes and the four basic 

fiducial points for the 10-20 system, have clearly defmed anatomical location. 

Considering the rich anatomical information included in MRl images, it is possible to 

identify these eight features in MRl images. After the recognition of the four basic 
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fiducial points, corresponding positions for the twenty-seven system electrodes can be 

located in MRl images consequently according to the rules of the 10-20 system. 

In summary, registration of EIT images and MRl atlas can be conducted based on 

landmark features. The potential landmark features for this registration include the 

thirty-one electrode positions used in brain EIT imaging and the four basic fiducial 

points in the 10-20 system. 

4.3.3 The Registration Scheme 

After the decision of features to be employed in the registration of EIT images and MRl 

reference dataset, this section intends to propose a scheme for this registration. 

According to the approaches to locate the point features in MRl image, the set of those 

points P = {Pi: (i = 1,.··35)} can be grouped into two subsets: points in subset 

PA = {p; : (m = 1", ·8)}, which include the four basic fiducial points in 10-20 system 

and positions used for the four additional electrodes in the EIT imaging, can be 

segmented out from MRI images; anatomical location corresponding to points in subset 

PB = {p; : (n = 1"",27)}, which include the twenty-seven system electrodes, have not 

been obviously defmed, and positions of those points have to be calculated according to 

the rules in the 10-20 system. Considering this difference existed in the point features, a 

two-level landmark-based registration scheme is proposed and illustrated in figure 4.2. 
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Figure 4.2 The landmark-based registration scheme 

The main processes in this scheme are initial registration and refined registration. As a 

preparation, the positions of the thirty-five landmarks Peil = {P"il, A' Peil , B} in the EIT 

image are located by mapping their corresponding positions in the head mesh used for 
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reconstruction to the volumetric image space, and positions for eight landmarks in subset 

Pmri • A are manually segmented in the MRI image. The initial registration is based on the 

eight pairs of landmarks in Peit • A andPmri • A' An affme transformation T
J 

is determined 

by the least-squares method in this registration. With the transformation T
J

, the MRI 

image J mri and the landmark subset Pmri • A are transformed and resampled to align with 

the EIT image: 

(4.1) 

, I 

Based on the resampled MRI image J mri and the landmark subset Pmri • A , the other 

I 

landmark subset Pmri B in the MRI image are calculated according to rules in the 

international 10-20 system. Up to this point, thirty-five landmarks have been identified 

in both EIT image and MRI image. Therefore, the refmed registration is carried out with 

I I I 

the thirty-five pairs of landmarks in Peit and Pmri = {Pmri• A ,Pmri • B }, and affine 

transformation T2 is calculated by the least-squares method. 

After the initial registration and refined registration, the brain EIT image J eit is 

transformed with TI and T2 and resample to align with the reference MRI image in the 

final step of this scheme: 

I -I 
J eit = TI T2 (J eit ) (4.2) 

4.4 Experiments and Discussions 

In order to demonstrate the registration scheme proposed in the preceding section, some 

experiments have been conducted and are described below. 
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4.4.1 Datasets Used in the Experiment 

The EIT dataset registered in the experiment is selected from the human brain EIT 

dataset used in section 3.4.2, where details on how data were collected have been 

described. Figure 4.3 presents three orthogonal slices in the EIT dataset. As mentioned 

in section 4.3.1, a Montreal BrainWeb reference dataset will be registered with the brain 

EIT image to provide anatomical information inside the brain in the visualisation. Figure 

4.4 illustrates three orthogonal planes of the selected reference MRI dataset. 

(a) (b) 

(c) 

Figure 4.3 Displays of three orthogonal slices in the selected brain EIT dataset 

Coordinates in the brain EIT dataset is that: x is from left to right, y is from back 

to front, and the z axis is from below to upper. Slice (a) is perpendicular to the 

x axis and crosses nasion and inion; slice (b) and slice (c) are perpendicular to y 

and z axes separately, and cross left and right preaurical points. 
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(a) (b) 

(e) 

Figure 4.4 Displays of three orthogonal planes in the selected 

Montreal BrainWeb reference dataset 

Coordinates in the MRI dataset is same as the EIT dataset, and the 

three planes are sliced with same criteria used in figure 4.3. 

4.4.2 Identification of the Features 

As pointed out in section 4.3.2, to reconstruct EIT images, positions of the thirty-one 

electrodes used in EIT imaging and the four basic fiducial points in the 10-20 system, 

which compose the thirty-five landmarks for this EIT-MRl registration, have been 

marked on the head mesh during the reconstruction processing. Figure 4.5(a) illustrates 

the head mesh with positions for the electrodes coloured in red. Considering the map 

between coordinates in the head mesh and the reconstructed EIT dataset, it is relative ly 

easy to identify the landmarks in EIT images. Figure 4.5(b) displays the central sagittal 

plane of the EIT image dataset with landmarks on this plane highlighted in green. 

The eight landmarks belonging to subset Pmri • A , which have clearly defmed anatomical 

location, in the MRl image are segmented manually by the author in this experiment. 
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Figure 4.6 presents positions of the four basic fiducial points on corresponding MRl 

slices. 

(a) Head mesh used in EIT 
reconstruction with position~ 
for electrode coloured in red 

• 

(b) Central sagittal plane in thE 
EIT dataset with landmarks 

highlighted in greer 

Figure 4.5 Landmarks in the EIT image 

(a) Nasion and inion ir 
the MRI datasel 

(b) Left and right preaurical 
pOints in the MRI dataset 

Figure 4.6 Landmarks in MRI dataset 

With the eight landmarks identified, the remaining twenty-seven landmarks in the MRI 

image can be calculated subsequently. However, according to the proposed registration 

scheme, before this calculation, an initial registration is performed to align the MRI 

, 
image with the EIT image. And the landmarks in Pmri . A is transformed to Pmri , A . Figure 

4.7 shows the result of the initial registration. Subsequently, the twenty-seven landmark 
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, 
are computed based on the transformed landmarks Pmri • A and the resampled MRI 

, 
images I mri • Figure 4.8 illustrates landmarks on the central sagittal plane in MRI image. 

Up to now, thirty-five pairs of landmarks have been identified in the EIT image dataset 

and the resampled MRI image dataset. According to the proposed scheme, the next step 

is to perform the refmed registration with these landmark correspondences. 

(a) Slices from the 
EIT dataset 

(b) Slices from the MRI 
dataset after intial registration 

(c) Slices from the 
MRI dataset 

Figure 4.7 Demonstration of the initial registration results 

Slices in different columns are from different image dataset ; Coordinates in those 

clatasets are defined as: x is from left to right , y is from back to front, and z axis 

is from below to upper. Slices in the first row are perpendicular to x axis and cross 

nasion and inion; Slices in the second and the last row are perpendicular to y and 

z axes separately, and cross left and right preaurical points. 
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Figure 4.8 Landmarks on the central sagittal plane in the 

MRI dataset after initial registration 

4.4.3 Registration Results and Discussions 

(a) Slices from the 
EIT dataset 

(b) Slices from the 
registered EIT dataset 

(c) Slices from the 
MRI dataset 

Figure 4.9 Demonstration of the final registration resuJts 

Slices in different columns are from different image dataset; Coordinates in those 

datasets defined in the same way as figure 4.8, and the planes are sliced with same 

criteria used in figure 4.8. 
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Through the refmed registration between the EIT image and the resampled MRI image, 

transformation T2 is obtained by the least-squares method. The goal of this registration 

is to align the EIT image with the reference MRl image instead of the resampled one. 

Therefore, the fmal transformation T should be a combination of the transformation T2 

and transformation T
J 

, which is calculated through the initial registration and is 

described using the relation between the reference MRl image and the resampled MRI 

image. Finally, the EIT image is transformed with T and resampled. Figure 4.9 

represents the fmal result of this EIT -MRl registration experiment. Figure 4.10 overlays 

the brain surface contours in the registered EIT images on the corresponding slices of the 

reference MRl images, where the red lines stand for the contour in the registered EIT 

dataset. Visual inspection of the contours overlaid on the MRl slices indicates an 

encouraging coincident alignment of the brain surfaces in these two datasets. 

(a) (b) 

( c) 

Figure 4.10 Overlay brain contours in EIT images on MRl slices 

The three MRl slices appeared in this figure are same as those slices in figure 4.4, the 

red line stands for the brain contour in the registered ElT dataset . 
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To access the registration accuracy between the landmarks quantitatively, the Euclidean 

distances between registered landmark correspondences are calculated. The Root Mean 

Square (RMS) and Standard Deviation (STD) of these distances were adopted as an 

indicator for the absolute registration accuracy. Table 5.1 lists the RMS and STD values 

after the initial registration and the refmed registration according to the proposed scheme. 

As pointed out by Singh et al (Huppertz, Otte et al. 1998) that, with a few reference 

points the stability of registration will vary from point to point within the brain, 

depending on the geometrical relationship between the point of interest and the fiducial 

points. Points in the brain further from the fiducial points will be subject to greater 

uncertainty than nearer points. The RMS of Euclidean distances between registered 

landmark correspondences is less than 3mm, however, it is difficult to access the 

registration accuracy for the other voxel in the dataset, and further assessment of the 

registration accuracy is beyond the scope of this research. 

Table 4.1: Registration accuracy indicated with RMS and STD of Euclidean 

distances between registered landmark correspondences 

Registration Step RMS (mm) STD (mm) 

Initial registration 3.11 1.38 

Refined registration 2.62 1.27 

The purpose of registering brain EIT images with anatomical brain data is to make up 

the absence of anatomical information in EIT imaging and enhance the visualisation of 

EIT images. With the proposed EIT -MRI registration scheme, a relatively accurate 

registration is achieved. Subsequently, it is possible to fuse the anatomical and 

functional information involved in the two kinds of image modalities and visualise it in a 

single view. Figure 4.12 is a demonstration of this kind of display, where the impedance 

information in EIT dataset is represented in transparent color and the anatomical 

information provided by MRI dataset is displayed with grey scale. Besides the fusion of 

raw EIT image data with anatomical image data, the EIT _MRI registration scheme can 
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also be combined with the ROI detection process described in chapter 3. This application 

will be demonstrated in Chapter 5. 

(a) The central 
sagittal slice in 
the EIT dataset 

(b) The central 
sagittal slice in the 

registered EIT image 

(c) The registered central 
sagittal slice fused with 
anatomical information 

Figure 4.11 Visualisation of the fused EIT -MRl information 

Medical image registration can be divided into intra- and inter- modality registration. 

Inter-modality registration usually includes registration between CT and MRI, CT and 

PET, PET and MR!, X-ray and CT, EEGIMEG and MR!, Ultrasound and MR!, etc 

(Maintz and Viergever 1998). Little work has been done to register EIT images with 

images from other modalities. Among all the inter-modality registration, EEG-MR! 

registration is the most similar one to the registration problem studied in this chapter: 

both EEG and EIT are measured by attaching electrodes to the scalp and recording 

boundary properties. EEG-MR! registration has been widely studied for many years, 

because EEG cannot be uniquely reconstructed, and registration of EEG data with MR! 

data is an important approach for the source location in EEG imaging. 

The most frequently used approach to register EEG and MRI data relies on matching 

fiducials, such as nasion, inion, and pre-auricular points, determined in both coordinate 

systems (Toma, Matsuoka et al. 2002; Stefan, Scheler et al. 2004). Other methods match 

EEG electrodes or electrodes markers visible in the MR! images, or use specifically 

designed devices to achieve a more precise and reliable identification of fiducials (S ingh, 
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Holliday et al. 1997). As a more precise and practicable alternative. an approach based 

on matching EEG- and MRl- derived reconstructions of the head or scalp surface has 

been presented, where the MRl-derived surface is segmented from the MRl image, and 

the surface for EEG can be derived by one of two methods: digitization of 1000 up to 

2000 more or less arbitrarily chosen points on the scalp surface, or spline interpolation 

of the digitized 3D-electrode coordinates (Brinkmann, O'Brien et al. 1998; Huppertz, 

Otte et al. 1998; Lamm, Windischberger et al. 2001). 

The registration scheme proposed in this chapter is landmark-based. Landmark-based 

transformations can be calculated fast without iteration. Surface-based registrations are 

usually performed in an iterative way and are relatively time consuming. From another 

point of view, in the situation that accuracy had higher priority than speed, surface-based 

registration is preferred to landmark-based registration. In fact, a surface-based 

EIT _MRl registration research is being conducted by other researchers at Middlesex 

University. That research is performed between personal MRl data and brain mesh nets 

used in EIT image reconstruction instead of EIT brain image data, and aims to create 

personal brain mesh nets. The main goal of that research is to improve the reconstruction 

of EIT image rather than the enhancement of EIT image visualisation. Because of the 

inherent connection between brain mesh nets used in EIT reconstruction and EIT brain 

images, it is straightforward'to apply the registration algorithm developed in that 

research to the visualisation of EIT images. Furthermore, considering that a good start 

position will speed up the iterative calculation of the transformation for surface-based 

registration and improve the registration accuracy, the registration scheme proposed in 

this chapter can be utilised as a pre-processing step to locate a good start position. 

Regardless, before the success of that surface-based EIT -MRl registration research, the 

scheme proposed in this chapter presents an initial solution for EIT -MRl registration. 

Once a surface-based algorithm is developed to provide a more accurate EIT -MRl 

registration, the landmark-based scheme still has the speed advantage and can be 

adopted in the situation where high speed is required. 
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4.5 Conclusion 

This chapter studied the second objective of this research: to provide an anatomical 

context for EIT image visualisation by registering them with images from anatomical 

imaging modalities. Because of the poor spatial resolution and the particular property 

presented by voxel intensities in EIT images, it is almost impossible to employ voxel 

intensity based registration methods in this application. In this chapter, a landmark-based 

registration scheme is proposed by making use of the limited geometric information in 

EIT images, which is inherent from EIT reconstruction processing. Encouraging results 

have been demonstrated by registering EIT and MRI data according to this scheme and 

visualising the fused information in one view. 

After addressing the first two objectives in this chapter and chapter 3, the next chapter in 

this thesis will focus on the third objective of this research: to derive a system 

development methodology for the visualisation of multi-dimensional medical images, 

and construct a prototype visualisation system for five-dimensional brain EIT datasets. 
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Chapter 5 Task-based Visualisation System 

Development for Multi-dimensional Medical Data 

5.1 Introduction 

In section 2.2.5, general visualisation approaches for MDMV (Multi-Dimensional Multi­

Variate) data have been reviewed. Some of those methods attempt to show all 

dimensions and all variates visually as one display, some try to reduce the 

dimensionality of dataset before visualisation, whereas others allow the user selecting 

subsets for display. Due to different features included in data from different research 

fields, different challenges are raised in the selection of proper visualisation means for 

specific data. In the following, challenges included in the visualisation of multi­

dimensional medical image data are analysed. 

5.1.1 Challenges in the Visualisation of Multi-dimensional 

Medical Image Data 

For multi-dimensional medical image data, three typical features should be considered in 

the visualisation process: fIrst of all, spatial or anatomical information is vital for 

medical implementations; secondly, dimensions included in medical image dataset are 
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generally orthogonal to each other; thirdly, it is critical to keep all useful information 

collected by medical imaging, although they are not always obvious, and sometimes are 

quite weak and difficult to identify from noise. 

With MDMV visualisation methods to show all dimensions and all variates as one 

display, all dimensions are expressed on a two-dimensional interface, usually with little 

consideration of the inner natural structure of those dimensions. For example, it is viable 

to display a 5D EIT imaging dataset (which includes impedance information of a 3D part 

of a subject obtained during a time interval and under different frequencies 

simultaneously) with Parallel Coordinates, where the axes of a multidimensional space 

are defmed as parallel vertical lines separated by a distance d , and a point in Cartesian 

coordinates corresponds to a polyline. With such a display, it is difficult for a clinician to 

connect those polylines with actual spatial or anatomical information of subjects. 

Generally, if a visualisation method can not present spatial or anatomical information 

intuitively or meaningfully, it is not suitable for medical image dataset visualisation. 

Unfortunately, this is a common problem included in most MDMV visualisation 

methods showing all dimensions and all variates as one display. 

Dimension reduction is always an attractive approach for the processmg of multi­

dimensional datasets. However, it does not work for all datasets. Take the most famous 

dimension reduction approach - PCA (Principal Component Analysis) as an example. 

PCA is a linear transformation that transforms the data to a new coordinate system such 

that the greatest variance by any projection of the data comes to lie on the first 

coordinate (called the fust principal component), the second greatest variance on the 

second coordinate, and so on. If the original coordinates are orthogonal to each other, 

PCA can not create a new coordinate with less dimensions. For example, it is impossible 

to express the spatial Cartesian coordinate, which is composed by x, yand z axes, with a 

two-dimensional coordinate without significant loss of information. Dimensions 

included in medical image datasets, which commonly include space and time, are 

- 144-



Chapter 5 Task-based Visualisation System Development for Multi-dimensional \tedicaJ Data 

usually orthogonal to each other. This fact limits the feasibility of methods based on 

dimension reduction for medical image dataset visualisation. Furthermore, as with 

visualisation methods to show all dimensions and all variates as one display, it is 

difficult to reserve the spatial or anatomical information involved in medical image 

dataset by visualising it with approaches based on dimension reduction. 

Considering the limitations included in methods to visualise high-dimensional dataset by 

dimension reduction or presenting all dimensions as one display, showing subset of a 

dataset seems to be the best way to visualise multi-dimensional medical image data. The 

difficulty in showing subsets is how to defme the subset in each display. 

5.1.2 Combining Subset Visualisation Approach with Task 

Exploration 

During the research, the author noticed that to accomplish a specific visualisation task, 

usually, just a subset of a dataset is processed. Furthermore, the subset generally has 

fewer dimensions compared with the whole dataset. Let us take a 5D EIT imaging 

dataset as example again. Supposing a visualisation task like: 

Question 5_1: "At a given point position, say (x]' Y]' z]), how did the impedance 

change along the time course under difJerentfrequencies?" 

To address this requirement, it is sensible to focus on a two-dimensional (time and 

frequency) subset corresponding to the given point, and present the spatial context of the 

given point in another display. 

As pointed out by Rudolf Arnheim, "The mind is always steered by purpose" (Arnheim 

1997), a visualiser does not only look at data but also look for something "interesting". 

The "interestingness" can be understood as relevance to the major research question that 
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the visualiser puts to himself/herself, or, in other words, the primary task of data 

visualisation, the motive for doing the visualisation. 

Respecting the fact that, explicitly or implicitly, tasks always exist, and it is possible to 

reduce visualisation complexity according to user's requirements, the author is 

convinced that it is reasonable to explicitly consider the potential tasks in the initial stage 

of system development for multi-dimensional medical image visualisation. 

Normally, there are two mam sorts of approaches to reveal potential tasks for a 

visualisation system: one is practical investigation with cooperation from people like 

domain experts; the other is theoretical generation according to a task model. 

Advantages of practical investigation include that the obtained tasks are usually concrete, 

understandable, and it is relatively easy to discover the most interesting tasks for the 

analyser/visualiser. However it is not trivial to ensure the completeness of the revealed 

tasks with this approach. Particularly, in some cases, there is neither abundant 

experience nor domain experts available. In contrast, completeness of tasks generated 

theoretically according to a model depends on the integrity of the adopted model. 

Another advantage of theoretical generation approaches is that some important while not 

quite obvious tasks, which may be ignored in practical investigation, can be identified 

through theoretic deduction. Theoretically generated tasks are logically meaningful, in 

other words, it maybe relatively abstract and not easy to be understood. Automatically, 

based on these two methods, there is a third way for task exploration: combination of 

practical investigation and theoretical generation. 

As described in the research goal, brain EIT images are adopted in this research as a 

demonstration of multi-dimensional medical image data. EIT imaging, particularly 5D 

EIT imaging, is a relatively new medical imaging method, which has not been used 

clinically up to now. There is limited experience on what kinds of tasks (or questions) 
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will be put forward for the visualisation of (SD) EIT data. Considering this situation, it is 

desirable to expose potential tasks for EIT visualisation according to a model. 

An introduction of different task typology models has been included in chapter 2. Each 

model has its own advantages and can be applied in different applications. The work 

presented in this chapter is based on the new version of Andrienko's task typology 

model, which synthesised other pioneers' achievements and is the latest model for task 

typology. This model aims to handle general data, although almost all examples cited by 

those authors are from the geographic field, particularly spatial-temporal data. 

Additionally, the functional representation of a dataset, which has been employed since 

the initial stage of this research to defme dimension of a dataset, is utilized in the new 

version of Andrienko 's model. 

In the next section, an overview of Andrienko's task typology model is presented. Then 

a new task typology model is derived by refming Andrienko's model. Next, a 

methodology to develop a visualisation system based on task exploration is proposed. 

Subsequently, a prototype system is developed, following the proposed methodology, 

for the visualisation of SD brain EIT image data. Finally, a conclusion is drawn at the 

end of this chapter. 

5.2 Overview of Andrienko's Task Typology Model 

The first version of Andrienko's task typology was originally proposed in (Andrienko, 

Andrienko et al. 2000). Later, Andrienko et al. took advantage of Bertin's theory (and its 

developments) and updated their model in (Andrienko, Andrienko et al. 2003). The 

second version of this model was mainly for exploratory analysis of spatial-temporal 

data. In their new book (Andrienko and Andrienko 2006), Andrienko et al. refmed the 

taxonomy a lot. The latest model, which is introduced in the following, can be 
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summarized as two fundamental formal models and three criteria. Naturally, most of the 

descriptions are based on Andrienko's book (Andrienko and Andrienko 2006). 

5.2.1 Two Fundamental Models 

A data model and a task model compose the two fundamental formal models for 

Andrienko's task typology. The fundamental data model represents a dataset as a 

function, and the fundamental task model describes a task as a combination of a target 

and constraints. 

5.2.1.1 The Fundamental Data Model 

A set of data may be represented by a function that assigns particular values of attributes 

to various references. So, a dataset may be represented by a formula such as 

f(x) = y (5.1 ) 

In general case, both x and y can be multiple variables. So the above formula can be 

expressed in a more "detailed" manner: 

(5.2) 

Where f is a function symbol, Xi (i = 1, 2, .. ·,m) is an independent variable (which is 

also mentioned as reference in Andrienko's book) defming the context in which the data 

was obtained, y j (j = 1, 2," ., n) is a dependent variable (which is also called attributes 

in Andrienko's book) representing the results of measurements, observations, 

calculations etc. obtained in the context defmed by independent variables (or references). 

For example, there are weather data for main cities in United Kingdom, which include 

such variables as city_name, date, maximum_temperature, minimum_temperature, 

wind_speed, and wind_direction. In this dataset, city_name and date are independent 
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variables (references); the others are dependent variables (attributes). So the functional 

representation of this dataset is: 

I(city _name, date) = (max_temp, min_temp, wind _speed, wind _direction) (5.3) 

Another example is spatial-temporal EIT data. These data include five variables: 

sample_time t, coordinate x, coordinate y, coordinate z, and impedance_value p. In 

this dataset, sample_time t, coordinate x, coordinate y , and coordinate z are 

references, and impedance_value p is the only attribute. This dataset can be represented 

in functional form as: 

I(x,y,z,t) = p (5.4) 

These two datasets will be referred to as the example weather dataset and the example 

EfT dataset separately throughout this chapter. 

The value of each dependent variable (or attribute) IS determined only by the 

independent variables (or references) and has nothing to do with values of other 

attributes, it is sensible to consider each attribute independently. Therefore, formula (5.2) 

can be rewritten as a set of functions with only one dependent variable (or attribute) in 

each of them: 

It (x p x2,··,xm ) = YI 

12(xp x2,··,xm ) = Y2 
(5.5) 

Here, the initial function I has been split into n functions It, 12'···' In. Each of these 

functions defmes values of one of the attributes on the basis of the values of the 

references. Consequently, the example weather dataset represented in formula (5.3) can 

be rewritten as: 

It (city _ name, date) = max _ temp 

12 (city _ name, date) = min _ temp 

13 (city _ name, date) = wind _speed 

14 (city _ name, date) = wind _ direction 
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5.2.1.2 The Fundamental Task Model 

A task (or question) can be split into two parts: a target, which defmes what information 

needs to be obtained, and the constraints, which describe what conditions information 

related to the target needs to fulfil. So, a task can be expressed as a formula: 

7 (target): (constraints) (5.7) 

Where the "7" is employed to label the task target; ":" is applied to separate the target 

part and the constraint part in the expression. 

The target and constraints can also be viewed as unknown and known (or specified) 

information respectively. The goal of a task is to find the initially unknown information 

corresponding to the specified information. Both the target and constraints can be 

defmed with references, or attributes, or combinations of them, or relations between 

references/ attributes. 

For example, a possible visualisation task for the example weather dataset can be: 

Question 5_2: "What is the maximum temperature in London on 27 Sep 2006?" 

According to the task model, this task can be represented as: 

7 (max _ temp) : (city _ name = London, date = 27 - Sep - 2006) (5.8) 

5.2.2 Three Criteria in the Task Typology 

There are three partition criteria included in Andrienko's task typology model. To 

simplify the statement, the author of this thesis labels them searching level, searching 

mode, and searching direction separately: 

• Searching level is used to distinguish tasks according to the level of data analysis, 

which includes elementary level and synoptic level. 

• Searching mode presents task classification of lookup, comparison, and relation­

seeking. 
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• Searching direction contains two options: direct tasks or inverse tasks . 

5.2.2.1 Searching Level - elementary level or synoptic level 

The idea of searching level was originally proposed by Bertin (Bertin 1983). In Bertin's 

theory, there are three "level of reading": elementary, intermediate, and overall. These 

levels indicate whether a question concerns a single data element, a group of elements 

taken as a whole, or all elements constituting the component. For example, there are 

three questions for the example EIT dataset: 

Question 5_3: "At a specified position (XI'YpZI), what is the impedance value 

at the sample time point tl ?" 

Question 5_4: "At a specified position (xl' YP ZI)' how did the impedance vary 

during the sample time interval [t\, t 2] ?" 

Question 5_5: "At a specified position (xPYI' ZI)' how did the impedance vary 

during the whole sample time interval?" 

According to Bertin's defmition, in question 5_3, references position and time are both 

at elementary reading level; attribute impedance_value is at elementary reading level as 

well. In question 5_4, references position is at elementary reading level; reference time 

and attribute impedance_value are at intermediate reading level. In question 5_5, 

references position is at elementary reading level; reference time and attribute 

impedance_value are at overall reading level. 

Considering that intermediate level and overall level have many more commonalities 

than differences: usually the same tools and analysis procedures can be used in both 

levels. Andrienko et al. combined these two levels into a single one and named it 

"synoptic level". Along with this explanation, for the above examples, reference time is 

at synoptic level in question 5_4 and 5_5. Andrienko et al. also pointed out that the 
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notion of elementary level and synoptic level applies only to references and not to 

attributes. Furthermore, when the number of referential variables is two or more these , 

multiple references can be addressed on different levels (elementary level or synoptic 

level) independently of each other. 

In summary, elementary level tasks refer to individual elements of reference sets; 

synoptic level tasks deal with a reference set or its subsets as wholes rather than address 

their elements. For a dataset with N references, there are 2N possible combinations of 

searching levels. 

5.2.2.2 Searching Mode - lookup, comparison, or relation-seeking 

In the fundamental data model, variables in a dataset are classified into two types: 

references and attributes. Consequently, relations among different variables of a dataset 

can be grouped into three types: 

Rl: Relations between references 

R2: Relations between attributes 

R3: Relations between references and attributes 

Furthermore, questions always concern relations between variables. Let us take question 

5_1 "What is the maximum temperature in London on 27 Sep 2006?" as an example. In 

this question, elementary references city _name and date are given; the target of this 

question is to fmd out the corresponding elementary attribute max_temp; relation 

concerned in this question is between references (city_name and date) and attribute 

(max_temp), which is expressed as 1; in formula 5.6. For a dataset, two basic questions 

are expected: 

Ql: Given two (or more) elementary (or synoptic) variables, identify what 

relation exists between them. 

- 152-



Chapter 5 Task-based Visualisation System Development for Multi-dimensional Medical Data 

Q2: Given one (or some) elementary (or synoptic) variables, and a relation, find 

other elementary (or synoptic) variables, related in the specific way to the given 

elementary (or synoptic) variables. 

Beside these two basic questions, another kind of question can be formulated in the 

following form: given a relation, fmd elementary (or synoptic) variables linked by this 

relation. However, this formulation can be transformed into the basic question Q2, 

which in this case is repeated for every elementary (or synoptic) variable in the dataset. 

Combining preceding relations and basic questions, six types of tasks can be drafted: 

Rl-Ql, Rl-Q2, R2-Ql, R2-Q2, R3-Ql, and R3-Q2. It is straightforward to identify that 

question 5_1 belongs to the task type R3_Q2. 

For a given dataset, it is assumed that all relations between references and attributes, or, 

at least, all such relations that of interest to a data analyst, are defined by the data 

function, if the dataset is represented as a function. Hence, basic question Q 1 does not 

come up when the focus is put on relations between references and attributes (relation 

R3): there is no sense in asking what kind of relation exists between a given reference 

and a given attribute. So for relation R3, only question Q2 is reasonable. Andrienko et al 

named task type R3_Q2 "lookup" tasks. Question 5_1 is a lookup task. 

For relations RI and R2, both question QI and Q2 make sense. In these cases, Question 

Q 1 is called "comparison" task, and question Q2 is "relation-seeking" task. Comparison 

tasks target to determine what relations exist between two (or more) references or 

attributes. In a relation-seeking task, a certain relation is specified, and items that are 

related in the specified way need to be detected. Andrienko et al. mentioned that the 

fundamental idea of relation-seeking task is to fmd references such that the 

corresponding attributes are related in a specific way. 
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Comparison and relation-seeking tasks do not occur in their basic forms, which do not 

involve the data function. In other words, no data are needed for answering such 

questions, because relations between references and between attributes are determined 

by the general, invariant properties of the respective sets. Such as, with the example EIT 

dataset, it is not useful to ask a question like: 

Question 5_6: "What is the time difference between the given sample time 

points tl and t2 ?" 

On the contrary, comparison and relation-seeking tasks appear as the basic forms 

modified by introducing additional targets and additional constrains, so that the data 

function is involved in at least one constraint. Therefore, a comparison task for the 

example EIT dataset can be put forward as: 

Question 5_7: "At a given position (xPYP ZI) , what is the time difference 

between sample time pOints tl and t2J where a given impedance value PI was 

obtained at t lJ and a given impedance value P2 was obtained at t2 ?" 

The classification of searching mode into lookup, comparison, and relation-seeking can 

be applied to different searching levels. By separating similarity/difference relations 

from other possible relations, Andrienko divided synoptic tasks into "descriptive 

synoptic" tasks and "connectional synoptic" tasks. That is to say, both descriptive 

synoptic tasks and connectional synoptic tasks deal with relations relevant to a dataset as 

a whole or to substantial parts of it, rather than associations between individual elements. 

The difference of these two synoptic tasks is that description synoptic tasks only 

consider similarity/difference relations between references or attributes, while 

connection synoptic tasks handle other relations, such as, correlation, dependency, or 

structural connection. 
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5.2.2.3 Searching Direction - direct tasks or inverse tasks 

The third partition criterion in Andrienko's task typology is searching direction, which 

classifies lookup and comparison tasks at different searching levels into direct tasks and 

inverse tasks. Direct lookup tasks are those where references are specified and the goal 

is to fmd the corresponding attributes. In contrast, inverse lookup tasks are tasks where 

references corresponding to specified attributes need to be found. This also includes 

tasks where references are partly specified. Comparison tasks targeting relations 

between attributes are called direct comparison tasks, and comparison tasks where 

relations between references need to be detennined are called inverse comparison tasks. 

The preceding example questions 5_1, 5_2, 5_3 and 5_4 are all direct tasks. A possible 

inverse task for the example weather dataset can be: 

Question 5_8: "In which cities, did the maximum temperature exceed 30 Celsius 

degree in June 2006?" 

In this question, reference variable city _name is the target. 

5.3 Application of Andrienko's Model to Medical Data 

The original purpose for Andrienko et al. to investigate task typology was to understand 

what essential criteria are used or should be used in choosing or designing tools for 

exploratory data analysis. In the study presented in this thesis, Andrienko's task 

typology model is adapted and applied to reveal potential visualisation tasks and further 

defme subsets to be displayed corresponding to those tasks. 

Andrienko at al. claimed that their model can be applied to general datasets. However, 

the author of this thesis noticed that Andrienko's research work, including work of other 

pioneers in this area such as Bertin, mainly concentrated on geographic data. No 
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application of this sort of task typology to the medical field has been found through 

literature review so far. Data used in different research fields have different features; 

even for a same dataset, researchers from different domain may have different interests 

and analyse it from different prospects. To facilitate task exploration for medical data 

visualisation, a series ofrefmements to Andrienko's model is conducted in the following 

subsection. Then a new task typology model is derived from Andrienko's model. Finally, 

the derived model is employed to the discovery of potential tasks for 5D EIT data 

visualisation. 

5.3.1 Formalise Criteria into Dimensions 

As summarised in section 5.2, three criteria are included in Andrienko's task typology 

model; under certain conditions, tasks classified by one criterion may be further 

categorized by the other criteria. The final model can be expressed as an unbalanced 

tree-structure. The author of this thesis noticed that, from the visualisation point of view, 

it is possible to formalise the task model further and the details are given below. 

5.3.1.1 About the Application of Searching Level to Attributes 

Regarding searching level in the task typology model, it is acceptable to apply it only to 

references and not to attributes, while Andrienko et al did not clarify the reason for this 

in their book. In other words, the phenomenon that "If one were to try to assign values 

from an arbitrary set S to a dependent component, it might occur that for many values 

there are no corresponding references (i.e. these values have never been attained), while 

for other values there are multiple references {i. e. these values have been attained more 

than once}." (Andrienko and Andrienko 2006) is not strong enough to support the 

conclusion that searching level should not be utilized with attributes. 
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As the author of this thesis understands, the real reason is that: in a dataset, attributes are 

not independent; therefore, the classifications of searching level for attributes are not 

independent from the classifications of searching level for references, which are 

dependant variables. In algebra and set theory, functions are "many-to-one" mappings. 

If an attribute is considered at synoptic level, which means a set of attribute values are 

treated as a whole, there must be one or more corresponding references at synoptic level. 

That is to say, it is impossible to consider all references in a dataset on elementary level 

and, at the same time, treat the attribute depending on these references at synoptic level. 

For instance, in the example EIT dataset, if the impedance_value is processed on 

synoptic level, which means a set of impedance values are analysed as a whole, 

obviously, this set of impedance values must correspond to a set of coordinate values 

(synoptic level) or/and a set of sample time points (synoptic level). In other words, it is 

impractical to collect a set of impedance values at one spatial position and one time 

sample point in an EIT imaging. On the contrary, each reference in a dataset can be 

considered at different searching levels independently. 

In conclusion, considering the dependent feature, the notion of elementary and synoptic 

level should only be applied to references and not to references and attributes 

simultaneously. 

5.3.1.2 Descriptive and Connectional Synoptic Tasks 

In Andrienko's model, synoptic tasks are divided into "descriptive synoptic" tasks and 

"connectional synoptic" tasks. Descriptive tasks process similarity/difference relations 

between references or attributes and are treated as a description of data; connectional 

tasks handle all the other possible relations between references or attributes and suppose 

to gain a deeper understanding of data. From the point of view of the cognitive 

operations and efforts involved, it may be acceptable to separate similarity/difference 

relations from other possible relations, "because cognitive operations and efforts 
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involved in these two sorts of tasks are different." (Andrienko and Andrienko 2006) At 

the same time, Andrienko et al also accepted that, from the formal point of view, 

connectional tasks can be subsumed under the category of descriptive tasks. 

Anyway, a classification cannot be right or wrong. What is important is that it is 

convenient or inconvenient. It maybe helpful for choosing or designing tools for data 

analysis aimed at separating the cognitive operations and efforts involved in sorting 

similarity/difference relations from other relations. Connectional tasks may require quite 

different tools from descriptive tasks. Visualisation can be treated as a method for data 

analysis, or a separate research area from analysis. The task typology is used to assist the 

defmition of subsets for the visualisation. It focuses on the feature of subsets, such as 

dimensions, corresponding to different types of tasks instead of cognitive operations and 

efforts involved in a relation discovery or description. To make the task model more 

convenient to apply, this research prefers to treat all potential relations between 

references and/or attributes equally and not to divide synoptic tasks further. 

For lookup tasks at synoptic level, the relations concerning in this kind of tasks are 

relations between references and attributes. All relations between references and 

attributes are defmed by data function of the dataset. It is awkward to classify a data 

function into relations like similarity, difference, or correlation. Therefore, it seems 

unreasonable to put lookup tasks as a subcategory for descriptive synoptic tasks or 

connectional synoptic tasks. This difficulty further strengthens the decision to treat 

synoptic tasks as a basic element in the searching level criterion. 

5.3.1.3 Rethinking of Relations in Task Typology 

A relation may be the target of a task or may be specified as a task constraint. Relations 

among different variable of a dataset can be grouped into different kinds: data function 

f relates references to attributes, there are also relations within the reference and 
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attribute sets. The list of potential relations within the reference and attribute sets can be 

various. This research focuses on binary relations: relations involving two items. In fact, 

relations in which more than two items participate can be represented by collections of 

binary relations. 

Comparison tasks target to determine what relations exist between two references or 

attributes, and data functions must be involved in the tasks. In other words, at least one 

of the two items included in a comparison should be specified through a direct or inverse 

lookup task. However, not any combination of references or attributes is meaningful: the 

components involved must be comparable, which generally acquires the components 

have coincident or at least overlapping value domains. In this research, only relations 

between same references or attributes are considered. 

The relations that can potentially exist between objects are diverse. For elements of 

reference or attribute set, the possible relations are determined by the properties of this 

set. For two elements of any set, relations like same or different always exist. If the set is 

ordered or at least partly ordered, the corresponding elements can be linked by ordering 

relations, such as, less than, less than or equal, equal, greater than or equal, greater than. 

Space is not ordered. However, if a particular coordinate system is introduced into space, 

it is possible to consider various relations specific to this coordinate system, such as, 

distances, directions in space. 

Relations between subsets of reference or attribute sets, which correspond to synoptic 

searching level, can be characterised as same or different, overlapping or not 

overlapping, included or not included. In an ordered set, there may be ordering relations 

between subsets, for example, relations between time intervals can be before or after. In 

a set with distances, there may be distance relations between subsets. Beside this, 

correlation can exist between subsets for different reference and attribute sets, or even 

for different subset from same reference or attribute set. 
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5.3.1.4 Searching Direction for Relation-seeking Tasks 

In Andrienko's model, searching direction has been used as a subcategory criterion for 

tasks at different searching level and different searching mode except relation-seeking. 

Andrienko et al. described the fundamental idea of relation-seeking task as fmding 

references such that the corresponding attributes are related in a specific way. Referring 

to the defmition of searching direction for lookup and comparison tasks, where direct 

tasks target to find attributes or relations between attributes, and the goal for inverse 

tasks are references or relations between references, the relation-seeking tasks specified 

by Andrienko at el. can be grouped as inverse tasks. However, relation-seeking tasks can 

also target for attributes with corresponding references related in a specified way, and 

these kinds of relation-seeking tasks can be classified as direct tasks. Let us check two 

possible tasks in the example weather dataset first: 

Question 5_9: "On 27 Sep 2006, in which cities was maximum temperature 

higher than London's maximum temperature?" 

Question 5_10: "In London, for the date when the highest maximum 

temperature in 2005 was achieved, what was the maximum temperature on the same 

date in 2006? " 

In question 5_9, the target is city_name(s), which is a reference in the example weather 

dataset; a relation between max_temp, which is an attribute in the example weather 

dataset, in London and max_temp(s) in the targeted cities is specified as a constraint. So 

question 5_9 is a relation-seeking task. The target for question 5_10 is max_temp, which 

is an attribute in the example weather dataset; a relation between date, which is a 

reference in the example weather dataset, on which the highest max_temp in 2005 was 

achieved and the date corresponding to the targeted max_temp is specified as a 

constraint. Therefore, question 5_10 is a relation-seeking task as well. Following the 

classification of researching direction for lookup and comparison tasks, question 5_9 and 

5_10 can be defmed as an inverse and direct task separately. 
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As we can see, both question 5_9 and question 5_10 are reasonable relation-seeking 

tasks. Therefore, in this research, the fundamental idea of relation-seeking task proposed 

by Andrienko et al. will not be adopted. Relation-seeking task will be defmed as: finding 

references or attributes such that the corresponding attributes or references are related in 

a specific way. With the refmed defmition, searching direction can be adopted as a 

subcategory criterion for relation-seeking tasks consequently. 

5.3.2 The Derived Task Typology Model for Medical Data 

Visualisation 

After previous refmement, the three criteria in Andrienko's model are formulated: they 

are independent to each other; tasks classified by one criterion can be further categorized 

by the other two criteria. It is reasonable to claim that they have been transformed from 

three general criteria into three dimensions. Consequently, a new task typology model 

can be derived from Andrienko's model. 

The new task typology model includes two fundamental models and three task 

dimensions. The two fundamental models are same as those models adopted by 

Andrienko. The three task dimensions are searching level dimension, searching mode 

dimension, and searching direction dimension. The searching level only includes 

elementary level and synoptic level: no further division is involved. Because of the 

independent characteristic, these two levels can be employed to each reference variable 

in a dataset. Therefore, if there are N references in a dataset, the number of possible 

values on searching level dimension is 2N. Searching mode dimension contains three 

possible values: lookup, comparison, and relation-seeking. Searching direction 

dimension has two potential values: direct and inverse. The defmitions of those values 

on these two dimensions are inherited from Andrienko's model. With the three 

dimensions, task typology for a dataset can be illustrated as a cubic grid (see figure 5.1), 

each voxel in this grid presents a type of task. 
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Figure 5.1 Graphical illustration ofthe refined task model 

In this graph, the references number N is set to be 2, so there 

are 2 N = 22 = 4 possible values for searching level dimension. 

Considering relations included in tasks on different searching mode, lookup tasks 

include one relation: the data function; comparison and relation-seeking tasks contains at 

least two relations: one is the data function and the other is relations between references 

or attributes. By treating lookup tasks as atomic task, comparison and relation-seeking 

tasks can be considered as compound tasks. Any compound task is built up from smaller 

operations, or subtasks. Usually, four kinds of subtasks can be identified for compound 

tasks like comparison and relation-seeking tasks: 

1. Direct lookup tasks; 

2. Inverse lookup tasks; 

3. Identify relations existing between two specified elementary ( or synoptic) 

references (or attributes); 

4. Find an elementary (or synoptic) reference (or attribute) related to a given 

elementary ( or synoptic) reference (or attribute) with a specified relation. 

In general, direct comparison tasks can be compounded with subtasks 1 and 3; inverse 

comparison tasks can be formed with subtask 2 and 3; direct and inverse relation­

seeking tasks can be constituted with subtasks 1, 2 and 4. 
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5.3.3 Task Exploration for Visualisation of 5D EIT Data 

After the proposal of the new task typology model, this section will take SD EIT data as 

an example to demonstrate how to apply the proposed model in task exploration for 

visualisation. 

5.3.3.1 Realising the Fundamental Data Model for EIT Data 

Following the fundamental data model used in the task typology, SD EIT data can be 

presented as: 

g(X,y,z,t,/) = p (S.9) 

Where x,y, z present three spatial coordinates, t stands for time, / for frequency, and 

p describes the impedance values inside the brain. In this function, there are five 

independent variables (or references). It is reasonable to treat the three spatial 

coordinates as a whole, because they specify positions in the Cartesian space together. 

Therefore, if I symbo lises the location defmed by (x, y, z), formula S. 9 can be rewritten 

as: 

g(l,t,/) = p (S.10) 

With this representation, there are three references and one attribute in a SD EIT dataset. 

What should be noticed is that this is just a simplification for task exploration but not a 

dimension reduction for visualisation. 

5.3.3.2 Customizing the Three Dimensions for EIT Data 

The values on searching mode and searching direction dimensions are fixed, while 

possible values on searching level dimensions depend on the number of references in a 

dataset. When a SD EIT dataset is represented with formula S.10, there are three 

references. Therefore, 2N = 23 = 8 values exist on the searching level dimension for 
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this dataset, as listed in table 5.1. In this table, "0" and "1" denote that the corresponding 

reference is at elementary level and synoptic level separately. Symbols A-H stand for 

eight combinations of the three references on different searching level. For example, 

symbo I C, which corresponds to the combination "10 1" in the table, means reference 

location is on elementary level, reference time is on synoptic level, and reference 

frequency is on elementary level. 

Table 5.1: Values on searching level dimension for a 5D brain EIT dataset 

Reference A B C D E F G H 

Location 1 1 1 0 1 0 0 0 

Time 1 1 0 1 0 1 0 0 

Frequency 1 0 1 1 0 0 1 0 

With the customization of the three dimensions, task typology for a 5D EIT dataset can 

be illustrated in a cubic grid form as figure 5.2. 
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Figure 5.2 Graphical illustration of task typology for a 5D EIT dataset 

Up to now, a formalized task typology with three dimensions has been established for 

5D EIT data. The next step is to explore potential visualisation tasks according to this 

typology. Table 5.2 lists the general task formulae for tasks (represented with a series of 

subtasks for each task type) at different searching modes and different searching 

- 164-



Chapter 5 Task-based Visualisation System Development for Multi-dimensional Medical Data 

directions. The searching level dimension does not appear in the task type column of this 

table, because, for a specified searching mode and searching direction, same formula 

presentation can be used for tasks at different searching levels. 

Table 5.2: General task formula for different task type 

Task type General task formula 

Direct ? P: (L,T,F) 
Lookup 

Inverse ?(L,T,F): P 

? ~ : (Lp I; , FI ) 

Direct ? P2 : (L2,T2,F2) 

? Rp : (~,P2) 

Comparison ?( LI ' I; , FI ) : ~ 

?( L2 ' T2 , F2 ) : P2 
Inverse ? RL : (LpL2) 

? RT : (T.,T2) 

? R F : (F., F2 ) 

?( LI ' I; , FI ) : ~ 

? L2 : (R L , LI ) 

Direct ?T2 : (RpTI) 

? F2 : (RF ,FI) 

Relation-seeking ? P2 : (L2,T2,F2 ) 

? ~ : (LpT.,FI) 

Inverse ? P2 : (Rp,~) 

?( L2 , T2 , F2 ) : P2 

In order to save space, details of the deduced questions are presented in Appendix A, 

and only questions at searching level G (synoptic location, synoptic time, and 

elementary frequency) and H (synoptic location, synoptic time, and synoptic frequency) 

are listed there. These two levels contain the most complex task types for a 5D brain EIT 

dataset. 
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5.4 From Task Exploration to Visualisation System 

Development 

With the proposed task typology model, potential visualisation tasks for multi­

dimensional medical data can be deduced. It is possible to develop a visualisation system 

based on the deduced tasks. Three aspects should be considered in the development of a 

task-based visualisation system: fIrst, how to facilitate the question formulation; 

secondly, how to choose a method on the basis of the question, the type of data available, 

and the level of information required, and process the data with the chosen method to 

fInd out the answer to the question. Finally there is the issue of how to display the results 

suitably. More details of this system development methodology are described in the 

following subsections, with 5D brain EIT data used for demonstration purposes. 

5.4.1 Question Formulation 

The specifIcation of a task can be carried out in two steps: fIrstly, defming the task type 

that a task belongs to, and secondly setting individual features for that task. Making use 

of the derived task typology model, the type of a task can be defIned by setting values 

corresponding to the three task dimensions: searching level, searching mode and 

searching direction. As defmed in the fundamental task model, a concrete task is 

constituted with targets and constraints. After the decision of searching direction, targets 

are specifIed to be attributes (or relations between attributes) for direct tasks, and 

references (or relations between references) for inverse tasks. Task constraints can be 

defmed with references, attributes, or relations between references or attributes. Among 

the three dimensions of the task typology model, searching level signifIcantly affects the 

setting of constraints. Generally, it is easier to set a constraint with elementary 

references or attributes than synoptic references or attributes. 
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Let us take a 5D brain EIT dataset as an example. There are three references and one 

attribute in this dataset. On elementary searching level, references location, time, or 

frequency all correspond to point values. It is relatively straight forward to set a 

constraint by specifying a value for an elementary reference/attribute. For example. by 

inputting a value in an editable textbox, adjusting a slider, or choosing a position on a 

displayed image directly. On the synoptic searching level, a synoptic location generally 

corresponds to a two-dimensional area or a three-dimensional region in a brain; synoptic 

time or frequency is a one-dimensional time interval or frequency range separately. The 

simplest way to employ those synoptic references as constraints is to defme their 

boundary values. 

Because of the dependent feature, searching level of an attribute can not be specified 

directly but is dependent on the searching level of the corresponding references. That is 

to say, only when all the references are on elementary level, attributes used in constraints 

can be treated as zero dimensional. For example, in a 5D brain EIT dataset, if a task is 

defmed on searching level A, which corresponds to elementary location, time and 

frequency as presented in table 5.1, then a constraint related to impedance can be a zero 

dimensional value. Similarly, if a task is defined on searching level E, which 

corresponds to an elementary location, synoptic time and synoptic frequency as 

presented in table 5.1, then a constraint related to impedance must be two dimensional. 

5.4.2 Selection of Processing Method 

Knowing the questions (or type of questions), one may look at familiar techniques from 

the perspective of whether they could help one to fmd answers to those questions. In 

some cases, there may be a subset of existing tools that cover all potential question types. 

It may also happen that for some tasks there are no appropriate tools. In that case, the 

nature of the tasks gives a clue as to what kind of tool would be helpful. This is an 

important initial step in designing a new tool. Ideally, a visualisation system must 
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contain a set of tools that could answer any possible visualisation question. This ideal 

will, probably, never be achieved, but a designer conceiving a system or toolkit for 

visualisation need to anticipate the potential questions and at least make rational choice 

concerning which of them to support. 

As mentioned in section 5.3.2, four basic subtasks exist in tasks revealed according to 

the task typology, where the fIrst two subtasks: direct lookup tasks and inverse lookup 

tasks are the main factors determining the choice of processing methods. For a direct 

lookup task, attributes appear in the target part; references are used as constraints. It is 

not difficult to obtain the targeted attributes according to the given references, 

considering that medical datasets are generally indexed along reference components 

when they were stored. 

Inverse lookup tasks are usually more diffIcult to process. Many image processing 

technologies can be considered in efforts to solve certain kind of inverse tasks. For 

example, thresholding can be described as an inverse task like that: within a given image, 

fInd out pixels with grey value greater than a given value. Similarly, edge detection can 

be mentioned as: in an image, find out pixels whose grey values satisfy some specified 

feature. Although a large number of image processing methods are available nowadays, 

some inverse tasks still cannot be addressed properly with existing tools. 

As mentioned in the previous section, searching levels of references influence the setting 

of attributes as a constraint. Furthermore, searching level affects the selection of analysis 

method for inverse tasks a lot, because it determines the dimension of data involved in 

the process directly. Let us take some inverse tasks for a 5D EIT dataset as example: 

Question 5_10: For a given impedance value PI' where, when and under which 

frequency was it attained? 
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In this task, the searching level is elementary for all the three references, and the 

corresponding searching level for attribute impedance is elementary as well. The 

formulary representation ofthis question is: 

? (location, time, frequency) : (impedance = PI) (5.11) 

A possible method to answer this question is to conduct a search on the whole dataset. 

For each step during this searching, a point in the 5D space formed by the dataset is 

chosen, impedance value corresponding to this point is compared with the given 

impedance value. In this each step of this process, a zero-dimensional point is analysed. 

Question 5_11: For a given impedance change pattern ~, where, at which time 

point, and during which frequency interval was it attained? 

In this task, references location and time are at elementary level, reference frequency is 

at synoptic level. Therefore, searching level for attribute impedance is synoptic. Formula 

representation for this question is similar as that one for question 5_10: 

? (location, time, frequency interval) : (impedance change patter = p..) (5.12) 

To obtain results for this task, a search can be conducted with each step choosing a 

combination of an elementary location I , a time point t, and a frequency range F , and 

comparing impedance pattern corresponding to this combination with the given 

impedance change pattern. Each of this kind of combination decides a one-dimensional 

line in the 5D space formed by the dataset. 

Conunonly, the complexity to resolve a reVIse task grows with the increase of the 

dimension of data involved in the process. For potential visualisation tasks of a dataset, 

dimensions of data involved in the process range from zero to the dimension of the 

dataset. Most image analysis approaches are performed with data less than four 

dimensions. With the improvement of medical imaging methods, more and more 

analyses have to be conducted with multi dimensional data. 
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For example, with a fMRl imaging dataset obtained under YEP (visual evoked response) 

test, one of the most interesting tasks is to locate the brain region which is activated 

under the visual stimulation. From the perspective of task typology model: this four­

dimensional MRl dataset has two references (location and time) and one attribute (the 

BOLD signal collected by a MRl instrument). This task can be rewritten as: 

Question 5_12: During the whole time interval, Jar a given BOLD signal 

change pattern, (which is represented with a description oj the experiment condition), 

find out the locations where signal change is similar to the given pattern. 

Searching level of this task is synoptic for location and time, so data involved in this 

process is four-dimensional. As mentioned in chapter 3, SPM can be utilized to solve 

this task, where the General Linear Model is used to describe signal change across time 

at each voxel, and Gaussian Random Field is adopted to adjust the multiple comparison 

effects among voxels. 

YEP tests can also be carried out with EIT imaging, 4D or 5D YEP EIT data can be 

obtained with dynamic or spectroscopic EIT imaging system separately. For 4D (spatial­

temporal) YEP EIT data, tasks similar to question 5_12 can be raised like: 

Question 5_13: During the whole time interval, Jar a given impedance change 

pattern, find out the location where impedance change is similar to the given pattern. 

Through the literature review, no existing method has been found to process this task. To 

fill this gap, the author of this thesis proposed to apply SPM to EIT data. Details about 

this part of work have been presented in chapter 3. 

For 5D (spectral-spatial-temporal) YEP EIT data, tasks like question 5_12 can be put 

forward in three ways: 

Question 5_14: With a specifiedJrequency, during the whole time interval, Jar a 

given impedance change pattern, find out the location where impedance change is 

similar to the given pattern. 
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Question 5_15: At a specified sample time point, during the whole frequency 

range, for a given impedance change pattern, find out the location where impedance 

change is similar to the given pattern. 

Question 5_16: During the whole time interval andfrequency range, for a given 

impedance change pattern, find out the location where impedance change is similar to 

the given pattern. 

Searching level included in question 5_14 is elementary for frequency, synoptic for time 

and location. This corresponds to level G in table 5.1. data involved in the process to 

answer this question is four-dimensional (spatial-temporal), which is same as question 

5_13. The proposed method of applying SPM to EIT can be adopted to answer this 

question. 

For question 5_15, the searching level is elementary for time, synoptic for frequency and 

location. This corresponds to level F in table 5.1. Data involved in the process of 

answering this task is 4D as well, but these four dimensions are composed with 3D for 

location and ID for frequency instead of time. In principle, methods used in SPM can be 

applied to analyse some inverse tasks on that level F as well. 

Situation involved in question 5_16 is more complex, where the searching level is 

synoptic for time, frequency, and location. This corresponds to level H in table 5.1. data 

appeared in the process of answering this question is 5D. Up to now, no suitable method 

has been found to cope with this kind of inverse task directly. One possible solution is to 

extend the GLM in SPM from one dimensional to two-dimensional (by considering the 

effect of time and frequency simultaneously), and then solve the multiple comparison 

effects with GRF. This work will be left for future. Currently, the 5D data involved in 

the process to answer question 5_16 are split into a series of 4D spectral-spatial subset 

under different values on the 5th dimension, (which is normally frequency), and the 4D 

subsets are handled with SPM. 
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5.4.3 Task-based Visualisation 

The goal of the task-based visualisation system development methodology is to facilitate 

the visualisation of multi-dimensional data, particularly multi-dimensional medical data. 

As explained in the first section of this chapter, the motivation of proposing a task-based 

methodology is twofold. First, among the three kinds of generally used visualisation 

approaches for MDMV (Multi-Dimensional Multi-Variate) data, subset-based method is 

most suitable for the visualisation of multi-dimensional medical image data. Secondly, 

subsets of a multi-dimensional dataset can be reasonably selected according to 

visualisation tasks. Among the three aspects of the task-based visualisation system 

development methodology, question formulation and method selection defme and locate 

the subsets properly, and the third part supports the multi-dimensional medical data 

visualisation with subset-based approaches. 

Multi-dimensional dataset 

Task constraints 

I T ast target I 

Figure 5.3 Illustration of the relation between a whole 

dataset and subsets defined by a task 

For a specified task, two kinds of subsets (as illustrated in figure 5.3) can be defined for 

visualisation: One includes data corresponding to the target for a task, which will be 

mentioned as target subset later; the other contains data corresponding to the target and 

its constraints context defmed in the task, which is cited as target-constrain t subset 

below. Take question 5_14 as an example, the target subset defmed by this question is a 

three-dimensional brain region. The target-constraint subset related to this question is a 

four-dimensional dataset including the identified brain region, the whole time interval, 

and impedance information corresponding to this region during the whole time interva l 

at the given frequency. 
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The dimension of a target-constraint subset is equal to the dimension of the data 

involved in the process to answer the question, and is normally bigger than the 

dimension of the corresponding target subset. As reviewed in chapter 2, various 

algorithms are available for the visualisation of data with three or less dimensions and , 

animation is a powerful approach to provide information on an extra dimension. It is 

acceptable to display a four-dimensional medical dataset in one view. Therefore, a 

principle for subset selection can be proposed as: for target subset and target-constraint 

subset corresponding to a task, if the dimension of the target-constraint subset is not 

more than four, then the target-constraint subset should be utilized preferentially in the 

subset-based visualisation; otherwise, the target subset is adopted if its dimension is less 

than the dimension of the target-constraint subset. Beside the presentation of the selected 

subset, other information in the data is important for further understanding of a task. So 

navigation is an essential feature for a subset-based visualisation system. Let us take 

question 5_14 as an example again. The target subset and the target-constraint subset are 

three dimensional and four-dimensional correspondingly. According to the proposed 

principle, with such a visualisation task, it is desirable to display the target-constraint 

subset in one view, and the other information in the dataset can be inspected through 

navigation. 

5.5 The Prototype Visualisation System - EIT5DVis 

To demonstrate the proposed system development methodology for multi-dimensional 

medical data, a prototype system named "EIT5DVis" is developed for the visualisation 

of a 5D brain EIT dataset. In the following section, an overview of EIT5DVis system is 

presented. Then some visualisation examples are given to illustrate how ElT5DVis 

works. Finally, some initial evaluation and discussion of EIT5DVis system is given. 
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5.5.1 Overview of EIT5DVis 

The EIT5DVis system is developed in MATLAB, with support from C++ and VTK 

(Visualisation Toolkit). MATLAB (The Math Works Inc 2002) is a high-performance 

language for technical computing. It is an easy-to-use environment with powerful debug 

tools and so has been chosen to build up this prototype system. MATLAB provides 

some visualisation functions ; however those functions are not enough for the 

development of the prototype system. For example, MATLAB does not include a 

volume rendering feature. VTK is selected to provide visualisation support. VTK is an 

open-source, portable, object-oriented software system for 3D computer graphics, 

visualisation and image processing (Schroeder, Avila et al. 2000) . VTK includes a core 

implemented as a compiled C++ class library and supports TCL, Python and JAVA 

language bindings. However, VTK does not support MAT LAB binding directly. 

Therefore, C++ is used as a bridge between MATLAB and VTK. 

Data Processing ModulE 
Visualization ModulE 
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I 2D matrix displa~ I 
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Vi. ~ Animation anc 
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Figure 5.4 Module structure of the EIT5DVis system 
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EIT5DVis is constituted with relatively independent modules, which mainly include data 

processing module, task formulation module, method selection module, visualisation 

module, animation and navigation module, and registration module. Figure 5.4 illustrates 

communications among modules and main functions contained in those modules. A brief 

introduction for each module is given below. 
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Figure 5.5 Graphical user interface for task specification 

The data processing module in EIT5DVis system handles data input and output. The 

registration module included the registration algorithm proposed in Chapter 4. The task 

formulation module provides graphic user interfaces (see figure 5.5). Through these 

interfaces, users can specify task types by choosing values on the three dimensions of 

the task typology model, and then define constraints and targets part of tasks. After task 

specification, EIT5DVis calls the method selection module to choose a processing 

algorithm to answer the formulated question. The algorithms included in the method 

selection module are extensible: it is possible to combine new image analysis methods 

into this module, or communicate with other image process ing software fro m thi 
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module. In the current system, EIT data is processed by SPM in this module. The 

registration module can also be called from this module. 
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Figure 5.6 Orthogonal display of a direct comparative task 

In the visualisation module, four main display methods are provided: 2D orthogonal 

display, 2D matrix display, 3D isosurface display, and 3D volume display. 2D 

orthogonal display visualises three orthogonal slices crossed at a selected voxel in one 

view (as illustrated in figure 5.6). In 2D matrix display, each elementary image within 

the 'matrix' presents information for a 2D slice, plus the two dimensions provided by 

'matrix', theoretically, this method is able to visualise a 4D dataset in one view. Figure 

5.7 shows an example of the 2D matrix display. The 3D isosurface display in EIT5DVis 

combines isosurfaces and isocaps: isosurfaces are constructed by creating a surface 

within a volume dataset that has the same value; isocaps are used along with isosurface 

to show inside slices of a volume. By default, EIT5DVis creates an isosurface 

corresponding to brain outline. Figure 5.8 presents a 3D isosurface visualisation example. 

The 3D volume display in EIT5DVis is realized by VTK. VTK provides three main 

volume rendering techniques: ray casting, 2D texture mapping, and support for 
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VolumePro vo lume rendering hardware. The 3D volume rendering presented in figure 

5.9 is resulted by making use of the volumetric ray casting function in VTK . 
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Figure 5.9 3D volume display of a direct lookup task 

Task-based subsets, which include target subsets and target-constraint subsets, usually 

have fewer dimensions than the whole dataset However, for some tasks, even their 

target subsets have same dimensions as the whole dataset A integrated task-based 

visualisation system should be able to deal with these situations. In EIT5DVis system, 

the animation and navigation module is developed to visualise subsets of more than 

four-dimensions and enable browsing of the whole dataset In other words, the display 

methods involved in the visualisation module show four dimensions in one view at most, 

animation can be used to present information along another dimension beside those 

dimensions which have been displayed in the view. For 2D orthogonal display and 3D 

surface display, navigation can be conducted along all the five dimensions. For 2D 

matrix display and 3D volume display, user can navigate the view along time and 

frequency dimensions. Alternatively, animation can be used as an automatic navigation 

along a selected dimension. 
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5.5.2 Visualisation Examples Using EIT5DVis 

This section attempts to explain how EITSDVis works with some concrete visualisation 

tasks. It would be ideal if a SD clinical brain EIT dataset is available for this illustration. 

Unfortunately, only a set of 4D clinical brain EIT datasets obtained in visual stimulation 

experiments is accessible for this research currently. Instead of creating some simulated 

SD brain EIT datasets, these 4D EIT datasets corresponding to different subjects are 

treated as a SD dataset collected from one subject at different frequency within a time 

interval. More details about the 4D clinical brain EIT datasets can be found in section 

3.4.2. 
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Figure 5.10 2D orthogonal display ofthe result for question 5_1 

There are a range of tasks that can be addressed in EITSDVis, whose complexity is 

roughly determined by where they are drawn from on the scale of searching leve l. For 

example let us take the ftrst question listed in this chapter as an example: 
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Question 5_1: "At a given point position, say(x\, y\, z\), how did the impedance 

change along the time course under different frequencies?" 

This question is a direct lookup task. Figure 5.10 illustrates a 2D orthogonal display of 

result for this question. 

Obviously a comprehensive visualisation system would include implementation of all 

tasks from all searching levels in the derived task typology model. However the 

complete implementation of the system is beyond the scope of this thesis. Rather the 

feasibility of the methodology will be demonstrated by investigating three complex 

inverse example questions. For the visualisation of a 5D brain EIT dataset collected in 

visual stimulation experiments, one of the most interesting questions is: 

Question 5_17: "Which part of the brain is activated under the visual 

stimulation ?" 

The expected answer to this question is to display the activated regions. In order to 

process this question in EIT5DVis, the first phase is to formulate the question. The target 

of question 5_17 is Location, which is a reference according to the data model for a 5D 

EIT dataset given in formula (5.10) in section 5.3.4.1. Thus question 5_17 is a inverse 

task. This task considers action inside the brain along the whole experiment time interval 

and the whole frequency range instead of at a certain time point or under a certain 

frequency, so the searching level for time and frequency are synoptic. Also, the target 

locations for this task are 3D regions rather than isolated spatial points, so the reference 

location is at the synoptic level as well. Put them together, this task is on level H as 

defmed in table 5.1: synoptic location, synoptic time and synoptic frequency. Relations 

concerned in this question are between references (location) and attribute (impedance), 

so searching mode of this task is lookup. Table 5.3 summaries the task type of question 

5_17. 
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Table 5.3: Task type of question 5_17 

Task dimension Value 

Searching level Synoptic location, synoptic time and synoptic frequency 

Searching mode Lookup 

Searching direction Inverse 

After the specification of task type, the next step in task definition stage is to set the 

target and constraints. Obviously, the target of question 5_17 is Location. There are 

three constraints in this question: the first one sets the synoptic Time as the whole 

experimental time interval, the second one restricts the synoptic Frequency to the whole 

frequency range in the experiment. The third constraint limits the value of impedance. In 

the original question, the third constraint is just mentioned as 'activated', and no further 

information about 'activated' is given. So it is not possible to defme the impedance 

change pattern in an 'activated' region directly. However, those activations are caused 

by visual stimulations in the experiments and should react to the changes in stimulation. 

So the on and off pattern of visual stimulation is used as a constraint for impedance 

change pattern in this task. Specifically, matrix P in formula (5.13) is entered in the 
, 

editable textbox to set the constraint to impedance change pattern (as shown in figure 

5.11). 

0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 
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In the matrix P , "0" denotes that no visual stimulation is presented, " 1" indicates that 

visual stimulation is presented. Each column of this matrix represents a sample time 

point, and each row corresponds to a different frequency. As mentioned in section 3.4.2, 

the visual stimulation experiment lasted 6min and 15sec with a scalp impedance dataset 

acquired every 25sec, and the visual stimulus was presented after the sixth sample time 

point for 75sec in each experiment. So the visual stimulus accross the experiment time 

can be represented with six '0', following three' 1 " and then six '0'. Impedance values 

under different frequency are measured simultaneously, which means the visual stimulus 

is the same for each frequency. So same values appear on each row of matrix P . 
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Figure 5.11 Task specification for the question 5_17 

After task formulation, EIT5DVis calls the appropriate algorithm included in the task 

analysis module to process the task. For question 5_17, SPM is called to address the 

target location. Details about how SPM works with EIT dataset have been presented in 

Chapter 3. For this question, the target subset is 3D, and the target-constraint ubset i 
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SD. So the target subset is adopted in the fmal visualisation. Figure 5.12 shows a 2D 

orthogonal display of the target subset, where locations activated under visual 

stimulation are presented with colour, and impedance in other parts of the brain are 

displayed in grey scale. 

Orthogonal slices 

Y (back to front) X Qeft to nght) 

20 25 30 35 40 

Figure 5.12 2D orthogonal display of the result for question 5_17 

After the solution of question S _17, another question may be presented subsequently: 

Question S _18: "If the region of the brain activated under visual stimulation is 

in the visual cortex?" 

This question can be treated as a comparison task. However, as we know, EIT imaging 

data contain little anatomical information. It is difficult to recognise the visual cortex 

within EIT data. Therefore, it is better to process question 5_18 in two steps instead of as 

a simple comparison task: first, question S _17 is processed as a subtask for question 

S _18, then the target subset and the EIT dataset for question 5_17 are registered to a 

MRl dataset with the scheme proposed in chapter 4, and the final visualisation combine 

the registered target subset, the registered EIT dataset, and the MRI dataset. Figure 5.13 

present a 2D orthogonal display of the target subset in the anatomical contours provided 
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by MRl dataset, where locations activated under visual stimulation are presented with 

color, and impedance in other parts of the brain are displayed in grey scale. 

10 

Figure 5.13 2D orthogonal display of the result for question 5_18 

As pointed out in section 5.3.1.3, diverse relations can potentially exist in tasks. Apart 

from the commonest same/different relation, Boolean spatial operators as used in 

Constructive Solid Geometry (CSG), such as union, intersection and difference, 

commonly appears in tasks as well. Question 5_19 is a task involving a relation in the 

form of a CSG operation. 

Question 5 19: "For two specified frequencies, supposing Ll and L2 are the 

parts of brain activated under visual stimulation under these two frequency separately, 

then how is the union and intersection result of Ll and L2 ?" 

Question 5_19 is an inverse companson task. According to section 5.3.2, inverse 

comparison tasks can be formed with "inverse lookup" subtasks and subtasks to"identify 

relations existing between two specified references". Actually, the inverse lookup 

subtasks contained in this question are similar to question 5_14. So same method can be 

adopted to deal with these "inverse lookup" subtasks for question 5_19. Figure 5.14 

visualises the result for those "inverse lookup" subtasks and question 5_ 19. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 5.14 3D volume display ofthe result for question 5_19 

Image (a) and (b) show volume rendering of the activated regions detected under 

two specified frequencies respectively; Images (c) and (d) display the activated 

regions included in (a) and (b) simultaneously from different viewing positions; 

Image (e) and (f) present the union and intersection of the activated regions 

detected under two specified frequencies. 

5.5.3 Evaluation and Discussion 

The EIT5DVis prototype system provides various display methods to visualisation 50 

brain EIT dataset according to the users ' requirements. Users can navigate in multi-
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dimensional dataset freely. The EIT5DVis prototype system also presents some new 

ways to visualise EIT data. The major goal of EIT5DVis is to demonstrate the feasibility 

of the proposed system development methodology for multi-dimensional medical data 

rather than providing a comprehensive software tool. Naturally some analysis or display 

methods involved in other visualisation systems may not be included in the current 

version. However, given the modular structure of EIT5DVis, it is not difficult to extend 

the system and incorporate more analysis and display approaches. 

To further evaluate the EIT5DVis system, an informal interview was conducted with a 

senior researcher in the EIT imaging area, three research associates from other medical 

imaging fields, one researcher in data mining, and one from computer science. Because 

EIT has not been used routinely in clinical use, no clinical competent reviewer is 

available at this moment. The main aspects to be examined in this interview include 

completeness of the task typology model, utility of the task defmition interface, and 

general impression of the EIT5DVis system. 

One aim of the EIT5DVis system is to describe questions which people may put forward 

and address the questions properly. During the interview, an introduction to the derived 

task typology model is given. The following question was asked of the respondents both 

before and after the introduction: "if you are visualising a 5D EIT dataset, what would 

be the question that most concerned to you?". It is interesting to notice that, before the 

introduction, most respondents proposed questions belonging to direct lookup tasks, this 

happened even for the senior researcher in EIT. However, after the introduction, many 

respondents changed their responses putting more inverse searching tasks and rating 

them of higher interest. This phenomenon suggested that, given the task typology model, 

some important while not intuitive tasks can be identified by the user. When using the 

EIT5DVis system, questions asked commonly by respondents included "identify any 

disorder and abnormalities correctly", "seeing enough information at once", "showing an 

overview which will provide general information about the dataset", etc. Almost all the 
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respondents concluded that the system is able to address their question satisfied, and the 

task typology model is able to cover all the questions they can construct. 

The task specifying interface of EIT5DVis is constructed according to the derived task 

typology model. It looks different from interfaces used in common visualisation systems. 

The utility of this task defmition interface is another aspect to be examined through the 

investigation. As expected when respondents tested the system without any instruction, 

they can formulate direct searching task and control the range of reference variables 

easily, but were seldom aware other features provided by the system. After some 

introductions and demonstrations, respondents are able to defme different type of tasks 

through the interface. On the whole, most respondents graded the task definition 

interface as user-friendly, although some of them thought that the approach for 

impedance feature setting is not in a satisfactory format: although the task specification 

interface in EIT5DVis is untypical of image processing systems, it was not difficult for 

users to learn how to master it, given reasonable help information and examples. 

On the question of the most useful feature provided by the EIT5DVis system, a variety 

of feedback was given by the respondents, partially because of their different research 

backgrounds. For example, some of them think the mUltiple viewing formats and choice 

of animation dimension is quite attractive; some took the analysis function imported 

from SPM as his/her favourite; some prefer the anatomical information provided by the 

registered display; and others put the task-based subset selection to reduce the 

visualisation complexity as the best feature. 

Some useful suggestions on how to improve EIT5DVis system were also obtained 

through the interview. For example, to include more examples in the system, to provide 

some help document, to enhance the user interface, to enable the simultaneous animation 

for both sets in a comparison window, etc. 
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Combining the developer's self evaluation and analysis of the interview results, it is 

reasonable to conclude that, as a fITst trail to visualise 5D medical imaging data, 

EIT5DVis fulfils its main goal, although there are some points to be improved. 

5.6 Conclusion 

This chapter studied the last objective of this research: To derive a system development 

methodology for the visualisation of multi-dimensional medical images, and construct a 

prototype visualisation system for five-dimensional brain EIT datasets. Because of the 

specific features included in medical image data, showing subset of a dataset seems to be 

the best way among general approaches to visualise multi-dimensional medical image 

data. The most important step in subset-based visualisation is to select subsets properly. 

A task-based subset definition scheme is proposed in this chapter first. Then a task 

typology model is derived to support the task exploration for medical image data. Next, 

a task-based visualisation system development methodology is proposed. Finally, 

following the proposed methodology, a prototype visualisation system named EIT5DVis 

is developed for the 5D brain EIT data. 

,Up to now, all the three objectives of this research have been fulfilled. The next chapter 

is a summary of this work, which concludes the achievements made in this research and 

proposes some objectives for future work. 
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Chapter 6 Conclusions and Future Work 

6.1 Conclusions on Current Work 

With the development of new medical imaging technology, more accurate and complex 

information can be detected. Sequentially, datasets with multiple dimensions are needed 

to present the information. Visualisation of these multi-dimensional datasets, which is 

vital for medical research and clinical understanding, presents a big challenge for 

researchers. This is due to the use of multi-dimensional visualisation methods and 

dimension reduction methods for dataset from other fields are not suitable for medical 

image datasets. The work presented in this thesis is a new method of visualising multi­

dimensional medical images datasets. The application is demonstrated using EIT images 

of the human brain function. The main contributions made in this research are: 

• A new scheme for the processing of four-dimensional temporal-spatial brain EIT 

data with SPM is proposed. (Chapter 3) 

• First demonstration of the feasibility to process brain EIT data with SPM according 

to the proposed scheme by using simulated brain EIT imaging data. (Chapter 3) 
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• First applying SPM to locate the ROl in human brain ElT data obtained under visual 

stimulation, and the experimental results proves that it is reasonable to use the 

balloon hemodynamic change model to simulate the impedance change during brain 

function activity. (Chapter 3) 

• A new landmark-based registration scheme is developed to register brain EIT images 

with standard anatomical brain data. (Chapter 4) 

• Experimental results are presented to validate the registration scheme by registering 

a brain EIT dataset with a Montreal BrainWeb MRI brain reference dataset. (Chapter 

4) 

• A novel task typology model is derived for task exploration in multi-dimensional 

medical image visualisation. (Chapter 5) 

• A new task-based system development methodology is proposed for the visualisation 

of multi-dimensional medical images. (Chapter 5) 

• A prototype visualisation system, named EIT5DVis, is developed and evaluated for 

the visualisation of five-dimensional brain EIT dataset. (Chapter 5) 

6.2 Future Work 

As a result of this research, several questions have arisen which justify further work. 

Some of them are described below. 

• Extending the statistical process to five-dimensional EIT datasets 
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Currently, the SPM based statistical process scheme has been proposed for four­

dimensional spatial-temporal brain EIT images. Five-dimensional spectral-temporal­

spatial EIT datasets have to be processed frequency by frequency with this scheme. 

Future work can extend this scheme to deal with 5D EIT dataset obtained under different 

frequency simultaneously (as a whole). 

• Combining theoretical generation with practical investigation for task exploration in 

EIT image visualisation 

Considering the circumstance that EIT has not been used clinically and few experts in 

EIT area is available, the derived task typology model has been used to reveal potential 

tasks for 5D EIT dataset visualisation presently. Once EIT is used clinically, more 

experts in EIT research and application area will be available; it would be desirable to 

reveal potential visualisation tasks by combining practical task investigation with 

theoretical task generation. The combined approach can prompt the refinement of task 

defmition interface; highlight important tasks in the system, etc. 

• Registering EIT imaging data with functional imaging data and visualising the multi­

dimensional multi-variate medical data 

To compensate the poor spatial resolution of EIT imaging, EIT data is registered with 

anatomical imaging data in this research. That anatomical information is used in the 

visualisation step instead of the task defmition stage at present. A possible future work is 

to register EIT data and functional imaging data with high spatial resolution, for example, 

tMRI data. In this way, tMRI is not only supposed to provide a anatomical visualisation 

background, the functional information included in it is more interesting. The EIT -fMRI 

registration results a multi-dimensional multi-variate dataset. The task typology model 

can still be employed to reveal potential tasks for the visualisation of an EIT -fMRI 
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dataset. However, in that case the relations between the two variates, which does not 

exist for 5D EIT dataset, should be considered. 

• Applying the derived task typology model and visualisation system development 

methodology to other medical imaging modalities 

The derived task typology model is adopted for the visualisation of a 5D brain EIT 

dataset as a demonstration in this research. In fact, the model is proposed as a general 

model and can be applied to datasets collected with different modalities. It can be 

employed to reveal visualisation tasks for datasets with less dimension as well as high 

dimensions. For example, fMRI can be measured under different frequency, although the 

data under different frequency are not obtained simultaneously at present. If the 

researcher prefers to analyse fMRI dataset collected under different frequency as a 

whole, it can be treat as a five-dimensional dataset. Naturally, visualisation tasks for this 

5D fMRI data can be revealed in the same way as 5D EIT data by using the task 

typology model, and the task-based visualisation system development methodology can 

be utilized subsequently. 
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Appendix A 

Data 

Visualisation Tasks for 50 Brain EIT 

In section 5.3.3, a task typology has been established for 5D EIT data, and general task 

formulae in subtasks style have been proposed for each task type. This appendix section 

is to explore potential visualisation tasks according to the typology. In order to save 

space, only questions at searching level G (synoptic location, synoptic time, and 

elementary frequency) and H (synoptic location, synoptic time, and synoptic frequency) 

are listed in table A.I. These two levels contain the most complex task types for a 5D 

brain EIT dataset. As mentioned in section 5.3.1, this research will focus on binary 

relations between same references or attribute. And only same/different relation will be 

discussed at this stage. 

Symbols used in table A.I: 

f : elementary frequency, which corresponds to a particular frequency value. 

L: synoptic location, which can be a 2D or 3D location area. 

T: synoptic time, which is a time interval defmed by a start time point and end 

time point. 

F: synoptic frequency, which corresponds to a range between a lower frequency 

value and a higher frequency value. 

P: synoptic impedance, which means a impedance change pattern over a time 

interval, and/or a frequency range, and/or a location area. 

R f : same/different relation between two elementary frequency. 

R
L

: same/different relation between two synoptic location. 

R
r

: same/different relation between two synoptic time interval. 

R
F

: same/different relation between two synoptic frequency range. 

Rp: same/different relation between two synoptic impedance change pattern. 
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Table A.1: Visualisation tasks for 5D brain EIT data 

Searching 
Mode 

Lookup 

Searching 
Direction Tasks 

Direct General formula: 

Inverse 

7 P: (L,T,/) 

Concrete question: 

In a given location area L, during a given time interval 
T and under a gIVen frequency / , fmd out the 
corresponding impedance change pattern? 

General formula: 

7(L,T,/): P 

Concrete question: 

For a given impedance change pattern P, during which 
time interval, under which frequency , and in which 
location area was it attained? 

In a given location area L, under which frequency and 
during which time interval was a given impedance change 
pattern P attained? 

During a given time interval T , in which location area 
and under which frequency was a given impedance change 
pattern P attained? 

Under a given frequency f , in which location area and 

during which time interval was a given impedance change 
pattern P attained? 

In a given location area L and during a given time 
interval T , under which frequency was a given impedance 
change pattern P attained? 

In a given location area L and under a given frequency 
/ , during which time interval was a given impedance 

change pattern P attained? 
During a given time point T and under a gIVen 

frequency / , m which location area was a gIven 

impedance change pattern P attained? 

Comparison Direct General formula: 

7 ~ : (Li' 1',. ,1;) 

7 P2 : (L2,T2'/2) 

?Rp :(~,P2) 

Concrete question: 
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Appendix 

In a given location area L, during a given time interval 
T and under a given frequency / , what is the relation 

between the corresponding impedance change pattern P 
and a given pattern PI ? 

During a given time interval T and under a given 
frequency /, for different location areas LI and L2, what 

is the relation between their corresponding impedance 
change patterns? 

In a given location area L and under a given frequency 
/ , for different time interval TI and T2, what is the 

relation between their corresponding impedance change 
patterns? 

In a given location area L and during a given time 
interval T, for different frequency /1 and /2, what is the 

relation between their corresponding impedance change 
patterns? 

In a given location area L, for different time interval 
and frequency combinations (TI, /1) and (T2, /2), what 

IS the relation between their corresponding impedance 
change patterns? 

During a given time interval T , for different location 
area and frequency combinations (LI, /1) and (L2, /2) , 

what is the relation between their corresponding impedance 
change patterns. 

Under a given frequency / , for different location area 

and time interval combinations (LI, TI) and (L2, T2) , 
what is the relation betwen their corresponding impedance 
change patterns. 

For different location area, time interval, and frequency 
combinations (LI, TI, /1) and (L2, T2, /2), what is the 

relation between their corresponding impedance change 
patterns. 

General formula: 

?(Ll'r; ,1;) : ~ 

?(L2,T2'/2): P2 
? RL : (LI'L2 ) 

? Rr : (Tl' T2 ) 

? Rf : (/1'/2) 

Concrete question: 

In a given location area L and during a given time 
interval T , fmd out the relation between frequency /1, 

under which a given impedance change pattern PI 
attained, and a given frequency /2? 

In a given location area L and under a given frequency 
/, find out the relation between time interval Tl , during 

which a given impedance change pattern PI attained, and 
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a given time interval T2. 
During a given time interval T and under a gi\"en 

frequency / , fmd out the relation between location area 

LI, where a given impedance change pattern PI attained, 
and a given location area L2? 

In a given location area L and during a given time 
interval T , fmd out the relation between frequency /1, 

under which a gIven impedance change pattern PI 
attained, and frequency /2 , under which a gIven 

impedance change pattern P2 attained? 
In a given location area L and under a given frequency 

/ , fmd out the relation between time interval TI, during 

which a given impedance change pattern PI attained, and 
time interval T2, during which a given impedance change 
pattern P2 attained. 

During a given time interval T and under a given 
frequency /, fmd out the relation between location area 

Ll , where a given impedance change patterns PI attained, 
and location area L2, where a given impedance change 
pattern P2 attained, are near to each other. 

In a given location area L , fmd out the relation between 
the combination of time interval and frequency (Tl,/I), 

which is corresponding to a given impedance change 
pattern PI , and a given combination (T2, /2) . 

During a given time interval T , fmd out the relation 
between the combination of location area and frequency 
(LI,/I) , which is corresponding to a given impedance 

change pattern PI, and a given combination (L2, /2) . 

Under a given frequency / , fmd out the relation 

between the combination of location area and time interval 
(LI,TI) , which is corresponding to a given impedance 

change pattern PI, and a given combination (L2, T2). 
In a given location area L , fmd out the relation between 

the combinations of time interval and frequency (Tl, /1) , 

which IS corresponding to a given impedance change 
pattern PI , and (T2, /2), which is corresponding to a 

given impedance change pattern P2. 
During a given time interval T , fmd out the relation 

between the combinations of location area and frequency 
(LI,/I) , which is corresponding to a given impedance 

change pattern PI , and (L2, /2), which is corresponding 

to a given impedance change pattern P2 . 
Under a given frequency / , fmd out the relation 

between the combinations of location area and time interval 
(LI, TI), which is corresponding to a given impedance 

change pattern PI, and (L2,T2), which is corresponding 

to a given impedance change pattern P2 . 

Find out the relation between the combination of 
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location area, time interval and frequency (Ll,n,fl) , 
which is corresponding to a gIven impedance change 
pattern PI , and a given combination (L 2, T2. f2). 

Find out the relation between the combinations of 
location area, time interval and frequency (Ll, Tl, fl) , 
which is corresponding to a gIven impedance change 
pattern PI, and (L2,T2,f2), which is corresponding to a 

given impedance change pattern P2 . 

General formula: 

7(LI' TI' f..) : p. 
7 L2 : (RL,L I ) 

7T2 : (RT'~) 

7 f2 : (R f ' ;; ) 

7 P2 : (L2,T2,f2) 

Concrete question: 

In a given location area L and during a given time 
interval T , find out an impedance change pattern P2 (with 
corresponding frequency f2), satisfying that a specified 

relation R f exist between frequency f2 and frequency 

fl , under which a given impedance change pattern PI is 

obtained. 
In a given location area L and under a given frequency 

f , fmd out an impedance change pattern P2 (with 

corresponding time interval T2), satisfying that a specified 

relation RT exist between time interval T2 and time 

interval TI , during which a given impedance change 
pattern PI is obtained. 

During a given time interval T and under a given 
frequency f, fmd out an impedance change pattern P2 
(with corresponding location area L2), satisfying that a 

specified relation RL exist between location area L2 and 

location area LI , where a given impedance change pattern 
PI is obtained. 

In a given location area L , fmd out an impedance 
change pattern P2 (with corresponding time interval T2 
and frequency f2), satisfying that a specified relation RT 

exist between TI and T2, and a specified relation R f 

exist between fl and f2 , where nand fl 
corresponding to a given impedance change pattern PI . 

During a given time interval T, find out an impedance 
change pattern P2 (with corresponding location area L2 
and frequency f2), satisfying that a specified relation R L 

exist between LI and L2 , and a specified relation R f 

exist between fl and f2 , where Ll and n 
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Inverse 

corresponding to a given impedance change pattern PI . 
Under a given frequency / , fmd out an impedance 

change pattern P2 (with corresponding location area L2 
and time interval T2), satisfying that a specified relation 

RL exist between LI and L2, and a specified relation Rr 
exist between TI and T2 , where LI and T1 
corresponding to a given impedance change pattern PI . 

Find out an impedance change pattern P2 (with 
corresponding location area L2 , time interval T 2 and 

frequency /2), satisfying that a specified relation RL exist 

between LI and L2, a specified relation Rr exist between 

TI and T2, and a specified relation R f exist between /1 

and /2, where LI, TI and /1 corresponding to a given 

impedance change pattern PI . 

General formula: 

? ~ : (Li'T; , It) 
? P2 : (Rp,~) 

?(L2,T2'/2): Pz 

Concrete question: 

In a given location area L and a given time interval T, 
find out a frequency /2 (with corresponding impedance 

change pattern P2 ), satisfying that a specified relation exist 
between P2 and PI , which was obtained under a given 

frequency /1. 

In a given location area L and under a given frequency 
/ , find out a time interval T2 (with corresponding 

impedance change pattern P2), satisfying that a specified 
relation exist between P2 and PI , which was obtained 
during a given time interval TI . 

During a given time interval T and under a given 
frequency / , find out a location area L2 (with 

corresponding impedance change pattern P2 ), satisfying 
that a specified relation exist between P2 and PI, which 
was obtained in a given location area LI . 

In a given location area L , fmd out combination of time 
interval and frequency (T2, /2) (with corresponding 

impedance change pattern P2), satisfying that a specified 
relation exist between P2 and PI , which was obtained 
during a gIVen time interval TI and under a gIVen 

frequency /1. 

During a given time interval T , fmd out combination of 
location area and frequency (L2, /2) (with corresponding 

impedance change pattern P2), satisfying that a specified 
relation exist between P2 and PI , which was obtained in a _. _____ J ____ l-__ ----1~~~~.::=..;:..:.._=_:.:~_=__==~___.::..:::...::...::..:: ____ ____' 
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given location area Ll and under a given frequency /1. 

Under a given frequency / , find out combination of 

location area and time interval (L2, T2) (with 

corresponding impedance change pattern P2), satisfying 
that a specified relation exist between P2 and PI which , 
was obtained in a given location area Ll and during a 
given time interval Tl. 

Find out combination of location area, time interval and 
frequency (L2, T2, /2) (with corresponding impedance 

change pattern P2), satisfying that a specified relation 
exist between P2 and PI , which was obtained in a given 
location area LI , during a given time interval T1 and 
under a given frequency /1. 

General formula: 

? P: (L,T,F) 

Concrete question: 

In a given location area L, during a given time interval 
T and a given frequency range F , fmd out the 
corresponding impedance change pattern? 

General formula: 

?(L,T,F): P 

Concrete question: 

For a given impedance change pattern P, during which 
time interval, which frequency range, and in which location 
area was it attained? 

In a given location area L , during which frequency 
range and which time interval was a given impedance 
change pattern P attained? 

During a given time interval T , in which location area 
and during which frequency range was a given impedance 
change pattern P attained? 

During a given frequency range F , in which location 
area and during which time interval was a given impedance 
change pattern P attained? 

In a given location area L and during a given time 
interval T , during which frequency range was a given 
impedance change pattern P attained? 

In a given location area L and during a given frequency 
range F , during which time interval was a given 
impedance change pattern P attained? 

During a given time point T and during a given 
frequency range F , in which location area was a given 
impedance change pattern P attained? 

General formula: 
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?~ :(L,,~,F,) 

? P2 : (L 2 ,T2 ,F
2

) 

? Rp : (~,P2) 

Concrete question: 

Appendix 

In a given location area L, during a given time interval 
T and a given frequency range F , what is the relation 
between the corresponding impedance change pattern P 
and a given pattern PI ? 

During a given time interval T and a given frequency 
range F , for different location areas LI and L2, what is 
the relation between their corresponding impedance change 
patterns? 

In a given location area L and during a given frequency 
range F , for different time interval TI and T2, what is 
the relation between their corresponding impedance change 
patterns? 

In a given location area L and during a given time 
interval T , for different frequency range FI and F2 , 
what is the relation between their corresponding impedance 
change patterns? 

In a given location area L, for different time interval 
and frequency range combinations (TI, FI) and 

(T2, F2) , what is the relation between their corresponding 

impedance change patterns? 
During a given time interval T , for different location 

area and frequency range combinations (LI, FI) and 

(L2, F2), what is the relation between their corresponding 

impedance change patterns. 
During a given frequency range F , for different 

location area and time interval combinations (LI, TI) and 

(L2, T2), what is the relation between their corresponding 

impedance change patterns. 
F or different location area, time interval, and frequency 

range combinations (LI, TI, FI) and (L2, T2, F2), what 

is the relation between their corresponding impedance 
change patterns. 

General formula: 

?(L,,~ ,F,): ~ 
?(L2 ,T2 ,F2 ): P2 

?RL : (L"L 2 ) 

? Rr : (T, ' T2 ) 
? R f : (F; , F2 ) 

Concrete question: 

In a given location area L and during a given time 
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interval T , fmd out the relation between frequency 
range FI , under which a given impedance change pattern 
PI attained, and a given frequency F2 ? 

In a given location area L and during a given frequency 
range F , fmd out the relation between time interval Tl 
duri.ng which a gIven impedance change pattern PI' i 

attamed, and a given time interval T2. 
During a given time interval T and during a given 

frequency range F , fmd out the relation between location 
area LI , where a given impedance change pattern PI 
attained, and a given location area L2 ? 

In a given location area L and during a given time 
interval T , fmd out the relation between frequency range 
FI , under which a given impedance change pattern PI 
attained, and frequency range F2, under which a given 
impedance change pattern P2 attained? 

In a given location area L and during a given frequency 
range F , fmd out the relation between time interval Tl, 
during which a gIVen impedance change pattern PI 
attained, and time interval T2, during which a gIVen 
impedance change pattern P2 attained. 

During a given time interval T and during a given 
frequency range F , fmd out the relation between location 
area LI , where a given impedance change patterns PI 
attained, and location area L2, where a given impedance 
change pattern P2 attained, are near to each other. 

In a given location area L , fmd out the relation between 
the combination of time interval and frequency range 
(TI, FI) , which is corresponding to a given impedance 

change pattern PI , and a given combination (T2, F2) . 
During a given time interval T, fmd out the relation 

between the combination of location area and frequency 
range (LI,FI) , which IS corresponding to a gIven 

impedance change pattern PI, and a given combination 
(L2,F2) . 

During a given frequency range F , find out the relation 
between the combination of location area and time interval 
(LI, TI), which is corresponding to a given impedance 

change pattern PI , and a given combination (L2, T2) . 

In a given location area L, fmd out the relation between 
the combinations of time interval and frequency range 
(TI, FI), which is corresponding to a given impedance 

change pattern PI, and (T2, F2) , which is corresponding 

to a given impedance change pattern P2 . 
During a given time interval T , fmd out the relation 

between the combinations of location area and frequency 
range (LI,FI) , which IS corresponding to a gIven 

impedance change pattern PI , and (L2. F2), which is 

corresponding to a given impedance change pattern P2. 
During a given frequency range F , find out the relation 

between the combinations of location area and time interval 
----~----~----~~~~~~~~~~~------~ 
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(L1, T1), which is corresponding to a given impedance 

change pattern PI , and (L2, T2), which is corresponding 

to a given impedance change pattern P2 . 

Find out the relation between the combination of 
location area, time interval and frequency range 
(L1,T1,F1), which is corresponding to a given impedance 

change pattern PI , and a gIVen combination 
(L2,T2,F2) . 

Find out the relation between the combinations of 
location area, time interval and frequency range 
(L1, T1, F1), which is corresponding to a given impedance 

change pattern PI , and (L2, T2, F2) , which IS 

corresponding to a given impedance change pattern P2. 

General formula: 

?(LpI; ,FI ): ~ 

? L2 : (R L , LI ) 

?T2 : (RpTI) 

? F2 : (R F , FI ) 

? P2 : (L2 , T2 , F2 ) 

Concrete question: 

In a given location area L and during a given time 
interval T , find out an impedance change pattern P2 (with 
corresponding frequency range F2 ), satisfying that a 

specified relation RF exist between frequency range F2 
and frequency range Fl , under which a given impedance 
change pattern PI is obtained. 

In a given location area L and during a given frequency 
range F , find out an impedance change pattern P2 (with 
corresponding time interval T2), satisfying that a specified 

relation Rr exist between time interval T2 and time 

interval Tl , during which a given impedance change 
pattern PI is obtained. 

During a given time interval T and during a given 
frequency range F , fmd out an impedance change pattern 
P2 (with corresponding location area L2), satisfying that 

a specified relation RL exist between location area L2 and 

location area L1 , where a given impedance change pattern 
PI is obtained. 

In a given location area L , fmd out an impedance 
change pattern P2 (with corresponding time interval T 2 
and frequency range F2 ), satisfying that a specified 

relation R exist between Tl and T2, and a specified r 

relation R exist between Fl and F2, where Tl and Fl 
F 

corresponding to a given impedance change pattern Pl. 
During a given time interval T, fmd out an impedance 

~. _____ ~ ___ ~ ___ -L~~~~~"'::'::'::'::""":::::'-="":'="""=---:""-~---L..----' 
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change pattern P2 (with corresponding location area L2 
and frequency range F2 ), satisfying that a specified 

relation RL exist between LI and L2 , and a specified 

relation RF exist between FI and F2, where LI and FI 
corresponding to a given impedance change pattern PI . 

During a gIven frequency range F , fmd out an 
impedance change pattern P2 (with corresponding 
location area L2 and time interval T2), satisfying that a 

specified relation RL exist between Ll and L2, and a 

specified relation RT exist between TI and T2, where Ll 

and T1 corresponding to a given impedance change pattern 
PI. 

Find out an impedance change pattern P2 (with 
corresponding location area L2 , time interval T2 and 
frequency range F2), satisfying that a specified relation 

RL exist between LI and L2, a specified relation RT exist 

between TI and T2, and a specified relation RF exist 

between FI and F2 , where LI , T1 and FI 
corresponding to a given impedance change pattern PI . 

General formula: 

? ~ : (LpTpFl) 

? P2 : (Rp,~) 

?(L2 ,T2 ,F2 ): P2 

Concrete question: 

In a given location area L and a given time interval T, 
find out a frequency range F2 (with corresponding 
impedance change pattern P2), satisfying that a specified 
relation exist between P2 and PI , which was obtained 
under a given frequency range FI . 

In a given location area L and during a given frequency 
range F , fmd out a time interval T2 (with corresponding 
impedance change pattern P2), satisfying that a specified 
relation exist between P2 and PI , which was obtained 
during a given time interval TI . 

During a given time interval T and during a given 
frequency range F , find out a location area L2 (with 
corresponding impedance change pattern P2), satisfying 
that a specified relation exist between P2 and PI , which 
was obtained in a given location area LI . 

In a given location area L , fmd out combination of time 
interval and frequency range (T2, F2) (with 

corresponding impedance change pattern P2), satisfying 
that a specified relation exist between P2 and PI , which 
was obtained during a given time interval T1 and during a 

given frequency range Fl. 
During a given time interval T , find out combination of 
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location area and frequency range (L2, F2) (with 

corresponding impedance change pattern P2), satisfying 
that a specified relation exist between P2 and PI , which 
was obtained in a given location area Ll and during a 
given frequency range FI , 

During a gIven frequency range F , fmd out 
combination of location area and time interval (L2, T2) 

(with corresponding impedance change pattern P2 ), 
satisfying that a specified relation exist between P2 
and PI, which was obtained in a given location area Ll 
and during a given time interval T1, 

Find out combination of location area, time interval and 
frequency range (L2, T2, F2) (with corresponding 

impedance change pattern P2), satisfying that a specified 
relation exist between P2 and PI , which was obtained in a 
given location area LI, during a given time interval T1 
and under a given frequency range FI , 
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