
Leveraging Oversampling Techniques in Machine
Learning Models for Multi-class Malware Detection

in Smart Home Applications
Abdullahi Chowdhury

School of Computer Science
The University of Adelaide

Adelaide, Australia
abdul.chowdhury@adelaide.edu.au

Mohammad Manzurul Islam
dept. of Computer Science and Engineering

East West University Bangladesh
Dhaka, Bangladesh

mohammad.islam@ewubd.edu

Shahriar Kaisar
dept. of IS and Business Analytics

RMIT University
Melbourne, Australia

shahriar.kaisar@rmit.edu.au

Mahbub E Khoda
Federation University Australia

Churchill, Australia
m.khoda,n.naha@federation.edu.au

Ranesh Naha
Federation University Australia

Churchill, Australia
n.naha@federation.edu.au

Mohammad Ali Khoshkholghi, Mahdi Aiash
Dept. of Computer Science

Middlesex University
London, UK

a.khoshkholghi,m.aiash@mdx.ac.uk

Abstract—Smarthome applications are becoming increasingly
popular due to their ability to provide safety, comfort, and remote
assistance. These applications are usually controlled using a smart
home controller, which is often the target of malware attacks.
A successful attack may result in financial loss, disclosure of
personal and/or sensitive information, or even loss of human
lives. Although machine learning models have been used in
existing research for detecting multi-class malware attacks in
smart home systems, they did not explicitly address the class
imbalance problem in such cases. In addition, the use of ensemble
learner is expected to provide improved performance. To address
this, we investigated different oversampling techniques to increase
the number of samples in the minority classes and incorporated
ensemble learners to see their impact on the prediction perfor-
mance. Experimental evaluation shows significant improvements
(4-5%) in terms of accuracy, precision, recall, and F-1 score.

Index Terms—Oversampling Techniques, Ensemble Models,
Multi-class Malware Detection

I. INTRODUCTION

We live in the era of internet-connected smart devices
known as the Internet of Things (IoT). People are connecting
their essential everyday devices (e.g., home appliances, wear-
able sensors, security cameras, intelligent cars) to the Internet
for automating intended tasks and making life easy [1]. The
scope of IoT device adoption also extends to industrial au-
tomation, smart cities, precision agriculture, medical services,
etc. A report by Business Insider Intelligence [2] predicts that
more than 41 billion IoT devices will be actively connected to
the Internet by 2027, resulting in approximately five devices
used by each person living on earth. A majority of them are
smart home devices that collect, process, and derive insights
from sensed data using which smart home sensors decide
for the intended action. However, these heterogeneous sensors
are generally low-powered with limited processing capabilities
and storage, hindering the adoption of a strong security

algorithm. Also, to capture the consumer market share, IoT
device manufacturers rapidly developed affordable smart home
devices without following a standardised security mechanism
[3]. Furthermore, for ease of usability by a regular consumer,
many connected smart home devices are operated with default
authentication, which results in infamous Brickerbot [4], and
Mirai [5] attacks. Therefore, an acceptable level of security
for IoT smart home devices is far from reality.

Among different sensors/devices deployed in smart home
applications, android operating system-based devices (e.g.,
google home, TV, mobile phones) play an important role by
acting as a controlling hub, decision processing system, or
an end device [6], [7]. However, recent investigations [8], [9]
show the vulnerabilities of these android-based devices that
can jeopardise the integrity of a smart home environment. An
attacker can exploit weaknesses in android devices through
malware and gain access to the rest of the devices in a
smart home. Another concern is the possibility of hackers
taking over smart home devices and using them for malicious
purposes, such as launching Distributed Denial of Service
(DDoS) attacks or stealing sensitive information. Additionally,
the large number of devices in a typical smart home creates
a complex attack surface that can be difficult to secure.
Therefore, it is essential to detect such malware to safeguard
a smart home application.

Smart home devices are also often connected to third-party
services and platforms, which can introduce additional security
risks. For example, if a third-party service is compromised, the
smart home device connected to it could also be compromised.
Similarly, if the platform used to manage the smart home de-
vices is hacked, the attacker could gain access to all connected
devices.

Recently, machine learning (ML) techniques have become
popular for malware detection [10]–[12]. However, any dataset

for training a malware detection model inherently consists of
imbalance class (a few malware samples vs a huge number of
benign samples). It becomes more difficult ML training task
when there are multiple class labels, which indeed is very com-
mon for malware detection for smart home applications. To the
best of our best knowledge, no prior works have addressed
the class imbalance problem in multi-class malware detection
scenarios with ensemble models. The key contributions of our
work are summarised below:

1) First, we investigated different oversampling methods to
find the suitable one that can solve the class imbalance
problem in our problem domain.

2) Second, we solve the multi-class imbalance scenario
by performing extensive hyper-parameter tuning of the
oversampling methods, and

3) Finally, hyper-parameter tuning of ensemble classifiers
to assign the appropriate number of trees and their
contribution in the learning process. The performance
evaluation shows prominent improvement achieved in
our model when compared with other existing works
in terms of commonly used performance metrics, e.g.,
accuracy, precision, recall, and F-1 score.

The rest of this paper is organized as follows: Section II
contains a review of current literature related to this study. In
Section III, an explanation of the proposed method is provided.
Section IV includes details about the dataset collection pro-
cess, experimental results, and a comparative analysis of the
proposed system. Lastly, in Section V, we present our future
plans and conclusions for this paper.

II. LITERATURE REVIEW

Adoption of the smart home ecosystem is becoming in-
creasingly popular as the interconnected devices in such a
system offer a range of services, including remote monitoring
of properties, power-efficient and comfort-based control of
household amenities, real-time remote monitoring of patients,
and help elderly people to live comfortably and safely [13].
The user interface is provided by smart mobile devices or
a smarthome controller. A significant percentage of these
mobile devices run the Android operating system due to their
affordability and service quality [14]. However, these devices
provide additional attack surfaces for hackers and malware
developers. A successful attack can potentially lead to privacy
breaches and financial loss, posing significant threats to the
wide-scale adoption of smart home systems.

The proliferation of smart home appliances and facilitating
applications have rendered manual inspection for malware
detection infeasible. As a result, researchers have adopted vari-
ous machine learning-based techniques for automatic malware
analysis. The earlier generation of works relied on extracting
permission features from the applications for malware detec-
tion. Aiman et al. [15] extracted the permissions from two
categories of applications: business and tools. Applying the
k-means clustering algorithm, the approach achieved a 71%
recall rate. Suleiman et al. in [10] used a Bayesian classifier
on a similar scenario and achieved an overall accuracy of 93%.

These techniques evolved over time as better, and more
comprehensive feature extraction tools became available.
Feizollah et al. in [16] extracted Inter Component Commu-
nication (ICC) features in addition to the permission features.
ICC feature captures communication behaviour among intra-
and inter-application components. The work achieved 91%
accuracy on their dataset by applying a Bayesian Network
algorithm. Drebin [11] was one of the earlier works that exten-
sively considered a broad range of feature categories, including
permission, Application Programming Interface (API) calls,
and ICC. The work applied Support Vector Machine (SVM)
for malware detection and achieved 94% accuracy on their
dataset.

Yamauchi et al. [17] analyzed user interaction sequence with
smart appliances (e.g., air conditioner) based on surrounding
contexts (e.g., room temperature) for detecting anomalous be-
haviour that may potentially compromise user safety. Adopting
a Hidden Markov Model (HMM) approach, the work obtained
90% detection accuracy on anomalous behaviour. However, the
method only accounts for user behaviour ignoring malicious
components that may be present in an application.

Tong and Yan conducted research on usage patterns in [12]
by monitoring the applications and analyzing them dynam-
ically. They then established a database of malicious and
benign patterns by assessing the frequency and weight of
sequential system calls at varying depths. To identify malicious
applications, the system call sequences of the app are extracted
and compared to the known signature database. However,
this method’s effectiveness largely depends on the number of
applications used to create the database.

Smart home devices are typically connected to third-party
services and platforms that offer additional features and func-
tionalities to users. These services include smart assistants,
cloud storage, remote management tools, and more. However,
connecting smart home devices to third-party services also
introduces new cybersecurity threats that need to be addressed.
One major threat is the possibility of unauthorized access to
smart home devices and the data they collect by third-party
services. This can occur if a third-party service provider is
compromised by hackers or if the provider is collecting data
in ways that are not transparent or secure. For example, a
smart assistant service that collects voice recordings may be
vulnerable to attacks that can access and steal this data [18].

Another concern is the potential for third-party services
to introduce new vulnerabilities to smart home devices. For
example, if a smart home device connects to a cloud storage
service that is not properly secured, attackers could potentially
gain access to both the device and the data it stores. Similarly,
if a remote management tool is used to control a smart home
device, attackers could potentially take over the device and
use it for malicious purposes. Third-party services may also
introduce additional privacy risks to smart home devices.
For example, if a smart home device connects to a social
media platform, the platform may collect data about the user’s
interactions with the device and use this information for
targeted advertising or other purposes. This could potentially

compromise the user’s privacy and security [19]. To mitigate
these risks, it is important to carefully evaluate third-party
services before connecting smart home devices to them. Users
should consider factors such as the provider’s reputation, the
security of the service, and the privacy policies in place.
Additionally, it is important to regularly review and adjust
privacy settings for connected devices and to use strong and
unique passwords and other security measures to protect both
the devices and the data they collect.

Afonso et al. [20] identified malware applications by ana-
lyzing the frequency of API and system calls using various
machine learning models, including Random Forest (RF) and
Naive Bayes. Their technique achieved 96.66% accuracy on
their dataset. However, the method may fail to identify mal-
ware apps that do not satisfy a certain API level requirement.

Xu et al. [21] considered the imbalanced nature of data
and generated synthetic malware examples in the fuzzy region
where the classifier gets biased towards the majority class.
Adding the synthetic samples to the training set enlarges the
decision of the minority class in the fuzzy region and improves
detection performance. However, they considered a binary
classification problem (i.e., benign and malware only) and used
a single classifier for the prediction task.

III. PROPOSED APPROACH

In real-world scenarios, the majority of applications are
typically benign or regular, while a minority are malicious and
classified as malware, leading to a classic data imbalance prob-
lem. To tackle this challenge, our proposed model employs two
distinct steps. In the first step, we split the initial dataset into
train and test subsets and employ classifiers SVM, Artificial
Neural Network (ANN), Gradient Boost (GB), and RF to test
the trained model, as depicted in Figure 1. In the second
step, we address the data imbalance by applying various
oversampling techniques to the train data. We experiment
with different oversampling ratios and weighted values during
data preprocessing and subsequently train the models using
the oversampled data. We employ several oversampling tech-
niques, such as SMOTE, Borderline-SMOTE, and ADASYN,
the details of which are provided below. Further elaboration
on the specific values utilized in the oversampling process can
be found in Section IV-A.

A. Machine Learning models

We used different ML techniques to determine their effi-
cacy in detecting malware in smart home applications. These
techniques are briefly described below.

The SVM algorithm is widely used for classification and
regression tasks. It functions by discovering the optimal hy-
perplane that separates the data points of different classes with
the greatest margin. For binary classification, SVM identifies
a hyperplane that separates positive and negative examples.
This hyperplane is defined by a vector w and a scalar b, such
that the equation of the hyperplane can be expressed as

wTx+ b = 0

, where x represents a data point, w is the weight vector,
and b is the bias term. SVM strives to locate the hyperplane
that maximizes the margin between positive and negative
examples. The margin is calculated as the distance between
the hyperplane and the closest data points from each class. The
distance between a point x and the hyperplane can be com-
puted as |wT x+b|

|w| , where |w| represents the norm of the weight
vector. The margin can then be defined as margin = 1

|w| .
RF is a machine learning algorithm that is commonly used

for both classification and regression tasks. For multiclass clas-
sification using RF, the algorithm employs an extension of the
typical decision tree algorithm that supports multiple classes.
The mathematical details of RF for multiclass classification
are as follows:

Given a training data set (x1, y1), (x2, y2), ..., (xn, yn),
where xi represents the feature vector of the ith training
example and yi represents the corresponding label.

RF constructs a set of decision trees, T1, T2, ..., TM , each of
which is trained on a random subset of the training data and a
random subset of the features. Each decision tree Ti generates
a probability distribution over the classes, which is computed
as:

pij =
k

n

where k represents the number of training examples in the
jth class that are assigned to the ith leaf node of the tree
Ti, and n represents the total number of training examples
assigned to the ith leaf node.

ANN can be mathematically described as a function that
maps an input vector x to an output vector y, through a
series of linear and nonlinear transformations. The function is
composed of multiple layers of interconnected neurons, with
each neuron applying an activation function to its weighted
inputs.

The output of a single neuron can be represented mathe-
matically as:
y = f(w · x+ b)
where y is the output of the neuron, f is the activation

function, w is the weight vector of the neuron, x is the input
vector, and b is the bias term.

The output of a layer of neurons can be represented as a
matrix multiplication of the input vector and the weight matrix
of the layer, followed by the addition of the bias vector of the
layer:

y = f(W · x+ b)

where y is the output vector of the layer, W is the weight
matrix of the layer, x is the input vector, and b is the bias
vector of the layer.

The output of the entire network can be expressed as the
composition of the individual layers:

y = fn(Wn · fn−1(Wn−1 · ...f1(W1 · x+ b1)...+ bn−1) + bn)

Fig. 1. Proposed model for malware detection with and without oversampling techniques embedded in the smart home controller.

where y is the output vector or scalar, f is the activation
function, w is the weight vector of the neuron, W is the weight
matrix of the layer, x is the input vector, b is the bias vector
or scalar, n is the number of layers, and fn is the activation
function of the final output layer.

The weights and biases of the neurons in the network
are adjusted during training using an optimization algorithm,
such as stochastic gradient descent, to minimize the difference
between the predicted output of the network and the true
output.

B. Oversampling Techniques

SMOTE is a widely adopted data augmentation technique
for synthesizing new minority class samples. First, a random
sample (s) from the minority class is chosen along with its
k neighbours. Then a random neighbour (n) within those k
neighbours is selected, and a new sample is synthesized on
an arbitrary point on the connecting line between s and n in
feature space.

Hui et al. [22] introduced an extended version of SMOTE
called Borderline-SMOTE that deals with the miss-classified
minority instances that usually belong to the edge of a decision
boundary. Borderline-SMOTE first identifies the examples that
are close to the decision boundary between the minority and
majority classes. These are examples that are misclassified by
a simple classification algorithm, such as k-nearest neighbours
or a decision tree, but not by a more complex algorithm,
such as a support vector machine or a neural network. Once
these examples are identified, Borderline-SMOTE generates
synthetic examples by interpolating between these examples
and their k nearest neighbours in the feature space.

ADASYN [23], on the other hand, adaptively adjusts the
density of synthetic examples based on the level of class
imbalance. ADASYN first computes the density of the mi-
nority class in each region of the feature space. It then
generates synthetic examples using SMOTE but weights each
example based on the inverse of its local density. This means
that examples in regions with high-class imbalance are given
more weight, and more synthetic examples are generated in
those regions. Conversely, examples in regions with low-class

imbalance are given less weight, and fewer synthetic examples
are generated in those regions.

The oversampled data is supplied to machine learning mod-
els as shown in 1. Once the optimal oversampling technique
is applied, the model uses the enriched training data to train
machine learning classifiers. The model further refines the
classifiers by tuning their hyperparameters, specifically the
number of trees in ensemble models and their contribution to
the learning process. The performance of these models is then
evaluated using a testing set, with metrics including accuracy,
precision, recall, and F-1 score. The final step is a comparative
assessment of the proposed approach’s performance against
the original data without oversampling.

IV. PERFORMANCE EVALUATION

We have used Maldroid 2020 [24] dataset in our project,
which was provided by the corresponding research group upon
request. The CICMalDroid 2020 dataset is a comprehensive
Android malware dataset that contains over 17,341 samples
collected from various sources spanning from December 2017
to December 2018. The dataset is divided into five distinct
categories, namely Adware, Banking malware, SMS malware,
Riskware, and Benign. Adware has the smallest number
of samples (1,253), followed by Banking malware (2,100),
Riskware (2,546), SMS malware (3,904), and Benign (1,795).

A. Experimental setup

In this model, the train test split ratio is used as 80%
and 20% for both steps (with and without oversampling).
In addition to investigating the optimal train test split ratio
and oversampling techniques, we also explored the effect
of hyperparameter values on the performance of the model.
Specifically, we experimented with different hyper-parameter
values to determine which options provided the best results in
terms of minimizing false detection.

To optimize the oversampling technique, we tested various
ratios of minority-class samples to majority-class samples.
Our results indicated that increasing minority class samples
to 90% of the majority class samples provided the best result
in terms of minimizing false detection. To further improve
the performance of the model, we also experimented with

TABLE I
PERFORMANCE METRICS FOR DIFFERENT CLASSIFIERS WITH ORIGINAL DATA (NO OVERSAMPLING), USING SMOTE (SM), BORDERLINE-SMOTE

(BSM), AND ADASYN (ADA). HERE, ADWARE, BANKING, SMSWARE, RISKWARE, AND BENIGN ARE REPRESENTED WITH 1, 2, 3, 4, AND 5,
RESPECTIVELY IN CL (CLASSES)

Classifiers Cl Precision Recall F1-Score
Org SM BSM ADA Org SM BSM ADA Org SM BSM ADA

SVM

1 0.843 0.884 0.877 0.851 0.428 0.674 0.710 0.682 0.568 0.765 0.785 0.757
2 0.943 0.962 0.972 0.981 0.651 0.803 0.814 0.826 0.770 0.875 0.886 0.897
3 0.965 0.976 0.996 0.940 0.564 0.822 0.843 0.826 0.712 0.892 0.913 0.879
4 0.958 0.953 0.943 0.957 0.420 0.830 0.889 0.874 0.584 0.887 0.915 0.913
5 0.945 0.987 0.977 0.983 0.582 0.810 0.822 0.798 0.720 0.890 0.893 0.881

ANN

1 0.809 0.844 0.857 0.841 0.484 0.774 0.728 0.764 0.606 0.808 0.787 0.800
2 0.891 0.930 0.982 0.988 0.563 0.866 0.828 0.842 0.690 0.897 0.898 0.909
3 0.915 0.978 0.977 0.962 0.573 0.942 0.940 0.923 0.705 0.960 0.958 0.942
4 0.923 0.979 0.963 0.954 0.540 0.950 0.954 0.946 0.681 0.964 0.958 0.950
5 0.910 0.943 0.970 0.989 0.620 0.966 0.964 0.928 0.738 0.954 0.967 0.957

GB

1 0.832 0.882 0.886 0.883 0.700 0.886 0.864 0.864 0.760 0.884 0.875 0.874
2 0.940 0.950 0.973 0.958 0.761 0.964 0.963 0.942 0.841 0.957 0.968 0.950
3 0.962 0.955 1.010 0.979 0.826 0.948 0.952 0.956 0.889 0.951 0.980 0.968
4 0.926 0.981 0.983 0.978 0.840 0.921 0.918 0.910 0.881 0.950 0.949 0.943
5 0.938 0.986 0.963 0.946 0.860 0.982 0.987 0.975 0.897 0.984 0.975 0.960

RF

1 0.853 0.941 0.948 0.951 0.680 0.946 0.960 0.946 0.757 0.944 0.954 0.938
2 0.962 0.985 0.942 0.940 0.838 0.988 0.992 0.991 0.896 0.987 0.966 0.965
3 0.971 1.000 0.999 0.996 0.845 0.990 1.000 0.990 0.904 0.995 1.000 0.993
4 0.973 0.987 0.983 0.997 0.821 1.000 0.990 0.980 0.891 0.993 0.986 0.988
5 0.951 0.991 0.990 0.995 0.803 0.970 0.950 0.960 0.871 0.980 0.970 0.977

Fig. 2. Overall prediction accuracy of SVM, ANN, GB, and RF using
SMOTE, Borderline-SMOTE, and ADASYN oversampling methods.

different learning rates for the ensemble methods. We varied
the learning rate to explore its effect on the miss-classification
rate of different classes, with the goal of optimizing overall
prediction performance. We also varied the number of estima-
tors used in the ensemble methods. By doing so, we aimed
to determine the optimal number of trees required to achieve
maximum prediction performance. By exploring these various
hyper-parameter values, we were able to fine-tune the model
and achieve the best possible results.

B. Experimental result

As shown in Table I, performance on the original data
reveals a notable gap between Precision (0.843-0.965) and
Recall (0.420-0.651) for SVM. After implementing oversam-
pling, there is a clear improvement in Precision, Recall,
and F1-score across all classes. BSM stands out for class 1
(Adware), showing the highest increase in recall and F1-score.

For ANN, precision rates on the original data range from
0.809 to 0.923. The recall rates, however, are considerably
lower (0.484-0.620). Oversampling techniques significantly
enhance the model performance. Notably, BSM for class 2
(Banking) and SM for class 3 (SMSware) provide the highest
increase in precision and recall rates, respectively. The GB
classifier starts off with a higher recall for the original data
compared to SVM and ANN. An increase in performance met-
rics is observed across all classes, with ADASYN providing
the best results for class 3 (SMSware) in terms of precision
and SM for the same class in terms of recall and F1-score.

The RF classifier performs the best across all oversampling
techniques. With the original data, it exhibits a higher recall
rate compared to the other classifiers. Post oversampling, RF
exhibits the highest precision for class 1 (Adware) using
ADASYN, while SMOTE generates the highest recall and F1-
score for the same class.

The overall accuracy (refer to Fig. 2) we found without over-
sampling the data is 85.32%, 88.54%, 92.77%, and 94.34% for
SVM, ANN, GB, and RF, respectively. From Table I, we can
see that the ensemble methods provide better results than the
single classifiers. In all cases, the precision, recall, and F1-

scores were higher when oversampling techniques were ap-
plied. After oversampling, the precision for Adware increased
to 0.851, 0.857, 0.886, from 0.951 from 0.843, 0.809, 0.832,
and 0.853 for SVM, ANN, GB, and RF, respectively. Where,
the recall has significantly improved from 0.428, 0.484, 0.70,
0.68, to 0.71, 0.774, 0.886, and 0.96, respectively. We can also
see a similar pattern in better performance of the F1-score after
oversampling and using ensemble methods.

The above-mentioned results and discussion suggest that
applying oversampling methods using different oversampling
ratios based on the requirement of each minority class provides
the best result. Table II shows a comparison of our model with
the result reported in [24] suggesting that our model achieved
better results as we were able to address the class imbalance
issues, mainly for the minority class sample (Adware).

TABLE II
OVERALL ACCURACY, PRECISION, RECALL, AND F1-SCORE OF CIC

MALDROID 2020 DATA COMPARISON WITH OTHER WORK.

Detection models CIC MalDroid 2020
Acc Pre Rec F1 Method

Mahdavifar et al. [24] 96.7 99.16 96.54 97.84 PLDNN
Our Model 99.12 99.5 97.0 98.0 RF

V. CONCLUSION

The current popularity and expansion of smart home sys-
tems can be linked to their capacity to give safety, com-
fort, and remote monitoring support. Nevertheless, widespread
implementation of such systems poses issues owing to the
huge increase in worldwide cyberattacks, which may result
in financial loss, the leaking of personal information, and the
loss of life. Malware attacks pose a serious risk to smart
home applications since the virus can compromise the con-
troller system’s security after infection. As a result, identifying
malware in smart home systems is crucial for enhancing
their security. To overcome these issues, this paper suggests
using oversampling techniques in addition to ensemble-based
machine learning models to improve prediction performance.
Simulation results confirm that the proposed approach outper-
forms previous works regarding the accuracy, precision, recall,
and F-1 score.

REFERENCES

[1] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”
Computer networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[2] P. Newman, “The internet of things 2020: Here’s what over 400 iot
decision-makers say about the future of enterprise connectivity and how
iot companies can use it to grow revenue,” Business Insider, pp. 1–6,
2020.

[3] J. Saleem, M. Hammoudeh, U. Raza, B. Adebisi, and R. Ande, “Iot
standardisation: Challenges, perspectives and solution,” in Proceedings
of the 2nd international conference on future networks and distributed
systems, 2018, pp. 1–9.

[4] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, “Ddos in the iot:
Mirai and other botnets,” Computer, vol. 50, no. 7, pp. 80–84, 2017.

[5] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis
et al., “Understanding the mirai botnet,” in 26th {USENIX} security
symposium. Vancouver, BC, Canada: USENIX Association, 2017, pp.
1093–1110.

[6] G.-M. Sung, H.-K. Wang, and W.-T. Su, “Smart home care system with
fall detection based on the android platform,” in 2020 IEEE International
Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2020, pp.
3886–3890.

[7] B. Vaidya, A. Patel, A. Panchal, R. Mehta, K. Mehta, and P. Vaghasiya,
“Smart home automation with a unique door monitoring system for old
age people using python, opencv, android and raspberry pi,” in 2017
International Conference on Intelligent Computing and Control Systems
(ICICCS). IEEE, 2017, pp. 82–86.

[8] J. Cui, L. Wang, X. Zhao, and H. Zhang, “Towards predictive analysis of
android vulnerability using statistical codes and machine learning for iot
applications,” Computer Communications, vol. 155, pp. 125–131, 2020.

[9] M. Rytel, A. Felkner, and M. Janiszewski, “Towards a safer internet
of things—a survey of iot vulnerability data sources,” Sensors, vol. 20,
no. 21, p. 5969, 2020.

[10] S. Y. Yerima, S. Sezer, and G. McWilliams, “Analysis of bayesian
classification-based approaches for android malware detection,” IET
Information Security, vol. 8, no. 1, pp. 25–36, 2014.

[11] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and
C. Siemens, “Drebin: Effective and explainable detection of android
malware,” in Ndss, vol. 14, 2014, pp. 23–26.

[12] F. Tong and Z. Yan, “A hybrid approach of mobile malware detection
in android,” Journal of Parallel and Distributed Computing, vol. 103,
pp. 22–31, 2017.

[13] D. Bastos, M. Shackleton, and F. El-Moussa, “Internet of things: A
survey of technologies and security risks in smart home and city
environments,” in Living in the Internet of Things: Cybersecurity of the
IoT. IET, 2018.

[14] M. A. Omer, S. R. Zeebaree, M. A. Sadeeq, B. W. Salim, S. x Mohsin,
Z. N. Rashid, and L. M. Haji, “Efficiency of malware detection in
android system: A survey,” Asian Journal of Research in Computer
Science, pp. 59–69, 2021.

[15] A. A. A. Samra, K. Yim, and O. A. Ghanem, “Analysis of clustering
technique in android malware detection,” in Innovative Mobile and
Internet Services in Ubiquitous Computing (IMIS), 2013 Seventh In-
ternational Conference on. IEEE, 2013, pp. 729–733.

[16] A. Feizollah, N. B. Anuar, R. Salleh, G. Suarez-Tangil, and S. Furnell,
“Androdialysis: analysis of android intent effectiveness in malware
detection,” computers & security, vol. 65, pp. 121–134, 2017.

[17] M. Yamauchi, Y. Ohsita, M. Murata, K. Ueda, and Y. Kato, “Anomaly
detection in smart home operation from user behaviors and home
conditions,” IEEE Transactions on Consumer Electronics, vol. 66, no. 2,
pp. 183–192, 2020.

[18] R. Trimananda, S. A. H. Aqajari, J. Chuang, B. Demsky, G. H.
Xu, and S. Lu, “Understanding and automatically detecting conflicting
interactions between smart home iot applications,” in Proceedings of the
28th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2020, pp.
1215–1227.

[19] H. Hu, L. Yang, S. Lin, and G. Wang, “A case study of the security
vetting process of smart-home assistant applications,” in 2020 IEEE
Security and Privacy Workshops (SPW). IEEE, 2020, pp. 76–81.

[20] V. M. Afonso, M. F. de Amorim, A. R. A. Grégio, G. B. Junquera,
and P. L. de Geus, “Identifying android malware using dynamically ob-
tained features,” Journal of Computer Virology and Hacking Techniques,
vol. 11, no. 1, pp. 9–17, 2015.

[21] Y. Xu, C. Wu, K. Zheng, X. Niu, and Y. Yang, “Fuzzy–synthetic minority
oversampling technique: Oversampling based on fuzzy set theory for
android malware detection in imbalanced datasets,” Int. Journal of
Distributed Sensor Net., vol. 13, no. 4, pp. 1–15, 2017.

[22] H. Han, W.-Y. Wang, and B.-H. Mao, “Borderline-smote: a new over-
sampling method in imbalanced data sets learning,” in Int. conf. on
intelligent computing. Springer, 2005, pp. 878–887.

[23] H. He, Y. Bai, E. A. Garcia, and S. Li, “Adasyn: Adaptive synthetic
sampling approach for imbalanced learning,” in Int. joint conf. on neural
networks. IEEE, 2008, pp. 1322–1328.

[24] S. Mahdavifar, A. F. A. Kadir, R. Fatemi, D. Alhadidi, and A. A.
Ghorbani, “Dynamic android malware category classification using
semi-supervised deep learning,” in Intl Conf on Dependable, Autonomic
and Secure Computing. IEEE, 2020, pp. 515–522.

