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The best way to develop a Turing test passing AI is to follow the human model: an

embodied agent that functions over a wide range of domains, is a human cognitive

model, follows human neural functioning and learns. These properties will endow the

agent with the deep semantics required to pass the test. An embodied agent functioning

over a wide range of domains is needed to be exposed to and learn the semantics of

those domains. Following human cognitive and neural functioning simplifies the search

for sufficiently sophisticated mechanisms by reusing mechanisms that are already known

to be sufficient. This is a difficult task, but initial steps have been taken, including

the development of CABots, neural agents embodied in virtual environments. Several

different CABots run in response to natural language commands, performing a cognitive

mapping task. These initial agents are quite some distance from passing the test, and

to develop an agent that passes will require broad collaboration. Several next steps are

proposed, and these could be integrated using, for instance, the Platforms from the

Human Brain Project as a foundation for this collaboration.
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1. INTRODUCTION

A good, perhaps the best, way to get an AI that passes the Turing test (Turing, 1950) is to closely
follow the human model. This does leave a wide range of options, but one path is to build systems
that are situated in environments (Brooks, 1991), function over a wide range of domains, are sound
cognitive models, and follow human neural functioning and learning. Others (e.g., Hassabis et al.,
2017) have made similar arguments.

It is relatively easy to argue that learning, functioning over a wide range of domains, and
being situated in environments are all necessary for a system to pass the Turing test. However,
the benefit of following the human models is far from straightforward, particularly as knowledge
of those models is far from complete. Nonetheless, there are significant islands of evidence and
confidence in psychology, linguistics, neuroscience, and related fields. For example, the Nobel Prize
winning Thinking Fast and Slow (Kahneman, 2011) in psychology, The Foundations of Language
(Jackendoff, 2002) in linguistics, and the Nobel Prize winning work on the brain’s positioning
system (e.g., Morris et al., 1982) in neuroscience. So, our research group has spent roughly the
past decade building agents1, based on simulated and emulated neurons2, that function in physical
and virtual environments. The emergent psychological function of these agents is measured by their
behavior as neuro-cognitive models.

1An agent is something that perceives its environment and acts on it.
2Artificial neurons, in contrast with biological neurons, are simulated on standard hardware using simulators like NEST and

are emulated on neuromorphic hardware.
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It seems very unlikely that our group, working alone, will
build a Turing test passing agent. Indeed, it seems unlikely
a Turing test passing agent of any form will be developed
in the next decade. Consequently, this work is a part of a
larger research effort that includes other agents and is open
to all researchers and developers. In particular, our focus has
switched to the Human Brain Project (HBP). The HBP has
a standard suite of modeling tools, and hardware resources,
including high performance computers, neuromorphic hardware
and virtual environments, that are accessible, interactively via
the Internet, to the wider scientific community. These provide
practical platforms for developing agents in artificial neurons,
and a place to develop a community of neural agent developers
and researchers.

The discussion of the proposed development of Turing test
passing agents start with section 2, which discusses the Turing
test and what is needed to pass it. Section 3 discusses a range
of agents, called CABots, developed by our group. The agents
range from simple open-loop agents (see section 3.1), through
closed-loop ones that take simple commands from a user (see
section 3.2), to agents that have long-term memory (see sections
3.3 and 3.4). Our group is not alone in developing agents based
in neurons, and section 4 describes some agents developed by
others.

While several cognitive models have been developed in the
CABots, these agents are relatively simple, domain specific
cognitive models. For instance, while the agents learn in the
cognitive sense, their learning of spatial cognitive maps and rules
(Belavkin and Huyck, 2010) is extremely simple.

As the goal of this work, to develop Turing test passing
systems, is distant, some possible next steps are presented in
section 5. Neural systems can be developed with topologies that
are clearly not biologically plausible; components based on such
topologies can still be useful as they provide scaffolding to build
future, more powerful systems that will have plausible topologies.
Some sample next steps that the authors are particularly
interested in exploring include semantic net like memories, and
continuously valued Cell Assemblies to, among other things,
support development of spiking neural models that behave like
1980s connectionist models (e.g., Rumelhart and McClelland,
1982; Maes, 1989). Other suggestions include spatial memory,
improved vision, and episodic memory.

2. HOW TO PASS THE TURING TEST

A great deal has been written about the Turing test (Turing,
1950), competitions based on it are run regularly3, and it is
the standardly agreed test for Artificial Intelligence. A brief
paraphrased summary is that there is a human judge in one room,
an unseen computer in a second room, and a second unseen
human in a third room. The judge communicates with the other
two via text. If the judge cannot decide who is the human and
who is the computer, the computer has passed the test and is
considered intelligent. The spirit of the test includes an open

3For example, the Loebner prize runs annually (see http://www.aisb.org.uk/events/

loebner-prize).

ended conversation, and two reasonable humans. It could be
usefully extended to multiple tests to allow statistical significance,
with multiple judges and with none choosing at better than
chance. The test is not a trick (Harnad, 1992); though claimed
results of passing or almost passing have been made, no artificial
system has come even close.

For an AI system to pass the Turing test, it must function in a
wide range of domains; after all, the conversation is open ended.
The judge will be able to discuss any domain. The system does
not need to know about every domain; humans do not. It does
need to know about many domains, because humans do.

One easy way to know about many domains is to learn
about them. Moreover, the system will need to learn during the
conversation. Also, from a software development standpoint, if
there is a lot of knowledge to encode, it is easier for the system to
learn it than for developers to encode it.

Human learning is much studied, complex, and still poorly
understood. Humans learn semantic knowledge (Quillian, 1967),
episodic knowledge (Tulving, 1984), spatial knowledge (Morris
et al., 1982), and other types of knowledge. There is short-
term memory, long-term memory, and a range of durations in
between (James, 1892). Human memory is sophisticated enough
to learn the semantics of a range of domains. This deep semantic
knowledge enables humans to understand domains in ways that
machines are not currently capable.

For example, one technique for current systems that attempt
Turing test like tasks is to get information dynamically from
the Internet (Ferrucci et al., 2013). This is a shallow semantics
approach. In general, it is not going to be able to answer questions
like:

Are crocodiles good at running the steeplechase? (Levesque,

2014).

because the answer is not already on the Internet. To answer a
question like this, deep semantics are needed. The point made
by Levesque (2014) is that a Turing test judge can ask arbitrary
questions like this. No system can find the answer from the
Internet, or from caching away answers. The system needs an
understanding of how crocodiles move, and what is required
to run a steeplechase. It needs the ability to reason about these
things.

Many, maybe all, of the domains people learn are grounded
in the physical world. Humans typically learn to walk, use
tools, eat, and to build structures. We learn how animals move,
people dress, and voices sound4. Consequently, it is all but
essential that the system exists in a rich environment, so that it
can learn the deep semantics associated with the environment
(Brooks, 1991). This includes not just what the objects are,
but what they can be used for (affordances) (Gibson, 1986);
it includes how the environment changes, and how the agent
can change the environment; and it includes mechanisms for
internally simulating these changes. There are many issues
around embodiment (Wilson, 2002), but it is clear that a Turing

4Even extremely physically impaired people, e.g., Helen Keller, a deaf blind person,

still existed in an environment and interacted with it.
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test passing agent will include time pressured cognition, while
still being able to abstract from the environment. It will be able
to make and execute plans. Similarly, the concept of agent can be
defined as an individual, that acts upon an environment for its
own benefit (Barandiaran et al., 2009).

Moreover, it is clear from a psychological perspective that a
great deal of, and probablymost, learning is unsupervised (Reber,
1989). Fortunately, from a neural perspective, biological evidence
points toward Hebbian rules, which are unsupervised. There is
evidence for reinforcement learning using the dopamine system
(e.g., Holroyd and Coles, 2002), but this still has an unsupervised
component.

While it has been shown that systems implemented in
neurons can process symbols, for Turing test passing intelligence,
these symbols need to reflect rich associations with complex
environments, often referred to as grounding (Harnad, 1990).
In humans, symbols, in particular words, have deep links to
underlying meaning. This meaning has been learned through
extensive interaction with the environment (Taddeo and Floridi,
2005). The word crocodile is more than just a symbol. In a typical
human, the word can bring up links to an immense store of
knowledge about teeth, handbags, how theymove, how they hunt,
and much more. Thus, symbol processing in humans is usually
much more than simple syntactic processing. Reading a sentence
allows people to create a rich semantic representation, which can
be stored.

It is less commonly argued that a Turing test passing
system needs the performance of open domain cognitive models.
A system could have cognition but cognition that does not
approximate human cognitive behavior. Perhaps it is beyond
the spirit of the Turing test, but a judge could try, for example,
a Stroop test (Stroop, 1935), which measures interference.
Nonetheless, if the system has the performance of a good
cognitive model, it will only make it easier to pass the Turing test.
Moreover, these models support a range of cognitive activities.
If it does not perform like a good cognitive model, it will not
duplicate human behavior well.

It is quite difficult to argue that a Turing test passing system
must follow the human neural model. Indeed, the authors feel
that eventually non-neural systems will pass the test. However,
there are a vast number of challenges to meet to pass the test, and
these may be most easily met by following a system that already
can pass the test, human neurons.

Developing a full-fledged Turing test passing agent is unlikely
to be entirely straightforward. Even the direct approach of
copying human neural topology is not currently viable; among
other issues, the topology is unknown, the basic neural models
are not clear, and the neural dynamics are unclear.

So, if an agent, running in artificial neurons, learns and acts
cognitively like humans, it can drive behavior in a complex
environment. With sensors and effectors, it may become an agent
that can learn the deep semantics of its environment, gaining
a rich understanding of the objects an actions permissible in
the environment, and mechanisms for predicting how the world
will change on its own and in response to actions. This section
and indeed this paper argues that, if the agent performs well
enough in that environment, and the environment is sufficiently

sophisticated, the agent will be able to pass the Turing test. Of
course, this is just argument. The real proof will be the Turing
test passing agent. How can such a system be developed?

3. THE CABOTS

It is easy enough to propose that the best way to build an AI is to
make a human-like neural agent. In an effort tomake this happen,
over the past years, the authors and collaborators have developed
several virtual agents, virtual robots, with all of the processing
done in simulated neurons5.

In the development of our agents, our group has made some
scientific and engineering decisions that should be made explicit.
First, all of the processing needs to be done in simulated or
emulated neurons. A wide range of neural models can be used,
and indeed, a given agent might have different types of models
within it. The neural models generate spikes. These are widely
used models of biological neurons, and there is considerable
evidence that spiking is the basis of Hebbian learning (e.g., Bi and
Poo, 1998). Spiking neurons also provide more and more rapid
information than rate coded neurons (Schwalger et al., 2017).
Similarly, there is no hardware restriction. Second, the agents
need to have different types of learningmechanisms both neurally
and psychologically. At the neural level these will include short
and long-term depression and potentiation. There should be a
reinforcement mechanism, and learning should be unsupervised.
Currently, we are assuming all neural learning is Hebbian. Third,
the agents make extensive use of CAs (see below); all processing
may not be done with CAs, but a great deal of it is. Fourth, it is
an engineering task, and the agents need to be constructed. This
means that, at least in the short-term, some degree of modularity
is needed; the topology needs to be constructed from parts that
can be tested independently. Different sub-topologies can be
combined via synapses between neurons. Eventually, the neural
network will need to learn across these boundaries. Finally, the
agent needs to perform as neuro-cognitive models; this is the link
to psychology. Our current topologies are not accurate models of
human (or other animal) topologies, but simplifications. Neural
constraints are important, but the engineering constraint of
getting an agent working, at this stage, is necessarily, for practical
reasons, more important.

One key concept in neuroscience is the Cell Assembly (CA)
(Hebb, 1949); a CA consists of a group of neurons, and is, among
other things, the widely agreed neural basis of concepts (Guzsaki,
2010). When a concept is in short-term memory, the neurons in
the CA are firing at an elevated rate. The formation of the CA, so
that it can fire persistently, is a long-term memory. These agents
make use of CAs, so, they are Cell Assembly roBots: CABots.

These agents are embedded in virtual environments, and
several simple environments have been used. The agents have
also been developed using several different point neural models,
including a Fatiguing Leaky Integrate and Fire (FLIF) model
(Huyck and Parvizi, 2012), and conductance based, and current
based exponential integrate and fire neurons with adaptation

5The code can be found at http://www.cwa.mdx.ac.uk/chris/cabotsPaper/

cabotsCode.html
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(Brette and Gerstner, 2005). Point neural models are relatively
simple models that treat the neuron as an input output equation;
there are numerous models that are more complex (Brette et al.,
2007).

Generally, when working with a new environment or neural
model, an open-loop agent is initially developed (see section
3.1); these are typically very simple. Then more advanced closed-
loop agents are developed (see section 3.2). Perhaps the most
sophisticated agents our group has developed used the FLIF
model (see section 3.3), including several cognitive models. More
recently, agents have been developed for the HBP (see section
3.4).

3.1. Open-Loop Agents: CABot1
It is relatively simple to make agents with all of the processing
in simulated neurons. Section 4 describes several of these
agents developed by other researchers, and this paper will start
discussion with a simple agent emulated on the BrainScales
(Schemmel et al., 2010) neuromorphic platform. BrainScales
is analog hardware with each neuron directly implemented in
hardware; it emulates neurons at 10,000 time speedup over
biological time. This agent takes a command input and input
from a picture of the environment. It can turn in response to the
command, or if the command is turn toward the object it will.
For example, if there is a colored object on the left of the picture,
a particular neuron spikes, and if it is on the right, a different
neuron spikes.

The standard middleware for the HBP for describing
topologies of neurons is PyNN (Davison et al., 2008). This
describes the topology, and then passes that to the backend to
simulate (e.g., NEST) or emulate (BrainScales or SpiNNaker).

Note that one of the great advantages of using neural systems
in general, and neuromorphic systems in particular is their innate
parallelism. The processing is distributed between the neurons,
and even on a serial machine, processing with neurons provides
algorithmic scaffolding for parallel processing; write the program
in neurons, and it is already parallel because all of the neurons
function independently. On neuromorphicmachines, the parallel
processing is rapid, and for the overall system to be expanded, all
that is needed is more neuromorphic hardware. Delivering the
spikes to the appropriate neurons is one of the problems with this
parallelism. Perhaps themain advantage of the SpiNNaker system
(Furber et al., 2013) is the mechanism that allows all spikes to be
delivered in the next millisecond.

The BrainScales agent is an open-loop agent. It senses the
environment, but any changes it makes do not effect the
environment. Moreover, the agent does not have any neurons
that fire persistently without environmental input. A CA can fire
persistently, so this agent is not a CABot.

CABot1 refers to an open-loop agent that uses CAs. Several
have been developed and they can take commands from a user
in natural language, view the environment, make simple plans
and act depending on the context of the environment. They take
advantage of a simple representation of a CA. They do not get
feedback from the environment, so are unable to, for instance,
explore the environment by turning around.

CAs, once activated, need to persist. A good cognitive model,
of a CA, of for instance a word, would have the firing rate of
neurons in the CA decay like a short-term memory, but a simple
well connected topology based on a point neural model is a
reasonable proxy. It can remain persistently active indefinitely.
A set of neurons, for instance five, is well connected, with each
neuron synapsing to the other four neurons. It is relatively simple
to find parameters so that once all of the neurons fire, there will
be persistent firing. That is, the first time all of the neurons fire,
they will cause each other to fire again, and this will be repeated;
this is called CA ignition. This is a binary CA, either on (ignited),
or off (not ignited); there is no intermediate level of neural firing.

These simple CAs can be used as states in a finite state
automaton, and many functions can be implemented. For
instance, simple regular languages can be parsed (Hopcroft et al.,
2006). This enables the users’ text commands to be processed by
the agent.

Similarly, CAs can be used for simple plans. The overall
thinking is to follow the Maes nets (see section 3.4 and Maes,
1989), but binary CAs can be used for planning.

To simplify engineering and more easily understand these
agents, they can be broken into subsystems. Figure 1 describes
the subsystems of a more complex CABot3 agent. The CABot1
agents use an environment, Natural Language Processing (NLP),
Vision, and Planning subsystems, and have most of the
connections from Figure 1. However, as the CABot1s are open-
loop agents, there is no connection from planning back to the
environment. Individual subsystems, neurons and synapses, are
built and tested in isolation. These are then combined by adding
synapses between the subsystems yielding a complete agent, and
the subsystems’ topologies can be copied and re-used in different
agents.

FIGURE 1 | Gross Topology of CABot3. Boxes represent subystems of

subnets. The oval represents the environment.
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The visual system is probably the best understood of human
neural systems, though of course understanding is far from
complete. Building from early studies (Hubel and Wiesel, 1962),
and making use of animals there has been steady advancement in
understanding neural visual processing.

The agents our group has developed take advantage of on-off
and off-on center surround processing. These come in different
granularities, in our agents typically 3×3, 6×6, and 9×9. The
visual environment is pixelated giving the visual input. This input
stimulates the center surround receptors, and these in turn feed
into line, edge, and angle detectors, behaving like neurons in the
primary visual cortex.

There are several CABot1 agents that take commands from a
user. Using the commands they set goals. These tasks are typically
primitives (like Turn left and Move forward) or context sensitive
(like Turn toward the pyramid). The visual system may fail when,
for instance, the pyramid is too far away. If the visual system gives
a correct interpretation of the environment, these commands are
always successful, issuing the correct action as described by a
particular neuron firing.

3.2. CABot2 and Closing the Loop
If the agent is in an environment, can modify the environment,
sense the change, and uses the change to continue on, it is a
closed-loop agent. The, CABot2, agent now becomes part of the
environment, and the environment part of the agent. Fortunately,
particularly in dynamic 3D environments, like many virtual
environments and the real world, there is an obvious separation
between the agent and the environment (Diaper and Sanger,
2005). The agent has processing, sensing, and effecting, and the
environment is everything else.

Recently, a CABot2 agent was developed for the HBP’s
Neurorobotics Platform (NRP) (Roehrbein et al., 2016). This
Platform supports virtual environments and robots driven by
simulated neurons; it can be accessed over the Internet and users
can develop experiments with novel virtual robots, environments
and brain models.

This CABot took one of five text commands (turn left, turn
right, move forward, stop, or move to the box). These commands
were interpreted, neurally, by a regular grammar processor, with
the result of setting a goal. One goal, move to the box, was context
sensitive. This environment is a simple flat surface with a blue
box on it. The robot is wheeled. There is a camera on the robot,
and the results of this are sent to the visual subsystem. The visual
subsystem then determines whether the box is on the left or right
or directly in front, enabling the robot to move to the box when
that is the goal.

There are a range of environments for agents. 3D virtual (or
physical in the case of robots; see section 4.3) environments are
of particular interest because of their potential richness.

Communication timing between the neurons and the
environment is also important. Neurons can be readily tied to
time, as they model the behavior of actual neurons by time. The
environment may also be tied to time. However, the coupling
of the neurons with the environment can range from loosely
coupled, to tightly coupled depending on the system. Physical
robots, run by neural networks, are typically tightly coupled, with
input from the robot’s sensors going to the neurons, and the

neurons needing to respond quickly. If however, the environment
does not change rapidly, the neurons may sense change in the
environment, process for as long as necessary, and then respond;
the agent, loosely coupled with the environment, can perform its
tasks. With virtual environments, the actual time of simulation
may not be the same as the simulated time. Virtual environments,
can run more slowly or rapidly to correspond to simulated or
emulated neural time. The latency that occurs in nature is due
to time to synchronize the brain with the environment - there are
many experiments that exploit this behavior, and it is inherently
a closed-loop problem. Some details of synchronizing the visual
subsystem with the environment to complete the closed-loop are
discussed in the next two sections.

3.3. FLIF Closed-Loop Agents
Perhaps the most advanced closed-loop agents that the group
has developed are the CABot3s in the FLIF model (Huyck et al.,
2011). The agents consist of several subsystems that can be
seen in Figure 1. These were developed in our own Java FLIF
simulator, and in a virtual environment using the Crystal Space
games engine (Crystal Space, 2008)6. The environment is 3D
with the agent able to move about in the environment via four
primitive actions: turn left and right, and move forward and
backward, all in discrete steps. The virtual environment only
changes in response to the agent’s movements so the two are
only loosely coupled; consequently, getting information from and
sending information to the environment is relatively simple. The
environment consists of four rooms connected by four corridors.
In each room there was a unique shape: a pyramid or stalactite
that have vertical or horizontal stripes (see Figure 4).

The advancement of CABot3s over CABot2s is long-term
memory. CABot2s implement short-term memory by neural
firing. For instance, parsing in the NRP CABot2 makes use of
persistently firing neurons to maintain memory. In the FLIF
CABot3, long-term memory is formed by permanent synaptic
weight change that associates a room with the object in it, so the
system cannot relearn if the objects move.

The subsystems typically consisted of several subnets. A
subnet consists of a set of neurons. The subsystem and subnet
mechanism allow some degree of modularity for software
development. These agents have the most sophisticated visual
subsystem that our group has developed. In addition to subnets
of neurons that performed the function of the retina, primary
visual cortex, and object recognition, these visual subsystems
have grating cell subnets to recognize texture. This enables the
subsystem to recognize the four types of objects: vertically striped
pyramids, horizontally striped pyramids, vertically striped
stalactites, and horizontally striped stalactites. The NLP system
refers to vertically striped objects as barred, and horizontally
striped ones as striped.

These objects are used for a simple spatial cognitive mapping
task. When the agent is told to explore the environment, it finds
the object in the room and maps the room to that object. It
then navigates through the corridor to the next room, and so
on until all four rooms are mapped. This is a very simple form
of long-term learning. The agent is tested by a command like,

6http://www.crystalspace3d.org/main/main_page
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Go to the room before the striped pyramid. It then uses its long-
term memory to retrieve that, for instance, the barred stalactite
is in the room before the striped pyramid. It then traverses the
environment, checking each shape, until it gets to the room with
the barred stalactite, fulfilling the goal.

The NLP subsystem is quite sophisticated. It is perhaps the
best neuro-cognitive model of natural language parsing (Huyck,
2009), parsing in cognitively realistic times, appropriately
resolving prepositional phrase attachment ambiguity, and
producing semantic output (in this case, for planning). It is
currently one of the most important works in the CABot project.

This, and other CABot NLP systems, takes commands from
the user, and uses them to set goals in the planning subsystem.
The user types the commands into a text box in the virtual
environment.

The system implements Jackendoff’s tripartite theory
(Jackendoff, 2002), illustrated in Figure 2. Subnets refer to
particular sets of neurons, with all neurons in exactly one subnet.
They appear in their own window in the neural system’s user
interface. The tripartite theory refers to three language systems,
semantics, lexicon, and syntax. These systems communicate via
shared sets of neurons (subnets), and Jackendoff proposes that
there are other linguistic and non-linguistic systems.

Earlier versions of the system used a stack, but this did not
lead to correct parse timing. So, the system uses a memory based
solution, with semantic frames represented by CAs forming the
basis of phrases during parsing. Binding is essential for parsing
context free grammars, and binding is done by short-term
potentiation (STP) in this system.

One assumption made in this work is that a concept is
psychologically active, when its neurons fire at an elevated rate.
As each cycle of the simulator is tied to 10 ms. of real time
(Huyck and Parvizi, 2012), parsing rules are applied when their
neurons are firing, and this time is readily measured. This is
used to show that parsing is done in psycholinguistically realistic

FIGURE 2 | Gross Topology of the FLIF CABot3 Parser. Each box represents

a subnet with similar subnets grouped together according to Jackendoff’s

Tripartite theory.

times. Typical neural simulations use a time step of 1 ms, 0.1
ms, or even 0.01 ms. One benefit of a 10 ms. time step is that
approximately 100,000 neurons can be simulated on a standard
PC in a reasonable time.

Similarly, one variant of the agent, was a cognitive model
of rule choice (Belavkin and Huyck, 2010), taking advantage
of a reinforcement signal from the environment to learn the
meaning, from the perspective of the agent, of centring an object.
A different network, independent of the agent, used a similar
topology to model a two choice task. Figure 3 describes the
gross topology of this system. In the centring system, there were
two antecedents: the goal center and the fact object on left,
and the goal center and object on right. These came from the
planning subsystem. The consequents were the action turn right
and turn left, again from the planning system. Note that the
theory applies to any antecedent consequent set. The system
needs to learn the correct weights between the antecedents and
consequents. If the weights were already learned, the correct
consequent tended to be applied to the antecedent. However,
the weights were initially low, so this application did not occur.
Instead the neurons in the Explore subnet fired at an elevated
rate when any antecedent was present, causing a consequent to
be applied. If this led to a good result, the Value subnet was
externally activated, leading to its neurons firing at an elevated
rate, suppressing firing in the Explore subnet. This meant that the
correct antecedent consequent pair fired, and the weights from
the antecedent to the consequent were increased due to Hebbian
long-term potentiation. Similarly, weights from the antecedent
to incorrect consequents were reduced via Hebbian long-term
depression. If, on the other hand, the incorrect consequent was
selected, weights from the antecedent to the incorrect consequent
were initially increased. However, the Value subnet never came
on, so the Explore subnet continued to be highly active, leading
to a new consequent being selected. As this process is repeated,
the only attractor states are the correct antecedent consequent
pairs as determined by the reinforcement signal to the Value
subnet.

Moreover, this rule selection mechanism is not static. If
the environment changes, the reinforcement mechanism in
collaboration with Hebbian learning will learn the new utilities
of the rules.

FIGURE 3 | Gross topology of the reinforcement learning system. The Value

subnet represents the reward and Explore supports action when there is

reduced information. The a subnet is the collection of antecedents, and the c

subnet the consequents.
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The use of our own neural simulator and model, and our
own virtual environment has its advantages. If there is a minor
problem, or a new learning rule is needed, it can readily be
implemented. Unfortunately, this means that no one outside of
our group has ever used these systems. While some students
have been taught to use and modify the FLIF agents and the
code has been made available, it seems the learning curve is too
steep. Another approach is to use more widely used tools to
build modules that can be used in many agents, and by many
researchers.

3.4. HBP Closed-Loop Agents
One of the problems with the FLIF CABot3 agents was processing
time. As more neurons were used, simulating on a standard PC
began to become quite slow. While the loose coupling of the
virtual environment and the agent addressed time sensitivity,
addingmore neurons slowed themachinemarkedly; at one point,
the Java heap could not be further expanded. Recently CABot3
agents have been developed for two of the HBP computational
platforms: SpiNNaker neuromorphic hardware (Furber et al.,
2013), and NEST (Gewaltig and Diesmann, 2007) simulations.
One of the benefits of these platforms is speed. SpiNNaker
simulates neurons in real time, typically at 1ms clock speeds.
So, as the number of neurons in our simulations grow, the run
time speed remains constant. NEST is readily parallelisable and
can be run on high performance computers, though we run on a
standard PC.

The HBP CABot3s run in a new virtual environment written
in Python using the Tcl visual libraries. The agents run in both
NEST and SpiNNaker using the same code; there are the same
set of neurons and synapses in both version, but in some cases
the synaptic weights differ. They perform the same four room
cognitive mapping task as the FLIF CABot3. They no longer
use texture (vertical and horizontal stripes), replacing these
with color (red and blue). The corridors are now green. These
colors considerably simplify visual processing. NLP no longer
uses variable binding, as the STP rules standardly available in
NEST and SpiNNaker cannot be readily used for this task. So,
in the HBP CABot3s, parsing uses regular instead of context free
grammars (Hopcroft et al., 2006).

An early version of the agent ran only on SpiNNaker, and
used current based exponential integrate and fire neurons with
adaptation (Brette and Gerstner, 2005). The current based
version is not currently available on BrainScales, so the current
version uses conductance based exponential integrate and fire
neurons.

SpiNNaker, and to a lesser extent NEST, is still under
development, and its underlying software is changing. Though
it is becoming more stable, changes in that software required
the earlier agent to be rewritten. The agents’ dependency on
precision of behavior of neurons was tight and implicit; any
changes to the agent required complex rewriting. Consequently,
the current agents have been developed with the NLP, planning
and cognitive mapping subsystems making extensive use of a
Finite State Automata (FSA) class. So, when the underlying
neural model is changed, it is simpler to update the subsystems
and agents. Moreover, new components can be addedmaking use

of FSAs. Similarly, a timer class, similar to a synfire chain (Ikegaya
et al., 2004), has been developed and is used in the planning and
cognitive mapping subsystems. As software developers know,
software needs to be maintained, and this includes these neural
components.

Natural language parsing, to set the goals, is done using binary
CAs to implement FSAs. Simple plans can also be implemented
using FSAs, and this is the mechanism used for simple goals
like Move forward or Turn toward the pyramid. It however
proved more difficult to implement more complex movement,
like that needed to explore the four rooms, using binary CAs
alone. Maes nets (Maes, 1989) use connectionist units that have
a continuous value, and spread activation between units; these
are similar to the interactive activation model (Rumelhart and
McClelland, 1982). Maes nets have units for goals, modules,
facts, and actions. Activation spreads between the units, and
when an action unit reaches sufficient activation, it is chosen
and applied. Implementing these multivalued units cannot be
readily done with binary CAs. However, timers, implemented
in neurons, can be used in collaboration with binary CAs to
approximate this behavior. For example, facts are stimulated
by the environment, however, they should only be turned on
when an appropriate goal is active. If there is a pyramid in the
right of the visual field, it will not alone turn on the associated
fact. However, when the goal Turn toward the pyramid is on, it
will turn on a timer that sends extra activation to the pyramid
on left and pyramid on right fact CAs. In collaboration with
the environment, the appropriate binary fact ignites. Moreover,
multiple timers can be used for particular goals. For instance,
if no fact is active even after the first timer, a second timer
can be activated to perform a second round of activation of
other facts. If this is unsuccessful, a default action may be
taken.

The spatial cognitive mapping subsystem interacts with the
planning subsystem. It learns associations between the four
rooms and the four shapes in them; there are CAs for each of the
rooms and for each of the shapes. All are connected via synapses
that learn via a spike timed dependent plasticity rule (Bi and Poo,
1998). FSAs gate activity so only the appropriate CAs are active
when the Explore goal is set. During this time, only one room
and one shape are simultaneously active at a time, and these are
associated. During the search for the goal, the appropriate goal
shape is activated, which is gated via an FSA to activate the shape
from the prior room (again with no more than one room and
shape simultaneously activated). The goal is fulfilled when the
agent sees that shape, which is when the vision system, based
on the agent’s camera in the virtual environment and planning
system determine the shape is present.

The HBP CABot3s perform perfectly on the simple
commands, (e.g., Move forward and Turn left), and compound
commands (e.g., Move left, which turns left and then moves one
step forward). This is due to the programmatic nature of these
tasks. These are deterministic, so both the NEST and SpiNNaker
version perform perfectly. There are some minor differences
between the two systems with floating point numbers being 32
bit in NEST and 16 bit in SpiNNaker, but for these actions both
agents are deterministic.
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The most complex task is learning and using the spatial
cognitive map. An example of this is the command Explore,
followed by a command like Move to the room before the room
with the red stalactite. These two commands fill the map and then
test it has been correctly filled. Here the SpiNNaker agent loses its
determinism, even when given these commands at the exact same
time in the simulations, performance varies. The variance stems
from the visual input from the environment to the board. This
has been implemented by taking a bitmap of the environment
from the agent’s camera, pixelating it, and sending spikes to the
associated visual input neurons. This leads to an irregular spike
timing pattern, with input stopping while the picture is analyzed.
Even when the picture is not being processed, input spikes to the
board are not regular. So, input comes roughly every 30 ms with
variance to between 20 and 40 ms, except when the picture is
being processed, when input will cease for approximately 100 ms.
This input variability requires both the visual subsystem and the
planning subsystem, which gets input from the visual subsystem,
to be more flexible.

The planning subsystem is responsible for the agent’s temporal
behavior. While pursuing some goals, it uses input from the
visual subsystem to determine the agent’s relative spatial location.
During exploration, it sends this information to cognitive
mapping, and retrieves that information when starting a Move
before goal.

With NEST, the input is entirely regular. The actual neural
time does not need to correlate with the real time, as the
environment and the neurons are loosely coupled, so input comes
every 30 ms. Nonetheless, the system is still complex enough that
it behaves differently each time on the Explore command. The
inputs come every 30 ms of simulated time, but variance creeps
in immediately, since the camera to pixel mechanism from the
environment has variance. So each action sequence is different. If
input timing was regularized in SpiNNaker, this task would still
be non-deterministic.

Figure 4 shows one instance of the agent performing the
Explore task, followed by the Move before the red stalactite task.
Movements around the red stalactite and blue pyramid show
the difficulty the agent has identifying the object, making several
moves to identify it. After one Move command, the agent can
perform others, though it can only explore once. This task is
complex requiring well over one hundred primitive moves. The
agent must identify the four objects, and navigate through the
four narrow corridors between the rooms.

The NEST version of the agent does these two commands
correctly 86/100 times, and the SpiNNaker version does it
correctly 49/100 times. The measurement is done over 200 s
of neural time. The task is typically completed in about 85 s,
but given a longer time, the actual results will be higher. The
agents do fail at these tasks. For example, one failure arises
from incorrectly identifying an object, with a pyramid being
substituted for a stalactite or vice-versa. An improved plan, or
an improved visual subsystem will lead to better performance.

There are several reasons for the system failing. As visual
input is only 20×20 pixels, viewing the objects at a distance does
not provide the agent with enough information to distinguish a
pyramid from a stalactite. The plan is also designed for speed.

FIGURE 4 | Moves of CABot3 while executing the Explore command followed

by the Move before the red stalactite command. This is a top down

representation of the environment. Moves are marked by dots. The agent

starts at S, and the move command is executed at M. The outside of the box

represents the walls as do the stripes on the inside. The blue stalactite and

pyramid are represented by horizontal stripes, and the red objects by vertical

stripes. The pyramids point to the top of the page, and the stalactites to the

bottom. The numbered axis units are Tcl points.

When exploring, the agent identifies the object, then turns right
looking for the corridor, then goes to the corridor, then through
it, and then back to identifying the next object. If the agent misses
entering the corridor, it can go to the left or right of the entrance,
and get into a state of circling the room. Similarly, while going
through the corridor, it may turn around as it cannot identify the
end of the corridor, it goes back to the room that it has just come
from; it can recover from this.

The tasks the CABot3s must perform are sufficiently
sophisticated to make them interesting. Firstly, there are many
tasks that the agents must be able to perform, as set by a user.
Secondly, the mapping tasks require the agent to make hundreds
of moves interacting with the environment throughout. Thirdly,
the corridors are difficult to find, enter, and exit. Fourthly, the
visual items are difficult to distinguish from each other.

The system has an, albeit programmed, sophisticated link
between cognitive mapping, vision, planning, and the language
semantics. In essence, the semantics of the words are grounded
in the environment; the system addresses, but does not resolve,
the symbol grounding problem. This shows the agents are
sophisticated, and a promising basis for future exploration.

4. OTHER NEURAL AGENTS

The neural agents developed by the authors’ group are, of course,
not the only neural agents. Several simple neural agents already
exist on the HBP’s NRP (see section 4.1). There are other virtual
agents (see section 4.2) and there are robots (physical agents)
driven by neurons (see section 4.3). This is not meant as an
exhaustive review of other neural agents, but as an entry to the
area.
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4.1. Neurorobotics Platform
The HBP’s NRP (Roehrbein et al., 2016) has several agents that
can be run interactively over the Internet7 using the NRP’s server.
Many of these agents are driven entirely by simulated neurons
(using NEST). The environments, virtual robots, brain models
(neural nets) and communicationmechanisms can all be changed
by the user. This is an excellent platform to explore and compare
virtual neural agents.

One example experiment is theHusky Braitenberg experiment
with virtual red detection. This agent has a simulated four
wheeled robot with a camera on top of a Husky robot. This agent
looks for red objects and then moves toward them. It is a virtual
implementation of Braitenberg’s (1984) simplest vehicle, which
makes use of a simple visual color detection mechanism.

Another example is the force based joint control simulation
of a hand. The virtual environment simulates the physics of a
simulated robotic hand. The neurons respond to pressure, from
the environment, to move the simulated finger to a specified
location.

4.2. Virtual Neural Agents
There are many virtual neural agents, and many agents using
connectionist systems. This section discusses some agents that
use spiking neurons.

One system (Neftci et al., 2013) categorizes visual images
depending on context. It uses a real-time neuromorphic
architecture emulated in a CMOS VLSI system. Its task is to
follow either a vertical or horizontal bar on a video screen.
Depending on the context (a red or blue circle), the system must
respond when the horizontal or vertical bar enters the right half
of the screen. The context is provided by an FSA, and the neural
system takes advantage of soft winner-takes-all networks.

Another system (Potjans et al., 2009), based on spiking
neurons, learns using temporal difference and reinforcement
learning, both implemented in biologically plausible learning
rules. The task is to move to a reward position on a grid.

One group has developed a broad set of linked subsystems
from spiking neurons (Eliasmith et al., 2012), with a wide range of
functionality including vision, motion, language processing and
some learning. This makes extensive use of vectors implemented
by spiking neurons.

4.3. Robots
There is a rich body of literature on the use of neurons to drive
robots. One early neural robot uses spike response neurons, a
simple vision system, and a set feed forward topology (Floreano
and Mattiussi, 2001). An evolutionary algorithm is used to set
whether particular synapses exist and if so if they are inhibitory or
excitatory. The fitness function optimizes for a robot that travels
as fast as possible without hitting the walls in its environment.
This is a stimulus response agent similar to several of the virtual
agents described above.

Another robot parses commands and uses simple plans and
vision to turn toward an object in a particular color (Fay et al.,
2005). Though specialized vision algorithms are used, this system

7https://neurorobotics.net/

makes use of CAs and FSAs, and so, in the terminology of this
paper, is a CABot2.

There is a particularly rich area of research in robot control,
and learned robot control (e.g., Dean et al., 2009). For example,
one system learns how to control a robot arm using spiking
neurons and synapse adaptation rules, though these are based on
error feedback (Carrillo et al., 2008).

5. EXTENSIONS

While this paper describes neural agents, a key point is that, if
developed correctly, neural agents and their components can be
combined, and that they can be compared. The agents described
in section 3.4 and their components can be reused, improved,
extended and evaluated.

The existing subsystems can be modified to perform in other
environments and other tasks, such as finding an object in amaze.
Existing neural subsystems can be replaced allowing comparison
and improvement; for example, the spatial mapping and vision
subsystems can be replaced. New modules can be added; for
example, the addition of a natural language generation subsystem
could make a conversational agent, and an episodic memory
would support agents that persisted longer benefiting from those
memories.

New subsystems can be integrated with the agents. The
authors are beginning to work on a semantic memory subsystem.
CAs will emerge from input, and relationships between them will
be learned. This semantic net will be both a long and a short-term
memory supporting several simultaneously active nodes based
on input; part of the evaluation will include a neuro-cognitive
model, which will duplicate priming data and perform a Stroop
test (Stroop, 1935). Other example subsystems include episodic
memory, spatial reasoning, motion, foveation, and emotion.

Components of the systems described in section 4, and
other systems, could be included in the suite of components.
Unfortunately, it is often difficult to unbundle full neural systems,
but as they are already connected via synapses, there is a
mechanism. This will require some development effort, but
there is no reason not to start work on integration. The NRP
is one platform that could be used to support integration.
Developing an agent, a virtual environment, or a component can
be quite complex, and combining them can be similarly complex.
Developing software engineering support for these tasks would
be valuable. One form of support would be benchmarks to
facilitate comparison. For example, others could use the four
room task to see if another neural agent can perform better.

New abstract data types, implemented in neurons, can be
added, supporting the development of new subsystems and
agents. The FSA and timer are already supported, but new
types like soft winner-takes-all nets can be added. The authors
are working on continuously valued CAs, which unlike our
current binary CAs, will have a range of activity that gradually
changes depending on input, and over short times. One version
would be roughly equivalent to the Interactive Activation Theory
(Rumelhart and McClelland, 1982) and could be used for a wide
range of cognitive systems and cognitive models.
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Another way forward would be to build neural perceptual
symbol system simulators (Barsalou, 1999). A system would both
recognize percepts, and produce them in simulation. Beyond
that, a neural system that learned new simulators would be a
powerful step toward agents with deep semantics.

There is also scope for advancement in improved neural
models, improved topologies, and improved learning
mechanisms. Here, improved means that they perform their
tasks better, but also that they more accurately reflect biology.
For example, the CABots described above have used point neural
models. Perhaps more sophisticated models are needed, but
it is not currently understood if that is the case or why. The
existing, less plausible, systems can provide a scaffolding for
more sophisticated and plausible future systems. Proposals do
exist for more accurate and computationally viable topologies
(e.g., Granger, 2006). These are obvious extensions. Moreover,
these computational models can help in understanding the actual
biological systems. Moreover, there is a vast range of research in,
for example, power law scaling (Tinker and Velazquez, 2014) and
the balance between excitatory inhibitory activity (VanVreeswijk
and Sompolinsky, 1996). All of this work can be explored and
integrated into neural agents.

The main advantage of neural systems is that they can learn.
The CABot3 agents learn, and spiking nets can be used for
a wide range of machine learning tasks (Ghosh-Dastidar and
Adeli, 2009). However, agents have the ability to exist practically
indefinitely, and the scope for learning is immense. The neural
agents described above, in both sections 3 and 4, have been, in
essence, programmed to behave. Future agents need much more
learning.

Perhaps the most important task to extend these neural
systems is to explore learning mechanisms that can learn
over days and longer. This includes learning across subsystem
boundaries. It also includes learning from the environment,
as opposed to typical machine learning systems that learn a
single task from refined input. Imagine a system that learned a
perceptual symbol system and its associated simulators. Working
in a relatively small domain, it could learn the deep semantics
of that domain. As others have suggested (Gomila and Muller,
2012), the system could then learn other simple domains,
possibly benefiting from its knowledge of earlier domains.

If the domain included crocodiles and steeplechases, the agent
could learn those deep semantics, and answer the unanticipated
question “Are crocodiles good at running the steeplechase?”
As the agent learned the deep semantics of broader domains,
and more domains, it would be able to answer more questions.
Eventually, the authors propose, such an agent would be able to
pass the Turing test.

Conversational systems aid in this ability to learn. Via the
conversation, the agent can learn from a person. Moreover,
by developing conversational agents, understanding of social
cognition, situated cognition, and dynamic communication may
be furthered.

However, to get to such agents, we need to move from
programmed systems using FSAs or relatively small dimensional
vectors, to more biologically plausible systems, like CA based
systems where the CAs are learned, behave more robustly,

and behave more realistically psychologically. If these agents
functioned in complex domains, they could learn from them.

6. CONCLUSION

The scientific community is quite some distance from
understanding how cognition emerges from neural behavior. An
excellent way to develop this understanding is to build artificial
neural systems that produce similar cognition. Systems that also
produce similar neural behavior are even better.

This paper has summarized several neural cognitive agents
situated in environments. These produce a range of behaviors
from simple actions, to complex goal directed behavior, and
perform as neuro-cognitive models. These have been developed
in components so that new components can be added, existing
components can be modified, and new agents can be constructed
from these components.

These agents and components will provide support for further
exploration of neural cognitive agents, both in the form of
running systems, and with links to neuro-cognitive research.
Others may make their neural systems available and usable for
comparison and reuse. Reuse of systems is just good engineering,
and rerunning of experiments is just good science. None the less,
focused efforts, beyond the scope of even the HBP, could lead to
more rapid advancement. This will require a great deal of effort
and expense. There is a vast distance from these agents to the goal
of Turing test passing agents, but this paper has also provided
possible next steps on that path.

It is clear that the existing CABots are not close to passing the
Turing test. The authors instead argue that pursuing the human
model (embodied agents, based on human neural functioning,
that learn, function in a wide range of domains, and are cognitive
models) is the best route to developing such a system. There are
a vast number of problems to overcome before such a system is
developed including basics of sensing, action, and memory, but
also resolving classic problems like symbol grounding and the
frame problem (Dennett, 1984). These problems have all been
resolved by human brains and bodies. Scientists may not know
how they have all been solved, but the working model provides
answers to be discovered.

While developing neural cognitive agents is a difficult task,
there is an added benefit that systems that can produce cognitive
behavior will be useful in their own right. A system that can learn
the deep semantics of a new, but restricted, domain will be an
excellent tool to work in that domain.

The neural agent approach is not only the best way to achieve
the lofty and distant goal of passing the Turing test; it is an
excellent way to improve our understanding of neural behavior
and psychological behavior. It is also an excellent way to build
more sophisticated AI systems that are tools for use in real
environments.
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