1	Eat the fruit earlier: Sakis (Pithecia chrysocephala) show enhanced temporal fruit
2	resource access compared with squirrel monkeys (Saimiri sciureus) in an urban
3	forest fragment in Brazil
4	Running title: Advantages of the saki feeding system
5	
6	Makiko Take ^{1.2†1*} , Takakazu Yumoto ¹ , Adrian A. Barnett ^{2.3} , Kota Onizawa ^{4‡} , Wilson R.
7	Spironello ²
8	¹ Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
9	² Grupo de Pesquisa de Mamíferos Amazônicos, Instituto Nacional de Pesquisas da
10	Amazônia, Manaus, AM, Brazil
11	³ Animal and Agricultural Sciences, Hartpury University, Gloucester, England
12	⁴ Wildlife Research Center, Kyoto University, Kyoto, Japan
13	

[†]Current affiliation: Wildlife Research Center, Kyoto University, Kyoto, Japan

[‡]Current affiliation: Field Science Center for Northern Biosphere, Hokkaido University,

Uryu, Hokkaido, Japan

14 ***Correspondence:**

- 15 Makiko TAKE
- 16 Kanrin, Inuyama 484-8506, Aichi, Japan
- 17 <u>take.makiko.77a@gmail.com</u>
- 18 +81-90-8258-0742

19

20 Abstract

21 Fruit availability experienced by different primate species is likely to vary due to species-22 specific fruit use, even within the same habitat and timeframe. Pitheciines, primates of 23 the subfamily Pitheciinae, particularly favor the seeds of unripe fruits. Researchers consider this dietary characteristic an adaptation to increase access to fruit resources. 24 25 However, the relative advantages of pitheciines over sympatric non-pitheciine non-seedeating primates regarding species-specific fruit availability is not well studied. In a 26-26 ha forest within the city of Manaus, Amazonian Brazil, we assessed the wild-food feeding 27behavior of free-ranging groups of golden-faced sakis (Pithecia chrysocephala) and 28 29 sympatric common squirrel monkeys (Saimiri sciureus). We hypothesized that sakis would have greater and more consistent access to wild fruit due to 1) a wider variety of 30 31 fruit species in their diet, and 2) longer consumption periods per fruit species. We 32 recorded the plant species, part (pulp or seed), and developmental stage (ripe or unripe) of wild fruit consumed by both species. We also conducted monthly fruit censuses of 33 1,000 trees and vines to estimate overall wild fruit abundance. As an indicator of fruit 34 35 availability, we calculated the proportion of available fruiting trees and vines for each primate species separately based on their observed diet. Throughout the year, the 36 37 proportion of available trees and vines was significantly higher and more temporally

38	stable for sakis than for squirrel monkeys. This was because sakis used shared fruit
39	species longer than squirrel monkeys by consuming both ripe and unripe fruit. Although
40	sakis had a broader fruit repertoire than squirrel monkeys, it did not contribute to the
41	higher fruit availability. Thus, the fruit feeding system of sakis identifies aspects of a
42	niche that is less restricted in the timing of fruit consumption, which led to a relative
43	advantage in fruit availability.
44	
45	Keywords
46	Seed predator, fruit availability, fruit choice, South American primate, niche partitioning
47	
48	Abbreviations
49	INPA: Instituto Nacional de Pesquisas da Amazônia
50	DBH: diameter at breast height
51	
52	

53 Introduction

70

54	Fruit resources are used by the majority of tropical forest vertebrates, including
55	primates (Fleming et al., 1987, Fleming & Kress, 2011; Fuzessy et al., 2021; Hawes &
56	Peres, 2013). Fruit availability affects many aspects of primate behavior, including
57	feeding, ranging, sociality, and reproduction (van Schaik & Brockman, 2005; Lambert &
58	Rothman, 2015). Therefore, adaptations enhancing access to fruit resources offer
59	evolutionary advantages to primates.
60	Fruit preference varies among primate species (Izawa, 1975; Guillotin et al.,
61	1994; Martins, 2008). As composites, fruits consist of pulp and seed, with different
62	mechanical, chemical, and nutritional properties depending on their developmental stage
63	(Brady, 1987; Janzen, 1983). A single fruit species offers several resources that may only
64	be accessible to a subset of animal species. Therefore, a distinction can be drawn between
65	"fruit abundance" (the estimated number of individual fruits growing on trees in the
66	habitat) and "fruit availability" (the fruit a specific species is capable of consuming based
67	on their morphology, feeding behavior, and the presence of other species in the same
68	habitat). While the abundance of a specific fruit in a habitat remains consistent, the fruit
69	availability experienced by specific species is likely to differ.

Pitheciines, primates of the subfamily Pitheciinae (Cacajao, Chiropotes, and

71	Pithecia; endemic to the Amazonian and Guianan forests), exhibit unique fruit use. Their
72	morphological traits and feeding behavior allow them to consume both the pulp and seeds
73	of fruits, including unripe ones (Bowler & Bodmer, 2011; Happel, 1982; Norconk, 1996;
74	Peres, 1993; van Roosmalen et al., 1988). Their specialized dental and jaw structure
75	enables them to break open hard pericarps and seed coats (Kinzey, 1992; Ledogar et al.,
76	2018). This adaptation broadens their fruit options beyond the soft and juicy fruits favored
77	by other primates (Charpentier et al., 2015; Norconk & Veres, 2011; Kinzey and Norconk,
78	1990). Additionally, by incorporating both unripe and ripe fruits into their diet, they can
79	extend the availability of each fruit species (Palminteri, 2012). Due to these
80	characteristics, pitheciines possibly enjoy relatively higher fruit availability than
81	sympatric non-seed-eating primate, but it has not been directly examined.
82	Sakis (genus Pithecia), the smallest pitheciine, are widespread in northern South
83	America and often occur sympatrically with many other primate species (Happel, 1982;
84	Peres, 1991). Eastern and Central Amazonian sakis (P. pithecia and P. chrysocephala) are
85	known to use the middle to lower layers of forests (Mittermeier & van Roosmalen, 1981;
86	Oliveira et al., 1985; Setz et al., 2013), where they frequently coexist with squirrel
87	monkeys (genus Saimiri) (Rowe & Myers, 2016; Mittermeier & van Roosmalen, 1981;
88	Pinheiro et al., 2013). Squirrel monkeys are insectivore-frugivores, and more than half of

89	their diet consists of fruit or flowers (Lima & Ferrari, 2003). Sakis often chew and destroy
90	the seeds of fruit (Setz 1993, Norconk & Setz, 2013; Norconk, 2020), while squirrel
91	monkeys, like many frugivorous primates, swallow or spit them out (Take, 2017).
92	In this study, we investigated the feeding habits of golden-faced sakis (Pithecia
93	chrysocephala) and common squirrel monkeys (Saimiri sciureus) in a forest fragment in
94	Manaus, Amazonian Brazil. Using interspecific comparisons, we examined the
95	hypotheses that sakis have greater access to wild fruit than sympatric non-seed-eating
96	squirrel monkeys due to: 1) a wider variety of fruit species in sakis' diet, and 2) longer
97	consumption periods per fruit species in sakis. To ensure the validity of our comparisons,
98	we assessed whether the primate species at the study site consumed similar amounts of
99	the regularly provided supplemental food. We investigated the wild fruit choice of the
100	two primate species, including data on the species, part (pulp or seed) and developmental
101	stage of the fruit (unripe or ripe). As an indicator of fruit availability, we calculated the
102	monthly proportion of available fruiting trees or vines for each primate species based on
103	the observed fruit choices and compared them.

104

105 Methods

106 Ethics statement

107	The study protocol complied with the Guidelines for Field Research established
108	by the Ethics Committee of the Primate Research Institute, Kyoto University, Japan, as
109	well as the American Society of Primatologists Principles for the Ethical Treatment of
110	Non-Human Primates.
111	
112	Study site
113	The study was conducted at Campus I of the Instituto Nacional de Pesquisas da
114	Amazônia (INPA) in Manaus, Amazonas, Brazil (3°09' S, 59°99' W) (Figure 1). The
115	study site is a 26-ha fragment of secondary lowland Amazonian terra firme forest
116	enclosed on all sides by tarmacked roads. The site houses four species of free-ranging
117	primates: pied tamarins (Saguinus bicolor), common squirrel monkeys, golden-faced
118	sakis, and owl monkeys (Aotus cf. nigriceps). The study site is also inhabited by non-
119	primate frugivores, such as iguanas, opossums, and various birds, including macaws and
120	toucans. Mean annual precipitation in Manaus was 3001 mm over the past 30 years
121	(Climate-data.org, n.d.). Rainfall is highly seasonal, with a dry season from June to
122	November, and a rainy season from December to May. Monthly precipitation during the
123	study period followed this pattern, with relatively more rain in September and October
124	and less rain in November and December (Instituto Nacional de Meteorológia, n.d.)

125	(Figure 2a). The monkeys have been provided with supplemental food on a daily basis
126	since 1995 as part of the Bosque da Ciência ("grove/forest of science") environmental
127	education initiative under the leadership of Dr. Marc van Roosmalen. At the time of this
128	study, eight provisioning tables accessible to all monkeys were distributed across campus
129	(Figure 1). Six of these tables provided 1 kg of banana, 500 g of papaya, and 300 g of
130	pineapple pulp (in 5 g pieces), and two tables provided 100 g of coconut flesh (in 1 g
131	pieces). The contents and volume of the food (provided at 07:00 AM daily) remained
132	constant throughout the study period.

133

134 Vegetation survey

135	We established 16 transects (5 m wide) at 50 m intervals (Figure 1). The
136	maximum length of each transect was 200 m, excluding buildings, roads, and ponds, to
137	maximize sampling area size. The transects covered a total length of 2844 m and an area
138	of 1.42 ha, accounting for approximately 5.5% of the total campus area. As monkeys at
139	the study site often eat fruits from trees with a diameter at breast height (DBH) < 10 cm
140	(e.g., Siparuna guianensis or Leonia cymosa), we tagged and identified every tree and
141	vine with a DBH \geq 5 cm within the transects. We measured DBH with a tape measure.
142	Basal area (cross-sectional area at breast height) was calculated based on DBH. Plant

143	species were identified with the assistance of Mr. José Ferreira Ramos, a plant specialist
144	at INPA.
145	
146	Fruit census
147	To estimate wild fruit availability, we randomly selected 1000 tagged trees and
148	vines, regardless of whether they were used by monkeys. Each month, from January 2019
149	to February 2020, we recorded the presence or absence of fruits as well as their
150	developmental stage (ripe or unripe, based on external color and any notable changes
151	between surveys).
152	
153	Study groups
154	We studied two groups of golden-faced sakis and one group of common squirrel
155	monkeys. Saki Group A comprised 9 individuals: 4 adult males, 2 adult females, and 3
156	female juveniles. At the beginning of the study, Group B had 13 individuals: 5 adult males,
157	3 adult females, 3 juvenile males, and 2 juvenile females; however, 1 adult male left in
158	March 2019, and 1 female was born in October 2019. We defined an "adult" saki as an
159	individual older than 4 years. The squirrel monkey group comprised approximately 50
160	individuals. Their group composition was unclear because of the difficulty in determining

the age and sex of young individuals. The two saki groups used the northern and southern
halves of the forest, respectively, while the squirrel monkey group used the entire campus
area (Take, 2017). All three groups were well-accustomed to the presence of observers at
the beginning of the study.

165

166 **Observation of feeding behavior**

167 We conducted full-day observations of each monkey group for 3-4 days per 168 month, from March 2019 to February 2020. We recorded the feeding activities of all 169 visible individuals (except dependent infants) in 10-min intervals via the instantaneous 170group scan sampling procedure (Altmann, 1974). During the observation, the observer 171 tried to be at the center of the focal group to scan as many individuals as possible. Foods 172 eaten were categorized as follows: provisioned foods, wild fruit pulp, wild fruit seeds, 173 unknown parts of wild fruits, flowers, leaves, insects, and "other" (including plant stems, 174termite nests, and mother's milk). For wild fruits containing seeds < 1 mm in size, such 175 as Cecropia, we assumed that the pulp was consumed. For wild fruits that include pulp and seeds, the developmental stage (ripe or unripe) of consumed fruit was also recorded. 176 177

178 Data analysis

179	We examined daily diet composition in two ways: by comparing provisioned
180	food versus wild food, and by considering the composition of wild food only. To avoid
181	overrepresenting highly visible feeding behaviors, such as feeding on provisioned foods,
182	we performed all calculations as follows: First, for each scan in which feeding was
183	recorded, we calculated the percentage of each food category by dividing the number of
184	individuals eating the food by the total number of feeding individuals in the scan. Second,
185	for each food category, we calculated the average percentage per scan per day.
186	To assess the dependency of each group on provisioned foods, we conducted a
187	one-way ANOVA using the daily percentage of provisioned foods consumed per group.
188	To compare the number of wild fruit species used between primate species while
189	addressing the variation in sampling effort, we constructed diversity accumulation
190	(rarefaction) curves using the R package iNEXT (ver. 2.0.20; Hsieh et al., 2016) with
191	extrapolation and 95% confidence intervals based on individual abundance data (Chao et
192	al., 2014). To account for interspecific differences in fruit dependency, we used the
193	number of feeding records on wild fruits as the unit for the x-axis instead of the total
194	number of feeding records. Following Chao et al. (2014), we considered the extrapolation
195	endpoint to be double the smallest sample size or equal to the maximum sample size,
196	whichever was greater. We considered the diversity of wild fruit species used to be

197 significantly different when the confidence intervals did not overlap within the range of198 extrapolation.

199 We compared the composition of the consumed part (seed or pulp) and 200 developmental stage (unripe or ripe) of shared wild fruit species between the primate species using a chi-square test of independence based on the number of feeding records 201 202 in each category (i.e., ripe pulp, ripe seed, unripe pulp, or unripe seed). We then conducted 203 a residual analysis to identify categories with a higher or lower value than anticipated. To 204 compare the periods when the monkeys shared wild fruit species, we used an exact Wilcoxon signed-rank test with the consumption period (months) for each fruit species as 205 the dependent variable (N = 43 species). 206

To compare wild fruit availability between the two primate species, we 207 208 calculated the proportion of available fruiting trees and vines based on their observed 209 diets. First, we compiled a list of wild fruits eaten, including the species, parts (pulp or 210 seed), and developmental stage (unripe or ripe). The proportion of available feeding trees and vines was calculated for each month by dividing the number of trees and vines bearing 211 fruit by the total number of trees and vines, while accounting for the developmental stage 212 213 of the fruit (ripe or unripe). For example, if monkeys ate only the ripe fruits of plant 214 species A, we calculated the proportion of trees/vines bearing ripe fruits. If monkeys ate

215	both unripe and ripe fruits, we calculated the proportion of trees/vines bearing fruit at
216	either of the developmental stages (ripe or unripe). Calculations included all wild fruit
217	species that were used once or more. We used the Exact Wilcoxon signed-rank test to
218	compare groups, with the monthly proportion of available feeding trees and vines as the
219	dependent variable (N = 14). In addition, as an indicator of the consistency of fruit
220	availability, we calculated the coefficient of variation (CV) by dividing the mean by the
221	standard deviation for the monthly proportion of fruiting trees and vines ($N = 14$) for sakis
222	and squirrel monkeys. The R package cvequality (ver. 0.1.3; Marwick & Krishnamoorthy,
223	2019) was used to test for differences in the CV between primate species. Statistical
224	significance was set at $p < 0.05$. Data are presented as the mean \pm SD.
225	
226	Results
227	In the vegetation survey, we recorded 1,807 individual trees/vines, which
228	belonged to 223 plant species within 156 genera and 58 families (Table S1). Fabaceae
229	dominated in terms of species and basal area, whereas Arecaceae dominated in terms of
230	the number of individual trees (Table S1). Euterpe oleracea (Arecaceae) had the greatest
231	number of individual trees (N = 405), followed by <i>Siparuna guianensis</i> (Siparunaceae, N

232 = 68), Inga alba (Fabaceae, N = 44), Attalea maripa (Arecaceae, N = 38), and Guatteria

233 *scytopylla* (Annonaceae, N = 37).

234	Regarding observation of feeding behavior, we conducted 4,523 scans of the saki
235	groups (Group A, N = 2,345; Group B, N = 2,178). On average, 4.9
236	individuals were observed at each scan (Group A, 4.6 individuals; Group B, 5.3
237	individuals).We collected 5,456 feeding records of sakis (Group A, N = 2,563; Group B,
238	N = 2,893), in which we identified 98% of the food categories (97% in Group A, 99% in
239	Group B). For squirrel monkeys, we conducted 2,643 scans. On average, 5.6 individuals
240	were observed during each scan. We collected 3,737 feeding records of squirrel monkeys,
241	in which we identified 99.9% of the food categories.

242

243 Use of provisioned foods

All monkey groups visited the provisioning tables daily, apart from one day where saki Group A did not visit the tables. Despite this, the mean percentage of provisioned foods in all group diets was < 13% (saki Group A, $10.9 \pm 5.91\%$, N = 40 d; saki Group B, $12.8 \pm 5.15\%$, N = 38 d; squirrel monkeys, $11.4 \pm 4.29\%$; N = 38 d). There were no significant differences in dependency on provisioned foods among the monkey groups (ANOVA: F = 1.36, p = 0.26). However, there were distinct interspecific

differences in the preference for provisioned foods. Sakis consumed all coconut flesh
pieces first before eating fruit pulp. On average, coconut flesh accounted for 40.3% of the
provisioned foods consumed by sakis (Group A, $43.9 \pm 30.0\%$; Group B, $36.7 \pm 18.0\%$).
The squirrel monkeys only used the provisioned fruit pulp (i.e., bananas, papayas, and

254 pineapples) and never used the coconut flesh.

255

250

251

252

253

```
256 Wild fruit use
```

Excluding the provisioned foods, the two primate species showed different dietary compositions (Table 1). The use of wild fruits (pulp and seeds) accounted for 80.9% of the sakis' diet (80.7% in Group A, 81.1% in Group B) and 41.2% of the squirrel monkeys' diet (Table 1). Sakis used 148 fruit species (76 genera in 37 families), and squirrel monkeys used 77 fruit species (52 genera in 31 families) (Table 2). The primates shared 43 fruit species (Table 2).

Accounting for differences in sampling effort (Figure 3), sakis fed from significantly more wild fruit species than squirrel monkeys and used more non-shared species (sakis, N = 105 spp.; squirrel monkeys, N = 34 spp.). Non-shared species used by sakis included *Attalea maripa* and *Oenocarpus bacaba* palms, the ripe pulp of which was their most eaten wild fruit (Table 2).

268	Even within the same wild fruit species, the composition of the developmental
269	stage and part consumed varied between primate species ($\chi^2 = 1,111.7$, df = 3, p < 0.01,
270	Cramer's V = 0.629) (Figure 4). Squirrel monkeys mostly used ripe fruits ($pulp = 92.5\%$,
271	seeds = 6.9%) while sakis ate significantly more unripe seeds (43.2% , residual analysis,
272	adjusted residual = 25.812, $p < 0.001$) and unripe pulp (1.8%, adjusted residual = 3.241,
273	p < 0.001) than expected. Sakis ate significantly less ripe pulp than expected (25%,
274	adjusted residual = 32.859 , p < 0.001) (Figure 4).
275	Sakis used the shared wild fruit species for a longer period than squirrel monkeys
276	(Exact Wilcoxon signed-rank test, $V = 486$, $p < 0.001$, $N = 43$) (Figure 5, Table S2).
277	
277 278	Comparison of wild fruit availability
	Comparison of wild fruit availability Of the 182 wild fruit species used by the monkeys, we calculated the fruit
278	-
278 279	Of the 182 wild fruit species used by the monkeys, we calculated the fruit
278 279 280	Of the 182 wild fruit species used by the monkeys, we calculated the fruit availability (i.e., proportion of available fruiting trees and vines) of 56 species included
278 279 280 281	Of the 182 wild fruit species used by the monkeys, we calculated the fruit availability (i.e., proportion of available fruiting trees and vines) of 56 species included in the fruit census (Table 2, Figure 6). Among them, 31 species were shared, 20 species
278 279 280 281 282	Of the 182 wild fruit species used by the monkeys, we calculated the fruit availability (i.e., proportion of available fruiting trees and vines) of 56 species included in the fruit census (Table 2, Figure 6). Among them, 31 species were shared, 20 species were used only by sakis, and five species were used only by squirrel monkeys (Table 2).

286	(sakis: 0.176; squirrel monkeys: 0.433; MSLRT = 7.981; p = 0.005) (Figure 6a),
287	indicating that the proportion of available fruiting trees and vines was more stable for
288	sakis during the study period. These results were consistent with that of the shared fruit
289	species in terms of the proportion of available fruiting trees and vines (Exact Wilcoxon
290	signed-rank test, $V = 105$, $p < 0.001$, $N = 14$) and CV (saki: 0.169, squirrel monkey: 0.519,
291	MSLRT = 11.699, p < 0.001) (Figure 6b). On the other hand, for non-shared fruit species,
292	there were no differences between the two primate species in the proportion of available
293	fruiting trees and vines (Exact Wilcoxon signed-rank test, $V = 42$, $p = 0.839$, $N = 14$)
294	(Figure 6c) and CV (sakis: 0.454; squirrel monkeys: 0.377; MSLRT = 0.315; p = 0.575)
295	(Figure 6c).

296

297 **Discussion**

In this study, we hypothesized that sakis would have greater access to wild fruit than squirrel monkeys would, due to 1) a wider variety of fruit species in their diet, and 2) a longer consumption period per fruit species. Our data supported hypothesis 2 but did not support hypothesis 1. By consuming wild fruits at both unripe and ripe stages (Table 2), sakis used shared fruit species earlier and over a longer period than squirrel monkeys (Figures 5 and 6b). As a result, the proportion of available fruiting trees and vines was

304	significantly higher and more temporally stable for sakis than for squirrel monkeys
305	(Figure 6a). Sakis used a wider variety of fruit species than squirrel monkeys (Figure 3),
306	but it did not contribute to the higher fruit availability (Figure 6c).
307	
308	Effect of provisioned foods
309	More than 85% of the daily diet of sakis and squirrel monkeys at this study site
310	consisted of wild foods. For both primate species, the composition of the wild foods
311	resembled those reported in non-provisioned conditions (Table 1; Norconk & Conklin-
312	Brittain, 2004; Zimbler-DeLorenzo & Stone, 2011). Furthermore, squirrel monkeys in
313	this study used 77 wild fruit species, surpassing previous records in non-provisioned
314	populations: 23 plant species during 6 months (Lima and Ferrari, 2003), 68 plant species
315	during 12 months (Stone, 2007), and 23 plant species during 8 months (Pinheiro et al.,
316	2013). This suggests that our feeding data for squirrel monkeys was sufficient to cover
317	the potential food fruit species. Nevertheless, sakis had a broader fruit repertoire. This
318	evidence, combined with the fact that the two species consumed roughly the same amount
319	of provisioned foods (interspecific comparisons were conducted only on wild fruits)
320	indicates that the results of this study were not significantly affected by the availability of
321	provisioned foods.

322

323 Advantages of eating fruits earlier

324	Sakis exhibited a prolonged use of shared wild fruit species compared to squirrel
325	monkeys (Figure 5, Table S2). This factor contributed significantly to the higher
326	proportion of wild fruit trees available for sakis throughout the study period compared to
327	squirrel monkeys (Figure 6b). For example, sakis used the fruits of Pouteria caimito
328	(Sapotaceae) for seven months, three of which were spent consuming only unripe seeds
329	(Table S2). In contrast, squirrel monkeys only used <i>P. caimito</i> for the three months that
330	they provided ripe pulp (Table S2). Regarding the fruit of Lindackeria paludosa
331	(Achariaceae), squirrel monkeys only ate the visible aril of ripe fruits, which naturally
332	split open, which limited the duration of fruit use to two months. In contrast, sakis ate L .
333	paludosa seeds throughout the year by opening the fruits before they dehisced. Depending
334	on the volume of fruits available and the number of consumers, destroying unripe fruits
335	by foraging for seeds sakis could directly impact the future availability of ripe fruit for
336	squirrel monkeys.

337 Sakis are not only adapted to eating young seeds, they may also be adapted to 338 consuming unripe pulp compared to other primate species. In addition to the fact that 339 sakis ate some unripe pulp (Table 2, Figure 4), it is possible that some of the "ripe pulp"

340	was less mature than that eaten by squirrel monkeys. For example, the most frequently
341	eaten wild fruit item by sakis was the "ripe" pulp of Attalea maripa-a species that
342	squirrel monkeys never ate at our study site. However, A. maripa was the most important
343	fruit for squirrel monkeys at other sites (Boinski, 1999; Pinheiro et al., 2013; Stone, 2007).
344	According to Stone (2006, 2007), squirrel monkeys eat A. maripa pulp when the fruits
345	are mature enough to be removed from the tree or after the fruits fall to the ground. At
346	our study site, the sakis spent a lot of time on the fruiting A. maripa trees and seemed to
347	use all the fruit before they matured.
348	Norconk (2020) and Cunningham (2006) also reported that sakis used fruits
348 349	Norconk (2020) and Cunningham (2006) also reported that sakis used fruits (<i>Pradosia caracasana</i> and <i>Licania discolor</i>) at several developmental stages (young
349	(Pradosia caracasana and Licania discolor) at several developmental stages (young
349 350	(<i>Pradosia caracasana</i> and <i>Licania discolor</i>) at several developmental stages (young seeds, mature pulp, and old seeds). Therefore, the fruit feeding system of sakis identifies
349 350 351	(<i>Pradosia caracasana</i> and <i>Licania discolor</i>) at several developmental stages (young seeds, mature pulp, and old seeds). Therefore, the fruit feeding system of sakis identifies aspects of a niche that is less restricted in the timing of fruit consumption. This
349 350 351 352	(<i>Pradosia caracasana</i> and <i>Licania discolor</i>) at several developmental stages (young seeds, mature pulp, and old seeds). Therefore, the fruit feeding system of sakis identifies aspects of a niche that is less restricted in the timing of fruit consumption. This generalized explanation provides a broader perspective on the ecology and evolution of

355 Importance of eating a diversity of fruit species

We hypothesized that the broader range of fruit species in the saki diet compared with squirrel monkeys would lead to a higher proportion of available fruit

358	trees for sakis. To investigate this, we compared the number of fruit species used (Figure
359	3) and the proportion of available trees of non-shared fruit species between sakis and
360	squirrel monkeys (Figure 6c). Contrary to our expectations, the difference in the number
361	of fruit species used by sakis and squirrel monkeys did not significantly contribute to the
362	higher proportion of fruit trees available to sakis compared to those available to squirrel
363	monkeys (Figure 6c). This might be because the availability of shared fruit species was
364	high at our study site. For example, fruits of the top three dominant species, Euterpe
365	oleracea, Siparuna guianensis, and Inga alba, provided food for both primate species
366	(Table 2 and Table S1). In addition, many fruit trees, such as Mangifera indica or Inga
367	edulis, may have been planted or selectively grown for the benefit of humans, but are also
368	commonly used by monkeys. For these reasons, at our study site, sakis eating shared fruits
369	in an earlier developmental stage had a more significant effect on differentiating species
370	diets than that of the fruit diversity. It remains possible that having access to a broader
371	variety of fruit species could yield significant advantages in other environments with
372	different compositions of plant species.
373	It is important to note that the fruit choice can be affected by various ecological

375 sakis and, as is typical for primates of such a small size, insects make up a large proportion

374

and social factors. The body mass of squirrel monkeys (< 1 kg) is about half of that of

376	of their diet (Zimbler-DeLorenzo & Stone, 2011). The group size of squirrel monkeys
377	was much larger, and more dispersed during foraging, than that of sakis. Future studies
378	should consider how these factors affect foraging behavior between seed- and non-seed-
379	eating primates, especially when comparing interspecific comparisons of multiple
380	middle-sized frugivorous primates, to elucidate the uniqueness of the pitheciine feeding
381	system.
382	
383	Conclusion
384	In this study, we demonstrated that wild fruit availability was higher and more
385	temporally stable for golden-faced sakis than for common squirrel monkeys: sakis had a
386	longer consumption period for each fruit species than squirrel monkeys. Sakis used
387	shared wild fruit species earlier and for longer periods than squirrel monkeys by using the
388	fruits both at unripe and ripe stages. Thus, the saki fruit feeding system allows them to
389	exploit a wider breadth of fruit species and extend the timing of fruit consumption, which
390	seems to lead to a relative advantage in fruit availability compared with other sympatric
391	primates.
392	
393	Acknowledgments

376

394	We would like to express our gratitude to Prof. Vera da Silva and Prof. Shiro Koshima for
395	providing MT with the research opportunity that resulted from the Field Museum Project
396	supported by JICA/JST SATREPS, #1302260. We thank all members of the Field
397	Museum Project for their multifaceted support, and Mr. Gleison Pereira Viana and Mr.
398	José Ferreira Ramos for greatly assisting MT during fruit collection and plant
399	identification. We are grateful to the animal keepers at INPA for their enduring
400	cooperation and the students at the Grupo de Pesquisa de Mamíferos Amazônicos (INPA)
401	for aiding MT. We thank our colleagues at the Primate Research Institute and Wildlife
402	Research Center, Kyoto University, as well as Drs. Goro Hanya, Shun Hongo, Susumu
403	Tomiya, Marilyn Norconk, and two anonymous reviewers who spent considerable time
404	reviewing the earlier versions of our manuscript and provided constructive comments.
405	This project was funded by the Leading Graduate Program in Primatology and Wildlife
406	Science, Kyoto University, Japan, and the Japan Society for the Promotion of Science
407	(JSPS) KAKENHI, #JP19J15237. This work was also supported by the JSPS Bilateral
408	Program #JPJSBP120229921. We would like to thank Editage (www.editage.com) for
409	English language editing. The authors declare no conflicts of interest. The data supporting
410	the findings of this study are available from the corresponding author upon reasonable
411	request.

413 **References**

- 414 Altmann, J. (1974). Observational study of behavior: Sampling methods. *Behaviour*,
- 415 49(3-4), 227-267. 10.1163/156853974X00534
- 416 Brady, C. (1987). Fruit ripening. Annual Review of Plant Physiology, 38(1), 155–178.
- 417 10.1146/annurev.pp.38. 060187.001103
- 418 Boinski, S. (1999). The social organizations of squirrel monkeys: Implications for
- 419 ecological models of social evolution. Evolutionary Anthropology: Issues, News, and
- 420 Reviews, 8(3), 101–112. 10.1002/(SICI)1520-6505(1999)8:3<101::AID-
- 421 EVAN5>3.0.CO;2-O
- 422 Bowler, M., & Bodmer, R. E. (2011). Diet and food choice in Peruvian Red Uakaris
- 423 (Cacajao calvus ucayalii): Selective or opportunistic seed predation? International
- 424 Journal of Primatology, 32(5), 1109–1122. 10.1007/s10764-011-9527-6
- 425 Chao, A., Gotelli, N. J., Hsieh, T. C., Sander, E. L., Ma, K. H., Colwell, R. K., &
- 426 Ellison, A. M. (2014). Rarefaction and extrapolation with Hill numbers: A framework
- 427 for sampling and estimation in species diversity studies. *Ecological Monographs*, 84(1),
- 428 45-67. 10.1890/13-0133.1

- 429 Charpentier, E. J., García, G., & Aquino, R. (2015). Use and competition for food plants
- 430 between *Pithecia aequatorialis* (Primates: Pitheciidae) and other animals in the
- 431 Peruvian Amazonia. *Revista Peruana de Biologia*, 22(2), 225–232.
- 432 10.15381/rpb.v22i2.11356
- 433 Climate-data.org (n.d.). Climate Manaus. https://en.climate-data.org/south-
- 434 <u>america/brazil/amazonas/manaus-1882/</u>. [Accessed July 01, 2022]
- 435 Cunningham, E. P., & Janson, C. H. (2006). Pithecia pithecia's behavioral response to
- 436 decreasing fruit abundance. American Journal of Primatology, 68(5), 491-497.
- 437 10.1002/ajp.20244
- 438 Fleming, T. H., Breitwisch, R., & Whitesides, G. H. (1987). Patterns of tropical
- 439 vertebrate frugivore diversity. Annual Review of Ecology and Systematics, 18, 91–109.
- 440 10.1146/annurev.es.18.110187.000515
- 441 Fleming, T. H., & Kress, W. J. (2011). A brief history of fruits and frugivores. Acta
- 442 *Oecologica*, 37(6), 521–530. 10.1016/j.actao.2011.01.016
- 443 Fuzessy, L., Silveira, F. A., Culot, L., Jordano, P., & Verdú, M. (2021). Phylogenetic
- 444 congruence between Neotropical primates and plants is driven by frugivory. *Ecology*
- 445 *Letters*, 25(2), 320–329. 10.1111/ele.13918

- 446 Guillotin, M., Dubost, G., & Sabatier, D. (1994). Food choice and food competition
- among the three major primate species of French Guiana. Journal of Zoology, 233(4),
- 448 551–579. 10.1111/j.1469-7998.1994.tb05365.x
- 449 Happel, R. E. (1982). Ecology of Pithecia hirsuta in Peru. Journal of Human Evolution,
- 450 11(7), 581–590. 10.1016/S0047-2484(82)80005-5
- 451 Hawes, J. E., & Peres, C. A. (2013). Ecological correlates of trophic status and
- 452 frugivory in neotropical primates. Oikos, 123(3), 365–377. 10.1111/j.1600-
- 453 0706.2013.00745.x
- 454 Hsieh, T. C., Ma, K. H., & Chao, A. (2016). iNEXT: An R package for rarefaction and
- 455 extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution,
- 456 7(12), 1451–1456. 10.1111/2041-210X.12613
- 457 Instituto Nacional de Meteorologia (n.d.). Banco de Dados Meteorológicos.
- 458 https://bdmep.inmet.gov.br/. [Accessed July 01, 2022]
- 459 Izawa, K. (1975). Foods and feeding behavior of monkeys in the upper Amazon basin.
- 460 Primates, 16(3), 295–316. 10.1007/BF02381557
- Janzen, D. H. (1983). Physiological ecology of fruits and their seeds. In O. L. Lange, P.
- 462 S. Nobel, C.B. Osmond & H. Ziegler (Eds.), Physiological Plant Ecology III (pp. 626-
- 463 655). Berlin, Germany: Springer-Verlag. 10.1007/978-3-642-68153-0

- 464 Kinzey, W. G. (1992). Dietary and dental adaptations in the Pitheciinae. American
- 465 Journal of Physical Anthropology, 88(4), 499–514. 10.1002/ajpa.1330880406
- 466 Kinzey, W. G., & Norconk, M. A. (1990). Hardness as a basis of fruit choice in two
- 467 sympatric primates. American Journal of Physical Anthropology, 81(1), 5–15.
- 468 10.1002/ajpa.1330810103
- Lambert, J. E., & Rothman, J. M. (2015). Fallback foods, optimal diets, and nutritional
- 470 targets: Primate responses to varying food availability and quality. Annual Review of
- 471 *Anthropology*, 44(1), 493–512. 10.1146/annurev-anthro-102313-025928
- 472 Ledogar, J. A., Luk, T. H. Y., Perry, J. M. G., Neaux, D., & Wroe, S. (2018). Biting
- 473 mechanics and niche separation in a specialized clade of primate seed predators. PLoS
- 474 ONE, 13(1), 1–26. 10.1371/journal.pone.0190689
- 475 Lima, E. M., & Ferrari, S. F. (2003). Diet of a free-ranging group of squirrel monkeys
- 476 (Saimiri sciureus) in eastern Brazilian Amazonia. Folia Primatologica, 74(3), 150-158.
- 477 10.1159/000070648
- 478 Martins, M. M. (2008). Fruit diet of Alouatta guariba and Brachyteles arachnoides in
- 479 Southeastern Brazil: Comparison of fruit type, color, and seed size. *Primates*, 49(1), 1–8.
- 480 10.1007/s10329-007-0050-5
- 481 Marwick, B. & K. Krishnamoorthy (2019) cvequality: Tests for the Equality of

482	Coefficients	of	Variation	from	Multip	le Gro	ups.	R	software	package	version	0.1.	.3.

- 483 Retrieved from https://github.com/benmarwick/cvequality, on 01/07/2022
- 484 Mittermeier, R. A., & van Roosmalen, M. G. M. (1981). Preliminary observations on
- habitat utilization and diet in eight Surinam monkeys. *Folia Primatologica*, 36(1–2), 1–
- 486 39. 10.1159/000156007
- 487 Norconk, M. A. (1996). Seasonal variation in the diets of white-faced and bearded sakis
- 488 (Pithecia and Chiropotes satanas) in Guri Lake, Venezuela. In M. A. Norconk, A. L.
- 489 Rosenberger, & P. A. Garber (Eds.), Adaptive Radiations of Neotropical Primates (pp.
- 490 403–423). Boston, USA: Springer. 10.1007/978-1-4419-8770-9_23
- 491 Norconk, M. A. (2020). Historical antecedents and recent innovations in pitheciid (titi,
- 492 saki, and uakari) feeding ecology. *American Journal of Primatology*, 83(6), e23177.
- 493 10.1002/ajp.23177
- 494 Norconk, M. A., & Conklin-Brittain, N. L. (2004). Variation on frugivory: The diet of
- 495 Venezuelan white-faced sakis. International Journal of Primatology, 25(1), 1–26.
- 496 10.1023/B:IJOP.0000014642.68751.ed
- 497 Norconk, M. A., & Setz, E. Z. (2013). Ecology and behavior of saki monkeys (genus
- 498 Pithecia). Cambridge Studies in Biological and Evolutionary Anthropology, 1(65), 262–
- 499 271. 10.1017/CBO9781139034210.031

- 500 Norconk, M. A., & Veres, M. (2011). Physical properties of fruit and seeds ingested by
- 501 primate seed predators with emphasis on sakis and bearded sakis. *The Anatomical*
- 502 Record: Advances in Integrative Anatomy and Evolutionary Biology, 294(12), 2092–
- 503 2111. 10.1002/ar.21506
- Oliveira, J. M. S., Lima, M. G., Bonvincino, C., Ayres, J. M., & Fleagle, J. G. (1985).
- 505 Preliminary notes on the ecology and behavior of the Guianan Saki (Pithecia, Linnaeus
- 506 1766; Cebidae, Primate). Acta Amazonica, 15(1–2), 249–264. 10.1590/1809-
- 507 43921985152263
- 508 Palminteri, S., Powell, G. V, & Peres, C. A. (2012). Advantages of granivory in
- seasonal environments: Feeding ecology of an arboreal seed predator in Amazonian
- 510 forests. Oikos, 121, 1896–1904. 10.1111/j.1600-0706.2012.20456.x
- 511 Peres, C.A. (1991). Ecology of mixed-species groups of tamarins in Amazonian terra
- 512 firme forests [Unpublished dissertation]. University of Cambridge, Cambridge.
- 513 Peres, C. A. (1993). Notes on the ecology of buffy saki monkeys (*Pithecia albicans*,
- 514 Gray 1860): A canopy seed-predator. American Journal of Primatology, 31(2), 129–
- 515 140. 10.1002/ajp.1350310205

- 516 Pinheiro, T., Ferrari, S. F., & Lopes, M. A. (2013). Activity budget, diet, and use of
- 517 space by two groups of squirrel monkeys (Saimiri sciureus) in eastern Amazonia.
- 518 *Primates*, 54(3), 301–308. 10.1007/s10329-013-0351-9
- 519 Rowe, N. & Myers, M. (2016). All the World's Primates. Charlestown: Pogonias Press.
- 520 10.1002/9781119179313.wbprim0086
- 521 Setz, E. Z. F. (1993). Ecologia alimentar de um grupo de parauacus (*Pithecia*
- 522 chrysocephala) em um fragmento florestal na Amazônia Central [Unpublished doctoral
- 523 dissertation]. State University of Campinas, Campinas.
- 524 Setz, E. Z. F., Pinto, L. P., Bowler, M., Barnett, A. A., & Vié, J. C. (2013). Pitheciins:
- 525 Use of Time and Space. In L. M. Veiga, A. A. Barnett, A. F. Ferrari & M. A. Norconk
- 526 (Eds.), Evolutionary Biology and Conservation of Titis, Sakis and Uacaris (pp. 71-82).
- 527 New York, USA: Cambridge University Press. 10.1017/CBO9781139034210.011
- 528 Stone, A. I. (2006). Foraging ontogeny is not linked to delayed maturation in squirrel
- 529 monkeys (Saimiri sciureus). Ethology, 112(2), 105–115.
- 530 10.1111/j.1439-0310.2005.01121.x
- 531 Stone, A. I. (2007). Responses of squirrel monkeys to seasonal changes in food
- availability in an eastern Amazonian forest. American Journal of Primatology, 69(2),
- 533 142–157. 10.1002/ajp.20335

EO 4		(0017)	a ·	C 1 1'	.1		•	• •
534	Take M	(201)/1	Comparison	of the diete	among three	sympatric	nrimate e	nectes in an
JJ4	I AND. IVI.	(2017).	Companson	or the thets		Sympatric	Dimate s	Decies in an
								P

- urban fragmented forest in Manaus, Brazilian Amazon [Unpublished master's
- 536 dissertation]. Kyoto University, Kyoto.
- van Roosmalen, M. G. M., Mittermeier, R. A., & Fleagle, J. G. (1988). Diet of the
- 538 northern bearded saki (*Chiropotes satanas chiropotes*): A neotropical seed predator.
- 539 American Journal of Primatology, 14(1), 11–35. 10.1002/ajp.1350140103
- van Schaik, C., & Brockman, D. (2005). Seasonality in primate ecology, reproduction,
- and life history: An overview. In D. Brockman & C. Schaik (Eds.), Seasonality in
- 542 *Primates: Studies of Living and Extinct Human and Non-Human Primates* (pp. 3–20).
- 543 Cambridge: Cambridge University Press. 10.1017/CBO9780511542343.002
- 544 Zimbler-DeLorenzo, H. S., & Stone, A. I. (2011). Integration of field and captive
- 545 studies for understanding the behavioral ecology of the squirrel monkey (*Saimiri sp.*).
- 546 American Journal of Primatology, 73(7), 607–622. 10.1002/ajp.20946

Tables

common squirrer monkeys. Provisioned loods were excluded from calculations.							
		Saki Group A (N = 40 d)	Saki Group B (N = 38 d)	Common squirrel monkey ($N = 38 d$)			
	Pulp	$28.3\pm14.4\%^\dagger$	$36.8\pm15.4\%$	$36.7\pm15.6\%$			
Fruit	Seeds	$45.5\pm18.4\%$	$34.6\pm15.1\%$	$3.0\pm6.4\%$			
	Unknown part of fruits	$6.9\pm5.9\%$	$9.7\pm10.1\%$	$1.5\pm2.2\%$			
	Flowers	$3.1\pm2.7\%$	$1.8\pm3.0\%$	$8.0\pm8.6\%$			
Non-fruit	Leaves	$10.6\pm9.3\%$	$11.0\pm7.7\%$	$0.09\pm0.6\%$			
INOII-II UII	Insects	0.0	0.0	$46.8\pm13.1\%$			
	Others	$5.7\pm4.5\%$	$6.1\pm5.1\%$	$3.9\pm5.9\%$			

Table 1. Average daily diet composition of wild foods only in golden-faced sakis and common squirrel monkeys. Provisioned foods were excluded from calculations.

[†]Mean \pm SD per day.

Table 2. List of fruit species used by the two primate species (Arranged by the number

Plant species	Family	Number of	Number of feeding records per fruit		Eaten part and ripeness [‡]	
		monitored trees†	saki	squirrel monkey	saki	squirrel monkey
Attalea maripa	Arecaceae	17	486	0	Rp (486)	
Oenocarpus bacaba	Arecaceae	17	310	0	Rp (309), Ruk (1)	
Lindackeria paludosa [§]	Achariaceae	15	296	3	Us (171), Rs (111), UKs (11), UKuk (3)	Rp (3)
Pouteria macrophylla	Sapotaceae	25	217	1	Us (178), Rp (10), Rs(10), Ruk (8), UKs (5), Up (5), Uuk (1)	Rp (1)
Siparuna guianensis	Siparunaceae	40	197	90	Rs (142), Us (47), UKuk (6), UKs(2)	Rs (80), Rp (4), UKuk (3), Ruk (2)
Inga edulis	Fabaceae	3	180	85	Rp (70), Us (64), Uuk (21), Rs(16), Ruk (8), UKuk (1)	R p(85)
Pourouma guianensis	Urticaceae	14	149	56	Rs (88), Us (34), Ruk (16), Rp (7), UKuk (3), UKs (1)	Rp (56)
Protium spruceanum	Burseraceae	1	128	0	UKs (55), Us (37), Ruk (34), UKuk (2)	
Hevea brasiliensis	Euphorbiaceae	9	125	0	Rs (125)	
Pouteria caimito	Sapotaceae	4	83	75	Rp (34), Us (27), Ruk (10), Rs (9), UKuk (2), Uuk (1)	Rp (75)

of feeding records in sakis).

Inga heterophylla	Fabaceae	3	82	65	Rp (48), Us (20), UKuk (8), Ruk Rp(6 (3), UKp (1), Rs (1)	5)
Arrabidaea prancei	Bignoniaceae		68	0	Us(62), UKs (6)	
Pseudima frutescens	Sapindaceae		66	0	Up (58), Rp (7), UKuk (1)	
Perebea mollis	Moraceae		56	3	Us (48), Rs (5), UKs (2), UKuk (1)	6)
Deguelia amazonica	Fabaceae		56	0	Us (47), Rs (9)	
Mangifera indica	Anacardiaceae	1	55	75	Rp (52), UKp (2), Rp (7 Up (1)	'5)
Helicostylis tomentosa	Moraceae	16	55	3	Us (20), Ruk (17), Rp (11), Rs (4), Rp (3 Uuk (1), UKs (1), UKuk (1)	i)
Aparisthmium cordatum	Euphorbiaceae	4	53	0	Us (52), Rs (1)	
Lecythis lurida	Lecythidaceae	1	51	1	Rs (28), Us (12), Ruk (10), Rp (1)	.)
Protium apiculatum	Burseraceae		49	0	Ruk (45), Rp (3), UKuk (1)	
Simarouba amara	Simaroubaceae	1	49	0	Us (49)	
Ocotea grandifolia	Lauraceae		46	1	Us (46) Rp (1	.)
Talisia macrophylla	Sapindaceae	4	43	0	Us (41), Rs (2)	
Ficus maxima	Moraceae	13	42	9	UKp (30), UKuk Ruk (8), Uuk UKp (3), Rpulp (1)	
Vouarana guianensis	Sapindaceae	5	41	8	Rptup (1) Rp (30), Us (5), Uuk (4), Rp (8 Up (1), UKuk (1)	i)
Alchornea discolor	Euphorbiaceae		34	0	Us (23), Rs (11)	
Guarea silvatica	Meliaceae	2	33	0	Us (22), Rp (7), Rs (4)	
Virola polyneura	Myristicaceae		32	4	Rp (32) Rp (4	l)

Bellucia grossularioides	Melastomataceae	•	32	2	Rp(31), Up (1)	Rp (2)
Inga alba	Fabaceae	19	31	171	Rp (17), Ruk (6), Us (6), UKuk (2)	Rp (171)
Pogonophora schomburgkiana	Peraceae	14	31	0	Us (26), Uuk (5)	
Brosimum guianense	Moraceae	8	29	0	Us (26), Uuk (2), Rp (1)	
Matayba arborescens	Sapindaceae	7	27	0	Rp (19), Up (6), Uuk (2)	
Syzygium cumini	Myrtaceae	3	26	52	Rp (26)	Rp (52)
Paullinia rugosa	Sapindaceae		26	1	Rp (20), Ruk (3), Us (3)	Rp (1)
Lacunaria jenmanii	Quiinaceae		26	0	Rp (12), Us (8), Ruk (5), Rs (1)	
Coccoloba parimensis	Polygonaceae		25	25	Rp (25)	Rp (25)
Bocoa viridiflora	Fabaceae	8	23	2	Up (13), Us (9), Ruk (1)	Ruk (2)
<i>Passiflora</i> sp.	Passifloraceae		23	0	Us (9), Rp (7), Rs (2), Uuk (2), Ruk (1), UKs (1), UKuk (1)	
Myrcia fallax	Myrtaceae	15	22	34	Us (17), UKuk (4), Rp (1)	Rp (31), UKuk (3)
<i>Guarea</i> sp.	Meliaceae		22	0	Rp (11), UKuk (7), Up (2), UKp (2)	
Unknown species 1			19	0	Us (11), UKs (8)	
Annona mucosa	Annonaceae	3	17	110	Rp (12), Up (4), UKp (1)	Rp (110)
Trichilia micrantha	Meliaceae		17	0	Us (9), UKuk (8)	
Casearia javitensis	Salicaceae		16	1	Rp (8), Ruk (8)	Rp (1)
Clitoria racemosa	Fabaceae	10	15	0	Us (14), Rs (1)	
Mabea caudata	Euphorbiaceae	1	15	0	Us (13), Rs (2)	
Trymatococcus amazonicus	Moraceae	3	14	0	Us (13), Rs (1)	

Unknown species 2			14	0	Us(14)	
Sorocea guilleminiana	Moraceae		13	5	Rp (13)	Rp (5)
Compsoneura ulei	Myristicaceae		13	0	Rs (6), Us (4), Rp	
Dichapetalum rugosum	Dichapetalaceae		13	0	(1) Rp (7), UKp (2), UKuk (2), Ruk (1), Up (1)	
Ocotea ujumari	Lauraceae	10	12	0	Us (12)	
<i>Pouteria</i> sp.	Sapotaceae		12	0	Rp (12)	
Unknown species 3			12	0	Us (12)	
<i>Simarouba</i> sp.	Simaroubaceae		12	0	Us (12)	
Lacmellea arborescens	Аросупасеае	4	11	2	Uuk (7), UKp (3), Rp (1)	Rp (2)
Inga sp.1	Fabaceae		11	0	Uuk (11)	
Pouteria cladantha	Sapotaceae		11	0	Rp (10), Ruk (1)	
Sorocea muriculata	Moraceae	1	11	0	Us (11)	
Eugenia patrisii	Myrtaceae	3	10	5	Us (8), Rp (1), Ruk (1)	Rp(5)
Cynometra bauhiniifolia	Fabaceae		10	0	Us (10)	
Lecythis prancei	Lecythidaceae	7	10	0	Us(10), Rs (1)	
Licania macrophylla	Chrysobalanaceae		10	0	Us (10)	
Socratea exorrhiza	Arecaceae		10	0	Rp (10)	
Unknown species 4			9	0	UKs (6), UKuk (3)	
Couepia ulei	Chrysobalanaceae		8	0	Rp (7), Us (1)	
Ipomoea mauritiana	Convolvulaceae		8	0	Rs (4), Us (2), UKuk (2)	
Swartzia tomentifera	Fabaceae		8	0	UKuk (4), Uuk (4)	
Inga sp.2	Fabaceae		8	0	Rp (7), Rs (1)	
Matayba oligandra	Sapindaceae		7	3	Rp (6), UKp (1)	Rp (3)
Inga obtusata	Fabaceae		7	0	Us (7)	
Lecythis pisonis	Lecythidaceae		7	0	Rs (3), Ruk (3), Rp(1)	
Eugenia punicifolia	Myrtaceae		6	19	Rp (5),	Rp (19

				2	/ ->	
Anemopaegma oligoneuron	Bignoniaceae		6	0	Us (6)	
Xylopia sericea	Annonaceae	2	6	0	Us (4), UKs (2)	
Talisia esculenta	Sapindaceae	2	5	132	Rp (5)	Rp (132)
Leonia cymosa	Violaceae	6	5	17	Rp (4), Up (1)	Rp(17)
Euterpe oleracea	Arecaceae	222	5	11	Up(3), Rp (2)	Rp (11)
Anacardium occidentale	Anacardiaceae	1	5	1	Rp (4), Us (1)	Rp (1)
Strychnos amazonica	Loganiaceae		5	0	UKuk (3), Us (2)	
Unknown species 5			5	0	UKp (5)	
Inga umbratica	Fabaceae	1	4	1	Rp (4)	Rp (1)
Syzygium malaccense	Myrtaceae		4	1	Rp (3), Up (1)	Rp (1)
Garcinia madruno	Clusiaceae	2	4	0	Rp (2), Up (2)	
Guatteria scytopylla	Annonaceae	25	4	0	Rp (4)	
Paypayrola grandiflora	Violaceae		4	0	Us (4)	
Schefflera morototoni	Araliaceae	6	4	0	UKs (3), UKuk (1)	
Unknown species 6			4	0	UKs (4)	
Unknown species 7			4	0	Us (4)	
Unknown species 8			4	0	Us (4)	
Miconia regelii	Melastomataceae	4	3	29	Rp (3)	UKp (15), Rp (14)
Bocageopsis multiflora	Annonaceae	6	3	6	Rp (3)	Rp (6)
Casearia arborea	Salicaceae	4	3	3	UKuk (3)	Ruk (3)
Oenocarpus minor	Arecaceae		3	2	Rp (3)	Rp (2)
Tapirira guianensis	Anacardiaceae	12	2	18	Uuk (2)	Rp (12), Up (5), UKp (1)
Garcinia brasiliensis	Clusiaceae		1	45	Rp (1)	Rp (45)
Cordia bicolor	Ehretiaceae	14	1	12	Rp (1)	Rp (12)
Euterpe precatoria	Arecaceae	10	1	3	Rp (1)	Rp (3)
Cissus verticillata	Vitaceae		0	51		Rp (51)
Muntingia calabura	Muntingiaceae		0	27		UKp (12), Up (10), Rp (5)
Zanthoxylum rhoifolium	Rutaceae	3	0	27		Rs (17), UKs (6), Ruk (3)

Psidium guajava	Myrtaceae		0	26	Rp (26)
<i>Psidium</i> sp.	Myrtaceae		0	20	Rp (19), UKuk (1)
Spondias mombin	Anacardiaceae	11	0	20	Rp (20)
<i>Musa</i> sp.	Musaceae		0	17	Rp (16), Up (1)
Morus alba	Moraceae		0	15	Rp (14), UKuk (1)
Astrocaryum aculeatum	Arecaceae	8	0	9	Rp (8), UKp (1)
Inga lateriflora	Fabaceae		0	9	Rp (9)
Mezia includens	Malpighiaceae		0	9	Us (6), UKs (3)
Erythroxylum macrophyllum	Erythroxylaceae	6	0	8	Rp (8)
Unknown species 46			0	7	UKuk (7)
Unknown species 47			0	7	UKuk (7)
Inga melinonis	Fabaceae		0	6	Rp (6)
Unknown species 48			0	5	Rp
Carica papaya	Caricaceae	3	0	4	Rp (4)
Ocotea oblonga	Lauraceae		0	4	Rp (4)
Ocotea sp.1	Lauraceae		0	4	Ruk (4)
49 more non-shared species for saki [¶]			77	0	
15 more non-shared species for squirrel monkeys			0	27	
Total			3,973	1,494	

[†]Plant species with these numbers were included in the 1,000 trees/vines monitored in the fruit census and used for the calculation of species-specific fruit availability.

[‡]"U," "R," and "UK" represent unripe, ripe, and unknown ripeness, respectively; "s,"

"p," and "uk" represent seed, pulp, and unknown part, respectively. The numbers within parentheses represent the number of feeding records for each fruit item.

[§]43 species in **bold type** are shared fruit species (eaten by both primate species).

[¶]Plant species that were used less than four times by only one primate species were grouped together.

Figure legends

Figure 1. Campus I (circled by a dashed line) of the Instituto Nacional de Pesquisas da Amazônia (INPA) in Manaus, Amazonas, Brazil (3°09′S, 59°99′W) (Map data: Google, Image[©] 2022 Maxar Technologies, Image[©] 2022 CNES/Airbus). The provisioning tables for monkeys are represented by white triangles (tables for cut bananas, papayas, and pineapples) and circles (tables for coconut flesh). Yellow horizontal lines represent the 16 fruit census transects.

Figure 2. Monthly changes in environmental factors at the study site from January 2019 to February 2020. a) Monthly precipitation and mean temperature. The data were obtained from the Banco de Dados Meteorológicos on the website of the Instituto Nacional de Meteorológia (INMET). b) Proportion of fruiting trees and vines recorded in the monthly fruit census, regardless of whether they were used by monkeys.

Figure 3. Rarefaction curves (solid lines) and extrapolation (dashed lines) of wild fruit species eaten by golden-faced sakis (*Pithecia chrysocephala*) and common squirrel monkeys (*Saimiri sciureus*). The 95% confidence intervals (shaded regions) were obtained by a bootstrap method with 100 replications.

Figure 4. Proportion of the eaten fruit part and developmental stage for the shared wild fruit species in golden-faced sakis (*P. chrysocephala*) and common squirrel monkeys (*S.*

sciureus). Only results of feeding records including both the developmental stage and the fruit part are shown (N = 1,656 records for sakis and N = 1,154 records for squirrel monkeys).

Figure 5. Number of months that each primate species used each shared fruit species. Each point represents a fruit species (N = 43).

Figure 6. Proportion of available fruiting trees and vines for golden-faced sakis (*P. chrysocephala*) and common squirrel monkeys (*S. sciureus*). We separately showed the a)total proportion, the proportion for b) shared fruit species, and c) Non-shared fruit species. Comparison of availability of shared species in graph b) shows the differences caused by the different consumption periods for the same fruit species. Comparison of availability of non-shared fruit species in graph c) shows differences caused by using fruit species that are not used by the other primate species.