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ABSTRACT 

Fourth generation (4G) wireless communication systems are intended to support 

high data rates which requires careful and accurate modelling of the radio envi­

ronment. In this thesis, for the first time finite clement based accurate and co m­

putationally efficient models of wave propagation in different outdoor and indoor 

environments has been developed. Three different environments were considered: 

the troposphere, vegetation and tunnels and wave propagation in these environ­

ments were modelled using finite element analysis. Use of finite elements in wave 

propagation modelling is a novel idea although many propagation models and ap­

proaches were used in past. 

Coverage diagrams, path loss contours and power levels were calculated using de­

veloped models in the troposphere, vegetation and tunnels. Results obtained were 

compared with commercially available software Advanced Refractive Effects Predic­

tion Software (AREPS) to validate the accuracy of the developed approach and it 

is shown that results were accurate with an accuracy of 3dB. The developed models 

were very flexible in handling complex geometries and similar analysis can be easily 

extended to other environments. A fully vectored finite element base propagation 

model was developed for straight and curved tunnels. An optimum range of values 

of different electrical parameters for tunnels of different shapes has been derived . 

The thesis delivered a novel approach to modelling radio channels that provided a 
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fast and accurat e solution of radio wave propagation in realistic environments. The 

results of this t hesis will have a great impact in modelling and characterisation of 

fut ure wireless communication 'systems. 
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Chapter 1 

Introduction 

1.1 Current Trends in Wireless Communication 

In the last decade there has been a rapid growth in mobile and wireless commu­

nications. Chandarn [2] reports that a new wireless subscriber signs up every 2.5 

seconds. The combination of the flexibility of radio communications with the qual­

ity of digital transmission has contributed to the success of these systems. There is 

no doubt that future wireless systems must support significantly higher data rates 

than the current systems, for example, Orthogonal Frequency Division Multiplexing 

(OFDM) systems [3, 4]. 

A typical mobile radio environment m an urban area has no direct line-of-sight 

path between the transmitter and the receiver. The environment is so dynamic and 

the path between the transmitter and the receiver can vary drastically from simple 
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line-of-sight to one that is severely obstructed by buildings, mountains and trees. 

Hence, the mobile radio environment places fundamental limitations on the per­

formance of wireless communication systems. So the development and deployment 

of future mobile communication systems require careful modelling of propagation 

environments [5]. 

The phenomena that influence radio wave propagation can generally be described by 

four basic mechanisms: Reflection, penetration, diffraction, and scattering. For the 

practical prediction of propagation in a real environment these mechanisms must be 

described by approximations . This requires a three-stage modelling process: In the 

first step the real (analogue) terrain has to be digitised yielding digital terrain data. 

The second modelling step includes the definition of mathematical approximations 

for t he physical propagation mechanisms. Based on the solutions for the basic 

problems both deterministic and empirical approaches need to be developed for the 

various environments, which is the third modelling step. 

Today's communication systems as well as radars are mostly used within multi-area, 

multi-sensor, maritime and/or air-based integrated complex systems. The research 

towards development and performance evaluation of such systems require powerful 

computer simulation tools. Simulations require ground wave propagation through 

the atmosphere over a 3D regional digitised terrain map. A site engineer needs to 

have access in real time to the propagation characteristics between any two selected 

points, e.g. a transmitter and receiver, which includes terrain profile, vegetation 
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and atmospheric effects. Although all physical propagation problems are in three 

dimensions, two dimensional approximations can be used if symmetry in one of 

the three dimensions exists. It is well accepted to solve atmospheric propagation 

problems in 2D for a broad frequency range because of the azimuthal symmetry of 

the earth [6]. 

1.2 Motivation 

The number of mobile telephone users is increasing dramatically as the world sees 

countries with large populations experience rapid economic growth like China and 

United Kingdom [7]. This has created a need for increasing the system capacity. 

These factors have initiated worldwide research for the most efficient and cost ef­

fective methods. The development of a mobile telephony system is very complex, 

and can be broken down into a number of areas. One area of great interest is the 

behaviour of radio waves during propagation in the radio channel; that is from the 

transmitting antenna to the receiving antenna. One of the major tasks for a ra­

dio communication engineer when designing a communication system is to be able 

to predict the behaviour of a radio signal from the point of transmission to the 

receiving point. It is here that the majority of signal degradation occurs and to 

develop effective transmission methods it is necessary to have an intimate knowl­

edge of what actually happens in the channel. Research into radio channel effects 
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has generally taken the form of developing a model, obtaining experimental results 

and then adjusting the model. The use of computer simulation has greatly aided 

this process, and will continue to do so. Simulation also allows ease of comparison 

between various models. 

To implement a mobile radio system, wave propagation models are necessary to de­

termine propagation characteristics for any arbitrary installation. The predictions 

are required for a proper coverage planning, t he determination of multi path effects 

as well as interference and cell calculations, which are the basis for the high-level 

network planning process. In a GSM (Groupe SpeCial Mobile) or DCS (Digital Cel­

lular System) system, the high-level network planning process includes for example 

the frequency assignment and the determination of the base station subsystem pa­

rameter set. Similar planning tasks will also exist in third generation systems. The 

environment where t hese systems are intended to be installed, are stretching from 

in-house areas up to large rural areas. Hence wave propagation prediction meth­

ods are required to cover t he whole range of macro-, micro- and pico-cells including 

outdoor ::;cenarios and situations in special environments like tunnels. 

Other than mobile telephony, radio propagation is at the heart of any wireless 

communication system. Radio environment obstacles interact with electromagnetic 

waves in different ways leading to phenomena such as reflection, diffraction and 

scattering [8]. This results in multi path fading , delay, angular spreads and polari­

sation cro::;s coupling. A knowledge of propagation mechanisms i::; required for radio 
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network planning to ensure t he most cost effective deployment of wireless systems. 

In order to determine the coverage area, to estimate the interference between radio 

stations in the network and to reach the optimal level for the base station configu­

ration while meeting the expected service level requirements, accurate propagation 

prediction is needed. 

Radio propagation in tunnels has gained increasing interest from cellular network 

operators. Every new city highway includes some tunnel sections, for example in 

Austria, 10% of high-priority roads are in tunnels [9]. Because tunnels are confined 

it is difficult to model the propagation of signals accurately, so there are some 

simplifications introduced in theoretical studies. The common cell planning concepts 

are not applicable in tunnels and increasing numbers of researchers in the UK and 

Europe are turning their attention to this problem [10]. 

In order to understand the propagation of radio waves in any indoor environment 

such as a building or a tunnel, it is useful to. examine the field distribution through­

out the tunnel. To solve for the field distribution a number of factors must be 

taken into account such as shape and transverse dimension, frequency, direction of 

polarisation and electrical parameters such as permittivity and conductivity of the 

surrounding material. Recently, propagation research has begun to concentrate on 

the characterisation of radio channels in indoor environments such as offices, rooms 

and tunnels [11]. 
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1.3 Research Statement 

Given an operating frequency f , the transmitting antenna height Ho, the 3-dB beam 

width and the environment profile, the field at a certain range from the transmitting 

antenna is calculated. The finite element formulation of parabolic equation method 

(PEM) is used to determine the field in different environments. Although there are 

several computational techniques for predicting the field at a desired range from the 

transmitting antenna, including the ray tracing approach and the integral equation 

method , few offer the computational advantages of the parabolic equation method 

which can approximate the elliptic operator governing the true wave behaviour by a 

much simpler parabolic operator that permits marching in range. The PE method 

has the advantage that all important aspects of propagation such as reflection , re­

fraction and diffraction are included automatically in the formulation. However, the 

penalty for employing the PE method is that it neglects back scattering[12]. This 

assumption will not contribute any significant errors for the class of applications 

considered in this thesis since radiowaves predominantly propagate in the forward 

direction. 

In this research, the finite element method is applied to model radio wave propa­

gation in the troposphere, vegetation and tunnels. The main advantage of using 

the finite element method for solving propagation problems is that it is more accu­

rate; it gives t he distribution of the field in t he whole domain in contrast to Finite 



7 

Difference Time Domain Method (FDTD) which gives the distribution of fields at 

nodes. Moreover by using finite elements, any fast varying environment can be eas­

ily modelled simply by assigning different parameters to different mesh elements. 

FEM has previously been shown to be a most accurate and versatile method and 

well suited to study propagation in optical mediums [13]. This approach is expected 

to produce results that will enhance the design of future mobile communication 

systems. Even though there are many propagation models and approaches to solve 

propagation problems, the use of FEM in outdoor and indoor propagation is a novel 

idea. A vector field finite element based beam propagation method will be devel­

oped for the numerical modelling of electromagnetic waves in wireless systems. The 

model developed will be tested and implemented in different environmental condi­

tions: wave propagation in the troposphere, in the presence of vegetation and indoor 

environments like tunnels. 

1.4 Structure of the thesis 

This thesis is concerned with the application of the finite element method (FEM) 

to radio wave propagation in different outdoor and indoor environments. The dis­

cussion which follows gives an outline of the structure of this thesis beginning with 

an introduction which is presented in this chapter. This provides an analysis of the 

basic research idea and a brief review of the research domain. 
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An extensive review of previously published literature is given in chapter 2. Several 

methods for propagation analysis are considered including semi-analytical and nu­

merical methods. Some commonly used numerical schemes will be briefly describe 

in chapter 2. The basics of the parabolic equation model is also presented together 

with different formulations and solution techniques. 

The formulation of the finite element method as a powerful method in the solu­

tion of complex problems is presented in chapter 3. This chapter reviews the his­

tory and present state of the finite element method as applied to electromagnetic 

field problems in the radio frequency range. A detailed study of the finite element 

method along with the use of both linear and second order elements and shape 

functions is undertaken with a view of developing an algorithm for the propagation 

analysis of the environments considered in this thesis. Chapter 3 briefly explores the 

capabilities, limitations and critical comparison of the finite element method with 

other numerical schemes. 

Models of radio wave propagation in the troposphere are indispensable in the design 

and analysis of wireless communication systems. They are used to predict power 

and interference levels and analyse other properties of radio links. Chapter 4 covers 

various aspects of wave propagation in the troposphere. The parabolic equation 

method is used to model propagation in the troposphere and a finite element based 

model is presented. Simulation results with discussions are presented in chapter 4. 

Chapter 5 is devoted to propagation modelling of electromagnetic waves at VHF 



9 

inside a forest by using the finite element method. A finite element formulation of the 

method is described which can be used with the irregular terrain, multi-layer forest 

model and range dependant propagation in a forest. Results are compared with the 

well known Tamir 's results [14]. It is shown that the finite element method gives an 

accurate and computationally efficient solution. 

In chapter 6 the application of the finite element method to the analysis of wave 

propagation in tunnels is described. This chapter discusses propagation in tunnels, 

describing expected radio frequency strength in various types of tunnels, antenna 

height and building materials. Radio propagation in a confined environment is much 

more complicated than propagation in free space. A number of factors affects radio 

propagation in tunnels. Chapter 6 focuses on mathematical modelling of propagation 

in tunnels at different radio frequencies using finite element analysis. 

Finally chapter 7 concludes the thesis with some suggested future work. 



Chapter 2 

Parabolic Equation Method 

2.1 Introduction 

During the past several decades, researchers in the area of applied electromagnetics 

have been searching for rigorous and efficient models for mathematically describing 

the problem of electromagnetic propagation in different environments. In order to 

assess the radio propagation effects for the various indoor and outdoor environments 

many measurement and experimental studies have been carried out in the past [15]. 

Channel key parameters needed for wireless system design and the corresponding 

parameter settings are then derived from the measurements. However , for advanced 

communication systems it is in general not possible to design a system and judge 

its performance with the knowledge of the channel key parameters only. A more 

accurate validation of the performance by means of Monte Carlo simulations is 

10 
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normally needed [16]. 

Currently, there are several large-scale propagation path loss models being utilised in 

commercial cellular communication systems in Europe, America, Asia, and around 

the world. Some of the popular models include the Okumura model, the Hata model, 

and the COST-231-Walfish-Ikegami model [17]. These models were developed by 

measurements and statistical analysis made specifically for frequency coverage be­

tween 150MHz and 2GHz, and are typically based on certain environments such as 

London or New York city. These models provide a reasonable approximation for 

current cellular communication applications. However, they are complicated and 

expensive to develop and do not offer the accuracy, computational advantages, and 

efficiency of models such as the parabolic equation method (PEM) , ray methods , 

etc. 

Gladstone and McGeehan [18] described a statistical model of an outdoor mobile 

channel that is defined using the placement of buildings within the environment. 

The principles of reflection are used to determine the paths of propagation from the 

transmitter to the receiver. The path lengths are calculated and that information 

is used to calculate delays and path strengths. It has been found that the resulting 

probability distributions model the measured distributions more closely than more 

basic statistical models such as the Ralcigh fading model. It is possible to use a more 

complete description of the environment over which the propagation is occurring to 

determine the channel response. Increasing the complexity of the model will have 
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the effect of increasing the modelling time, and ultimately modelling the channel 

becomes infeasible as more detail is incorporated into the model. 

McKown et ai, [19] introduced a ray tracing model for an indoor environment that 

calculates the signal power and delay spread over a specified area of a floor plan 

for 1.8GHz and 18GHz carrier frequencies. Honcharenko et al. [20] took a similar 

approach using a three dimensional model that incorporates scattering to determine 

the average signal power over an office floor. Their results are compared to mea­

surements conducted at 900MHz and found to model the distance-power relationship 

well. However these approaches shares the disadvantages of ray tracing techniques 

as describe in section 2.4. 

For an outdoor mobile channel, Lebherz et ai, [21] have used a combination of a two 

dimensional model incorporating the effects of diffraction in the vertical transmitter 

to receiver plane, and a three dimensional reflection and scattering model that is 

constructed from an accurate description of the environment. As expected, with 

a more completely defined model, the resulting simulated channel is closer to the 

measured channel when compared with simpler models. 

Several solutions have been proposed to simulate the radio channel i.e. , the Chan­

nel Impulse Response (CIR), stored CIR's [22], ray-tracing techniques [23], and 

stochastic parametric models for the CIR [24]. Stored CIR's incorporate all details 

of the radio channel. However, this method requires a large storage capacity for the 

measured reference CIR's and it is also very difficult to find a small set of CIR's that 
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include all propagation effects and situations encountered in a certain environment. 

Ray-tracing is a very powerful tool to perform a coverage prediction in a particular 

environment and to compute the eIR at some specific point in this environment. 

The main drawbacks of ray-tracing techniques are the need for a precise description 

of the location which sometimes makes it difficult to translate the results to other 

situations and the relatively high computational complexity [19]. 

Numerical methods applied to 3D propagation problems are generally categorised 

as Integral or Differential equation methods. Integral equation methods result in 

extremely large, full matrices that need to be inverted to find unknown fields. In 

addition a rigorous treatment of the inhomogeneous troposphere via an integral 

equation method is extremely difficult [25]. Alternatively the differential equation 

method accounts for atmospheric inhomogeneity in a straight forward fashion and 

results in a sparse matrix system that can be inverted easily using any computer 

programming language like Matlab. 

These methods have now largely been superseded by Parabolic Equation (PE) al­

gorithms, which provide a fast and efficient numerical solution to most propagation 

problems. The problem of propagation of electromagnetic waves along the surface 

of the earth based on parabolic equations was originally considered theoretically by 

Leontovich and Fock [12]. This method was then adapted by various authors for the 

modelling of wave propagation in the troposphere using numerical techniques [26]­

[27]. The PE is based on the solution of the two or three dimensional differential 



14 

equation, fitted by homogenous or inhomogeneous refractive profiles [27]. Models 

based on the parabolic approximation of the wave equation have been used exten­

sively for modelling refractive effects on tropospheric propagation [28]. The biggest 

advantage of using the PE method is that it gives a full-wave solution for the field 

even in the presence of range-dependent environments. 

Various methods for the solution of the PE have been developed and presented in the 

literature. Two of the most popular are based on the finite-difference techniques [29], 

and the split-step Fourier algorithm [30]. Other models for propagation over terrain 

have also been developed and presented [31,32]. The most efficient algorithm seems 

to be the Split Step Solution which employs the Fast Fourier Transform (FFT) 

to advance the solution over many small range steps. This algorithm has been 

widely used in many applications [33]. Split-step methods are extremely attractive in 

literature but they lack flexibility for boundary modelling [27]. Further, if variations 

of refractive index with height are fast, the error will be greater because in the split­

step method error depends on the height variations of refractive index [27]. A brief 

description of the split step fourier and finite difference methods is given later. 

In this chapter, a review of some of the basic techniques used in modelling and 

simulating the problem of propagation using the parabolic equation method is pro­

vided. The discussion begins with the parabolic wave equation formulation as an 

initial value problem along with its narrow and wide angle versions. A brief re­

view of different numerical approximation techniques in applied electromagnetics 
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is then provided. An extensive review of literature related to propagation in the 

troposphere, vegetation and tunnels is also presented. 

2.2 The Parabolic Wave Equation (PWE) 

The parabolic wave equation is an approximation of the wave equation which models 

energy propagating in a cone centered on a preferred direction; the paraxial direction. 

Parabolic equation method is one of the most popular methods for modelling the 

problem of electromagnetic wave propagation, initially developed for the study of 

underwater acoustic problems [12, 34] and later extended to different propagation 

scenarios [27]. The Parabolic Eq.nation Method is based on the assumption that the 

wave energy propagates predominantly in the forward direction. This assumption 

is good for low grazing-angle propagation over a terrain or ocean surface where the 

small backscattered field components can be neglected, as described later in section 

2.2.1. 

Recent progress in the parabolic equation method allows the efficient modelling of 

radio wave propagation over irregular terrain, vegetation and urban areas under all 

weather conditions in two or three dimensions . Using back propagation methods, 

PEM is also extended for treating electromagnetic scattering problems [35]. A new 

application for the PEM , radiolocation using inverse diffraction has been investigated 

in [36]. Also in [37] a new propagation model related to PEM, Huygen 's Principle 
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Model (HPM) has been introduced. The algorithm can be used for radiolocation as 

well as for rough surface modelling but the accuracy of the algorithm depends on 

small range steps which in turns produces a large computational burden. 

There are two formulations of the parabolic wave equation method: narrow angle 

and wide angle formulation , both neglect backscatter [27] . Narrow-angle formal­

ism can be solved by the very fast and efficient split-step fourier method; however 

its accuracy deteriorates for long range propagation problems. The wide-angle can 

more accurately predict propagation outside the forward region but requires finite 

difference solution methods. Narrow-angle parabolic approximation was introduced 

by Leontovich and Fock [12] in the 1940's to treat the problem of diffraction of ra­

diowaves around the Earth. They used t he narrow-angle parabolic approximation to 

determine more simply the well-known Watson [38], Van der Pol and Bremmer [39] 

results, and then extended the method to more complicated cases involving atmo­

spheric refraction. Malyuzhinets was the first to combine parabolic approximation 

with geometric optics [40]. The development of the wide-angle PWE method is 

attributed to different authors who proposed different models [41, 42]. An excellent 

account of these models can be found in Jensen et al. [43]. 

2.2.1 Parabolic Equation Propagation Model (PEPM) 

In PEPM , a e- jwt time dependence of the field is assumed, where w is the fre­

quency in radians per second . Consider a two-dimensional space i.e. space where 
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the field quantities do not depend on the y-coordinate. For horizontal polarisation, 

the electric field E has one non-zero component £y, while for vertical polarisation, 

the magnetic field H has one non-zero component H y . The scalar component IJ! , of 

the electromagnetic field is governed by the Helmholtz wave equation: 

8
2
1J!(x , z) 021J!(X, z) k2 2( _) ,T' ( ,,) = 0 
ox2 + 0 Z2 + 0 n x, '" 'I' x, ~ (2.1) 

where lJ!(x, z) is the scalar component of the electric or magnetic field depending 

on polarisation, ko is the wave number in vacuum and n is the refractive index. In 

all type of problems considered in this thesis, variation of refractive index n(x, z) 

remain slow on the scale of wavelength so equation (2. 1) is exact [44]. A reduced 

function lJ!(x, z) can be associated with paraxial direction x as: 

lJ!(x, z) = u(x, z)eikox (2.2) 

The main purpose of using this reduced function is that it is slowly varying at 

angles close to paraxial direction x. Substituting equation (2.2) in equation (2.1) 

and simplifying; 

jkox 8u(x, z)} 0
2 
{( _) jkOX } 

e . Dx + OZ2 U x, '" e 

(2.3) 

( k )2 J' t . ~ 'k J'koxOU(X, z) J'kox02U(X, z) 'k J'kO o,8u(x, z) 
j "0 ue ' 0.

0 + J ' oe ox + e ox2 + J "oe " ox 

'I. 02U(X, z) 2 2( ) 'k + eJ 
OX OZ2 + kon x, z)u(x, z eJ OX = 0 (2 .4) 
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yields, 

{)2U(X, z) .2k{)u(x, z) {)2U(X , z) k2( 2( ) _ 1) ( 7) = 0 
OX2 + J {)X + {) Z2 + 0 n X, Z U X, ~ (2.5) 

The next step is to introduce the famous paraxial approximation, i.e. 

I {)2U(X, Z) I I ·2k {)u(x, z) I 
{)X2 «J 0 {)X 

and hence reduce (2.5) to the familia.r standard parabolic equation (SPE) in two 

dimension space given by, 

.·2k {)u(x, z) {)2U(X, z) k2( 2( 7) _ 1) ( ) = 0 
J 0 Ox + {)Z2 +on x,_ ux, Z (2.6) 

where x is the propagation direction and z is the t ransverse direction. 

The above parabolic equation may be derived using a more general operator tech-

nique [43]. For t he sake of completeness, this method is outlined for cartesian 

coordinates. Again consider (2.1) and rewrite it in the following form: 

where, 

{) 

p= {)x' Q= 
1 {)2 

n
2
(x, z) + P {)Z2 

o 

(2.7) 

With the assumption that the refractive index is slowly varying in x, the operators 

p and Q approximately commute, i.e . 

pQ~Qp 
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and equation (2 .7) may be written in the fo llowing factorised form: 

(p + jkoQ)(p - jkoQ) \I! = 0 (2.8) 

The equation represented by the first bracketed factor of (2.8) is the one governing 

the backward-propagating wave, while that represented by the second factor is the 

onc governing the forward-propagating wave. Consider the forward wave equation , 

or 

p\I! = j koQ\I! 

o \I! 
- =jko ox 

2( ) 1 0 
n x, Z + kg O Z 2 \I! 

For the sake of simplicity assume, 

and the square-root operator Q defined in (2.6) as, 

Q = yfl+"q 

Using Taylor series, 

q q2 
yfl+"q=l+"2+S+··· 

(2.9) 

(2. 10) 

(2. 11) 

(2. 12) 

The narrow-angle PWE is obtained by keeping only the first two terms in the series 

defined by (2. 12) 

'" q 1 ( 2 (( ) 1 0
2 

Q = 1 + "2 = 1 + "2 n x, z) x, z ) - 1 + 2k2 0z2 
o 

(2. 13) 
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Putting (2.13) into (2.9), 

(2.14) 

Again if field \If can be written in the form given by equation (2.2) and substituting 

it in equation (2.14) the same standard narrow-angle parabolic equation as given 

in equation (2.6) can be obtained . Similarly a parabolic equation in cylindrical 

coordinates can be developed by assuming azimuthal symmetry as shown in [45]. 

Before proceeding to wide angle PWE, it is important to restate the approximations 

upon which equation (2.6) was based. These are: 

• Backscatter is negligible 

• Far field approximation 

• In inhomogeneous media, n2(x, z ) must be varying slowly in the range coordi-

nate x or in the direction of predominant wave propagation. This assumption 

was needed to arrive at the factorized equation (2.7) above. 

The simplest approximation of equation (2.1) is obtained either by using paraxial 

approximation or using the first-order Taylor expansion of the square root function , 

which yields the standard parabolic equation (SPE). The SPE is extremely useful 

for solving long range propagation problems, however , its limitations are due to its 

bad behaviour at large propagation angles. For a plane wave propagating at angle 
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(1 from the horizontal, the error is proportional to [27] : 

(2 .1 5) 

Hence the error is proportional to sin4 
(1, going from 10-7 for an angle of 10 to 10-3 

for an angle of 10° and over 10-2 for an angle of 200
; which clearly shows that SPE 

is a narrow-angle approximation of the parabolic wave equation. For propagation 

problems, involving large propagation angles a more accurate expansion of operator 

Q is required. The very first thing that comes to mind is to include more terms 

in t he expansion of the operator Q defined in eqution (2. 12) . But , unfortunately, 

including more terms in the expansion produces instability in numerical schemes. An 

alternate method is to approximate the square-root operator using rational function 

approximations of t he form [46], 

(2. 16) 

where the coefficients are choosen to meet a given criteria [47]. However, the result-

ing wide-angle PWE can no longer be solved using the efficient spli t-step Fourier 

algorithm and requires some more elaborate methods [27]. 

2.2.2 Parabolic equation method algorithms 

Various methods for t he solution of the PE have been developed and presented to 

date; two of t hem are very popular in the literature. One uses finite-difference tech-
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niques [29], and the other uses the split-step fourier algorithm [30]. Both methods 

are described briefly in this section and for a detailed study refer to [27]. 

These methods march the propagating field from the transmitter to the receiver 

over range increment L1x. Another PE model for propagation over terrain has been 

developed by Marcus [31], incorporating a hybrid finite-difference/surface Greens 

function. Two PE terrain models currently exist that use the split-step algorithm. 

One is by McArthur [48], and the other was developed by Ryan [32]. The most ef­

ficient algorithm seems to be the split step solution which employs the Fast Fourier 

Transform (FFT) to advance the solution over small range steps. The algorithm has 

been widely used in many applications [28]. More specifically, using the split step 

Fourier method, Ban'ios [49] treated horizontally inhomogeneous environments and 

a terrain model respectively. Craig and Levy [28] applied the split step solution to 

assess radar performance under multipath and ducting conditions. Split-step meth­

ods are extremely attractive in the literature but they lack flexibility for boundary 

modelling [27]. Further, if the variations of refractive index with height are fast 

error will be greater because in the split-step method error depends on the height 

variations of refractive index [27]. The Finite Different Method (FDM) on the other 

hand, enforces the terrain boundary condition in the spatial domain and therefore 

treats irregular terrain in a more straightforward fashion. Here, a brief overview 

of split-step fourier method and finite difference method is presented , for detailed 

reading refer to [27]. 
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Split-step formulation of SPE (SSPE) 

Consider the standard parabolic equation as defined in equation (2.6) and written 

as, 

j~o [:5 ::2 + ~n2(x , ~) - 1~1 u(x , z ) 
'-v-' "-v-' B 

cl A 

8u(x, z ) 
8x 

(2.17) 

Equation (2.17) can not be solved using simple fourier techniques if the refractive 

index n(x , z ) is varying with both the vert ical and propagation direction x. The 

concept of SSP E is to separate the term containing the refractive index n. Assume 

initially that refractive index is a function of height z, then the solution of (2. 17) 

can be expressed as : 

u(x + b.x ,z) = ecl(A+B).u(x ,z) (2. 18) 

The main goal is that the two terms in the exponent are split into a product of 

exponents containing only A and B. While there are many possibilities , t he simplest 

split is given by, 

However , if the refractive index n depends on height z, the two operators A and B 

will not commute because 

82 {(n( z )2 - l )u(x , z )} ...J- ( ( )2 _ ) 82u 
8z2 -r n z 1 8z2 

But if t he variations of refractive index are small with respect to height then t he 

error incurred by splitting the exponential remains small. Therefore with the split-
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step fourier method onc of the main assumptions is that variations of refractive 

index with height should be small. To calculate the error , a commutator can be 

defined as: 

[A,B] = AB - BA (2.19) 

EiTor E caused by the split is, 

(2.20) 

By expanding the exponentials using Taylor's series, error E can be written as a 

function of range step fl.x. The dominant term of the error function is given as 

Thus in the split-step fourier solution of the standard parabolic equation t he error 

is a function of refractive index variations with height and range step size. For split 

S as defined above the solution at range step x + fl.x is given as, 

(2.21) 

If refractive index n depends on range as well as height then the refractive index 

operator B must be defined as an integral, 

1 l x
+

Llx 

B = fl.x x n(( , z)d( 

which can be approximated as 

1 
B = n(x + 2'fl.x , z) 
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Comments about operators: Operator B is straightforward but t he main diffi-

culty is to construct t he exponential operator A to simplify the computations. With 

complex irregular boundaries and refractive index variations it is a complex t ask. 

By eliminating the original exponent ial operator , the problem of the refractive index 

variations can be eliminated but the problem of boundary modelling still remains. 

Finite Difference formulation of SPE 

In t his section, Crank-Nicolson type finite-difference implementations of SPE is pre-

sented. Assume that the lower boundary is located at Z = 0 and upper boundary is 

at Z = Zmax , Consider an integration grid which is fixed in t he vertical direction but 

not in range, so t hat it can adapt to terrain shape. Let, 

Zj = j D. z , j = O,N 

be the vertical points and assume Xo , ... , X m , ... be the integration ranges. Consider 

a mid-point as shown in figure 2.1, 

Xm - l + Xm 
~m = 2 (2. 22) 

The main aim of t he finite difference method is to write all terms of the differential 

equat ion involving differential operators at point (~m, Zj) which involves only values 

of function say u at the corners of adjacent rectangles as shown in figure 2. 1. T he 

central finite difference approximation of the first derivative of u in range is given 
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as , 

(2.23) 

Similarly the second order derivative in height is approximated as, 

(2.24) 

The error in (2.23) and (2.24) is of the order of (~xm)2 and (~Z)4 respectively [27]. 

Equation (2.24) only makes sense if all the points are inside the integration domain 

which means this equation can not be applied to a boundary where j is either 0 or 

N. Some additional equations are needed to incorporate boundary conditions . 

(x m-I' Z ) +1 ) 
;... 

(Xm, Z )+1 ) 

<Ill • 

... ., 
(Xm,Z )_I) 

•• ... '" 

Figure 2.1: Finite Difference Grid for Crank-Nicolson Scheme 

Consider again the standard parabolic equation (SPE) as defined in equation (2.6), 

,'2k' 8u(x, z ) 8
2
u(x, z ) k2( 2( ) _ ) ( ) - 0 J 8 + 8 2 +onx, z lu x,z-

x z 

Substitute equations (2.23) and (2.24) in (2.25), 

j
2k

o u(xm, Zj) - U(Xm-l , Zj) 
x", - Xm- l 

(2.25) 

(2.26) 
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Now approximate u at range Xm by averaging values at ranges X m - 1 and Xm.. Let , 

.6.z2 

b = j4ko .6.x 

And substituting these values in equation (2.25) gives , 

'um (-2 + b + am) + u m + um. = u m - 1(2 + b _ am.) _ 'Um.-1 _ 'Um. - 1 
) ) )+1 ) -1 ) ) )+1 )-1 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

for j = 1, .. . N - 1 yields N - 1 linear equations . To complete systems one must 

add additional equations for boundaries as stated before . One advantage of finite 

difference schemes is they normally yield sparse type matrices which are fast to 

invert using computer programming. 

2.3 Review of Numerical Approximation Techniques 

Many problems in radio wave propagation normally involve solving one or two partial 

differential equations subject to boundary constraints, for example t he parabolic 

equation method discussed in section 2.2. Very few practical problems can be solved 

without the aid of a computer. Nowadays, antenna and microwave engineers rely 

heavily on computer techniques to analyse propagation problems, and to design 

efficient wireless systems. 
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Computer methods for analysing propagation problems can be divided into two 

categories: analytical and numerical techniques. Analytical techniques make some 

assumptions about the geometry of the region in order to apply a closed form solution 

of the problem. Numerical techniques attempt to solve fundamental field equations 

directly, subject to the boundary constraints posed by the geometry. Analytical 

techniques can be a useful tool when the important electromagnetic interactions of 

the configuration can be anticipated. However, most problems of interest are simply 

too unpredictable to be modelled using this approach. Numerical methods have 

come to occupy a major role in the field of applied electromagnetism [50]. Although 

the t heoretical tools behind such methods have been available for many years, the 

true birth of computational electromagnetics can be traced to the 1960's shortly 

after t he advent of the first mainframe computer. The current level of activity and 

interest in computational electromagnetics may be gauged by examining the lists of 

papers presented at technical conferences [51]. 

A number of different numerical techniques for solving propagation problems are 

available. Each numerical technique is well-suited for the analysis of a particular 

type of problem. This section has outlined several general numerical modelling tech­

niques that have been used to analyse different electromagnetics problems with some 

success. 
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2.3.1 Method of M oments 

The method of moments or simple moment method is a technique for solving complex 

integral equations by reducing t hem to a system of linear equations. The method of 

moments employs a technique called the method of weighted residuals. For further 

details about t he method of residuals refer to any standard text on the subject for 

example [52] . Harrington [53] was responsible for popularising t he term method of 

moments in the field of electrical engineering. 

The moment method technique is used for analysing a variety of important elec­

t romagnetic radiation problems. General purpose moment method codes are par­

t icularly efficient at modelling wire antennas or wires attached to large conductive 

surfaces. They are widely used for antenna and electromagnetic scattering analysis. 

Several non-commercial general purpose moment method computer programs are 

available [54] . 

The method of moments requires calculating only boundary values, rather t han val­

ues t hroughout the space defined by partial different ial equation. Boundary element 

formulations typically give rise to fully populated matrices which require large stor­

age requirements and more computation t ime. By contrast fini te clement mat rices 

are sparse mat rices requiring less storage requirements and can be easily manipu­

lated as will be described in chapter 3. 



30 

2.3.2 Finite Difference Time Domain Method 

The Finite-Difference Time-Domain (FDTD) method, as first proposed by Yee in 

1966 [55], is a simple and elegant way to discretise the differential form of Maxwells 

equations. Yee used an electric field E grid which was offset both spatially and 

temporally from a magnetic field H grid to obtain update equations to yield the 

present fields throughout the computational domain in terms of the past fields. The 

update equations are used in a leap-frog scheme to incrementally march the E and H 

fields forward in time. Despite the simplicity and elegance of Yees algorithm, it did 

not receive much interest immediately after its publication. The lack of attention 

might have been due to the high computational cost of the day as well as to some 

of the limitations inherent in the original publication (such as the inability to model 

an open problem for any significant period of time). However, as the shortcomings 

of the original FDTD implementation were alleviated and the cost of computing fell , 

the interest in the FDTD method began to increase. 

The Finite Difference Time Domain method is a direct solution of Maxwell 's time 

dependant curl equations, 

aH 
\l x E = -j.L at 

aE 
\l x H = O'E + j.L­at 

(2.31 ) 

(2.32) 

It uses simple central-difference approximations to evaluate the space and time 

derivatives [56, 57]. The FDTD method is a simple time stepping procedure and the 
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inputs are time-sampled analog signals. The region being modelled is represented 

by two interleaved grids of discrete points. One grid contains the points at which 

the magnetic field is evaluated, while the second grid contains the points at which 

the electric field is evaluated . For further details of FDTD, and how to apply FDTD 

to various electromagnetic problems refer to [57]. 

The significant disadvantage of this technique, is that the problem size can get too 

large for some configurations. Another major disadvantage of the FDTD method is 

that it gives the E or H field at some specific points on grid. 

2.3.3 Transmission Line Matrix Method 

The transmission line matrix method is quite similar to the FDTD method in terms 

of its capabilities, but its approach is unique. Like FDTD, analysis is performed in 

the time domain and the entire region of t he analysis is grided. Instead of interleav­

ing E field and H fields grids however, a single grid is established and t he nodes of 

this grid are interconnected by virtual transmission lines. 

Nevertheless, both the TLM and FDTD techniques are very popular and widely 

used [56, 58]. TLM method require significantly more computer memory per node, 

but it does a better job of modelling complex boundary geometries. This is because 

both E and H are calculated at every boundary node. 

Advantage of using TLM method are similar to those of the FDTD method. The 

disadvantages of the FDTD method are also shared by this technique. The pri-



32 

mary disadvantage is t hat voluminous problems that must use a fine grid requiring 

excessive amounts of computations. 

2.3.4 Generalised Multipole Technique 

The Generalised Multipole Technique (GMT) is another popular technique for analysing 

electromagnetic problems [59]. It is a frequency domain technique that is based on 

t he method of weighted residuals similar to the Method of Moments. However, 

t his method is unique in t hat the expansion functions are analytical solutions of the 

fields generated by sources (multipoles) located some distance away from the surface 

where t he boundary condition is being enforced. Placing the multipoles requires a 

great deal of skill which is the main disadvantage of t his method . 

Over the last twenty years, the GMT has been applied to a variety of EM configu­

rations including dielectric bodies [60], obstacles in waveguides [61], and scattering 

from perfect conductors [62]. 

2.3.5 Conjugate Gradient Method 

The conjugate gradient method is another technique based on t he method of weighted 

residuals [63] . It is conceptually very similar to the conventional moment method 

technique. Nevertheless, there are two features t hat generally distinguish this tech­

nique from other moment methods. The first has to do with the way in which the 

weight ing functions are utilised. The second involves t he method of solving the sys-
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tem of linear equations [64]. The conventional moment method technique generally 

employs a Guass-Jordan method or another direct solution technique, while, the 

conjugate gradient method utilises an iterative solution procedure. This procedure 

called the method of conjugate gradients can be applied to the system of equations 

or it can be applied directly to the operator equation [64]. The conjugate gradient 

method shares t he advantages and disadvantages with the method of moments. 

2.4 Wave Propagation in the Troposphere 

Radio coverage in the troposphere has been a challenging problem for many years [65]. 

An approach for tropospheric propagation modelling was developed by Baumgart­

ner [66] and later improved by Shellman [67] and is normally known as Waveguide 

Model or Coupled Mode Technique. The main disadvantage of coupled mode tech­

niques lie in the complexity of t he root finding algorithms and large computational 

demands, especially when higher frequencies and complicated ducting profiles are 

involved. 

In the past, emphasis was mainly given to geometrical optics [68]. These methods 

provide a general geometrical description of ray families, propagating through the 

troposphere. Ray tracing methods present many disadvantages; for example the 

radiowave frequency is not accounted for and it is not always clear whether the ray 

is trapped by the specific duct structure [69]. 
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Researchers in wave propagation have been searching for efficient mathematical mod­

els for describing the problem of electromagnetic propagation in the troposphere. 

Numerous methods are avai lable for predicting electromagnetic wave propagation 

in the atmosphere [70 , 71]. However, the presence of vertical refractivity stratifi­

cation in the atmosphere complicates the application of some methods. To model 

refractivity variations in the horizontal as well as vertical direction , geometric optics, 

coupled-mode analysis, or hybrid methods have been employed [68]. 

The solution of electromagnetic propagation problems in the terrestrial domain is a 

complicated matter. Three-dimensional variations in refraction and terrain make the 

full vector problem extremely difficult to solve in a reasonable time. If one chooses 

to simplify the problem by assuming symmetry in one or more of the coordinate 

directions, the vector problem can be decoupled into scalar problems [72]. However 

the solution of two. dimensional scalar problems is still difficult for realistic environ­

ments. Some approximations and numerical schemes for the solut ion are used to 

reduce the solution of the full two-way equation to one-way equation. The benefits of 

one-way propagation are the simple numerical implementation of range dependencies 

in the medium and the avoidance of prohibitive numerical aspects of solving elliptic 

equations associated with implementing two range-dependant boundary conditions. 

One of the most reliable and widely used techniques in the literature is the parabolic 

equation (PE) method , initially developed for t he study of underwater acoustic 

problems and later extended to tropospheric propagation [26]. This method has 
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emerged as a tool of choice in the study of environmental effects on radio wave 

propagation. The PE is based on the solution of the two dimensional differential 

parabolic equation, fi tted by homogenous or inhomogeneous refractive profiles, as 

described in section 2.2. Models based on the parabolic approximation of the wave 

equation have been used extensively for modelling refractive effects on t ropospheric 

propagation [28, 33] in the last decade. The biggest advantage to using the PE 

method b that it gives a fu ll-wave solution for the field in the presence of range­

dependent environments. 

2.5 Wave Propagation in the presence of Vegeta­

tion 

The large number of mobile users has resulted in network planners increasing ca­

pacity by locating transmitting antennas at heights lower than surrounding trees 

and buildings [73]. In planning a communication link, quantitative knowledge of 

the excess t ransmission loss suffered by the radio waves due to the presence of fo­

liage is essential. Trees act as an obstacles and affect radio waves by depolarisation, 

absorptions and scattering [74]. The depolarisation, scattering and absorption need 

to be accounted for in radio planning tools to improv accuracy and optimum use 

of the scarce radio spectrum. Previous studies showed that trees influenced t he re­

ceived signal level by directly providing an additional attenuation and indirectly by 
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scattering, which resulted in lateral contribution to the received signal [75]. 

Because of high attenuation rates, direct wave propagation is not possible in the 

presence of vegetation over large distances and high frequencies. In t he HF -UHF 

range where both the transmitter and receiver are inside the foliage, radio signals 

can propagate over relatively large distances. This peculiar behavior is explained by 

Tamir, defining certain types of surface waves known as lateral waves [76]. 

Several methods to model vegetation for propagation analysis have been presented in 

the literature [76, 77]. Empirical [78], semi-empirical [79] and analytical [75] models 

are available in literature, mainly aimed at characterising the effects of vegetation 

and calculation of path losses. The main advantage of empirical models such as 

COST 235 [80], ITU-R [78] is their mathematical simplicity and ease of use, while 

the drawback is their dependance on specified measured data and failure to relate 

the physical processes involved. Dependence of system parameters for these models 

e.g. frequency, angle of arrival, etc. are usually determined through regression 

curves fitted to measured data. 

Semi-empirical models [79] were formulated to give best fits to measured data. These 

methods are relatively easy to apply are new and formulated using measured data. 

One of the drawbacks of such models lies in the inclusion of an inverse relationship 

between excess attenuation and the signal frequency. This appears to contradict 

other models as well as t he observed behavior of measured attenuation data [81]. 

Analytical models such as Geometrical and Uniform theory of diffraction [82], Ra-
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diative Energy Transfer Theory (RET) [83], Full Wave Solutions [84] provide more 

insight into the physical processes involved in radiowave propagation through vege­

tation. Out of these RET has been found to offer a highly effective vegetation atten­

uation and scatter model which can be applied in a variety of radio path geometries 

and frequencies. They normally require the use of numerical analysis methods to 

provide solutions to the complex mathematical formulations [85] . 

The lossy dielectric slab model is one popular method for the determination of 

wave propagation in an area with vegetat ion [77] . The valid range of frequencies 

which can be used with the lossy dielectric slab method are from 20 to 200MHz, 

however, for propagation along the horizon it can be used at higher frequencies [74] . 

Tamir [86] pointed out t hat, above 200MHz, these slab models are poor because 

vegetation cannot be regarded as a homogenous medium with dimensions of t he 

order of vegetation. 

Recently, a four layered model has been widely adopted and was used effectively for 

analysing t he propagation mechanism in a forest environment [87, 88]. Two lossy 

dielectric layers placed over a semi-infinite ground plane are used to represent t he 

canopy layer and t runk layer of the forest, respectively. This is an attempt to take 

into account t he vertical non-homogeneit ies of the forest . At UHF frequencies t he 

most appropriate method is the four layer model, which can be used with frequen­

cies upto 2GHz [89]. The use of dyadic Green 's functions for the analysis of t he 

electromagnetic wave propagation in semi-infinite media was described by [90] and 
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a generalisation of these functions for the case of an N -layered medium yields an 

expression for the coefficients of the scattered dyadic Green 's functions in multi­

layered medium [91]. Unfortunately, t he integral representation of the solution is 

very complicated such that considerable efforts is required before numerical compu­

tations can be obtained [92]. 

2.6 Wave Propagation in Tunnels 

Fading of electromagnetic signals in tunnels is a well known fact and the first attempt 

to explain it can be traced back to the 1920's. Wave propagation in t unnels is not a 

new subject and much work has been done in the past. Initial studies concentrated 

on the use of leaky cables or antennas set at a distance of 10-20 cm from the wall , 

which are widely used to provide relatively uniform coverage over a tunnel [93]. The 

basic principle of radiating cables has been described in many papers and books, 

working either above or below the t unnel cut-off frequency [94]. Their bandwidth 

is generally equal to one octave and by adjusting the slot configuration it is even 

possible to extend this band. However, the attenuation in tunnels increases at 

high frequencies and any improvement can be obtained only by installing cables of 

large diameters which leads to prohibitive cost and weight [95]. Leaky feeders are 

expensive, susceptible to interference and require regular maintenance. Further t he 

use of leaky cables requires prior access to the tunnel in order to install the cable 



39 

and related infrastructure. But in metro tunnels sometimes a radiating cable is the 

only solution because of limited installation space. 

Different kinds of antenna solutions are normally used in road tunnels [96], because 

in road tunnels installation of antennas is easy and radiating cable is usually more 

expensive. The maximum distance between antennas in tunnels should be calculated 

to optimise t unnel installation cost. During the 1960's various research projects were 

started in Europe to study the use of radio in mine tunnels . By 1980 the topic was 

quite mature and all tunnel research was summarised in [94] which is still the only 

one on this topic and contains an extensive bibliography. 

Many theoretical studies and practical approaches have been conducted on radio 

wave propagation characteristics in tunnels. Previous experimental studies of radio 

wave propagation characteristics in t unnels were concentrated on finding the optimal 

frequency band for minimum attenuation. The results shows that the optimum 

band seems to be between 1-2 GHz [9]. Modal analysis [97] and Geometrical Optics 

(GO) [98] are two major theoretical approaches for modelling of wave propagation 

in tunnels. 

In [98] Mahmoud and Wait considered models to predict the propagation of both 

modes and rays in a rectangular tunnel. They produce models using ray theory and 

produce rays by the method of stationary phase. They compared results of modal 

analysis and ray theory and introduced wall roughness with a simple model that 

modifies the Fresnel coefficients in the specular direction. In all models proposed by 
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Mahmoud and Wait they assumed the walls of the tunnel were perfectly conducting. 

In [99] the same authors considered curved rectangular waveguides with the broad 

walls imperfectly conducting. 

Based on the modal theory a theoretical model has been proposed by Emslie et 

al. [100] taking in account the similarity between a tunnel and an electromagnetic 

waveguide. Emslie was the first to consider different propagating modes in rectan­

gular lossy tunnels. For smaller tunnels and low frequencies the tunnel dimensions 

are only a few times the wavelength of the radio signal. In this scenario, the modal 

approach is simpler to use and more accurate. However the modal theory based 

model is only effective if a limited number of modes dominate, a rare case in actual 

tunnels. Modal theory was later extended to curved waveguides (adiabatic mode 

theory) and has been presented in [101]. Although adiabatic mode theory suggests 

one to study radio wave propagation in realistic tunnels, it is not always convenient 

for practical applications because of computational efficiency [102]. Recently us­

ing the modal approach propagation around corners in tunnels and urban streets 

canyons were modelled [103]. 

In GO based models , propagation is achieved using direct ray and a number of re­

flected rays from tunnel walls. The ray tracing method approximates RF propaga­

tion as multiple rays originating from the source and reflecting off and/or diffracting 

around objects in the region of interest. Analysis using geometrical optics is difficult 

at long ranges due to the large number of rays and it breaks down in caustic re-
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gions. Caustics are regions where multiple rays are focused and the assumptions of 

ray tracing are violated [104]. While reasonable numerical results can be obtained by 

calculating wave amplitude by using calculated ray density, this approach requires 

excessive computational resources [105] . The ray approximation works best at short 

wavelengths, typically less than characteristic object size. Further, the GO based 

model is restricted to empty straight tunnels and thus have limitations. 

In early 1990's Mariage et al. applied ray optics and uniform theory of diffraction 

to propagation in rectangular road tunnels [106]. Nilsson et al. also used rays to 

derive an estimate of the ray attenuation in a curved 10 x 5m road tunnel [107]. This 

paper also includes experiments done by the Norwegian company Telenor. Based 

on the ray models of Mahmoud and Wait, Lienard and Degauque made theoretical 

calculations for a straight tunnel [108]. One of t he important observation they made 

in their paper is that the signal amplitude versus distance between the transmitter 

and receiver can be divided into two zones. One zone is in the vicinity of transmitter 

where a large number of modes are present and the second zone is at a larger distance 

where lower order modes become dominant and attenuation per unit length becomes 

much smaller. 

Another ray tracing method is described in [109] in which a bundle of rays were used 

to represent each physical wave. Each bundle of rays was traced to a receiver posi­

tion where reception sphere determined which rays are intercepted by the receiver. 

Experimental verification of this approach were carried out in the Berlin subway 
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system and is also provided in this paper. 

Multi-path propagation modelling may also be used for predicting radio channels 

in tunnels [110]. The traditional channel model is unable to represent the real 

propagation characteristics of a radio wave and so cannot be used directly to predict 

the propagation properties in a tunnel. For the multi-path model, it is extremely 

important to know the multi-path distances and hence the time delays of each 

path. An algorithm has been proposed for calculating multi-path distances in simple 

rectangular tunnel [111] in 2003. Some statistical radio prediction models are also 

available in the literature for tunnels but they require a large set of measurements 

to tune the propagation model [105]. 

Recently, Dudley studied models for propagation in lossy circular tunnels [112] . He 

developed expressions for the electric field and presented the numerical results for 

the field intensity both as a function of axial distance and radial distance. The 

main shortcoming of this work is that it is only for smooth tunnel walls and not the 

more realistic situation of rough wall tunnels. Pao investigated statistical properties 

of wave propagation in straight rough tunnels last year but assumes a perfectly 

conducting boundary at the rough wall/air interface [113]. 

Actual tunnels have vehicles most of the time hence for future development of mo­

bile communication systems, the study of propagation characteristics inside tunnels 

with vehicles is a must . A number of measurements have been carried out to study 

the influence of vehicles inside tunnels sce, e.g. [114]. The influence of the vchi-
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cles was studied either in moderate traffic conditions [115] or by considering only 

an individual vehicle passing a fixed link established in a tunnel [96]. To the au­

thor's knowledge, only a few analytical investigations (e.g. [116]) have been done on 

propagation characteristics in non hollow tunnels. 

2.7 Summary 

An extensive review of literature related to radio wave propagation in general and 

wave propagation in the troposphere, vegetation and tunnels has been presented in 

this chapter. The Parabolic Equation Method is one of the most popular methods 

for modelling of electromagnetic wave propagation and is described in detail. Narrow 

and wide angle formulations were given with a brief description of algorithms used for 

the solution of PEM. A critical review of numerical schemes used for electromagnetic 

modelling was also presented. 



Chapter 3 

Finite Element Analysis (FEA) 

3.1 Introduction 

Numerical methods have come to occupy a major role in the field of applied elec­

tromagnetism. Although the theoretical fundamentals of such methods have been 

available for many years, the true birth of computational electromagnetism can be 

traced to the 1960's after the invention of first mainframe computer . The finite ele­

ment method was first outlined in 1942 by Courant [117]. Finite Element Methods 

are widely used by civil and mechanical engineers to analyse material and structural 

problems. Its application to electronic engineering only began in 1969, when a fi­

nite clement solution of the classical waveguide mode problem was published in a 

special issue of the Italian journal, Alta Frequenza [118]. Finite elements were soon 

applied also to integral operators in both electrostatic and antenna problems [119]. 

44 
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Electrical engineers use finite element method to solve complex, nonlinear problems 

in magnetics and electrostatics. 

Until recently, however very little practical modelling of 3-dimensional electrostatic 

radiation problems was performed to use this technique. Practical 3-dimensional 

problems require more computation than 2-dimensional problems which seems to 

be the reason why researchers were reluctant using this method in past. However, 

in recent years, an increasing availability of computer resources coupled with a desire 

to model more complex electromagnetic problems has resulted in a wave of renewed 

interest in finite element methods for solving EM propagation problems. 

In the past, the finite element method has been used to solve complex engineering 

problems including structural analysis in the aircraft industry, heat transfer, fluid 

flow, and mass transport. In recent years it has found application in many areas 

including electromagnetic field problems. The finite element method has established 

itself as one of the most powerful and accurate methods for solving problems asso­

ciated with the sophisticated integrated optical waveguides and microwave devices 

being developed today. The versatility of the method allows elements of various 

shapes to be used to represent an arbitrary cross-section. Each element could also 

be of a different material type and shape. 

The basic idea of the finite element method is to divide the region of interest into 

a large number of finite elements or sub-regions. These elements may be one, two 

or three-dimensional. The idea of representing a given domain as a collection of 
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discrete elements is not new, it is recorded that ancient mathematicians estimated 

the value of 7r by representing t he circle as a polygon with a large number of sides . 

This chapter describes the basic steps in the finite element method. A complete onc 

and two dimensional analysis of the method is provided which forms the basis of the 

rest of the material in this thesis. 

3.2 Numerical Methods 

In the last two decades, numerical methods have been widely used in electromagnet­

ics due to the availability of faster and cheaper computer power. These methods are 

concerned with finding numerical solutions to the Helmholtz 's wave equation derived 

from Maxwell's equations. In many instances, a choice has to be made between a 

numerical method and an approximate method where the choice is dependent on the 

level of accuracy required. For the accurate characterisation of 3-D environments, a 

fully numerical method such as the finite difference or the finite element method is 

required. 

A numerical method is in simple terms, a technique which converts the infinite 

degrees of freedom of an unknown analytical solution to a finite set of unknowns 

which can then be solved computationally. The finite element method (FEM) is onc 

such numerical technique for solving, with a high degree of accuracy, complicated 

boundary value problems. There are some general texts on numerical methods for 
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applied electromagnetism in which the finite element method is treated, although 

such methods are usually introduced through static or quasi-static potentials [120]. 

Two important finite element formulations are variational and weak formulations. 

Weak formulations are based on the method of weighted residual and is the tech­

nique used in this thesis; variational methods will hence not be discussed further. 

Variational formulation depends on existence of a variational principle while method 

of weighted residual starts directly from differential equations and can be use in all 

types of problems. Method of weighted residual is described in detail in Appendix 

1. 

3.3 Basic concepts in finite element analysis 

The finite element method is a domain discretisation technique and can be inter­

preted from either a physical or mathematical standpoint. The first step in finite 

element analysis is to divide t he configuration into a small number of small ele­

ments. The major advantage t hat finite element method have over other methods 

stems from the fact that the electrical and geometric properties of each element can 

be defined independently. This permits the problem to be setup with a large num­

ber of small elements in regions of complex geometry and fewer large elements in 

relatively open regions. Thus it is possible to model configurations that have com­

plicated geometries and many arbitrarily shaped dielectric regions in a relatively 
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efficient manner. 

As stated earlier, the finite element method is a numerical procedure for obtaining 

solutions to boundary value problems. The main principle of the method is to replace 

an entire continuous domain by a number of subdomains in which an unknown 

function is represented by simple interpolation functions with unknown coefficients. 

So, an original boundary value problem with an infinite number of degrees of freedom 

is converted into a problem with a finite number of degrees of freedom. Then 

a system of equations is obtained by applying either Ritz variational or Calerkin 

procedures, and finally a solution of the boundary value problem is achieved by 

solving the system of equations. 

Commercial finite element codes [121, 122] are available that have graphical user 

interfaces and can determine the optimum placement of node points for a given 

geometry automatically. Specific implementation of three dimensional electromag­

netic finite element codes are described in a PhD dissertation by Maile [123, 124]. 

Silvester and Ferrari [52] have written an excellent text on this subject for electri­

cal engineers. The main steps of finite element analysis are described in the next 

subsection. 

3.3.1 Domain Discretisation 

Domain discretisation is one of the most important steps in finite element analysis. 

Domain discretisation affects the computer storage requirements, the computation 
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time and accuracy of the numerical results. An entire domain, say n is divided into a 

number of small domains say ne called finite elements or simply elements. Elements 

can be small where geometric details exist and much larger otherwise. In each finite 

element , a simple (normally linear) variation of the field quantity is assumed. The 

corners of the elements are called nodes. The goal of the finite element analysis is 

to determine the field quantities at the nodes. These elements can be of various 

shapes such as triangles and rectangles thus enabling the use of an irregular grid for 

a complex waveguide structure see figure 3.1. The method can therefore be easily 

f' ~ . ..H 'U ... .o 
Tunnel .... . 

Figure 3.1: Example of an arbitrary shaped tunnel with regions of different material 
properties 

used to analyse problems with steep variations of the field and can be adapted quite 

readily to anisotropic and inhomogeneous problems. The accuracy of the method 

could be systematically increased by increasing the number of elements. The method 

does not rely on the Galerkin method for its establishment, it could be established 

by the used of the variational method. 
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Element Attributes 

In the finite element method , elements are isolated by discrctisation and localisation 

steps. The procedure involves the separation of elements from their neighbours by 

disconnecting the nodes, followed by referral of the element to a convenient local 

coordinate system. In terms of computer programming, a function or subroutine 

can be written that constructs by suitable parametrisation all elements of one type 

rather than writing a new code for each element type. Figure 3.2 shows typical finite 

element geometries in different dimensions. 

Dimensionality 

• 
10 / !~ 
LO 20 

30 o 
Figure 3.2: Typical finite element geometries 

Elements may has dimensionality of onc, two or three space dimensions. There 

arc also special elements with zero dimensionality, such as lumped springs or point 

masses. However, dimensionality can be extended if necessary, e.g. a ID element 
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can be used to build a model in 2D or 3D space. 

Nodes 

Each element have corner points called nodal points or simply nudes as shown in 

figure 3.2. Nodes serve two purposes: definition of element geometry and home for 

degree of freedom. Nodes are usually located at the corners or end points of elements 

but in some higher order elements nodes are also placed on sides or faces as well as 

possibly t he interior of elements. 

Geometry 

The geometry of an element is usually defined by the placement of nodal points. 

Most elements used in practice have simple geometries. In one dimension, elements 

are usually straight lines and in two dimension they are usually triangular or quadri­

lateral shape. 

In most finite element solut ions, the problem is formulated in terms of the unknown 

function u at nodes associated with the elements. For example, a linear element has 

two nodes one at each end point and a triangular element has three nodes one at 

each vertex. For computer implementation it is necessary to describe these nodes. 

A complete description of a node for a computer program contains its coordinate 

values, local number and global number. The local number of a node indicates its 

position in t he element, whereas the global number specifics its position in the entire 
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system. 

Domain discretisation is a completely separate step from the other finite element 

method steps. Many well-developed finite element packages have the capability of 

subdividing an arbitrarily shaped line, surface and volume into t he corresponding 

elements and also provide optimized global numbering [125] . 

3.3.2 Interpolation Functions 

The next step in finite element analysis is the selection of an interpolation function 

that provides an approximation of the unknown solution within an element domain 

ne. Interpolation functions are normally selected to be a polynomial of first , second 

or higher order. In an element domain ne, unknown approximate solution u can be 

expressed as, 

n 

(3.1) 

where e denotes the eth element and n is the number of nodes in the clement. N/ is 

t he interpolation function also called the shape function for node j. Two important 

characterstics of interpolation functions are that t heir summation is always equal 

to 1 and they are only non-zero within the elements and outside the elements they 

vanish. 
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3.3.3 Formulation of the System of Equations 

The next step in finite clement analysis is to formulate the system of equations. 

The most widely used methods to formulate system of equations are the Ritz vari­

ational [117] and Galerkin methods [126]. In this thesis, the Galerkin method for 

the formulation of equations is used so Ritz variational methods will not be dis­

cussed further. The Galerkin method is based on a weighted residual method and 

is described in Appendix 1. The Galerkin method formulation yields a system of 

equations and number of equations that depend on system degrees of freedom. 

Assembly 

After formulating element equations for each clement using either the Ritz or Galerkin 

method, the next step is assembly. Assembly is a process to sum all element equa­

tions to form a system of equations for the whole system. Before solving a system of 

equations for a specific solution, required boundary conditions need to be applied . 

Boundary Conditions 

There are two kinds of boundary conditions that are often encountered: One is 

Dirichlet boundary conditions which prescribe unknown 'U at the specified boundary 

and the other is Neumann boundary condition which requires the normal derivative 

of u to vanish at the boundary. Sometimes for exact modelling some other types of 

boundary conditions are required as discuss in chapter 4. 
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3.3.4 Solution of the system of equations 

Solving the system of equations is the final step in finite element analysis. The 

resulting equations are either deterministic or eigenvalue types of equations. In 

clectromagnetics, deterministic systems are usually associated with scattering, radi-

ation and other problems where there exists a source or excitation. On the contrary, 

cigenvalue types are usually associated with source free problems. Normally the 

resulting matrices are very large and require some specific methods for solution. 

3.4 One Dimensional Finite Element Analysis 

After introducing the basics of finite element analysis now a simple one dimensional 

boundary value problem using the finite element method is described. Consider a 

simple boundary value problem along with boundary conditions defined as: 

cPu ' 
DZ2 + b = 0, for 0 S Z S Zmax (3.2) 

ulz=o p (3.3) 

[ et ~~ + ~'U ] Z=Zmax 
q (3.4) 

where p, et, ~ and q are known parameters of functions. Equation (3.3) is usually 

referred to as a boundary condition of t he first kind or a Dirichlet condition, whereas 

equation in (3.4) is referred to as a boundary condition of the third kind. For 

boundary condition of the second kind or Neumann condition, ~ = O. In this 
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section the basic steps of finite clement analysis out lined in chapter 1 and in section 

3.3 are followed to formulate the solution. 

3.4.1 Discretisation and Interpolation 

Given the problem as defined in equation (3.2) 

(3.5) 

as the governing equation defined within domain 0 :s; Z :s; Zmax , where u is the 

electric or magnetic field component depending on polarity and \72 is a Laplacian 

operator defined as, 

(3 .6) 

in three dimensions. However for the present case it is simply defined as \7 2 = ::2 . 
In the finite element method the first step is to divide entire solution domain (0, Zmax ) 

into small subdomains, which in this case will be short line segments . Assume 

le is t he length of the eth element and the total number of elements are M so 

e = 1,2, 3, ... , M . Further let Zi with 'i = 1, 2, 3, .. . , N denote t he position of the 

ith node with Z l = 0 and ZN = Zmax . Now to adopt a general procedure consistent 

with two and three dimensional systems it is necessary to adopt a local numbering 

system in the formulation. As a convention, assume e is used to denote a quant ity 

with a local number as its subscript , while for all other quantit ies the subscript is a 

global number. 
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The second step of the finite element analysis is to select an interpolation function 

and for simplicity and purpose of understanding assume linear functions first. 

Linear Elements 

Consider an element e as shown in figure 3.3. Within an element e, trial function 

u . e u 
I i+l .. ------------------------... 

N-m N-m+1 

Figure 3.3: Linear element with local node numbers 

or interpolation function is approximated as, 

(3.7) 

where a and b are the constants to be determined. For linear elements, there are 

two nodes per element so at node N - m the value of the interpolation function is Ui 

and at node N - m + 1 value of interpolation function is U i+l' Putt ing these values 

in equation (3.7) yields, 

'u~ = a + bZi 

(3.8) 

Now solve two equation defined in (3.8) for a and b, and substitute back in equation 

(3 .7) , 

2 

ue(z ) = L Nj (z )uj (3 .9) 
j= l 
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Where Nf and N~ are called basis functions or shape functions given by, 

(3 .10) 

For convergence of the solution, the shape function NJ must satisfy certain condi-

tions: 

1. the interpolation function u e and its derivative must include certain terms 

2. the interpolation function ue must be continuous at the interface of two adja-

cent elements. 

The first of the two conditions is also known as t he completeness condition and is 

simple to satisfy provided complete polynomial expressions are used in each element. 

The second of the two conditions is called the compatibility condition. First order 

elements are the most fundamental and first order polynomials arc used with them 

but higher order elements are used with higher order polynomials. Similar analysis 

for linear quadratic elements is described in Appendix 2. 

3.4.2 Formulation via Galerkin's Method 

According to the Galerkin method, the residual for a given approximate solution u 

IS , 

(3.11) 
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and thus the weighted residual for an element e can be written as, 

i=1 ,2 (3 .12) 

Putting equation (3.11) in (3.12) yields, 

(3. 13) 

For weak formulation of (3. 13) use integration by parts, 

Rf = __ U_i _U + Nt b dz - Nt -U ' l
Zi

+ 1 
( !::INe !::lu ) !::Iu IZ-+l 

Zi oz oz oz Zi 

(3. 14) 

Now for linear elements substitute equation (3.9) into (3.14) gives, 

(3. 15) 

where shape functions N are given by (3. 10) . Similarly for quadratic elements , 

summation starts from j = 1 to 3 and shape functions are defined as given in 

appendix 2. Equation (3.15) can be written in matrix form as, 

where, 

{be} = liz i

+
1 

Nt bdz 

{gel = Nt ou I Zi+ l 

oz Zi 

j
Zi+ l oNe oNe 

f.(e _ _ __ , __ J d" 
r i j - !::I,, !Cl ~ 

Zi u~ u Z 

(3. 16) 

(3. 17) 

(3. 18) 
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It should be noted that [K €] is symmetric and analytically given by, 

[Ke] = [ fr + ~ - fr + t] (3. 19) 

_1. + r:.. 1 + l e 
le 6 LP. "3 

For quadratic elements matrix [Ke] can be defined as, 

[K] e = S 1 16 Sle 
- :w + 15 . 3 le + 15 

where le is the length of element e. 

3.4.3 Assembly of Element Matrices 

--L _ l':. 
3l e 30 

(3 .20) 

With the elemental equations given in (3.18) , the system of equations can be formed 

by summing it over all elements, so for M elements, 

A1 A1 

{R} = L{Re} = L([Ke]{ue} + {be} - {gel) = {O} (3 .21) 
e=l e=1 

which can be written as, 

[K]{u} + {b} - {g} = {O} (3 .22) 

Now, suppose if the domain consists of M elements, then for the first element , 

matrix [Kt] can be calculated using equation (3.19) or (3.20) depending on the type 

of elements used . If we define matrix [K] as , 

[Ke] = [Ki~) 
K (e) 

21 

(3.23) 
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So for M elements, expand matrix [Ke] and {ue} into M x M matrix and M x 1 

vector. For example, for the first elemcnt [K (I)] and {u(1) } can be given as , 

and , 

The product of equation (3.24) and (3.25) gives, 

K ( l ) (1) + K (I) ( I ) 
11 U l 12 U 2 

}((I) (I) + }v(1) ( I) 
11 UI\. 12 U 2 

For the second clement equation (3 .26) can be formulated as, 

o 

Kr(2) (2) + }v(2) (2) 
11 U 1 \.12 U 2 

K
(2) (2) + K (2) (2) 
I1 U 1 12 U2 

(3.24) 

(3 .25 ) 

(3 .26) 

(3.27) 
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and repeat the same steps for all !VI elements. Finally adding this product [K (e)]{u(e) } 

for all elements yields, 

K
(l) (1) + K ( l ) (1) 
11 U 1 12 U 2 

M 

I)K(e)]{u(e) } = K
(1) , (1) + K (l ), (1) + K (2) (2) + K (2) (2) 
21 U 1 22 U2 11 Ut 12 U 2 

(3.28) 
e= l 

Now for linear elements, according to the global and local node number convention, 

ui1
) = 'Ul, U~1) = ui2

) = U2 and so on as shown in figure 3.4. So from equat ion (3.28), 

U(2) (2) (4) Local Nodal 

I U 2 U 1 • Poinls 

Element U (I) 
1 U ( I ) 2 U(3) 3 

U(3) 
I 2 I 2 X 

Node • • • • • • • ~ 
1 2 3 4 

Global Nodal 

U 1 U 2 U 3 
U 4 • Poinls 

Figure 3.4: Example of the element assembly process 

}V( l ) }v(1) 
\.11 'U1 +\'12 U2 

M 

K ( l ) (K (1) K (2» ) }( 2) 
21 U1 + 22 + 11 U2 + . 12 U3 

I)K(e)]{ U(e) } = 
e= l 

(3.29) 

or it can be rewritten as, 

K (1) 
11 

K (l) 
12 0 0 

M K (l) K (1) + K (2) K (2) 0 L [K (e)] {U(e ) } 
21 22 11 12 

{ U } = 
e=l 0 K (2) K (2) + K (3) K(3) 

21 22 11 12 

[K]{u} (3.30) 
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Similarly, vector {b} is given as, 

(3.31) 

So the system of equations can be written in a more compact way like this, 

[K]{ u} = {b} (3 .32) 

3.4.4 Incorporation of Boundary Conditions 

Before the system of equations is ready to solve, there is a need to impose boundary 

conditions on it. 

Dirichlet boundary condition 

Dirichlct boundary conditions as defined in equation (3.3) , ul x=o = p can be accom-

plished by setting, 

KlI = 1, j = 2,3,4, ... , N 



63 

Defining these parameters the system of equations defined in (3.32) becomes, 

1 0 0 0 Ul P 

K21 K22 K 23 K24 U2 b2 
(3.33) 

K31 K32 K33 K34 U3 b3 

After applying boundary condition the system is no longer symmetric. This is 

no longer desirable because symmetry is a very important property that can be 

exploited to reduce computer simulation time. To restore symmetry equation (3.33) 

can be further modified as, 

1 0 o o 

o K22 K 23 K 24 U2 
(3.34) 

o K32 K33 K34 

So symmetry has been restored without affecting the solution to the system. 
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Third kind or N eumann boundary condition 

Consider equation (3 .22) , assembly of [K] and {b} matrices were already discussed, 

now consider boundary element vector {g}. 

1\1 

I: {g(e) } = 

e= 1 

( 1) 
g1 

(1) + (2) 
g2 g1 

(2) + (3) 
g2 g1 

(3.35) 

For one dimensional analysis, the boundary is only at the first and last element, 

therefore, {g} has only two nonzero elements: 

_Q au l 
az z=o 

{g } = (3.36) 

For a general problem with N nodes, 

g1 aUI -Q-az z=o 
(3 .37) 

gN aUI Q-

{) z Z =Zmux 

(3.38) 

and gi = 0 for 'i = 2,3, .. , N - 1. 

3.4.5 Solution to the system of equations 

After formulating t he problem, the final step of t he finite element method is to solve 

the system of unknowns 'U i (i = 1, 2, 3, ... , N). The system of equations form is a 



65 

symmetric tridiagonal onc, i.e., the matrix has non zero elements J(ii , J(i,i- l and 

J(; ,H \ . This formulation yields very large matrices but they are sparse matrices 

which can be solved efficiently using a computer. 

3.5 Two Dimensional Finite Element Analysis 

The finite clement method is more popular in two dimensional spaces, where the 

mathematical models of most physical problems are usually so complicated that an 

analytical or close-form solution is not available. In t his thesis finite clement anal-

ysis was applied for two dimensional tropospheric problems and tunnels. For basic 

understanding of two dimensional finite element analysis a general two dimensional 

boundary value problem using a simple linear triangle elements is considered. 

Consider a general two dimensional boundary value problem, defined by a second 

order differential equation as, 

(y,z) En (3.39) 

where n is the domain and for two dimensional problems operator \72 is given as, 

The boundary conditions to be considered arc given as , 

u=p on (3.40) 
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and 

on (3.41) 

where f = (f1 + f 2) denotes the boundary enclosing area 0 , n is the outward 

normal vector coming out from the boundary and 'Y and q are unknown parameters 

associated with boundary. 

3.5.1 Discretisation and Interpolation 

Similar to ID finite element analysis the first step is to divide whole domain 0 

into a number of two dimensional elements. The most commonly used and simple 

two dimensional elements are triangular elements , which are used in this thesis. A 

basic requirement for t he discretisation is t hat there should be no overlap and no gap 

between elements. A good discretisation for triangular elements satisfy the following 

criteria[52] : 

1. A void generating narrow elements or triangles having small inner angles . 

2. Generate small elements which gives a more accurate solution but increases 

computational burden, so it is necessary to keep the number of elements to a 

minimum for a desired accuracy. 

In the case of triangular elements, each element is connected with three nodes so 

a separate set of integers for identification is needed. In this case, t here are three 
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different numbers - the global node number , the local node number and the cle­

ment number - so it is easy to introduce a 3 x M integer array called a connectivity 

array. This integer includes all information concerning the numbering of elements 

and nodes. Along with the connectivity array, another array is needed which relates 

the segments coincident with boundary with their nodes. This array will be used 

to facilitate the incorporation of boundary conditions. For Dirichlet boundary con­

ditions, a vector is needed that stores the global numbers of the nodes residing on 

boundary. 

3.5.2 Linear Triangular Elements 

After discretisation of the domain n, it is necessary to approximate the unknown 

function u within each element e. If linear triangular elements are assumed the trial 

or interpolation function within each clement is approximated as, 

ue(x,y) ~ a+by+cz (3.42) 

where a, band c are constant coefficients to be determined and e denotes clement 

number e = 1, 2, 3 ... , M. For a linear triangular clement , there are three nodes lo­

cated at vertices of the triangle as shown in figure 3.5. In the finite element method it 

is standard practice that nodes are numbered counterclockwise by numerals 1, 2 and 

3 with the corresponding values of 'U denoted by uL u~ and u~L as shown in figure 
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Figure 3.5: Linear n ·iangular Element 

3.5. Enforcing equation (3.42) at t he t hree nodes of clement e gives, 

(3 .43) 

where y'j and z'j with j = 1,2 , 3 denote the coordinate values of t he j th node in 

the eth element. Solve equation (3 .43) for a, b and c and putting values back in 

equation (3.42) . This gives, 

3 

ue(y, z ) = L NJ(y, z )uj (3.44) 
j = 1 

where N'j is t he shape function and is given by, 

NJ(y , z ) = 2~e (aj + bj + cj ) j = 1, 2, 3 (3 .45) 

in which, 

b~ = z~ - z~, 

a~ = y~zf - z~y~ , b~ = z~ - z~, c~ = y~ - y~ (3.46) 

b~ = zf - z~ , 
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and 

1 yr " e 
~ l 

6 e = ~ 
2 1 Y2 ze 

2 
(3.47) 

1 Y3 Z3 

is the area of eth element. Two important properties of clement shape functions NJ 

are: 

1. It can be easily shown from (3.45), (3.46) and (3.47) that interpolation funct ion 

have the property, 

t = J 
(3.48) 

2. The second important feature of the shape functions is that it vanishes when 

the observant point (y, z) is on the clement side opposite to the jth node. 

Therefore , the value of ue at an clement side is not related to the value of u 

at the opposite node, but rather , it is determined by the values at the two 

endpoints of its associated side. This feature guarantees cont inuity of the 

solution across the clement side. 

3.5.3 Formulation via Galerkin Method (weak form) 

By applying t he Galcr'kin method the residual associated with equation (3.39) is , 

[)2U [)2U 
R= ;:}2+;:}2+ b 

uy u Z 
(3.49) 
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and thus the weighted residual for the element e according to the Galerkin method 

IS , 

(3.50) 

Substituting equation (3.49) in (3.50) yields, 

(3.51) 

Now using integration by parts (weak formulation) equation (3 .51) yields, 

where re denotes the contour enclosing n, ne is the outward unit vector normal to 

re and 

D ( au ~ au ~) = -y+-z ay az (3.53) 

Substituting equation (3.44) in (3.53) yields the elemental equation for element e, 

R:=tj"f _[ar;t a:; + ar;iea: ;] UjdYdz+j" f NtbdYdz-i NtD.nedr 
. i ne uY uY uZ uZ ine re 

. J=1 

(3.54) 

which can be written in matrix form as , 

(3.55) 

where the elements in [f{ e] are given by, 

f{ e = _ __, __ J + __ , __ J 

j1 [
aNe aNe aNe aNe] 

' J ne ay ay a z a z dydz i,j= 1,2,3 (3.56) 



71 

and those in vector {be} and {ge} are, 

be 
t l1e Nt bdydz i=1 ,2,3 (3.57) 

gf i N7D.fI,edf i=1 ,2,3 
re 

(3.58) 

3.5.4 Assembly of Element Matrices 

After calculating t hee element inatrices and vectors the next step is to sum all 

element matrices and vectors for all M elements using the stationary condition that 

the sum of weighted residuals must be zero. 

So from equation (3.55) , 

M 

L ([Ke]{ Ue} + {be}) = 0 (3.59) 
e=! 

remember that boundary condit ion matrix will be incorporated in the next step. 

Assume [K ] = L:~ ! [K e] and {b} = L~l {be} equation (3 .59) can be written in a 

compact form , 

[K]{u} + {b} = {O} (3.60) 

Now to assemble matrix [K] start with a t x t null matrix, where t is the total number 

of nodes in the system. Than add individual clement matrices [K(! )], [K (2)], [K (3)], 

... [K (M)] to the null matrix [K] or in a more concise way the augmented matrices 

for the elements to [K ]. To illustrate it in a simple way assume M = 4 with 
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3~ ______ -4~ ______ ~6 

5 

Figure 3.6: Example of sub-division of a two dimensional domain 

t = 6 as shown in figure 3.6. The connectivity array for t his mesh can be given 

in table 3.1: Elements can be numbered in any way as long as they are numbered 

e n(l ,e) n(2 ,e) n(3 ,e) 
1 2 4 1 
2 5 4 2 
3 3 5 2 
4 5 6 4 

Table 3.1: Connectivity matrix for mesh given in figure 3.6 
; Obviously, this table is not unique. 

counterclockwise. Now, let us consider Kg) first. Referring to table 3.1, n( l , 1) = 2, 

which means t hat the first local node of t he first element corresponds to the second 

second global node. Since K}~) relates intersection of this node to itself, it can be 

added to K 22 . Next consider Kg) and again refer to table 3.1 it should be noted 

that n(2, 1) = 4, so K g) can be simply added to K 24 . So in short , ]('0 can be added 

to K n (i,e) ,n(j,e) . So following this procedure, adding elemental matrices [K(1 )], [K(2)], 
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[K (3)] and [K (4)] to [K ], yields following system matrix, 

[KWJ [K~:>J 0 [Kg>J 0 

[K[;>J [Kg>J + [Kg>J + [KWJ [K~~> J [Kg >J + [ K ~~>J [ K~~ >J + [Kg>J 0 

[K ]= 
0 [K[;>J [ K l~>J 0 J K :~>[ 

[Kg>J [Kg >J + [Kg>J u [KWJ + [Kg>J + [ K~~ >J [Kg >J + [ K j~ >J [1< 3~ >J 

]J<g>J + [Kg>J [ J( ~~ >J [K[;>J + JKl; >J [Kg >J + [ Ki~>J + [ K:~> J [ K[~>J 

0 u [ J(i~ >J [Ki~ >J [Kg>J 

(3.61 ) 

By using a similar procedure, matrix {b} can be assembled as, 

b( l ) 
3 

bel ) + b(2) + b(3) 
I 3 3 

(3) 

{b} = 
b l 

(3.62) 
bel ) + b(2) + b(4) 

I 2 3 

b(2) + b(3) + b(4) 
I 2 I 

b~4) 

3.5 .5 Incorporation of Boundary Conditions 

Dirichlet boundary condit ions can be applied in exactly t he same way as for t he 

ID problem, however for t he incorporation of the t hird kind boundary condit ions 

defined in equation (3.41), consider vector {g} as given in (3.55), for the mesh shown 



in figure 3.6, 

{9} = 
(3) 

91 

(1) + (2) + (4) 
91 92 93 

(2) + (3) + (4) 
91 92 91 
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(3.63) 

Using the expression of {9i} given in (3.57) and noting that Nie vanishes at t he ele-

ment side opposite node i and internal elements do not contribute to {9}, only those 

terms residing on geometry have nontrivial contributions. The final expressions for 

{9} can be written on boundary segments sand s + 1 as [127]: 

2 2 

9i = b~ - L K~juj + b1+l - L Ktt1ur 1 (3.64) 
j= l j=l 

where K tj and bf are t he same as defined in (3.56) and (3.57) respectively. 

3.5.6 Solution to the system of equations 

Once the system of equations is assembled and boundary conditions are incorpo-

rated , they are ready to solve for unknowns Ui with i = 1,2,3, ... , N. Many methods 

are available to solve the system of equations, categorized as direct or iterative meth-

ods. In this thesis, only direct methods are considered and the system of equations 

is solved using Matlab solver using sparse matrix techniques. 
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3.6 Finite element programming in Matlab (An 

Overview) 

Matlab is an interactive software which is widely used in various areas of engineering 

and scientific applications. The power of Matlab is represented by the length and 

simplicity of the code. For example, one page of matlab code may be equivalent 

to many pages of other computer language source codes. Matlab is a useful tool 

for vector and matrix manipulations. The finite element method is a well defined 

candidate for which Matlab can be very useful as a solution tool. 

A simple two dimensional finite element program in Matlab need only be a few 

hundred lines of code whereas in Fortran or C++ one might need a few thousand . 

It should be noted that the built-in Matlab functions are already compiled and are 

extremely efficient and should be used as much as possible. Keeping the slow down 

due to the interpretive nature of Matlab in mind, one programming construct that 

should be avoided at all costs is the for loop, especially nested for loops. These can 

make a Matlab programs run time orders of magnitude longer than may be needed , 

especially in finite element programming where large size of matrices are used. Often 

for loops can be eliminated using Matlab's vectorised addressing. 

3.6.1 Section of a Typical Finite Element Programs 

A typical finite element program consists of the following sections. 
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1. Define constants and allocate space for larger matrices 

2. Generate mesh using some meshing algorithm or software 

3. Calculate nodal and element connectivity matrices 

4. Calculate element matrices and vectors for every element 

5. Assemble element matrices and vectors into system matrices and vectors 

6. Enforce boundary conditions 

7. Solve the matrix equation for the primary nodal variables 

8. Compute secondary variables (if any) and quantities 

9. Plot and/ or print desired results 

Input D ata 

Major input parameters for finite element analysis program are: 

• total number of nodes in the system, 

• total number of elements in the system, 

• coordinates of each node, 

• type of all elements , 

• governing equation and boundary conditions 
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Determination of the total nodes and number of elements are directly related with a 

mesh. Meshes can either be generated manually in Matlab or using some commercial 

mesh generation matlab codes [125]. Type of element determines the number of 

nodes per element as well as how many degrees of freedom for each node of the 

element. It is possible to define different types of clement in t his case this information 

is needed for every type of clement. The node coordinates are stored in the nodal 

coordinate matrix. Another data structure is defined in which coordinates of each 

node is stored . These two matrices are linked with each other. Element definitions 

are stored in the element connectivity matrix. This is a matrix of node numbers 

where each row of the matrix contains the connectivity of an element. It should be 

noted that element connectivities are all ordered in a counter-clockwise fashion, if 

this is not done then some Jacobian's will be negative and thus cause the system 

matrix to be singular, which is obviously wrong. 

In the finite element method boundary conditions are used to either form a force 

vector (natural or eumann) or to specify the value of an unknown field on a bound­

ary (essential or Dirichlet). In either case a definition of boundary is needed. Two 

more vectors are needed to define constraints nodes and their values. In the case 

of flux boundary conditions, an additional element matrix is added in t he element 

equations as described earlier in section 3.4.4. 
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Assembly of Element Matrices and Vectors 

After having defined all clement nodes and t heir respective coordinates, clement 

vectors and matrices need to be calculated. Element matrices and vectors can be 

calculated based on Galerkin weak formulation or variational principles of system 

equations. Once these matrices and vectors are computed, they need to be assembled 

into the system matrix and vector. To t his end information on where the element 

matrix and vector are to be located in t he system matrix and vector is needed . For 

this purpose another array is defined which contains this information. 

3.7 Summary 

This chapter has considered the general formulation of the finite element method. 

Various aspects of the implementation of the method have been considered including 

domain discret isation, shape functions and Galerking formulation. This chapter 

describes ID and 2D fini te element solutions of a simple boundary value problem. 

Finally an overview of finite clement programming using Matlab is given. This 

chapter forms the basis of the work described in subsequent chapters of this thesis. 



Chapter 4 

Radio Wave Propagation 

Modelling using Finite Element 

Method in the Troposphere 

4.1 Introduction 

The troposphere which forms the lowest layer of atmosphere extends from the earth 's 

surface upto several km. Long range electromagnetic wave propagation in the near­

horizon direction is mainly dependant on the spatial distribution of refractive index 

which in turn, depends on pressure, temperature and water vapours in air [128]. 

Spatial distribution of refractive index in the air affects the propagation of electro­

magnetic waves in the troposphere. The path of the wave is bent and this bending 

79 
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depends on the fluctuation of t he vertical gradient of refractivity. The t ropospheric 

refractive index is frequency independent so the lower parts of the atmosphere affect 

the radiowave propagation in a wide frequency range, from VHF to optical frequen­

cies, whereas, abnormal environmental conditions can end up to ducting phenomena 

as describe later in section 4.2. 

The modelling of radio wave propagation through the troposphere has been exten­

sively studied, and nowadays a great number of reliable models are in use, for refer­

ence see chapter 2. Solution of electromagnetic propagation problems in the lower 

part of atmosphere is a complicated matter. Variations in refraction and terrain 

make t he solution of the full vector problem extremely difficult. The problem can 

be simplified by assuming symmetry in one or more of t he coordinate directions , 

the vector problem then can be uncoupled into two scalar problems [72]. In this 

thesis the parabolic approximation method is used to simplify the solution of wave 

propagation in the troposphere and then solve by using the finite element method. 

A method to model tropospheric electromagnetic wave propagation where the re­

fractivity is a function of height is presented in t his chapter using the finite element 

method (FEM) . The versatility and accuracy of t he FEM as compared with other 

methods in the solution of EM wave propagation problems in certain areas such 

as photonic device design has been well established [13 , 129]. In t his thesis finite 

element analysis is extended to the solution of parabolic approximation in the t ro­

posphere. Using t he finite element method the solution is computed at some initial ' 
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range and then advanced in the propagation direction using the marching algorithm. 

Vertical tropospheric profile characteristics are assigned to every mesh element , while 

the solution advances in small variable range steps, each excited by solution of the 

previous step. 

The remainder of t his chapter is organised as follows; brief description of refractivity 

and ducting in the troposphere is first presented. A model of wave propagation in the 

troposphere along with earth flattening transformation is described with its finite 

element formulation. Both narrow and wide angle versions of the parabolic equation 

is considered with boundary conditions and initial field distribution. Finally, results 

and discussions are presented along with a summary. 

4.2 Refractivity and Tropospheric Ducting 

The lower part of the troposphere affects radio wave propagation in a number of 

ways. Among them a special case is clear air propagation mechanisms related to the 

refractive index variations caused by temperature and water vapour changes. Spatial 

changes of refractive index is larger with height than with range and generally the 

range variations can be neglected [130]. 

For practical purposes, the real measurements are replaced by different modified 

refractivity profiles, which account for the average behaviour of refractive index 

profiles. To a very good approximation , the real part of the radio refractive index 
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is given by Debye formula [128], 

n = 1 + 77.6 X 10- 6
; + 0.373;2 (4.1) 

where p is the atmospheric pressure in millibar, e is the water vapor pressure in 

millibars and T is the temperature in Kelvin. 

Near the earth 's surface its value is close to unity and hence a more practical value, 

the refractivity is normally used [1]; 

N 106 x (n - 1) (4.2) 

(4.3) 

where No is the refractivity at sea level and z is the height above sea level in kilome-

ters. Refractivity is defined in N-units. Refractivity gradient is onc of t he important 

parameters used to define different meteorological conditions and is defined as a;:. 
Under standard atmospheric conditions as defined by the ITU the value of refrac-

t ivity gradient is -39.6 N-units/km. The nonstandard troposphere conditions cause 

anomalous propagation called anaprop; that is, rays bend upward (subrefraction) or 

downward (superrefraction or ducting) to the earth surface in a way that is differ-

ent from the standard. This leads to highly variable propagation conditions which 

significantly affects a radio propagation link. Effects of refractive gradients on ray 

bending can be approximated as [15]: 

1 
p=--­

an/az ( 4.4) 
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Tropospheric ducting occurs when the gradient c;:: < -157 N-units/km, allows 

only waves above the cut off point to propagate [27]. The main cause of ducting is 

abrupt changes in refractive index of the medium. Standard atmosphere parameters 

are defined in table 4.1. 

I Parameter I Value(s) 

Refractivity at sea level, No 315 N-units 
Reference Hight, ho 0.136 km 
Refractivity gradient , qff -39.6 N-units/km 

Table 4. 1: Reference atmosphere as defined by ITU [1] 

4.3 Mathematical modelling of wave propagation 

in the troposphere 

The efficacy of the PEM in solving tropospheric propagation problems is well known [33]. 

A detailed description of the parabolic equation method has already been presented 

in chapter 2. The following analysis starts from the standard parabolic equation 

(SPE) in 2 dimensions as given in equation 2.6: 

. o'U(x, z) (J2'U(x, z) 2 2 
J2ko Ox + OZ2 + ko(n (.T ,Z) - 1)'U(x, z) = 0 (4.5) 

where ko is the free space wavenumber, 'U(x, z) is t he unknown electric or magnetic 

field depending on polarization and n( x, z) is the refractive index of the troposphere. 
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4.3.1 Earth Flattening Transformation 

In long-distance propagation scenarios, the effect of the Earth 's curvature must be 

considered. To this end , although the final numerical calculat ions are conducted 

in a cartesian coordinate system, t he problem is normally formulated in a spher-

ical coordinate system (r, cp, e), with t he origin located at the earth 's center. An 

earth flattening transformation is then used to map the resulting equations onto a 

cartesian coordinate system. The simplified PE problem is formulated in terms of a 

scalar parabolic equation governing the field components Ey for horizontal and Hy 

for vertical polarisation. With this approximation solution is valid at low heights, 

provided if refractive index is replaced with modified refractive index m(x, z) using 

conformal transformation [27] . 

m(x, z) = n(x, z) (1 + ~) (4.6) 

where R is the radius of eart h. Modified refractivity M is given as, 

M = (m - 1) x 106 (4.7) 

and is expressed in M-units. After substit uting equation (4.6) in (4.5), it becomes, 

. ou(x, z) 02U(X, Z) 2 ( 2 2Z) 
J2ko OX + OZ2 + ko n (x, z) -1 + R u(x ,z) = 0 ( 4.8) 

The wave propagation model based on PE as defined in equation (4.8) is subject 

to a terrain boundary condit ion, which represents the relationship that must hold 

between the field u(x , z) and terrain (e.g. ground) . Note from equation (4.8) that 
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the earth curvature enters only through the ~ term; if this term is ignored, the 

equation (4.8) describes propagation over a flat earth. 

4.3.2 Path Loss and Propagation Factor 

In tropospheric radiowave propagation, results are normally expressed in terms of 

path loss or propagation factor. According to the International Telecommunications 

Unit (ITU) , path loss L(x, z) is defined as the ratio between the power radiated by 

the transmitting antenna and the power which would be available at the receiving 

antenna if there were no losses in the radio frequency circuit [1]. Path loss and 

propagation factors are normally expressed in decibels. Path loss in terms of the 

transformed PE field u(x, z) is given by [27]: 

L(x, z ) = -20 log lu(x, z)1 + 20 log( 47f) + 10 log ( R sin ~) - 3010g(A) (4.9) 

where A is the wavelength. Propagation factors F is given as , 

F(x , z ) = 20 log lu(x, z)1 - 10 10g(x) - 1010g(A) (4.10) 

Both path loss L and propagation factor F are expressed in decibels . 

4.3.3 Boundary Conditions 

In the two dimensional tropospheric propagation problem, there are two boundaries , 

one at the starting height, z = Zm in which in fact is the Earths surface at height 
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0, and at the maximum altitude considered, Z = Zmax. The bottom boundary of 

the domain in radiowave propagation problems is physical ground often assumed 

as perfectly conducting ground or represented by a surface boundary impedance 

condition. Although the perfectly conducting ground model is adequate for many 

applications, it is not universally applicable. A more accurate model is required for 

ground wave propagation to consider different parameters of ground including its 

permittivity E and conductivity cr. The top boundary is a computational artifact 

needed to limit the integration domain in height . 

Perfectly Matched Layer 

When numerical propagation simulations are performed, infinite propagation do­

mains cannot be realised and the size of the propagation domain must be truncated. 

This is accomplished numerically by implementing absorbing boundary conditions 

or Perfectly Matched Layer (PML) on the upper boundary at Z = Zmax in 2D anal­

ysis and on the upper and on two vertical sides of the propagation domain in the 

case of 3D PEM analysis. The perfectly matched layer has to be applied to reduce 

the effects of any possible reflections and allow for the propagation of the signal. 

The domain in the 2D case is illustrated in figure 4.1. The propagation model defined 

in equation (4.8) is an ordinary differential equation in range x and we can solve it 

as an initial value problem with respect to x i. e. an initial condition is needed at 

initial range x = O. In other words initial distribution of the electric or magnetic 
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At the top of the domain , a perfectly matched layer (PML) zone is assumed to 

terminate the grid as shown in figure 4.1. PML is a relaxation zone with a specified 

number of layers or grid points where the solution can be efficiently damped. In 

order to incorporate the perfectly matched layer an additional term is added to 

equation (4.8) which will act as damping factor to give [131]' 

. ou(x, z) 02U(X, z) 2 ( 2( 2Z) . _ 
]2ko OX + O Z2 +ko n x,z) - 1 + R u(x, z ) + ]koTJu(x ,z) = 0 (4. 11) 

fj is varied only in t he PML zone and outside the zone it will be zero. So outside 

t he PML zone equation (4. 11 ) will become (4.8). In short , 

{ 

fj = 0 when Z ::; Zb 

fj > 0 when Z > Zh 

where Zb is the threshold height, the PML zone starts for Z > Zb. Many methods 
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have been proposed to calculate the damping coefficient fj in the literature [132]. 

One simple approach to implement PML is to calculate the damping coefficient T/o 

in the first PML layer then the damping coefficient in ith layer is given by, 

/,i-l 

T/i = T/o-­
hi 

(4.12) 

where/, is a constant and hi is the thickness of ith PML layer. Quantity T/o can be 

calculated by an empirical type of formula, 

( 4. 13) 

where R is the reflection coefficient, D is the thickness of the PML zone and c is 

some typical velocity. However , it should be noted that the formula for calculating 

fj is empirical and in the literature it is stated that numerical experimentation is 

needed in order to obtain a reasonable damping of the field [133]. 

Surface Impedance Boundary Condition 

An impedance type of boundary condition is used to account for the finite conduc-

tivity of the surface of the earth. The entrance boundary conditions are expressed 

by the equation [26]: 

[
8U(X,z) ] 

8z + qu(x, z) Z=Z".ax = 0 (4. 14) 

where, 

q 
jko 

qv = . VCI' - J600')' 
(4. 15) 

q qh = jko/cr - j600')' (4.16) 
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for vertical and horizontal polarisation respectively. Er is t he complex relative per-

mittivity and er is the conductivity of ground whereas A is the wavelength of the 

radio waves in meters. 

4.3.4 Initial Field 

Source modelling capabilities have been developed in t his section to model accurately 

pattern and the altitude of a t ransmitting antenna. Starting or initial field simulate 

the field of any antenna. In t his thesis a normalised gaussian pattern is used in 

which the init ial field u(O, z ) can be written as [134], 

u(O, z) = [A(z - Ho) - A(z + Ho)] ( 4.17) 

where Ho represents the antenna height and bar denotes complex conjugate. The 

Fourier transform of A(z) is given as, 

(4. 18) 

where w is defined as, 

J2Trl2 
'W = 

k sin~ o 2 

(4. 19) 

In equation (4.19), sin ~ is the sine of 3dB beamwidth, The same antenna pat-

tern is also used in commercially avai lable refractive effects prediction software 

AREPS [135]. So the inverse Fourier transform of equation (4.18) can be calcu-
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lated as: 

A _2rrz2 

A(z ) = - e- w-

'W 
( 4.20) 

So from equation (4.17) the initial field is given as, 

(4 .21 ) 

4.4 Finite Element Formulation of the Problem 

In this section the finite element formulation of the model is developed using concepts 

built in chapters 2 and 3. Both formulations of the parabolic equation will be 

considered: narrow angle as well as wide angle formulation. 

4.4.1 Narrow Angle FEM formulation 

The analysis to follow starts from the parabolic approximation model defined in 

equation (4.8) , where z is transverse direction represents height and x represents 

the range direction using the beam propagation marching algorithm. Field u(x , z ) is 

propagating in range direction x. By applying the FEM, the domain Z1l1i n ::; Z < Zmnx 

is divided into a number of small elements and within each element e the domain is 

defined as z. By using a suitable interpolation function ue(z ) within each element 

domain z the interpolation function can be written as, 

( 4.22) 
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where HI and H 2 are basis functions or shape functions and for linear elements they 

are defined by equation (3 .10). For quadratic elements shape functions are given in 

appendix 2. To simplify the analysis a shape function vector {N} is defined as, 

( 4.23) 

Assume tu as a weighting function , so the weighted residual of equation (4.8) for an 

element e is given as , 

By using t he Galerkin method , 

(4.25) 

Using a weak formulation of the Galerkin method and substituting equation (4.25) 

in (4.24) yields, 

lj2ko{N}T {N}a~~} dz lUVV{1V}dz{u} 

+ k~ l{N}T{N} (n2 -1+ ~) {u}dz= 0 (4.26) 

It should be noted that the equation (4.26) is defined for an element e such that 

e =I {1 , M} where M is the total number of elements. For the boundary elements 

another term incorporating boundary conditions should be added in equation (4 .26) . 



In equation (4.26), {N} is defined as, 

Define two matrices [M] and [K], 

{N} = a{N} 
az 
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[M] Ll{N}T {N }dZ (4.27) 
e -

[K] ~ 1 (k~ [n2 + ~] {N}T {N} - {Nf {N } - {Nf{N}) dz(4 .28) 

Note that matrices [M] and [K] are not element matrices, they are infact t he sum-

mation of all t he element matrices over t he whole domain. Now consider equation 

(4.26) for the whole domain Zmin :::; Z < Zmax and substitute [K] and [M] it becomes, 

j2kO[M]a~~} + [K]{u} - k~[M]{u} = 0 ( 4.29) 

Finite Element Algorithms 

Equation (4.29) can be solved numerically using one of a variety of methods. Most 

of t he solut ion methods rely on range stepping algorithms where the range x is 

divided into a succession of discrete steps. Instead of seeking a solution over the 

entire domain, approximate solutions are sought at the defined steps starting with 

an initially known solution at zero range i. e. x = o. The solution at the ith 

step is computed from a recurrence relation, that is an algebraic equation that 

relates the solutions at two or more successive steps. All of these methods depends 

on approximating derivatives t he same as t he fin ite difference methods descried in 
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section 2.2.2. In such a scheme, the finite element method is used in the transverse 

direction while the finite difference method is used in the axial direction. In a 

number of methods the Crank-Nicolson method is used because of its stability and 

accuracy. 

Crank-Nicolson method The first order x derivative of t he field u(x , z ) can be 

approximated at range instant (x + ~x ) like, 

au I ~x = {uy+.:1x - {u y 
ax X+T 6:. x 

( 4.30) 

and field u(x, z) at range (x + ~x ) is given by, 

I 
- {u y+.:1x + {u} X 

{u} x+~x - 2 (4.31 ) 

Put equation (4 .30) and (4 .31) in equation (4 .29) at some intermediate range (x + ~x ) 

yields, 

which can be written in a simplified form as, 

(4.33) 

where [A] and [E] are given as, 

[A] -j4ko[M]- 6:.x { [K] - k5[MJ} ( 4.34) 

[E] -j4ko[M] + ~x {[K]- k5[MJ} (4 .35) 

is the final formulation of the propagation equation in the troposphere. 
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4.4.2 Wide Angle FEM Formulation 

For the wide angle finite clement formulation of PE consider the wide angle parabolic 

equation with earth flattening transformation , 

(j2u(x, z) . ou(x, z) 02U(X, z) 2 ( 2 2Z ) 
ox2 + J2ko ox + OZ2 + ko n (x, z) - 1 + R u(x, z) = O. (4.36) 

Using the same procedure as for the narrow angle FEM formulation of PE, choose an 

interpolation function and then by using the weak formulation of Gab'kin method , 

matrix equation for the system 'can be defined as, 

[M]O~~~} + j2ko[M]0~~} + [K]{u} - k6[M]{u} = {O} (4.37) 

where matrices [M] and [K] are defined in equation (4 .27) and (4.28) respectively. 

Rewrite equation (4,37) as, 

j2ko[M]0{u} = _ [K]- ~5[~] {u} 
ox 1 + j 2ko ox 

( 4.38) 

Using the Pade approximation [46], 

o 1 { 2 } -~-. - [K]-k [M] 
Ox J2ko 0 

(4.39) 

Substituting equation (4.39) in (4.38). After simplification it gives, 

j2kO[M]O~~ } {4k6[M]- [K] + k6[M]} + 4k6[M] {[K]- k6[M]} {u} = {O} 

which can be further simplified as , 

-j2ko { [M]- [K]- k5[M] } o{u} = [K]{u} _ k2[M]{u} (4.40) 
4k5 ox 0 



Define [NI] as, 

equation (4.39) will become, 

[NI] = [M] _ [K] - k5[M] 
4P o 

-j2kO[M]8~~} = [K]{u} - k6[M]{u} 
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(4.41) 

( 4.42) 

which is the same as equation (4.29) with matrix [M] replaced with [NI ] in the first 

term. So at range step x + ';.c equation (4.42) can be written as, 

( 4.43) 

Again using the Crank-Nicolson approximation scheme, defined in equation (4.30) 

and (4.31), 

which can be written in a simplified form as, 

{-j4ko[NI]- ~x{[K] - k6[MJ} } {uy+ll.x 

= { -j4ko[M] + ~x{[K]- k6[MJ} }{uy 

( 4.45) 

4.5 Results and Discussions 

In this section results for 2D and 3D finite clement solutions of the parabolic equation 

method will be presented. Coverage diagrams and path loss diagrams are calculated 
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at different frequencies and under different environmental conditions. Initially start 

with standard atmospheric conditions and then consider some abnormal conditions 

yielding ducting phenomenon in the troposphere. In this section, coverage diagrams, 

path loss contours and different power plots at receiver height and different values 

of ranges will be investigated. 

To demonstrate the efficacy of the present approach a number of simulations were 

carried out with various frequencies and media profiles. In all of the simulations the 

following assumptions were made unless stated otherwise. A transmitting antenna 

of height Ho = 150m above sea level with a 3dB-beam width (}bw = 2° and vertical 

polarisation of the propagating wave is assume. Gaussian beam patterns as describe 

in section 4.3.4 were used because they have excellent numerical properties as well 

as providing a good representation for paraboloid dish antennas [27] . The wide 

angle formulation of the parabolic equation method is used in simulations until 

stated otherwise. The natural infinite domain of the troposphere can not be realised 

so perfectly matched layer is used along with boundary conditions as described in 

section 4.3.3. Transverse direction is assumed to be along z axis while propagation 

direction is x throughout in simulations, as shown in figure 4.3. Other simulation 

parameters use in this section are summarised in table 4.5. 

Quadratic type line finite elements are used for better accuracy with length of A/ 10 

until stated otherwise. Different values of range step 6.x were picked somewhere in 

between 25 and 180m. If a smaller 6.x is choosen , the computation takes longer and 
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I Parameter I Value(s) 

Tx Antenna Height 150m 
Tx Antenna Gain 43.5dB 
Rx Antenna Height 150m 
Antenna 3dB bandwidth 2° 
Ground Conductivity O.Olmho/m 
Ground Permittivity 15 
PML zone 300m 
No. of PML Layers 3 
Reflection Coefficient in PML 10-4 

Damping Factor 0.5 
Tropospheric Duct Height 300 
Antenna Polarisation Horizontal or Vertical 
Frequency of Waves 100MHz - 3GHZ 

Table 4.2: Simulation Parameters used to model radio wave propagation in the 
t roposphere 

more computational resources will be needed. On the other hand for a larger ~x, 

the computation is accelerated but some significant atmosphere changes might be 

missed and more error will occur in the simulation results. Therefore , ~x should be 

optimally choosen accordingly for each problem. However, it is possible to choose 

~x and element size having variable lengths in one simulation. 

Figure 4.2 shows the dependence of refractivity on height under standard atmo-

spheric conditions as defined by t he International Telecommunications Union (ITU). 

Atmospheric conditions can be entered into the computer program as profiles of 

refractivity-height data where refractivity N is related to refractive index n as 

N = (n - 1) x 106 (see section 4.2). From the way the program accepts environ-

mental data it is clear that any measured environmental data can easily be entered 
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into program without any extra computational burden. In cases where horizontally 

inhomogeneous conditions needs to be modelled , different refractivity profiles can 

be entered at several ranges, and the program can perform linear interpolation in 

range and height for use at intermediate calculation positions. Modelling ground 

Refractivity of the medium considered 
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Figure 4.2: Standard Atmospheric Profile 
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Figure 4.3: Direction Convention used in Simulations 

wave propagation for upward propagated waves is a challenging signal processing 

task. As discussed earlier in section 4.3.3 the upper boundary should be truncated 

for proper termination of grid or domain . This can be accomplished numerically 
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by implementing an absorbing boundary condition on t he upper boundary or using 

a perfectly matched layer (PML) as described in section 4.3.3 . Effective absorp­

tion within PML block depends on the number of PML layers and artificial PML 

medium parameters. Figure 4.4 presents the coverage diagram of transmitting an­

tenna operating at lOOMHz for standard atmospheric conditions with and without 

PML. 

As can be seen from figure 4.4 without the implementation of PML the waves get 

reflected from the upper boundary however; when a perfectly matched layer (PML) 

boundary is implemented these reflections are eliminated. 
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Figure 4.4: Coverage diagram without and with PML at 100MHz 
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One advantage of the FEM over other methods such as the ray tracing techniques, 

is that one can incorporate frequency through the wavenumber k = 2; in the sim­

ulations. Figure 4.5( a) and 4.5(b) shows the coverage diagram of a t ransmitt ing 

antenna at 500MHz and 1GHz. It can be quite clearly seen , that this diagram is 

different from that of figure 4.4 at 100MHz. A ray t racing technique would have 

produced exactly the same results. 
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Radio Wave Propagation In Troposphere at 500MHz 
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Figure 4.5: Coverage diagram with of antenna with transmission at 500MHz and 
1GHz 
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Path loss is also computed at vanous frequencies in the lowest part of the tro­

posphere and range-height displays are shown in figures 4.6(a) and 4.6(b). These 

results show how the path loss changes with height and range at different frequen­

cies. In order to demonstrate it more clearly path loss is plotted versus range at 

receiver height. To validate the proposed approach results were compared to those 

obtained by a commercially available software package Advanced Refractive Effects 

Prediction System (AREPS) [135]. The Advanced Refractive Effects Prediction Sys­

tem (AREPS) program computes and displays a number of tactical decision aids for 

the assessment of electromagnetic system performance. The internal propagation 

model used by AREPS is the Advanced Propagation Model (APM). This is a hy­

brid model that consists of four sub models: flat earth, ray optics, extended optics 

and split-step parabolic equation. However AREPS has its own limitations, a good 

discussion about AREPS limitations is given in [136]. From figure 4.7(a) to 4.7(c) 

an excellent agreement in results can be shown and error in path loss values is less 

than 3dB. For comparison, the FEM results are offset by 5dB fo'r clarity. Path loss 

at receiver height increases with range at all frequencies and almost a similar pattern 

is observed. 

Path loss versus height at 50km range is plotted in figure 4.8 at various frequencies. 

Note the interference that resulted from the reflection of the lower end of the main 

beam. At 50km from the transmitting antenna it is clear that path loss increases 

with increasing frequency. A fluctuating behaviour of path loss is observed with 
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Path Loss Plot for Wave Propagation in Troposphere 
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Figure 4.6: Path Loss diagram with transmission at 100MHz and 500MHz 
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height and the number of nuUs increases with frequency. 

Figures 4.9(a) and 4.9(b) shows the path loss at receiver height for large propagation 

angle at lOOMHz using narrow angle and wide angle formulation of PE. Results are 

compared with free space loss in both cases. For small propagation angles, narrow 

angle and wide angle finite element formulation of PEM produces almost the same 

results. However at large propagation angles , the narrow angle formulation of PEM 

generate errors while the wide angle FEM-PEM gives accurate results. 
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Path Loss vs Range at Large Angles 
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Figure 4.9: Behaviour of Narrow-angle and Wide-angle PEM at large angles 
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From the above discussion, it can be seen easily that waves propagate undisturbed 

through the tropospheric medium. In figures 4.10 and 4. 11 a bilinear surface ducting 

profile is included starting from sea level to an altitude of 300m. Standard atmo-

spheric conditions over this altitude were also assumed, while the duct intensity was 

set to -IN-units/ m. Results also shows trapping mechanism at IGHz and 3GHz, 

it is clear t hat a duct of sufficient intensity is capable of capturing the whole energy 

at 3GHz. At low frequencies even a high intensity duct is unable to divert waves 

into the duct but at 3GHz waves are almost completely trapped between sea level 

and duct height. 
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Figure 4.10: Coverage Diagrams at low duct intensity profiles at IGHz 

Figure 4.12 shows path loss at receiver height in the presence of a surface duct. To 

understand the effect of frequency on path loss in t he presence of a duct different 
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frequencies in the range of 100MHz to 5GHz were considered. In consistence with 

previous results, path loss increases with frequency even in the presence of a surface 

duct . However it should be noted from figure 4. 12 that the increase in path loss in far 

field of the antenna for higher frequencies is more as compare to lower frequencies . 

For example, at a 50km range , the difference in path loss at 100MHz and 500MHz is 

about 18dB while at t he same range the difference in path loss between 1GHz and 

3GHz is only about 3dB. 

4.5.1 Irregular Terrain and Urban Environment Modelling 

Accurate modelling of radio waves over irregular terrain and especially in an urban 

environment is crucial for t he planning of cellular communications in cities . Many 
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Figure 4. 12: Path Loss at receiver height in ducting environment at different fre­
quencies 

existing prediction models are based on a simplified Deygout solution for multiple 

knife-edge diffraction [137]. An important class of propagation models over the 

irregular terrain is based on t he integral equation formulation which in general can 

be simplified by using a paraxial approximation [138]. In contrast to these methods, 

the parabolic equation method model combines t he effect of terrain diffraction and 

atmospheric refraction [49] while remaining straightforward to implement. 

Finite element formulation of the parabolic equation method using terrain profiles 

is simple and straightforward. As in the case of refractivity profiles, at each range 

step ~x the program requires a refract ivity profile as a function of height. However 

if refractivity is not changing along the range then a single refractivity profile is 
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sufficient. The terrain profile is entered in much the same way as refractivity profiles. 

All t hat is required is the series of data points corresponding to height versus range 

to describe terrain. The simplest and most effective technique models terrain as a 

sequence of horizontal steps , and is called t he staircase method. In this thesis t he 

staircase method was used to model terrain, however other approaches are discussed 

in detail in [27]. 

Staircase terrain modelling In staircase terrain modelling , terrain is divided 

into a number of stairs as shown in figure 4. 13 and terrain height is provided as 

an input to the program for each range step. On each step, the field is propagated 

in usual way, applying the appropriate boundary conditions at the ground. When 

terrain height changes, corner diffraction is ignored and the field is simply set to 

zero on vertical terrain facets. For the case of uphill , when terrain goes up, the field 

at range step x + ~x can be calculated using the following sequence of operations: 

• propagate the field on the horizontal segment ignoring the presence of the 

vert ical boundary, this is consistent with the paraxial approximation which 

neglects backscatter; 

• truncate the field by setting it to zero on t he uphill segment; this is consistent 

with the assumption that the ground does not support propagation. 

If the terrain goes down the sequence of operations is as follows: 
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• propagate the field on the horizontal segment ignoring the presence of the 

vertical boundary and neglect backscatter due to corner diffraction 

• pad the field by setting it to zero on the downhill segment . 

Figure 4. 13: Staircase representation of terrain 

If the terrain is really a st aircase this model is very accurate but for smooth terrain 

t here is an error because the boundary conditions on sloping facets are not properly 

accounted for. However, this error can be reduced by choosing small range steps. 

In generating results for terrain modelling, two different scenarios are choosen. In 

the first scenario, an irregular terrain is assumed and two random terrain profiles are 

generated while in the second case, a street in an urban area is considered. Three 

buildings of arbitrarily heights are placed on the street and t he span of the street is 

assumed to be 50m. Figure 4.14 and 4. 15 shows coverage diagrams in t he presence 

of irregular terrain generated by using the rand function in Matlab. For an urban 
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environment radiating antenna is assumed to radiate at 25m while the receiving 

antenna is at 10m. Three buildings of different heights and widths are assumed 

along the street. For the sake of simplicity it has been assumed that the building 

surfaces are perfectly conducting. 

Radio Wave Propagation in Troposphere at 100MHz 
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Figure 4.14: Coverage Diagrams at 100MHz on an irregular terrain 

Figure 4. 16 and 4. 17 show the path loss calculated by the PE method and received 

power at receiver height respectively. Diffraction of waves along the edges of building 

is quite clear in figure 4. 16. Buildings of variable heights are choosen to show the 

effect of shadowing as seen in figure 4. 16. Behind the large building t he strength of 

signal is very low and obviously inside buildings received power is very low (ideally 

zero) as shown in figure 4.17. 
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Figure 4.15: Coverage Diagrams at 100MHz on an irregular terrain 
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Figure 4.16: Path Loss in an urban street at 100MHz 

115 



116 

20 ,----------.---------.----------,----------,----------, 

10 

, , , , , , 
-10 ' ' , : , h! : , , : :J' ~\ :::,\,tJ , 

I 1 I. 11 1I~ I (, I 
, 

" , "" ,\ ,. , " .~ l,' l , 
If • .I., 11 ,,, III I I ~ 

, 
-20 11 1 "1111~" IIl lt I\~ IJ .:" ~ , , 

If II\ II II III~"II I 'Ill I1 I j , 
"'''''''''''il'''''' , , 
~ ::~~ : : ! I: r:: ~ I : \ , """ '\ I \ , ' 

-30 
' " 1.,. , lil' 

r" , i\ ! ~ ! ' 

-40 \ 
I 

-50 
0 50 100 150 200 250 

Figure 4. 17: Received Power in an urban street at 100MHz 
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4.5.2 Results of Wave Propagation In Three dimensional 

environments 

The properties of a 3D atmosphere vary as a function of three spatial variables 

(x, y , z) while the height and slopes of a 2D terrain vary as a function of two spatial 

variables (x, z) namely range and height. The same concepts can be extended to 

3D propagation analysis of waves in the t roposphere. Figure 4. 18 represents the 

contour diagram of a transmitting antenna at 100MHz under standard atmospheric 

conditions at 30km from the antenna. 

Coverage Diagram of Transmitter at 30 Km 

200 400 600 600 1000 1200 1400 1600 1600 2000 

Figure 4. 18: Coverage diagram of antenna with transmission at 30km propagation 
distance with no duct (all dimensions are in meter) 

From the above results, it can be seen that as the waves propagate through the tro-

pospheric medium in t he absence of ducting, t he energy lobe spreads. At a distance 
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of 30km (figure 4.18) it is more confined then at a distance of 70km (figure 4.19). In 

these simulations a single refractivity profile was used as given in [1], however differ-

ent refractivity profiles can be entered at different stages and the computer program 

can perform linear interpolations in all t hree dimensions for use at the interme-

diate calculation positions. In these simulations, a refractivity gradient of -39.4 

N-units/km is assumed everywhere. This constant gradient is an approximation of 

the usual exponential profile and is valid for altitudes under several thousand meters. 

In all cases, results are generated by assuming a propagation step of D.x = 0.18km. 

Cov .... g. Diagram of TraMmilter at 70 Km 

Figure 4.19: Coverage diagram of antenna with transmission at 70km propagation 
distance with no duct (all dimensions are in meter) 

Figure 4.20 to 4.21 shows the use of a bilinear surface elucting profile, starting from 
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Coverage Diagram of Transmitter at 30 Km with Medium Intensity Duct 
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Figure 4.20: Coverage diagram of antenna with transmission at 30km propagation 
distance with medium intensity duct (all dimensions are in meter) 

sea level to an altitude of 300m. Standard atmospheric condit ions over this altitude 

were also assumed. These illustrate the trapping mechanism and it is clear that as 

ducting intensity increases, a greater amount of the propagating energy is restricted 

inside the duct region. By comparing, corresponding diagrams with and without a 

duct, its quite obvious that a sufficient amount of energy is trapped inside the duct. 

In these simulations two different cases were considered , a medium intensity duct 

shown in figure 4.20 the case of a strong duct shown in figure 4.21. 

From the diagrams it can be seen t hat the higher the duct intensity profile the 

more confined is the field . This will be a great advantage in applications where t he 

t ransmitter and receiver both reside inside t he duct. In this case the receiver will 
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Coverage Diagram of Transmitter at 30 Km in a Strong 300m Duct 
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Figure 4.21: Coverage diagram of antenna with transmission at 30km propagation 
distance with strong intensity duct 

capture maximum energy from the medium and the probability of error reduces. 

4.6 Summary 

A computationally efficient and accurate method has been proposed to model three 

dimensional tropospheric radio wave propagation in the presence of height-dependent 

nonstandard environmental conditions using a finite clement approach. A brief in-

troduction of the troposphere is given first and then modelling of wave propagation 

is presented in this chapter. A finite clement formulation of narrow and wide angle 

version of the parabolic approximation is given with emphasis of its matlab imple-

mentation. Results are presented and it can be seen that the method is flexible and 
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can be used with complex geometries. The refractive index is independent between 

consecutive range steps , giving the ability to include inhomogeneous tropospheric 

profiles. In these cases, the method response can be directly adjusted to the re­

fractivity variations, by properly modifying the size of the finite elements and the 

range step. Modelling in the presence of irregular terrain and on urban streets is 

also presented in this chapter. 



Chapter 5 

Finite Element Formulation of 

Radio Wave Propagation 

Modelling in Vegetation Canopies 

5.1 Introduction 

It is a well known fact that a radio channel sets limits for present and future wire­

less communication systems [51]. Propagation algorithms that determine path loss 

and broadcast signal coverage are essential for planning wireless networks for cellu­

lar mobile and for designing fixed terrestrial and satellite communication services. 

There is a widespread anticipation that customer demands for wireless communi­

cation systems will continue to expand in the foreseable future. The large number 
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of users especially mobile users, has resulted in network planners increasing system 

capacity by locating transmission antennas at heights lower than surrounding trees 

and buildings [73]. Vegetation obstructing or close to the line-of-sight propagation 

path causes radiowave absorption, scattering, diffraction and depolarisation [74]. For 

successful network planning and basic system design propagation algorithms that 

determine t he path loss and signal coverage are critical to successful deployments. 

To date much attention has been directed at frequencies close to the (Groupe 

Speciale Mobile) GSM band and the (Digital Cellular System) DCS-1800 bands. 

At these frequencies, attenuation due to vegetation is considered as one of the dom­

inant effects influencing radio propagation in rural and suburban areas [139]. Ac­

curate modelling of t he propagation of microwaves and millimeter waves through 

tree foliage, generally requires an accurate electromagnetic description of the tree 

geometry, including its branches and leaves, valid over a wide range of frequencies . 

Because of the complex physical processes arising from the prediction models in­

volved, approximate prediction models appropriately validated are very useful to 

radio system planners and designers. 

It has been proved that like the troposphere, the parabolic equation method can 

model radio wave propagation in vegetation [140]. The calculations may take into 

account the radius of t he Earth and terrain effects whereas the polarisation of the 

propagating racliowaves is implemented- on the surface boundary condit ions . The 

most widely used technique for the solution of parabolic equation is the split-step 
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fourier method which has been successfully applied to analyse the propagation prob­

lem in vegetation [45]. However there are some serious drawbacks of the split step 

Fourier method when used in analysing wave propagation in vegetation. The error 

in the split-step Fourier method is a function of the derivatives of refractive index 

squared and horizontal distance [35]. In the presence of vegetation, variations in 

refractive index may be much larger in comparison with the troposphere, for ex­

ample, variations of refract ive index at the air-canopy boundary. In that case , the 

split-step Fourier method gives high error rates. Further the split step method is 

not computationally efficient as at every range step, method the calculates Fourier 

and inverse Fourier transforms . Recently, Holm [141] presented a good compari­

son between models based on the parabolic equation method and geometric theory 

of diffraction , and finally showed that vegetation could be modelled accurately by 

parabolic equation method rather than the Geometric Theory of Diffraction (GTD). 

In this thesis the finite clement method is applied to the solution of a wide angle 

formulat ion of the parabolic equation method. Further , it can include all of the 

pertinent information available for the propagation path, including terrain profile, 

terrain permittivity and conductivity and vegetation features. In order to ensure 

that all the rays effective in wave propagation in the presence of vegetation canopy 

are taken into consideration, the wide angle formulation of the parabolic equation 

is used and for numerically accurate results the finite clement method is employed 

to solve the parabolic equation. 
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The remainder of this chapter is organised as follow. In section 5.2, radio wave 

propagation inside vegetation and its modelling by WPEM is discussed. Section 5.3 

discusses results finally section 5.4 concludes this chapter. 

5.2 WPEM technique for vegetation 

Military communication inside forests is always of importance for every nation and 

country, therefore it is important to understand how such environments affect the 

conditions for wave propagation. Penetrable (transmission) and non-penetrable 

(diffraction) obstacles between transmitter and receiver seriously degrade the prop­

agation conditions . Diffraction effects in vegetation are normally modelled by using 

Geometric Theory of Diffraction(GTD)[142]. Semi-transparent obstacles in the form 

of trees or forests are more difficult to deal with because they allow partial trans­

mission through the object as well as diffraction around or over them. GTD is a ray 

based technique, which means that to apply it in the presence of vegetation one has 

to trace all transmitted rays t hrough obstacles also, which significantly increase the 

complexity of algorithm. 

For the case of a homogenous vegetation layer of uniform thickness on flat ground, 

Tamir has established a set of approximate equations for the electric field as men­

tioned in chapter 2 [76]. For both the antennas within the forest layer , t his method 

is able to provide good results . However, outside the forest, that is , for one antenna 
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or both the antennas outside the dielectric slab , it does not seem to work prop­

erly [140]. An attempt to deal with these shortcomings can be found in [14]. An 

important circumstance with the model by Tamir is that, in some examples, the used 

complex index of refraction for the vegetation is close to unity. If one can assume 

this, it would be possible to model wave propagation in a forest using the parabolic 

wave equation technique. This can be done by treating leaves and branches as a 

collection of randomly oriented scatterers, and trees can be modelled by complex 

refractive index [143]. To analyse propagation in the presence of vegetation, t rees 

are modelled as dissipative slabs having refractive indices of the form [77]: 

n2 = E + j60Aa (5.1) 

where E is the dielectric constant, a is the conductivity of the trees and A is the 

wavelength of radio frequency. Above the air canopy boundary standard atmospheric 

conditions as defined in ITU [1] were assumed. To model trees accurately Tamir has 

considered the following ranges of E and a: 

1.01 ::; E ::; 1.5 

10-5 ::; a ::; 10-3 

(5.2) 

(5.3) 

The PE model has already been tested against propagation measurements in a fir­

forest environment near Ostersund, in the northern part of Sweden in 2000 with 

good results [141]. The parabolic equation method is a full wave method used for 

the resolution of several continuous-wave propagation problems in electromagnetism 
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like in particular ground propagation over irregular terrain as discussed in chapter 

4. For details of wide angle formulation of the parabolic equation method, refer to 

chapter 2. 

When applying the parabolic equation technique, t he forest is assimilated to multi-

layered lossy dielectric continous medium that can eventually be height and range 

dependent and located upon irregular ground as shown in figure 5.1. The PE algo-

rithm treats the vegetation bulk like an absorbing atmospheric layer characterised 

by complex refractivity index profiles. 

ANTENNA 

FOREST 

GROUND 

IRREGUU\R 
TERRAIN 

RANGE, x 

Figure 5.1: Example of using PE technique in vegetation 

From chapter 2, the wide angle parabolic equation is given as: 

8
2
u(x, z ) '2k 8u(x, z ) 8

2
u(x , z ) k.2( 2( ) _ ), ( _) _ 0 

8x2 + J 8x + 8 Z 2 + n x, z 1 u :r, '" - (5.4) 

It should be noted that in equation (5.4) , refractive index n(x , z) is a strong function 

of both height z and range x. Similar types of boundary conditions and initial field 

are used as describe in section 4.3.3 and 4.3.4 respectively. 

The finite element formulation of equation (5.4) is similar to that described in section 
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4.4. So t he final propagation algorit hm can be written as, 

{-j4ko[~1]- Dx{ [K ]- k6[MJ} }{uy+DX 
(5.5) 

= {- j4ko[M] + Dx{ [K ] - k6[MJ} }{uy 

where matrices [K ], [M] and [M] are defined in equations (4.27), (4.28) and (4.41) 

respectively. 

5.3 Results and Discussion 

To analyse wave propagation in a forest environment using the finite element ap-

proach, path loss as computed by the proposed method is compared with the well 

known Tamir results. Propagation loss of a transmitting antenna gain of Gt by the 

application of t he parabolic equation method may be obtained by the expression 

[27], 

L = -20 log lu(x, z) I + 20 log( 47r) + 10 log(x) - 3010g(A) - Gt (5.6) 

where x is t he propagation direction and A is the wavelength of radio waves. 

Tamir showed that in the case of transmitter and receiving antennas inside a for-

est, the dominant propagating mode is a lateral wave at the boundary of air-forest 

canopy [76]. Forest height is assumed to be 18.75m while the transmitting antenna 

is a t 16.75m with a transmitting gain of 24.57dB. Different models of forest are con-

sidered by varying complex refractive indices for comparison purposes. Frequency 

is assumed to be 100MHz in all simulations unless stated otherwise. 
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Figure 5.2: Comparison of Propagation Loss calculated by FEM wit h Tamir Results 
at lOOMHZ 
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Figure 5.3: Comparison of Propagation Loss calculated by F EM with Tamir Results 
at 100MHZ 
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Path loss is computed for various refractive indices in an area with a vegetat ion 

canopy, by using two different methods . Figure 5.2 to 5.4 indicates that the parabolic 

equation method is in good agreement with Tamir 's method, especially in the far 

field of the transmitter. In figure 5.2, trees are modelled by using E = 1.5 and 

a = 10- 3 while in figure 5.3 and 5.4, plants are modelled using lower values of E 

and a. By comparing figure 5.2 and 5.3, it is clear that for large values of E and a, 

the range step should be small . For example, for Dx = 25m, the error rate is high 

with refractive index n2 = 1.5 + jO.6 as compared to other values of refractive index 

like n2 = 1.03 + jO .01 and n2 = 1.01 + jO.01. For vegetation with smaller refractive 

index and the same range step , the error in propagation loss decreases. So for an 

acceptable error , range step should be decreased. 
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Figure 5.4: Comparison of Propagation Loss calculated by FEr"I with Tamir Results 
at 100MHZ 

Figures 5.3 to 5.4 shows that in short ranges from the transmitter parabolic equation 
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Figure 5.5 : Plot of Path Loss variations with Receiver Height at 1000m range 

method and Tamir results do not agree well. Tamir's theory is specifically focused 

on the case of transmitting and receiving antennas inside the vegetation [14] . One 

obvious reason is that near t he transmitter, dominant waves are geometric waves 

rather than lateral waves, and Tamir calculations of path loss are based on lateral 

waves. Infact, from figure 5.3 and 5.4, a range can be calculated for different models 

of trees within which geometric waves are dominant. This range depends on the loss 

tangent of vegetation [45]. 

Figure 5.5 to 5.7 shows the basic transmission loss versus the receiver height inside 

t he forest . An agreement in the general behavior of the curve between the Tamir 

results and parabolic equation method can be seen at values of refractive index close 

to unity. Three different values of refractive index have been choosen and it is finally 

concluded that as refractive index increases the difference between Tamir results and 
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Figure 5.6: Plot of Path Loss variations with Receiver Height at lOOOm range 

5.4 Summary 

In this chapter, applications of the finite clement method for analysing radio wave 

propagation in a forest has been presented. It has been shown that a finite clement 

solution of the parabolic equation can handle the problem of propagation in a forest 

similar to the troposphere. Finite clement formulation of the parabolic equation 

gives a more reliable and efficient solution as compare to the split-step Fourier 

method, which is computationally difficult because of computation of IFFT and 

FFT algorithms in every range step. Further , it has been shown here that for better 

results refractive index should be close to unity. However at large refractive indices 

range step size should be decreased. 
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Chapter 6 

Wave Propagation Modelling 

inside Tunnels 

6.1 Introduction 

The popularity of cellular mobile systems led to extensive work with special refer­

ence to radio channel modelling but most of this work mainly focused on urban and 

suburban environments [144]. Mobile and wireless service users are growing very 

fast in large cities especially in the past decade. Mobile operators have deployed a 

greater capacity of infrastructure in order to satisfy the demand and achieve more 

complete coverage. Mobile and wireless service providers aim to provide users ex­

cellent communications without time and space constraints. It is obvious that radio 

network coverage is needed for daily and emergency conditions. Development of 

134 
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such networks requires thorough knowledge of radio wave propagation characteris­

tics. Tunnels play an important role in the transportation of materials and people. 

Current communication systems are not designed to operate reliably in tunnels and 

signal quality is severely degraded due to lossy surfaces of the tunnel. Designing 

of reliable communication systems that provide total coverage requires knowledge 

of wave propagation in tunnels. Thus wave propagation analysis in tunnel environ­

ments is therefore essential. 

Interest in analysing tunnel wave propagation in Europe emerged in the early 1970's, 

and initially the mining industry sponsored much of the work. Later on the topic 

became of interest to the military and homeland security communications. Military 

interest is obvious while the later interest is because of two reasons. First there 

is a need of personnel communication in tunnels especially in an emergency while 

second is the potential use of RF links for sensors. If the propagation of the signal 

inside tunnels could be characterised then a more robust communication system 

could be designed specifically for operation in tunnels. Coverage in tunnels should 

be optimised in order to minimise infrastructure cost. Recent interest in this area 

arose after advances in the field of mobile communication systems. 

Tunnels form a major part of the transport infrastructure in most modern metropoli­

tan cities. A mountainous country like Austria for example, has 10% of its transport 

in high priority roads made up of tunnels. Further , many large cities like London 

have a vast network of underground trains where all communication needs to be wire-
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less. It is a common observation that signals cannot be heard in tunnels. Therefore, 

there is a need to develop accurate techniques to model the propagation of radio 

waves in tunnels. Tunnel environments are quite different and having special wave 

propagation characteristics. In general, tunnels may be considered as hollow waveg­

uides surrounded with some lossy materials. Many researchers have therefore been 

focusing their attention on radio propagation in tunnels [145] . An extensive review 

of the literature has been provided in chapter 2. 

In modern mobile networks, quality of service is mainly determined by radio cover­

age. In designing cellular mobile radio systems, the mean signal strength or received 

power is an essential factor that must be determined and a number of approaches 

have been developed for both urban environment and terrain profiles [146]. Coverage 

in tunnels would be of high interest for mobile cellular radio and personal communi­

cation services for daily and emergency services. To solve for the field distribution 

in tunnels a number of factors must be taken into account such as size and shape of 

tunnel , frequency, direction of polarisation , electrical parameters of the surrounding 

material and obstructions in the tunnel [147]. 

A simple rectangular waveguide model was used in the past to model wave propa­

gation in tunnels [70]. Computing RF propagation in waveguides has a long history 

ranging from older works Llsing analytical solutions to modern work using numerical 

methods [100]. For circular or ellipt ical but constant cross sectional area geome­

tries , numerical techniques can be used to find propagating modes and eigenvalues, 
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while rectangular cross section curved tunnels were treated analytically in [148]. 

Maxwell's equations contain the basic physics of wave propagation in tunnels but 

finding the efficient solution is a big challenge. Analytical solutions are limited to 

simple geometries and idealised wall properties. 

The parabolic equation method resulted a wide variety of solutions to numerous 

diffraction and propagation problems [149]. However the potential of PE was not 

completely realised until its computational advantages had been demonstrated. The 

first finite-difference solutions of the parabolic equation method applied to diffrac­

tion theory was published in [150]. This approach became dominant in ocean acous­

tics when the well known works by Tappert [30] were published. Many further 

improvements proposed during the last decade made it one of the most powerful 

and versatile computational tools in modern electromagnetic theory. The computa­

tional efficiency of the vectorial parabolic equation method has been demonstrated 

in [151]'[152] where realistic problems of wave propagation and scattering were solved 

on a desktop machine. 

The parabolic equation method was successfully applied to guided wave propaga­

tion in electromagnetic ducts of different nature [25] and was proposed in [102] as a 

suitable way for analytical modelling of wave propagation in tunnels. The parabolic 

equation method has been suggested as an adequate mathematical model of wave 

propagation in tunnels due to selective wall absorption filtering out higher Bril­

louin angles thereby forming a paraxial wave packet even if the tunnel has a curved 
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axis [102]. The computational efficiencies of the PE method allow calculations to be 

performed in minutes on a high-cnd laptop computer. Effects of tunnel curvature 

and vehicles are included in the characterisation. 

In this chapter t he fini te element method (FEM) is applied to analyse radio wave 

propagation in st raight and curved tunnels of varying crossections. In previous 

chapters, fini te element formulation has been devcloped for t ropospheric wave prop­

agation and propagat ion in t he presence of vegetation canopies. In this chapter , 

applicat ions of the finite element method as well as t he Crank-Nicolson scheme are 

used to convert a vectorial parabolic equation into a discretized onc. Solving the 

resulting sparse matrix equation stepwise along the t unnel axis results in the field 

distribution in the ent ire t unnel. In contrast to other 'methods, like sparse matrix 

solver [152] or FD splitt ing techniques [153], FEM gives the field in the whole domain 

and complex types of t unnel structures can easily be modelled. 

6.2 Parabolic Equation Modelling for Curved Tun­

nel 

To model radio wave propagation in t unnels the parabolic equation method seems 

to be the most promising choice as mentioned in introduction and in chapter 2. 

However, long t unnels arc normally curved and some modificat ion in the vectorial 

parabolic equation method is required . A reliable way to modify this is by using adi-
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abatic mode theory for oversised waveguides [101]. This yields a parabolic equation 

based model describing diffraction , attenuation and depolarisation of electromag-

netic waves in nonuniform oversised waveguides. 

Consider a curved tunnel shown in figure 6.1, where y and z are the transverse di-

mensions and p(s) denotes the curvature radius; thus for straight tunnels p(s) = 00. 

It is assumed that wavelength .A is small compared with tunnel diameter D (over-

sised waveguide) and the ratio between the diameter D and curvature radius p(s) is 

very small. These assumptions can be mathematically formulated by introducing a 

new parameter 1/: 

(6.1) 

and these relationships which allow a simple description in terms of the parabolic 

equation, 

(6.2) 

IVlaxwell equations are solved by using the following scaled coordinate variables, 

y 
T] = D' 

L 
K, =-

p 
(6.3) 

and to calculate the asymptotic solution onc has to determine the unknown am-

plitude functions Ui (~ ' T] , () and Vi(~ ' T] , () for i = 0, 1 which satisfies the following 
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Figure 6.1: Cross section of a curved Tunnel with radius of curvature p 

different ial equation [154] : 

140 

(6.4) 

where Wi = (Ui ' vi f. It is implied that W- l = 0 so the zero order PDE defined 

in equation (6.4) is homogenous. Equation (6.4) is a recursive two dimensional 

partial differential equation, however a vectorial parabolic equation can be derived 

by assuming: 

(6.5) 

So from equation (6.4) for i = 0, 1 two independent equat ions can be obtained: 

i)2wo 82wo 2 . . 8W- l 
8T)2 + 8(2 - 2a A: [T) cos B + (sm B] Wo = ] 2a --ar- (6.6) 

82Wl i)2Wl 2 . . 8wo 
8T)2 + 8(2 - 2a A: [T) cos B + (sm B] Wl = ]2a 8~ (6.7) 
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Multiply equation (6.7) by v and add in equation (6.6) and by using a modified 

function W = (U, V) = e-jav
-

1
, a governing equation of W comes up as: 

fJ2w 82W 8W 
81}2 + 8(2 - 2a

2
K, [1} cos B + (sinB] W = j2av 8~ (6.8) 

Equation (6.8) is a vectorial parabolic equation model of wave propagation in an 

oversised waveguide and can be used directly with tunnels. The vector function 

W(~, 77, () is like an attenuation function and describes the amplitude of a plane 

wave along the tunnel axis. Equation (6.8) is the vectorial parabolic equation for a 

curved tunnel in scaled coordinate systems, which can be returned back to normal 

coordinates by using equations (6. 1)-(6.3). 

2 [8
2
W 8

2
W] k

2 
D3 £ [Y Z .] . D k

2 
D3 8W D -- + -- - 2--- - cosB + - smB W = J2----- .£ 

8y2 8z2 £ p D D £ £ 8s 
(6 .9) 

which can be simplified further, 

(6.10) 

and finally the vectorial parabolic equation for curved tunnel in cartesian coordinates 

IS gIven as, 

8
2
W 8

2
W k2 [YCOSB+ ZSinB] W _ . k 8W 

--+---2 -J2 -
8y2 8z2 p 8s 

(6. 11) 

where B is the rotational angle [denoting a tunnel that is possibly curved in more 

then one dimension] and k is the wave number. 
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At the boundary contour r of the tunnel cross section, Leontovich impedance bound-

ary condit ions can be implemented as an approximation of the wall electrical prop-

erties [102]. 

W = iASAaW 
k an ( 6.12) 

with, 

(6 .13) 

Here n = (ny, n z ) is t he unit normal to rand ZoZ is the impedance of the t unnel 

walls. For a wall material with relative permittivity Er and conductivity a, Z can be 

approximated as Z = J<,. -~ijOA<1 [132] and Zo is the impedance of free space which 

can be defined as Zo = J.loc where J.lo = 47[.10-7 Henry/m and c is the speed of 

light. Equation (6. 11) is the vectorial version of the scalar parabolic equation de-

scribing creeping and whispering gallery waves and accounts for transversal diffusion 

of wave amplitude W(s, y , z). The matrix boundary condition defined in equation 

(6.12) governs the effects of grazing angle reflection, selective mode absorption and 

depolarisation in t he tunnel walls. 
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6.3 Finite Element Formulation of Vectorial Parabolic 

Equation Model 

Applying t he Galerkin formulation of the finite element method (FEM) over t he 

domain Ymin ::; Y ::; Ymax and Zmin ::; Z ::; Zmax to equation (6. 11). Let n c R2 be a 

bounded domain wit h boundary r while n s:;; n denotes domain over each element 
a 

i. e. n = L n where ex denotes total number of elements. From equation (6. 11) , 
i=l 

2kJ·f)W _ f)2W _ f)2W + 2k2YCOS()(s) + zsin()(s)W = 0 
f)s f)y2 f)z2 p(s) (6. 14) 

Assume, 

.• 1,( ~) _ ycos()(s) + zsin() (s) 
0/ S,Y,~ - p(s) 

So equation (6. 14) becomes, 

f)W f)2W f)2W 
2kj~ - ~ - ~ + 2k2'l/J(s, y, z)W = 0 

uS uy u Z 
(6 .15) 

For the sake of simplicity, 'If; is used instead of lf;(s, y, z) . If cp(y, z) is assumed to 

be a trial function t hen the weak formulation of equation (6. 15) over an element is 

given as: 

(6.16) 
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Where 9 is the boundary condition function of W. Now by using integration by 

parts, 

(6 .17) 

+ in 2k2'ljJ(S, y, z)cjJwan + in cjJ.gdS = 0 

If {N} is t he shape function vector and by using the Galerkin method an approxi-

mate solution W can be approximated on each element by, 

w = {N}{W}, (6. 18) 

So from equation (6.17), 

Assume, 

[M] = Ee in {N }{N }Tan (6.20) 

[K] = Ee r [2k2('ljJ _ 1){N}{NV _ a{N} .a{NV _ a{N} .a{NV]an (6 .21) 
in ay ay az az 

Where 2:= represents summation over all elements for the whole domain n. So for 
e 

domain n, 

j2k [M ] a~: } + k2[M]{W} - [K]{W} + 2k2'ljJ[M]{W} = 0 (6.22) 

where, 

[K ] = [K] + [K]r 



where [K]r is the matrix defined on boundary r. From equation (6.22) , 

where, 

j2k[M]{W} + 2e[M]{W} - [K]{W} = 0 

{W} = a{w} 
as 

So from equation (6.23) , 

j2k[M]{W} - {[K] - 2k2[M ]HW} = 0 
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(6.23) 

(6.24) 

Apply a Crank-Nicholson algorithm to equation (6.24) in propagation direction s 

by assuming: 

{W}S+~S = {W} s+t>s - {W} S 
~s 

{W}s+ ~' = {W} s+t>s + {W}S 
2 

(6.25) 

(6.26) 

Consider equation (6.24) at step s + ~s, and substituting equation (6.25) and (6.26) 

in equation (6.24) yields, 

j4k[M][{Wy+t>s - {W}S] = ~s[[K] - 2k2[M ]] [{W} s+t>s + {W}S] 

or, 

[j4k [M] - ~s[ [K] - 2k2 [M ]]] {W} s+ t>s 
(6 .27) 

= [j4k [M] + ~s[[K] - 2k2 [M]]] {W} s+t>s 



or, in simplified notation it can be written as, 

with, 

[A] = j4k[M ]- ~s[[k]- 2k2 [M ]] 

[E] = j4k[M ] + ~s [[k]- 2k2 [M ]] 

6.4 Results and Discussions 

6.4.1 Simulation Parameters 
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(6 .28) 

Most of the commonly used tunnels are rectangular or arched shaped tunnels. The 

choice of t he tunnel shape is made after careful consideration of the geological and 

mechanical condit ions of the tunnel ambient media. To analyse radio wave propa­

gation and attenuation in tunnels , two different types are considered, a rectangular 

tunnel of cross section lOm x 5m and an arch tunnel. An arch tunnel cross section 

consists of a half-circle of radius 4.8m and a trapezoid of widths 9.6m and 8.8m 

and of height 2.5m. These tunnel dimensions arc choosen just for illustration pur­

poses and different t unnel dimensions may be choosen. The tunnels are modelled 

as a straight or curved waveguide surrounded by lossy random wall. A transmitting 

antenna is placed at the start of tunnel operating at different frequencies, while re­

ceiving antenna moves along the length of tunnel. The cross sectional geometry of a 



147 

curved rectangular tunnel is shown in figure 6.2. The length of the tunnel is assumed 

to be 300m. A mesh is generated using the Delaunay algorithm [155] in Matlab and 

the total number of elements is 32224 with 384 boundary elements . The number 

of elements vary for different frequencies. For better accuracy, Lagrange quadratic 

type elements are used [52]. 

Cross section of a rectangular curved tunnel 

5 

-1 L-____ L-____ L-____ L-____ ~ ____ ~ ____ ~ ____ ~ __ ~ 

-4 -3 -2 -1 0 2 3 4 

Tunnel Width 

Figure 6.2: Mesh of cross section of tunnel (all dimensions are in meters) 

T he transmitting antenna is centered in the middle of t he t unnel. A normalized 

gaussian pattern is used in which t he initial field u(O, z ) can be written as [134], 

u(O , z ) = [A( z - Ho) - A(z + Ho)] (6.29) 

where Ho represents the antenna height and bar denotes complex conjugate. T he 
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Fourier t ransform of A(z) is given as, 

(6.30) 

where w is defined as, 

J2 ln 2 
w = ----,,--

ko sin (}~w 
(6.31) 

In equation (6.31), sin ~ is t he sine of the 3dB beamwidth. 

The rotational angle e as defined in equation (6. 14) is assumed to be 0 in all sim-

ulat ions. Various radio frequencies in the VHF and UHF range were used in t he 

analysis. The walls of the t unnel are characterised by a relative permit tivity of 

Er = 4.0 and conductivity (J = O.OlS/m while at vehicle boundaries Er = 1 and 

(J = 4 x 1OoS/m is assumed, unt il stated otherwise. Three different types of the 

vehicles have been used: small van, bus and a large truck. Typical dimensions of 

vehicles are shown in Table 6.1. 

Type Ilength(m) I width(m) I height (m) I 

Small Van 10 0.5 2 
Bus 13 1.5 2 

Truck 17 2 3 

Table 6.1: Different Vehicles dimensions used in simulations 

6.4.2 Geometry of Tunnel 

The configuration of the t unnel plays a crucial role in determining t he radio cover-

age. The geometry of tunnel can be characterised by its shape, cross-section and 
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curvature. Straight tunnels are modelled by using infinite radius of curvature i.e. 

p = 00 while for curved tunnels p = 800m is used in simulations. If the tunnel is 

straight and the antenna is located in the tunnel, the signal's primary component 

will be the result of line of sight transmission. As the tunnel changes direction, the 

signal experiences more loss due to reflections and scattering. The more abruptly 

the tunnel changes direction, the greater the loss is and lower the signal level will 

be. Figure 6.3 to 6.5 represents electric field distribution at 300m from the entrance 

of the tunnel for straight and curved rectangular tunnel, while figure 6.6 to 6.8 rep­

resents signal intensity distribution in an arch shaped tunnel. Further results shows 

that propagation performance is almost identical in rectangular and arch shaped 

tunnels. 



_1 

-2 

-1 

-2 

Field Intensity at 300m and 1 OOMHz in a Curved Tunnel 

16 

Raoos ofClIVahn-1QOOm ,. 
12 

10 

__ ' __ -L __ -L __ ~ __ ~ __ ~ ___ . L __ -L __ -L __ -L __ -L 

o W 

Field Intensity at 300m and 100MHz in a Straight Tunnel , ,0" 

4 5 • 

Tunnel Width 
10 

3.5 

2.5 

1.5 

0.5 

150 

Figure 6.3: Signal Intensity at the end of rectangular tunnel at 100MHz (all dimen­
sions are in meters) 
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Figure 6.4: Signal Intensity at t he end of rectangular tunnel at 700MHz (all dimen­
sions are in meters) 



152 

Field Intensity at 300m and 30Hz in a Curved Tunnel 
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Figure 6.5 : Signal Intensity at the end of rectangular tunnel at 3GHz (all dimensions 
are in meters) 
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Figure 6.6: Signal Intensity at the end of arch tunnel at 100MHz (all dimensions 
are in meters) 
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Figure 6.7: Signal Intensity at the cnd of arch tunnel at 700MHz (all dimensions 
are in meters) 
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Field Intensity at 300m and 30Hz in an Arch-Curved Tunnel ,,0·" 
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Figure 6.8: Signal Intensity at the end of arch tunnel at 3GHz (all dimensions are 
in meters) 
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For gaussian excitat ion defined by (6.22), one mode is dominant as shown in fig­

ures 6.3 to 6.5. Signals propagating through curved tunnels experience a dramatic 

decrease in signal strength compared with that in straight tunnel for both types of 

t unnels. It is well known that the tunnel axis of curvature causes a field concen­

tration near the concave side wall as is clear from figures 6.3 to 6.8. These results 

are in good agreement with the experimental results in [148] . For simple t unnel 

profiles like straight rectangular tunnels, it is possible to calculate the field analyti­

cally based on separation of variables, but straightforward numerical solution of the 

vectorial PEM is more efficient and effective [102]. 

Simulations were carried out at (J' = O.Olmho/ m and Er = 4.0. Figure 6.9-6.12 shows 

received signal power level calculated across tunnel cross sections at various range 

steps in straight/curved rectangular and arch shaped t unnel. In figure 6.9 and 6.10, 

power level is calculated at 300m from the tunnel entrance and plotted versus dis­

tance between t ransmit ter and receiver at different frequencies in straight and curve 

rectangular tunnels respectively. Results show that the difference in power at the 

cnd of a t unnel for 100MHz and 3GHz is much higher for straight t unnels as compare 

to curved tunnels. Similarly, average power at the middle of t he tunnel is plotted 

for straight and curved arch shaped tunnels. Comparing results for rectangular and 

arch tunnels, it can be deduced that the shape of the tunnel has little influence on 

received power. However power plots for straight and curved tunnels (either rect­

angular or arch) confirm this fact t hat the frequency dependance of attenuation in 
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curved t unnels is much less important t hen in a straight tunnel. A similar conclusion 

was drawn by Lienard in [95] after performing a series of experiments in straight 

and curved tunnels. 

Average Power In middle of straight rectangular tunnel 
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Figure 6.9: Average Signal Power across straight rectangular t unnel cross section 
versus tunnel length 

Results indicated that in straight rectangular and arch shaped tunnels, more power 

is lost at low frequencies like 100MHz. In curved t unnels most of t he energy is 

concent rated on onc side of the t unnel rather t han in the middle. So for curved 

tunnels, t he power level in t he middle of t he t unnel is low at high frequencies e.g. 

3GHz as compare to frequency like 700MHz. T his phenomenon can be explained by 

the refiection and absorp tion propert ies of t unnel walls. At smaller wavelengths, the 

waves are more likely to be refiected in the environment. Rather t hen being refiected , 
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Average Power In middle of curve rectangular tunnel 
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Figure 6.10: Average Signal Power across curved rectangular tunnel cross section 
versus t unnel length 

t he low frequency waves tends to be absorbed in the tunnel walls as compared to 

high frequency waves. These results are in good agreement with the experimental 

results presented in t he Public Safety Wireless Network (PSWN) report [145]. 
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Average Power In middle of Straight Arch Tunnel 
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Figure 6.11: Average Signal Power across straight arch tunnel cross section versus 
tunnel length 
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Figure 6.12: Average Signal Power across curved arch tunnel cross section versus 
tunnel length 
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6.4.3 Electrical Parameters and Wall Properties 

Tunnel walls are usually made from concrete and metal net. Electromagnetic prop-

erties of concrete or metal are well known i.e. permittivity, conductivity and per-

meability and t hey normally remain static. In this chapter, relative permittivity 

and conductivity is varying and permeability is assumed to be constant. A signal 

leaving the transmitter is partially absorbed and partially reflected by the tunnel 

walls. Due to the electrical properties of t he t unnel walls, a signal may propagate 

more efficiently so analysis is carried out by choosing different values of conductivity 

and relative permittivity in a curved rectangular and arch tunnel. Figure 6.13 shows 
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Figure 6.13: Average Signal Power at 900MHz for different Er in rectangular tunnel 

received power versus tunnel length for different values of relative permittivity E,. in 

a rectangular tunnel. From figure 6.13, it is obvious that received power depends on 

relative permittivity for lower values of E.r and for higher values of Er received power 



161 

is independent of E, . . Figure 6.14 shows average power distribution across rectan-

gular tunnel versus t unnel length at 900MHz for different values of conductivity (J. 

Effect of t unnel wall conductivity is almost negligible as evident from figure 6.14, 

however one need to be consider effect of conductivity for higher values of conduc-

tivit ies . These results are in good agreement wit h [105] where analysis was carried 

out by using ray tracing techniques. Figure 6. 15 and 6.16 shows power versus Er and 
Average Signal Power Distribution at 900MHz 
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Figure 6.14: Average Signal Power at 900MHz for different (J in rectangular t unnel 

(J at 900MHz at t he end of an arch t unneL Results shows in arch tunnels, power 

decreases with increasing Er and (J . From these plots, a t hreshold for the relative 

permittivity and conductivity can be calculated for arch tunnels. However, pattern 

of received power dependence on electrical propert ies of tunnel walls is similar in 

both types of tunnels. 
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Average Power at lOOm In Arch Shaped Tunnel at 900MHz 
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Figure 6.15: Average Signal Power at the cnd of arch tunnel at 900MHz versus Er 
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6.4.4 Transmitter Antenna Position 

Figure 6. 17 represents t he power distance variation for t hree different positions of 

the transmit antenna, left corner , middle and right most corner of the tunnel. Sim-

ulations were carried out at 900MHz and ET = 4.0, er = O.Olmho/ m in a curved 

rectangular t unnel. Power loss for t he case of left and middle position is almost t he 

same while for t he right position there is more power loss. This effect depends on 

which direction t unnel is turning, if the tunnel is bending towards the left, suitable 

positions of the transmitting antenna are center or right . Similarly, if the t unnel 

is bending in the right direction t he t ransmitting antenna should be placed in t he 

middle or left . Thus the mobile antenna position should be considered carefully in 

order to maximize t he received signal power and is dependant on t unnel geometry. 
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Figure 6.17: Plot of power distance dependence on transmit antenna posit ions 
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6.4.5 Effect of Curvature 

The curvature in the tunnel causes large reflection angles, therefore radio wave prop-

agation characteristics in any tunnel for different curvatures are not equal. Figure 

6.18 shows average power distribution in an arch tunnel for different radius of cur-

vatures at 900MHz. Er and ()" is assumed to be 4.0 and O.Olmho/m respectively. 

The curvature is purely horizontal in t hese simulations i. e. () is zero. It can be seen 

that average power decreases with increase in radius of curvature. For large radius 

of curvatures p reflections inside the tunnel are more and hence more power is lost 

inside the tunnel. A similar effect can be observed in case of rectangular tunnels. 
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Figure 6.18: Average Power Distribution in an arch tunnel at 900MHz for different 
curvature radius 
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6.4.6 Effect of Vehicles 

Propagation loss inside a t unnel is affected by a number of parameters including, 

frequency of t ransmission, size of tunnel, shape of tunnel, electrical properties of 

tunnel wall , polarisation, size of vehicle, number of vehicles, location of vehicles 

inside tunnel etc. Propagation loss inside a tunnel is loss due to the tunnel itself 

and losses due to the presence of obstructions. In this section, propagation loss 

because of number, size and location of vehicles in a rectangular straight and curved 

tunnel is examined. 

Size of Vehicles 

It is well know that the scattering properties of a scatterer depends on the size of 

scatterer. So different sizes of obstructions (vehicles) are expected to produce differ­

ent propagation losses . Different vehicles (small van, bus and truck) of dimensions 

mentioned in Table 6.1 were placed at 40m from the entrance of tunnel. Results are 

shown in figure 6.19 for a rectangular straight tunnel and in figure 6.20 for a curved 

rectangular tunnel at 950MHz. The power level is measured along the length of t he 

tunnel at t he center line of the cross section. The presence of vehicles produces an 

addit ional loss behind the vehicle in each case. As expected, large vehicles produces 

more loss than small vehicles both in straight and curved tunnels. 
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Location of Vehicles 

To examine propagation loss due to the location of vehicles inside tunnel, a bus of 

dimensions shown in Table 6.1 is placed at various locations in straight and curved 

tunnel. The power level in dBm versus tunnel length is shown in figures 6.21 and 

6.22. It can be seen from the diagram that power level remains the same in a stable 

region and is independent on t he location of vehicle for a straight tunnel. In a curved 

tunnel, power level in the stable region depends on the location of vehicle. This is 

because of the curvature effect of tunnel. If t he bus is far from the transmitter, 

power loss is more as compared to one close to t ransmit ter. 
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Number of Vehicles 

Next, how the propagation loss changes due to the number of vehicles is examined. 

Power level is calculated for a hollow tunnel, with one bus and with three buses all 

placed at 40m away from the entrance of the tunnel. From figure 6.23 and 6.24 it is 

clear that power level changes because of t he number of vehicles and produces addi-

tional loss which is quite prominent in the stable region . The value of propagation 

loss depends on many factors, but it almost increases in linear proportion, provided 

identical vehicles are used. 
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The finite element based vectorial parabolic equation method is capable of mod-

elling radio communications in tunnels of different cross sections. This approach 

can take into account the t unnel geometry, frequency of waves, electrical or me-

chanical properties of tunnel walls and tunnel curvature in both dimensions. This 

approach can easily be adapted to complex tunnel structures and different propa-

gation scenarios. Different radiation patterns or antenna structures can be easily 

integrated with this method. Computational advantages of the parabolic equation 

method have already been demonstrated and can be used to model obstructions in 

tunnels without much additional computational burden. 3D field distributions and 

power loss diagrams obtained by t he FE solution of V-PEM help to provide deeper 

insight into the physical effects of radio wave propagation inside tunnels. Effects of 
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curvature and electrical parameters such as conductivity and relative permittivity 

is analysed. The finite element method along with the parabolic equation method 

provide a fast and accurate solution of radio wave propagation in realistic tunnels 

and can be used to enhance future communication systems. 



Chapter 7 

Conclusion and Further Work 

7.1 Conclusions 

Different radio wave propagation models based on the parabolic equation method 

have been proposed and simulated efficient solutions were developed using the finite 

element method . The primary aim of this research was to develop finite element 

formulations of radio wave propagation in different environments. The different 

propagation scenarios considered in this thesis were the troposphere, urban areas, 

vegetation and tunnels. The finite element method is used because of its accuracy 

and versatility. The most attractive feature of the finite element method is its ability 

to handle complex geometries and boundaries with relative case. It was shown in this 

thesis that the proposed finite clement formulation provided an accurate modelling 

of wave propagation in the environments considered. 
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Advantages of high speed computing allows new approaches for the precise modelling 

of radio wave propagation in the troposphere to satisfy new demands. A method 

to accurately model tropospheric wave propagation in the presence of height depen­

dant refractivity using the finite element method was presented. T he finite element 

solution was computed at some range and then the solution advances using a march­

ing algorithm. The main advantage of using the finite element analysis is that this 

approach can handle a highly varying environment by using smaller elements and dif­

ferent environmental properties can be assigned to each element. The model allows 

specification of t he frequency, polarisation, earth shape, antenna pattern, antenna 

alt itude and elevation angle. 

Simulation results for the 2D and 3D finite element solution of t he parabolic equation 

method were presented in chapter 4. Finite element formulation of narrow and wide 

angle versions of the parabolic approximation were described. It was shown that 

wide angle finite element formulation of the parabolic equation method successfully 

model large propagation angles in contrast to the narrow angle model. 

Coverage diagrams and path loss contours were shown at different frequencies and 

for the case of fiat earth and irregular terrain . Different abnormal environmental 

conditions have been investigated and ducting phenomena in the troposphere were 

studied. In microwave communications, refractivity variations in the lower part of 

the troposphere are usually important and are considered in this thesis. However , 

the simulations made and described in this thesis can easily take into account a 
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larger vertical extent depending on the relevant terrain profile. It has been shown 

that the proposed method can model radio wave propagation over irregular terrain, 

urban streets or any complex geometry easily. 

The method is capable of taking account of the vertical and horizontal distribution 

of tropospheric refractivity of a real terrain profile hence can model highly varying 

atmosphere easily, and the electrical properties of the ground. The refractive index 

of the troposphere is independent between consecutive range steps and can be en­

tered easily in successive range steps. Moreover, measured environmental data can 

be entered at each range in the program and between range steps data can be ob­

tained by interpolation. Aside from slight differences due to the extra interpolations 

required between profiles, the complexity of the environment has no impact on the 

time required for calculations. 

Accurate modelling of wave propagation behaviour over a forested environment is 

of great interest for civilian and military communication since the forest affects 

communication channel significantly. The finite element method has been applied to 

model wave propagation in the presence of vegetation using a wide angle formulation 

of the parabolic equation method. It has been shown that the proposed approach can 

handle wave propagation in vegetation similar to the troposphere. Different types of 

vegetation have been analysed and results were compared with the well know Tamir 

results. It has been shown that for accurate results , the refractive index of a forest 

should be close to unity with this approach. 
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The theory of oversised nonuniform waveguides has a number of applications in 

electromagnetics ranging from radio communications in tunnels to light propagation 

in optical fibers. By using the theory of oversised waveguides a vectorial parabolic 

wave equation can be derived and solved efficiently and accurately using the finite 

element method . Field components in the vectorial parabolic equation coupled on 

the tunnel walls via a Leontovich-type matrix impedance boundary condition. The 

model is described along with its finite element formulation for curved and straight 

tunnels. Different obstructions were considered and it was demonstrated that this 

method provides a suitable approach for modelling wave propagation in empty and 

blocked tunnels. 

Radio wave characteristics inside tunnels were influenced by different factors like 

shape of a tunnel, its curvature, frequency of propagation, electrical properties of 

tunnel walls, different size and type of obstructions, etc. These factors were analysed 

separately and some conclusions were made. It was shown that for straight t unnels 

more power is lost at low frequencies rather than high frequencies. For curved 

tunnels of any cross section, power is mainly concentrated on one side of the tunnel 

if t he transmitting antenna is placed at the center of the tunnel. Tunnel shape 

(rectangular or arch) has little influence on the propagation of waves. 

Average powers were plotted versus electrical parameters; conductivity (J and rel­

ative permittivity Er. Threshold values of (J and E" can be calculated for different 

tunnel geometries and shapes. T he effect of curvature and transmitter antenna posi-
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t ion were also analysed in chapter 6. Real tunnels always carry vehicles, so vehicles 

of different sizes were considered . Propagat ion loss inside a t unnel is loss due to 

the tunnel itself and losses due to obstructions like vehicles. Propagation losses due 

to size, number and location of vehicles were examined. It was shown that large 

vehicles produces more loss t han small vehicles both in straight and curve t unnels. 

7.2 Further Work 

There are few suggestions regarding the future work. The proposed type of analysis 

is not suitable for ult ra high frequencies because of high computational require­

ments. The finite clement analysis is accurate if the element size is about ),/ 10 

and generation of such a mesh is computationally inefficient at very high frequen­

cies. Some meshing algorithms or matrix analysis can be proposed to deal with such 

cases. Further , finite element based models can be tested in real cases by performing 

experiments and comparing results. 

Backscatter is a process t hat can often be disregarded in rural areas but not in built­

up areas. That's the reason the parabolic equation method is a doubtful method to 

use in urban areas. So in future it might be conceivable to devise schemes where t he 

paraxial direction in PEM is changed after reflections at building surfaces, which 

is obviously complicated in urban areas because of t he large number of mult ipath 

signals. Another suggestion is to combine t he parabolic equation method with ray 
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tracing techniques and propose some hybrid models. Similarly for the case of t he 

troposphere , the possibility of utilisation of meteorological techniques to obtain real 

spatial distribution of atmospheric refractivity may be studied. 

In future , a complete model including urban houses/buildings and forest needs to 

be produced. The proposed method presented in this thesis needs to be modified to 

include the absorbing and diffracting properties of houses and trees . Perhaps , one 

need to leave parabolic approximation and find a solution that can be formulated 

by direct s.olution of the Helmholtz equation. In future the effects of scattering by 

forest leaves can be added in the model, and a more accurate but complex model 

for propagation in vegetation can be obtained. 
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Method of Weighted Residual 

In this appendix the method of weighted residuals for obtaining approximate solu-

tions to differential equations is introduced. Weak formulation of the residual in the 

weighted residual method is also described. Weighted residual methods are another 

way to develop approximate solutions. As described in chapter 2, in the finite differ-

ence method an approximation to the differential equation at a point is formed. In 

contrast, in weighted residual methods , form of the global solution and then adjust 

parameters to obtain the" best global fit to the actual solution is assumed. 

In weighted residual methods the requirement is that the approximate function must 

satisfy both the essential and natural boundary conditions. In the weighted residual 

method the weak form of the differential equation can be used to develop methods 

that loosen this requirement , so that only the essential boundary conditions must 

be satisfied by our approximating function as described later in this section. The 

basic step in weighted residual methods is to assume a solution of the form: 

n 

'Un = L aj'Uj 

j=1 

(AI-I) 

The main task is to solve for the coefficients aj that give a best approximation (by 

some measure) to the exact solution. To understand the method of the weighted 

residual , consider a partial differential equation of second order along with boundary 
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conditions as, 

a2
U 

aX2 + b = 0, for 0::; x ::; Xmax (Al-2 ) 

U Ix=o = 0 (Al-3) 

- =p a'uj 
.Ox X=X m n x 

(Al-4) 

Equation (Al-2) along with the boundary conditions in (Al-3) and (A l-4) , forms 

the mathematical description of the problem at hand, They can be solved by direct 

integration for the exact solution , 

For the weighted residual formulation , first choose a weighting function w(x) then 

multiply (Al -2) with the weighting function: 

(Al-5) 

and than integrate over t he whole domain. 

j.x
nw x 

{ a2u } 
w a 2 + b dx 

o x 
(Al-6) 

This is called the weighted residual formulation. It is called this because if a trial 

function Un (that satisfies all boundary conditions) is assumed then, 

~2Un + b = R(x) =I- 0 ax2 
(A l-7) 

Instead, there is an error (residual) that is a function of x , Thus (Al-7) is really a 

weighting of the residual over the domain 0 ::; x ::; X max , which must be zero for the 

approximate solution, so, 

l xmux 

w(x)R(x) dx = 0 (Al-8) 



Now pick a trial function which satisfies all boundary conditions, 

'Un = Px + a l sin (~) 
2xmax 
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(AI-g) 

Clearly, this function satisfies the essential boundary condition (Al -3). In addition , 

the first term satisfies the natural boundary condition (Al-4). The second term is 

zero at t he essent ial condition and has zero slope at the natural condit ion , so it does 

not add addit ional terms at t he boundaries . Taking the derivatives and substituting 

in equation (Al-7). 

-al (_7r_) 2 sin (~) + b = R(x) 
2x max 2x max 

(A1-10) 

For simplicity assume P = b = 1 and plot t h residual for different values of a l· 

The residual is a function of x and from figure A1-1 it is clear why the residual is 

integrated . The residual can be weighted in any way over the interval and for the 

integral to be zero. Depending on how the residual is weighted different solutions 

can be obtained. Different methods that can be used to weight the residual are 

summarised below: 

Collection Method 

In t his case, t he residual is forced to be zero at a specific location (nail-down 

method). That is , 

(Al-ll ) 
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This is equivalent to selecting the Dirac delta function as the weighting function. 

when x = Xi 

when x =f Xi 

and for any function f (x) , 

That is the weighted residual according to equation (AI-8) is, 

(AI-12) 

Pick a value of Xi, e.g. , Xi = 0.5, that is, the residual is a force to equal zero at the 

midpoint , solving equation (AI-12) gives a value of al ~ 0.6 . 
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Subdomain Method 

Alternately, let us weight t he residual uniformly over the interval (glue method). 

That is, 

w(x) = 1 

Then from equation (Al-8) , 

11 l. Rdx = 0 (Al -13) 

Putting t he value of t he residual from (A1-10) and solving to obtain value of a l ::::; 

0.637. 

Least Square Method 

In least squares, it is required t hat t he squared residual be minimized with respect 

to t he adjusting parameter, i.e., 

Minimize (1 1 

R2 dX) 

or 

. R- dx= O 11 BR 

o Ba l 
(Al -14) 

This is equivalent to selecting aaR as t he weighting function. From equation (Al-7) 
"t 

calculate ~~ and put it in equation (Al-14) to solve for al. The value of a l calculated 

by t he least square method is 0.516. 
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Galerkin Method 

Finally, if the same function is used for the weighting function as is used for the 

approximating function (except that the term in the approximating function that 

satisfies the essential boundary conditions is not included) then: 

7fX 
w(x) = al sin -

2 
(Al-15) 

Substitute equation (Al-1 5) in (Al-7) and obtain the value of al ~ 0.516. Note 

that for this particular example, the least-squares method and Galerkin's method 

yield identical results. In general, however, the two methods may give different 

answers. In order to improve the approximate solution more terms can be added in 

the trial function defined in equation (Al-7). The most widely used trial functions 

are polynomial functions. 

Weak Formulation The Galerkin formulation described in this appendix is called 

the strong formulation of the weighted residual method. The strong formulation 

requires evaluation of the term l~~~'x w (~:;t) dx, which includes the highest 

order of the derivative term in the differential equation. The integral must have a 

non-zero finite value to yield a meaningful approximate solution to the differential 

equation. This means a trial function should be differentiable twice and its second 

derivative should not vanish. In order to reduce the requirement for a trial function 

in terms of differentiability, integration by parts is applied to the strong formulation. 
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Consider t he second order term, 

l
xmn", 

X min tU 

Now by applying integration by parts, 

l
x m nx 

'W [ ~:2n ] dx = l x mn

", [ - ~: ~~ ] dx + [W aa~ ] X",n", 

X tntn X .,nin T ,n l n 

(Al-16) 

As seen from equation (Al-16) the trial funct ion needs the first order differentiat ion 

instead of t he second order different iation. As a result , t he requirement for t he t rial 

function is reduced , This formulation is called the weak formulation. 
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Linear Quadratic Elements 

In this appendix Linear Quadratic Elements for Galerkin based Finite Element for-

mulation are described. Other t han linear elements or first order elements, quadratic 

or higher order elements can be used for Galerkin based finite element formulation. 

The main advantage of using first order or linear elements is simplicity of formula-

tion and narrow bandwidth of the system of equations. However , the disadvantage 

is poor accuracy and slow convergence of solution with respect to the number of 

nodes or elements. One approach to obtain a high accuracy without increasing the 

number of nodes is to employ higher order interpolation function. This approach 

has proven to be very cost-effective [127]. 

Quadratic elements have three nodes onc at each of the two endpoints and a third 

usually placed at the center of the element as shown in figure A2-1. Within each 

e 
u. u U 

I i+l i+2 •• -------------.~~--------__e. 
N-m N-m+1 N-m+2 

Figure A2-l: Quadratic element with local node numbers 

element the interpolation function is approximated as, 

(A2-1) 

Now enforce equation (A2-1) at the three nodes of element e as shown in figure A2-1 
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yields, 

u~ (x) = a + b Xi + ex; 

(A2-2) 

Solving for a, b and e and substitut ing in (A2-1), 

3 

'ue(x) = L NJ(x)uj (A2-3) 
j= 1 

where the interpolation functions are given by, 

Ne 
, (Xi. - Xi+1)(Xi - Xi+2) 

N
e _ (x - Xi )(X - Xi+2) 
i+1-

(Xi+! - Xi )(Xi+! - Xi+2) 

(A2-4) 

N
e _ (X - Xi ) (X - Xi+ d 
i+2 -

(Xi+2 - Xi )(Xi+2 - Xi+!) 



189 

Appendix 3 



190 

List of Publications 
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