
MX 0700407 9

V

Middlesex
University

An investigation of the utility and value of process patterns in the
management of software development projects

Ahmad Hajizadeh Estabraghy

Thesis Submitted for the Degree of Doctor of Philosophy
At Middlesex University

School of Computing Science
Middlesex University

London

y<&l$P" June 2008

Director of Studies: Prof. Darren Dalcher
Supervisors : Prof. Colin Tully

: Prof. Anthony White

, ^ {,:!_
. / i v i . '
:->v¿.í-.'/

• vii".' • '¿*r © Ahmad Hajizadeh Estabraghy 2008

II

To understand is to perceive patterns

Isaiah Berlin

III

Acknowledgements

I would like to offer my sincere thanks t o t h e following people for their help and support in this project.

First of all to my Director of Studies, Professor Darren Dalcher and my S u p e r v i s o r s Professor Colin Tully and
Anthony White for their guidance, encouragement and support throughout the life of this research project. Their
support was in particular essential in getting approvals from various parties, in particular the Ethics Commit tee ,
for the expérimental research method in this study to go ahead. As module leader for the experimented modules,
Professor White played a signifìcant part in al lowing his modules to take part in this unprecedented (at
Middlesex University) expérimental study, and in the strategie and ethical issues concerned with the experiment.
Without his interest, help and support, this research work would not have been possible.

Thanks also to Dr. Dan Diaper for giving me valuable advice and insights in the design of the experiment for this
study.

I would also like to thank (CMT3991 and CMT3992) module coordinators Dr Mike Censlive, John Platts and Dr
Yuan Luo (at the three campuses TP , HE and T M respectively) for their support. I would, in particular, like to
thank Dr Mike Censlive for his help and support in conducting the experiment. Dr Censlive generously offered
me his extensive expériences and knowledge of the détails and structures of CMT3991 and CMT3992 modules
and gave me valuable suggestions for the experiment design through many meetings.

I would also like to thank Elaine Sheehan, school secretary at T M , for her help in various clérical tasks with the

expérimentation.

Finally, I would also like to thank ali the CMT3991 and C M T 3 9 9 2 tutors and Supervisors for their support of this
study and for allowing me to attend their seminare and talk to their students.

(

S i t e

HÉ

MIDDLESEX
UNIVERSITY

LIBRARY

A c c e s s i o n

0 7 ü 0 4 ö 7 \ N o . 0 7 ü 0 4 ö 7 \

C l a s s
OoS- l

N o .

S p e c i a l 1 /
C o l l e c t ì o n

IV

Abstract

Pattern theory has engendered much controversy in the fíeld of architecture; yet it has brought new insights to
the field of software engineering. Pat tems continué to play an important role in software engineering in general,
and in software development in particular. In this study, two preliminary surveys, focusing on the two fields of
architecture and software engineering, were carried out to investígate the role and effect of patterns. The surveys
indícate that while, patterns are unpopular within the architecture communi ty and are criticised for stifling
creativity, software patterns are popular within the software communi ty and a high proportion of software
development companies use them in their development practice. The results however show that in the vast
majority of cases, pattern usage is limited to design-based problems, involving a single type of pattern (i.e.
design patterns). The results further show that process-based patterns are seldom used in the software
development industry, which prompted the topic of the main investigation of this research to evalúate the effect
and utility of process patterns.

A controlled experimental research method was designed and used to evalúate the utility and valué of process
patterns in the management of software development projects. In this ' 2x2 factorial design ' experiment, the
subjects were divided in two groups of experimental and control, where the experimental groups were given a set
of process patterns to use in their software development projects. Overall, there were over 7 5 0 subjects involved
in this experiment and a total of 260 software development projects (individual and group projects) were
investigated. Measurements of a number of appropriate software attributes were taken during the life of the
projects though a devised goal-based measurement process. A further number of attributes were measured after
the projects were completed. Using metrics, a number of software attributes across the four major phases of the
development lifecycle (i.e. Requirement Analysis, Design, Implementation, and Delivery) were measured and
statistically analysed. In addition to these specific measurement data, offícial marks awarded to the projects by
the tutors were also used in the analysis. The objective was to determine if the experimental groups produced
software projects that were of higher quality, in terms of the measured software attributes, than the control
groups.

The experiment results show that, in the case of thirteen measured attributes, the treated groups scored
significantly higher than the control groups. The improvements are across all the four major development phases,
with at least two attribute in each phase, showing signifícant improvement . The experiment, therefore, confirms
that the application of process patterns in software development projects, improves the quality of the projects in
terms of a number of specific attributes such as productivity and defect density. The results further show that the
treated subjects in the group projects performed significantly better than those in the individual projects. This ,
therefore, confirms that while the application of process patterns significantly improves the quality of both group
and individual projects, the improvement is more prominent in the case of team projects. Process patterns are
thus shown to be more effective on team projects in improving the quality of software development projects.

V

Table of Contents
Chapter 1 Introduction and Outline 1

/./ Introduction I

1.2 The Pattern Concept /

1.3 The Research Methods and Process 2
1.3.1 Research Question and Hypothesis 3
1.3.2 Expérimental Methodology 3
1.3.3 The Measurement Process 5
1.3.4 Results Presentation and Analysis 7

1.4 Research Conclusions 7

1.5 Strengths of the Research S

1.6 Thesis outline 8

Chapter 2 Software Engineering Patterns 10

2.1 Introduction 10

2.2 Software Engineering and Patterns 10
2.2.1 How Pattems Entered Software Engineering 10
2.2.2 Software Pattern Definition 11
2.2.3 Pattern Elements and Types 11
2.2.4 What Pattems Are, and What They Are Not. . : 12
2.2.5 Disregard for Originality 12
2.2.6 Characteristics of Pat tems 13
2.2.7 Software Pattems and Pattern Principles 14
2.2.8 Software Pattern Usage in Industry 15

2.3 Pattern Discussion 15
2.3.1 Pattern Mining 15
2.3.2 Can Pattems be Harmful? 16
2.3.3 Do Software Pattems Work? 16
2.3.4 Should Pat tems Be Formalised? 17

2.4 Pattems in Software Design 17

2.5 Patterns in the Software Development Process 19

2.6 Instructions in Patterns 24
2.6.1 Pat tems in Town and Building Architecture 24
2.6.2 Pat tems in Software Design 25
2.6.3 Pat tems in Development Process 2 6
2.6.4 Software Process and Textual Instructions 28
2.6.5 Can Pattems Benefit from Task Analysis? 29
2.6.6 Hierarchical Task Analysis 29
2.6.7 Application of H T A in Pattems 31
2.6.8 Process Pattems Employed in the Expérimentation 34

2 .7 Summary 34

Chapter 3 Pattern Usage Surveys 3 5

3.1 Introduction 35

3.2 Architectural Patterns Survey 35
3.2.1 Motivation 35
3.2.2 Survey Details 35
3.2.3 Architectural Pattern Survey Results 36

3.3 Survey of Software Organisations 40
3.3.1 Motivations 4 0
3.3.2 Related Work 4 0

VI

3.3.3 Samples and Sampling Method 41
3.3.4 Survey Instrument 41
3.3.5 Software Pattern Survey Results 4 2

3.4 Summary 49

Chapter 4 Software Expérimentation and Measurement 5 0

4.1 Introduction 50

4.2 Measurement Theory and Definition 50

4.3 Purpose and Benefits of Software Measurement 52

4.4 Measurement Scaies 53

4.5 Measurement Techniques 54
4.5.1 Direct and Indirect Measurement 54

4.6 Software Metrics 55
4.6.1 Process and Product Metrics 55
4.6.2 Composite/Hybrid Metrics 5 6

4.7 Measurement Validation 57

4.8 Software Quality Measurement 58
4.8.1 Factor Criteria Metrie Models (FCM) 58

4.8.2 Goal Question Metrie Model 6 0

4.9 Measurement of Object-Oriented Software 61

4.10 Software Measurement Issues and Challenges 62

4.11 Expérimentation in Software Engineering 65
4.11.1 Expérimentation Framework 65

4.12 Software Expérimentation Issues 6 6
4.12.1 Flaws in Experiment Design and Conduci 67
4.12.2 Subjects in the Experiments 67
4.12.3 Costs and Publishing Limitations 68
4.12.4 Human Factors 68
4.12.5 Experiment Quality 69

4.13 A Review of Pattern Related Experiments 6 9

4.14 Summary 72

Chapter 5 Expérimental Methodology 7 3

5.1 Introduction 73

5.2 Experiment Définitions and Hypothesis 73

5.3 An Overview of the Experiment Design 74

5.4 An Overview of Issues Involved 76
5.4.1 Practical Difficultés 7 6
5.4.2 Ethical/Staff Concerns 77

5.5 Experiment Spécification 77
5.5.1 Expérimental Research Settings 77
5.5.2 Variables 77
5.5.3 The Treatment 79
5.5.4 Control 80
5.5.5 Internal Validity 82
5.5.6 Externa! Validity 82

5.6 Experiment Design 83
5.6.1 Design models 83
5.6.2 Subject 's Awareness of the Experiment 84

VII

5.6.3 Subjects and Treatment Application 84
5.6.4 Subjects Sélection Methods 85

5.6.5 Group and Individuai Projects Assignments 86

5.7 Experiment Conduci 86
5.7.1 Application of Treatment 8 6
5.7.2 Data Types 87
5.7.3 Subjects ' Views on Process Patterns 88
5.7.4 Experiment Outcome Scénarios 88

5.8 Ethical Issues 89

5.9 Design Constraints 90

5.10 Summary 91

Chapter 6 Measurement Process 92

6.1 Introduction 92

6.2 Measurement Process Design 92

6.2.1 G Q M Tables 9 3
6.2.2 Metrie Spécifications 9 6

6.3 Measurement Process Conduci 98

6.3.1 Data Collection Procedure 98

6.3.2 Tools Used 99

6.4 Summary 99

Chapter 7 Results 100

7.1 Introduction ¡00

7.2 Applied Statistical Methods 100

7.2.1 Parametric Vs Non-parametric 100

7.2.2 Identification and Treatment of Outliers 100

7.2.3 Parametric Tests 101

7.3 Teams Vs Individuais ¡03

7.3.1 Further Analysis 103

7.4 Sensitivity Analysis ¡03

7.5 Corrélation/Régression Analysis ¡04
7.5.1 Treatment Rate of Usage 105

7.6 Conducted Measurement Results ¡05
7.6.1 Requirements Analysis Phase 106

7.6.2 Design Phase 114

7.6.3 Implementation Phase 122
7.6.4 Delivery Phase 136

7.7 Tutor Marks Results /42

7.7.1 Product 142

7.7.2 Design and Analysis 144
7.7.3 Project Management 145
7.7.4 Evaluation 147

7.8 Subjects' Views on Process Pattern ¡49

7.9 Summary ¡50

Chapter 8 Analysis 152

8.1 Introduction ¡52

8.2 Concise Results Representation ¡52

8.3 An Analysis of the Results ¡53

VIII

8.4 Research Hypothesis 159

8.5 A Discussion of the Results 159

8.5.1 Officiai Evaluation 160

8.5.2 Généralisations of the Results 160

8.6 Summary ¡61

Chapter 9 Conclusion 162

9.1 Introduction 162

9.2 Summary ofMain Concepts ¡62

9.3 Research Contributions ¡64

9.3.1 Key Contribution 164

9.3.2 Additional Contributions 164

9.4 Summary of Results ¡65

9.5 Limitations ¡69

9.6 Research's Impact ¡70

9.7 Future Work ¡71

9.7.1 Software Expérimentation 171

9.7.2 Patterns 171

Référence and Bibliography 173

Appendix A. Experiment Détails 192

Appendix B. Patterns 199

Appendix C. Metrics Spécifications 2 1 0

Appendix D . Results 227

Appendix E . Survey Questionnaires 231

IX

Table of Figures
F i g u r e 2-1 E l e m e n t s of a pa t t e rn (www.hi l l s ide .net) 12
F igu re 2 -2 Hierarch ica l s t r u c t u r e of p r o c e s s p a t t e r n s 21
F igu re 2 - 3 T a s k p r o c e s s pa t t e rn for t e c h n i c a l r e v i e w s 21
F igu re 2 -4 Hierarch ica l s t r u c t u r e of p r o c e s s p a t t e r n s 2 6
F igu re 2 - 5 HTA for d r a w i n g a c lock 31
F igu re 2 -6 S e c t i o n of t h e g o a l h i e r a r c h y for a n ac id distillation p lan t o p e r a t o r ' s t a s k [Annett 2 0 0 4] 31
F igure 2 - 7 An e x a m p l e of t a s k h i e ra rchy for t h e I m p l e m e n t a t i o n p h a s e 3 2
F igure 2 - 8 E x a m p l e of a pa t t e rn s é q u e n c e 3 3
F igure 2 - 9 An e x a m p l e of a pa t t e rn c o n s t r u c t u s ing HTA 3 3
F igu re 3-1 N u m b e r of univers i t ies t e a c h i n g a rch i t ec tu ra l p a t t e r n s 3 6
F igure 3 -2 Arch i t ec t s ' v i ewpo in t s in relat ion t o pa t t e rn u s a g e l eve l s 3 7
F igure 3 -3 Arch i t ec t s ' v i ewpo in t s in relat ion t o c o u r s e s on p a t t e r n s 3 7
F igure 3-4 Cor ré la t ion b e t w e e n pa t t e rn u s a g e a n d a rch i t ec t v i e w p o i n t s 3 7
F igure 3-5 C o m p a n i e s us ing p a t t e r n s 4 2
F igure 3-6 P a t t e r n u s a g e in relat ion to o r g a n i s a t i o n s i z e 4 2
F igure 3-7 Cor ré la t ion b e t w e e n pa t t e rn usabi l i ty a n d pa t t e rn u s a g e 4 3
F igure 3-8 Cor ré la t ion b e t w e e n pa t t e rn u s e f u l n e s s a n d pa t t e rn u s a g e 4 3
F igure 3-9 P r o c e s s p a t t e r n s u s a g e 4 5
F igure 3-10 C o m p a n i e s p l a n n i n g t o u s e p a t t e r n s 4 5
F igure 3-11 C o m p a n i e s d e v e l o p i n g p a t t e r n s 4 6
F igure 3 -12 Cor ré la t ion b e t w e e n reusability a n d pattern usage 4 7
F igure 3 - 1 3 Cor ré la t ion b e t w e e n maintainability a n d pattern usage 4 7
F igure 3 - 1 4 Cor ré la t ion b e t w e e n pa t t e rn u s a g e a n d testability-reiiability qual i ty a t t r i bu t e s 4 8
F igure 4-1 A m o d e l of m e a s u r e m e n t [O m a n a n d P f l e e g e r 1997] 51
F igure 4 - 2 M e a s u r e m e n t p r o c e s s a n d in te l l igence barr ier [Kriz 1 9 8 8] 5 2
F igure 4 - 3 P r o c e s s pa t t e rn d e v e l o p m e n t t h r o u g h p r o c e s s i m p r o v e m e n t 5 3
F igure 4 - 4 F a c t o r - C ri ter ia-Metr ics g e n e r a l m o d e l 5 9
F igu re 4 - 5 An e x a m p l e of F C M m o d e l for maintainabi l i ty 5 9
F igure 4 - 6 F a c t o r / C rite ri a/M e t r ics m o d e l (M c C a l l / B o e h m mode l) 5 9
F igure 4 - 7 T h e G o a l Q u e s t i o n Metrie Mode l 6 0
F igure 4 - 8 V-GQM Model 6 0
F igure 4 - 9 S A T C Model for S o f t w a r e Metr ics P r o g r a m m e 61
F igure 5-1 E x p e r i m e n t Des ign 7 5
F igure 5-2 C a p t u r e a n d a n a l y s i s of d a t a to t e s t t h e r e s e a r c h h y p o t h e s i s 7 6
F igu re 5-3 M a n y - t o - m a n y re la t ionsh ip b e t w e e n p r o c e s s p a t t e r n s a n d m e t r i c s 8 0
F igure 5-4 R a n d o m sub jec t s é l ec t ion 81
F igure 5-5 Match ing by p réc i s ion contro l t e c h n i q u e 81
F igure 5-6 E x p e r i m e n t d e s i g n 8 3
F igure 5-7 M o d u l e C M T 3 9 9 1 (g roup pro jee ts) s e m i n a r s t r uc tu r e 8 6
F igure 5-8 An o u t e o m e S c e n a r i o 8 8
F igure 5-9 An o u t e o m e S c e n a r i o 8 8
F igure 5 -10 An o u t e o m e s c e n a r i o 8 9
F igu re 5-11 An o u t e o m e s c e n a r i o 8 9
F igu re 7-1 R e g r e s s i o n line 1 0 4
F igu re 7-2 R e g r e s s i o n line s c a t t e r plot 1 0 4
F igu re 7 -3 R a t e logins to t h e t r e a t m e n t (i .e . p r o c e s s p a t t e r n s) w e b s i t e 105
F igu re 7 -4 Boxplot for p e r c e n t a g e of t r a c e a b l e r e q u i r e m e n t s 1 0 6
F igu re 7-5 Cor ré la t ion b e t w e e n t h e no . of logins a n d t r a c e a b l e r e q u i r e m e n t s 1 0 7
F igu re 7-6 Corré la t ion b e t w e e n t h e no . of logins a n d t r a c e a b l e r e q u i r e m e n t s for individuai p ro jee t s 1 0 7
F igu re 7-7 Boxplot for p e r c e n t a g e of r e q u i r e m e n t s spécif ica t ion r e v i e w e d 1 0 9
F igu re 7-8 Boxplot for t h e p e r c e n t a g e of d e f e e t s fixed in RA 111
F igu re 7 -9 Boxplot for p e r c e n t a g e of RA t i m e s p e n t in t e s t i ng 1 1 3
F igu re 7-10 Boxplot for t h e p e r c e n t a g e of d e s i g n d o c u m e n t r e v i e w e d 1 1 5
F igure 7-11 Boxplot for No . of M e t h o d s p e r C l a s s 1 1 7
F igure 7 -12 Boxplot for t h e p e r c e n t a g e of d e f e e t s fixed in d e s i g n p h a s e 1 1 9
F igure 7 -13 Boxplot for p e r c e n t a g e of D e s i g n p h a s e t i m e s p e n t in t e s t i ng 121
F igure 7 -14 Boxplot for C o m m e n t Dens i ty (C o m / 1 0 0 L O C) 1 2 3
F igure 7 - 1 5 Boxplot for p e r c e n t a g e of s o u r c e c o d e r e v i e w e d 1 2 5

http://www.hillside.net

X

Figure 7-16 Boxplot for d e f e c t d e n s i t y 1 2 7

F igure 7 -17 Boxplot for product ivi té in t h e I m p l e m e n t a t i o n p h a s e 1 2 9
F igure 7 - 1 8 Boxplot for overal l product ivi ty 131

F igure 7 -19 Boxplot for t h e p e r c e n t a g e of d e f e c t s fixed in t h e I m p l e m e n t a t i o n p h a s e 1 3 3
F igure 7 -20 Boxplot for p e r c e n t a g e of i m p l e m e n t a t i o n t i m e s p e n t in t e s t i ng 1 3 5

F igure 7-21 Boxplot for t e s t c a s e d e n s i t y 1 3 7
F igure 7 -22 Boxplot for p e r c e n t a g e of d e f e c t s fixed in t h e Del ivery p h a s e 1 3 9
F igure 7 - 2 3 Boxplot for p e r c e n t a g e of Delivery p h a s e t i m e s p e n t in t e s t i ng 141

F igure 7 -24 Boxplot for t h e p r o d u c t a t t r ibu te 1 4 3
F igure 7 - 2 5 Boxplot for t h e D e s i g n a n d Ana lys i s m a r k e d a t t r ibute 1 4 4

F igure 7 -26 Boxplot for project m a n a g e m e n t m a r k e d a t t r ibute 1 4 6
F igure 7 -27 Boxplot for t h e é v a l u a t i o n a t t r ibu te 1 4 8
F igu re 7 -28 p r ò c e s s pa t t e rn u s e f u l n e s s 1 5 0

F igure 7-29 P r o c e s s p a t t e r n s usabi l i ty 1 5 0
F igure 9-1 Cor ré la t ion b e t w e e n reusabi l i ty a n d p a t t e r n u s a g e 1 6 6

F igu re 9 -2 Cor ré la t ion b e t w e e n mainta inabi l i ty a n d p a t t e r n u s a g e 1 6 6

F igu re A p p _ A 1 S n a p s h o t s of on l ine m e a s u r e m e n t form 1 9 2

F i g u r e A p p _ B 1 Login form 2 0 1
F igu re A p p _ B 2 S n a p s h o t of a p r o c e s s p a t t e r n s h o s t e d on l ine for t h e e x p e r i m e n t 2 0 1

F igu re A p p _ B 3 S n a p s h o t of a p r o c e s s p a t t e r n s h o s t e d on l ine for t h e e x p e r i m e n t 2 0 2

XI

Table of Tables

T a b l e 1 -1 T h e a n a l y s e d m e t r i c s a n d tu tor m a r k s 7
T a b l e 2-1 P a t t e r n s é q u e n c e to a d d s u p p o r t for s e r v i c e i n t e r f a c e s [Siddle 2 0 0 7] 1 4

T a b l e 2 -2 R e s u l t s s u m m a r y [Beck e t a l . 1 9 9 6] 15
T a b l e 2 - 3 G o F ' s d e s i g n p a t t e r n é l é m e n t s [G a m m a e t a l . 1 9 9 5] 1 8

T a b l e 2-4 P r o t o t y p e p r o c e s s pa t t e rn 2 0
T a b l e 2 -5 E l e m e n t s of p r o c e s s pa t t e rn [Ambler 1998] 21
T a b l e 2-6 P a t t e r n é l é m e n t s in [D ' s o u z a a n d Wills 1999] p a t t e r n s 2 2

T a b l e 2 -7 P a t t e r n é l é m e n t s [Storr le 2 0 0 0] p a t t e r n s 2 3
T a b l e 2 -8 P a t t e r n é l é m e n t s in C a r y a n d C a r l s o n [2002] 2 3
T a b l e 2 -9 W i n d o w P l a c e P a t t e r n 2 5

T a b l e 2 -10 O u t d o o r room Pa t t e rn 2 5
T a b l e 2-11 An e x a m p l e of a pa t t e rn s é q u e n c e for bui lding a p o r c h 2 5

T a b l e 2 - 1 2 Model -View-Cont ro l le r 2 6
T a b l e 2 - 1 3 D e c o r a t o r Pa t t e rn 2 6
T a b l e 2 - 1 4 R e q u i r e m e n t Ana lys i s P a t t e r n 2 7

T a b l e 2 - 1 5 Big Ball of Mud p r o c e s s pa t t e rn 2 7
T a b l e 2 -16 A l a n g u a g e for ob jec t d e v e l o p m e n t from Scra tch 2 7
T a b l e 2 - 1 7 E x a m p l e of a p r o c e s s function (p r o g r a m) Os te rwe i l [1987] 2 8

T a b l e 2 -18 HTA n o t a t i o n s 3 0
T a b l e 2 - 1 9 P r o c e s s Pa t t e rn l a n g u a g e 3 2
T a b l e 3-1 Cor ré la t ion b e t w e e n pa t t e rn u s a g e a n d v i e w p o i n t s 3 7
T a b l e 3-2 An e x a m p l e of t h e s u r v e y q u e s t i o n s 41

T a b l e 3 -3 P a t t e r n usabil i ty r e s u l t s 4 2

T a b l e 3-4 P a t t e r n U s e f u l n e s s R e s u l t s 4 3
T a b l e 3-5 R e a s o n s for not u s ing p a t t e r n s 4 5
T a b l e 3-6 P a r t i c i p a n t s ' v i ewpoin t s on t h e effect of p a t t e r n s o n qual i ty a t t r i bu t e s 4 7

T a b l e 3-7 Cor ré la t ion a n a l y s i s for testabil ì ty, reliability, a n d pa t t e rn u s a g e 4 8
T a b l e 3-8 P a t t e r n s effect o n c o m m u n i c a t i o n 4 8

T a b l e 4-1 M e a s u r e m e n t s c a l e t y p e s 5 4
T a b l e 4 - 2 E x a m p l e s of indirect m e a s u r e s 5 5
T a b l e 4 - 3 E x a m p l e s of Internai a n d e x t e r n a l a t t r i bu t e s for p r o d u c t s 5 5

T a b l e 4 - 4 CK me t r i c s 6 2
T a b l e 4 -5 N e g a t i v e a s p e c t s of so f twa re m e a s u r e m e n t [Hall e t a l . 2 0 0 1] 6 3
T a b l e 4 -6 E l e m e n t s of t h e définition p h a s e 6 6
T a b l e 4 -7 E l e m e n t s of t h e p l ann ing p h a s e . . 6 6

T a b l e 5-1 E x p e r i m e n t a r r a n g e m e n t s for t h e g r o u p p r o j e c t s 7 4
T a b l e 5-2 E x p e r i m e n t a r r a n g e m e n t s for t h e individuai p ro j ec t s 7 4
T a b l e 5-3 E x p e r i m e n t d e s i g n 7 5

T a b l e 5-4 T h e i n d e p e n d e n t v a r i a b l e s 7 8
T a b l e 5-5 T h e 2 x 2 e x p e r i m e n t d e s i g n (i n d e p e n d e n t v a r i a b l e s) 8 4
T a b l e 5-6 R e l a t i o n s h i p s b e t w e e n t h e d e v e l o p m e n t p h a s e s a n d t h e m a r k e d a t t r i bu t e s 8 7

T a b l e 6-1 G o a l E l e m e n t s of t h e G Q M m o d e l 9 3

T a b l e 6-2 G Q M for a r t e f a c t s in t h e R e q u i r e m e n t A n a l y s i s (RA) p h a s e 9 4
T a b l e 6-3 G Q M for t e s t a n d revrew in t h e RA p h a s e 9 4
T a b l e 6-4 G Q M for effort in t h e RA p h a s e 9 4
T a b l e 6-5 G Q M for a r t e f a c t s in t h e D e s i g n p h a s e 9 4
T a b l e 6-6 G Q M for t e s t a n d rev iew in t h e D e s i g n p h a s e 9 5
T a b l e 6-7 G Q M for effort in t h e Des ign p h a s e 9 5
T a b l e 6-8 G Q M for a r t e f a c t s in t h e I m p l e m e n t a t i o n p h a s e 9 5
T a b l e 6-9 G Q M for t e s t / r ev i ew in t h e I m p l e m e n t a t i o n p h a s e 9 5

T a b l e 6-10 G Q M for effort in t h e I m p l e m e n t a t i o n p h a s e 9 6
T a b l e 6-11 G Q M for a r t e f a c t s in t h e Del ivery p h a s e 9 6

T a b l e 6-12 G Q M for t e s t / r e v i e w s in t h e Del ivery p h a s e 9 6
T a b l e 6 -13 G Q M for effort in t h e Delivery p h a s e 9 6
T a b l e 6-14 P e r c e n t a g e of t r a c e a b l e r e q u i r e m e n t s met r ic (Metrie 1) 9 7

T a b l e 6 -15 N u m b e r of t r a c e a b l e r e q u i r e m e n t s m e a s u r e (M e a s u r e 1) 9 7
T a b l e 6-16 N u m b e r of r e q u i r e m e n t s m e a s u r e (m e a s u r e 2) 9 8

T a b l e 7-1 R e l a t i o n s h i p s b e t w e e n e x p e r i m e n t g r o u p s a n d S e m e s t e r s 1 0 2

XII

T a b l e 7-2 S ta t i s t i c s for p e r c e n t a g e of t r a c e a b l e r e q u i r e m e n t s 1 0 6
T a b l e 7-3 S ta t i s t i c s for t h e p e r c e n t a g e of t h e r e q u i r e m e n t s speci f ica t ion r e v i e w e d 1 0 8
T a b l e 7-4 R e s u l t s t a b l e s layout 1 0 9
T a b l e 7-5 Sta t i s t ica l a n a l y s i s for t h e ' p e r c e n t a g e of r e v i e w e d r e q u i r e m e n t s spec i f ica t ion ' met r ic 1 1 0
T a b l e 7-6 S ta t i s t i c s for t h e p e r c e n t a g e of d e f e c t s fixed in RA p h a s e 111
T a b l e 7-7 Sta t i s t ica l s ign i f icance a n a l y s i s for t h e ' p e r c e n t a g e of d e f e c t s fixed' me t r i c 1 1 2
T a b l e 7-8 S ta t i s t i c s for t h e p e r c e n t a g e of RA p h a s e t i m e s p e n t in t e s t i n g 1 1 2
T a b l e 7-9 R e s u l t s of s ign i f icance a n a l y s i s 1 1 4
T a b l e 7-10 S ta t i s t i c s for t h e p e r c e n t a g e of d e s i g n d o c u m e n t r e v i e w e d 1 1 5
T a b l e 7-11 Sta t i s t ica l s ign i f i cance a n a l y s i s 1 1 6
T a b l e 7 -12 S ta t i s t i c s for t h e no . of m e t h o d s p e r c l a s s 1 1 7
T a b l e 7 - 1 3 Sta t i s t ica l s ign i f i cance a n a l y s i s for t h e ' N o . of m e t h o d s p e r c l a s s ' me t r i c 1 1 8
T a b l e 7 -14 S ta t i s t i c s for t h e p e r c e n t a g e of d e f e c t s fixed in t h e d e s i g n p h a s e 1 1 9
T a b l e 7 -15 Stat is t ical s ign i f icance a n a l y s i s for t h e ' p e r c e n t a g e of d e f e c t s fixed' me t r i c 1 2 0
T a b l e 7 -16 S ta t i s t i c s for t h e p e r c e n t a g e of t h e D e s i g n p h a s e t i m e s p e n t in t e s t i ng 121
T a b l e 7 -17 Stat is t ical s ign i f icance a n a l y s i s 1 2 2
T a b l e 7 -18 S ta t i s t i c s for t h e C o m m e n t Dens i ty 1 2 3
T a b l e 7 -19 Sta t i s t ica l s ign i f icance a n a l y s i s for t h e ' C o m m e n t d e n s i t y ' me t r i c 1 2 4
T a b l e 7-20 S ta t i s t i c s for t h e p e r c e n t a g e of s o u r c e c o d e r e v i e w e d 1 2 5
T a b l e 7-21 Sta t i s t ica l s ign i f icance a n a l y s i s for t h e ' p e r c e n t a g e of s o u r c e c o d e r e v i e w e d ' metr ic 1 2 6
T a b l e 7 -22 S ta t i s t i c s for t h e de fec t d e n s i t y in t h e s o u r c e c o d e 1 2 7
T a b l e 7 -23 Sta t i s t ica l s ign i f icance a n a l y s i s for t h e ' de fec t dens i t y ' me t r i c 1 2 8
T a b l e 7 -24 S ta t i s t i c s for product ivi ty in t h e I m p l e m e n t a t i o n p h a s e 1 2 9
T a b l e 7 - 2 5 Sta t i s t ica l s ign i f icance a n a l y s i s for t h e ' I m p l e m e n t a t i o n productivi ty ' me t r i c 1 3 0
T a b l e 7 -26 S ta t i s t i c s for t h e overal l product ivi ty 131
T a b l e 7 -27 Sta t i s t ica l s ign i f icance a n a l y s i s for t h e 'overal l product ivi ty ' me t r i c 1 3 2
T a b l e 7 - 2 8 S ta t i s t i c s for t h e p e r c e n t a g e of d e f e c t s fixed in t h e I m p l e m e n t a t i o n p h a s e 1 3 3
T a b l e 7 -29 Stat is t ical s ign i f i cance a n a l y s i s for t h e ' p e r c e n t a g e of d e f e c t s fixed' me t r i c 1 3 4
T a b l e 7 -30 S ta t i s t i c s for t h e p e r c e n t a g e of I m p l e m e n t a t i o n p h a s e t i m e s p e n t in t e s t i n g 1 3 5
T a b l e 7-31 R e s u l t s of s ign i f icance a n a l y s i s 1 3 6
T a b l e 7 -32 S ta t i s t i c s for t e s t c a s e d e n s i t y in t h e Delivery p h a s e 1 3 7
T a b l e 7 -33 Stat is t ical s ign i f icance a n a l y s i s for t h e ' t e s t c a s e d e n s i t y ' met r ic 1 3 8
T a b l e 7 -34 S ta t i s t i c s for t h e p e r c e n t a g e of d e f e c t s fixed in t h e Delivery p h a s e 1 3 9
T a b l e 7 -35 Sta t i s t ica l s ign i f icance a n a l y s i s for t h e ' p e r c e n t a g e of d e f e c t s fixed' met r ic 1 4 0
T a b l e 7 -36 S ta t i s t i c s for t h e p e r c e n t a g e Delivery p h a s e t i m e s p e n t in t e s t i ng 1 4 0
T a b l e 7 -37 Sta t i s t ica l a n a l y s i s for t h e ' p e r c e n t a g e of p h a s e t i m e s p e n t in t e s t i n g ' me t r i c 141
T a b l e 7 - 3 8 R e l a t i o n s h i p s b e t w e e n t h e d e v e l o p m e n t p h a s e s m a r k e d a t t r i bu t e s 1 4 2
T a b l e 7 -39 S ta t i s t i c s for t h e p r o d u c t a t t r ibu te 1 4 2
T a b l e 7-40 Stat is t ical s ign i f icance a n a l y s i s for t h e ' p roduc t ' a t t r ibute 1 4 3
T a b l e 7-41 S ta t i s t i c s for t h e d e s i g n a n d a n a l y s i s m a r k e d a t t r ibu te 1 4 4
T a b l e 7 -42 Stat is t ical a n a l y s i s for t h e ' d e s i g n a n d a n a l y s i s ' m a r k e d a t t r ibute 1 4 5
T a b l e 7 -43 S ta t i s t i c s for t h e project management m a r k e d a t t r ibu te 1 4 6
T a b l e 7 -44 Sta t i s t ica l a n a l y s i s for t h e 'P ro jec t M a n a g e m e n t ' a t t r ibute 1 4 7
T a b l e 7 - 4 5 S ta t i s t i c s for t h e evaluation a t t r ibu te 1 4 8
T a b l e 7 -46 Sta t i s t ica l a n a l y s i s for t h e evaluation a t t r ibute 1 4 9
T a b l e 8-1 A c o n c i s e r e p r e s e n t a r o n of m e t r i c s / m a r k s r e su l t s 1 5 3
T a b l e 8-2 Metr ics tha t s h o w e d pos i t ive effect of p r o c e s s p a t t e r n s a n d the i r effect s i z e 1 5 4
T a b l e 8-3 Metr ics tha t s h o w e d n o significant effect of p r o c e s s p a t t e r n s 1 5 4
T a b l e 8-4 Metr ics tha t s h o w e d p r o c e s s p a t t e r n s h a d a m o r e significant effect 1 5 8
T a b l e 8-5 Tu to r m a r k at t r ibute , which s h o w e d pos i t ive effect of p r o c e s s p a t t e r n s 1 5 9
T a b l e 9-1 S u m m a r y of t h e r e s u l t s 1 6 7
T a b l e 9 -2 I m p r o v e d a t t r ibu tes a n d t h e effect s i z e 1 6 7

T a b l e A p p _ A 1 Official mark ing cri ter ia for g r o u p a n d individual p r o j e c t s 1 9 6
T a b l e A p p _ A 2 G r a d i n g a r r a n g e m e n t s for product cr i ter ia 1 9 6
T a b l e App_A 3 G r a d i n g a r r a n g e m e n t s for evaluation cri teria 1 9 7
T a b l e App_A 4 G r a d i n g a r r a n g e m e n t s for Design and Analysis cr i ter ia 1 9 7
T a b l e A p p _ A 5 G r a d i n g a r r a n g e m e n t s for Project management cr i ter ia 1 9 7

T a b l e A P P _ C 1 A desc r ip t ion of t h e e l e m e n t s of t h e met r ic speci f ica t ion t a b l e 2 1 0

XIII

T a b l e A p p _ D 1 S ign i f i cance a n a l y s i s r e s u l t s for m e t r i c s 2 2 8
T a b l e A p p _ D 2 S ign i f i cance a n a l y s i s r e s u l t s for tu tor m a r k s 2 2 8

Table of Equations
E q u a t i o n 4-1 W e i g h t e d M e t h o d p e r C l a s s 6 2
E q u a t i o n 7-1 z - s c o r e 101
E q u a t i o n 7-2 I n d e p e n d e n t s a m p l e s t - tes t 1 0 2
E q u a t i o n 7 -3 Corré la t ion coefficient 1 0 4

Table of Metrics (Indirect Metrics)

Metrie 1 P e r c e n t a g e of T r a c e a b l e R e q u i r e m e n t s 2 1 1
Metrie 2 P e r c e n t a g e of D e f e c t s Fixed 2 1 2
Metrie 3 P e r c e n t a g e of R e q u i r e m e n t Spéci f ica t ion D o c u m e n t R e v i e w e d 2 1 3
Metrie 4 P e r c e n t a g e of P h a s e T i m e S p e n t o n T e s t i n g 2 1 4
Metrie 5 P e r c e n t a g e of D e s i g n D o c u m e n t R e v i e w e d 2 1 5
Metrie 6 M e t h o d s p e r C l a s s Rat io 2 1 6
Metrie 7 Product ivi ty 2 1 7
Metrie 8 P e r c e n t a g e of S o u r c e C o d e R e v i e w e d 2 1 8
Metrie 9 Defec t Dens i ty 2 1 9
Metrie 10 C o m m e n t d e n s i t y 2 2 0
Metrie 11 T e s t C a s e per R e q u i r e m e n t Ra t io 2 2 1

Table of Measures (Direct Metrics)

M e a s u r e 1 N u m b e r of T r a c e a b l e R e q u i r e m e n t s 2 2 2
M e a s u r e 2 N u m b e r of R e q u i r e m e n t s 2 2 2
M e a s u r e 3 N u m b e r of D e t e c t e d D e f e c t s 2 2 3
M e a s u r e 4 N u m b e r of D e f e c t s F ixed 2 2 3
M e a s u r e 5 T i m e S p e n t in a D e v e l o p m e n t P h a s e 2 2 3
M e a s u r e 6 Tota l T i m e S p e n t o n D e v e l o p m e n t Pro jec t 2 2 4
M e a s u r e 7 T i m e S p e n t in T e s t i n g in a D e v e l o p m e n t P h a s e 2 2 4
M e a s u r e 8 S i z e of S o u r c e C o d e (LOC) 2 2 4
M e a s u r e 9 N u m b e r of C l a s s e s 2 2 5
M e a s u r e 10 N u m b e r of M e t h o d s 2 2 5
M e a s u r e 11 N u m b e r of L ines of C o m m e n t 2 2 5
M e a s u r e 12 N u m b e r of Defined T e s t C a s e s 2 2 6

Chapter 1 Introduction and Outline
1

Chapter 1 Introduction and Outline

1.1 Introduction

With continuing advances in computing hardware, software can now be produced to simulate and automate
many complex human activities, thus making software development more complex and challenging. Therefore,
the capture and préservation of expérience and 'best practice' in software development, in terms of both product
and process, is essential for the purpose of reuse. The pattern concept proposed by Alexander [1977, 1979]
provides a way of preserving such expérience. This research aìms to investigate whether patterns are effective in
enhancing the quality of software development projects.

This chapter provides an introduction to the thesis and présents the research process through a streamlined
discussion. Specifically, this chapter présents the following main topics:

• Background knowledge on patterns

• Research methods and process

• Research question and hypothesis

• Research Conclusions

• Thesis structure

These topics will be discussed in the following sections.

1.2 The Pattern Concept

It was the work of a team of researchers in the fteld of town and building architecture in the 1960's and 1970's ,
and the philosophy of aesthetic and beauty in architecture that created the concept of pattern. The researchers
realised that there were repeating éléments in great architectural structures, such as cathedrals and monasteries,
which made them pleasing to the eye and created feelings of j o y and satisfaction to their observers. Tbey called
thèse éléments patterns and introduced a way of capturing and documenting them [Alexander 1977, 1979].

As software designs and méthodologies were becoming more complex and versatile during the 1980's, it was
realised that it was necessary to preserve and présent proven software designs in a systematic and
methodological manner. This made some researches look into other disciplines for solutions. The work of
Alexander [1977, 1979] on the pattern concept inspired some researchers to adopt the concept in software
engineering. Alexander was already known in the software communi ty with his work on the 'synthesis of the
form' [Alexander 1970], which played a key part in inspiring the Object Oriented paradigm in software
engineering. Researchers working on software development designs in the early 1990s found that the pattern
concept could help simplify some of the complexities involved in designing and developing software
applications. Based on Alexander 's pattern theory [Alexander 1977, 1979], they produced a number of patterns
that described solutions to a number of design problems. These patterns, named design patterns, were well
received in the computer science communi ty and produced some excitement. Since 1994, many pattern
conférences (under the ñame PLoP - Pattern Language of programming) have been established ali over the
world and numerous journal papers and books on patterns have since been produced.

In its simplest form, a pattern describes the solution to a problem in a context [Coplien 1995]. Alexander [1977]
states the following to describe patterns: "Each pattern is a three-part rule, which expresses a relation between a

certain context, a problem, and a solution". Patterns have the following fundamental characteristics [Winn and

Calder 2002] :

• Présent proven solutions and therefore cannot represent new concepts, designs, or solutions

• Concern both product and process

• Have a human élément

• Relate to other patterns to create a pattern language for a specific domain

Chapter 1 Introduction and Outline
2

Patterns have been used in many areas within software engineering including development, organisation,
software process, software modelling, etc [PLoP conferences 1994-2007]. Studies (e.g. [Manolescu et al. 2007])
have shown that patterns in the field of software design, referred to as design patterns, are the most widely used
patterns in the software industry. These patterns are concerned with coding and architecture design of programs.
There are copious works in terms of books and research papers on design patterns (e.g. PLoP 1994 - 2007
conferences, and journals such as IEEE software). T w o of the most respected works on patterns in software
design and architecture are by G a m m a et al. [1995] and Buschmann et al. [1996]. These and other works are
reviewed in Chapter 2. There have been many claims in the literature that design patterns improve software
quality [Gamma et al. 1995] [Buschmann et al. 1996]. Over the years, there has been some empirical research to
investigate the validity of such claims [Prechelt et al. 2002, 2001] . These investigations and their results are
discussed in the literature review chapters (Chapter 2, Chapter 4) .

In addition to the use of the pattern concept in the technical design of software (i.e. product patterns), patterns
have also been applied in development process. These patterns, referred to as process patterns, have interested
researchers right from the outset of the pattern movement in the early 1990's. While product patterns (e.g. design
patterns) describe the solution, process patterns describe the process that leads to the desired results. They
document proven process activities in a structured and consistent manner, in accordance with the pattern concept
and format. Coplien [1995] and Ambler [1998] define process patterns as "Patterns of activity within an
organisation and its projects", and "Patterns which describe a proven solution, successful approach and/or series
of actions, for developing software" respectively. Pressman [2005] states that process patterns provide a
consistent method for describing important characteristics of the software process. There are many published
works [Coplien 1995] [Ambler 1998, 1999] on process pattern, some of which will be discussed and reviewed in
Chapter 2. As well as the PLoP conferences, there have also been workshops on process patterns [SDPP 2002] ,
where papers have been presented and subsequently published in their proceedings.

Process patterns, in particular, are the subject of investigation in this research programme. Pattern authors have
written and produced numerous process patterns published in books, journals and conference proceedings (key
works are reviewed in Chapter 2). Many authors have claimed that the use of process patterns in software
development improved software quality [Coplien 1995] [Ambler 1998]. Pressman [2005] states that process
patterns provide an effective mechanism for describing any software process and, that by combining process
patterns, a software team can construct a process which best meets the needs of a project. However, there does
not appear to be any empirical studies substantiating claims of the beneficial utilities of process patterns. It has
been the main objective of this research programme to investigate such claims and determine if the application of
process patterns in software development projects does indeed improve the quality of the projects.

1.3 The Research Methods and Process

Having briefly discussed the motivations for the research and, the underlying pattern concept, the research
method and process is discussed in this section. A number of research methods were studied and considered for
employment in this study. These included experimental, survey, existing data, action research, meta-analysis,
and case study, research methods.

The key features of the experimental approach are manipulation and control. In order to test hypotheses, changes
are introduced into the environment, in the form of treatment, and the effects of the changes on the target are
observed or measured. The strength of this research method is that it makes it possible to exercise greater control
over the conditions of observation than in any other research method and, therefore, experimental studies have
long been regarded as the optimal way to test causal hypotheses [Singleton and Straits 1999]. Based on these
characteristics and its suitability to test the research's main hypothesis, the experimental research method was
chosen as the main research method in this study. A further reason for the selection of this research method was
its suitability to provide a validation strategy for patterns.

Survey research provides the mechanism for acquiring information about one or more groups of people or
organisations. The ultimate goal is to learn about a large population by surveying a sample of that population
[Leedy and Ormrod 2005], Surveys are typically administered in face-to-face, telephone interviews, paper-and-
pencil, or electronic questionnaires. The validity and reliability of the survey instrument are key considerations
in survey research. Validity refers to the extent to which an empirical measure adequately reflects the real
meaning of the concept under consideration, and reliability is a matter of whether a particular technique, applied
repeatedly to the same object, would yield the same result each t ime [Babbie 2001], The survey research method
was used in this study to assess the popularity and usage levels of patterns within software and architecture
communit ies .

Chapter 1 Introduction and Outline
3

The use of existing rather than newly generated data provides a further research method. In this research method,
the researcher saves time by using the existing data rather than collecting new ones . Scientific research should
not be equated with the collection and analysis of original data [Babbie 2001] . In many situations, scientific
research can be designed and conducted through analysis of data already collected and compiled. As existing
data, the official marks awarded to the student projects were used in testing the research hypothesis.

1.3.1 Research Question and Hypothesis

A literature review process was undertaken in an attempt to narrow down the field of research on software

patterns and develop a research question. The literature review showed that there was a dearth of empirical
research that presented evidence of practical utility and valué of software patterns. This review also indicated

that the pattern concept received a mixed reception within the architecture community , in which the concept was
originally conceived.

In addition to the literature review, two preliminary surveys were conducted to help understand the current state
of affairs regarding the pattern concept, both within the software engineering and architecture communifies. The
first survey, gauged the views of a number of U K software development companies, 67 of which responded
[Estabraghy and Dalcher 2007b]. The second survey gauged the views of architects in U K universities on the use
and valué of architectural patterns. These preliminary surveys were aimed, not only to provide evidence of
pattern usage, but also to help in constructing and setting a research question (see Chapter 3). The result of these
surveys, in addit ion to the results of the literature reviews, pointed to a lack of published empirical research on
the practical application of process pat tems.

Based on the results of the surveys and the literature reviews, the main goal of the research was set to evalúate
the utility and valué of process patterns in the management of software development projects. The aim was to
determine whether process patterns would improve the quality of a software projects that use them. The research
question posed, therefore, was:

How does the application of process patterns in the management of a software development project

affect the quality of the project?

Based on the research question, the nuil and alternative hypothesis to be tested was:

HQ Application of process patterns in the management of a software development project

will not improve the quality of the project

H¡ Application of process patterns in the management of a software development project

will improve the quality of the project

In investigating the research question and the corresponding hypothesis, the effect of process patterns on each of
the four majdr development phases (Requirement Analysis, Design, Implementation, and Delivery) of a software
development project was investigated through measurement and evaluation of a number of software attributes in
an experimental research method. The term software project is used throughout this thesis to refer to the
mentioned four phases and the process and product involved in each. It does not include project activities such as
planning, scheduling, or estimation.

A controlled experimental research method, based on its suitability as discussed in previous section (Section

1.3), was designed and implemented to test the hypothesis. The process is described in the following section.

1.3.2 Experimental Methodology

Although patterns have been an important and influential component of software engineering in the last decade
[Buschmann 2007b] , empirical studies on the effects and utility of patterns are rather rare. While there has been
some experimental research to evalúate the effect and valué of design patterns [Prechelt 2001, 2002], there
appeared to be no credible published empirical studies to investígate the utility and valué of process patterns.
This study addressed this issue by carrying out an empirical study to evalúate the effect and valué of process
patterns by investigating the hypothesis that the deployment of process patterns in software development results
in better software development projects.

Chapter 1 Introduction and Outline
4

A literature survey of software experimentation indicated that, ideally, the experimental research method would
be best conducted in an industrial setting. However, due to the lack of finding suitable industrial organisations

willing to participate in this experiment, an option of conducting the experiment using students working on
practical projects ¡n an academic institution, such as Middlesex University, was considered. The literature survey
also indicated that majority of experimental researches in software engineering had used students as subjects and

such experiments are recognised by the scientific communi ty as valid. Sjoberg et al. [2005] in their detailed
analysis of empirical software engineering found that 7 5 % of the subjects in empirical investigations were

students.

Middlesex University was therefore selected as the setting for the experiment. T w o course modules in software

project management for final-year undergraduates, that included practical software development projects, were
selected. Students taking the modules over two semesters were chosen as the subjects of the experiment.

However, using students and Uve course modules as subjects and objects of an experiment involved tackling
many inherent issues, particularly as this was the first time such an experiment was to take place at the

University and there was no precedence. An experiment design had to be designed which gained the approval of
the Ethics Committee as well as the course officials. Much negotiation, discussion, and design revisión had to
take place before the experiment design was approved by the Ethics Committee and permission was granted to

carry out the experiment.

The devised controlled experiment involved two types of software projects (i.e. individual and group projects)
for the final year undergraduate students across two successive semesters. For each project type, students were
divided into two groups of experimental and control groups where the experimental groups received a number of
process patterns (98 in total), covering a complete development lifecycle (from Requirement Analysis to
Delivery). The process patterns (i.e. treatment condkion) were hosted on a specifically designed website to b e
used by the experimental groups in doing their software development project. The process patterns were selected
from the literature, based on their suitability and appropriateness for the type and scope of the projects being
investigated in this experiment. The selected process patterns were further edited to make them concise, relevant,
and applicable to the type and scope of the projects used in the experiment. The frequency of access to the
process patterns for each subject was recorded and continuously monitored to ensure that materials were
accessed by experimental groups. The control groups were not given access to these process patterns to use in
their projects. Official project assignments were devised and prepared in cooperation with the module leader,
coordinators, and tutors, so that the experimental groups were required to use the given process patterns in their
projects. Throughout the two semesters, the researcher was actively involved in attending the relevant modules '
lectures and seminars, to answer any questions and queries on process patterns, to ensure that students
(experiment subjects) understood how to use the process patterns and that they were actively using them.

In evaluating the process patterns, two strategies were considered: 1) Evaluation of a small number of individual

and specific process patterns, and 2) Evaluation of a system of process patterns covering a complete

development lifecycle. While option (1) initially appeared to be preferred for its specificity and simplicity, it
suffered from the following two disadvantages:

• Process patterns are generally linked and related to each other and it is often impractical to isolate
individual process patterns and evalúate their effect on specific software quality attributes.

• It limits the scope of the study to specific process patterns, rather than a complete system of patterns.
Any results would therefore apply to those specific patterns rather than process pat tems in general.

It was therefore decided to select and implement option (2), to study the effect of a complete system of process
patterns covering the complete development lifecycle (i.e. Requirement Analysis, Design, Implementation, and
Delivery). The objective of the experiment was, therefore, not to determine whether the employment of any
particular process pattern had an effect on the quality of a software project, but to gauge the collective influence
of a whole system of process patterns. In this design, one or more software attributes could be affected by one or
more process patterns. There is therefore a many-to-many relationship between the process patterns and the
software attributes that they could affect. That is, more than one process pat tem can affect the valué of a single
attribute, and more than one attribute can be affected by a single process pattern (see Section 5.5.3).

The process patterns used as treatment in the experiment cover a complete development lifecycle and therefore
their possible effect is measured on the major development phases. In testing the exper iment ' s hypothesis, the

objective was to determine whether the development projects carried out by the treated groups were of better
quality than those carried out by control groups. The evaluation of the development projects were performed

Chapter 1 Introduction and Outline
5

through a number of metrics based on collected measurements about the projects, as well as officiai marks given
to the projects by the project tutors and S u p e r v i s o r s .

The key objective in thèse metrics was to determine any différence between the treated and control groups by
keeping the rules constant for both groups, with the treatment (i.e. process patterns) being the only differentiating
variable. The metric values were therefore used in this experiment in the context of comparing treated and
control groups. The metrics were devised to be applicable in the set environment for the comparison purposes of
t h e experiment, and did not require being necessarily generic. For example, defects are normally measured in
terms of 'defect per 1000 line of code ' at industry level applications. However , due to the smali size of the
developed software in the projects under investigation, the defects were measured in 'defect per 100 lines of
code ' . Furthermore, while a flawless and well designed and conducted measurement process was désirable and
advantageous, many possible weaknesses and flaws in the employed measurement processes would be of no
serious harm to the objectives of the experiment, since they would be constant and équivalent for both treated
and control groups.

There were two sets of distinct and independent measurement data used in the experiment:

1. Officiai marks
Projects were marked by tutors on a number of attributes (12 in ail). While most of thèse attributes were
concerned with the actual project report (i.e. abstract, introduction, conclus ion. . .) , there were some (i.e.
Design and analysis, product, évaluation, project management) which were directly related to the
development efforts in which this study was interested. These marks were made available to the
researcher and were used for the purpose of this study.

2. Collected measurements
A measurement process was devised and conducted to capture specific measurements on a wide range
of attributes, in accordance with the exper iment ' s goals. Such measurements were taken by the subjects,
during the lifetime of their projects and, were submitted through online forms for analysis. Further
measurements of a number of attributes were taken by the researcher by evaluating the completed
project reports.

The measurement process aimed to develop a tailor-made measurement pian, through which a number of
appropriate metrics would be devised, to evalúate the projects. This is briefly discussed in the next section.

1.3.3 The Measurement Process

Software measurement is not yet an exact science. While the software community agrées that measurement
should be an important activity in software development and engineering, there are disagreements on what and
how to measure software projects. Furthermore, while one can intuitively recognise quality attributes, there is a
lack of a universally accepted définition of software quality that can be accuratcly measured [Kitchcnham and
Pfleeger 1996] [Ebert and Dumke 2007] .

The literaturę review carried out indicated that software quality has been largely measured in terms of the end
product and process, rather than in terms of the quality of the individuai development phases in a complete
development lifecycle (see for example [Briand et al. 2001]). A distinguishing aspect of this experiment is that,
the quality of the development project in ali its major individuai phases (i.e. Requirement Analysis, Design,
Implementation, and Delivery) were investigated. Here are the characteristics of the devised measurement
process in this research:

• The measurement process was goal-oriented and was based on the Goal/Question/Metric (GQM) model
• Each major development phase was individually evaluated
• Software attributes related to each development phase were accessed. ,

There are numerous software metrics in the literaturę, developed for différent purposes. While some of these
metrics can be reused in other projects, the uniqueness of projects normally nécessitâtes a study of the
measurement requirements specific to the projects under study [McGarry 2001] . A goal-oriented measurement
process, using the Goal/Question/Metrics paradigm [Basili and Rombach 1988], was devised for generating the
required metrics and collecting/recording the required measurements for the experiment. The purpose of the
devised metrics was to measure the quality of the software projects under investigation, through the
measurement of a number of attributes, to evalúate the effect and utility of process patterns. For each

Chapter 1 Introduction and Outline

development phase, the devised metrics were used to measure the following categories of the process and
product attributes;

• Artefacts: Artefacts (such as code and documents) produced during each development phase
• Tests/reviews: The testing/reviewing quality of each development phase
• Effort: The proportion of time allocated to each phase

Two methods of collecting and recording data were used in the measurement process:

1. Measurements taken by the experiment subjects: These measurements were taken by the subjects,
during the life of their projects, and submitted through a specific online measurement form.

2. Measurements taken by the researcher: This was done after the completion of the projects and their
assessments by the module tutors. The researcher studied each project report and recorded a number of
measures (e.g. number of traceable requirements) for each project.

In addition to the two measurement types stated above, the tutor marks provided a further set of measurement
data that were used and analysed. The comprehensive set of measurements aimed to provide wide-ranging data
to enable the evaluation of various aspects of the development projects under investigation (in terms of both
process and product) for any differences between the control and treated groups. Due to the limitation on the
scope of the research, only a proportion of the measurement data were used for presentation and analysis in this
thesis report.

A number of options for evaluating and analysing the measurements in terms using appropriate metric types
were considered. These are as follows:

1) Using the direct and indirect non-composite and non-hybrid metrics (e.g. 'defect density ')
2) Devising a new strategy of combining related metrics to create composite/hybrid metrics to measure the

quality attributes.

While option (2) has the advantage of generating high level metrics that produces overall evaluation of multi-
faceted attributes, it is a complex method of normalising and combining metrics of different types composi te ly
and may have the disadvantage of producing less sensitive results (see Section 4.6.2). Option (1) was therefore
chosen for its advantages of greater simplicity and wider use.

Measurement data collected through the experiment were used to draw up a number of metrics to measure a
number of software attributes of interest. There were also a number of attributes, marked by the tutors, which
were used in the experiment. The Table 1-1 list the metrics and tutor marks used in the experiment. The metrics
were aimed to measure attributes across the four major phases of the development lifecycle. There are, in all, 18
metrics involved. The result and analysis of the metrics and tutor marks will be presented in Chapter 7 and
Chapter 8.

Chapter 1 Introductíon and Outline
7

a Percentaje of traceable requirements
. K

cr~> Percentaje of reviewed requirements specification
CG Percentaje of defects fixed

< Percenta je of phase time spent in tes t in j
Number of methods per class (Methods per Class Ratio)

c
.SP Percenta je of design document reviewed

Percentage of defects fixed
Percentage of phase t ime spent in testing

CA
• Comment density

"E
CU

S ' Percentage of code reviewed
s 2 Percentage of defects fixed

c
u

Ë
Productivity (Implementation Phase)

D- Productivity (Overall)
Ë Defect density

Percenta je of phase t ime spent in testing

>, Test case density (Test case per Requirement)
C
>

Percentage of defects fixed
Percentage of phase t ime spent in testing

u

Design and analysis

u Product
SS

• 5 Evaluation (tests)
Project management

Table 1-1 The analysed metrics and tutor marks

Having discussed the measurement process through which metrics were devised and measurements were
collected, the presentation and analysis of the metrics results are briefly explained in the next section.

1.3.4 Results Presentation and Analysis

The valúes of the metrics, developed through the measurement process for each major development phase, were
presented and analysed for statistical signiftcance using SPSS statistical analysis package. It was also analysed as
to whether there were any difference between the group projects and individual project in terms of the evaluated
metrics. Both, 2x2 Factorial A N O V A and independen! samples t-test, statistical methods were applied to analyse
the metrics valúes and judge their statistical significance. Further analysis in terms of correlations between
metric valúes and logins to the online process patterns, as well as sensitivity analysis of the metrics, were also
carried out. Once the experimental research method was implemented and data was collected and analysed, they
would be presented in a thesis report.

1.4 Research Conclusions

The survey of the software industry indicated that while design patterns were being used in industry regularly,
little was known about process patterns and, its usage in industry, was shown by the survey to be relatively low
[Estabraghy and Dalcher 2007b]. Many participants stated that software patterns improved software attributes
such as reusability, reliability, and maintainability. The survey of architects indicated that architectural patterns
were seen by many architects as an oíd fashioned and anti-creativity concept. It was discussed that the
architectural pat tem issues, such as anti-creativity, which were the major causes of their unpopularity, need not
necessarily be applicable to, or damage the utility of, software patterns.

Analysis of the measurement data confirmed the main hypothesis, that the application of process pattems in the
management of software development projects, improved the quality of the projects. It showed that thirteen
measured software attributes were improved as a result of using process patterns. The analysis of the conducted
measurement showed that, for the majority of the evaluated attributes, there was a statistically significant
difference between projects that used process patterns and those that did not [Estabraghy and Dalcher 2007a] .
The difference between the treated and control groups indicated that the treated groups performed better in all
the four development phases investigated. The analysis of the marks awarded to the projects, by the project
tutors and supervisors, showed that there was a statistically significant difference between the treated and control

Chapter 1 Introduction and Outline
8

groups for one (i.e. product) of the four development attributes marked (i.e. Design and Analysis, Product,
Evaluation, Project management) .

The results also showed that, for many metrics as well as the product attribute (as marked by tutors), the effect of
the treatment condition was higher on group projects than on individual projects. This indicates that the process
patterns have a more prominent effect on team projects than on individual projects. The results also showed that
the majority of the subjects that used patterns (treated groups) found process patterns useful and easy to use.

1.5 Strengths of the Research

In this research, two preliminary surveys were carried out on software patterns where there is scant previous
research. Only one recent publication [Manolescu et al. 2007] reports on a similar research survey. The surveys
investigate the architectural and software patterns, in terms of their popularity, in their respective communit ies
and discuss the reasons software patterns have been much more utilised and successful than architectural
patterns. There does not appear to be any published literature that has previously explored this topic.

There are a number of attributes that make the designed and implemented.controlled experiment of high quality
in comparison to other software engineering experiments. These include:

Controlled Experiment: Controlled experiments are often expensive and difficult to conduct and
therefore only a small proportion (1.9%) of software experimentations are controlled experiments
[Sjoberg et al. 2005] . Hypothesis testing is also rare at around 1% of the software experiments [Tichy et
al. 1995].

Sensitivity Analysis: In the literature review carried out in this research, the proportion of software
experiments that included sensitivity analysis was found to be extremely low. Except in a very few
specific cases, sensitivity analysis was not found to be routinely applied in the published software
engineering experiments.

Number of experiment subjects: The average number of subjects used in software experiments is 4 9
[Sjoberg et al. 2005] . This experiment involved a total of 752 subjects.

The experiment duration: The experiment was of a relatively long duration. It had two phases, which
spanned two semesters (a total of six months) .

Real situation experiment: This experiment was done based on real final-year undergraduate student
projects (i.e. not for the purpose of the experiment only).

Coverage and evaluation of a complete development lifecvcle: The experiment evaluated attributes from
a complete development lifecycle.

Detailed Statistical Analysis: Referential, as well as descriptive statistical analysis was carried out to
statistically present and analyse the results.

In the next section, the outline of the thesis will be discussed.

1.6 Thesis outline

The thesis contains nine chapters, which are briefly described in this section.

Chapter 1 - Introduction
This chapter offers an introduction to the thesis. As well as providing the general layout of the thesis, it briefly
presents the background knowledge and describes the s tudy ' s research methods and process. The chapter also
presents the research question and the research hypothesis to be tested in this study.

Chapter 2 - Software Patterns
Software patterns are the key element of this research project. This chapter therefore discusses the concept of
pattern and the issues involved. The chapter presents a literature review of the most relevant research. The
chapter also discusses whether task analysis could be utilised in developing and sequencing patterns.

Chapter 1 Introduction and Outline
9

Chapter 3 - Pattern Usage Surveys
Two preliminary surveys were designed and conducted in an attempt to understand the pattern issues and to help
derive the research question fo r this study. The chapter discusses why, while architectural patterns suffer from a
number of criticisms and defïciencies, software patterns are not affected. The chapter discusses the popularity of
both architectural and software patterns as indicated by the conducted surveys.

Chapter 4 - Software Measurement and Expérimentation
Both software measurement and expérimentation are important components of this research. This chapter
therefore présents and discusses the backgrounds to thèse two topics and reviews the related literature. The
chapter further discusses the current issues and difftculties in both software expérimentation and software
measurement.

Chapter 5 - Expérimental Research Method
The expérimental methodology is the main research method of this study. This research method is used to test
the research hypothesis that process patterns improve the quality of software projects. This chapter présents and
discusses the détails of the design and conduct of the controlied experiment.

Chapter 6 - Measurement Process
The expérimental research methodology includes a measurement process that defines the process of deftning
measurement goals to be achieved and developing metrics that help achieve them. The chapter présents a
specific measurement process for this study, through which a number of software attributes are measured using a
number of defined metrics. The measurement process also defines the data collection and S to rage procédures.

Chapter 7 - Results
The results of the controlied experiment are presented in this chapter. The detailed results of each of the defined
metrics are individually presented. The results of tutor marks used in the experiment will also be presented. The
results show whether each metric or tutor mark indicate significant improvements as a resuit of using process
patterns.

Chapter 8 -Ana lys i s
This chapter présent an analysis of the experiment results. It présents an overall and concise représentation of the
results. It further discusses the results of each metric in terms of its effect and meaning on any particular
software attribute.

Chapter 9 - Conclusion
In this chapter a brief discussion of the research 's contributions and a summary of the achieved results are
presented. The chapter discusses the overall effect of this research in the field of software engineering.
Constraints and limitations of the study are also discussed. There will be a discussion and introduction of
possible areas of related research for future work.

Chapter 2 Software Engineering Pat tems 10

Chapter 2 Software Engineering Patterns

2.1 Introduction

In this chapter the concept and application of patterns in software engineering is critically discussed and the main
related works are reviewed. There will be a discussion of the major concepts and components of software
patterns as well as the general issues surrounding the use of pat tems in software engineering.

In the 'software engineering and pa t tems ' section, there is a discussion of the main characteristics of the pattern
concept, its émergence and utilisation in the field of software engineering. The 'pattern discussion' section
addresses the topical issues on software pat tems such as pattern mining and pattern formalisation. 'Patterns in
software program design ' discusses the pat tems concemed with the product aspect of software development (e.g.
design pattems). This is followed by the 'patterns in software development processes ' where pattems concemed
with development process activities (i.e. process pattems) are discussed and reviewed. In the final section, the
pattern concept is discussed with respect to task analysis utilities. The section covers the relationship between
task analysis and pattems and looks into task analysis with a view to determining whether it can be used in
developing and applying pattems.

2.2 Software Engineering and Patterns

Software pat tems are becoming an important and integral part of software engineering and software
development and numerous articles and books have been published on the subject [PLoP 1994 to 2007] . When in
an engineering discipline it is possible to name, study, and apply pat tems relevant to that domain, it is an
indication of the maturity of the discipline [Booch 2008] . In this section, the background to the application of
pat tems in software engineering is discussed.

2.2.1 How Patterns Entered Software Engineering

Following the research works of Alexander and his team on town building and architecture and the subséquent
publication of the work in a number of books [Alexander 1977, 1979, and 1988], the concept of pattern was
explored by computer science researchers and software engineers with a view to determining its applicability in
software engineering. They realised that the pattern concept might indeed be applicable in solving some of the
design problems in software engineering, due to similarities between the construction of architectural entities and
software applications. Cunningham and Beck [1987] were amongst the first researchers who introduced the
concept of pa t tems in software engineering with the publication of a paper on Smalltalk interfaces. This was
followed by the publication of some pattems for C++ produced by Coplien [1991]. Following the publication of
his thesis, Gamma continued his work in software designs and together with three other experts, known as the
'Gang of Four ' (GoF), produced a design pattern book [Gamma et al. 1995] which is widely accepted as the
authoritative référence book on pattems in software design and development. The publication and subséquent
acceptance of this book within the software communi ty established the pattern concept in software engineering.
The pattern concept contributed towards the notion of agile process in software development méthodologies such
as Extreme Programming (founded by Beck [2000] who was one of the pioneers of the software pattern
movement) .

The popularity of software pattems initiated a forum and a conférence named PLoP (Pattern Language of
Programming Design) organised by a group of pattern pioneers named the Hillside Group, in 1994. The group
set up the conférence and devised a set of protocols for the conférence to suit the pattern properties. Protocols
such as writer 's workshop instead of présentations, disregard of originality, and focus on practicability was and
still is what set it aside from other conférences [Buschmann 1996], Apart front the main PLoP conférence, held
in the USA, there are other worldwide PLoP conférence (i.e. EuroPLoP, KoalaPLoP, ChiliPlop, MansorPLoP,
SugarLoafPLoP, VikingPLoP) which actively accept and publish papers on pat tems. International Journals such
as IEEE and A C M also publish pattems related papers from time to Urne.

For over a decade now software pattems have influenced the way software is designed and developed and have
become part of software development mainstream [Kircher and Volter 2007] [Buschmann et al. 2007]. Whi le

Chapter 2 Software Engineering Pat tems 11

traditionally pattems were generally used in Object-Oriented development, they are now influencing aspect-
oriented and model-driven software development . Design pat tems are included in many C A S E (Computer-Aided
Software Engineering) tools, which have encouraged the automated inclusion of an implementation of pat tems in
code. Although it should be noted that pat tems should not be ideally used in this way as CASE tools do not
understand design and therefore, blind inclusion of pattems in design might prove to be damaging [Kircher and
Voïter 2007], Some studies have indicated that the majority of software development organisations studied used
pattems in their development practice [Manolescu et al. 2007] [Estabraghy and Dalcher 2007b). The popularity
and application of design pat tems is such that many popular Integrated Development Environments (IBM, Sun)
now include tools for utilising design patterns by default. Furthermore, numerous books, scientific papers, and
articles are published on software pat tems (e.g. PLOP Conferences). It appears that the pattern concept has now
become one of the most widely applied and important ideas in software architecture and design and is becoming
a part of the software development practice. However, such success has so far been limited to a single type of
software pattern (i.e. design pat tems, in particular Object-Oriented design pat tems) partly due to the simplicity in
the adoption and application of pattern concept in software design. Given the success of pattems in software
design, it is likely that other types of software pattems will also find success in implementation in due course, as
pat tems mature and become better understood within the software development industry.

2.2.2 Software Pattern Definition

There are various définitions given for pattern by différent authors depending on their views of the concept .
While many simply define a pattern as 'a proven solution to a problem in a context ' , such a définition lacks the
récurrence aspect and appears too simplified and incomplete. Each pattern is both a statement in a pattern
language and a configuration in a program [Gabriel 1996b] that conveys the essence of a proven solution to a
recurring problem within a certain context within competing forces [Appleton 2000] . Noble [2002] describes a
pattern as a sign where the signifier is the pa t tem's solution and the signified is the pattern 's intent (i.e. its
problem, context, known uses, and rationale). Riehle and Züllighoven [1996] define pattern as the abstraction
from a concrete form, which keeps recurring in specific non-arbitrary contexts. Adolph et al. [2002] consider
pattems as stratégies, stating that, as such, they help people thread their way through complex situations.
Alexander [1979] describes a pattern as a rule which describes what you have to do to generate the entity which
it defines. Alexander [1979] also provides many Statements such as 'Each pattern is a three-part mie, which
expresses a relation between a certain context, a problem, and a solution'. The fact is however that the pattern
concept is too profound and multidimensional to be able to be properly defined in one or two sentences and
therefore the définitions differ, depending on which aspect of the pattern is the focus of interest. One really needs
to read Alexander 's books [1977, 1979] carefully to fully understand the philosophy and concept of pa t tems.
However, for practical reasons it is generally agreed that essence of a pattern is a problem and a solution where
the problem is elaborated in terms of its context and applicable forces.

2.2.3 Pattern Elements and Types

Each pattern is described in terms of a number of éléments. There have been many proposed formats for pat tems
and the number of éléments in a pattern has not been traditionally fixed in order to render pat tems flexible.
Consequently, patterns have been published containing a range of between 3 to 13 éléments. There are however
a few éléments, which have become generally accepted to be included in the pattern témplate. The Figure 2-1
illustrâtes the way thèse éléments are interlinked in providing the pattern solution. These éléments are:

Name: It is a word or short, meaningful phrase to describe the pattern.
Problem: States the specific problem to be solved.

Context: States when to apply the pattern.
Forces: Présents the considérations that must be weighted to reach the best solution.
Solution: Describe the éléments that make up the design, their relationships, responsibilities and

collaborations, but no implementation.
Resulting Context: A description of the state of the world after the pattern has been applied. Potential
users of the pattern can study this section to weigh the costs and benefits.

Rationale: Explains the knowledge source and the key factors that makes the pattern useful and
effective

Relating Pa t t ems: State other related pattems. They may solve the same problem or that are situated in
the same pattern hierarchy

Chapter 2 Software Engineering Pat tems 12

Pattern U*er

Ooeratesw

iMu l t i ng Context

Ottaign Prablam

Ralatod Pattern»

I l ipnlied
on« ¿x mor*

Exemples

Figure 2-1 Elements of a pattern (www.hi l ls ide .net)

While there are many types of software pat tems, they can be broadly categorised into the following three types:

• Analysis pattern: concerns analysis modeis that address conceptual structures of business processes
rather than actual software implementations

• Design patterns: concemed with actual software (code and design) implementat ions

• Process/Organisational Patterns: Concemed with organisational and development processes of
software development

Design pat tems and process patterns will be further discussed in Sections 2.4 and 2.5 respectively.

2.2.4 What Patterns Are, and What They Are Not

There are some misconceptions and misunderstandings, within the software communi ty , as to what constitutes a
pattern. Pat tems in software design are used to capture knowledge and proven solutions to design problems and
provide a mechanism for reusing the knowledge of experienced practitioners. They attempi to provide a proven
solution for problems that keep appearing repeatedly. Software pat tems capture important practices of existing
methods and practices, and are n o t concrete software components , S y s t e m s or design methods. They focus more
on the human activities of software development than on opérations that can b e blindly automated, and
encourage human intelligence that separates people from computers [Coplien 1996]. However , patterns are not a
"Si lver bullet" [Rising 1999] and do not address all the reuse and other issues in software engineering. The value
of their application is largely dépendent on both the environment in which they are implemented and the skills
and expertise of the pattern implementers. Therefore, the fact that pat tems are implemented in an application,
does not mean that they have been appropriately and properiy implemented. In a pattern, the precise description
of the problem, and the context in which it is the best solution, is as important as the solution offered.
Accordingly, a full understanding of the problem and the context is cruciai in choosing appropriate pat tems to
apply to specific problems.

It should be further noted that design pattems are not design processes. A design process, typically takes place
during the design stage of software construction and results in a concrete system providing solution to a specific
problem. A design pattern, however, reflects a generic aspect rather than a particular system. An unlimìted
number of concrete S y s t e m s or programs may conform to a single design pattern and, therefore, programs most
often constitute instances of design pattems.

2.2.5 Disregard for Originali tv

The concept of pattern relies heavily on proven solutions, and therefore the pattern community seek to capture
proven ideas and solutions in pattems. This is somewhat in contrast to the normal research and development
policies where innovation, invention and novelty are valued and rewarded. Therefore, by définition a solution
that is new and untried cannot be represented in a pattern - a solution can only become a pattern when it is
applied empirically and is proven to work in at least three différent situations. Although the pattern communi ty
has "complete disregard for originality" [Gabriel 1996b], novel solutions are not completely discarded as
existing pat tems can be applied in novel ways to create novel designs and solutions. Furthermore, there is a
direct relationship between new solutions/concepts and pattems as today ' s new ideas and proven solutions may
become tomorrow 's pattems. It is the researchers and practitioners endeavour to detect and extract workable

http://www.hillside.net

Chapter 2 Software Engineering Patterns 13

solutions in pattern formats, while discarding solutions that are new and novel. This is to ensure that patterns
document proven and workable solutions.

2.2.6 Characteristics of Patterns

For a solution to be a pattern, it has to have the following characteristics:

1. Contain the éléments and structure of a pattern (i.e. pattern témplate)
2. Has to be recurring phenomena

It has been generally accepted within the pattern communi ty that a solution has to have recurred at least three
times in différent situations and by people other than the pattern author, in order for it to be a pattern [Hillside
Group] . This is referred to as the 'rule of three ' . If the pattern does not fully comply with this rule, it is called a
proto-pattern (a conftrmed pattern in waiting).

Patterns by nature can be 'good ' or 'bad ' . There are practices that are widespread and recurring, but the solutions
they provide are wrong. Such 'bad ' (inappropriate) practices are captured in patterns that are called anti-patterns
(also referred to as re-factoring pattern). In other words, anti-patterns are negative solutions that présent more
problems than they address [Brown 1998]. There is however another more positive définition of anti-patterns in
which they contain both the correct and incorrect solution to the problem. In that context, the problem is depicted
as a commonly occurring mistake [Laplante 2006] . There exists an interesting relationship between pattern and
anti-patterns - patterns can often evolve into an anti-pattern. A popular pattern such as procédural programming
can be the popular paradigm of one era and fall out of favour in the next as its conséquences are better
understood. Therefore while procédural programming would have been a 'good ' pattern a couple of decades ago,
it can now be considered as an anti-pattern, partly because it does not provide the necessary encapsulation
mechanisms. Another example of anti-patterns in software project management is the sequential development
process (i.e. the waterfall process) which in the past would have been a pattern, but is now considered an anti­
pattern for many application types, as software requirements are now considered moving targets [Brown 2000] .
The term anti-pattern however has a negative connotation and it would be better to use the term 're-factoring
patterns ' instead. For an example of an anti-pattern (see Appendix B. Patterns).

It can be argued that the broad définition of pattern is too general, resulting in the generation of many patterns
that are too insignificant to be true patterns. Some within the pattern communi ty believe that a pattern should
have characteristics beyond the attributes given above and Winn and Calder [2002] suggest nine such
characteristics. According to this characterisation, a pattern should:

1. Imply an artefact
2. Bridge many levéis of abstraction

3. Be both functional and non-functional
4. Be manifest in a solution

5. Capture system hot spots
6. Be part of a language
7. Be validated by use

8. Be grounded in a domain
9. Capture a big idea

These characteristics however may be either too restrictive in some cases and/or rather vague (open to différent
interprétations - e.g. 'big idea') in others. While in principie compliance to thèse criteria would render patterns
more useful, it would lead to the generation of fewer patterns. While it is neither sensible nor feasible to generate
patterns for any insignificant problem, one has to be careful not to restrict the pattern requirements to the level
that would cause the generation of only patterns that are thought to be significant, and miss or ignore a vast
number of other potential patterns.

Patterns manifest their true power when they are part of a pattern language, rather than stand-alone, where they
are closely related and collaborate in solving a particular problem. Patterns in a pattern language are often so
closely interwoven that they cannot exist in isolation [Buschmann 2007] . Coplien [1995] produced one of the
first software pattern languages in the field télécommunication Systems. However, unfortunately many of the
most popular pattern collections produced [Gamma et al. 1995] [Buschmann 1996] are stand-alone patterns. O n e
way of enhancing the applicability and scope of stand-alone patterns, in order to apply to more complex
problems, is to incorporate them into a séquence pattern. In effect, pattern séquences provide a way of

Chapter 2 Software Engineering Pat tems 14

combining pat tems to solve wider design problems than can be solved by individuai pa t tems [Siddle 2007] . An
example of a séquence pattern is depicted in Table 2 -1 . The example demonstrates how a number of pattems are
executed in a séquence to achieve the required solution.

Pattern Functionality in the Architecture

X Explicit Interface Adds explicitly deftned service interface

Y Encapsulated
Context Object

Introduces object representing service discovery context

X
Decoupled Context
Interface

Découplés service from context implementation by introducing
service discovery interface

y Proxy Adds client-side object, implements explicit interface, and
encapsulâtes remote communicat ion

Invoker Adds service side object, receives service invocations, and
invokes explicit service interface • Lookup Provides ability for service to obtain spécifie proxy for remote
service implementing explicit interface.

Table 2-1 Pattern séquence to add support for service interfaces [Siddle 2007]

2.2.7 Software Patterns and Pattern Principles

For all the popularity of patterns in software engineering, Alexander [1999], the pattern concept founder, does
not seem to agree that his concept of pattern theory is fully understood and applied in software engineering. H e
believes that the main principle and strength of patterns, which is in helping create components that are cohesive
and generative, has not been implemented in software engineering [ibid].

As well as the technical aspect, software pattems should emphasise the importance of the social and moral issues
in software applications and generally a im to improve human life through better software. This is something
which is, by large, missing in many types of software patterns (such as design patterns) because they only
address the technical aspect of software development. The exceptions are those that concern Human Computer
Interaction and usability, which include the human factor [Graham 2003] . One of the main and important
published works in the field of design patterns is the work of G a m m a et al. [1995], which not only set the
standards for design patterns but has also had a major influence on the adoption and popularity of patterns in
software engineering. However, one can argue that these patterns lack the key principles of patterns as proposed
and defined by Alexander [1977] (see Section 2.4). Based on the progress made so far and the forward trend, one
can predict that the role of software patterns will continue to diversify and improve future software engineering
tools and methodologies. However , it will probably be a long time before the software engineering discipline
will be able to fully implement and utilise the concept and principles of pat tems. For that, software engineering
needs to become more mature. This view is supported by Gabriel [1996] who writes: "Software engineering is
not yet engineering and won ' t be, cannot be, for decades, if not centuries, because we cannot yet recognise the
important, repeatable parts. When we do we will have patterns - recurrences, predictability".

The concept of software pattern needs to be given a fresh outlook and emphasis to concentrate on the human,
harmony and aesthetic aspect of pat tems, rather than solely on its technical utility of capturing and recording
software design and experience. The technical benefits that so far have been attributed to the use of patterns
should not undermine its other essential utilities. Based on the theory and concept of patterns as proposed by
[Alexander 1977,1979], the pattern concept has much more fundamental value and potential and, so far, the
rather superficial and simplistic aspects (i.e. capturing design knowledge) are mostly being utilised in software
engineering through works such as [Gamma et al. 1995] and [Buschmann et al. 1996, 2007]. While pat tems are
useful in capturing design knowledge, that should not be seen as their only contribution in software engineering.
Patterns ' other important contribution in software engineering should be to help generate systems that fit
perfectly in the environment in which they operate by interlinking patterns that are individually and collectively
geared to create harmonious systems. Such outlook on the pattern concept and their applications will result in
systems that will ultimately perform better. It is t ime software engineers moved on, from considering patterns as
disparate solution packages, to understand and leverage the value and strength of pattems as a collection of
interlinked and cohesive solutions for generating perfectly adapted systems. It is only then that software
engineering will begin to benefit considerably by the pattern concept.

Chapter 2 Software Engineering Patterns 15

2.2.8 Software Pattern Usage in Industry

Based on a review of the current literature on software engineering in this research, apart from few works such
as [Beck et al. 1996] [Manolescu et al. 2007] , there has been little industriai leve! assessment of software
patterns. Consequently, part of this research included an investigation through a survey research, focusing on the
impact of patterns in the software development industry in the UK, discussed in Chapter 3, which showed that
the majority of respondents used software patterns. A récent work by [Manolescu et al. 2007] indicates that there
was an increasing gap between expert pattern user/developers and the average software developer in terms of
utilising and developing patterns. The study however indicated that the majority of organisations investigated
used and attempted to develop software patterns. While the paper [ibid] reports on the popularity and usage rates
of various types of patterns in software development industry, the paper has not carried out statistical analysis of
the survey results, perhaps due to the insufficient number of respondents. In addition, the paper states that over
70 organisations responded to their survey but failed to elaborate on the exact number or the type and size of
respondent organisations. The results and conclusions of the paper however can be seen as some évidence of
pattern usage and a snapshot of the status of software pattern implementations in industry.

Beck et al. [1996] made a study of some large software development organisation with respect to their usage of
design patterns. Their study indicated some positive results on the utility of design patterns as depicted in Table
2-2.

Patterns FCS AT&T 'Motorola BNR Siemens IBM
Are a good communications médium V V V V V V

Are extracted from working designs V V >/ V V

Capture design essentials V V V V V

Enable sharing of best practice V V V V
Are not necessarily object oriented V V >/ V

Should be introduced through mentoring V V1
V

Are difficult time consuming to write V V
Require practice to write V V

Table 2-2 Results summary [Beck et al. 1996]

Based on their study, the paper made the following three, rather generalised, conclusions on design patterns: 1)
provide 'shorthand' for communicating complex concepts effectively between designers, 2) can be used to
record and encourage the reuse of "best practices", and 3) capture the essential parts of a design in compact
form. Researchers and authors have since used thèse claims of the beneficiai effect of design patterns as
évidence of the utility of design patterns. However , one should keep in mind that this was a small study based on
a small number of samples - too small to be able to généralise the results or make generalised conclusions.
Nonetheless, this paper reports on one of the first such studies to evalúate the utility of software patterns and,
while the conclusions achieved cannot be statistically generalised, they prompted other studies [Prechelt 2 0 0 1 ,
2002] to evalúate patterns and examine the validity of the conclusions reponed in this paper.

In the next section various important and topical issues and aspects of patterns is discussed.

2.3 Pattern Discussion

There are many issues on software patterns, which have generated many discussions and viewpoints within the

software engineering and pattern communit ies . In this section, thèse points and issues are raised and discussed.

2.3.1 Pattern Mining

There are a large number of 'proven solutions to specific problems ' used by software practitioners. It is
important that such problem/solution pairs, which are proven to work and are useful, should be extracted and
written up in pattern format in a database repository, so that they can be utilised by others. Rising [1998]
proposed a number of ways of mining such expérience and knowledge and reproducing them in pattern formats.
These techniques include interviewing, Workshops, meetings, classes, books and articles. Pattern mining is
already happening and, apart from patterns presented in published books and papers, there are currently a
number of pattern repositories (e.g. Grady Booch ' s Handbook of software architecture
(www.booch.com/architecture), Portland Pattern Repository [http://c2.com/ppr]). However , while there is one that
contains over 2000 patterns [Booch 2008], most repositories contain very few patterns and many proposed and
published patterns are still scattered in various papers, articles and conférence proceedings. While in engineering

http://www.booch.com/architecture
http://c2.com/ppr

Chapter 2 Software Engineering Pattems 16

disciplines, such as civil, mechanical, and electrica! engineering, fundamental é léments of the common
architecture styles in works can be exposed and compared, such actions are extremely difficult if not impractical
in software-intensive S y s t e m s due to a lack of architectural référence [ibid]. M a n y potential pattern users have
stated that they have had difficulty in finding appropriate patterns applicable to particular problems [Manolescu
et al. 20071. There should be a more concerted effort by the pattern communi ty to record such published patterns
in a repository, to make search and extractions of such patterns easier. However, having a repository where
articles on pattems are stored will not provide the desired outcome. Rather than simply storing pattern papers
and articles in a repository, the pat tems in such papers should be edited, categorised and stored in a database that
is based on key indices. Provision of such databases would render searching for the tight pattems systematic and
more fruitful.

2.3.2 Can Patterns be Harmful?

Pattems can be harmful if they are inappropri atei y used and implemented. Pat tems, in particular design pat tems,
a r e often difficult to understand by inexperienced software engineers due to the complexity of the
problem/solution they describe, as well as the detailed and abstract way in which they are presented. Jalil and
Noah [2007] found novice programmers had difficulty in systematically choosing and applying design pat tems.
It is essential that the problem to be addressed is fully understood with respect to its context and the forces acting
on it, before using a pattern to résolve it. There are two situations where pat tems can be harmful:

1. A lack of full understanding of the problem domain
2. Misunderstanding pat tems

Pat tems can therefore be misapplied, forced to fit, or overused in which case their application would be harmful
rather than beneficiai. There are many instances in the literature [Shalloway 2003] in which incomplete
compréhension of the problem domain, or misunderstanding of pat tems, may have caused the application of
inappropriate pattems to the problem. Wendorff [2001] reports on a large commercial project where the
uncontrolled use of pat tems contributed to severe maintenance problems, which required substantial re­
engineering effort to be put right.

It is important that the context in which a pattern is applicable is w e l l understood before attempting to use it. As
well as understanding a n d considering the applicable forces, one must also understand and take into account the
conséquences of applying a pattern to a problem. A misunderstanding of thèse factors could result in a situation
where an application pf a pattern could be harmful. For instance, the ' code ownership ' process pattern requires
individuai developers to own specific code that only they should modify. However , for this pattern to work the
architecture needs to be interface-based and, therefore, application of this pattern to other types of non-interfaced
architecture could prove harmful.

2.3.3 Do Software Patterns Work?

There have been many claims in the literature on the advantages and usefulness of software pattems [Buschmann

et al. 2007] [Gamma et al. 1995] [Beck 1996] [Gueheneuc 2001] [Rising 1998] [Larman 2002]. These include
the following:

• Provide a common vocabulary for designers to communicate documents and explore design alternatives,
and therefore improve communication between designers and maintainers.

• Offer "best practices" solution to common problems.

• Capture/record the expériences of expert designers.

• Help beginners to learn by example expert solutions.

• Make the system adopting pat tems more flexible and easier to understand

• Facilitate reusing, exporting and importing design ideas

• Reduce the number of defects

While such claims may sound plausible, there has not yet been enough empirical research to verify them. It is
one of the aims of the research undertaken in this project to provide some évidence regarding the utility and
benefits of software pat tems. There have been some empirical studies showing that pattems enhance
communicat ion between designers by providing a shared vocabulary [Unger and Tichy 2000] . However, there
have also been some studies indicating that software pat tems are disadvantageous for making software complex
and more error-prone [Bieman et al. 2003] . There is therefore a need for further empirical work to evaluate
software pattern potential a n d utility in software engineering. It has b e e n the main a i m of this research to provide

Chapter 2 Software Engineering Patterns 17

some scientific evidence, through an empirical study, on the utility and benefits of software patterns. This s tudy
has provided evidence that the application of process patterns improve the quality of a software development
project in terms of a number of attributes (see Chapter 7 and Chapter 8).

One, however, should be cautious in concluding that patterns work by the results of a few studies. M a n y
empirical studies have limited scopes and their conclusions may only be valid for the environment in which they
are conducted. The question of whether software patterns work can only be convincingly answered when there
has been much more research carried out on various types and aspects of software patterns at both academic and
industrial levels. Furthermore, even if it is proven in theory that patterns work, the question remains whether
they would work in practice as implemented in the software industry. One difficulty in pattern implementat ion
and usage is the need for complete understanding of the pattern, as well as the problem they are a imed to solve.
Therefore, patterns may not work in practice in some situations because they are implemented incorrectly. In
such situations, it is not the patterns that do not work, but their implementation in a wrong and invalid context. It
is therefore essential that more empirical research, such as this, be conducted to enhance our understanding of
software patterns and their strength and weaknesses in helping to develop high quality software.

2.3.4 Should Patterns Be Formalised?

There is an on going argument on pattern formalisation within the pattern community. The exponents argue that
pattern formalisation is necessary and provides a number of important advantages and benefits [Eden 1999]
[Dittmann et al. 2002] [Bayley and Zhu 2007] . Formalisation of patterns would enhance the clarity and accuracy
of patterns, and the relationships between them, by imposing logical and mathematical constraints. It would
further help in developing a more formalised pattern validation process, as well as making it easier to develop
comprehensive patterns tool support to automatically and systematically detect and implement patterns. There
are already many proposed techniques and tools for detecting G o F ' s design patterns in a program, such as
[Tsantalis 2006] , which is based on calculating the similarity between a particular design pattern and the target
program, in terms of the structural relationships between classes. A technique to formalise process patterns has
been proposed by Dittmann et al. [2002] through introducing what they call a Process Pattern Description
Language (PPDL). The proposed P P D L uses U M L notations to depict the necessary process tasks in solution
element of the pattern. While useful, the proposed technique only involves the addition of U M L notations to the
solution element of the pattern and does not truly formalise process patterns. Furthermore, the proposed P P D L
will only be applicable to a restricted number of processes. In general, the formalisation of patterns may be
disadvantageous for the following reasons:

• Patterns are intangible, elusive, and hence beyond the scope of mathematical expression
• There is no fixed element in patterns, and everything can be changed about them. In other words, if the

basic structure were fixed then it would not be a pattern any more. [Coplten 1996]
• Patterns are abstractions, or generalisations, and therefore are not appropriate to be expressed in

mathematical terms
• Formalising the solution makes it harder to grasp the key ideas of the pattern, programmers need

concrete information that they can understand, not an impressive formula." [Buschmann et. al 1996]
• Formalisation damages the human factor notion of patterns rendering it more automated and less human

oriented

While there are benefits to formalising some types of patterns, the disadvantages that would ensue outweigh the
benefits. Patterns, therefore, should keep to their original principal of being flexible and abstract, and remain un-
formalised and free from constraints that such a measure could impose. Formalisation may prove beneficial for
some types of software patterns in the future when both the software pattern concept and the domain in which
they relate are better understood and established. Currently, however, formalisation of patterns is neither
practical for all pattern types, nor is it feasible or beneficial. Research should be encouraged to develop tools for
pattern detection, composition, and application, accounting for the abstract and flexible nature of patterns.

Patterns are applied to both product and process aspects of software development. In the following section
patterns related to the product aspect of software development is discussed.

2.4 Patterns in Software Design

As discussed above, the first applications of patterns in computing science was in the field of software design
(i.e. design patterns). A design pattern names and explains a general design that addresses a recurring design
issue in a software application [Schmidt 2000], It describes the problem and the solution, as well as when to

Chapter 2 Software Engineering Pattems 18

apply the solution and what would be the conséquences of ïts application. It also offers implementation hints and

examples. The solution is a general arrangement of objects and classes and is customised and implemented to

solve the problem in that particular context.

Amongst the most prominent work on design pattern, is the work of G o F in the book 'Design Pattems, Elements

of object oriented Software ' [Gamma et al. 1995]. The book introduces 23 object-oriented design pat tems in ail,

which are divided into three distinct catégories of object création, object structure, and object behaviour. Each

pattern within thèse catégories présents a solution to a common recurring problem in software development .

Although there have been many more design pat tems published since, thèse design pat tems (known as G o F

Pattems) are the most widely known and used, and présent solutions to the most common object-oriented design

Problems [Manolescu et al. 2007] . The impact of G o F ' s work [Gamma et al. 1995] has been such that often the

phrase 'design pat tems ' refers to the pat tems introduced in this book. However, party due to the influence of this

book, most designers wrongly think that design pat tems are only applicable in object-oriented designs

[Sommerville 2007] . Design pat tems as a way of encapsulating expérience are in fact equally applicable to ail

software design approaches.

For the format and structure of the design pat tems, G o F use a format that is more detailed than that which

Alexander used in 'A Pattern Language ' , containing 13 éléments as depicted in Table 2-3. The comprehensive

set of éléments can be considered as strength of the work in fully documenting ail aspects of the introduced

pattems. However, it can be argued that it would have been perhaps more appropriate to the flexibility and

abstract nature of the pattern concept had there been fewer éléments. That would not indicate a loss of content,

but a rearrangement to repackage the conveyed information in fewer éléments. For example, some of thèse

éléments (e.g. Motivation, Applicability, Conséquences, Collaborations, and Participants) could be integrated

into more conventional pattern éléments such as Forces and Context (2.2.3). It has to be acknowledged however

that software design and architecture is often complex and intrinsic and. therefore, one has to accept the extra

complexity in the pattern formats (e.g. no. of pattern éléments) to enable full and unambiguous description of the

pattern at the expense of simplicity.

« ü ü i m H i i i i i m m l i ' ^ ' . O n u i iïl 1 MTÌWMnraKTfiif f i ' L ' . iTTrfe.'-'i Pattern Name What is the pattern called?
Intent What problem does this pattern solve?
Also known as What are other names far this pattern?
Motivation What is an example scenario for applying this pattern

Applicability When does this pattern apply?
Structure What are the class hierarchy diagrams for the objects in this pattern?
Participants What are the objects that participate in this pattern?
Collaborations How do thèse objects interoperate?

Conséquences What are the trade-offs of using thèse
Implementation Which techniques or issues arise in applying this

Sample Code What is the example of the pattern in source code?

Known uses What are some examples of real system using this pattern?

Related pattems What other pattems, from this pattern collection, are related to this pattern?

Table 2-3 GoF's design pattern éléments [Gamma et al. 1995]

Gamma et al. [1995] claim that their pat tems have ail been fully tested and proven to work. In fact, the last

élément of the pattern format is 'Known Uses ' , which contains the détails of where the pattems were applied.

Furthermore, the pattems were tested on a speciFtcally developed application named ET++. Although there are a

number of pat tems (23 in all) in this book, they fail to be cohérent enough to form a pattern language. At one

leve!, they can be considered as just a library of C++ code templates. For thèse to comply with the true principles

of the pattern concept they needed to be much more cohérent. They are isolated and rather disjointed, and do not

interrelate as they would have in a pattern language. Gamma et al. [1995] admit that the design pat tems

introduced in the book do not completely conform to the définition of a pattern language, arguing that it had not

been an aim or objective of the work to represent a pattern language. However, they produced 23 of the most

populär design pat tems, which are widely used by software practitioners, about which many books and articles

have been published. The introduced pattems have been widely discussed and studied by both researchers and

practitioners [Beck et al. 1996] [Bieman et al. 2003] [Prechelt et al. 2002] .

Apart from G o F ' s book [Gamma et al. 1995], another important publication on design pattems is a book by

Buschmann et al. [1996] which defines several well-known design and architectural pat tems, such as the Proxy,

Chapter 2 Software Engineering Pat tems 19

Whole-Part , Master-Slave, and Broker, presented in three hierarchical levéis. At the highest level are the
architectural patterns, followed b y the design pat tems, and Finally idioms. It introduces eight well-known
pat tems where each pattern is described and discussed to a deeper level and more clearly than those introduced
by Gamma et al. [1995]. Pattems introduced in this book were amongst the first published software architectural
pat tems, presenting some established architectural solutions in pattern formats. However , one weakness of the
book, which could prove problematic to the novice pattern user, is that it does not clarify, through examples or
otherwise, where and how the pattems should be used. Further volumes of this book have been periodically
published, each introducing many established software architectural patterns for différent domains and
technologies.

There have been many claims in the literature regarding the positive effect of design pat tems. It is claimed that
designing an application with the proper use of design pat tems would reduce the number of defects [Gueheneuc
and Albin 2001] . There have also been other claims that using design pat tems provides additional flexibility and
easier understanding of the design [Rising 1998] [Buschmann et al. 1996, 2007] [Larman 2002] . There have also
been some studies reporting negative effects of design pat tems. Bieman et al. [2003] studied five S y s t e m s (three
proprietary S y s t e m s and two open source S y s t e m s) to identify the observable effects of the use of design pat tems
on the changes that occur to the S y s t e m s as they evolve. In this paper, a number of design pat tems were used in
the early versions of some applications and the errors contained in the later versions were compared to those
applications that did not use any design pat tems. The study indicated that, in four out of the five S y s t e m s studied,
the application of design pattems made the S y s t e m s more error prone. The use of design pattems appears to have
caused a higher number of errors, which is contrary to expectauon. A number of reasons, such as incorrect
application of pat tems, as well as a lack of understanding of the applied pat tems by the involved programmers ,
could have been the cause. The inconsistent and at t imes contradictory results reported in the literature, on the
very few studies that have been carried out on pattern utility, necessitate further studies. Unfortunately, design
pat tems have been associated with a degree of hype [Hillside Group] in the industry, and often it is taken for
granted by many that GoF ' s design pat tems are useful whenever and wherever they can be applied. The fact is
however that the value and utility of pattems can only be evaluated and judged through scientific studies that
exclude hype and bias. Unfortunately, so far only very few such studies are reported in the literature and there is
therefore a need for many more empirical studies to be conducted to evalúate software pat tems.

Design pat tems are, however, concemed with product (which is the resuit of the design), not the process of
designing. In the following section the process aspect of software development, and the application of pa t tems
within them, is discussed.

2.5 Patterns in the Software Development Process

Development of a software application requires a development process that is designed to orchestrate and control
the activities and tasks within the software development project. The quality of software producís relies
s igni f icante on the quality of the process used to design, develop, deploy, and maintain them [Fuggetta 1998],
Pat tems that deal with development process activities are referred to as process patterns. They are the main topic
of this research, in which their utility and effect in software development is empirically examined through
expérimentation.

Process pat tems attempi to provide a mechanism for communicat ing approaches to development that have
proven to be effective in practice. According to Ambler [1998], they are the reusable building blocks from which
organisations may tailor a mature software process. Process pat tems are similar to design pattems in principie
and concept, except that they exist in the process domain. There are a number of works on this topic including a
two-volume book covering pat tems in ail major phases of a complete development lifecycle [Ambler 1998,
1999]. There are various définitions for process pat tems. Coplien [1995] defines process pattems as "Pat tems of
activity within an organisation and its projects". Storrle [2003] simply states that a process pattern describes a
piece of a process. Ambler [1998] defines process pattems as "Pat tems which describe a proven solution,
successful approach and /or series of actions for developing software."

A major contribution to the concept of process pat tems is Copl ien 's paper [Coplien 1995], which was presented
at the first PLoP (Pattern Language of Programming) conférence. This paper was the resuit of a three-year
research at the AT&T, , which investigated the software organisational structure as well as the development
practices. Based on this study, the paper introduces 43 pattems, which it claims improve organisat ions '
development processes. These pattems follow a standard témplate consisting of five éléments: Problem, Context,
Forces, Solutions, Resulting Context, and Rationale. Most of the pattems introduced in this paper are short and
concise. An example of a simplified process pattern introduced by Coplien [1995] is shown in Table 2-4.

Chapter 2 Software Engineering Patterns 2 0

Name Prototype
Problem Early acquired requirements are difficult to validale without testin g
Context Trying lo gainer requirements necessary for test planning
Forces Requirements are always changing

Requirements are usually ambiguous

Solution Build a prototype, whose purpose is to understand requirements.
Resultine Context A better assessment of requirements to supplément use cases

Table 2-4 Prototype process pattern

Coplien [1995] argues that an important and significant attribute of the process patterns he introduced is that they
are generative patterns (i.e. one pattern can indirectly cause the création of other patterns or processes
[Alexander 1979]). In validating the introduced patterns, Coplien [1995] uses both the 'case study' method and
what he calls ' commonsense approach ' . The patterns are based on combined empirical observations with a
rationale that attempts to explain them.

Whilst it is fully acceptable that the patterns produced in Copl ien ' s paper are indeed the activities practiced at
A T & T at the time of this study, it is not always clear whether the introduced patterns are positive or negative in
their effect (i.e. whether they are 'good ' or 'bad ' patterns). While the validity of the patterns can be fully
endorsed, as they have appeared to occur in a real life situation, it has not been established whether every pattern
introduced will résolve the problem it has been claimed it should. A weakness of the work is its implemented
validation method where the author has often relied on his commonsense and rationale as a method of validating
the patterns. This implies that the pattern user would have to rely on the author ' s commonsense and rationale, to
a certain extent, to accept that the introduced patterns are useful and reliable. Furthermore, the c la imed
generative aspect of the produced patterns has not been sufficiently substantiated. It has not been explained (e.g.
through examples) how and why the produced patterns would cause the generation of other patterns. A further
weakness of the work is that, while the 43 patterns introduced in the paper are related, référence one another, and
présent a catalogue or system of pat tems, they do not form a pattern language. In order to form a pattern
language, the patterns needed to be closely linked structurally, and address the whole software development
domain.

The strength of this work is in the production of a comprehensive set of process patterns, which were the resuit
of a 3-year case study research. The patterns are succinct and clearly written, presenting ali the important pattern
éléments such as forces and context. The author is also a respected pioneer of the software pattern movement ,
and has written many books and papers on the subject [Coplien 1991, 1996, 2005]. The paper is widely
referenced and is generally accepted as one of the first papers and a key contribution to patterns in organisational
and developmental process activities of software development organisations [Ambler 1998]. Many of the
patterns stated in this paper are used in the experiment (Appendix A. Experiment Details).

Ambler [1998, 1999] produced a system of process patterns defined hierarchically in terms of the level and

scope of the process they describe. These patterns ranged from high-level view of how a specific project phase
works, to a more detailed view of a specific task or activity. Three types of process patterns are defined in a
hierarchical format:

1. Task process pattern depicts the detailed Steps to perform a specific task such as the technical review

tasks.

2. Stage process pattern depicts the Steps, which are often performed iteratively in a single project stage.

A stage process pattern is presented for each project stage (e.g. model stage)
3 . Phase process pattern depicts the interactions between the stage process pattems for a single project

phase.

The hierarchical structure of thèse pattern types are depicted in Figure 2-2.

Chapter 2 Software Engineering Patterns 21

Level 2; Stage Process Pattems

Level 3.' Task Procasâ Raîîerra

Figure 2-2 Hierarchical structure of process patterns

Figure 2-3 présents an example of a task process pattern and depicts the activities involved in the ' technical

review' task process pattern.

Figure 2-3 Task process pattern for technical reviews

A pattern template, composed of four éléments, is used to présent the patterns as shown in Table 2-5.

No Element Description
1 Name Name of the process pattern
2 • Initial Context The initial entry condition sets out the condition that has to be satisfied

in order to move to the next stage
3 Solution This élément contains the main solutions provided by the pattern.
4 Resulting Context This élément contains the conditions that have to be satisfied in order

to complète the pattern

Table 2-5 Elements of process pattern [Ambler 1998]

Ambler ' s work [1998, 1999] has a number of positive points, which enhances the strength of the presented
patterns. While most work on process patterns deal with some aspect of the development process [Whitenack
1994] [Kerth 1995] [Delano 1998], this work covers a complete development lifecycle. The process patterns
encompass ail major development activities such as requirement analysis, design, development, delivery, and
maintenance. The author uses his own expérience as well as other documented évidence in writing and validating
the patterns. A further strength of the work is the introduction of three types of patterns and the establishment of
a hierarchy in which they are presented. The catégorisation of the process patterns in three hierarchical levels has
helped to make the process patterns concise and easier to understand and implement. Such distinct catégories of
patterns offer the pattern user the choice of employing any process patterns to the required level. For example,
the stage process pattern ' p rogram' describes the activities necessary to accomplish the programming activity. A
pattern user may be satisfied with the general guidelines and solutions presented at this level of hierarchy.
However, if the user required more détails, they could go down a level and study the task process patterns related
to lower level activities. Depending on the nature and scope of the problem and the level of solution required, a
single or a group of patterns can be employed to solve a single process problem.

The work, however, suffers from some weaknesses. The three hierarchical levels would have benefited from
further lower levels with additional detail. The 'task process pat tems ' are too generic and are, therefore, long. It
would have been préférable for the task process patterns to be further divided into two hierarchical levels making
the process patterns into a 4-level hierarchy. There is also inconsistency in the pattern format as three différent
formats are presented. While the format for the phase process pattern and stage process pattern are similar, the
pattern format for the task process pattern is différent, containing fewer éléments. Although one can argue that
the différent characteristics of the process pattern types necessitate différent approaches in their formats, the
work would have benefited in terms of its clarity and substance if a consistent pattern format had been used. The
presented patterns further suffer from a lack of presentational quality. Some of the pattems are poorly presented
and edited and contain typographical and other mistakes (such as unftnished sentences).

Chapter 2 Software Engineering Patterns 2 2

Another comprehensive work on process patterns is conducted by D ' souza and Wills [1999] who présent a set of

54 individual process patterns on object, component and framework development. The process patterns cover
there catégories of development activities, namely, business modell ing, component i spécification, and

component implementation. For each activity category, there are a number of patterns with differing levéis of
granularity. The patterns for the business modelling activities include make a business model, présent business

vocabulary and rule, involve business experts, choose a level of abstraction, and généralise and spécialise. The
pattern schema used has six é léments as shown in Table 2-6.

No Element Descriptìon
1 Name Name of the pattern
2 Intent An account of the rationale of the pattern - its benefits and application area.
3 Context Circumstances under which the pattern should be applìed
4 Consideration Consideration of the forces involved
5 Strategy Strategy for presenting the solution
6 Benefit Advantages of applying the patterns

Table 2-6 Pattern elements in [D'souza and Wills 1999] patterns

One important attribute of this work is its attempt to present the patterns as a pattern language. The language
aspect of patterns is an important concept in the pattern theory, which unfortunately, has not been achieved in
key works on software patterns. For example, two classical and seminal works on software patterns, [Gamma et
al. 1995], and [Buschmann 1996] are both catalogues of patterns rather than pattern languages. In a pattern
language, the pattern user is able to select individual patterns to form a sequence of patterns, in a manner that
collectively solve a particular non-trivial problem. In such pattern languages, there would be numerous ways in
which the patterns can collate and coalesce to solve a problem. This is analogical to the way infinite numbers of
sentences can be generated by linking words in a natural language.

Therefore, a key strength of this paper is that the introduced patterns incorporate some pattern language
characteristics in the presented patterns. For example, the patterns can be used to plan a route method for the
development of new applications, or for reengineering an existing one. Furthermore, the presented patterns cover
key tasks in the three components of the development activities mentioned above. The presented patterns are
lightweight and present a concise solution for each pattern and, where necessary, U M L is used to explain and
clarify solutions. The work, however, suffers from some deficiencies. Although it is claimed that patterns are
used in case studies presented in the book, it has not been explained which patterns were used, and the
circumstances of their application are not stated. The majority of patterns are concentrated on the design aspect
and there are few patterns on coding, testing and requirement analysis. Another weakness of the work is the
inconsistency in the pattern schema depicted in Table 2-6 where many patterns miss the Context and Benefit
elements.

In his PhD research, Storrle [2000] made a comprehensive study of process patterns, in which a number of

process patterns have been proposed. H e has studied and investigated the architecture centric processes and has
anticipated that such processes would be best described by process patterns since they can be applied repeatedly
at several levels of abstraction. A non-hierarchical four level classification is used for the proposed process

patterns. These classifications are:

1. Abstraction level: Techniques and development styles

2. P h a s e : Specification, design, realisation and maintenance
3. P u r p o s e : Administration, the construction of proper and quality assurance

4. Scope: Project, Component , Style

The tempiate/format used for the pattern description is presented in Table 2-7.

Chapter 2 Software Engineering Patterns 2 3

No Element • Description
1 Title This is usually identical to the name of the task that is supported by the pattern
2 Synonyms Other adequate names
3 Classification Abstraction level, phase, purpose and scope
4 Related Patterns Relationships to other patterns
5 Intent An account of the rationale of the pattern
6 Motivation A scenario that illustrates the applicability conditions and purpose of the pattern.
7 Consequences Discussion of the advantages and disadvantages of using the pattern
8 Participants The actors, roles/resources, techniques, activities, tools and document types

involved in the process, and their respective roles.
9 Applicability The prerequisites for applying a pattern, the context where it may be applied.
10 Deliverables Describes what (parts of) documents are created or changed in which way by

applying the pattern
11 Process The central part of a process pattern is the description of the process fragment itself

Table 2-7 Pattern elements [Storrle 2000] patterns

The strength of this work is the classification, the pattern schema and the set of patterns it contains. The
classification proposed has the advantage of being analogical and compatible to the well-established pattern
classification proposed in G o F ' s design patterns [Gamma et al. 1995]. Similarly, while the schema uses fewer
elements than those proposed in GoF ' s design patterns, the elements adopted are suitable and correspond to the
nature of the process that the patterns describe. A further strength of the work is the number and scope of process
patterns proposed. In total, there are 25 patterns, each of which is well defined in accordance with the devised
pattern schema.

The work, however, suffers from many weaknesses, one of which is the lack of pattern name and classification
in the pattern schema for the proposed patterns. Although each pattern introduced in this work has the name and
classification mentioned at top of the page, it is not included in the pattern schema (template). The absence of
these elements in the pattern schema could make the process pattern ambiguous and more difficult to use. It
would further complicate the processing, recording and indexing of these patterns in a pattern repository
[Portland Pattern Repository]. Another weakness of this work is the quality and completeness of some of the
proposed patterns. Some of the patterns seem superficial and lack the broad and full details exemplified in other
works [Ambler 1998]. For example, in the pattern 'Analyse Domain ' , the solution offered for the process is,
'The structure and logic of the application domain should be analysed in the usual ways, resulting in a number of
class and activity diagrams in the respective v iews ' . Here it is not clear what the 'usual ways ' are, and such
patterns or solutions, as offered in this paper, are not substantive and lack elaboration and clarity.

Cary and Carlson [2002] present 25 process patterns on requirements, analysis, and design. The patterns cover
issues such as communication, iteration, consistency, incompleteness, and flexibility. The patterns are
specifically aimed at framework development and reflect the author ' s practical experience in framework
development. A framework is defined as a set of components working together to address a number of problems
in one or more domain. One of the strengths of this work is the number of elements the patterns contain and the
comprehensiveness in which each element is presented for all the patterns. The schema use is similar to that of
G o F ' s design patterns and contains 12 elements, which are depicted in the Table 2-8.

No Element Description
1 Name Name of pattern
2 Also known as Other names for the pattern
3 Inten t What the pattern is about
4 Context The motivation for the pattern
5 Examples Examples from case study
6 Problems A concise statement of the pattern addresses
7 Approaches Various solution approaches
8 Solution A concise statement of how the pattern recommends solving the problem
9 When to use Tradeoffs of the pattern, normally based on the case study
10 Applicability A concise statement of the tradeoffs
II Known uses Places the pattern was applied
12 Related Pattems Other patterns related to the current one and how they are related

Table 2-8 Pattern elements in Cary and Carlson [2002]

Chapter 2 Software Engineering Pattems 2 4

Although the book Covers some key thèmes and aspects of framework development such as communicat ion and
flexibility, a weakness of the work is its limited coverage of the extent and depth of development process issues
concerned in framework development. However, the issues that are raised are covered well in the process
patterns that it présents. A further weakness of the work is that the introduced process pat tems are disjointed and
disparate and do not form a pattern language, from which a pattern séquence could be generated to solve a
detailed and complex problem. While it présents examples of how individuai pattems would solve the intended
problem, the work does not présent scénarios in which a number of pat tems could be interlinked to solve a
specific problem o r achieve a specific goal.

As part of the solution éléments, pat tems may contain instructions/tasks, which may be required to be carried out
sequentially, in parallel or in no particular order. The hierarchical nature of pattems and the tasks/instructions
involved are discussed in the following section.

2.6 Instructions in Patterns

As part of its solution élément, a pattern may contain one or more instructions (tasks) to be carried out
sequentially, in parallel or in no particular order. In pattern languages, where a number of related pat tems are
concerned with a particular problem domain, the relationships between pat tems are hierarchical [Alexander
1977]. A pattern language is a structured collection of pat tems that build on each other to transform needs and
constraints into an architecture [Coplien et al. 2005] . Pat tems in a pattern language work together in such a way
that a collection of pat tems can be selected from the language to provide a solution for a complex problem.
Pattern languages have hierarchical structures, where différent processes occur on différent scales or levels, and
connections exist both on the same levels, and across levels [Salingaros 2000] .

This hierarchical nature of pat tems, in pattern languages or S y s t e m s , is présent in both software and non-software
domains. The solution élément of a higher-level pattern may contain tasks as part of its solution, each of which
could themselves be presented as lower level pattern. For example, 'architectural pa t tems ' are concerned with
higher level design and architecture issues, while 'design pa t tems ' and idioms deal with problems at a lower
level. This hierarchical nature of the pat tems, in a pattern language, is a fundamental concept of pattern. This is
illustrated and emphasised by Alexander [1977], where the introduced pat tems in the field of architecture, are
hierarchical 1 y ordered, beginning with the very largest, for régions and towns, then working down through
neighbourhoods, Clus ters of buildings, buildings, rooms and alcôves, ending finally with the fine détails of
construction. Each pattern is linked to certain larger pat tems which come above it in the language, and to certain
smaller pa t tems which come below it. The pattern helps to complete those larger pattems which are above it in
the hierarchy, and is itself completed by those smaller pat tems which are below it. In a pattern language,
therefore, the pattems at higher levels are decomposed into lower level pattems, which address smaller
problems. The décomposit ion of a higher task into smaller, lower level tasks, is an important component of Task
Analysis. There therefore appears to be a relationship between pat tems and task analysis which will be
investigated in the following sections.

While the solution éléments of some pattems may présent one or more instructions, to be carried out either
sequentially or in parallel, that is not a general mie. In order to explore the hierarchical structure and task-based
solutions in pat tems, various types of software and non-software pat tems (i.e. building and architecture pat tems,

design pat tems, and process pat tems) are discussed in the following sections. Process pat tems in particular are

the focus of the discussion.

2.6.1 Patterns in Town and Building Architecture

The task based structure of architectural pattems are presented in two typical pattems 'Window Place ' and
'Outdoor room' [Alexander 1977] shown in Table 2-9 and Table 2-10. In thèse pattems the solution is given as
one or more tasks to be carried out to achieve the goal and generate the pattern. There could be another pattern
associated with each task that would présent a décomposit ion of the given task. For example, the task 'keep the
sili low ' is dealt with another pattern 'Low Sili (Pattern 222)*. The tasks in these pa t tems do not need to be
carried out sequentially.

Chapter 2 Software Engineering Patterns 25

Pattern Name Window Place
Problcm Design of a residential room
Forces One wants to sit down and be comfortable

One is drawn toward the light
Solution In every room where you spend any length of time during the day, make at least one window

into a "window place."
• Make it low and self-contained if there is room for that - (Alcôves Pattern 179)
• keep the sili low - (Low Sili Pattern 222)
• put in the exact positions of frames, and mullions, and seats after the window place

is framed, according to the view outside - (Built-in Seats Pattern 202), (Naturai
Doors and Windows Pattern 221)

• And set the window deep into the wall to soften light around the edges - (Deep
Reveals Pattern 223)

Table 2-9 Window Place Pattern

Pattern Name Outdoor room
Problem Design of an outdoor room
Forces A garden is the place for lying in the grass, swìnging, croquet, growing flowers, throwing a

ball for the dog. But there is another way of being outdoors: and it needs are not met by the
garden at ali.

Solution Build a place outdoors which has so mudi enclosure round it that it takes on the feeling of a
room, even though it is open to the sky. To do this, define it at the corners with columns,
perhaps roof it partially with a trellis or a sliding canvas roof, and create "walls" around it,
with fences, sitting walls, screens, hedges, or the exterior walls of the building itself.

Table 2-10 Outdoor room Pattern

Any pattern within the pattern language can be used in a sequence (also referred to as a construct or a language)
to generate a solution to a specific problem. For example, the outdoor room pattern above can be used in a
pattern sequence to build a porch, as shown in Table 2 -11 .

Nò H jÊ^-gr Pattern Narriez' -Jn, Pattern No
1 Private Terrace on the Street 140
2 Sunny Place 161
3 Outdoor Room 163
4 Six-foot Balcony 167
5 Paths and Goals 120
6 Ceiling Height Variety 190
7 Columns at the corners 212
8 Front Door Bench 242
9 Raised flowers 245
10 Différent Chairs 251

Table 2-11 An example of a pattern sequence (also referred to as
language or construct) for building a porch

These two examples of architectural patterns demonstrated both the hierarchical and task oriented nature of
patterns in the field of architecture. The following is a further example of the nature of patterns in the field of
software engineering.

2.6.2 Patterns in Software Design

The Model-View-Controller architecture pattern [Gamma et al. 1995] [Buschmann et al. 1996] presents a
method of decoupling presentations from data in a software application. A simplified version of the pattern is
given in Table 2-12 below.

Chapter 2 Software Engineering Patterns 26

Pattern Name Model-Vie w-Controller
Problem How to provide several user interfaces to a set of data
Solution The following tasks need to be accomplished

• Encapsulate core date in a model component. (Composite Pattern)
• Display information to the user using view component. (Factory Method Pattern).

(Decorator Pattern)
• Use a controller component to control user interaction with the system (Observer

Pattern), (Strategy Pattern)
Related Patterns Composite Pattern, Method Pattern, Decorator Pattern, Observer Pattern Strategy Pattern

Table 2-12 Model-View-Controller

The solution presented in this pattern can be seen as a number of tasks, each of which refer to other
hierarchically lower level patterns (i.e. design patterns), that help accomplish the task. A further example is a
simplified version of the 'Decorator ' design pattern [Gamma et al. 1995] shown in Table 2-13 where, in the
solution element, the tasks that need to be carried out to accomplish the pattern are stated in a number of tasks.
The pattern presents its solution as a number of tasks to be accomplished.

Pattern Name Decorator

Problem How to attach addhional responsibilities to an object dynamically

Solution The following implementation issues should be considered:
• Define the interface for objects that can have responsibilities added to them

dynamically
• Define an object to which additional responsibilities can be attached
• Define a decorator interface to maintain a reference to the main object which

defines an interface that conforms to component's interface
• Define a decorator object to add responsibilities to the main component

Table 2-13 Decorator Pattern

The examples above demonstrate the hierarchical and task oriented nature of architectural and design patterns in
software designs. In the following section, some examples of process patterns are presented, with a view to
illustrating their hierarchical and task oriented nature.

2.6.3 Patterns in Development Process

In the same way that there are patterns of différent hierarchical levels (i.e. architectural patterns, Design patterns,
Idiom patterns) in software engineering, there are also patterns of différent hierarchical levels in software
development processes that are concemed with distinct levels of abstraction. This is depicted in Figure 2-4 (the
three pattern types depicted are further discussed in Section 2.5).

Level 1: Phase process
Patterns

Level 2; Stage Process
Patterns-

Level 3: Task Process
Patterns -

Figure 2-4 Hierarchical structure of process patterns

Similar to the building architecture and software design patterns discussed in the previous sections, process
patterns présent their solution element as a number of tasks to be accomplished [Ambler 1998]. This is illustrated
in a number of examples of process patterns shown in Table 2-14 and Table 2-15.

Chapter 2 Software Engineering Pat tems 27

Pattern Name Requirement Analysis
Problem How should work proceed in the requirement analysis phase
Solution In this phase, the project plan should be put in place and initial requirements are defíned.

The following parallel activities should be taking place in this phase. Note that all three
activities must be taking place at the same time.

• Defining and validating initial requirements (Pattern Stage_l_l)
• Defining the initial project management (Pattems Stage_2_l)
• Justifying the project (Pattern Stage_3_l)
• Defining the project infrastructure. (Pattern Stage 4 I)

Table 2-14 Requirement Analysis Pattern

Here each task is linked to a pattern at a lower hierarchy (i.e. a stage pattern) within the pattern language. The
pattern user may be satisfied with the solution provided at the phase level, or might decide to investigate the
related stage patterns to get further solutions.

The Table 2-15 depicts a further example of a process pattern, 'Big ball of mud ' [Foot and Yoder 1997], which
contains a number of tasks. The pattern suggests a number of tasks to be carried out in order to deal with the
stated problem of overgrown and tangled code. The tasks are represented as guidelines and suggestions and there
is no particular order in which they are to be carried out.

Pattern Name Big Ball o f M u d
Problem Overgrown, tangled, haphazard spaghetti code is hard to comprehend, repair, or extend
Solution • If you cannot easily make a mess go away, at least cordon it off. This restricts

the disorder
• T o a ftxed area, keeps it out of sight, and can set the stage for additional

refactoring.
• If your code has declined to the point where it is beyond repair, or even

compréhension, throw it away it and start over

Table 2-15 Big Ball of Mud process pattern

Patterns in a pattern language can be combined in a large number of ways to solve a problem [Alexander 1977].
For example, there are numerous ways of building a porch using a number of patterns (one example is shown in
Table 2-11). In accordance with this concept, individual pat tems of différent hierarchical levéis in a process
pattern language, or system, can be compiled in many différent ways to achieve différent and spécifie solutions.
For example, a pattern séquence (also referred to as language or construct) for object development from scratch
[D 'souza and Wills 1999] can be generated, using a number of patterns selected from a pattern language as
depicted in Table 2-16. Each pattern contains one or more tasks to be completed to accomplish the solution given
by the pattern. Some or ali of these pattems could be used in a différent séquence to solve a différent problem
(e.g. re-factoring existing application).

No. Patterra Description
1 Make a Business Model Describe your understanding of the users' concepts and concems

and the vocabulary in which they express them
2 Make a Context Model with Use Cases Focus on the collaborations between your proposed system and

other obiects - people, machines, other software Systems
3 Construct a System Behaviour Spec Treating your system as a single object, create a type

spécification for any system that would meet the requirements
4 Avoid Miracle, Refîne the Spec Define more-detailed actions and attributes as a refinement.
5 ImplementTechnical Architecture Define and implement major components of design as a

collaboration
6 Basic Design Take each system action and distribute responsibilities among

collaborating internai components.
7 Link and attribute ownership Extract common components and recast the design in terms of

the components
8 Object Locality and link implementation Decide how the basic design is split among machines,

applications and hosts.
9 Optimisation Perform localised refinements for performance

Table 2-16 A language for object development from scratch

Chapter 2 Software Engineering Patterns 28

In the above discussions and examples it has been demonstrated that the process pattern are not simply a set or
sequence of tight textual instructions, but are dynamic solutions that involve tasks to be performed sequentially,
in parallel, or optionally. An aspect of process patterns, which often makes them unsuitable as tight textual
instructions, is the necessary human involvement. There are often tasks in patterns and in software development
process that involve human judgment and decisions. There is however a fundamental question on the nature of
the software process itself, and that is whether software processes are instructions that can be represented in
software programs. This is discussed further in the next section.

2.6.4 Software Process and Textual Instructions

There is a school of thought that argues that the development process is essentially instruction-oriented and can
be represented by software programs. That is, software processes, in effect, consist of a number of defined
sequential instructions, which can be automated through software programs. There is however an argument that
the development process is too complex and a too human-oriented activity to be treated and represented as
software programs.

The argument about the concept of development processes, and the suitability of their characteristics to be
represented in software programs, was proposed in an influential paper (software processes are software too) by
Osterweil [1987]. In this, and a subsequent paper [Osterweil 1997], he argued for rigorous process descriptions
to guide the key software processes, in which programming techniques and formalisms can best facilitate the
task. The proposal was for software processes descriptions to be expressed and formed using programming in an
activity referred to as 'process programming ' or 'process model l ing ' . As a proof of concept he helped develop a
process programming language, called Little-JIL [Cass et al. 2000], which is a graphical method for process
programming and defines processes that coordinate the activities of autonomous agents and their use of
resources during the performance of a task. An example of instruction-oriented software processes is illustrated
in a process function shown in Table 2-17.

Function All_Fn_Perf_OK(executable, tests);
declare executable executable_code,
tests testset,
case, numcases integer,
result derived_ result;
AII_Fn_PerfOK := True;
For case := 1 to numcases

(Comment , execut ion of the testcases in a testset array)
derive (executable, tests[casej .input_data, result)
{Comment. Compare results with expected behaviour ; abort if any test execut ion does meet expecta t ions
if Not resultOK (result, testcase[casel.req_output)
then All_Fn_Perf_OK := False;
exit;

end loop;
end All_Fn_Perf_OK;

Table 2-17 Example of a process function (program) Osterwei l [1987]

The program demonstrates how the testing process might be automated through a function, which loops through
a set of instructions until all test cases are executed and the results are recorded. Materialisation of process in this
sense might further benefit software measurement through the generation of new metrics (e.g. product size as no.
of objects in process program). Perhaps the most important benefit of such process programming is that it would
offer the possibility of reusing software processes.

There is however evidence that process programming is inappropriate and inapplicable for large applications
(programming in the large) [Lehman 1987], The very existence of a programming language places constraints on
how a problem may be solved and limits human creativity. Furthermore, every stage and step of the
programming process requires thought, analysis and review of the earlier steps, which could mean repeated
refinements, or even redoing of the earlier models and steps, as the understanding of what came before evolves -
this would be impossible in a procedurally formatted process program [ibid]. Process programs may be feasible
for small, well-structured, well-defined and understood applications (i.e. compilers). However, in cases where
the software project is large and complex, where not all parameters could be well defined, using process
programs for the complete development process is neither feasible nor practical.

Since the publication of Osterweil ' s paper [1987], software process modelling has gained much interest in the
software communi ty among both academic researchers and practitioners [Madachy 2008] . However, while some

Chapter 2 Software Engineering Patterns 29

software process activities can be expressed in 'well-defined' and sequential textual instruction that can be
automatically and systematically executed in software programmes (as illustrated in Table 2-17), this would not
be currently appropriate or possible for complex and human-oriented software processes. While representation of
development process in textual instructions, upon which a software program can act, is greatly useful in
systematically organising and executing software development processes, complex processes cannot often be
properly represented in this way. Such complex processes often require human judgements and decisions to
determine the required process tasks in real-time, and cannot be completely pre-planned and programmed.

In the above discussions, an association between patterns and tasks was established. This would imply that
patterns could benefit from task analysis. This is discussed in the next section.

2.6.5 Can Patterns Benefit from Task Analysis?

As was demonstrated above, patterns contain tasks and can be themselves considered tasks, when they are used
in a sequence. The way a number of patterns are selected from a pattern language, to form a pattern sequence to
solve a particular problem, may be governed by the method used for their selection This may be best
accomplished using task analysis in general and hierarchical task analysis in particular, due to the hierarchical
nature of the patterns.

A number of software and non-software patterns were discussed above in relation to the hierarchical and task-
oriented nature of their solution elements. Such decomposit ion of a higher task into smaller lower level tasks is
an important element of Hierarchical Task Analysis (HTA), which is discussed in the following section (Section
2.6.6). Furthermore, the method in which the solution in a pattern is decomposed into a number of tasks may
also be explained and analysed by task decomposit ion in HTA.

From one perspective, there appears to be a relationship between task analysis and patterns that has not been yet
explored in the literature. That is, if a pattern is defined in terms of a task that is to be performed to achieve a
goal, then task analysis becomes relevant and useful. There are three ways in which hierarchical task analysis
can be applicable in making a pattern or a pattern language optimal and improve the quality of the solution it
provides. These are:

1. Developing individual patterns: The tasks and the order and sequence in which they should be
performed in a pattern, whose solution element includes a number of tasks.

2. Developing a Pattern Language: Clustering and grouping a set of related tasks into many individual
interlinked patterns.

3. Developing a pattern sequence (i.e. a construct or language): The patterns selected from a pattern
language, to solve a problem, and the order and sequence in which they should be applied.

Task analysis may be most useful in circumstances where a problem is to be solved using patterns from one or
more pattern languages consisting of a multitude of single patterns. In such circumstances, a proper analysis of
the problem to be solved and the goals and objectives to be attained is crucially important in choosing the right
patterns to apply in the right combination and order.

The hierarchical nature of patterns, as demonstrated in a number of examples above, helps the pattern solutions
to be of higher quality in terms of clarity and structure, which can be explained by a method of task analysis
called 'Hierarchical Task Analysis ' (HTA). In the following section, the H T A method is discussed.

2.6.6 Hierarchical Task Analysis

Annett and Duncan [1967] proposed the Hierarchical Task Analysis to evaluate organisat ions ' training needs by
decomposing complex training tasks into a set of task components , which could then be trained. In this proposal ,
a task is broken down and sequenced from top to bottom, thereby showing a hierarchical relationship amongst
the tasks. H T A ' s underlying technique is hierarchical decomposition, which analyses and presents the
behavioural aspects of complex tasks. It decomposes the tasks into subtasks, operations or actions and a structure
chart is then used to represent the tasks graphically. HTA concerns identifying and categorising tasks and
involves the notion of goal and task. A goal is simply defined as something to be achieved. Attainment of a goal
requires the completion of a plan that involves a number of individual tasks. A task is an activity that must be
carried out to achieve a goal. The purpose of the H T A is to decompose the higher level tasks into lower level
tasks (i.e. sub-tasks), each of which will satisfy a sub-goal. Carroll [2000] states that a task, has to be real and not

Chapter 2 Software Engineering Patterns 3 0

divorced from actual user practice, be central to multiple user activity so that addressing it may have general
benefit, and require near-perfect execution.

HTA has been shown to be capable of providing useful descriptions of a variety of tasks in many contexts. It has
been shown to aid human decision-making in the design of teams and jobs , operating procedures, selection
methods, interface design, training, and reliability assessment [Ormerod and Shepherd 2004] . In interface design,
HTA provides a model for task execution, which enables designers to envisage the goals, tasks, subtasks,
operations, and plans for users ' activities. It is based on functional, rather than behavioural or psychometric
constructs, and uses a fundamental unit called an operation. The key features of an operation are the conditions
under which the goal is activated and satisfied, and the actions, which need to be performed to attain the goal
[Diaper and Stanton 2004]. These actions may themselves be defined in terms of sub-goals. For example, thirst
may be the condition that activates the goal of having a cup of tea, and sub-goals could include obtaining boiling
water, a teapot, a tea bag, a cup and so on.

At the highest level, a task consists of an operation which is defined in terms of its goals and which is measured
in real terms of production units, quality, or other criteria [Annett 1971]. The operations can be broken down into
sub-operations in a hierarchical relationship, each defined by a sub-goal. Therefore, to satisfy a goal in a
hierarchy, its immediate sub-goals have to be satisfied, and so on. The rules that govern the relationship between
the immediate super-ordinate and its sub-ordinates guide the sequence with which each sub-goal is attained
[Stanton 2006] . These rules are facilitated by a number of notations, as depicted in Table 2-18.

Symbol. Meaning Example Description
> Then 1>2>3> 1 Then 2 then 3

+ & And 1+2+3 1 And 2 And 3

/ Or 1/2/3 1 Or 2 Or 3

Any of 1:2:3 Choose any

K ? > If condition K? Y>1 N > 3 If K Then 1 Else 3

Table 2-18 HTA notations

There are a number of proposed guidelines in the literature for conducting HTA, which are fundamentally
similar [Annett 2004] . The basic heuristics for conducting H T A is as follows [Hone and Stanton 2004]:

1. Define the purpose of the analysis
2. Define the boundaries of the S y s t e m

3. Assess a variety of sources of information about the S y s t e m to be analysed
4 . Describe the S y s t e m goals and sub-goals

5. Try to keep the number of immédiate sub-goals under any super-ordinate goal to a small number (i.e.
between 3 , and 10)

6. Link goals to sub-goals and describe the condition under which sub-goals are triggered
7. Stop re-describing the sub-goals when you judge the analysis is fit for purpose
8. Try to verify the analysis with a subject matter expert

9. Be prepared to revive the analysis

For example, in instruction design, the instructional designer breaks down a task from top to bottom to show a
hierarchical relationship amongst the tasks, and then instruction is sequenced bottom up. A task at a higher level
cannot be performed unt i l the subordinate tasks are ail carried out. Once, as a resuit of the décomposition, a
comprehensive list of the tasks that make up a j o b or function are available, three major steps need be performed
to construct a hierarchy. Thèse are: 1) Group and cluster the task that bear close resemblance to each other, 2)
Organise tasks within each group to show the hierarchical relationships, and 3) Consult with a subject matter
expert to détermine the hierarchy's accuracy.

Chapter 2 Software Engineering Patterns 31

Draw tace
' > 2 " "

JT~
Draw clock

1>2Ï3. . .

•ir
Draw haras Write humerais -

• ' '1/2 " > T

Driva Face"'
'1:2. . . .
Cîoor tace;

7.i . . : 2.2„ •
Choös«

sîiapc v- ttórrt".

Figure 2-5 HTA for d rawing a c lock

ÇhûQSti SÖ6\

Examples of HTA, in drawing a clock and inspecting instruments in an acid distillation plan, is illustrated in
Figure 2-5 and Figure 2-6 respectively. Each task has a unique number and a plan, which states the format under
which the sub-tasks are to be executed. For example, the drawface task (I) is dépendent on tasks (1.1) and (1.2)
both of which need to be carried out in order to achieve task (1).

Figure 2-6 Section of the goal hierarchy for an acid distillation plant ope ra to r ' s task [Annet t 2004]

Having briefly discussed and outlined the principles of the HTA, the following section discusses ways in which

HTA can be utilised in patterns.

2.6.7 Application of HTA in Patterns

As illustrated earlier in Table 2 -11 , a pattern séquence consists of a number of individuai patterns stringed
together to solve a problem. H T A can offer the designer the ability to structure the tasks in the pattern séquence
more speciftcally and systematically. Using H T A it is possible to develop a pattern séquence, where the patterns
involved can be set to be performed under certain conditions or in a certain order. This would make the
developed pattern séquence (solution) more specific to a defined set of problems or group of problems.

The tasks involved in the Implementation (construction) phase of a development lifecycle can be decomposed
using HTA, as illustrated in Figure 2-7. Each of thèse tasks (opérations) could be defined by a process pattern. In
this example, the modelling is achieved by satisfying the subordinate sub-goals.

Chapter 2 Software Engineering Patterns 32

-• - ; 0. , ; ; r '

i
.1 I

"V .2;v , ,; , '_ t ' ì
Prdgram

Ï»*2V

> s

• . ;

. Ma Arìgòp! qiwi

••1.2,-:.
.Perio'mi'D-ià&u,'

'Write'Cada

• • ".-.2.2.
Document Source

Cot« '

Figure 2-7 An example of task hierarchy for the Implementation phase
where each task could be performed by a process pattern

The H T A chart in Figure 2-7 depicts activities required in the implementation phase of a development process.

Here the H T A chart is a représentation of a process pattern, which involves the engagement of other patterns to

achieve the goal of performing the tasks in the Implementation phase of a software development lifecycle. This

could be presented to a pattern language as a pre-defined pattern. It would however be possible to create a new

Implementation patterns with modifìed process tasks, based on the pre-defined pattern. This would give the

designer numerous options to construct solutions that are spécifie to a problem. For example, the implementation

pattern, depicted in the HTA chart Figure 2-7, présents a solution in terms of the tasks required to be performed

in the Implementation phase, which can be used as it is defined. However , one might need a solution that

involves other process activities that are not covered in this définition (e.g. optimising code) in the

Implementation phase. To do this one would create a new implementation process pattern based on the one

predefined, and add the extra process activity. The new pattern can then be added to the pattern language.

However, in addition to the option of creating new patterns, a solution can be devised, by linking one or more

pre-defined patterns selected from a pattern language to create a pattern séquence. The task analysis methods can

be used to determine the séquence of patterns needed to solve the problem.

Process Pattern Hierarchy Levels

1 2 3 ; : n

1 P u P1.2 P u : . . . : P).n
% 1 '
u ai

2 P2.1 P2.2 P2.3 : .-• : P2.n
o S 3 P3.2 P 3 t 3 j . » i P3.n

°* CU

m Pm.l Pm.2 Pm.3 ! Ì P
r m.11

Table 2-19 Process Pattern language

Task analysis can be employed to generate pattern séquences that can use individuai patterns from ali the

hierarchy levels of a pattern language. Theoretically, there could be n levels of hierarchy of process pattern

types. For each hierarchy level there could be m number of single patterns; the lower the hierarchy level of the

pattern type, the higher the number of single patterns it would contain. This is depicted in Table 2-19 where P m n

denotes pattern m of the hierarchy level n However, in practice there are only a few hierarchy levels, depending

on the granularity of the defined pattern types. For example, Ambler [1988] defines three levels of hierarchy

(Phase, Stage, and Task pattern) where there are only a few patterns at the highest level (i.e. development

phases) and tens of patterns at the third highest level (i.e. tasks).

Chapter 2 Software Engineering Patterns 33

Goal }
f î SD CSD -;- G2D

Figure 2-8 Example of a pattern sequence

An example of a possible pattern sequence, to produce a solution to a specific problem using patterns in a pattern
language, is given in an HTA chart format in Figure 2-8. It demonstrates how patterns of different hierarchical
levels are linked using HTA to form a pattern sequence to solve a specific problem. The following are examples
of a number of possible pattern sequences, each designed to solve a specific problem. Each pattern sequence
contains a number of single patterns that are to be executed sequentially.

S e q _ l = (P , 2) (P 5 , 2) (P 9 , 3) (P M) (P-,4)
Seq_2 = (P,, 2) (P 5 , 2) (P,, 2)

Seq_3 = (P,, 2) (P 5 . 2) (P9.3) (P1.4) (P12.4)

The pattern sequence Seq_l above involves the application of the patterns (P, , 2) , (P ^) , (P ^) , (Pi,4). and (Psa) in
the stated order. A powerful utility of H T A that can be leveraged in developing pattern sequences is the ability to
include conditional statements. That enables the creation of a dynamic pattern sequences where the sequence of
patterns to be executed is not pre-defined. The series of patterns to be executed within the pattern sequence
would be dependent on some conditions. A specific example is presented in Figure 2-9, where the order in which
patterns are to be executed is variable. For example, to accomplish the goal, pattern P l i 2 has to be applied
followed by pattern P5t2. However, to accomplish pattern P 5 - 2 , either P ^ o r P 9 3 can be applied.

• tioal ' -'.
1>2;- - .:

•,.Ki-if i.ai •}

' t.1;1->-"1 1.2 - . 2 2.1 > 2.2.2/2.2.3'-

2.2:i -
lV«.4

2.2,2
-'PSA-

.2:2.3

Figure 2-9 An example of a pattern construct using HTA

As the repository of software patterns grows and pattern languages could contain hundreds of patterns, a
systematic method of selecting and implementing appropriate patterns, is necessary. Furthermore, often
individual patterns are unable to provide a complète solution to non-trivial problems where the application of a
séquence of patterns would be necessary. Some methods, such as using grammar in systematic sélection of
patterns, have been proposed in the literature [Zdun 2007] . In this section, it has been demonstrated how the
methods of Hierarchical Task Analysis can be employed in constructing pattern-based solutions through pattern
séquences, based on a methodical sélection and combination of patterns. The important advantage of this S y s t e m
is the provision of conditional predicates (as demonstrated in Figure 2-9) which enables the construction of more
detailed and spécifie solutions. Furthermore, the systematic and well-defined pattern séquence génération based
on the proposed H T A methods, would make it suitable and feasible to create tools to facilitate pattern séquence
création.

Chapter 2 Software Engineering Patterns 3 4

2.6.8 Process Patterns Employed in the Experimentation

In this study, an experimental research was conducted to investigate the effectiveness of process patterns. The
experiment utilised edited versions of a number of process patterns, which came from a variety of sources,
including [Ambler 1998, 1999], [D'souza and Wills 1999], [Storrle 2000] , [Coplien 1995]. The way in which the
process patterns were made available to the experiment subjects is discussed in Section 5.5.3, and Section 5.75.7.
The 'Appendix B. Patterns' presents a sample of the patterns used for this experimental study.

2.7 Summary

In this chapter the pattern concept, as applied in software engineering, was discussed. As designing and
constructing architectural work has many similarities to software design and construction, the pattern concept,
which was originally conceived for architectural design, has proven to be applicable and useful in software
development. There are various definitions for patterns, but the simplest and widely used one is that 'A pattern is
a proven solution to a problem in a context ' ; although one can argue that this simplified definition is not
comprehensive enough (e.g. lacks recurrence aspect) to properly define pattern.

There are many topical issues in patterns currently being discussed within the pattern community. These include
issues such as 'whether patterns should be formalised' , or whether software patterns comply with the principles
of the pattern concept. These issues were discussed in detail.

The concept of patterns has been applied to software engineering in various fields. They have been applied to
both product and process aspects of software development. Software patterns, where the emphasis is on
architectural and code level structure of the software application, are referred to as design patterns. Software
patterns, which define and describe the process involved in developing a software application, are referred to as
process patterns. In design patterns the works of Gamma et al. [1995] (Known as GoF) , in which they captured
and presented 23 design patterns, has been well received by the software engineering community. In the area of
software processes, Coplien [1995] and Ambler [1998, 1999, 2002, 2005] have produced many established
process patterns. Some of these process patterns have been used for the experimental research in this study.
There have however been few studies investigating the utility and effect of patterns. This project addresses this
issue by conducting an investigation of the utility and effect of patterns in software engineering.

The relationship between task analysis and patterns was discussed and, the possibility of using Hierarchical Task
Analysis in pattern usage and pattern development was explored. It was shown that the hierarchical structure is
one of the main aspects of the pattern concept. It has been further shown, through a discussion of the
Hierarchical Task Analysis, that the presentation and analysis of tasks in a hierarchical manner proves
advantageous in achieving the desired goals. Application of HTA, in the development of patterns and pattern
sequences was explored and the benefits were outlined.

In the next chapter, the detail of a preliminary study in the form of two surveys, to evaluate the usage levels of
patterns within both the architecture and software communit ies will be discussed.

Chapter 3 Pattern Usage Surveys 35

Chapter 3 Pattern Usage Surveys

3.1 Introduction

Survey research method is one way of obtaining valid scientific knowledge. The survey research provides a way
of observing some phenomenon and forming, testing, and validating théories based on the observations made
[Babbie 2001] . In this study, two preliminary surveys were utilised in order to understand architectural and
software pattern issues and gauge the usage levéis, and to help devising the research quest ion. The objective, in
both surveys, was to capture data on a number of constructs (variables to measure) through devising a number of
questions in survey instruments. The data was to be provided by a sample of the population of interest (i.e.
software development organisations, and architects), drawn through devised sampling methods.

The first survey, which is discussed in the first section of this chapter, aimed to determine issues concemed in
architectural patterns, as well as their level of support within the architecture community, in an effort to make
sensé of the concept in the original environment. The survey investigates the views and opinions of the architects
in the architecture departments in UK universities on the pattern concept. The second survey attempted to gauge
the effect and value of software patterns in software development companies . In this survey, a number of
software development companies were investigated to determine their use and application of patterns within
their software development practices. This will be discussed in the second section of this chapter.

3.2 Architectural Patterns Survey

In this section, the survey on the use of architectural patterns, by architects in academia, is discussed. The
survey 's aim was to investigate the views and opinions of the architects within the architecture departments of
UK universities on the pattern concept, and determine their popularity and usage in terms of the extent to which
they are taught in universities. The aim was to determine the difficulties and pitfalls that have damaged the
prospects of architectural patterns, and to discuss whether such issues and difficulties would apply, and could
prove damaging, to software patterns.

3.2.1 Motivation

The concept of pattern languages in architecture has engendered much controversy within the architecture
community. While some universities taught the subject, many others completely avoided it. Since the pattern
concept was conceived in the field of architecture, and has therefore a longer history in this field, a study of how
patterns are perceived and utilised in architecture may indicate what could happen to software patterns and
provides valuable lessons. There appears to be no published surveys on the usability levéis of pattern languages
by architects.

The objectives in this survey were to determine the popularity of architectural patterns, within the architecture
communi ty (in academia) , and determine their views and opinions on the strengths and weaknesses of the pattern
concept. The overall aim was to determine whether software patterns are likely to be influenced or undermined
by the same or similar difficulties found in the architectural patterns.

3.2.2 Survey Détails

AH UK universities, with an architecture department, were invited to particípate in this survey. At the time of
this survey, there were found to be 36 such departments running undergraduate and/or postgraduate courses. In
this survey, emails and follow-up téléphone calis were used to contact the samples, sending each a questionnaire
(in the form of a letter) to complete and return. The questionnaire was emailed to the heads of the architecture
departments in the sample universities. They were invited to fill-in the questionnaire themseives, or pass it on to
another architect in their department. The questionnaire contained only two questions, to make it as inviting as
possible for participants to reply. Here are the two questions:

Chapter 3 Pattern Usage Surveys 36

Q. 1) Do you teach pattern languages, as described in the book 'A Pattern Language ' by Christopher
Alexander, in your department, in any undergraduate or post graduate courses?

None O Undergraduate
Low r~

Moderate _
High L

Postgraduate
Low

Moderate
High

Q. 2) What are your views on the philosophy and concept of Alexander ' s pattern languages? Please
comment:

N o views f_T Negative • Neutral • Positive fj]

In the following section, the results of the survey are presented and discussed.

3.2.3 Architectural Pattern Survey Results

A total number of 36 UK universities were found to operate an architecture department, ali of which were
surveyed in this study. A total of 26 responses were achieved for the total sample size of 36, which is a high
response rate of 7 2 % . In order to present the results of the surveys, the SPSS Statistical package was used to offer
the statistics of the achieved results. In this section, the quantitative as well as qualitative results are discussed.

3.2.3.1 Quantitative Results

As depicted in Figure 3-1, 22 out of the 26 (84.6%) universities that responded did not teach patterns at any
levels. Out of the remaining four who taught patterns (15.4%), two taught at undergraduate levels, one at
postgraduate and one at both undergraduate and postgraduate levels.

3 0

N o n o P o s t g r a d u a t e

U n d e r g r a d u a t e U n d s r g f l e a n d P o s t g
U n i v e r s i t i e s t e a c h i n g p a t t e r n s

Figure 3-1 Number of universit ies teaching architectural pat terns

The architects were asked for their views on the pattern concept in architecture. A substantial proportion of the
respondents had a negative view of patterns. Out of the 26 expressed views, 13 were negative (50%), 9 neutral
(34.6%) and 4 positive (15.4%). The results therefore indicate that the majority of architects do not view patterns
as having positive effect on architecture.

Figure 3-2 and Figure 3-3 show architects ' viewpoints on pattern usage in relation to usage levels and courses
respectively. The figures show that in three out of the four universities whose representati ve architect expressed
a positive effect of patterns on architecture, the pattern usage level was low. None of the universities whose
representative architect expressed a negative view of patterns used patterns in their curriculum.

Chapter 3 Pattern Usage Surveys 37

14

12

IO

S

6

Optnlons
4

F—l>ruif3 2

• P od lue j •

Figure 3-2 Archi tec ts ' v ìewpoinis in relation to pattern usage

levels

3 .

Opinions

B * u t n l

IMPoStlue

None Po< graduate

i j i d erg rad unte iJhdeigrte and PoSg

Uni versi! iesteaching patems

Figure 3-3 Archi tec ts ' v iewpoints in relation to courses on pat terns

There appeared to be a relationship between pattern usage and architect 's viewpoints. A correlation analysis was

carried out which is depicted in Table 3-1 and the scatter plot in Figure 3-4 (Correlation analysis is discussed in

7.5). There is a statistically significant positive correlation between pattern usage and architect 's viewpoints with

Coir . Coef. r=0.494, and Signiftcance. P=Q,02. Correlation is significant at the 0.05 level (2-tailed). Therefore,

as pattern usage increases, architects ' viewpoints also increase proportionally. Furthermore, an increase in

architects ' viewpoints will be reflected in a proportional increase in pattern usage.

R Sq Linear =
0.244

1.00 1.50 2.00 2.50

Pattern Usage

Figure 3-4 Correlat ion between pattern usage and architect v iewpoints

Pattern
Usage viewpoints

Pattern Usage Pearson Correlation 1 .494 Pattern Usage

Sig. (2-tailed) .010

Pattern Usage

N 26 26

Viewpoints Pearson Correlation .494 1 Viewpoints

Sig. (2-taiied) .010

Viewpoints

N 26 26

Table 3-1 Correlat ion between pattern usage and viewpoints

Chapter 3 Pattern Usage Surveys 38

In the following section, the qualitative data collected in the survey is discussed.

3.2.3.2 Qua l i t a t ive Resul ts

Senior représentatives of architecture departments of U K universities were asked to express their opinion about
architectural patterns in this survey. While many Heads of departments kindly responded to the survey

themselves, some dedicated the work to someone in their department. Some of the views expressed are listed in
the 'Appendix D. Results*.

It is clear from the comments that the overwhelming majority of commentators did not value architectural
patterns as a contemporary, forward-looking concept, from which new ideas and works could be generated. It

appears that the architects believed that Alexander ' s concept of pattern languages were rather old fashioned and
opinionated. It is interesting that there seemed to be much opposit ion to Alexander, and his concept of pattern

language, within the architecture community. This can be clearly feit by quotes such as "I co-ordinate first year
studio, and steer well clear of Pattern Language". Some, however, believed that the pattern languages would
become popular in the future. These results are further discussed in the next section.

3 . 2 . 3 3 A Discussion of the Resul ts

The results presented above indicate that there were a number of issues with architectural patterns, which
concern and dissuade architects to actively incorporate patterns in their design practice. It is interesting that the
research provides évidence that the pattern concept does not have much support in the architecture communi ty
for which it was conceived. The results indicate that the general views of the architects, within the academia,
seem to be that Christopher Alexander 's philosophy of pattern languages are "rather old and tired ideas" which
stifle creativity in architecture. Given the concems and objections architects express about architectural patterns,
should the software community be concerned that the pattern issues and pitfalls, raised by the architects, could,
at some point, catch up with software engineering and render software patterns effectively harmful? The
majority of the surveyed architects criticised patterns as being anti-creativity, authoritarian, unscientific, and old
fashioned. The question is whether the problems and issues that caused architectural patterns to be unpopulär
within the architecture community, could also prove damaging to the prospects of software patterns in the future.
Based on thèse results, this section will discuss whether the issues raised in architectural patterns could also
apply to software pattems, now or in the future.

Ant i -c rea t iv i ty

A large proportion of the respondents in the survey expressed the view that architectural pattems are anti-
creativity and authoritarian. This reflects the general views of many architects within the architecture communi ty
[Saunders 2002] [Kohn 2002] [Eakin 2003] . The argument is that patterns seem overwhelmingly authoritarian
telling the reader what must be done in a controlied manner. This is in conflict with individuai freedom and
maximum choice and, therefore, pat tems stifle creativity. It is furthermore argued that patterns are prescriptive
and require architects to design according to some specific set of rules demanded in the pattern. Such subservient
adoption of patterns, critiques argue, would effectively encourage architects to copy designs rather than to try
generating creative designs.

However, in reality, architectural patterns do not necessariiy restrict creativity, nor do they hinder artistic
freedom [Salingaros 2000], It ali dépends on how the pattern is used and employed in design. Patterns aim to
bring to the attention of the designers the designs that have been proven to work; solutions that are t imeless.
Furthermore, there are an indefinite number of ways that the architectural pat tems can be put together to
generate new designs, giving the designer the choice and freedom to express their creativity. In effect, by
imposing constraints, the patterns eliminate a large number of inferior possibilities, while allowing an infinite
number of possible plausible designs. Therefore, accusations and criticism of architectural pattems as being a
hindrance to self-expression, which has caused architects to resisi using pat tems, seems to be unjustified. It
should also be borne in mind that while freedom of expression is important, the primary function of architecture
should be to provide structures that are comfortable and useful. In the current architectural paradigm, however, it
seems the emotional and physical comforts of the user are of only minor importance [Salingaros 1999]. Pat tems
help architects to create designs that are useful as well as offering some levéis of freedom of expression.

The creativity accusation is. however, far less significant in software pat tems. While in architecture human
creativity in presenting artistic structures is important, in software engineering the emphasis is not so much on
the artistic aesthetics of the software. What are cruciai in software development are designs that are robust,

Chapter 3 Pattern Usage Surveys 39

efficient and hâve b e e n shown to work in practice. Furthermore, while software patterns provide the overall and
a high-level solution to a problem, the exact implementation of the software pattern is not defined by the
patterns. This gives the software architects and developers the ability to be creative in implementing the pattern
solution.

Based on the importance attached to creativity (as expressed by the respondents in the survey), we recommend
that software pattern authors should endeavour to generate patterns that would offer pattern users max imum
choice in implementation styles, while not undermining the quality, clarity, and un-ambiguity of the pa t tems.

Outdated and old fashion

A further criticism of the architectural pat tems, expressed by the survey respondents, was that the architectural
pat tems were old fashioned and out of date. The criticism is that architectural pattems are set in, and reflect, the
past and therefore, while they would be applicable and suitable for their rime, they are out of place for the
modem era. For example, pat tems that architects used to build cathedrals and other historie buildings a few
centuries ago are not necessarily suitable and desired by the today ' s m o d e m society. T imes have changed and
architecture has and will continue to change.

While architecture is a discipline that is thousands of years old, software engineering is relatively young.
Therefore, while architectural pat tems could reflect structures that are hundreds or even thousands of years old,
software pattems reflect designs and solutions that are merely a few décades old. For example, pattern in Object-
Oriented programming which is currently the most popular programming paradigm have an age of about two
décades. This is, however, not to say that software pat tems do not age or outdate. Software pattems over t ime
could be obsolete, due to many reasons such as the technology on which they are based. As the technologies
change and improve, pat tems based on the older technologies will outdate and die out. For example, software
pat tems on the Waterfall Process Model [Royce 1970] that would have been perfectly valid to be used a couple
of décades ago (partly due to the insufficient computing resources), would now be almost obsolete in their
originai form for many types of software development projects, as the technologies and computing resources
have changed and improved.

There is, therefore, nothing wrong in software pattems getting old and outdated. It is inévitable that many
software pat tems, especially domain and platform specific pat tems i.e. J2EE pattems, will have an expiry date in
terms of the validity of the solution they provide. W e recommend that pattern authors should ensure that they
fully state the scope and the context in which the pat tems they are producing are applicable. This would ensure
that the pattern user would know if the pat tems they were going to use would work for the specific problem to
which they are applied. Such détails, in scope and context, would further inform the pattern users whether the
pattern would work, if some underlying technologies changed (e.g. whether they are platform dependent) .
Therefore, technically, no software pattern (new and old) should run the risk of being misapplied, if the context
under which the pattern is applicable (i.e. pattern 's context element) is properly and fully defined.

Unscientific

A further criticism of the architectural pat tems, expressed by the architects in the survey, is that there is little
proof for the théories and assertions and that the main évidence has been the author 's own work, opinion, and
imagination. The argument is that the architectural pat tems are opinion-based, subjective, and not scientifically
validated. Some [Saunders 1999, 2002] have argued that the architectural pattems are based on observation,
without methodology. Critics, further point to some of the assertions in the architectural pattems such as "we
guess . . . " or "Several studies show . . . " and suggests that such S t a t e m e n t s has little scientific support [ibid].

In software pat tems, however, the scientific extraction and validation process may differ, aecording to the type
of software pattern in question. Technical software pat tems may be more scientific, due to their technical nature.
While observation is the main method by which such pattems are extracted and formed, they are easier to verify
and validate. The validity of pat tems can be judged by the applications that implement them. If, for example, a
software pattern has been implemented in three applications that have ail operated successfully for somet ime,
then the pattern can be considered validated. In fact the software pattern community has recommended, what is
called, "mie of three" which requires each pattern to have been observed to operate successfully in three
différent situations. As well as being observed in a number of successful applications, software pat tems can be
further validated by testing and evaluating them for various quality attributes in speeifieally written applications.
For example, in addition to noting the applications that had successfully implemented the pattems, G a m m a et al.
[1995] further validated their pattems through a speeifieally written software application.

Chapter 3 Pattern Usage Surveys 4 0

While such validation methods are possible for software patterns dealing with software design (i.e. design
patterns), process and human-oriented software patterns, such as process/organisation patterns, are more difficult

to validate scientifically. Often the only validation offered in thèse types of software patterns is the pattern
author 's expérience [Coplien 1995] [Ambler 1998]. Expérimentation, as a validation method for process and

organisational patterns, has been proposed in this research project [Estabraghy and Dalcher 2007a]. Therefore,
process and human-based patterns can also be scientifically validated (albeit more t ime consuming and
expensive than design patterns). Valîdity of process patterns can also be checked by their impiementation in

successful software development projects.

Given the criticism of patterns, as being unscientific and invalidated, expressed in the survey, we recommend
that software pattern authors should do more to ensure that the software patterns they author are scientifically
extracted and are fully validated. A strict adhérence to the "rule of three", as well as évidence of independent

validation tests (where possible), are recommended.

Having discussed the survey on the architectural patterns in this section, in the following section the second

survey to investigate the effect and utility of software patterns is discussed.

3.3 Survey of Software Organisations

In this section, the survey research method on the use and application of patterns in software development

projects in industry is discussed.

3.3.1 Motivations

Over the years, the application of the pattern concept in software engineering has been widely written about and
investigated through books, j ouma l s and conférence literature. The purpose of this investigation was to carry out
a study of software patterns to evaluate their impact on software development practices in software development
organisations. While académies develop théories leading to the introduction of new technologies, it is the
software industry that implements the théories in practice. Studies show that over-dependence on unreliable new
technology is one of the main causes of software project failure [Glass 1998]. It is therefore important to gauge
the software industry 's viewpoints, expériences, and reactions on any new and introduced piece of technology
(such as software patterns) with the aim of evaluating their utility and improve them accordingly. In this study, a
survey research method was designed and implemented in order to investigate the expériences and opinions of
software development organisations on the impact and application of patterns in their development practice.

3.3.2 Related Work

There have been numerous publications in the form of books, journals and conférence papers on software
patterns (see for example, [Buschmann et al. 1996, 2007] [Coplien et al. 2005) [Gamma et al. 1995] [Fowler
1997, 2002]). There are many claims, with some empirical vérification, that software patterns can capture the
essential component of a design, be used to record and reuse best practices, and provide the vocabulary for
communicat ing complex concepts effectively [Gamma et al. 1995][Beck et al. 1996][Buschmann 2007] . While
there have also been some expérimental studies to investigate the impact of software patterns on software
development projects [Prechelt 2 0 0 1 , 2002] [Unger and Tichy 2000], there is very little published research
investigating the impact and value of software patterns in the software industry. A récent survey research,
conducted at the IBM [Manolescu et al. 2007] (see Section 2.2.8), which surveyed over 7 0 software development
organisations, indicates a widening gap between pattern experts and the average software developer and
designer. The study found that while software patterns written by experts had included many types and aspects
of software development (e.g. process, architecture, and integration), software developers and practitioners had
only concentrated their efforts on the 23 design patterns introduced by G a m m a et al. [1995]. Many of the
findings in this survey research correspond to the works of Manolescu et al. [2007], which strengthens the results
and conclusions reached by both studies. The détails will be further discussed in this chapter.

The Pattems_Central [2005] website ran a survey on software patterns. The survey showed that 5 0 % of the

respondents believed that patterns were useful. The survey also indicated that 5 9 % of respondents used patterns.
However, 3 2 % of the respondents believed that patterns were either misused or misunderstood. For further

détails of the survey 's results, see Appendix D. Results.

Chapter 3 Pattern Usage Surveys 41

3.3.3 Samples and Sampling Method

Sampling is a process of selecting the samples for the survey. A number of sampling techniques were considered
for their suitability for this research and the 'Systematic Random Sampling ' method was chosen. Systematic
Random Sampling is appropriate when the sélection of a sample needs to be taken from a list [Sapsford 2007]
(i.e. a list of software development organisations). A sampling fraction (k) was calculated by dividing the
population (i.e. software development organisations) by the required sample size of 500. A random number was
then selected between one and k, and beginning with the selected random number every k^ unit in the list was
selected as a sample member. Therefore, 500 organisations were selected to participate in this survey, 67 of
which accepted.

The sample for the survey was selected from a complète list of the software development organisations in the
U.K that are listed in the Kompass Business Directory [Kompass] . Although most large organisations have a
computer department, and may develop software for their internai use, this survey aimed to specifically study
those organisation that develop software for sale and are listed as software development organisations in the
directory. Based on the software development organisations listed in the Kompass directory, a sample of 500
software development organisations were randomly selected, using the sampling method discussed above, to be
surveyed. The sampling unit (or unit of analysis) of the study is an individual software development
organisation. A member of the development team, from partieipating organisations, provided the data for the
survey as the représentative of each sampled organisation.

A number of methods of collecting data [Babbie 1990] were employed in this survey. Thèse included one-to-one
interviews with représentatives of the 67 sample organisations. Where such interviews were not achievable or
available, téléphone interviews were conducted to collect the required data (this was the most used method). A
questionnaire was also hosted on a spécifie website through which the participating organisations could complète
and submit their responses. The collected data, captured through the stated methods, were recorded in a database,
which was subsequently used by the SPSS statistical package for analysis.

3.3.4 Survey Instrument

The survey instrument was designed to capture the data of interest (i.e. constructs) through a number of spécifie
and unambiguous questions set in a questionnaire. The data of interest were of the following major type:

O r g a n i s a t i o n s type and attributes: Thèse types of questions capture data about the characteristics of

the participating organisations (e.g. number of employées, ISO 9000 registered)

Patten usage: Questions about the practice of using and implementing patterns (e.g. type of patterns
used, effect of patterns on reliability, efficiency etc.)

Pattern development: Thèse types of question aim to capture data from organisations that develop
patterns (e.g. type of patterns developed and whether developed patterns are published externally)
Non-Pattern usage: This type of question captures the responses of organisations that do not use
patterns (e.g. reason for not using patterns, any plans for employing patterns).

The questions were presented to the participant organisations through the data collection methods discussed in

'data collection methods above' . The Table 3-2 présents an example of the questions that appear in the survey

instrument. The complète survey instrument is in 'Appendix E. Survey Quest ionnaires ' .

What do you believe to be the effect of application of patterns on the following software
quality attributes?

Reliability Positive • Negative LJ Neutral | _ | Don 't Know u
Usability. Positive u Negative | | Neutral |_J Don 't Know u Changeability Positive u Negative | | Neutral |_J Don't Know u Interoperability Positive u Negative |_J Neutral |_J Don't Know u Efficiency Positive u Negative | | Neutral |_J Don't Know u ReusabiUty Positive u Negative | | Neutral |_J Don't Know u Testability Positive u Negative | | Neutral U Don't Know u Portability Positive u Negative | | Neutral LI Don't Know u Maintainability Positive u Negative | _ | Neutral LI Don't Know u

Table 3-2 An example of the survey questions

Chapter 3 Pattern Usage Surveys 42

3.3.5 Software Pattern Survey Resulte

A total number of 3751 companies were Usted as software development companies in the Kompass business
directory. Out of a sample size of 500, a total of 67 respondents were achieved. Given the organisations' low
response rales at around 7% [Walonick 1997], this is an acceptable size and is comparable to other software
engineering surveys (for example [Manolescu et al. 2007] [Tang et al. 2006] [Lethbridge 2000]). In the
following sections, the details of the results of the survey instrument are presented and discussed. Some of the
results are presented in 'Appendix D. Results*.

33.5.1 Pattern Usage

As depicted in Figure 3-5, 4 0 out of the 67 (59.7%) respondents used patterns in their software development
practices. The Figure 3-6 illustrates pat tem usage in relation to organisation size. The figure shows that the size
of the companies has an affect on the pattems usage level. Small companies with less than 10 staff formed the
category with the least usage, with only 8 .3% of the companies using patterns. One reason for this could be that,
the smaller companies are more likely to be involved in the development of small and predominantly graphical-
based web applications, where software patterns have currently minimal utility. Between 75 to 100% of the
surveyed software development organisations over the size of 50 employees used patterns.

Na Yes

Ffctterns Use

Figure 3-6 Pattem usage in relation to organisation size
Figure 3-5 Companies using patterns

The participants were asked to state their views on both usability and usefulness of patterns. The results are
presented in Table 3-3 and Table 3-4. It is interesting that the respondents ' views on both usability and
usefulness appeared to correspond to their level of pattern usage. Therefore, the corrélation between pattern
usability and pattern usage variables was investigated which is shown in Figure 3-7 (Corrélation analysis method
is described in Section 7.5). The results show that there is a statistically significant positive corrélation between
the two variables (pattern usability and pattern usage) with Corr. Coef. r=0.65, and Significance /MXOOO. There
is also a statistically significant positive corrélation between pattern usefulness and pattern usage with Corr.
Coef. r=0.562, and Significance. P=Q.OO 1. The corrélation is depicted in the scatter plot in Figure 3-8.

Pattern Usability (Ease-of-use)
Pattern Type Easy Moderate Difficult Very Difficult

Analysis Patterns 0 1 0 0
Design Patterns 5 9 15 11
Process patterns 0 5 1 0

Table 3-3 Pattern usability results

Chapter 3 Patlern Usage Surveys 4 3

Correlation - Pattern Usability and Usage

4 . 0 0 -

2 . 0 0 -

J7 Rt line for

R Sq Linear :
0.429

1 1 1 1 1 r-
1.00 1.50 2.00 2.50 3.00 3.50 4.00

Usability

Figure 3-7 Correlation between pattern usability and pattern usage

Pattern Usefulness
Pattern Type Nil Slight Moderate Considerable

Anal ysi s Patterns 0 0 1 0
Design Patterns 2 2 15 21
Process patterns 0 2 3 1

Table 3-4 Pattern Usefulness Results

Correlation - Pattern Usage and Usefulness

4 . 0 0 -

3 . 5 0 -

« 3 . 0 0 -
ü>
0) c
3 2.50

Jl5|

a

2.00 2.50 3.00

Usage
3.50

Scale
16
14
12
10
8
6
4
2
Rt line for
Total

R Sq Linear
0.315

4 .00

Figure 3-8 Correlation between pattern usefulness and pattern usage

Chapter 3 Pattern Usage Surveys 4 4

The results indicate that the more the users find pat tems easy to use, the more they use them. It appears that
when practitioners have confidence and skills in 'using pattern, the pattern usage levels increases proportionally.
It also appears that the more they use patterns, the more they are convinced of their usefulness. Therefore, there
are some steps and actions that can be taken by the pattern communi ty and software organisations in encouraging
a wider use of patterns:

• Provision of training: One of the main reasons for not using patterns has been shown in this survey to
be the lack of skilled practitioners. Manolescu et al. [2007] also found that only 10% of software
developers in the surveyed organisations had been on a pattern-training course. If the level and quality
of pattern usage is to increase substantially, provision of training for software engineers shoufd be taken
more seriously by the software organisations. W e recommend that they should aim to schedule
comprehensive pattern training programmes for their software engineers. Training would enhance the
skills and confidence of software engineers to use patterns, which would proportional ly increase pattern
usage as shown in this study. Since, this study and others [Prechelt 2 0 0 1 , 2002][Beck 1996], have
shown that pattern usage has a positive effect on software quality, any incurred training costs would be
likely to prove valuable investments in terms of producing better quality software.

• Provision of a wider choice of pattern: A more comprehensive pattern knowledge that includes a
wide choice of patterns in various domains provides greater opportunities for practitioners to employ
patterns to solve a wider range of problems, which would effectively increase pattern usage.
Comprehensive pattern repositories, such as [Booch 2008] , with relevant search and indexing facilities,
would encourage more software engineers to employ patterns. As shown in this study, any increase in
pattern usage is proportional ly reflected in pattern usefulness, and conversely, pattern usefulness will
encourage greater pattern usage. This relationship between the pattern usage and the usability and
usefulness of patterns is important to leverage in enhancing software quality through grater use of
patterns.

• Provision of research on usefulness of patterns: Evidence of the usefulness of patterns would also
encourage practitioners to employ pattems because it has been indicated in the survey that as the rate of
pattern usage increase, the pattern usefulness will also increase proportional ly. It is therefore important
that substantial research on the évaluation of utility and usefulness of pat tems, such as this study, at
both academia and industry be frequently conducted.

One of the issues with pattems, as indicated by the survey, is the minimal use of process-based pattems. The
results show that pattern usage is overwhelmingly concentrated on design patterns and that process pat tems
usage is very low comparatively. The Figure 3-9 shows the proportion of companies using process pat tems. Only
six out of the 67 (8.9%) respondents used process pat tems, and only one out of the 67 (1.5%) surveyed
companies used pat tems frequently. It therefore appears from the sample, that while many companies were
satisfied that the employment of design pat tems were useful in software development design and architecture,
they were not convinced that the application of process pat tems was beneficiai to software development practice.
This resuit prompted the main research topic of this study to investigate the utility of process pattems. One of
the reasons for the low usage of process pattern in industry could be because formai development méthodologies
and processes are little understood and practiced in many immature software development companies. Some
studies have shown that 3 5 % of software development organisations have an ad hoc, individuai-based, and
informai development process in place [Yourdon 2008] . Evidence of positive effect of process pattems, as
sought in this research, could encourage software organisations to use them in their development practice.

Chapter 3 Pattern Usage Surveys 45

P r o c e s s Pat t 'n U s a g e

H A N O I al ail

r S ^ l S o l d o m

F r e q u e n t i y

O r g a n i z a t i o n E m p l o y é e S i ? »

Figure 3-9 Process pa t t ems usage

Companies that did not use patterns gave a number of reasons as to the rationale for not doing so. The results are
depicted in Table 3-5. Eighty eight percent of the respondents gave ' lack of skilled staff , as a reason for not
using patterns, which showed that such organisations felt that patterns required the expertise that they did not
have within their development teams. Patterns are often hard for inexperienced practitioners to use properly and
this appears to be one of the reasons hindering companies in using them. A substantial proportion of
organisations (81%) felt that patterns are not required in their software development practice. Thèse views were
mostly expressed by small software development companies who were involved in developing small user-
interface based web applications for which fewer patterns are available compared to larger and multi-tiered
applications. Such companies therefore believe that patterns would not provide a significant advantage in their
practice.

Reasons • Yes - Answers % • No - Answers %
Lack of Skilled Staff . 88 12
Pattems outdate quickly 33 67
Pattems are not required " 81 19
Pattems nave side effects 29 71
Not Fully Rehable "> 22 78

Table 3-5 Reasons for not using pat terns

The surveyed organisations were asked if they had plans to use patterns in the future. Ten out of the 27 (37%)
that did not use patterns said that they had no plans, while 17 (63%) planned to use patterns in the next 12
months, as is illustrated in Figure 3-10. It shows that the majority of the companies that were not using patterns
at the rime, had decided that pattern usage would be beneficiai to their practice, and were considering using them
in the future.

N o P l a n a N e x t 6 M o n t h s N A
N s x t 3 M o n t h s N e i l 1 2 M o n t h s

Plan To Use Patterns

Figure 3-10 C o m p a n i e s p lanning to use patterns

Chapter 3 Pattern Usage Surveys 46

3.3.5.2 Pattern Development

While the popularity and application of using pat tems in software development practice is high and steadily
growing [Buschmann 2007b], the survey showed that only a relatively small percentage of the software
development organisations were engaged in developing pat tems. As depicted in Figure 3-11 only four of the 67
respondents (6%) developed pattems. This indicates that while many companies utilise software pattems that
have been published in the literature, very few are prepared to put in the effort to extract and write up pa t tems
based on their own company-wide expérience and practice and publish them. One reason for this is the lack of
sufficient training in extracting and writing pa t tems [Manolescu et al. 2007] . There should therefore be a
concerted effort by the pattern communi ty to encourage, and provide support for software development
organisations to engage seriously in producing and mining pat tems. In particular, the pattern community should
establish an authoritative pattern repository, with useful indexing facility, to which pattern users can both
contribute and refer. The pattern communi ty should further encourage software organisations to put in place
training programmes on pattern development for their development teams. Training and practice, is immensely
important in providing the necessary skills for development teams to be able to write quality pat tems. T h e
pattern communi ty has introduced a shepherding process in which an experienced pat tems write helps beginners
to write pattems for publication. The shepherding mechanism should be encourage to be used and adopted in the
software industry in increasing the number of engineers that have the skill to extract and write pattems. It should
be bome in mind that badly written so-called pat tems are worse than not producing pattems at ali, as any
solution that they provide could be misleading and therefore damaging to the applications that use them (see
Section 2.3.2).

70

R a t t e r n D o v e t o p m o n t

Figure 3-11 Compan ie s developing pat terns

3.3.5.3 Pattern's Effect on Software Quality

Participants ' opinions were sought in the survey regarding the effect of pat tems on a number of software quality

attributes. The results are presented in Table 3-6.

Use Patterns Positive Negative Neutral Don't Know
% % • % • • %

Yes 55.0 5.5 27.0 12.5
Testability _ No 3.7 0.0 22.0 74.0

Total 34.4 3.3 25.0 37.4

Yes 77.5 5.0 10.0 7.5
Reusability : No 7.4 0.0 3.7 88.9

Total 49.2 2.9 7.5 40.3

Yes 57.5 7.5 20.0 15.0
Matti tainabilìty No 0.0 3.7 3.7 92.0

Total 34.3 5.9 13.4 46.0

Yes 65.0 15.0 12.5 12.5
Portability No 0.0 3.7 3.7 92.0

Total 38.8 10.4 9.0 44.5

Yes 80.0 2.5 10.0 7.5
Cbangeability No 7.4 3.7 3.7 85.0

Chapter 3 Pattern Usage Surveys 47

Total 50.7 • 3.0 7.5 38.7

Yes 82.5 2.5 12.5 2.5
InteroperabOity No 0.0 3.7 3.7 92.0

Total 49.3 3.0 9.0 38.6

Yes 42.0 20.0 35.0 2.5
Effïciency No 3.7 0.0 7.4 88.9

Total 26.6 11.9 23.9 37.3

Yes 55.0 3 7.5 22.5 15.0
Reliability No 0.0 0.0 7.4 92.0

Total 32.8 22.4 16.4 46.0

Table 3-tì Par t ic ipants ' v iewpoints on the effect of patterns on quali ty attributes

Reusability, changeability, and interoperability were the quality attributes that had the highest score of between
77 and 8 3 % . The score shows that a substantial majority of the respondents that used patterns viewed thèse three
attributes as the most influential benefits of software patterns. However, only 4 2 % thought that the usage of
patterns would improve efficiency, while 2 0 % believed that in fact patterns had a négative effect on effïciency.
The results on the reliability attribute were surprising. Whi le 5 5 % of the respondents that used patterns believed
they had a positive effect on reliability, 37 .5% thought that it had a négative effect, which is a surprisingly high
proportion. This was rather unexpected because patterns, theoretically being proven solutions, should not be
unreliable or have a négative effect on the reliability of the software that adopts them. The results indicate that
while patterns may be reliable themselves, they do not necessarily enhance the reliability of the software that use
them and could indeed in some cases decrease their reliability. It appears to suggest that patterns could influence
aspects of a software development in a way that renders the resulting software less reliable. W e recommend that
further empirical/experimental investigations to be conducted to détermine the effect of patterns on the reliability
of the software that employ them. Such investigations could outline spécifie deficiencies and issues with patterns
with regard to the reliability attribute and recommend stratégies to résolve them.

The corrélation between pattern usage and their effect on both reusability and maintainability were investigated
which are presented in Figure 3-12, and Figure 3-13. There is a statistically significant and positive corrélation
between pattern usage and the reusability attribute with Corr. Coef. R=0.523 , and Sig. p=0.001. There is also a
statistically significant and positive corrélation between pattern usage and the maintainability attribute with Corr.
Coef. R=0.459, and Sig. p=0.007.

1.00 1.50 2.00 2.50 3.00 1.00 1.50 2.00 2.50 3.00

Pattern Usage Pattern Usage

Figure 3-12 Corrélat ion between reusability and pattern Figure 3-13 Corrélat ion between maintainability and pattern

usage usage

There was also found to be a statistically significant positive corrélation between testability, reliability, and

pattern usage as depicted in Figure 3-14 and Table 3-7. The results indicate that as pattern usage increases,
testability and reliability of the application that implements them will also increase proportionally. This outlines
a further benefit of pattern usage, which is to enhance both testability and reliability proportionally. The results

Chapter 3 Pattern Usage Surveys 48

further show that there is a positive corrélation between testability and reliability, indicating that any change in
either attributes is proportionally reflected in the other.

Pattern Usage Reliability Testability
Pearson Corrélation 1 .465 .529

Pattern Usage
Sig. (2-tailed) .002 .000 Pattern Usage
N 4 0 4 0 4 0

Pearson Corrélation .465 1 .742

Reliability
Sig. (2-tailed) .002 .000 Reliability
N 4 0 4 0 4 0

Pearson Corrélation .529 .742 1

Testability
Sig. (2-tailed) .000 .000 Testability
N 4 0 40 4 0

Table 3-7 Corrélation analysis for testability, reliability, and pattern usage (significant at the 0.01 level)

Corrélation - Testability, Reliability, and Usage

n 2.00-
f "1.50-

.00-
0.50-y

Scale
• 12
• 10
• 8
• 6
• 4
• 2
• •

Figure 3-14 Corrélation between pattern usage and testability-reliability quality attributes

The positive effect of pattern, on communication between team members , has been reported by some studies
[Beck et al. 1996] [Hahsler 2005] [Unger and Tichy 2000] . The survey results, depicted in Table 3-8,
corresponds to those findings in indicating that the majority of the surveyed participants believed that patterns
improved communicat ion between development team members .

Question
(Pattern Users Onlv)

Yes
%

No
%

Don't
Know %

Do you believe patterns contribute towards better communication between
software development team members

61 27 12

Table 3-8 Patterns' effect on communication

Further results are presented in the 'Appendix D. Results ' .

Chapler 3 Pattern Usage Surveys 49

3.4 Summary

This chapter discussed two preliminary surveys to evaluate the impact and usage of both architectural and
software patterns. In the first survey, architects from 26 participating UK universities were asked for their
viewpoints and teaching practices on patterns. The results of the survey showed that, 22 out of the 26 (84.6%)
that responded did not teach patterns at any level. Out of the remaining four that taught patterns, two taught it at
undergraduate levels, one at postgraduate and one at both undergraduate and postgraduate levels. There was
found to be a positive corrélation between pattern usage and architect 's viewpoints. The survey also showed that
the architects ' viewpoints about patterns remained divided, but generally, support levels for patterns were shown
to be low. While the majority of the surveyed architects did not favour patterns, some believed that it was an
important concept that was t imeless and was relevant now and in the future. Issues such as anti-creativity and
unscientific aspects were amongst the main criticisms of the architectural patterns. The chapter discussed
whether such issues also applied to software patterns.

In the second survey, a sample of software development companies were asked about their usage of patterns in
their software development practices. Questions that were asked included whether they thought software patterns
contributed towards software quality attributes such as, reliability, usability, and efficiency. The survey resuit
indicated that 4 0 out of the 67 survey respondents (59.7%), used patterns in their software development
practices. However , only four out of the 67 (i.e. 6%) companies that replied to the survey produced patterns. The
results also indicated that process patterns were seldom employed. Only 6 out of 67 respondents said that they
used process patterns (8.9%). There was also found to be a statistically significant and positive corrélation
between pattern usage and quality attributes such as reliability, testability, maintainability, and reliability.

The survey results indicated that, while design patterns were shown to be regularly used by software
organisations, it appeared that process patterns were seldom used in the industry. The results prompted the main
topic of this research to investigate the utility of process patterns through an expérimental research method that
involved software measurement. In the next chapter, therefore, software expérimentation and measurement
concepts will be discussed.

Chapler 4 Software Expérimentation and Measurement 50

Chapter 4 Software Expérimentation and Measurement

4.1 Introduction

As briefly discussed in the introduction Chapter 1, software expérimentation and software measurement are
important topics and components of this research programme. Measurement is an essential é lément of the
scientific process and includes such activities as measuring the variables to differentiate cases, measuring the
changes in behaviour, and measuring the causes and effects. The key to the term software engineering is
'engineering ' which intrinsically implies measurement and control. Grady [1992] stated, "Nothing should be
accepted as software engineering unless it has been measured and proven". Demarco [1982] further noted, "You
cannot control what you cannot measure" thus encapsulating the importance of measurement in software
engineering. One area in which measurement is the essential component is in software expérimentation.
Software measurement and software expérimentation are closely linked, as the expérimentation process often
involves measurement of some software attributes or entities. Expérimental research methods can be employed
in software engineering for many types of studies, one of which is to evaluate and validate new as well as
established technologies and concepts (e.g. software patterns).

Based on the quantity and quality of software expérimentations and measurements reported in the literature,
neither software expérimentation nor software measurement appear to have reached the maturity in software
engineering that is enjoyed in other fields of science, such as physics, partly due to the relatively young âge of
just a few décades [Koziolek 2005] [Zelkowitz and Wallace 1998], Our knowledge of software measurement is
currently flawed to the extent that even international software measurement standards (i.e. ISO/TEC 15393),
upon which practitioners often rely for support, have given misleading advice on software measurement
[Kitchenham and Colin 2007]. As measurement is an essential component of expérimentation, weaknesses in
software measurement have a direct influence on the quality of expérimentation. Such weaknesses have caused
expérimentation in software engineering to be a difficult and challenging undertaking and have therefore
attracted fewer researchers resulting in lack of quality software expérimentations [Tichy 1998].

Software measurement concepts and process is employed to measure and evaluate a number of attributes of
software development projects through an expérimental research method for assessing the utility and effect of
process patterns. In this chapter, both software expérimentation and software measurement in software
engineering are reviewed including a discussion of software expérimentation and measurement issues. The first
section of this chapter refers to software measurement, where software measurement concept, software quality
measurement, and software metrics are discussed. The second section discusses software expérimental research,
where there is a review of related works as well as a discussion of issues and difficulties in expérimental research
in software engineering.

4.2 Measurement Theory and Definition

Measurement theory is detailed and mathematically complex [Stevens 1946] [Torgerson 1958] [Campbell 1928]
[PfanzagI 1971]. Nonetheless, it is necessary that measurement in software engineering be based on sound
theoretical and mathematica! pract ice^to produce verifiable and valid results. Measurement theory deals with
fundamental issues such as, the concept and meaning of measurement, the types of attributes that can and cannot
be measured and their scales, the définition of measurement scales, meaningful measurement S t a t e m e n t s , the
acceptable error margin, and whether what is measured is really the targeted attribute. Based on previous works
on measurement théories, many have proposed measurement frameworks and principles for software
measurement [Zuse 1998] [Fenton 1994] [Morasca and Briand 1997] [Fenton and Melton 1996]. It would appear
however, that measurement theory constraints are too strict and have not therefore been used on building new
measures but mostly used to analyse the properties of the existing ones [Morasca 2003]. Furthermore, many of
the methods and théories proposed contain misrepresentation and flaws [Briand and E m a m l 9 9 6] [Morasca et al.
1997b], For example, some take issue with the notion that complexity metrics are additive, measurements fall
into a number of distinct type scale levels, or that certain statistica! techniques are not appropriate for some types
of measures [Briand and E m a m 1996]. Furthermore, many hard problems such as errors in modelling process
and measurement process are not adequately addressed in software measurement theory [Shepperd and Ince
1993]. There is no established system of measurements in software engineering and therefore software engineers

Chapter 4 Software Expérimentation and Measurement 51

often may need to consider techniques such as, rules of thumb, analogue conclusions and Statements of trends,
expertise, estimations, and prédictions [Ebert and Dumke 2007] . Despite the outlined difficulties and flaws, the
employment of the software measurement principles and guidelines is valuable in devising a validated
measurement process.

Measurement is defined in a number of ways depending on where the emphasis and the focus of interest are
placed. It is defined as "the process of empirical, objective, assignment of numbers to properties of objects or
events of the real world in such a way as to describe them" [Finkelstein 1982]. It is further defined as "the
process by which numbers or symbols are assigned to attributes of entities in the real world in such a way as to
characterise them according to clearly defined rules" [Fenton and Pfleeger 1997]. In the latter définition,
however, there are disagreements on the nature of the model/theory under which the rules are defined. While
traditionalist argue that the ideal mode is the causal mode (i.e. change in the attribute causes a change in the
value that will resuit from a measurement) , our understanding of causal relationships for many variables are
limited and so it would therefore, be impossible to discuss measurements of those variables in causal terms. It is
for this reason the IEEE 1061 standard refers to corrélation for validating a measure. Corrélations however do
not prove causal relationships and therefore this strategy is risk-prone [ibid]

Measurement is also defined as a mapping from the empirical world, to a more formai and mathematical world
[Oman and Pfleeger 1997]. This mapping is depicted in Figure 4 - 1 . The concept shared in ail thèse définitions is
that measurement is about the way numbers or symbols are assigned to entities to reflect a description or
characterisation of an attribute. The values could represent a measure of the effectiveness of the development
process or the quality of the products. Furthermore, such assignment of numbers is important in order to enable
the differentiation and comparison of entities of interest. It should however be noted that assignment of symbols
or entities such as vectors may prove problematic in some cases for the absence of V or ' < ' relations and may
be only applicable to nominal scales. Based on the concepts and définitions outlined, for the purpose of this
research the software measurement is defined as, the procedure of an empirical assignment of numbers ,
according to rules derived from a model or theory, to attributes of software engineering entities in order to
describe them.

Empirical (Real) World Format (Mathematica) World

J«1 oasi»*» !
Expnaned-Jn

t

fielcrmine

Unit

ï

Mnaauretrwnî

S c a l e typa

Figure 4-1 A model o f measurement [Oman and Pfleeger 1997]

Although the terms measurements, measure, and metrics are often used interchangeably, they are in fact différent
in meaning. For the purpose of this research, the term measure is defined as 'a number or symbol designating the
value of a property of a software attribute' . A measure is the product of the measurement process. There is
however some controversy about the usage of the term 'metr ic ' . The term was originally defined for the purpose
of geometry mathematics (distance function [Hamming 1950]), and its usage in software measurement is
problematic for being imprecise and perhaps misleading in some situations. While many authors (e.g.
[Kitchenham and Mendes 2004] [Goodman 2004] [Grady 1994]) have used the term and continue to use it, some
[Zuse 1998] [Whitmire 1997] have declined its usage. There are also efforts being made in homogenising the
international standards to delete the word metric from the glossary of software measurement terms altogether.
However the fact is that the term 'metr ic ' is currently used in the software literaturę and will probably continue
to be used until there is a universally agreed convention against its usage. Therefore, for the purpose of this
research, metric is defined as "a quantitative measure of the degree to which a system, component, or process,
possesses a given attribute." based on the IEEE 610 définition. In practice a measure usually refers to lower
level, more concrete measurement such as LOC (Unes of code) and metric, to more abstract and higher level
measurement usually derived from a measure, but there is typically overlap where either term can be used. An
entity can be both a measure and a metric, depending on the context. For example, LOC as a number
representing the number of fines of code is a measure; however, L O C as a way of measuring the number of lines

Chapter 4 Software Experimentation and Measurement 52

of code is a metric. It is clear that the use of both terms causes confusion and ambiguity and this is another
reason for the argument to eradicate the term metric and the use the term measure in all cases.

Measurements are collected and analysed through a measurement process that includes the identification of the
entity (e.g. a module) and its attributes of interest (e.g. size), followed by mapping the attributes to a
mathematical representation (e.g. lines of code). Finally, the mathematical representation is interpreted in terms
of their meaning in the empirical world (e.g. the size is too large, may need to be broken down) . This is
illustrated in Figure 4-2.

Having given a brief introduction to the measurement definition and theory, in the following section the purpose
and benefits of software measurement are discussed.

4.3 Purpose and Benefits of Software Measurement

The role and importance of measurement in science cannot be overstated. Lord Kelvin [Thompson 1917]
characterised this importance in stating that, "numerical accuracy is the soul of science". While people find it
necessary to understand many features of the empirical world (i.e. complexity of a software program), our brain
is incapable of producing relevant empirical results from real world observations (empirical relational system)
due to what Kriz [1988] calls intelligence barrier as depicted in Figure 4-2. It makes it therefore necessary to use
such tools as numbers and symbols in mathematics and statistics (numerical relational system) to bypass the
intelligence barrier, by properly translating empirical information to numerical objects and relations. The
resulted numerical objects and relations can then be employed to improve the quality of software products.

2 a
o
a.

Rea l W o r l d , - , Numbers » Rea l W o r l d , - , Numbers »

Relevant
Empirical resutn

R e d u c e d
Numbers -i.

Relevant
Empirical resutn

R e d u c e d
Numbers -i.

Interpretation

Figure 4-2 Measurement process and intelligence barrier [Kriz 1988]

Measurement is important for deriving the basis for estimation, quality control and prediction as well as to
provide help with many activities such as tracking project progress, determining relative complexity, analysing
defects, and experimentally validating best practices [Grady 1994]. Measures (e.g. effort, cost, duration, faults,
failures, and changes) are valuable for understanding and improving the software development processes as they
define targets to aim for in developing high quality software [Fenton and Pfleeger 1991]. In an empirical study,
Hall et al. [2001] found that both managers and developers viewed many aspects of measurement beneficial to
the software projects. In particular, they viewed the tracking of progress, improvement of planning and
estimation, and identification of specific problems to be the major benefit of measurement.

A key benefit of measurement, directly related to the topic of this research (i.e. process patterns), is in process
improvement. Development processes are improved through continuous quality assessment [Sommerville 2007] .
It is through attempts in improving software development processes that process patterns are often formed and
established. When a process activity is matured though measurement and quality assessment and repeatedly
produces workable and proven solution in different applicable circumstances, it becomes a 'process pattern ' in
practice. It then needs to be written up in accordance with the structural and contextual requirements of pattern
and be offered for publication as a process pattern. This is illustrated in Figure 4 -3 .

Chapter 4 Software Expérimentation and Measurement 53

Figure 4-3 Process pattern development through process improvement

Software measurement provides the means of deriving a numeric value for an attribute of a software product or
process that facilitate objective comparisons between techniques and processes. This is the context in which
measurement is employed in this research. The measurement process is used to compare the quality of a number
of software product and process attributes in development processes that use 'process patterns ' and those that do
not. The methods and context in which the devised measurement process is used in the experimental research
method are discussed in detail in Chapter 5, and Chapter 6.

Measurement scales provide the principies and the yardstick on which measurements can be based. There are
many types of measurement scales, which will be discussed in the following section.

4.4 Measurement Scales

Understanding the nature and scales of collected data is important for opérations such as Statistical tests,
aggregations, and corrélations of the variables concerned. It is therefore important to determine the measurement
représentation most suitable for the attribute to be measured. Stevens [1946] proposed the following four levéis
of measurement which is widely adopted and used in software measurement: I) nominal, 2) ordinal, 3) interval,
and 4) ratio. In addition to Steven 's four classes, a further scale called 'absolute scale ' was also proposed. These
scales are listed in Table 4 - 1 .

The nominai scale is the simplest scale and it only places the entities in différent classifications. The classes are
identified by unique symbols , or numbers, and cannot be interpreted as anything other than identifiers. The only
comparisons that can be made between variable values are equality and inequality. There are.no ' less than ' or
'greater than ' relations among the classifying names, nor opérations such as addition or subtraction. The ordinal
scale is used if the task is to order members of a group according to the extent to which they possess the chosen
attribute. Comparisons of greater and less can be made, in addition to equality and inequality. However ,
opérations such as conventional addition and subtraction are still meaningless. The interval scale allows the
magnitude of the attribute to be expressed numerically, as a distance from some chosen point of référence. In this
scale, the différences between arbitrary pairs of measurements can be meaningfully compared and opérations
such as addition and subtraction are therefore meaningful. The zero point on this scale is arbitrary and negative
values can be used. The ratio scale expresses the magnitude of the measure as a multiple of a chosen unit of
measurement. It preserves the ordering and the size of the intervais and the ratios between entities, and therefore
opérations such as multiplication and division are meaningful. The absolute scale is used for counting and only
uses rational numbers. In contrast to the other four measurement scales, the absolute scale is not transferable.
That is, the scale is unique and cannot be rescaled. For example, white in non-absolute scales results of a
classification expressed in a system of pictorial symbols can be mapped into a system of colours, the alphabet, or
the set of natural and rational numbers, such transformation is not possible in the case of the absolute scale.

Chapter 4 Software Expérimentation and Measurement 54

Scale Type Admissible Scaling
Transformations

Defining Relations Application Examples

Nominal M'=f(M) Equivalence Name of programming
languages

Ordinal M'=f(M);
If M(A1)>M(A2) Then
M'(A1)>M'(A2)

Equivalence
Greater than smaller than

A ranking of failures (severity)

Interval M'=aM+b, a>0 Equivalence, Greater than/smaller than,
Relative scale values

Beginning date. End date of
activities (as measures of time)

Ratio M'=aM, a>0 Equivalence, Greater than/smaller than,
Relative scale values, Ratio between value

LOC (as a measure for program
size)

Absolute M'=M Equivalence, Greater than smaller than,
Relative scale values, Ratio between scale
values, Absolute scale values

the number of occurrences of
something

Table 4-1 Measurement scale types

The catégorisation of data into the scales described above suggests restrictions in the type of statistical analysis
that can be applied to each scale classification (e.g. parametric-test can only be applied to the interval and ratio
scales). For example, it is not meaningful to establish a statistical mean over an ordinal-type measurement, since
that assumes a constant interval between ali the points of the scale. However, while the distinction between
categorical and continuous data is important, the rigid application of Steven's four measurement scales is not
necessary [Dewberry 2004] . Often this classification is too restrictive to apply to real world data and often lead
to degrading data by rank ordering and unnecessarily using nonparametric methods [Velleman and Wilkinson
1993] [Briand and E m a m l 9 9 6] . Furthermore, strict application of this taxonomy would substantially hinder the
progress of empirica! research in software engineering. The experiment data in this research project were of type
interval or ratio (these are also referred to as continuous data) and parametric tests were used for their statistical
analysis as both these measurement scales are suitable for parametric tests even by strict adhérence to Steven 's
[1946] principles.

Knowing and understanding techniques for measuring software attributes is important in using an appropriate
technique for measuring a particular attribute. In the following section, these techniques are presented and
discussed.

4.5 Measurement Techniques

While some software attributes can be measured directly, many can only be measured indirectly. In order to
measure such attributes, indirect measurement techniques are employed. In this research, both types of
measurements were used. These are discussed in the following section.

4.5.1 Direct and Indirect Measurement

Direct measurement refers to measurement of an attribute when no other attribute has a direct or indirect
influence. A direct measure is defined as "a measure that does not dépend upon other attributes." [IEEE S T D
1061]. Direct measurements are used to measure internai attributes. Examples of direct measures used in this
study are, no. of lines of code (LOC), test duration (time in hours), and defects discovered in testing.

Indirect (or Derived) measurements are used when an attribute can only be measured in relation to other
attributes. They are used to measure extemal attributes and may be necessary where temporal considérations
prevent direct measurement. Indirect (or derived) measures often demonstrate the interactions and relationships
between direct measures and are often a factor or function of a number of direct measures. Examples of indirect
measurements are, defect density, productivity, and test effectiveness. Table 4-2 below depicts a number of
examples of indirect measurements and the way they can be measured using direct measures. The Table 4-3
depicts internai and external attributes for software development products, which can be measured by direct or
indirect measurement techniques.

Chapter 4 Software Expérimentation and Measurement 55

Indirect (Derived) Measures Evaluation using direct measures
Programmer Productivity (LOC produced) / (effort). [This is a widely used. but controversia!

method of calculating productivity partly due to difficultés in defining
and measuring Lines of Code consistently]. Function points are also
used instead of LOC.

Defect Density (No. of defects) / (size)
Defect Détection Efficiency (No. of defects detected) / (Total No. of defects)
Requirements Stability (No. of initial requirements) / (total No. of Requirements)
Test Coverage (No. of items covered) / (total No. of items)
System Spoilage (effort spent fixing faults) / (Total project efforts)

Table 4-2 Examples of indirect measures

4 Products " Internal Attribute v Externa! Attribute
Spécification Size. re-use, modularity, redundancy, syntactic

correctness.
Comprehensibility,
maintainability

Design Size. re-use. modularity, coupling, cohesiveness,
functionality.

Complexity. maintainability

Code Size. re-use, modularity, coupling, functionality,
algorithm complexity, structure

Reliability, usability.
maintainability

Test data Size. coverage, level Comprehensibility

Table 4-3 Examples of Internal and external attributes for producís

An important aspect of indirect measure is that they should not exhibit unexpected di sconti nui des. For example,
in the définition of measurement M l , deftned as M l = x / (y - l) , the measurement M l is undefined and invalid if y
were to be ' o n e \ This measure therefore would be valid for conditions under which y would never have the
value 'one ' .

Software metrics are the essential component of a measurement process. They represent a method or formula in
measuring a software attribute. There are différent types of software metrics, which will be discussed in the
following section.

4.6 Software Metrics

Software metrics deal with the measurement of the software product and the process through which it is
developed. They are numerical measures of a product or process that is part of a software project. There are
however, difficulties in formalising standardised metrics for many software attributes that are generally and
entirely accepted by the software community as a whole. For example, although in the past three decades, there
have been many attempts to develop a single metric to provide a comprehensive measure of software
complexity, no one measure has been developed around which a consensus has been achieved [Pressman 2005] .
The problem is that there are many différent views of what constitutes software complexity and what attributes
of a system lead to it. There are therefore no standardised and universally agreed and applicable software metrics
on complexity and other attributes [Sommerville 2007] .

Many characteristics and qualifies are suggested by software practitioners and authors for a metric, some of
which are difficult to achieve in practice. For example Mills [1998] States that good metrics should be simple and
precisely definable, objective as far as possible, valid, and robust. Ince et al. [1993] argue that for a metric to be
truly useful it should be measurable (i.e. be based on facts), independent (i.e. changes in its value does not effect
quality of software), accountable (i.e. contain detailed on how and when the metric was measured) and precise
(i.e. has known level of tolérance). Furthermore, Basili et al. [1996] also recommend that for maximum utility in
analytic studies and statistica! analyses metrics should have data values that belong to appropriate measurement
scales (see Section 4.4 Measurement Scales). While such desired attributes of a metric is something to aim for in
any measurement process, it is a challenging endeavour, which often proves hard to achieve in practice.
Measurement challenges are further discussed in the Section 4 .10 .

4.6.1 Process and Product Metrics

Product and process metrics are the two main types of software metrics both of which were used in this study.
While the product metrics measure the attributes of the software products, process metrics measure the attributes
of the process employed to obtain the results. Process metrics are therefore used to measure attributes of a

Chapter 4 Software Expérimentation and Measurement 5ó

software development process. They measure process attributes such as, 'Number of defects introduced per
developer hour ' or 'Number of changes to requirements ' . The most popular and referenced process metric types
include management support metrics, productivity metrics. efficiency metrics, process quality metrics, actual vs .

planned metrics, and traceability metrics [Grady 1992] [Humphrey 1989]. Product metrics are employed to
measure attributes of the software itself such as size or complexity. Products include any artefact or document ,

such as prototypes, test harnesses, specification documents , that is produced during the life of software. Some
examples of more commonly used product metrics are: Lines of Code, Function Points, and Cyclomatic

Complexity.

Software metrics can be categorised into four main groups in accordance with the four major activities of a

development life cycle [Pressman and Ince 2000] . These are as follows:

• Metrics fo r the analysis model

• Metrics for design model

. • Metrics for source code and implementation

• Metrics for testing

This classification of metrics reflects the metrics strategy designed for this study. The metrics employed in this

study through the measurement process fall into these categories. The measurement process designed for this
study is discussed in detail Chapter 6.

4.6.2 Composite/Hybríd Metrics

Composite/hybrid metrics are created by aggregating several resource (or other composite) metrics according to
a specific algorithm, such as averaging one or more metrics over a specific amount of t ime or by breaking them
down according to specific criteria [Keller and Ludwig 2002] ,

The máin advantage of using composite/hybrid metrics is that they enable measurement to be more generalised
and to represent a multitude of factors that affect the quality criteria. Using a number of metrics in aggregation,
where each individual metric probes a different aspect of an attribute, may give a more valid and precise measure
of the overall quality of the attribute. This is to offset some of the inadequacy of single metrics to satisfy many
measurement objectives. Single metrics are not sensitive to problems of quality factor trade-offs [Shepperd
1996] and a single metric is seldom adequate to encapsulate properties of interest [Basili and Rombach 1988].
Furthermore, single metrics in isolation are too simplistic to provide adequate explanation for software
engineering phenomena [Shepperd and Ince 1993], In order to overeóme such weaknesses, some authors have
proposed Composite/Hybrid metrics by combining the best aspeets of existing metrics. Harrison and Magel
[1981] have shown that neither Hals tead 's [1977] ñor M c C a b e ' s [1976] complexity metric is suffícient
¡ndividually, and a combination of the two would produce a better metric. A varied combination of metrics in
hybrid format has also been used by Munson and Khoshgoftaar [1990, 1992] in the form of relative complexi ty
metrics. Kitchenham and Mendes [2004] also used composite metrics to propose a method of productivity
measurement. Composite measures composed of múltiple measures can further help reduce measurement errors
(i.e. random errors, method variance), since single measures are contaminated by irrelevant aspeets (e.g.
extraneous variables) of methods used [Campbell and Fiske 1959].

There are however two issues with composite metrics that need carefui attention and consideration:

1. Aggregation (e.g. averaging) of a number of primitive metrics could make the resulting composi te
metric less sensitive [Melton 1990]. Therefore, metrics have to be aggregated with carefui consideration
not to adversely affect the sensibility of the resulting composite metrics. However, a little loss of
sensitivity may be acceptable if the resulting composite metric provides other benefits such as
simplicity and generality.

2. Conflict of scales and dimensional inconsísteney in composit ing the metrics could invalídate the
resulting metric. For example, one has to be carefui that metrics of different units are not
inappropriately aggregated.

Provided that those two points are taken into consideration. the inclusión of composite/hybrid metrics could be

beneficial and valuable in many measurement programmes. The use of composite metrics in this research was
considered. However, a decisión was made not to use them since that would unnecessarily complícate the

measurement process and would run the risk of producing less sensitive results.

Chapter 4 Software Expérimentation and Measurement 57

An important element of a measurement process is the validation of the metrics used in the measurement
process. Having discussed the metrics in the previous section, in the following section the validation of metrics
is discussed.

4.7 Measurement Validation

A fundamental concept of measurement is that the measurement of an entity must not presume the measurement
of related entities other than the one being measured. A full understanding of what is being measured is
important. In particular, attention should be paid to the nature and scales of data collected, to ensure that any
aggregation and corrélations of the data and variables are valid and meaningful.

Validation of a software measure is the process of ensuring that the measure is a proper numerical
characterisation of the claimed attribute [Baker et al. 1990]. Often, however, it is assumed mistakenly that a
software measure is only valid if it can be shown to be an accurate predictor of some software attribute of
general interest like cost or reliability. This in fact is only true for the validation of a prédiction system, which is
defined as "the usuai empirical process, of establishing the accuracy of the prédiction system in a given
environment, by empirical means" (i.e., by comparing model performance with known data points in a given
environment) [ibid], There is, therefore, a différence between validation of a measure and validation of a
prédiction system. Crucially a measure is not always part of a prédiction system (e.g. program size used to
predict project effort).

A key attribute of a good measurement process is the quality of its validation considérations. Fenton and Melon
[1996] suggest two most important questions to ask in validating a measure, 1) how much do we know about the
attribute to be measured, and 2) how do we know that we are measuring the attribute we want to measure. These
two questions refer to what is called, "construct validity" and are the basis for major criticisms of software
metrics [Nance and Arthur 2002] . There is a negative corrélation between a measure and its underlying attribute
as there will be more distortion when a measure is less tightly linked to its underlying attribute [Ebert and
Dumke 2007] . In order for a measure to be validated, the following four validity checks are necessary
[Kitchenham and Pfleeger 1995]:

• Attribute validity: Interested attribute (both directly and indirectly measurable) is actually exhibited by
the entity to be measured.

• Unit validity: Employed measurement unit is an appropriate means of measuring the attribute.
• Instrument validity: Any model underlying a measuring instrument is valid and the measuring

instrument is properly calibrated.
• Protocol validity: An acceptable measurement protocol is adopted.

Generally, there are a number of questions that need to be addressed in order to validate a metric. These include
[Kaner and Pond 2004]:

1) What is the purpose of this measure?
2) What is the scope of this measure?
3) What attribute are we trying to measure?
4) What is the naturai scale of the attribute we are trying to measure?
5) What is the naturai scale for this metric?

Although validity considération is an important component of a high quality measurement process, it is often
missing in published measure ment-related research [Koziołek 2005] . While a complete validation process both
theoretical and empirical is often difficult to implement in practice, essential validation checks such as construct
validity should be part of any measurement process. Continuous and systematic inclusions of such validity
routines in software measurement process not only enhances the probability of achieving validated measures , but
also generally helps in moving software engineering forward towards a more quantifiable and mature discipline.
In defining the measurement process for this study the validity issues discussed in this section were considered
and implemented wherever applicable.

In the above section, the measurement principles and components such as metrics with regards to this research
were discussed. One important utility of metrics is their application in quality measurement and évaluation. This
is the context in which metrics were employed in this research. In the following section, therefore, quality
measurement techniques and issues are discussed.

Chapter 4 Software Expérimentation and Measurement 58

4.8 Software Quality Measurement

The main goal of software measurement is to improve software quality. As software is becoming increasingly
complex and criticai due to increasing business demands for more sophisticated software, the quality of software
producís is a major concern for both software producers and users [Fuggetta 1998]. Software quality is probably
the most desired and sought after goal in software engineering which has so far been unattained [ß la ine and
Cleland-Huang 2008] . While there have been improvements in the quality of software over the last couple of
decades, partly due to the advent of object-oriented development and the associated C A S E support, software
quality measurement continues to be a challenging endeavour. Even after using the software for a long period, it
is diffîcult to measure software quality attributes such as maintainability [Sommervil le 2007] . While the term,
'qual i ty ' in software engineering might seem self-explanatory, there are many différent views of what is meant
by quality and how it should be measured or assessed. The term, 'software quali ty ' denotes an elusive and
multidimensional concept [Gillies 1997], and software quality attributes are often in a conflicting relationship to
one another. For example, it may be that the application of a design pattern results in code that is, more flexible,
but more complex as well. Furthermore, although an increasing number of software quality standards emphasise
the need for measurement (ISO, SEI, and IEEE), most provide little detail as to what exactly should be measured
and how the results should be used in the assessment of software quality. The fundamental issue is that our
understanding of software quality and Us measurement is not substantial [Oman and Pfleeger 1997]. While
characteristics such as, fit for purpose, conformance to spécification, degree of excellence, and timeliness are
often proposed for software quality, the problem however is that such characteristics and définitions are not
much use in offering the ability to quantify and measure quality. There is also an argument as to whether the
quality of the development process affects the quality of the delivered product directly. While the relationship
between process quality and product quality in software engineering is complex and consequently (i.e. one
cannot predict how process change will influence the product), expérience has shown that process quality has a
significant effect on the quality of the software [Sommerville 2007],

Software constitutes a component of a larger system in which other components and factors such as humans ,
other producís, and hardware are ¡nvolved. Therefore, the whole-system characteristics influence the criteria for
software quality. Software quality is therefore difficult to define universally and unambiguously, resulting in the
quality measurement to be often a subjective task. There have been a number of proposed ways of measuring
software quality [Basili 1995] [Kitchenham and Pfleeger 1996] [Kitchenham and Mendes 2004], One suggested
method is to investigate the ' i l i t ies ' (non-functional requirements) of the system in attributes such as stability,
maintainability, reliability, verifiability, portability or extendibility. However, measurement of such quality
attributes and their exact operational définition is the subject of much argument and disagreement. Furthermore,
there is no way of directly measuring such quality indicators. Another method is to investigate program
correctness through looking at the defect rate or defect density (i.e. defects / LOC) . It is also possible to est imate
the number of defects that remain in a piece of code, when it is completed through a method called the ' latent
defect rate ' . However . the problem with this method of measuring quality ¡s that, while it accounts for defects, it
does not cover other quality attributes essential to a quality software product. Furthermore, as the number of
defects detected is dépendent upon the quality of inspection process [Schach 2005] , the number of defects
recorded may not represent the actual number of defects in the software. The overall software quality can also be
measured as, weighted linear combination of a number of quality attributes such as reliability, performance,
security, fault tolérance, testability, and maintainability (i.e. Q = WjR + w 2 P + ...) as proposed by Voas and
Agresti [2004], The problem with this proposai is however, the difficulty in accurately measuring the constituent
software attributes. In this project, attributes such as defect density are used to gauge the quality of the software
projects that use process patterns in comparison to those that do not. Software quality measurement is currently
imperfect, and metrics can only provide indications of quality rather than answers with absolute certainty. The
more important aspect of metrics is their benefit in developing a measurement culture within the software
development organisations through their continuous application in software development projects.

Basili [2005] identifies several quality measurement méthodologies proposed in the literature. They can be
broadly categorised imo the following two types: (a) Factor/Criteria/Metric model , and (b) goal-oriented models

(e.g. Goal/Questions/Metric model - GQM). These are discussed in the following section.

4.8.1 Factor Criteria Metrie Models (FCM)

The FMC models are the oldest (three décades) and the most well known quality measurement models and have

been used in many commercial applications worldwide. These models are tree-like, where higher branches hold
high-level quality factors such as reliability and maintainability. The quality factors themselves are composed of

lower level criteria. such as the structured and conciseness, which are easier to understand than the factors. For

Chapter 4 Software Expérimentation and Measurement 59

thèse criteria then the actual metrics are proposed. FCM models are depicted in Figure 4-4, Figure 4 -5 , and

Figure 4-6.

A n ritmi.'

Figure 4-4 Factor-Criteria-Metrics general model

METRIC

FACTOR

Ma m raina bili ty

Figure 4-5 An example of FCM model for maintainability

An implementation of the FCM quality model is proposed b y McCall [1977]. It incorporâtes a number of criteria
in three major catégories: product opération, product revision, and product transition (Figure 4-6). The model
proposes a set of factors that affect software quality which are known as the McCall factors. These factors are
based on three important aspects of software products, namely, operational characteristics, changeability, and
adaptability.

Although widely used, the F C M model has some drawbacks and limitations. These include, 1) mapping the
criteria onto the metric is obscure, and 2) there is poor capacity for mapping quality probiems to causes
[Marinescu 2004] . The criteria/metric mapping is "h idden" behind the arrows that link the quality criteria to the
metrics, making it impossible in most cases to trace back and determine the rules and principies that díctate the
mapping. Furthermore, the FCM does not help in finding the real causes of the detected quality flaws, because
abnormal metric values indicate the S y m p t o m s of a design or implementation problem and not the problem itself.
A treatment can only be advised or applied when the problem, not o n l y a set of S y m p t o m s , is known.

f j'itt-ria M lirici

O p e r a b i l i ry

T r a i n i n g

C o m m u n i e r) i vei ich s

l i O v o l u m e

ìiO m i e

Access Crtnirol

A-.Ci.-n;, audi i

Stur. i j ic c i l i cieni: y

Exécut ion e H ì c i c n c y

Trcic iMbì l i ly

C o m p loi chas

A e e u r j c y

l î r rnr tolcr. incc

Cons i mcney

S i m p l k ' i l y

C o u ci m: ne s>

Inst rumentat ion

l : \pand: ib i l i ty

Gcnu iu l i i y

Sc l l - c lcscr ip i i i c i i css

M o d u k i r i t y

M a c h i n e inde pendei ice

SSv • •) - l c m indépendance

C u m i n s c o i i i i t w i i d j l i l y

H a t a c< miniona] i lv

Figure 4-6 Factor/Criteria/Metrics model (McCall/Boehm model)

http://A-.Ci.-n

Chapter 4 Software Expérimentation and Measurement 60

4.8.2 Goal Question Metrie Model

The Goal/Question/Metric (GQM) model is a mechanism that provides a framework for developing a metrics
programme. The approach was originally defined for evaluating defeets for a set of projeets for NASA. The
application initially involved a set of case study experiments [Basili and Weiss 1984], but was later expanded to
include various types of experimental approaches [Basili and Rombach 1988]. Goal-oriented measurement
provides a strategy for deriving measures from measurement goals, to ensure the consistency and completeness
of a measurement pian. The paradigm does not provide specific goals, but rather a framework for stating goals
and refining them into questions to provide a spécification for the data needed to help achieve the goals. The
G Q M as a goal-oriented measurement paradigm helps with the following tasks [Basili et al. 1994] [Basili 2005] :

• Ensure adequacy, consistency, and completeness of the measurement pian and therefore of data

collection.

• Manage the complexity of the measurement programme

• Stimulate a structured discussion and promote consensus about measurement and improvement goals

One of the important aspects of G Q M is that it forces problem définition and defines the metrics required to
address them. Furthermore, as well as being flexible and applicable to almost any software measurement
environment, G Q M provides a context to understand metrics in addition to evaluating them by posing the
question to which a metric is aimed to provide an answer [Shepperd and Ince 1993]. G Q M is however software
project centric and some bave criticised it [Roche 1994] for being déficient in properly addressing the al ignment
between the technical and business objectives. The G Q M paradigm consists of three steps: 1) Generate goals, 2)
Derive related questions, and 3) Develop appropriate metrics. The structure is hierarchical as depicted in Figure
4-7.

g o a l l goaLi goa l3

ini mi irò nH

Figure 4-7 The Goal Question Metric Model

Cual
S u í o n n a

«oal
He l'ine meni

z
Questua Qvcnion
DeflnilioB

Mefite Metric
Derivali oa Validad on

D a l a
(Joilcction

Figure 4-8 V-GQM Model

A weakness of the G Q M model is that it is a standalone implementation and does not take into consideration
previous implementations for validation and other purposes. In addressing this weakness, some have proposed
that in addition to the top down approach, there should also be a bottom up procedure enhancing the usability
and scope of the G Q M paradigm [Hefner 1995]. Olsson [2001] also proposed a useful extensión to G Q M in
which previous G Q M implementations are studied, and lessons learned are used as feedback to the current or
future G Q M projeets. This model is referred to as V - G Q M and is depicted in Figure 4-8 . Another weakness is
the difficulty for G Q M users to link measurement goals to higher-level organisational goals. This is important in
providing the justification for an introduction of a measurement process. However, some have also been
proposed extensions to G Q M to address this issue [Basili et al. 2007].

Based on G Q M , the Software Assurance Technology Centre (SATC) at N A S A [NASA SATC][Wilson 1997]

[Rosenberg 1996] developed a software quality metrics programme that covers risk management and quality

assessment of the process and produets of software development projeets. The SATC model for metrics
programme is depicted in Figure 4-9.

Chapter 4 Software Expérimentation and Measurement 01

Qual i ty Attributes P r o j e c t R i s k s

/ ' G o ait) \

/ r \
Q u e s t i o n s i

\ 1 I ^
— M e t r i c a - ' ~

~-\"
Itri p r o v e t t P r o d i i c t / P r o c e s s

Figure 4-9 SATC Model for Software Metrics Programme

The SATC model defïnes a set of goals covering a complete development lifecycle. The defined goals are then
associated to the software produci and process attributes, for which a set of metrics is developed for their
measurement. There are four goals defined for this, which are requirements quality, product quality, testing
quality, and Implementation quality. In the implemented expérimentation and measurement model for this
research the G Q M paradigm is used to develop a number of metrics to be used in the expérimentation of this
research. This is discussed in Chapter 6.

While the G Q M paradigm offers a measurement model that is an improvement on the F C M model, the process is
not repeatable (i.e. people may refine goals differently and therefore reach différent questions and metrics each
lime). This is not, however, a significant weakness of the G Q M paradigm since teams generate goals and the
related questions and metrics according to their understanding of the circumstances. This inevitably means that
différent teams would generate différent questions and metrics, which would not necessarily be a disadvantage.
A further characteristic of G Q M model is that it is not always clear when to stop generating questions and begin
defining metrics. In other words, the granularity levels of the questions are left at the discrétion of the teams
implementing G Q M . This is, in a way advantageous, since defining granularity levels for the GQM would make
the paradigm too rigid, spécifie, and unsuitable to be applicable to ail situations and circumstances for which it is
intended.

The quality évaluation for this research is done through a measurement process, in which a number of metrics
were selected to evaluate some quality attributes of the investigated software projects. Due to the beneftts
outlined above and the unique nature of the measurement programme, the G Q M model was adopted as the
measurement process strategy. A measurement process was devised and conducted based on G Q M model. The
detail of the devised G Q M programme is discussed in detail in Chapter 6.

Many aspects of object-oriented (O-O) software are différent to the classical software. As such, in many cases,
there are différent ways of measuring object-oriented software attributes. In the following section, the
measurement techniques of object-oriented software are discussed.

4.9 Measurement of Object-Oriented Software

With the establishment of a popular programming paradigm called object-oriented programming, many
researchers worked on providing metrics appropriate for the measurement of object-oriented applications and
projects. The Object-Oriented approach uses concepts such as localisation, encapsulation, information hiding,
inheritance, object abstraction, and polymorphism, making the software design and structure différent to
procédural programming. While many have proposed useful (O-O) metrics (e.g. [Lorenz and Kidd 1994], [Abreu
1995]), the most influential and important work in the field of object-oriented measurement is produced by
Chidamber and Kemerer [1994] , referred to as the CK metrics. The paper proposed six class-based metrics (suite
of metrics) to measure software design attributes such as complexity and effteiency indirectly (Table 4-4).

Chapter 4 Software Expérimentation and Measurement 62

Metrie Définition/Description
Weighted methods per class (WMC) Sum of weighted methods per class

Number of children (NOC) Number of immediate subclasses

Depth of inherilance Tree (DIT) Maximum length from the node to the root of the tree

Coupling between object classes (CBO) Count of classes to which this class is coupled

Response for a class (RFC) Number of methods in the set o f ail methods that can be invoked in
response to a message sent to an object of a class

Lack of cohésion in methods (LCOM) The number of différent methods within a class that référence a given
instance variable

Table 4-4 CK meines

The W M C is used in this study as a measure of complexity. It is measured as:

WMC = Yjd
i=\

Equation 4-1 Weighted Method per Class

Where Q represent the complexity of method (/). The complexity of each method is often measured by the
cyclomatic complexity method [McCabe 1976], which is a count of the number of linearly independent paths
through the source code. A further method of assigning a weighted complexity measure of ' one ' to each method
is also widely used. Chidamber and Kemerer [1994] who proposed the metric did not specify which complexity method
should be used other than saying that it should nave the properties of the interval scale. Churcher and Sheppard [1995]
have found that assigning a weighted complexity measure of T to each method is as good an approach as using
the cyclomatic complexity. This is the technique used to calculate W M C in the study.

The CK metrics, primarily applied to the concepts of classes, coupling and inheritance, were based on theoretical
foundations and do not suffer as much from the criticisms made of previously published 0 0 metrics. M a n y
studies have reported positive results on the usefulness of CK metrics. It has been found that there is positive
corrélation between the 'depth of inheritance tree ' (DIT) metric and the number of user-reported problems [Pant
1996]. Furthermore, the CK metrics were shown to be more effective predictor of fault proneness than extant
code metrics [Basili et al. 1996]. In a comparison of three metric suites, Olague et al. [2007] showed CK metrics
were better and more reliable predictors of fault-proneness than the MOOD [Abreu 1995] or QMOOD [Bansiya and
Davis 2002] metrics.

However , a weakness of the C K metrics is that they produce rather poor size and effort estimations and they
mostly concentrate on the application design. Some of the CK metrics are also criticised for failing to be based
on the empirical relation S y s t e m s , and adhère to representational conditions [Hitz and Montazeri 1996].
Nonetheless, it is widely accepted that C K metrics suite provide the foundation for 0 0 measurement. Over the
years, much research has been carried out on the validation and extension of CK metrics [Subramanyam 2003]
[Basili et al. 1996] [Zhou 2006] .

There are currently many difficulties and issues associated with software measurement. Having discussed
important aspects of software measurement in the above sections, in the following section the difficulties,

challenges, and issues with software measurement are discussed.

4.10 Software Measurement Issues and Challenges

Software measurement is a challenging but important component of a highly capable software engineering
culture [Wiegers 1999]. Although measurement plays a centrai role in mainstream engineering disciplines, its
role in software engineering is currently far less prominent. Only one third of ali software engineering companies
systematically employ techniques to measure their produets and development projeets [Meta 2002] [CIO 2003]
[IQPC 2003] . Both practitioners and researchers are instructed to use measurement in software development and
expérimentation. There is however little concrete guidance about exactly how to start, and what has proven most
effective in actual use [Oman and Pfleeger 1997]. Furthermore, measurements are done infrequently,
inconsistently and incompletely and it is often unclear how the results were obtained, how experiments were
designed and executed, and which entities were measured and how [Fenton and Pfleeger 1991].

Chapter 4 Software Experimentation and Measurement 0 3

One difficulty with software measurements is that they are often subjective rather than objective, which means
that they are dependent on the environment in which they are made (e.g. the person(s) doing the measurement ,
location, and circumstances). In addition, while there are many ways that software attributes can be measured
(e.g., size can be measured in lines of code, function points, tokens etc.), there are no industry wide standards
governing which metric to use [Pressman 2005] .

There are currently a small proportion of software organisations, which have an established and successful
software measurement programme [Kaner and Bond 2004] . Only 2 0 % of the organisations that implemented
measurement programmes stated that it led to advancements and increased the bottom line [Dekkers 1999]. The
intensive use of a single measure and, the use of too many measures are two of the top ten problems leading to
failure in the implementation of software measurement programs [Rubin 1996]. Many of those that do have a
measurement programme in place, have done so only to conform to criteria established in the standards such as
the Capability Maturity Model [Fenton 1999]. There may be many reasons for such resistance to measurement
programmes, one of which is the high costs involved in putting in place a comprehensive measurement
programme. Some studies have estimated this to be between 3 to 6% of the overall cost of development of a
software development project [Jones 1996] [Fenton 1999]. However, it is interesting that while the costs of
introducing a measurement programme can be around 1 % of R & D [Ebert et a). 2005], studies have shown that
savings of as much as 10 - 2 0 % on R & D can be made as a result [Kutz 2003] . One other reason for the lack of
interest in implementing a measurement programme is the possible disadvantages and damaging side effects of
such programmes. Table 4-5 lists a number of software measurement issues as viewed by developers and
managers [Hall et al. 2001] . Software practitioners are often afraid the measurement data will be used against
them and will take too much time to collect and analyse [Hoffman 2000] . They further express concern that
software measures are too political and do not prove anything, or, that the team will focus on getting the numbers
right rather than building good software [Wiegers 1999]. Productivity measurement , as the ratio of size over t ime
is an example. Some developers might be tempted to write unnecessarily longer and inflated code to improve
their productivity ratings. There is also an argument that, while using measurement practices might raise the rate
of project success to a higher level statistically, this is only a valid issue at the organisation level, not at the
individual project level. The reason is that projects usually have very short-term strategies and tight deadlines
and, therefore, dislike sustaining certain costs in exchange for eventual organisational-wide gains [Meli 2000] .

N o Software measurement issues Developers Project Senior
% . Managers Managers

% %
1 Hard to measure what you want to measure 15 25 0
2 Do not know how or if the data is being used 38 8 0
3 Detracts from the main engineering job 8 8 50
4 Difficult to collect, analyse, and use 23 58 50
5 Time consuming to collect data 38 67 25

Table 4-5 Negative aspects of software measurement [Hall et al. 2001]

By attempting to measure a software property, an assumption is made that the software property can be
measured and that there exists a validated relationship between what is being measured and what is to be
determined. In practice, however this is not often the case. Furthermore, while the evaluations of the external
attributes are often the aim of the measurement, they cannot be directly measured. Only internal attributes can be
directly measured. It is difficult to relate what can be measured through direct measurement to desirable
external quality attributes. Often, mistakenly, a linear relationship between components of a measure is assumed
[Erdogmus 2008a] . An example is the defect density metric, which is used to gauge software quality. If the
defect density is calculated to be 1.7 per K L O C for a software size of 10 K L O C , we cannot assume that the
defect density would be 17 KLOC for the software when the size is increased to 100KLOC.

A well-defined and consistent approach for assessment and review of development process activities is essential,
which can be achieved through software process measurement [Fenton and Neil 1999b], There are however
difficulties in measuring process activities since they require active and concurrent assessment, rather than
retrospective analysis, often possible with software products. There is also the lack of universal acceptance of
methodological techniques for software development, forcing organisations to adapt measurement procedures to
the methodology in use [Nance and Arthur 2002] . A further problem is the difficulty in measuring an attribute in
isolation. Often an attribute to be measured is dependent or associated with other influential factors. For
example, code review quality is dependent on the thoroughness of the person carrying out the review to some
extent. Eliminating such influential factors to ensure accurate measurements is often difficult.

Chapter 4 Software Experimentation and Measurement 6 4

It appears that there is hardly any software attribute, which can be measured repeatedly, consistently, and
accurately. For example, over the decades there have been many attempts to measure the expected size of
software products through metrics, such as 'Lines of Code (LOC) ' and 'Function Points ' . There are however
problems with both metrics in producing an accurate and reliable measure of software size. L O C presents a
measure of size only, in terms of program length, ignoring other attributes such as complexity and functionality.
LOC further fails to consider factors such as verbosity of the programmer, the programming language, and
environmental complexities such as skills, pressure, tool support, and computing platform. Lack of standard
measurement method and language dependence is amongst other difficulties with this method of software size
measurement. However , it should be acknowledged that L O C is one the oldest and most popular and widely
used software size measure [Sommerville 2007] and has the advantage of being easy to collect - no other
measure is as well understood [Bassman 1995]. Furthermore, L O C tend to be more uniform and suffer less from
instability, due to low values, compared to coarse-grained size measures, such as number of function points or
use cases [Erdogmus 2008b] . While function-points do not suffer from many of the weaknesses of L O C , such as
language dependency, they are difficult to compute and contain a large degree of subjectivity (e.g. dependent on
estimator). It is also questionable whether they truly measure functionality [Fenton and Pfleeger 1997].
Function-points are most useful for data-processing systems that are rich in input/output operations and it is
difficult to estimate function point counts for event driven systems, making them unsuitable for productivity
measurement [Furey and Kitchenham 1997][Armour 2002] . The size metrics are used in determining many
software attributes, such as defect density and productivity, as well as the cost and duration of the project.
However, since there are issues with size metrics, the accuracy of any metric that is a derivative of size (e.g.
productivity and defect density) is also undermined. The L O C size metric has been used in this study to
determine defect density and productivity (see Chapter 7).

Software measurement is increasingly becoming an important factor for software organisations, toward the path
to capability and maturity, partly because it is a requirement of many standards such as CMMI and SPICE.
However, the existing measurement programmes are unable to deliver the required capability [Lawler and
Kitchenham 2003] . The advice offered by some international standards (i.e. ISO), on the measurements of such
attributes as productivity, has been shown to be unreliable [Kitchenham and Colin 2007] . For maturity to be
achieved there is a need for benchmarking, which requires consistent measurement convention and definition
[McGarry 2001] . Such consistency is however difficult to achieve even within a single company. In a
benchmarking study, Heires [2001] was unable to analyse 6 3 % of the projects because of incomplete or
unobtainable core metrics and incomplete projects. Furthermore, many projects lacked the necessary correctness
and validity to be included in the benchmarking database. It appears, therefore, that currently measurement
programmes suffer from both invalid and missing data, which, causes delays and reduces results validity, as well
a lack of metrics standards, which reduces data comparability.

The arguments put forward in this section have elaborated on some of the concerns, shortcomings, and flaws in
the practice of software measurement. While there are many research works and international standards
encouraging the software communi ty and organisations to establish rigorous measurement programmes, the
progress seems to be slow. While software measurement may therefore be currently immature and flawed, it
serves a useful role in producing better software. Gilb [1988] supports this view by writing, "Anything that you
need to quantify can be measured in some way that is superior to not measuring it at all". It should however be
borne in mind that measurement results may be subject to the flaws in measurement discussed above and may
therefore contain a large margin of error. For example, it is inadvisable to rely on the measurement results of a
single study to make a generalised conclusion about the true value and nature of a software attribute. There is an
argument that, since currently software cannot be measured properly, it should be abandoned until such t ime that
our understanding of software has enhanced enough to enable its proper measurement [Zuse 1998]. Despite
flaws and immaturity, software projects can still benefit from a sound measurement process and many software
maturity standards (e.g. CMMI) include a measurement component . Software measurement needs to be
continued earnestly, both theoretically and empirically, if not for the usefulness of the results that they currently
produce, at least for their value in the advancement of our understanding of software itself and the ways that it
can be measured. Any advancement in software measurement would benefit software organisations in better
controlling and evaluating software activities and products, to produce higher quality software. Software
engineering, in comparison to civil and mechanical engineering, is a relatively young discipline and
measurement process and practice is essential in helping it move forward towards robustness, when we can
accurately and quantifiably measure and evaluate software attributes and software quality. Measurement based
research projects, such as this, can play a small part in helping to improve our understanding of the software
measurement implications and gradually enhance our understanding of software engineering in general.

Chapter 4 Software Experimentation and Measurement 65

Measurement provides the bases to evaluate quantifiably the benefits of new concepts or technologies and,
therefore, experimental investigations, such as this project, would be practically impossible to conduct without it.
The software community should accept, acknowledge, and account for the fact that currently results of software
experiments, where software measurement is involved, may have large margins of error; the more convoluted
and complex the measurement, the larger the margins of error. In any measurement process one of the main
objectives should be to minimise such error margins through detailed considerations of the measurement
environment and validity. The software community should endeavour to develop a culture of measurement based
software engineering to help move it forward towards a truly engineering based discipline, such as civil and
mechanical engineering. There is an on-going argument within the software communi ty about whether software
engineering is a true engineering discipline. Some argue that while software development can be categorised as
engineering in the future once its problems are resolved through maturity, currently it is not an engineering
discipline [McConnell 1998). Without a proper measurement baseline, the term 'software engineering ' is rather
inappropriate and misleading. Software development can only be a true engineering endeavour when its
attributes can be defined and measured properly, accurately, repeatedly, and consistently.

In the above sections, the software measurement topic, related to this s tudy's experimental research method, was
discussed. In the following section, the background and literature to software experimentation is discussed and
reviewed. The devised and conducted experimental research method is covered in detail in Chapter 5.

4.11 Experimentation in Software Engineering

Experimentation has long been regarded as the optimal way to test causal hypotheses [Singleton and Straits
1999}. While acknowledging the limitations of measurement, experiments, and human sensory perception,
Albert Einstein once said that no science could advance without good experimentation and measurement. An
experiment is a procedure for collecting scientific data in a systematic way, in order to maximise the chance of
answering an hypothesis correctly (confirmatory research), or to provide material for the generation of new
hypotheses (explanatory research) [Festing 2002] . Experiments are used, for instance, to contradict existing
theories, to validate measurements or to evaluate the accuracy of models. They can help build a reliable base of
knowledge and thus reduce uncertainty about theories, methods, and tools [Tichy 1998]. They can lead to new,
useful, and unexpected insights and open new areas of investigation. Experimentation can be further used to
evaluate new ideas or products, such as processes, tools, or development methodologies. In many cases the
experiments provide, not only the best way of effectively evaluating an idea or product, but also the only way
[Oman and Pfleeger 1997]. In this study, the experimental method is employed as an evaluation mechanism to
assess the effectiveness of a concept (i.e. software patterns).

Controlled experiments, in particular, offer several important benefits. In a controlled experiment, the results
obtained from an experimental sample are compared against a control sampie that is practically identical to the
experimental sample except for the variable whose effect is being tested. Controlled experiments can be used to
conduct well-defined and focused studies, to scrutinise and measure specific variables and the relationships
between them. They help in formulating hypotheses by enforcing the clear definition of the question being
studied, resulting in studies with well-defined dependent and independent variables and well-defined hypotheses
[Basili 2007] . Furthermore, results produced by controlled experiment have the potential of being statistically
significant. The experimental research carried out in this study is a controlled experiment, which is fully
discussed in Chapter 5.

There is an increasing understanding in the software engineering community that empirical studies are needed to
develop or improve processes, methods and tools for software development and maintenance [Sjoberg 2005] .
Software engineering, in comparison to other disciplines, is young and can certainly benefit from experimental
methods of analysis. However, experimental research is difficult, mainly because any flaws in experiment
design, data collection, and data analysis, run the risk of invalidating the achieved results and conclusions. The
quality of knowledge obtained by experimental research is related to the quality of the data collected and the
degree of rigour employed in analysing them.

4.11.1 Experimentation Framework

Basili et al. [1986) proposed a widely accepted and implemented experimental framework. The proposed
framework has the advantage of dividing the experiment into a number of independent and well-defined
sequential phases. As experimental projects are all different, the framework does not attempt to prescribe a
particular technique of carrying out an experiment, but outlines the points and elements that need to be
considered. It guides the experimenter through the experiment process from initiation to completion. The

Chapter 4 Software Experimentation and Measurement óó

framework was therefore employed in designing and conducting the experiment in this study. The framework
consists of four phases: 1) Definition, 2) Planning, 3) Operation, and 4) Interpretation. The Definition phase,
which is the first phase of the experimental process, contains six elements, as described in Table 4-6 . This phase
sets out the initial and important aspects of the experiment to be conducted. The phase ensures that the aims and
objective of the experiment is clear and that issues surrounding the environmental aspects of the experiment are
well and unambiguously understood. In this phase, elements such as experiments object, purpose, and scope are
defined.

The Planning phase of the experimentation process concerns the three elements of design, criteria, and
measurement as listed in Table 4-7. Each element involves a number of activities that need to be considered in
planning the experiment. The Operation phase of the experimentation process includes the three elements of
preparation, execution, and analysis. For the preparation element , a pilot study could be used to confirm the
experimental scenarios, organise experimental factors or inoculate the subjects. The data is collected and
validated during the execution of the experiment. For the analysis of data, a combination of qualitative and/or
quantitative methods can be used. Finally, the Interpretation phase of the experimental process consists of the
interpretation context, extrapolation, and impact elements. In this phase, the impact of the experiment in terms of
replication and application is discussed.

Parts - • • .•'•> ; ' Description .
Motivat ion T o unders tand, improve, validate or assess the effect of a certain phenomenon
Object T h e object of a study is the pr imary entity under examinat ion (i.e. an end product, o r a

process model)
Purpose Th i s could be, for example , to evaluate the effectiveness of a testing process , to predict

sys tem development costs , o r assess the reliabili ty of a software product
Perspect ive Perspect ives of the interested part ies: developer , modifier, maintainer, project manager,

cus tomer , user
Domain Th i s can be two types: 1) Individual p rogrammer o r p rogramming teams, and 2) the

p rog rammes o r projects
Scope Single project. Multi-project, Replicated project

Table 4-6 Elements of the definition phase

Design > " Criteria : Measurement. • .>
Experimental Design Direct Refiection of Cost /Qual i ty Metric Définition
Incomplete Block Cost Goal-Quest ion-Metr ic
Comple te ly Randomised Errors Factor-Cri ter ia-Metric
Randomised Block Changes Metric Validat ion
Fract ional Factorial Reliabili ty Data Collection
Mult ivar ia te analysis Correctness Object ive Vs Subjective
Correlat ion Indirect Refiection of Cost /Quali ty Nominal/Classif icat ion
Factor Analysis Data Coupl ing Ordinal /Ranking
Regression Information Visibil i ty Interval
Statistical Mode ls P rogrammer Compréhens ion Ratio
Non-Parametr ic Execut ion Coverage Absolute
Sampl ing Size

Complexi ty

Table 4-7 Elements of the planning phase

The experimental design for this study is discussed in detail in Chapter 5. There are a number of issues that make
software experimentation challenging. Difficulties in designing and conducting software experimentation have
meant the publication of fewer experiments in software engineering than in other engineering disciplines. In the
following section, some of the major issues in software experimentation are discussed.

4.12 Software Experimentation Issues

Experimental studies in software engineering is time consuming and difficult to design and conduct [Shull and Basili
2004]. The two most important components of software experimental research are the experiment design (e.g.
control of extraneous variables) and a sound and valid measurement process. However, software experimentation
design is often challenging, partly due to the human factors involved in software engineering, which make the
control of variables difficult and imprecise. Difficulties in software measurement, discussed in the previous

Chapter 4 Software Expérimentation and Measurement 6 7

section, are the other major factors that make high quality software expérimentation difficult to achieve. In this
section, some of the major problems and issues in software expérimentation are discussed.

4.12.1 Fiaws in Experiment Design and Conduct

Flawless expérimental research in software engineering is hard to achieve. Poor Statistical design and small-scale
experiments over too short a period are amongst problems outlined in the literaturę [Fenton and Pfleeger 1994].
There are a number of questions that should be asked about any empirical research to judge the quality of ils
results and conclusions. These include [ibid]:

1. Is it based on empirical évaluation and data rather than intuition advocacy?
2. Does it have a good expérimental design?
3 . Is it a toy situation or a real situation?
4 . Are the experiments appropriate to achieving the goals of the experiment?
5. Was the experiment run for long enough to evaluate the true effect of the change in practice?

However , unfortunately the reality of software expérimental research is that only a small percentage would fully
comply with ali the criteria stated above. Many studies [Tichy et al. 1995] [Sjoberg et al. 2005] report on the lack
of quality in the published experiments in software engineering. While it is ideal to conduct experiments that
have flawless expérimental designs and measurement process, that are based on real situations, and that run over
a long period, such experiments would be extremely difficult for many researchers or research organisations to
conduct, partly due to the high costs and often unavailable funds.

Experiment design and the measurement method and process have been important and major activities of this
research. It has also been an objective of the research to adhère to the experiment design and measurement
principles and guidelines (e.g. outlined by Kitchenham et al. [2002] and Basili et al. [1986]) to design a sound
experiment that does not suffer from the serious flaws. Proper expérimental design (within the resource
constraints) is crucially important for an experiment to produce results that are accurate and valid. However ,
very few empirical study designs are, or claim to be, flawless [Perry 2000]. In designing an experiment, one has
to consider a number of expérimental errors that could creep in the process, which might affect the experiment
results and conclusions [Fenton and Pfleeger 1997], These include errors of expérimentation (e.g. invalid and
flawed design, observation (e.g. invalid and inaccurate data), ànd measurement (e.g. flawed and invalid measures
and measurement process). These errors have the potential of having a damaging influence in an experiment,
leading to wrong and misleading conclusions. There have been many published expérimental works that have
produced questionable results and conclusions, due to inappropriate expérimental design. For example,
Shneiderman [1977] indicated, through an experiment, that pseudo code should replace structured flowcharts as
a means of program and design documentation, which caused many authors to advise against the use of
flowcharts. However, a subséquent expérimental study [Scanlan 1989] showed that structured flowcharts are
préférable to pseudo code for program documentation, exposing a number of expérimental flaws in the
Shneiderman ' s study, such as overlooking several key variables in his expérimental design.

4.12.2 Subjects in the Experiments

A common critìcism of experiments in software engineering is that, in most studies, the subjects are students,
making it difficult to généralise the results to apply to the professional development environment [Sjoberg et al.
2002] . Students are mostly used as subjects in software engineering experiments because they are more
accessible and generally inexpensive. However, using Professionals in experiments could have many advantages,
such as higher skill and expérience levels, better use of professional methods and tools, and better teamwork. On
the other hand, it is often impractical to employ multiple teams in industriai settings for the sake of completing
experiments, and developing the same product a number of t imes using différent methods o r approaches. This is
something that can be achieved in a student environment.

Planning and exécution of empirical studies in industriai settings are complex and expensive, because they may
require a great deal of time, effort, and resource. The use of students in empirical studies provides a way of
reducing technical and organisational risks and research costs. There are many situations where student subjects
are either suitable or preferred. These include [Carver 2003] :

• Obtaining preliminary évidence to confimi or réfute a concept, theory, or technology

• Controlling factors that may affect the study

• Showing software organisations the relevance of the research

Chapter 4 Software Expérimentation and Measurement 68

• Provisión of useful evidence to encourage software organisations to conduct further empirical studies

• Fine-tuning the organisation and detaiis of an empirical study, before it is carried out in an industrial

environment

In many experiments, the subjects are part-time students and will have had professional level work experience in
software development industry [Sjoberg et al. 2002] . Many studies, such as this research, use student subjects
that are very cióse to graduation and entry into a professional environment. Indeed, some might have already had
some professional-Ievel experience in software engineering, not least during their placement year. The
significant difference between student and professional subjects is not, therefore, always clear-cut. A
professional subject, who has just begun professional work, would be little different to a student subject who is
very cióse to graduation and who may have already had several years of software engineering experience in a
previous career. Furthermore, in some cases, students may be better suited to some experiments than
inexperienced professionals. For the benefit of software experimental research, it would be helpful if software
organisations planned and organised their developer 's t ime, in such a way that they could allocate some of their
time to participate in experimental research. It would also be helpful ¡f the academic institutions, such as
universities, also designed their courses in a way that participation of students in experimental studies would be
easier and indeed encouraged.

4.12.3 Costs and Publishing Limitations

Experimental research is expensive to conduct and often requires more resources than non-empirical research
[Sjoberg et al. 2002] . However, experimental research may often provide the only practical means of confírming
or rejecting a theory or concept and, cost considerations, should not prohibit researchers from performing
detailed and high quality experimental studies. Both prívate and public sponsors should view such costs, as long-
term investment in software research and development.

Constraints on t ime and cost are the reason that a lot of research work is done in small groups of students, rather
than in large-scale applications in commercial situations [Fenton and Pfleeger 1997]. However, it is generally
acknowledged that small investigations are better than no investigation at all. Furthermore, small experimental
projects may be appropriate for an initial venture into testing an idea, indícate directions for further investigation,
or test a research design and generally improve understanding and raise new questions.

A further issue is that experimental studies are diffícult to publish. Although experiments are conducted in the
real world and are therefore always flawed in some way, experimenters often confront reviewers who expect
perfection and absolute certainty [Tichy 1998], In addition, many established joumals seem to have difficulty in
finding editors and reviewers, capable of evaluating experimental work [ibid]. In encouraging more empirical
research and experiments in software engineering, it is important that the reviewers appreciate the inherent
difficulties involved in such research and be more lenient in their criteria for accepting such research for
publication.

4.12.4 Human Factors

There are some aspects of software engineering, compared to other science and engineering disciplines such as
mechanical engineering and physics, which make software engineering experimentation more complex and error
prone. One of these aspects is the intense human factors involved in software engineering. Most software is
designed, constructed, tested, managed, and used by humans and when measuring something as abstract as
software, human related factors (e.g. human characteristics, varying psychological and social aspects) come into
play, that make accurate evaluations of many software attributes challenging and multidimensional, Software
engineering is considered as a social process and, as such, is influenced by relationships among people involved
in the social context (e.g. corporate culture, organisational procedures) [Juristo and Moreno 2001], It is not often
possible to accurately evalúate all the influencing human factors in an experiment a priori, in a deterministic
manner, and need to rely on statistical methods to estímate their influence. There is an argument that, because
software engineering is a social process, it is inappropriate to view it as a natural process, such as in physics with
deterministic (rather than stochastic) effects to causes [Pfleeger 1999]. This implies that it requires a different
method of study, one that is based on a stochastic rather than deterministic approach. Such stochastic approach
to software experimentation would still need to foliow the tradhional methods of observing phenomena,
formulating explanations and theories and testing them [Tichy 1998]. The direct involvement of humans with
such complex psychology, cognition and social behaviour, is an aspect of software engineering experimentation
and measurement that makes such endeavours more complicated and challenging. Such difficulties often deter
researchers from doing experimentation in software engineering [Juristo and Moreno 2001] . In many

Chapter 4 Software Expérimentation and Measurement 6 9

experimental designs however, such as the one designed in this research project, the extraneous effects of the
human factors are minimal or neutralised, due to the random nature of the experimental groups and subjects (i .e .
any différences are randomly spread between the experimental and control groups).

4.12.5 Experiment Quality

A number of studies nave surveyed the quality and quantity of the published software experiments. They report
on a lack of quality in software expérimentation in terms of experiment design and measurement. The studies
indicate that in majority of cases the standard of expérimentation quality, in terms of both the expérimentat ion
process and the analysis of the outcomes, is low. The quality of the experiments is weak, partly due to design
flaws, lack of validation, and appropriate S ta t i s t ica l methods to draw appropriate results and conclusions
[Koziołek 2005] .

Tichy et al. [1995] conducted a survey, which studied over 400 research articles and studied the experimental
validation methods that they employed. Articles included those puhlished by ACM Transactions on Computer
Systems and IEEE Transactions on software engineering. There were also articles from other disciplines, such as
neural computing (NC) and optical engineering (OE). These two areas were chosen for comparison purposes,
because N E is relatively new (similar to Software engineering), and OE is, in contrast, an old and established
discipline. The study indicated that, over 4 0 % of computer science papers and 5 0 % software engineering papers
on design and modelling, completely excluded expérimentation. However, only 14% of the N C and O E articles
contained no experimental évaluation. Furthermore, computer science papers contained a significantly lower
number of purely empirical studies than those in N C and OE. The articles with hypothesis testing were rare, at
only 1% in ail articles. While in N C and O E 6 7 % of the papers dedicated 2 0 % of their space to experimental
validation, this proportion was much lower, at 3 1 % , in computer science. The study therefore seems to disprove
the common perception, which attributes the insufficient expérimentation in computer science, to the relative
young age of the discipline. At the time the study was undertaken, the N C discipline was only six years old, but
contained an established level of expérimentation comparable to a much older discipline, such as OE. It therefore
appears that the relatively small number of experiments in software engineering compared to other disciplines
may be largely due to the lack of well-established expérimentation and measurement culture and techniques in
software engineering. This is a factor which has been supported by some studies such as [Koziołek 2005],

A similar study carried out by Zelkowitz and Wallace [1998], in which 612 Software Engineering papers,
published in IEEE Transactions on Software Engineering, IEEE Software, and the International Conference on
Software Engineering (ICSE), and 137 papers from other disciplines (i .e . Physics, and Psychology), published in
various corresponding Journals, were reviewed and investigated. The results of this study were analogous to the
ftndings from the study carried out by Tichy et al. [1995] in terms of the quality a n d quantity of software
experiments. The study showed that almost a third of the articles studied had no experimental validation at ail.
Only 3 0 % of the articles had limited experimental validation, in which the experimenter and the subjects were
themselves developers of the products or technology under study, and included an inappropriate level of control.
Such expérimentation is often referred to as pseudo expérimentation, whose results may be highly biased and
therefore not reliable. The study further found that the expérimentation goals and objectives were not defined
explicitly, clearly, and unambiguously.

A further investigation of the quality of software experiments was carried out by Sjoberg et al. [2005] who
surveyed over 5,400 scientific articles, published in leading Journals and conférences from 19 countries. The
study found that only 1.9 % of the work involved and performed controlied experiments. One reason, for such a
small percentage of controlied expérimentations, is due to the large resource necessary for conducting well-
designed experiments [ibid]. The study showed that the number of subjects participating in the experiments
ranged from four to 266, with a mean value of 49 , with approximately 75 percent of the subjects being students.
The study further showed that reports were often vague and unsystematic and that there was often a lack of
consistent terminology. A strength of this study compared to others (for example Tichy et al. [1995] , and
Zelkowitz and Wallace [1998]) is in the large number of articles that were surveyed, as well as in the structure
and the detailed content of the report. A weakness of this report, however, is that Stat is t ical significance analysis
has not been performed and, therefore, it is uncertain whether the results provided are statistically significant.
This may somewhat compromise the validity and accuracy of some of the results.

4.13 A Review of Pattern Related Experiments

There have been comparatively few published experimental studies on software patterns. While there are
numerous patterns proposed in the literaturę, attempts at empirically validating such patterns or evaluating their

Chapter 4 Software Expérimentation and Measurement 70

usefulness. are relatively few. Some of the reported experiments on evaluating pattems are reviewed in this

section.

Prechelt [2002] carried out two similar experiments to assess the usefulness of design pattern documentation in
program maintenance. Subjects performed maintenance tasks on two programs, ranging from 360 to 560 LOC,
including comments . The experiments were designed to test whether it helped the maintainer if the design
patterns in the program code were documented explicitly (using source code comments) , compared to a well-
commented program without explicit référence to design patterns. The subjects were a combination of
undergraduate and graduate computer science students. The number of subjects for the first experiment was 74
(64 graduâtes, and 10 undergraduates). For the second experiment, there were 22 subjects, ail of whom were
undergraduate students. AH the subjects received a few weeks of training on design patterns before the
experiment. The subjects were divided into two groups of expérimental and control groups, where the
expérimental group received source codes with design patterns explicitly commented (called Pattern Comment
Lines - PCL) as some extra comments . The control groups however received the source codes where design
patterns were not commented explicitly. The performance of subjects was investigated by assessing the
completion t ime, grading answers, and counting correct solutions. The following two hypothèses were tested:

The experiments confirmed both hypothèses, and therefore supported the explicit use of PLC for design patterns.
The main strength of this work is in the design and conduct of the experiment, in a field with few previous
expérimental investigations. The work is also elaborative and detailed in terms of its discussion of the validity
issues of the experiment. Amongst other strengths of the work is its comprehensive statistica! analysis of the
results, which includes an évaluation of the statistica! significance of the results. However, the work suffers from
a number of weaknesses, the main one of which is a weakness in the experiment design. The expérimental
groups were offered comments on the design patterns (i.e. PLC), in addition to the comments that both the
expérimental and control groups received. That means that the expérimental groups had more Unes of comments
than the control groups. It would have been more appropriate if the general comments , regarding the design
patterns, were replaced by the design pattern comments (PLC), rather than added to the general comments count.
In addition, while the number of subjects for the first experiment is a reasonable number of 74, the number of
subjects for the second experiment was low at only 22.

A further experiment to assess the effect of design patterns on the maintainability of software applications was
carried out by Prechelt et al. [2001]. The aim was to test if design patterns should be used, even if the actual
design problem is simpler than that proposed by the pattern (i.e. not all of the functionality offered by the pattern
is actually rcquircd). The hypothesis to be tested was 'A design pattern, P, does not improve performance of
subjects doing a maintenance exercise, X, on program, A, (containing P) when compared to subjects doing the
same exercise, X, on an alternative program, A, (not containing P) ' . The experiment used three independent
variables (i.e. programs and change tasks, the program version, and the amount of pattern knowledge) and two
dépendent variables (i.e. time and correetness). A total of 29 (originally planned 32, but 3 did not participate)
subjects, all professional software engineers with average professional programming (C++) expérience of 2.4
years, were used. Fifteen of thèse subjects had already had some expérience of design pattems. The subjects
were divided into 4 groups (6 to 8 subjects per group), in which each group maintained one pattern program
(containing design patterns), and one Alt program (not containing design pat tems), with two or three work tasks
for each. A number of G o F ' s design patterns [Gamma et al. 1995] (Observer, Visitor, Decorator. and Abstract
Factory) were used, for which the subjects received two days of training. The groups were compared before and
after the design pattems training (i.e. pre-test and post-test), having been asked to perform a number of
maintenance tasks on four small software programs.

The results of the experiment indicated that the use of the Observer pattern, in a simple program, had a negative
effect on maintainability and the Visitor pattern was neutral. The Decorator pattern had a positive effect, and the
Abstract Factory pattern caused only small différences. Although the study did not indicate a clear positive effect
of some of the design patterns in the context of the experiment, it can be argued that, unless there is a clear
reason to prefer a simpler solution, it would be wise to use the design pattern solution for the flexibility that it
would provide in handling possible future requirement changes. The experiment was well designed, and the fact
that the experiment involved two phases (i.e. pre-test and post-test), made the argument for the validity of its

Hypothesis H2.

Hypothesis HI By adding PCL, pattern-relevant maintenance tasks are completed
faster.
By adding PCL, fewer errors are committed in pattern-relevant

maintenance tasks

C h a p t e r 4 Software Expérimentation and Measurement 71

outcomes and results stronger. The results were also statistically analysed and presented. There were, however ,
some issues that may be considered as the weakness of the experiment. These are as follows:

• Small number of subjects: Although measures were taken to ensure that the groups were randomly
selected and were similar in the relevant abilities, only four groups were involved.

• Familiarisation: A two-day design pattern course was probably too short for the subjects to fully
understand the design patterns under examination.

• Généralisation: Only four design patterns were used in this experiment. The results are therefore
applicable to the examined patterns and cannot be generalised to include all patterns.

• Context: The experiment did not take place in a programming environment and the subjects used pen
and paper for their answers, rather than implementing and testing them in a real programming
environment.

In an attempi to verify the results achieved by Prechelt [2001], Vokac et al. [2004b] replicated the experiment. In
contrast to the original experiment, where 29 students were used as subjects, in this replication 4 4 paid
Professionals {39 Professionals from 11 companies , and 5 Ph D and M S c students) took part as subjects. The
experiment also took place in a real programming environment, instead of being a pen and paper exercise. The
data from the original experiment was reanalysed, using the same régression model and estimation method, to
enable the comparisons between the results of the two experiments.

The results differed from the original experiment [Prechelt 2001], particularly in the case of Visitor and Observer
design patterns. While the original experiment found the Visitor pattern to have a neutral effect on
maintainability, the replicated study found that it had a negative effect. Furthermore, in contrast to the original
finding, this experiment indicated that the Observer pattern did not have a significant negative effect. The
general conclusion reached was that the tested design patterns had their ówn characteristics and, it was therefore
not valid, to characterise such patterns as useful or harmful to the maintenance activities. While the two
experiments somewhat contradict each other, the resuit of this replication may be more valid and reliable, as it
has a number of advantages over the original experiment. These are: 1) A larger number of mostly professionals
were used, and 2) There was improvement in the experiment environment. The environment included a non-
intrusive logging software, to measure elapsed time, and saved, t ime-stamped copies of every file compiled. The
data provided by the logging system resulted in a more extensive quantitative analysis. Furthermore, this
replication conducted a more detailed statistica! analysis of the results, than the originai experiment.

An experiment to investigate the effect of design patterns on communicat ion between developers was carried out
by Unger and Tichy [2000]. This was done in order to test the claim that design patterns improved
communicat ion between the members of the development team [Buschmann et al. 1996]. The experiment
compared two-person teams, with and without pattern knowledge, communicat ing about program designs.
Verbal communicat ion was captured with audio and video devices and the transcripts were analysed.
Communicat ion was considered more effective if there were to be clear épisodes of explanations and balanced
discussions during design work. The teams received a program design (containing design patterns) for
maintenance and were required to discussed how to design a number of given requirements changes into the
existing design. This took place in two phases (i.e. before and after the teams attended a three-month course on
design patterns). The results indicated that team communicat ion improved in the post-test, compared to the pre­
test. These results therefore showed support for the claim that design patterns improved communicat ion between
software developers.

There were however some weaknesses in this experiment that could have had an effect on the validity of the
exper iment ' s conclusions. One of the weaknesses is the small number of subjects used. Although there were
plans to use 7 teams (14 student subjects), some of the subjects did not participate in both pre-test and post-test
phases of the experiment and only 5 teams (10 subjects) fully participated. There was also a three months
interval between the pre-test and post-test phases of the experiment. Although during the three months the
subjects attended a course on design patterns, it is possible that they could have gained skills and knowledge,
other than design patterns, which caused their communicat ion performance to be improved in the post-test phase.

Porter and Calder [2004] tested the applicability and usefulness of design patterns in teaching programming to
novice programmers through an expérimental research. In this experiment two groups of students were selected
(expérimental and control), where the expérimental groups were given a set of design patterns to use for their
assignment, while the control groups used non-pattern solutions. The works were evaluated upon the complet ion
of the assignments using a five level scoring mechanism (excellent, very good, good, satisfactory, poor). The
évaluation was based on the assessment of the quality of the works in terms of programming technique and style.

Chapter 4 Software Experimentation and Measurement 7 2

It is not however stated what patterns were used in this experiment. A weakness of this experiment was the use
of a relatively small number of subjects (only 18). Furthermore, the work did not include any statistical
significance analysis of the results. Although the results achieved proved to be inconclusive, it showed that
researchers are, seriously considering the applicability of design patterns, as an aid in pedagogy.

The effectiveness of design patterns in generating better quality designs were studied by Reibing [2001_b]
through experimentation. He examined two sets of designs one of which used the State design pattern [Gamma
et al. 1995], and the other used no design patterns. The two designs were then compared for quality. The results
of this study proved to be interesting for the fact that two contradictory conclusions were achieved, depending on
how quality was defined. Using conventional O O quality metrics (i.e. W M C , DIT, NOC, CBO, see Table 4-4),
the study showed that contrary to the expectation, the metrics results indicated, that the designs that did not use
design patterns were of better quality than those that did. The result leaves two interpretations: 1) the metrics that
were utilised were not good indicators of design quality, and 2) the application of design patterns in software
design reduces the quality of the resulting design. However, if flexibility is to be an indicator of quality, then the
designs using design patterns proved to be of a higher quality. This exemplifies the subjective nature of software
quality and the inherent difficulty in its definition and measurement. A software application could be considered
to be of high quality in one definition and of low quality in another. Generally, there should be a more
appropriate notion of software quality that incorporates complexity criteria such as size and coupling, and the
flexibility considerations. A weakness of this work is that the results are based on a single and relatively small
software program and no statistical analysis of the results were carried out. For the results to be fully valid, the
experiment should have been conducted on a sufficient number of applications where the results could have been
statistically validated. The results achieved cannot be, therefore, generalised.

4.14 Summary

In this chapter, experimentation and measurement in software engineering, which are two main topics of this
research, were discussed. As software engineering is relatively young in comparison to some other engineering
disciplines (e.g. civil and mechanical) , it has not reached a desired level of maturity with respect to both
experimentation and measurement.

There are mainly two types of measurements in software engineering: direct and indirect. Direct measurement
refers to the measurement of an attribute, when no other attribute has a direct or indirect influence (i.e. No . of
lines of code). On the other hand, indirect measurements are used when an attribute can only be measured in
relation to other attributes (i.e. efficiency, complexity, reliability). Indirect measurements are normally made
using direct measurements. Both types were used in this research.

Software quality is difficult to define and has been the subject of much discussion within the software
development community. While the term "quality" might seem self-explanatory, there are many different views
of what is meant by software quality and how it should be measured or assessed. There are mainly two widely
employed models of software quality measurement: a) Factor Criteria Metric model, and b) Goal Questions
Metric model (GQM) , which were discussed in the chapter.

The establishment of a measurement process in software development organisations is encouraged in the
literature and by the international standards. In any measurement process, 'what is measured' and 'how a
measurement is made ' , should be carefully planned and considered. Furthermore, the benefits gained by a
measurement programme should be weighed against any disadvantages such a programme may cause. That is,
care should be taken by the managers and measurement processes designers, not to include measures that may be
unnecessary or damaging (e.g. assessing and comparing an individual programmer ' s productivity), to the morals
of the organisat ion's workforce.

Software experimentation quality is currently low. There is a lack of validated and controlled experimental
studies in software engineering due to many reasons, such as, the cost and difficulties in carrying out high
quality experimentation. Controlled experimental research, such as the one designed and implemented in this
research, contributes to and advances the scientific knowledgebase on experimentation in software engineering.

In the next chapter, the design and conduct of this s tudy 's experimental research method is discussed in detail.

Chapter 5 Experimental Methodology 73

Chapter 5 Experimental Methodology

5.1 Introduction

In any comprehensive research programme, the research method plays a crucial role. Indeed, the validity of the
research findings may depend on the suitability, appropriateness, and thoroughness of the applied research
method [Christensen 2006]. It was therefore a major priority to devise a well designed an appropriate research
method to produce valid results.

The research design for this study involved a controlied experimental research method. The background and a
literature review of software experimentation in software engineering were presented in the previous chapter
(Chapter 4) . The experimental research method designed for this research was based on designs that are often
associated with research in psychology, involving human subjects. Application of such research methods in
software engineering is far less prevalent [Seaman 1999], and one of the contribmions of this research
programme is the implementation of such experimental research methods in the field of software engineering. In
this controlied experiment, the experiment subjects were divided into experimental (treatment) and control
groups. The experimental groups received the treatment in the form of process pattems to use in their software
development projects. The control groups were not given access to the process pat tems (i.e. the treatment). It
was expected that the final analysis of the results would highlight a difference between the two groups, which
could be contributed to the application of the treatment. to the experimental groups.

In the first section of this chapter, the experimental definitions and hypothesis are introduced. This is followed
by an overview of the experiment and the issues involved. The experiment definitions and hypothesis is
discussed next followed by a discussion of the experiment design. The process of conducting experiments and
the ethical issues concemed are discussed towards the end of the chapter.

5.2 Experiment Definitions and Hypothesis

It is more than a decade now since the concept of software pattems was conceived. While there have been
numerous papers and books on software pat tems over the years, there have been few empirical studies of
software pa t tems to evalúate their utility and valué in software development. Furthermore, almost all of these
studies have focussed on a single type of pattern, namely the 'design pattern' . In this experimental research,
another type of software pattern (i.e. 'process pa t tems 1) is empirically studied to evalúate their utility and valué
in software development process. There has been a great deal of work in both scientific and industrial contexts
towards identifying, writing up, and building support tools for software pat tems. However, empirical studies on
the effects of pattems are rather rare. While there have been some empirical studies to evalúate the effect and
valué of design pattems (pattems concemed with software architecture and coding [Gamma et al. 1995]) on
various aspects of software development [Prechelt 2 0 0 1 , 2002] , there appears to be no credible empirical studies
to investigate the utility and valué of process pat tems. This study aims to address this issue by presenting an
empirical study on the effect and valué of process pat tems.

The purpose of this study was to evalúate the utility and valué of the application of process pat tems on a
software development project. The study, conducted through an experimental research method, assessed the
effect of the application of process pattems on 260 software development projects. There were two types of
projects (128 individual projects and 132 group projects) under investigation in this study, which were the results
of two live university modules, involving software development-projects (CMT3991 , and CMT3992) . The two
project types were:

• Group projects (Module C M T 3 9 9 I , Computing Project Management) . This module was a 12-week
duration module (one semester), in which students worked in teams of 5 individuáis, on a software
development project to develop a software application.

• Individual Projects (Module CMT3992 , Undergraduate Computing Project). This module was also a
12 weeks duration module, in which individual students (who passed C M T 3 9 9 I) worked on their own,
distinct. software development project, with the help and advice of a supervisor.

Chapter 5 Experimental Methodology 7 4

The subjects for the experiment were final year undergraduate degree students who took modules CMT3991 and

CMT3992 discussed above. The study took place at Middlesex University in London, involving three campuses
where the two modules involved (i.e. experiment objects) ran.

The aim of the experiment was to investígate the following research question:

How does the application of process patterns in the management of a software development project

affect the quality of the project?

Based on the research question, the nuil and alternative hypothesis to be tested was:

H0 Application of process patterns in the management of a software development project

will not improve the quality of the project

H¡ Application of process patterns in the management of a software development project
will improve the quality of the project

While there are many proposed development approaches (e.g. waterfall, iterative ...) proposed in software
development projects, they generally include four main phases or activities (i.e. Requirement analysis, Design,
Implementation, and Delivery) in theír development lifecycle. In investigating the research question, the effect of
process patterns on each of these four main development phases ¡s investigated through an experimental research
method, which is discussed in this chapter. This involves the measurement and evaluation of a number of
software project attributes through metrics in each of the four main phases of the development lifecycle. The
metrics are selected through a measurement process discussed in Chapter 6.

5.3 An Overview of the Experiment Design

In this section, an overview of the experiment plan and design is presented. The following statements of facts are

bullet pointed to describe concisely the circumstances of the experiment:

• The experiment was conducted across three campuses at Middlesex University, namely, Trent Park
(TP), Tot tenham (TM), and Hendon (HE).

• The experiment was conducted during two semesters.

• CMT3991 students at Trent Park (TP) campus were in the treated groups in semester one, and were in

the control groups in semester two.

• CMT3991 students at Hendon (HE) were in the control groups in semester one (S e m l) and in the

treated groups in semester two (Sem2).

• CMT3991 students at Tot tenham (TM) were in control groups in semester one. The CMT3991 module

did not run in Sem2 at T M , and therefore no student from T M took part in this semester.

• CMT3992 module was involved in semester two only

• CMT3992 students at Trent Park (TP) were in treated group, and those in Tot tenham (TM) and Hendon

(HE) were in the control groups

These statements are further illustrated by Table 5 -1 , Table 5-2 and Figure 5-1.

i i i iPIiasesIPi Ü S M o d ü í é l S i H C á ñ n p ü » « s i a

One One CMT3991
Trent Park Treated

One One CMT3991 Tottenham Control One One CMT3991
Hendon Control

Two Two CMT3991 Trent Park Control Two Two CMT3991
Hendon Treated

Table 5-1 Experiment arrangements for the group projects

Sémesterí l i . Modulé Campus Statusi l l

Two CMT3992

Trent Park Treated

Two CMT3992 Tottenham Control Two CMT3992

Hendon Control

Table 5-2 Experiment arrangements for the individual projects

Chapter 5 Experimental Methodology 75

•
nun TP from TM •

camptiB -

' Sut&oti»"
Inim ME
C-f-r-f>-.--»

irc-T. '!>•»
n. nur-.*»
Ironi Mti

f~.it fit pt̂ J

i-»ur*j*jw-i»-.
fro.-» TM

Figure 5-1 Experiment Design

The experiment was carried out in two phases (across two Semesters), where the status of the treated and control
groups alternated between the Semesters and the campuses , as illustrated in Table 5-3. This is to ensure that any
changes between the treated and control groups is independent of the status and spécifies of the campuses and
the semesters in which the experiment is condueted. Therefore, any variation between the treated and control
groups can only be attributed to the application of process patterns and not variations or différences in the
semesters or campuses .

Phase 1 = Semester One
Phase 2 = Semester Two
1 = Treated
x = Control
TP Campus = Subjects taking module CMT3991 at
Trent Park Campus
HE & TM Campuses = Subjects taking module
CMT3991 at Hendon or Tottenham sites

Phase 1 Phase 2

V X

X V

Table 5-3 Experiment design

As well as data gathered through measurement process, the officiai marks offered to the projects by tutors were
also considered in this experiment. Figure 5-2 depicts the structure of a section of the experiment, in terms of the
two sets of data captured and analysed.

http://f~.it

Chapter 5 Expérimental Methodology 70

C The
Expérimental

Method

Group Projects IncUvIdueJ
Projects

Measurement •

Measurement
P rocess

1
Evoluâte Mair ies

Officiai G r a d e s

i j e ï UVtkà
Stuc

Data

e s hPûffl
ent

• a s e

Measurement ' Off iciai Grades

_ seT_up
Measurement

P r o c e s s

1
Evaluais Metr ics

T7gT~GF5a>5S" H FOm '
Student

Database

Mako statlstlcal représentat ions

T

A n a l y s é Résulte

Maka statistica! représentat ions,

1 '
A n a l y s e Résulta

Général ise Resuit s

Conflrm or Reject Hypothèses

Figure 5-2 Capture and analysis of data to test the research hypothesis

A number of important issues had to be carefully considered in designing the experiment. In the following

section, the issues concerned are outlined and discussed.

5.4 An Overview of Issues Involved

As this particular expérimental study was the First of its kind to be carried out at the Middlesex University with
no precedence, many issues had to be considered and resolved. Thèse issues can be categorised into the
following:

• Practical and logistical Issues

• Ethical concerns

• Staff concerns

Thèse issues are discussed in this section.

5.4.1 Practical Difficulties

In designing the experiment, many issues and questions had to be considered and answered. Thèse are Hsted as
follows:

1. What type of experiment method would be appropriate for the study?

2. What are the variables involved?
3. What are the extraneous variables and what measures should be taken to control them?
4 . How will the expérimental (i.e. treated or conditioned) and control groups be selected? Will it be based

on voluntary or compulsory participation of the subject?

5. What should be the sample size in order that the results could be analysed for statistical significance?
6. Should the subjects be told about their participation in the experiment?
7. How can the treated and control groups be matched?
8. Should subjects be selected from students on the same degree courses (programmes)?

9. Should the experiment be split across campuses?
10. How will the subjects receive the treatment condition?

11. How to make sure that the subjects use the given treatment (i.e. the process patterns)?
12. What incentives can be used to encourage subjects to use the treatment?

Chapter 5 Experimental Methodology 7 7

13. How to ensure that the treatment given to the experimental groups will not leak to the control groups?
14. How will the software projects be assessed in order to detect any differences between treated and

control group as a result of the treatment condition?
15. What will be the tutor 's influence on the outcome of the projects?
16. What would be the researchers influence on the outcome of the projects?
17. How could the effect of differences and discrepancies in tutors marking and abilities be minimised on

the outcome of the experiment
18. Can the selected groups work on different projects or should they be given the same project title?
19. What are the ethical issues concerned with the experiment?

20. How to ensure that subjects are treated fairly and equally, irrespective of their roles in the experiment?

The issues listed and their respective resolutions in the design of the experiment are discussed in this chapter.

5.4.2 Ethical/Staff Concerns

One of the major issues to consider was the ethical issues involved in using students in the experiment. M a n y
questions had to be answered and resolved in this regard, to satisfy Middlesex Universi ty 's Ethics Commit tee .
These ethical concerns are discussed in detail later in the chapter in Section 5.8.

The other issue was the concerns of lecturers and seminar tutors teaching the courses that were to be used in the
experiment. Naturally, staff concerned with the courses, especially the teaching staff and the course leader,
wanted to ensure that the whole experiment was carried out ethically and fairly, with little or no extra work and
responsibilities for them. Fortunately, after many meetings with the staff concerned, and many iterations and
modification of the exper iment ' s design, their approval was achieved for the experiment to go ahead.

5.5 Experiment Specification

The design for this research programme includes a method of enquiry for its suitability and appropriateness for
testing the research hypothesis (i.e. the research question). In this section the experiments research setting,
experiment variables, control measures, and validity issues will be discussed.

5.5.1 Experimental Research Settings

There are different types of experimental approaches, which differ in terms of their applicability in different
situations and settings. In designing the experiment for this study, the two main experimental approaches (i.e. a
laboratory setting, and a field setting) were considered. A laboratory experiment is a study that is done in the
laboratory in which the experimenter manipulates one or more variables and controls the influence of the
extraneous (unwanted) variables. Laboratory experiments provide the best way to control or eliminate the
influence of extraneous variables [Shaughnessy 2002] . This is accomplished by bringing the problem into an
environment different from the subject 's normal settings. Although in such environment outside influences could
be eliminated, there is a price to pay in terms of the artificiality of the situation, which may not necessary reflect
the real situation. A field experiment is an experimental research that is done in a real life setting. Here, the
experimenter manipulates variables and controls the influence of as many extraneous variables as possible. In
contrast to laboratory experimentation, field studies are not generally subject to the artificiality problem. Their
primary disadvantage, however, is that the control of extraneous variables cannot be accomplished as well as
with laboratory experiments [ibid].

The experimental method for this research programme is a field experiment, since it is to be conducted in a real
life situation and setting. Although one can argue that s tudent ' s projects are artificial because they do not deal
with real life situation (e.g. business), they are real since they have targets and objectives that are apart from the
experiment. In other words, the projects were not being done for the sake of the experiment. In that sense,
therefore the study could be classified as a field study.

5.5.2 Variables

An experiment contains a number of different types of variables. A variable is some property of an event in the
world that has been measured [McBurney 2003) . Variables in an experiment are entities which are subject to
variation and whose values are observed by the researcher. One advantage of the experimental approach is that it
provides excellent control techniques, allowing the researcher the ability to manipulate variables and observe

Chapter 5 Experimental Methodology 78

their effects [Christensen 2006] . The variables involved in this experiment will be discussed in the following

sections.

5.5.2.1 Independent Variables

The independent variable is the variable whose value is changed by the researcher, within a defined range, and
whose effect on the other variables is monitored and recorded. It is the variable that, according to the hypothesis,
créâtes the presumed effect [Singleton and Straits 1999]. The desired variation in the independent variable can be
achieved in various ways. The following are two options for the treatment variable considered for
implementation in this research:

Présence versus absence: In this technique, one group of subjects receives the treatment condition and
the other group does not. The two groups are then compared to détermine if the group that received the

treatment differed to the groups that did not, with respect to the dépendent variables.

Amount of variable: In this technique, différent amounts of the variable are administered to each of the
several experimental groups. This technique can be used to find the min imum or maximum amount of
treatment required to induce a différence between the groups.

The présence versus absence technique was used for ils suitability and applicability in this research. The other
option was rejected, as the exper iment ' s objective was not to study the effect of an individuai or a particular
number of process patterns, but to determine whether the application and usage of process patterns, as a whole,
would produce any effect. Furthermore, treating a large number of process patterns individually, as independent
variables, would be unnecessary and impractical in terms of statistica! analysis. There were two independent
variables in this experiment, which were the treatment (présence or absence of process patterns) and the
Semesters (Semester 1, and Semester 2), in which the experiment was conducted.

5.5.2.2 Dépendent Variables

The dépendent variable is the variable that measures the influence of the independent variable. By changing the
value or status of the independent variable (i.e. présence or absence of process patterns), it is presumed that there
will be changes in the value of the dépendent variables. By observing, monitoring and recording the values of
thèse dépendent variables, it will be possible to verify whether the research hypothesis is confirmed or rejected
[McBurney 2003] .

In this experiment, we were interested in the effect of process patterns on différent phases of a complete
development lifecycle, by measuring and evaluating a number of attributes from each phase. The artefacts (i.e.
documentat ions, models, source code, test plans) produced in the four major phases of the development lifecycle,
as well as the development process in each phase, are the components of the dépendent variables. The dépendent
variables are the attributes to be evaluated for the four major phases of a development lifecycle (i.e. Requirement
Analysis, Design, Implementation, and Delivery). The dépendent variables are listed in the Table 5-4.

Attributes
Requirements traceability

Requirement specification reviews

Granularity of modules

Comment density

Source code review

Defect density

Productivity

Defects removal ratio (for each development phase)

Test time allocation (for each development phase)

Test case density

Table 5-4 The independent variables

In an ideal world, we would want the independent variables to be the only variables affecting the dependent
variables. However , in the real world, there are often other variables that would also affect the dependent
variables [Kitchenham et al. 2002]. These variables are referred as the extraneous variables. Extraneous

Chapter 5 Expérimental Methodology 7 9

variables are the unwanted variables such as, intelligence, past expérience, leaming ability, programming skills,
and the expérimenteras effect that should be considered, planned for, and controlied, in order to minimise their
influence on the dépendent variables.

5.5.3 The Treatment

The exper imem's treatment was a set of process patterns used by the expérimental groups. The following
stratégies were considered in selecting and preparing the set of process patterns:

1) Sélection of a small number of individuai and specific process patterns
2) Sélection of a complete system of process patterns covering a complete development lifecycle

While option one initially appeared to be preferred for its specificity and simplicity, it suffered from the

following disadvantages:

• Process patterns are generally linked and related to each other, and it would therefore be impractical to
isolate individuai process pat tems and evaluate their effect on specific software quality attributes.

• It Hmits the scope of the study to specific process patterns rather than a complete system of patterns.
Any results would therefore apply to those specific patterns, rather than a set of process patterns
covering a complete development lifecycle.

It was therefore decided to adopt and implement option 2, to study the effect of a complete system of process
patterns covering the whole development lifecycle (i.e. Requirement analysis, Design, Implementation, and
Delivery). Therefore, in compiling the list of process patterns to be used, there were two primary objectives.
Firstly, the selected list of process pattems had to cover a complete development lifecycle, and secondly, the
compiled process pattems had to be appropriate for the type of development projects under investigation.

A number of sources of process pat tems were investigated for their suitability for inclusion in this experiment.
Amongst the sources were a two volume-book on process pattems [Ambler 1998, 1999| that covered a full
development lifecycle, and a set of process pattems proposed in an influential paper by Coplien [1995] (see
Section 2.5). There were also a number of other sources from which process pat tems were extracted to be used in
the experiment which included [D'souza and Wills 1999] and [Storrle 2000] (see Section 2.5). While some of
thèse pat tems were suitable enough to be included in the complied list as they came in their source, most had to
be edited to reduce their size to présent a succinct version of the pat tems. A total of 98 process pa t tems were
compiled for the purpose of the experiment. Some of the process pat tems used in the experiment are presented in
the Appendix B. Pattems.

The évaluation method was designed to measure the overall affect of a system of process pattems on software
development projects through metrics, which measured a number of software attributes. The objective of the
experiment was not to détermine whether the employment of any particular process pattern had an effect on the
quality of a software attribute, but to gauge the collective influence of the whole system of process pat tems.
There is a many-to-many relationship between the presented process pattems and the attributes to be measured.
That is, one or more process pattems could affect a single attribute and the related metrics. Accordingly, a single
process pattern could affect one or more software attributes and the carresponding metrics. This relationship is
generally dépendent on the type of the process pattern and ils position in the process pattern hierarchy. The
higher-level process pattems in the hierarchy (i.e. more generic) would have a wider scope and would therefore
affect a higher number of attributes and the related metrics.

For example, 'define and validate requirement ' process pattern (Appendix B. Pattems) would influence any

attribute (and the associated metrics) related to the définition and validation of requirements (e.g. requirement
ambiguity rates, requirement review quality). The pattern, 'developing in pairs ' could have an effect on many

attributes and corresponding metrics across ali the phases of the project (e.g. productivity, defect density, etc).
Therefore, single process pattems could affect multiple attributes of the development project and in tum affect
the value of the metrics employed to measure them. Similarly, a single software attribute and the metric

measuring it could also be influenced by one or more process pat tems. For example, 'defect densi ty ' may be

affected by many process pattems of différent hierarchical levels (e.g. code ownership, review of architecture,
etc). An attribute and the related metrics could be affected by ali the individuai pat tems in the complete set of
process pat tems. This many-to-many relationship between process pattems and the software attributes is

depicted in Figure 5-3.

Chapter 5 Experimental Methodology 80

P P = P r o c e s s pa t te rn
M=Metric to measu re ' s ' so f tware attribute

F i g u r e 5-3 Many- to-many relat ionship between process pat terns and
metrics

5.5.4 Control

Extraneous variables cannot be eliminated and thus it is not possible to eliminate their influence from the
experiment. It is however possible to eliminate any differential influence that these variables may have across the
various levels of the independent variable [Campbell and Stanley 1963]. In other words, it is possible to keep the
influence of these variables constant across the various levels of the independent variable.

For this experiment, a number of extraneous variables were identified and ways of controlling them were
devised. For example, the experimenter in this study played a part in subjecting the experimental groups to the
treatment. Experimenter effects have been defined as the unintentional biasing effect that the experimenter can
have on the results of an experiment. Experimenter is not just a passive, non-influential agent in an experiment
but could in some cases be an active and potential source of bias [Rosenthal 1998] [McCrone 2004). The
experimenter could also have a positive effect in reducing bias. They can help standardise the extent to which all
subjects understand the instructions [Aronson and Carlsmith 1968]. Furthermore, the experimenter may be
necessary to detect the occurrence of unanticipated phenomena, that could affect the outcome of the experiment,
and to identify ways of improving the experiment. In the final analysis, the possible gains of having an
experimenter must be weighed against the possible bias that they may introduce.

In this experiment, all efforts were made to ensure that the experimenter 's effect would not undermine the
validity of the experiment. The experimenter was responsible for introducing the process patterns to the
experimental groups through lectures and seminars. The experimenter was aware that anything beyond an
introduction to process patterns, to inform the experimental groups on how to access and use process patterns,
should not be offered to the subjects.

There is an established principle stating that the act of observing and conducting an experiment could affect the
outcome of the experiment [Landsberger 1958] [Parsons 1974]. This is referred to as the Hawthorne Effect and
states that an individual 's behaviour may change if they are aware of being studied. This was based on an
experiment that showed that the productivity of employees seemed to improve, regardless of the employed
experimental manipulation. In other words, experiment subjects ' performance could improve as a result of jus t
being participants in the experiment, referred to as Hawthorne Effect. This effect was considered and influenced
the final design of the experiment as discussed in the Section 5.6.

Errors resulting from the misunderstanding of data can be minimised, if the person recording the data remains
aware of the necessity of making careful observations and ensures that data are accurately recorded [Sjoberg et
al. 2002] . Another approach would be to use multiple observers or data recorders. In order to reduce errors, the
data recording was done online through a single portal. This means that data was entered once only to the system
by the participants. The data was then made available to be accessed by statistical analysis packages or other
tools for analysis.

Experiments can use a number of techniques in selecting subjects in order to minimise the effect of extraneous
variables. Two such techniques are referred to as randomisation and 'matching . Randomisation is a statistical
control technique that has the purpose of providing assurance that known, or unknown, extraneous variables will
not systematically bias the results of the study. It is one of the main techniques to control the known sources of
variations [Shaughnessy 2002] . Random selection of subjects provides assurance that the sample is
representative of the population from which it is drawn, and therefore ensures that the extraneous variables are
controlled. In order to implement a randomisation technique one, ideally, should randomly select subjects from a
potential pool of subjects. These subjects should then be randomly assigned to the same number of groups as
there are treatment conditions. The treatment conditions should then be assigned to the experimental groups.
This is illustrated in Figure 5-4.

Chapter 5 Experimental Methodology 81

F i g u r e 5-4 R a n d o m subject selection

Although randomisation provides the best guard against interpreting differences in the dependent variables, as
being the result of variables other than the independent variable, it is not however the best technique for
determining the sensitivity of the experiment [Christensen 2006] . The sensitivity of an experiment can be
increased by matching the subject to the various experimental groups. A second benefit of matching is that the
variables, on which subjects are matched, are controlled as constancy is achieved. For example, if subjects in all
treatment conditions are matched on intelligence, then the intelligence level of the subjects is held constant and
is therefore controlled for all groups.

A matching technique for controlling the extraneous variables, and increasing the sensitivity of the experiment,
is to equate subjects on the variable or variables to be controlled. If intelligence, for example, needs to be
controlled, then subjects in each of the experimental groups are at the same intelligence level. The technique of
precision control [Selltiz 1959] requires the experimenter to match subjects in the various experimental groups,
on a case-by-case basis for each of the selected extraneous variables. The matching technique is illustrated in
Figure 5-5

F i g u r e 5-5 Matching by precision control technique

Both randomisation and matching techniques were considered for use in this experiment. After considering
advantages and disadvantages of each technique, as applied to this particular experiment, it was decided that, due
to the availability of relatively large sample size, the randomisation technique would be the most appropriate
technique to be used for this experiment. It was therefore decided that the matching technique would
unnecessarily complicate the experiment, without providing a significant advantage over the randomisation
technique.

Despite all efforts to control the effect of extraneous variables in the experiment, full control cannot be
practically achieved. Christensen [2006] writes, "It can never be for certain that complete control has been
affected in the experiment. All can be done is to increase probability that we have attained the desired control of
the extraneous variables that would represent sources of rival hypothesis".

Chapter 5 Expérimental Methodology 82

5.5.5 Internai Validity

Internai validity describes the extent to which research design and process affect the results in terms of the effect
of extraneous variables and is the most important and widely considered validity type McBurney [2003] ,
Experiments are intemally valid when the obtained effect can be unambiguously attributed to the manipulation
of the independent variable [Kitchenham et al. 2002] . In this experiment, it was important that the measurement
data the students were to provide was valid. For this, the students had to be honest in the data they provided as
well as diligent to ensure that the data was correct. It was made clear to the students by the tutors and the
researcher that the measurement data they provided had no influence on the officiai marks they were awarded for
their project. They were requested therefore to be as honest as possible in providing the actual data without any
exaggerations. There was a risk that the subjects ' answers on the measurement form might be influenced by
either what they thought should be a good answer to the measurement questions, or by what they thought the
officiais would like to see. It was important to take Steps in minimising such risks. It was therefore made clear to
the subjects that they had to try to be truthful in providing measurement data for the experiment, and that the best
data were those that truly reflected the reality of the situation in their development project.

It was made clear to the subjects that they should carefully and seriously consider each of the measurement
quest ions and answer them carefully. The importance of carefully considered answers, in reaching correct
results and conclusions in this research, was explained to them. The importance of their input to the research, in
helping to make a possible contribution to the advancement of our knowledge of software engineering, was
further explained to them. It was therefore important that they were honest and diligent in providing
measurement data in this research

Random assignment of the subjects to the treatment and control groups ensures that any deficiencies in honesty
and diligence (discussed above) are uniformly spread in both treatment and control groups. Therefore, for the
purpose of this experiment, which involves comparing the performances of the two treated and control groups,
such factors do not affect the validity of the experiment objectives in any significant way and, therefore, would
not undermine the experiment 's internai validity.

A number of measurements were required to be taken by the researcher. These were generally measurement of
the quality of some software attributes. An évaluation method was devised through which the attributes were
methodically and consistently evaluated. The other important aspect was to ensure that there was no bias in the
évaluation of the projects, by the researcher. It is sometimes likely for a researcher to become biased towards a
concept, often unwittingly, due to one ' s belief and views and, therefore undermine the integrity of an
expérimental study. It is therefore important that the researchers are aware of this fact and take extra care to
ensure that their input to the project does not suffer front bias [McCrone 2004] . Such cautious approach, in the
évaluation of projects by the researcher, was taken to eliminate any bias that could be damaging to the validity of
the results.

The respective universities lecturers marked the completed projects. In marking the projects, a number of aspects
of the development project were evaluated and marked. Although they were not evaluating ali the aspect of the
development, in the way they were evaluated by the researcher, their évaluation marks provides another set of
measurement data, which were used in the experiment, to compare the treated and control groups. As the treated
and control groups were marked by the same tutors, any différence in marking is randomly spread between the
treated a n d control groups, and therefore had negligible effect the internai validity.

5.5.6 External Validity

External validity concerns the généralisation of the experiment to other situations. As the circumstances and
environment in which the experiment could take place might differ considerably, there are many external
validity issues. The following are the three main issues covered by external validity [Christensen 2006] :

• Other subjects: Would the experiment produce the same results with différent subjects? (For example,
if professionals were to be used instead of students)

• Other Times: Would the experiment produce the same results if it were conducted at another time?
• Other setting: Would the experiment produce the same results if it were conducted in other settings?

(i .e . b e i n g done in industry on commercial projects, using différent tools, and being under différent
pressure levels)

Work environment in industry is significantly différent to universities. In industry, professionals are usually
assigned to work on single development project, fulltime, with strict guidelines, demands, rules and constraints

Chapter 5 Expérimental Methodology 83

issued by both managers and customers. The developed application should work perfectly in a real business
environment. This is quite différent to a university setting where students know that the application is not going
to be used and, are therefore, much more relaxed.

It can be argued that if in a university environment, where students are under fewer constraints, a différence
between the treated and control groups is noticed in the experiment, any différence might be more prominent in
an industriai setting, where work is carried out in a more strict and disciplined manner, resulting in better
application of the treatment. That is, for example, if the application of the process pattems showed an
improvement in performance in a more relaxed environment , it is likely that a more stringent and focused
application of process patterns, in a more strict and better controlied environment (e.g. commercial
organisations), would show higher improvement levels. Furthermore, although students were used as subjects,
rather than professional practitioners, they were in their third (final) year of studies, close to their professional
start in industry. Therefore, it is perhaps possible to make a cautious assumption that. if the experiment was done
using professional subjects, the experiment would have produced similar results. However, this is a hypothesis
that needs to be tested in a replication and could be the subject of a future work.

Having discussed the fundamental concepts and various aspects of control issues within the experiment, in the
following section, design of the experiment is discussed.

5.6 Experiment Design

An overview of the experiment design was presented in Section 5.3. The experiment design is broadly discussed
in this section. The design issues such as the involvement of subjects, the method of applying treatment, and the
method of selecting subjects, as well as the design models are discussed. Figure 5-6 depicts the overall structure
of the experiment design.

Figure 5-6 Experiment design

5.6.1 Design models

As depicted in Figure 5-6, while in the case of group projects the experiment was conducted in two phases
(semesters), it was conducted for a single semester in the case of individuai projects. The design model devised
for project types therefore differed accordingly. While the number of dépendent variables was the same across
both project types, the number of independent variables varied. In the case of group projects where the
experiment was conducted for two semesters, there were two independent variables, the treatment (présence or
absence) and the semesters (Semi and Sem2) . By treating the 'semester ' as independent variable, the effect of
changes in semesters can be analysed to verify that any différence between the treated and control groups are not
due to changes in semesters (i.e. Semi and Sem2) , but as a resuit of the application of the treatment.
For the group projects, therefore, the experiment design was modelled on an approach referred to as '2 x 2
between subjects factorial design' , also referred to as " two-way A N O V A design", where there are two
independent variables involved. The design is referred to as "between subjects design" because the same subjects
were not used in both phases of the experiment (i.e. Students doing group projects in semester 1, were différent
to those in semester 2). The experiment design in terms of its independent variables is depicted in Table 5-5.

Chapter 5 Experimental Methodology 8 4

Independent Variable B (Semesters)
Independent Variable A

(Treatment)
Semester ! Semester 2

Treated (presence of
treatment) •

Treated groups in Semester one
(Trent Park campus)

Treated groups in Semester two
(Hendon campus)

Control (absence of
treatment)'

Control groups in Semester One
(Hendon & Tottenham campus)

Control Groups in Semester two
(Trent Park campus)

Table S-S The 2 x 2 experiment design (independent variables)

In the case of individual projects, where a single semester is involved, there was only one independent variable,
which is the presence or absence of the treatment. The experiment design for the individual projects therefore
used the ' independent samples t-test' for their analysis. Section 7.2.3 will further discuss the two devised
experiment design models .

5.6.2 Subject's Awareness of the Experiment

In determining how much the subjects should know about the experiment, a number of options were considered.
One option was to inform the subjects that the modules they were taking were being studied in an experimental
research and, therefore, they were the subjects in the experiment. They would be informed of the details of their
role in the experiment, such as whether they were in the treatment or control groups. This option ran the risk of
the subjects in the experimental groups to perform to expectation, as they could assume that they were expected
to, or should, perform better. This option therefore would have the considerable disadvantage of suffering from
the Hawthorne Effect.

A second option considered was to inform the subjects of their participation in the experiment, without stating
whether they were in the control or experimental groups. This option had also the disadvantage of suffering from
the Hawthorne Effect, but to a lesser extent (i.e. subject 's behaviour could be influenced by knowing that they
are being participants in the experiment) .

A third and final option considered was to decline to inform the subjects of their participation in the experiment.
The experiment, therefore, would go on without the knowledge of the subjects involved. In this way, subjects
would get on with the work as normal, without knowing that they were participating in an experimental study.
This option had the benefit of sustaining complete normality in the way the subjects carry out their project work.
While this strategy appeared to be the best, in terms of the integrity and clinical application of the experiment, it
suffered from some disadvantages. Firstly, the implementation of this strategy would be rather impractical, as it
would be difficult to keep the experiment a secret. More importantly, it would be ethically inappropriate that
people should take part in an experiment without their knowledge and consent [Singer and Vinson 2002] .
Therefore, the second option was chosen in which the students were informed of their participation in the
experiment, without being told whether they were in the treated or control groups.

5.63 Subjects and Treatment Application

There had to be a way of ensuring that the subjects in the experimental groups would use the treatment
condition. In other words, there had to be an incentive for the subjects to fully participate and use the treatment
(i.e. process patterns). A number of possible solutions were considered. An option was to tell the subjects that
the treatment would improve their work. This option did not however appear to have enough persuasion power
to convince all the subjects to use the treatment.

The other option considered was to arrange for marks to be allocated for the use of process patterns (i.e. the
treatment). In order to ensure that the control groups would also be entitled to the extra marks, they would also
be set a separate task, for which they would receive a mark equivalent to that of the experimental groups. That ,
however, would mean modifying the current marking system for the module (group project) by adding other
elements entitled for marking. The university used a computerised marking system called PAM, which did not
allow modification of the marking criteria. That option therefore did not appear feasible for practical reasons.
The marking approach is also detailed in documentation that was validated against the module. Changes to that
documentation could require a partial re-validation of the module.

Chapter 5 Experimental Methodology 85

The final option was to assign the project coursework, so that using the treatment would be a requirement. In this
design, the project assignments would be set such, that it would be specifically required of the experimental
groups to use process patterns (i.e. the treatment) in their project. Adherence to this requirement is reflected in a
marking criterion 'reflecting on their approach ' in the PAM marking system. This option appeared to be the best
option, as it did not suffer from the disadvantage that the other options entailed. This was therefore the option
chosen to be used for this experiment.

5.6.4 Subjects Selection Methods

A number of possibilities for selecting subjects were considered and analysed. The following is a description of
those that were considered, and the reason they were selected or rejected. .

5.6.4.1 Vo lun t a ry -Based Select ion

In this design, students were to be given the option of participating in the experiment. Once volunteered, they
would then be assigned to either treatment or control group. In consulting relevant tutors and course leaders, it
was decided that there was a high possibility that a sufficient number of students would not volunteer for the
experiment. The problem was compounded by the fact the students for module CMT3991 module worked in
teams of five and, therefore, all the members of the team had to volunteer to participate in the experiment. That
made the likelihood of finding a sufficient number of teams, volunteering for the experiment, small.
Furthermore, students that would volunteer to participate in the experiment might be from different seminars.
This would be impractical, as the subjects could only receive help and instructions to use the treatment through
their seminar sessions and, having a mixture of control and experimental groups in a seminar, would make the
task impractical. This design was therefore considered impractical and was dismissed.

5.6.4.2 M a n d a t o r y - B a s e d Selection

In this method the students from all, or a selected number of seminars, would be required to participate in the
experiment. There would be two possibilities: 1) selecting a specific number of seminars for participation, and 2)
selecting all seminars.

In order to minimise the effect for the seminar tutors on the experiment, seminars with same tutors for treated
and control groups were required. Therefore, any tutor teaching a treated group would also need to teach a
control group. Therefore, from the module timetable, those seminars could be selected which satisfied this
condition. In selecting the seminars on this basis, there needed to be enough seminars shared between tutors, so
that the above condition could be satisfied (i.e. each tutor taught one treatment seminar and a matching control
seminar). There did not appear to be enough seminars shared between tutors from which seminars for the
experiment could be selected (that is, not enough seminars so that each tutor could be assigned to a treated and a
control group).

The other option of selecting all the seminars to participate in the experiment was considered. This option was
deemed appropriate as it ensured that there would be a maximum number of subjects for the experiment and was
therefore selected. There also seemed to be a concern regarding the leakage of treatment condition across the
control groups, where there were both control and experimental groups in the same campuses. In order to
prevent, or significantly decrease, the likelihood of control groups accessing the treatment condition, it was
decided to choose the treatment and control groups to be from different campuses. In this design, all the seminars
in a single campus would act as experimental groups for one semester and as the control groups in the next, and
vice versa.

Students taking the module CMT3991 (group project) had a lecture and seminar-based tuition format. In each
seminar, there would normally be four teams, and each team would normally have five members. The seminars
were used to subject the experimental groups to the treatment condition. Therefore, all teams in the treated
seminar groups received the treatment. Students that completed module C M T 3 9 9 I (group project) in the first
semester went on to take the module C M T 3 9 9 2 (individual projects) in the second semester. The students that
took on a software development project were used as subjects. They were assigned to either experimental or
control groups in accordance with their group status (treated or control) in the previous CMT399I module.

Figure 5-7 below illustrates the way students in Module C M T 3 9 9 I (group projects) are assigned to the
experimental groups.

Chapter 5 Expérimental Methodology 86

Figure 5-7 Module CMT3991 (group projects) seminar structure

In the following section, a number of issues about the détails of the experiment design are discussed.

5.6.5 Group and Individuai Projects Âssignments

The project âssignments for the module CMT3991 involved in the experiment had to be such that the work
involved would test the subjects on ali the éléments of interest in the experiment. Group projects for C M T 3 9 9 I
were normally based on software application development. As such, any project title would be suitable for the
experiment, as long as the subjects were told that they needed to follow a proper development lifecycle approach
and document each phase. It was however decided that setting a common project title for all subjects to work on,
would have the benefit of producing projects that would be easier to assess and compare. Therefore, in
coopération with the module leader and seminar tutors, the researcher devised a single project assignment for
both treatment and control groups.

Students that completed and passed the CMT3991 module went on to take the CMT3992 module, which
involved carrying out an individuai project. The CMT3992 students chose the topic and title of their individuai
projects. Those projects, which involved the development of a software application, were selected for
participation and analysis in this research.

Theoretical as well as practical aspects of the experiment design were presented in the above sections. In the
following section, issues involved in the conduct of the experiment are discussed.

5.7 Experiment Conduct

In this section, the two main aspects of conducting the experiment are discussed. These are:

1. Application of treatment condition

2. Data types

Application of treatment condition is discussed first followed by a discussion of the data collection procedure.

5.7.1 Application of Treatment

Once the expérimental and control groups were selected, there needed to be a mechanism for subjecting the
expérimental groups to the treatment condition (i.e. process patterns). The process patterns in the form of web
pages were hosted on a specific website to which the treatment groups were given access. The treatment groups
were also given introductory training on the process patterns and on how to access and use the materials on the
website. The researcher for this experiment used both the lecture sessions, as well as the seminare to introduce
the subjects to process patterns and answer questions about their use.

It was decided that rather than giving the subjects hard copies of the materials to use, it would be préférable to
place them on a website for the following reasons:

Chapter 5 Experimental Methodology 8 7

1. Provisión of a facility to ensure the right subjects used the process pattern materíals: By issuíng
log on IDs and security measures it was possible to ensure that the materials were available to the
treatment groups only

2. Provisión of faciiities to gauge and determine levéis of material usage: By keeping a log of the
subjects who logged onto the system, it was possible to determine whether the subjects were actually
making use of the treatment. By keeping track of the data gathered in terms of who logged into the
system, it was possible to ensure that all of the treatment groups were using the materials and reminded
anyone who was not accessing the process pat tems on the website to do so. Furthermore, the data
collected would be used to determine if there was a correlation between, the number of t imes subjects
logged in to the website to use the pat tems and their performance in terms of the quality of the software
attributes measured.

3. Reduction in data errors: Meásurement forms were also hosted on the website, which were available
to both treated and control groups. The online hosting of the meásurement helped reduce data recording
errors and facilitated data analysis. In addition, it had the benefit of the resources associated with the
experiment to be available in one place.

Using an authentication system of usemame and password, the website presented a number of process pa t tems to
the authorised subjects (i.e. treatment groups). As well as the actual process pat tems, the website offered
guidelines on how to use the materials. A sample of the process pat tems hosted on this site is included in the
'Appendix B. Pa t tems ' . The website also provided the facility for online forms for data collection and recording
through meásurement forms. The forms were available to both treated and control groups. The data collection
procedure is discussed in the Section 6 .3 .1 . The screenshots of the forms can be seen in 'Appendix A.
Experiment Detai ls ' .

5.7.2 Data Types

Data for this experiment carne from two main sources:

• Data from student records as marked by tutors
• Data collected from the meásurement process

At the end of each semester, projects were submitted to the university to be assessed and marked by lecturers. A
software application called PAM assisted tutors in marking and recording the student marks for the two modules
(i.e. C M T 3 9 9 1 , and CMT3992) . The marking scheme used in assessing the project attributes was based on 5-
point scaling system (excellent, good, average, poor, very poor). The details of the marking criteria and scheme
are presented in the 'Appendix A. Experiment Detai ls ' .

A number of distinct project attributes were assessed and marked by the tutors individually. While most of these
attributes were concemed with the actual project report (i.e. abstract, introduction, conclusión. . .) , there were
some that were directly related to the development efforts which were of interest in this study. These are:

1. Design and analysis (assessing the quality of design and analysis of the application developed)
2. Product (assessing the quality of the end product)
3. Evaluation (assessing the quality of evaluation/testing methods applied)
4. Project Management (assessing the management quality of the pro jec t)

The attributes marked are depicted in Table 5-6 in relation to their respective development phase.

Officially Marked Attributes Development Phases
Design and Analysis Requirement Analysis, Design
Evaluation Delivery
Product Delivery, Implementation
Project Management Requirement Analysis, Design, Implementation, Delivery

Table 5-6 Relationships between the development phases and the marked attributes

In addition to the tutor marks, measurements of many software attributes spanning a complete development
Hfecycle were collected through a devised meásurement process. The meásurement process is discussed in detail

Chapter 5 Expérimental Methodology 88

in Chapter 6. Once the projects were completed and submitted, they were officially marked by the seminar tutors
as normal. The projects were then passed on to the researcher for évaluation. The quality of their content was
evaluated by the researcher with regards to the attributes of interest. The subjects also submitted further
measurement data through the online forms. Online measurement forms were used in the experiment as
discussed in the Section 6 .3 .1 .

5.7.3 Subjects' Views on Process Patterns

The treated group ' s views on their expérience of using process patterns were sought through a questionnaire
hosted online, which contained two 4-point Likert scale questions. The questionnaire contained the following
questions:

1. How useful did you find process patterns in doing your project?

N o t â t ail • Slightly r—j Moderately r—j Veryj—j

2. How difficult/easy did you find the process patterns to understand?

Very difficult • Difficult • Easy • Very easy F~]

There are a number of possible outcome scénarios for the final analysis of the data. In the following section,
some of thèse are discussed.

5.7.4 Experiment Outcome Scénarios

There were a number of possible outcomes with regard to the effect of patterns on performance. In this section,
some of thèse are discussed and illustrateci through graphs. Performance here refers to the value of the software
attributes being measured in the experiment. As often customary in graphical représentation of the experiment
data of this type, the performance trends in ail the following outcome scénarios are represented by lines, in order
to make the relationship between the treated and control more graphically clear. It should therefore be noted that
thèse are not Unes in the sensé of regressing a number of points on the graph.

One scenario is that the treated groups in both semesters would do better than control groups. Figure 5-8 shows
performance levels for both control and expérimental groups across the two semesters. It indicates that the
control g roup ' s performance is constant across the two semesters and is lower in value than that of expérimental
groups, which is placed at a higher level. It also shows that the expérimental g roup ' s performance is constant
across the two semesters and is higher in value than that of control groups, which is placed at a lower level.

i

Semesters

Figure 5-8 An outcome Scenario

•Treated

•Control

-Control

- T r e « e d

1
Sentecters

Figure 5-9 An outcome Scenario

Another outcome scenario is illustrateci in Figure 5-9. The figure shows performance levels for both control and
expérimental groups across the two semesters. It indicates that the control g roup ' s performance is constant
across the two semesters and is higher in value than that of expérimental groups, which are placed at a lower
level. The figure also shows that the treated group ' s performance is constant across the two semesters and is
lower in value than that of the control groups, which are placed at a lower level.

Chapter 5 Expérimental Methodology 89

The Figure 5-10 depicts a scenario in which the control g roup ' s performance is not constant across the two
semesters. While the control g roup ' s performance is low in Semester one, it is higher in semester 2. Similarly,
the treated control g roup ' s performance is high in the first semester and low in the second. The Figure 5-11
depicts a further outcome scenario.

Treated

Control

S e m e s t e r

Figure 5-11 An outcome scenario
Figure 5-10 An outcome scenario

Experiments involving human subjects, must take all précautions to ensure that the experiment is wholly ethical
and that no human subject is adversely affected by the experiment in any way. The ethical issues concemed with
this experiment are discussed in the following section.

5.8 Ethical Issues

As the experiment for this research project involved human subjects, one of the main considérations was the
ethical concems involved. There were two key objectives involved here; firstly, identifying the concemed ethical
issues, and secondly, addressing and resolving any identified issues [Duquenoy 2005_a] . In order to ensure that
scientific research is carried out in an ethical manner, an attempt has been made by some organisations to
identify a number of ethical concems and propose guidelines for their resolutions. The American Psychological
Association [APA 2002] has produced a set of principles, referred to as the APA Code of Ethics, which aims to
provide a set of ethical guidelines to researchers and research organisations that adopt it (See Appendix A.
Experiment Details). However, adopting such a code of ethics could limit the field, scope and types of research
and therefore before adopting the code, one must consider the conséquence of adopting such code ethics
[Shamoo 2002] . The API Code of Ethics were considered in this study and where appropriate adopted to achieve
the two key objectives stated above.

Ethical concems can be broadly identified in the following three différent areas [Diener and Grandell 1978],
which were considered in this project:

1. The relationships between society and science
2. Professional issues
3 . Treatment of subjects

This experiment did not generally have any social effects and therefore produced no ethical concems in relation
to the first point. The professional issue is one that concems all scientific research, and this research programme
was no exception. It was a priority that the research programme was carried out objectively, accurateiy, and
honestly.

The treatment of the experiment subjects was the most fundamental ethical issue in this study and was therefore
given careful considération and planning. In particular, the privacy and confidentiality issues of the subjects
[Singer and Vinson 2002] were carefully considered. As a resuit, the experiment was designed and conducted in
such a way, that no information about individuai subjects, such as marks, or performance would be dispatched,
published or divulged, which was outside and beyond the normal university practice, without the full agreement
of individuai subjects. The subjects ' consent to allow their projects to be used in the experiment, were acquired
through a consent form that they signed and submitted with their projects. In capturing and presenting the data
and the analysis, careful considération was given to aggregating and anonymising the data, so that none of it
could be traced to its origin in order to identify a particular individuai subject or subjects.. It was a policy of this
research to ensure that the experiment subjects did not suffer from any embarrassment as a result of their
participation. As final year students, many of the subjects might have already been under stress from the pressure

Chapter 5 Expérimental Methodology 90

of work. The experiment took this into considération in planning the design and conduct of the experiment not to
cause the experiment subjects undue stress.

In real life expérimentation, one has to understand and appreciate the circumstances of the situation and the
constraints and compromises involved. This is discussed next.

5.9 Design Constraints

In studying real life situations, and designing and conducting experiments within them, to leam and understand
some phenomenon, or test some hypothesis, the researcher has to understand and take account of the
environmental constraints and limitations involved. Therefore, the nature of this study, as real life
expérimentation, is such that it invariably brings constraints on the experiment design. Some of thèse issues are
discussed below:

• Sélection of subjects of the same abilities to both control and treatment groups

• Control of the amount of treatment condition given to the treatment groups

• Time given to accomplish project tasks

• Variation in team sizes

• Ethical issues

The key point is that the experiment design took ail of those points into considération and attempted to devise
the best possible solutions in a way that the internal/external validity of the experiment was not adversely
affected. Thèse are explained in this section.

Students working on group projects had différent abilities and characteristics. According to the university
régulations, they had to form a group or a team to work on a project of their own choosing. The teams could not
therefore, be specifically set up according to some criteria (such as their ability), for the purpose of this
experiment. While the use of such a matching method might have been beneficiai, it would have been generally
difficult to judge accurately students abilities according to some criteria, and then match them. Because of the
random nature of the expérimental and control groups and the large number of subjects (sample size), any
différences and discrepancies in the groups were randomly dispersed between the control and treatment groups.
Any discrepancies would therefore be constant and would not adversely affect the results of the experiment.

It was not possible to control and measure the amount of treatment condition (i.e. process patterns) that the
subjects used accurately. They were told to use as many as they needed for their project. However, while the
number of times each subject accessed the process pattern pages on the website were recorded as a measure of
the usage rates (discussed in Section 5.7.1), the system did not record which patterns were accessed and used by
the subject. It would have been advantageous in terms of knowing the access rates of the used patterns, had the
system recorded such data.

Although there was a set amount of time the subjects had to work on their project as dictated by the académie
semesters, the actual amount of time they spent on development was based on their own estimation. They
declared how much t ime they spent on development activities on an online measurement form. . Subjects were
instructed to fili in the forms as accurately and as honestly as possible. Their estimation of the time they spent in
each phase had to be accepted as the actual t ime spent.

Although there was a recommended team size of five for group projects, according to the university's rules, the
size of groups could change and in some cases did. However, this did not affect the experiment, as the project
efforts were based on person-hours spent on the project. Furthermore, any change in the team size affected both
treated and control groups, and was therefore a constant factor.

There is always an élément of ethical concern in experiments invoiving human subjects, which have to be fully
considered in the design and conduct of an experiment. Ethicai issues concerned with this experiment had to be
dealt with head on and from the first principles meeting requirements, such as fairness, confidentiality, and
others. The experiment had to be devised in a way that would satisfy the Universi ty 's Ethics Committee that ail
ethical issues were fully considered to prevent a breach of ethics.

Chapter 5 Expérimental Methodology 91

5.10 Summary

In this chapter, the expérimental research method with respect to its design and impie me ntation, was presented
and discussed. The purpose of the expérimentation was to, evaluate and assess the utility and value of the
application of process patterns, on a software development project.

The experiment involved two types of software development projects (group, and individuai) and had a two-
semester duration. In the case of group projects, the subjects were divided into teams and worked on a c o m m o n

software development project. In the case of individuai projects, subjects worked on their own software
development project.

A '2 x 2 between subjects factorial design ' , also referred to as ' two-way A N O V A design ' was devised where the
treated groups receive a set of process patterns to use in their development project. The control groups did not
used the patterns. The aim was to determine if there were any différence between the treated and control groups,
which could be attributed to the use of process patterns. The exper iment ' s independent variables were the
présence/absence of 'process patterns ' and the semesters in which the experiment was conducted. The dépendent
variables were a number of attributes across the four major development phases (i.e. requirement Analysis ,
Design, Implementation, and Delivery). The experiment required a comprehensive measurement process for data
collection and analysis. The data gathered through the measurement process, as well as the officiai tutor marks
awarded to the projects. were used in the experiment. Both the treatment (i.e. process patterns) and the
measurement forms were hosted online using a specifically developed website.

Many ethical and technical challenges had to be overcome in designing and conducting a sound controlied
experiment. Thèse issues were discussed in this chapter in détail. The measurement process devised for this will
be discussed in the next chapter (Chapter 6).

Chapter 6 Measurement Process 92

Chapter 6 Measurement Process

6.1 Introduction

In the previous chapter, the experimental research method was discussed, where the measurement process was
. one of its components . In this chapter the measurement process, devised and implemented to define and collect
the required measurements for the experiment, is discussed in detail. A devised measurement process was
necessary for the experiment to define the measurement goals which needed to be achieved, the measurements
and metrics that were required to achieve the goals, and the means by which the required measurements could be
acquíred.

The focus of discussion in this chapter, is the adaptation of the Goal/Question/Metric (GQM) model [Basili and
Weiss 1984], to créate a tai lor-made measurement process, appropriate and applicable to this study. The aim of
the measurement process was to provide the programme and the mechanism to measure a number of software
attributes, as part of the experiment design, in order to evalúate the effect of process pattems on software
development projects. The measurement concepts and the G Q M model, which underlies the measurement
process, were discussed in Chapter 4 . In this chapter, the three elements of the G Q M , in relation to the objectives
of the measurement processes, are defined and presented in detail. The full details of the goals, questions, and
metrics involved are presented in a number of specific tables. There is also a detailed definition and specification
of each defined metric, in table formats. However, due to the detailed and extensive nature of these tables, only a
few of them are depicted in the body of this chapter and the complete set of tables is presented in the 'Appendix
C. Metrics Specifications' . Other components of the measurement process, such as data collection procedure and
the tools used, are discussed towards the end of the chapter.

6.2 Measurement Process Design

Software measurement process is often employed for the estimation of future producís, evaluation and analysis
of artefacts, structuring of the software process, improvement of techniques and methodologies, and the control
of software process [Ebert et al. 2005] . In this project, the software measurement process was employed in the
context of evaluation, to test the exper iment ' s hypothesis that the application of process patterns in software
development, improved the quality of the software development project. Designing and conducting a
measurement programme is often a difficult endeavour and involve many intricate issues that have to be
carefully handled [Briand 1997]. The measurement process procedures outlined in the Uterature, such as [Briand
and Basili 1999] and [Fenton and Pfleeger 1991], as well as guideünes proposed by Practica! Software
Management [PSM], [NASA] , and [IS07IEC 15939] standards, were considered in drawing up the measurement
process for this study. A great deal of attention was given to the design and conduct of the measurement process,
to ensure that it was appropriate and that the process was properly and accurately implemented.

The goal-oriented measurement process designed and implemented was based on the G Q M model, which was
discussed in Section 4.8.2. This involved a number of steps and tasks as follows:

1. Define goals and sub-goals
2. Define questions to achieve goals
3 . Define metrics to answer the questions
4 . Define data collection procedure

Defining goals is the first element of the G Q M model. Practice has shown the importance of specifying a
measurement goal precisely, since the selection and definition of suitable and useful measures and models
depends strongly on the clarity of these early decisions [Basili and Rombach 1988]. The goal in the G Q M model
has a number of elements that are depicted in a structure to assist the creation of clear and unambiguous goal
statements as shown in Table 6 -1 .

Chapter 6 Measurement Process 93

Elements Definition
Object of Study What will be analysed
Purpose Why will the object be analysed
Quality Focus What property/attribute of the object will be analysed
Viewpoint Who uses the data collected
Context In which environment

Table 6-1 Goal Elements of the GQM model

The goal statement had the following format, where the blanks were filled in accordance with the requirement of
any specific goal:

Analyse for the purpose of with respect to from the viewpoint of in the context of

The goals in the measurement process were depicted in the format stated above. The measurement was based on
the évaluation of some attributes in the four major development phases (Requirement Analysis, Design,
Implementation, and Delivery) of the development lifecycle and the measurement goals were deftned
accordingly. As the 'process patterns' used in the experiment affected activities in a complete development
lifecycle, there were numerous possible goals that could be set. However due to the scope limitations of this
research, only a limited number of goals were set and analysed. There were a number of attributes in each
development phase that could be measured, which directly or indirectly related to software quality. Three
catégories of the process and product attributes were selected that were appropriate for the measurement of the
two project types (individual and group projects) under investigation:

1. Artefacts: Artefacts (such as code and documents) produced during each development phase
2. Tests/reviews: The testing/reviewing quality of each development phase
3. Efforts: Proportion of time allocated to each phase

The artefact goals were concerned with the physical artefacts produced in each development phase and generally
involved product metrics. The goal was defined for the purpose of the évaluation of artefacts that were produced
in any of the four major development phases. Each development phase produced a number of specific artefacts,
which were measured for évaluation. The goal defined for each development phase therefore corresponded to the
artefacts produced in that phase. The test and review goals were defined with the a im of evaluating the quality
of tests and reviews, by assessing the implemented test and review process and product for each development
phase. This , for example, involved attributes such as document and code reviews. The efforts goal, aimed to
evalúate the proportion of t ime that was allocated to activities in each development phase. In particular, the goal
was to measure the proportion of the development phase t ime that was spent in testing.

For each goal, there were one or more related questions that aimed to determine the mensures and metrics, which
were required to achieve it. There were many questions that could be set for any one stated goal. However , due
to the scope limitations of this research in terms of time resource, a limited number of questions were selected
for each goal (one or two questions per goal). These questions were presented in a number of tables (Table 6-2
to Table 6-13).

Metrics were the third and final d e m e n t of the G Q M model and provided the answers to the questions related to
the measurement goals. Each question, within a goal, required one or more metrics for their resolution. There
were many metrics (in isolation or in composit ion), that could have been used to answer any goal-related
questions. However, due to limitations on the scope of this research, only a small number of metrics were used
and analysed (one metric per question). The metrics, required to answer the measurement questions, were
defined for ali the major development phases discussed above, and are presented in the G Q M tables in the
following section.

6.2.1 GQM Tables

Having discussed the individual components of the G Q M model for the measurement process, a number of
G Q M tables for each development phase were created. The tables contain three main sections corresponding to,
the goal, question, and metric components of the G Q M model . Detailed rationales for the metrics, stated in G Q M
tables, are given in metric spécification tables in the 'Appendix C. Metrics Spécifications' . Examples of the
metric spécification tables are presented and discussed in the Section 6.2.2. The measurement data for the

Chapter 6 Measurement Process 94

metrics were collected by the subjects and the researcher, through an online measurement form as discussed in
the Section 6 .3 .1 .

The Q M tables for the Requirement Analysis (RA) phase are presented in the following tables (Table 6-2,
Table 6-3, and Table 6 ^) .

Goal
Analyse the requirement artefacts/documents
For the Purpose of évaluation
with Respect to RA artefacts quality
Front the Viewpoint of the developer
in the Context of eroup and individuai projects

Questions Metrics
What percentage of the requirements is
traceable?

Percentage of traceable requirements
(Traceable Requirements per Total Requirements Ratio)

Table 6-2 GQM for artefacts in the Requirement Analysis (RA) phase

• G o a l
Analyse the reauirement artefacts
For the Purvose of évaluation
with Respect to the RA test/review quality
Front the Viewooint of the develowr
in the Context of ^roup and individuai projects

What percentage of requirements spécification
document is reviewed

Percentage of reviewed requirements
spécification

What proportion of the defects is corrected? Percentage of defects fixed
(Defect Fixed per Defects Detected Ratio)

Table 6-3 GQM for test and review in the RA phase

Analvse the reauirement artefacts/document
For the Purpose of évaluation
with Respect to the RA effort
Front the Viewpoint of the develoner
in the Context of group and individual projects

» ^ Questions Metrics'
What percentage of the RA phase time is spent in testing? Percentage of Phase Time Spent in Testing

(Test Time Per Phase time ratio)

Table 6-4 GQM for effort in the RA phase

The Q M tables for the Design phase are presented in the following tables (Table 6-5, Table 6-6, and
Table 6-7).

': " - , ' . W . '• !''Sv ... Goal V A S' Jf' ' f , ' « ; '
Analvse the design artefacts/document
For the Purpose of evaluation
with Respect to the design artefact quality
From the Viewpoint of the developer
in the Context of group and individual projects

. Qoestions • - * -.' % . ' * ' Mernes ' • "*~
What is the average class size) Number of methods per class (Methods per Class Ratio)

Table 6-5 GQM for artefaets in the Design phase

Chapter 6 Measurement Process 95

Goal
Analyse the desitzn artefacts/document
For the Putvose or* Evaluation
with Respect to the desien test aualitv
From the Viewooint of the developer
in the Context of group and individual proiects

Question Metrie.
What percentage of the design document is reviewed Percentage of reviewed design document
What proportion of the defects is corrected? Percentage of defects fixed

(Defect Fixed per Defects Detected Ratio)

Table 6-6 GQM for test and review in the Design phase

Goal ^
Analyse the desien artefacts/documents
For the Purpose of Evaluation
with Respect to the desien effort
From the Viewpoint of the develoner
in the Context of eroup and individual projects

Question " Metrie
What percentage of the Design phase time is Percentage of Phase Time Spent in Testing
spent in testing? (Test Time per Phase Time Ratio)

Table 6-7 GQM for effort in the Design phase

The Q M tables for Implementation phase are presented in the following tables (Table 6-8, Table 6-9, and
Table 6-10)

* ; " . ' . / '""s-'.v . • , Goal " \\, • , ^ : : - ' " \
Analyse the Implementation artefacts/documents
For the Purpose of évaluation
with Respect to the Implementation artefacts aualitv
From the Viewpoint of the develoner
in the Context of grouo and individual proiects

Question p - -' Metric ; ' •
What percentage of the Unes of code is commented? Comment Densitv (Comments per LOC Ratio)
What is the rate of defects per Unes of code? Defect Density
What is the produetivity in the Implementation
phase

Implementation Productivity (LOC over
Implementation phase time)

What is the overall produetivity Overall Productivity (LOC over Total Project Time)

Table 6-8 GQM for artefacts in the Implementation phase

. - Goal '
Analyse the Implementation artefacts/documents
For the Purpose of évaluation
with Respect to the Implementation test/review aualitv
From the Viewooint of the develoner
in the Context o f c r o u D and individual oroiects

Question." ? ?" " Metric V
What percentage of the code is
reviewed?

Percentage of source code reviewed

What proportion of defects is corrected? Percentage of defects fixed
(Defect Fixed per Defects Detected Ratio)

Table 6-9 GQM for test/review in the Implementation phase

Chapter 6 Measurement Process 96

Goal
Analyse the Implementation artefacts/documents
For the Purpose of évaluation
with Respect to the Implementation effort
From the Viewpoint of the developer
in the Context of c rouD and individuai nroiects

Question Metrie
What percentage of the Implementation
phase time is spent in testine?

Percentage of Phase Time Spent in Testing
(Test Time per Phase time ratio)

Table 6-10 G Q M for effort in the Implementa t ion phase

The Q M tables for the Delivery phase are presented in the following tables (Table 6-11, Table 6-12, and

Table 6-13)

Goal. ' ' • ' . ' • „ ' 'V : *
Analyse the Delivery artefacts/document
For the Purpose of évaluation
with Respect to the Delivery artefacts auatitv
From the Viewpoint of the developer
in the Context oferoup and individuai projects

Question; , . Metr ie .
How many test cases are defined per requirement Test case density (Test Case per Requirement Ratio)

Table 6-11 G Q M for artefacts in the Del ivery phase

Goal , " ;!-::;v;-'r : . . !':l^:<\^ .•
Analyse the Delivery artefacts/document
For the Purpose of évaluation
with Respect to the Delivery test aualitv
From the Viewpoint of the developer
in the Context of croup and individuai projects

Question Metrie.
What proportion of detected defeets is corrected? 1 Percentage of defeets fixed

Table 6-12 G Q M for test /reviews in the Delivery phase

".'.>.:• .< .- • - > . -, . Goal-:- fc V -T-" ' - ' " : • - v ' s r " \ " * -

Analyse the Delivery artefacts/document
For the Purpose of évaluation
with Respect to the Delivery effort
From the Viewpoint of the developer
in the Context of eroup and individuai projects

Question - . Metrie . •
What percentage of the Delivery phase Percentage of Phase Time Spent in Testing
time is spent in testing? (Test Time Per Phase time ratio)

Table 6-13 G Q M for effort in the Delivery phase

6.2.2 Me trie Spécifications

The metrics for answering the questions related to the spécifie goals were defined in the tables above. For each

metric that is defined, a spécification table is defined that fully élaborâtes it. The spécification of the measures

required in working out each metric are also presented in separate tables. The Table 6-14 shows the spécification

table for the first metric above. The measures required for working out the metric are shown in Table 6-15 and

Table 6-16. The complète set of metric spécification tables for ail the defined metrics and their required

measures are given in the Appendix C. Metrics Spécifications.

Chapter 6 Measurement Process 9 7

Percentage of Traceable Requirements
(Requirements Traced per Requirements Defined)

ä ' . WDèscriftioM . . - ." ' "
Definition Measures the percentage of the requirements that are traceable (Traceable Requirements per

Total Requirements Ratio)

GQM Goal Requirement Artefact Quality

GQM Question What percentage of requirements is traceable?

Type Quantitative

Evaluation Method As per formula below

Applicable Phase Requirement Analysis

Rationale Requirements traceability refers to the ability to describe and follow the life of a requirement,
in both a forwards and backwards direction [Ramesh and Jarke 2001]. A requirement should
be linked to a higher level document (i.e. source), which could be a higher-level system
requirement, as well as downward to the design éléments, source code, and test cases that are
constmeted to implement and verify the requirement [Davis 1993][Hull et al. 2005],

Purpose This metric was used in the experiment to determine if there was any différence between the
treated and control groups in terms of the percentage of traceable requirements. The metric
will show whether as a resuit of using process patterns in the development projects, the
treated groups will have a higher percentage of their requirements traced to design, test, and
imp lernen tation.

Scope Small software development projects

Attribute to Measure Traceability of Requirements

Metrie Scale Interval

Related Measure(s) Number of Requirements (Measure 2), Number of Traceable Requirements (Measure 1)
<M " : " 1 " ìRèmirTéMmsTìrèmentl '• •' ••••••••

m .. ttMêtriclsWâlS* -Number of Traceable Requirements (NTR) N T R X100
Number of Requirements (NR) NR

Table 6-14 Percentage of traceable requirements metric (Metrie 1)

• NiïmbërJoffTräceable Re^ •" • .:" ".
Definition Measures number of requirements that are traceable

Type Qualitative -

Source Researcher

Applicable Phase Requirement Analysis

Purpose This measure is used in the experiment to determine the percentage of traceable requirement.

Measurement Scale Interval

Measurement Method Requirements in the requirement spécification are individually read and checked for traceability.
A requirement is traceable if it can be linked to its source and the related design, test and
implementation [Davis 1993] [Ramesh and Jarke 2001]. Total number of traceable requirements
are counted and recorded

Related metrics Percentage of Traceable Requirements (Metric 1)

Table 6-15 Number of traceable requirements measure (Measure 1)

Chapter 6 Measurement Process 98

• ,17 ?>':?"*• y V f f : f e - - V ? f ' ^ T Number of Requirements " •
Definition Measures number of defined requirements

Type Quanti tat ive

Source Exper iment Subjects

Applicable Phase Requirement Analys is

Purpose This measure is used in the exper iment to dé termine the value of the two metrics: Percentage of
Traceable Requirements , and Test Case Densi ty.

Measurement Scale Interval

Related metrìcs Percentage of Traceable Requi rements (Metr ie 1), Test Case pe r Requirement Rat io (Metr ie 11)

Table 6-16 Number of requirements measure (measure 2)

6.3 Measurement Process Conduct

The designed measurement process required mechanisms for collecting and storing measurements. In this

section, the data collection procedure conducted to capture and store measurement data, as well as tools used are

discussed.

6.3.1 Data Collection Procedure

In defining the data collection procedure, a number of issues were considered which are discussed in this section.
T w o methods of collecting and recording measurement were used:

1. Measurements taken b y the experiment subjects: These measurements were taken by the subjects
during the life of their projects and were submitted by them through a specific online measurement
form (see Section 5.7 .1) . The measurement form contained a number of measurement questions, in
accordance with the measurement requirements of the devised measurement process.

2. Measurements taken b y the researcher: This was done after the complet ion of the projects and their
assessments by the course tutors. The researcher studied and evaluated each project report with respect
to a number of attributes (e . g . number of traceable requirements). This was done for both the treated
and control projects.

During the course of the development projects, the subjects took measurements of various aspects of the project.
The responsibility for collecting, recording, and submitting measurement data was assigned to the individuai
subjects in the case of individuai projects, and to the groups in the case of group projects. The subject for the
group projects (in both the treated and control groups) were instructed to take and record the data in their group
meetings. Each group had a group leader, who was asked to ensure that measurement tasks were discussed at
their group meetings and appropriate sections of the online measurement form were filled. The collected data
were stored in a relational database for structured Storage and provision of facilities to run queries on the data for
analysis. This is further discussed in the Section 6.3.2.

The subjects were instructed to use an online data collection system, which was speciftcally designed and hosted
on an internet website (see Appendix A. Experiment Details). The website hosted measurement forms that were
to be filled in by the subjects. There were also guidelines and help on how to fili in the form. As a contingency
plan, the subjects were also given the option of recording their measurement data manually in paper forms, if for
some reason they could not use the online system. They were asked to include the completed form in their
project report. The vast majority of the subjects used the online system to submit their measurements as
instructed.

There were two i s s u e s related to the integrity and correetness of data. First, that the measurement data taken and

recorded were correct, and second, that the data was transferred to the database correctly. In order to ensure that

the data was correct and valid, the subjects were instructed to take and record the measurement data as carefully

and precisely as t h e y could. In the c a s e of group projects, teams-were encouraged to discuss the validity and

Chapter 6 Measurement Process 99

correctness of the measurements in their group meetings in order to reduce flaws. They were further instructed to
be meticulous in completing the online measurement form. They were asked to recheck the values submitted and
correct any possible mistakes. The small number of measurement data that were submitted on paper by the
subjects with their project report, was inserted into the database twice by the researcher to eliminate the chance
of incorrect data entering the database.

6.3.2 Tools Used

In a measurement programme, a number of tools can be used to facilítate the process. The number and type of
the required tools, depends on the scope and sophistication of the measurement programme. It is essential that a
suitable médium to facilítate the data storage and analysis of the collected measurements be provided. A web
application was specifically devised to host the process patterns and the measurement forms (This was discussed
in Section 5.7.1). The website included a relational datábase management system that was used for the storage of
the submitted measurement data. The designed website and the included datábase for this measurement
programme had the following characteristics:

• The website was designed to be simple and easy to use

• The datábase was designed to be flexible in case of any structural change requirements at later stages

• The datábase was normalised to avoid repetition of data

• The website and the included datábase incorporated security measures to prevent unauthorised access

The relational datábase was further important in systematically exporting the measurement data to a statistical
package for analysis (i.e. SPSS package).

The employment of a suitable statistical analysis package to statistical]y analyse and present the results was
important. Such tools further helped to analyse the results for correlations and statistical signiftcance. In this
research, the SPSS statistical analysis tool was used. This is further discussed in Chapter 7.

6.4 Summary

A goal-oriented strategy based on the G Q M model was implemented in this study. The G Q M model defines a
practical way of ¡mplementing goal-oriented measurement. It introduced a mechanism for formulating goals for
the measurement programme, as well as defining metrics required to achieve the goals. The measurement
process involved the following main tasks:

1. Define goals

2. Define questions to answer to achieve the goals

3 . Defme metrics that provide answer to the questions
4 . Define data collection procédure

For each development phase (i.e. Requirement Analysis, Design, Implementation, and Delivery), the three
components of the G Q M were defined through G Q M tables, which specified the goals, questions, and the related
metrics. A detailed spécification and rationale for each involved metric was presented in individual tables, the
complete set of which is presented in the 'Appendix C. Metrics Spécifications' . For each metric, the data
collection procedure and storage was also defined and described, where the measurements taken by the subjects
were input to the system through online measurement forms hosted on a specific website. The measurement data
was stored in a relational database by the devised web application, which was subsequently imported to the
SPSS statistical package for analysis.

Having discussed the research methods (expérimentation and measurement process) in the last two chapters, in
the following chapter (Chapter 7) the experiment results will be presented and discussed.

Chapter 7 Results 1 0 0

Chapter 7 Results

7.1 Introduction

In this chapter, the results of the expérimental research method are presented and statistically analysed using the
SPSS statistical analysis package. As discussed in Chapter 5, there were two types of projects involved in this
experiment; individuai projects and group projects. The experiment had two phases in the case of group projects
(Semes te r l , and Semester 2) and a single phase in the case of individuai project (Semester 1). The experiment
duration for each experiment phase was one semester. For both individuai and group projects there were two
distinct sources of measurement data, which were the measurement data collected through a measurement
process, and the marks given to the completed projects by tutors. In this chapter, both sources of data are
presented and analysed with respect to the exper iment ' s objectives.

In the first section of the chapter, the results of the conducted measurements are presented and analysed,
followed by a présentation and analysis of the results of the officiai marks in the latter section. The results of the
treated groups ' views, on the usefulness and usability of process patterns, will be presented in the final section.
First, a brief discussion of the statistical methods employed is given in the following section.

7.2 Applied Statistical Methods

The first task in statistical analysis was to determine an appropriate statistical method for the analysis of the

collected data. This involved determining whether the data was of parametric or non-parametric nature. This is

discussed next.

7.2.1 Parametric Vs Non-parametric

The parametric or non-parametric nature of the data determined whether parametric or non-parametric tests were
appropriate for their analysis. An essential condition for parametric tests is that the data is normally distributed.
Non-parametric tests are appropriate when one or more variables in the data set violâtes the normality
assumption or the sample size is small (< 15 cases or subjects) [Moore and McCabe 1993]. Therefore, to
determine which method was appropriate for the analysis of the experiment data, the data needed to be tested for
normal distribution. This is generally done through investigating the statistics (Skewness and Kurtosis) of the
data and their graphical représentation such as histograms. More specifically, the Kolmogorov test [Ree2001]
can be used to check for normality in data. It compares the scores in the sample to a set of normally distributed
scores with the same mean and standard déviation. If the test was non-significant (i.e. p>=0.05) then the
distribution would be normal, otherwise (i.e. p<0.05) it would be non-normal. In order to test the data in the
experiment for normality both methods (observation of graphical représentations such as histograms, and
Kolmogorov test) were employed. Thèse tests indicated the présence of some outliers, which had to be dealt with
in order for the data to pass the normal distribution test.

7.2.2 Identification and Treatment of Outliers

An outlier is a score very différent from the rest of the data that causes a distortion of statistics (e.g. sample
means, variances) and, therefore, the results that include outliers often cannot be easily generalised. There are
several other problematic effects of outliers [Field 2000] including inflated sums of squares, distortion of p -
values bias or distortion of estimâtes, and faulty conclusions. There are mainly two likely causes of outliers, both
of which were investigated in this research with respect to the experiment data. Thèse are:

1. D a t a e r r o r s : Thèse are caused by data recording or entry errors. Ali the outliers in the experiment were
of this type.

2. R a r e even t : Data, that for some acceptable, reason does not fit within the typical range of other data

values (e.g. A project with uncharacteristically large LOC)

There are a number of ways of detecting outliers [Johnson and Bhattacharyya 2001] , two of which (inter-
quartile-range (IQR) computation and z-score) were employed in this research. Boxplots, which were employed

Chapter 7 Results 101

in this research to identify outliers, use the inter-quartile-range (IQR) technique. Using a boxplot is an effective
approach, especially when working with large datasets that have continuous data, such as the one in this
research. Furthermore, boxplots make no distributional assumptions and depict extrême values, in a way that are
easily identified. The other method employed for identifying outliers was the z-score technique. Since virtually
ail mound-shaped data falls within 3 standard déviations of its mean, the z-scores of such data are virtually ail
between -3 and 3 . Thus any data that has a z-score less than (-3) or greater than (+3) would be an outlier. The z-
score associated with the i*1 observation of a random variable x is calculated as follows:

The Application of the outlier detection techniques showed that there were a small number of outliers in the data
set. There are a number of approaches proposed in the literature for resolving outlier problems, depending on the

nature of the detected outliers [Barnett 1994], The following resolution methods were considered for

employment :

• Correction: Re-checking the source of the data for possible data entry errors and correcting them.

• Transformation: Transforming data (e.g. square roots and logarithms) is a way to soften the impact of

outliers, since they shrink larger values to a much greater extent than they shrink smaller values.

However, transformations may not Fit into the theory of the model , or they may affect its interprétation

(e.g. change the relationship between the original variable).

• Deletion: Only as a last resort should an outliers be deleted, and then only if it is found that they are

legitimate errors that cannot be fixed, or lie so far outside the range of the remainder of the data that

they distort statistical inferences.

• Changing the score (Winsorising): Use methods such as changing the score to be one unit above the

next highest score in the data set.

• Accommodat ion: Using methods (i.e. non-parametric) that are robust in the présence of outliers.

Closer examination of thèse outliers indicated that the occurrences of the outliers were ail due to incorrect data
entry by the experiment subjects. In resolving the outliers, the corresponding subjects were consulted and the
erroneous data was replaced by the correct values, thus resolving the outliers. An example of this was an entry of
105 for 'number of lines of code ' variable, which proved to be an outlier. On consultation with the relevant
subject, the true value was confirmed as 1050.

The parametric or non-parametric nature of the measurement data for the experiment variables were investigated,
using the discussed process. The investigation showed that the measurement data for the experiment variables
were normally distributed. Furthermore, the présence of a relatively large sample size (132 group projects, 128
individuai projects) made the application of parametric tests to be justified. It was therefore appropriate to
perform parametric, rather than non-parametric statistical tests.

7.2.3 Parametric Tests

Statistical analysis was employed in this experiment to evaluate and présent the values of the variables and carry

out statistical signiftcance tests. Two methods of statistical analysis (i.e. Factoria! Analysis of Variance (Two
way A N O V A) , and Independent Samples t-test) were used, depending on the circumstances and hypothesis
being tested. Thèse are discussed below.

7.2.3.1 Independent Samples t-Test

The independent samples t-test is used when there is one dépendent and one independent variable, where there

are two expérimental conditions (e.g. treated and control) and différent subjects are assigned to each condition. It
is employed to determine if there is a significant différence between the means of the dépendent variable through

s
where

Equation 7-1 z-score

Chapter 7 Results 102

variations in the indépendant variable. As discussed above, the independent samples t-test is generally applicable
to parametric test, where the data being tested is drawn from a normally distributed population with the same
variance. However, the independent samples t-test is a robust method that stands up to some violation of thèse
conditions [Howell 2002] . In this experiment, the independent samples t-test is employed to determine if there is
a significant différence between the means of dépendent variables (e.g. a metric such as Defect Density) for the
independent variable experiment-groups (i.e. treated and control). This method is applied to the analysis of the
individuai projects, since only a single semester was involved. A significant différence in a dépendent variable
between the treated and control groups would indicate an effect of the treatment (i.e. process patterns). The
independent samples t-test is calculated as follows [Rees 2001] : -

ssv+ss. v

i: l ^

Equation 7-2 Independent samples t-test

Where , X, is the mean for group 1, X 2 is the mean for group 2, SS] is the sum of squares for group 1, S S 2 is the

sum of squares for group 2, n, is the number of subjects in group 1, and n 2 is the number of subjects in group 2.

There were, however, circumstances in the experiment where there were more than one independent variable
concerned. There were two independent variables, experiment group type and semester, defined in the case of
group projects. In such cases the independent samples t-test would not be appropriate and the 'Factorial
A N O V A ' (Two-way A N O V A) method is used for analysing the data. This is discussed next.

7.2.3.2 T w o - w a y Analys is of V a r i a n c e (A N O V A)

The two-way A N O V A (factorial A N O V A) examines the effects of multiple independent variables on one
dependent variable. It provides the technique to assess the significance of the effect of two independent variables
on a dependent variable, and determine any interaction between the independent variables. As discussed in the
research method chapter (Chapter 5), the objective was to analyse the performance levels of the two
experimental groups {treated and control) with respect to a number of software attributes. This was done across
two semesters, where in each semester different subjects acted as treated or control groups. There were therefore
two independent variables, which were the experiment group-type (i.e. treated and control groups), and the
semester (i.e. semester 1 and semester 2). There was also a single dependent variable, which was the software
attribute (e.g. metric or tutor mark) being evaluated. The relationships between the experiment groups and
semesters are illustrated Table 7-1 .

The aim was to determine whether there were any significant différences between the means of the groups across

each independent variable. That is, whether there was a significant différence in the performance levels of: a)

experimental and control groups, and b) Semester ì and semester 2 subjects. The aim was to determine if there
was any significant différence between mean values in the treated and control groups for any metric/mark, and
whether the différence in semesters affected the outcome.

P h a s e 1 = Semester One

P h a s e 2 = Semester T w o
V - Treated

x = Control
T P C a m p u s = Subjects taking module CMT3991 at Trent
Park Campus

^ ^ ^ ^ Phase 1 Phase 2

.= •• -THjv \
:•>, Campus^'

V X

HE&JW
Campuses -

X

H E & T M C a m p u s e s = Subjects taking module CMT3991
at Hendon or Tot tenham sites

Table 7-1 Relat ionships between exper iment g roups and semesters

The significance value (p) for the measurements of the independent variable, with respect to the dependent
variable, were evaluated and depicted in relevant tables in each section. The value-/* represents the probability
that the différence between the means of the groups examined could have happened by chance. Conventionally,

it has to be less than 0.05 for Stat is t ical significance for a confidence level of 9 5 % .

Chapter 7 Results 103

7.3 Teams Vs Individuals

In this experiment, two types of projects were under examination, group projects and individuai projects. As well
as investigating any différence between the treated and control groups within each project type, this study
investigates whether the effect of process patterns was more prominent on group projects than on individuai
projects. In investigating any significant différence in performance between the group-projects (teams) and
individual-projects (individuals), a two-way Analysis of Variance (two-way A N O V A) was used to determine the
effect of experiment project-type on all the values of the ìnvestigated software attributes. In this case, there were
two independent variables, the experiment group types (i.e. treated and control) and project types (i.e. individuai
projects and group projects) and a single dépendent variable, which was the attribute being examined (e.g. defect
density).

7.3.1 Further Analysis

The results were further statistically analysed for significance, irrespective of project types and experiment
phases (i.e. Semesters). In this analysis, both group and individuai projects were considered collectively, without
taking into account their project type or the semester in which they were conducted. Although this analysis is
rather generic, without differentiating between group and individuai projects, it has the advantage of a larger
sample size of 260 (132 of which are group projects and 128 individuai projects).

The statistica! analysis method used for this analysis is the independent samples t-test, discussed above, where,
in this case, the independent variable was the (experiment group type) and the dépendent variable was the metric
or tutor mark being Ìnvestigated. The results in this analysis were in line with those achieved where group and
individuai projects were analysed individually and separately. Results of this analysis are presented in the
Appendix D. Results.

Sensitivity analysis provides the means of evaluating sensitivities of measures with respect to parameters of
interest. It is, in general, a technique for determining the behaviour of a system by successively changing input
values by a small amount and determining the changes in the Outputs. However, for measurement data and
analysis, sensitivity analysis is defined more broadly. Lang and Secic [1997] and Kitchenham et al. [20O2b]
propose the following tasks for sensitivity analysis before moving on to the Statistical techniques:

1. Identify and treat outliers
2. Ensure that the data does not violate the assumptions of the tests used on them
3. Apply appropriate quality control procédures to verify your results

These guidelines were followed, as discussed earlier in this chapter, where the measurement data was analysed
for outliers and distribution types (i.e. normal, non-normal) and their suitability for parametric Statistical
analysis.

Having carried out the initial Steps of sensitivity analysis, the next step was to perform the mathematical and
Statistical procédures. This is generally performed by varying the sys tem's parameters systematically, by a small
fixed percentage, so that the relative impacts of each parameter could be directly compared [Saltelli et al. 2004) .

Given the following linear équation:

Where Y is the output, Q j are fixed coefficients and Zj are the uncertain input factors with the following
distribution:

7.4 Sensitivity Analysis

Z i * N (Z / , f f a) , Z , = 0 , / = 1,2 r.

Sensitivity analysis is then calculated to be the derivative, such as: S% = —— = 0.{.
dZ,

Chapter 7 Results 104

The goal in sensitivity analysis is to show the effects of changing parameter values. The sensitivity, s = — , is
Ai"

the amount of change in its output Ao that occurs due to a change to input by amount Ai. This was the method
adopted to perform sensitivity analysis on the metrics and tutor marks in this research. By iterativeiy and
continuously varying metric/mark values by a small percentage, the change in the outcome was measured and
checked for statistical significance in each iteration. The objective of the sensitivity analysis here was to
determine the amount, by which the parameters can change, before voiding and nullifying the statistical
significance of the results (i.e. metric results would no longer be statistically significant) [Wakefield 2004}.

In carrying out sensitivity analysis on metrics in this research, the value of each metric and tutor mark was
changed by a small percentage (0.1%) at a time, and the result was evaluated for statistical significance. This
simulation was carried out iterativeiy and systematically using the SPSS statistical package. The percentage of
change that could be tolerated (before affecting the statistical significance of the results) was the sensitivity
margin of the metric or the tutor mark. The sensitivity analysis result, for each metric and mark, is presented in
the results in this chapter. This value is presented as the 'sensitivity margin ' , which is the percentage by which
the metric/mark value could change before the results would no longer be statistically significant.

7.5 Correlation/Regression Analysis

Correlation and regression analysis deal with relationships among variables and were employed here to
determine the correlation between pattern usage and metric/tutor mark values. The correlation coefficient r
(referred to as Pearson linear correlation) is a measure of the linear relationship between two variables or
attributes, and is defined as the ratio of the covariance of the sample populations to the product of their standard
deviations. Values of r are always between -1 and + 1 , where (r = + l) and (r=- l) indicates that two variables are
perfectly related in a positive or negative linear relationship respectively. A correlation coefficient of zero (i.e. r
= 0) indicates that there is no correlation between the two variables. Given two n-element sample populations, X
and Y, r is calculated as in Equation 7-3.

N - l E L N L N

r = r

covariance of XandV
[standard deviation of X)Utaorbrd deviation of V)

N - i X

N - l -|%- J N - l

1

V Lk = 0 JJ
N - l E

• N - l -n-y\
N

Lk = 0 J,
E h

Equation 7-3 Correlation coefficient

The correlation is high, if it can be ' summarised ' by a straight line (sloped upwards or downwards) , called the
regression line of the form f(x) = ß 0 + ß i x (depicted in Figure 7-1 and Figure 7-2), and the response variable Y is
modelled as: Y= f(X) + £ = ß 0 + ß]X + e, where the random noise e is assumed to have normal distribution N(a,
a 2) .

t 3 1 î î i — 1 i—a
Figure 7-1 Regression line Figure 7-2 Regression line scatter plot

The correlation between the rate of treatment usage and the value of metrics/marks would indicate whether the
higher rate of pattern usage corresponded to higher values of the metrics/marks. The pattern rate of usage was
measured by the number of times the subjects logged in to the online treatment resource (see Section 5.7.1),

Chapter 7 Results 105

where the process patterns were hosted. The SPSS statistical analysis package tool was used to calcitiate the
corrélation coefficient, the corrélation statistical s i gn i f i c ane and to produce scatter plots of the corrélation for ali
metrics and marks for the group and individuai projects. The results are presented in the results section of each
metric/mark in this chapter.

7.5.1 Treatment Rate of Usage

As discussed in the research method chapter (Chapter 5), the process patterns (i.e. treatment condit ion) were
hosted online through a website, to which on!y the treated groups had. The Figure 7-3 presents the average

number of logins for both types of projects during the 12 weeks semesters. In the case of group projects there
were two 12 weeks semesters whose logins are averaged.

1 0 '

I 5"

! < < 1 1 1

S > 1 > i 1 ' I l i ! I

.1 1 1 J I I

' l . i J 1 *
— -

i • ì I ! ' 1 f • \ '

ì l i

l '• II

i > r / i \ -i-i • i i
\ . ' ! ' / ' \ ' • " ' * '

3

a
a.
S

,3

to
S

o
c

y

,3
to
a

w k w k v w h w k w k w k w k w h w K w k w h w k
1 2 3 4 5 6 7 8 9 10 11 12

S e m e s t e r

Figure 7-3 Rate logins to the treatment (i.e. process patterns) website

There were an average total of 148 logins for each group projects, and 65 logins for each individuai projects. The
results indicate that, whilst there had been continuous and regular usage of process pat tems for both group and
individuai projects, there had been a substantially higher number of hits registered for group projects than the
individuai projects. This is partially due to the number of members in the group projects. The other reason is
that, the students who took the individuai projects had already completed the group projects, and had therefore
accessed the online patterns in the previous semester.

7.6 Conducted Measurement Results

The dépendent variables to be tested are a number of software attributes in the following four major development

lifecycle phases through a number of metrics as discussed in Chapter 6:

• Requirement Analysis (RA)

• Design

• Implementation

• Delivery

In this section the results of the metrics, for each development phase, are statistically analysed and presented
using the SPSS statistical package. The results of the metrics are presented in a number of tables and figures. For

each metric, there is a table that states the means and standard déviations, and a boxplot that depicts the range
and médian values of the metrics with respect to project types, semesters, and expérimental group types. A

further table for each metric presents the statistical significance analysis of the metric.

Chapter 7 Results 106

7.6.1 Requirements Analysis Phase

In this section the resuit of the metrics for the first development phase (i.e. Requirement Analysis) are presented.
For the détails and spécification of thèse and ail other metrics in this research, see 'Appendix C. Metrics
Spécifications' . The results of the following metrics are presented in this section.

• Percentage of traceable requirements

• Percentage of reviewed requirements spécification

• Percentage of defects fixed

• Percentage of (RA) phase t ime spent in testing

Projec t t y p e E x p é r i m e n t a l Type S e m e s t e r Mean N (no . of c a s e s) S td . Devia t ion
Group-Project Trea ted S e m e s t e r 1 45 .85 47 7 .743 Group-Project Trea ted

S e m e s t e r 2 49.72 18 7.560

Group-Project

Control S e m e s t e r 1 38.74 47 5.739

Group-Project

Control

S e m e s t e r 2 40 .35 20 7.775

Individual-Project Trea ted S e m e s t e r 2 46.97 66 9.217 Individual-Project

Control S e m e s t e r 2 41.84 62 7.069

Table 7-2 Statistics for percentage of traceable requirements

<D
OC
0)

.O
CO
Q)

O

Expérimental
Type

Treated

S e m e s t e r 1 Semes te r 2

S e m e s t e r

The boxplot depicts the range of values
and median for the 'percentage of
traceable requirements ' metric, for both
treated and control groups in both types
of projects. It shows that the range of
values is higher for treated than for
control groups for both types of projects.

Figure 7-4 Boxplot for percentage of traceable requirements

Chapter 7 Results 107

Group Projects Correlation

— r — i 1 1 1 r
60 80 100 120 140 160 180 200

Logins

Figure 7-5 Correlation between the no. of logins to the online
patterns and the percentage of traceable requirements for the
group projects

Individuai Projects Correlation

vP 70 .00H

-g 6 0 . 0 0 -
V
u
n

5 0 . 0 0 -

3

8"
OC -

o . o
CD

O
O O ° 0

<ò

co
8o o
o . o

o ; -

> - ° ób

-r^^i °8ó>
° ° ° o o o

o ° o o

o '
o

<s>

o

ò -

1 I I

20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00

Logins

Figure 7-6 Correlation between the no. of logins to the online
patterns and the percentage of traceable requirements for the
individuai projects

Percentage of Traceable requirement

The results of the statistical analysis to determine the statistical significance of any difference between treated

and control groups for each project type, are as follows:

Group Projects A 2 x 2 independent measure A N O V A was carried out using the experiment group-
types (i.e. treated and control) and the semester {i.e. semester-one and semester-
two), as the independent variables, and the 'percentage of traceable requirements ' as
the dependent variable. There was a main effect for experiment group-type, with
treated groups scoring signiftcantly better than control groups (i.e. /><0.05), /?=006.
The main effect for the semester was not significant (i.e. /?>0.05), p = 0 .813. The
main effect for the interaction between experiment group-type and semester was
also not significant (i.e. p>0.05) , p = 0.45.

The sensitivity analysis showed the sensitivity margin to be 19 .1%.

There was a statistically significant positive correlation between this metric and

' logins ' r=0.32, p=0.030 as depicted in the scatter plot Figure 7-5.

Individuai Projects The mean difference in percentage of traceable requirements for treated and control
groups were compared using an independent samples t-test. The result showed that

there was a mean difference between the treated and control groups, for the
percentage of traceable requirements, which was statistically significant (i.e. p<0.05)

a t p = 0 . 0 1 1 .

The sensitivity analysis showed the sensitivity margin to be 11.1%.

There was a statistically significant correlation between this metric and ' log ins '
r=0.44, p=0.009 as depicted in the scatter plot Figure 7-6.

Concluding Remarks There was a mean difference between the treated and control groups, in both
individuai and group projects for this metric, which was shown to be statistically
significant. This indicates that treatment (i.e. use of process patterns) was effective.

C h a p t e r 7 Results 1 0 8

The results of the statistical analysis to determine the statistical significance of the effect of project type on the
experiment group-types are as follows:

Group Projects &

Individual projects

Concluding Remarks

A 2 x 2 independent measure A N O V A was carried out using the two variables,
experiment group-types (i.e. treated and control) and the project-type (i.e. Individual
project, and Group projects) as the independent variables, and the percentage of
traceable requirements as the dépendent variable. There was a main effect for
experiment group-type, with treated groups scoring significantly better than control
groups (i.e. p<0.05) , p=0.002. The main effect for the project-type was significant
(i.e. /?<0.05), p = 0.023. The main effect for the interaction between experiment
group-type and project type was also significant (i.e. p<0.05) , p = 0.014.

There is a statistically significant différence between group and individual projects,
in terms of the mean différence between the treated and control groups, for this
metric. This indicates that the treatment (i.e. use of process patterns) was more
effective on group projects than on individual projects for this metric.

Métric Resuit Summary
Percentage of traceable requirements

The results (depicted in Table 1-1 and Figure 7-4) show that treated groups had a higher percentage of traceable
requirements than the control groups for both group and individual projects which was shown to be statistically
significant. The results show that requirement traceability was improved by a sensitivity margin of 1 9 . 1 % in
group projects and 1 1 . 1 % in individual projects. The results, therefore. indicate that the use of process patterns
has a significant positive effect in increasing the percentage of traceable requirements. Based on thèse results, ït
can therefore be deduced that the application of process patterns improves the requirements traceability.

It has been further shown that the mean différence between the treated groups and control in the group projects,
in terms of the percentage of traceable requirements, was statistically significantly higher than in the individual
projects. This indicates that the employment of process patterns has been more effective in group projects than in
individual projects for this metric. It can therefore be deduced that process patterns are more effective on group
projects than individual projects in improving traceability requirements.

Projec t t y p e Expé r imen ta l T y p e S e m e s t e r Mean N (no . of c a s e s) S td . Deviat ion
G roup-Project Trea ted S e m e s t e r 1 69.34 47 11.495 G roup-Project Trea ted

S e m e s t e r 2 62.56 18 8.959

G roup-Project

Control S e m e s t e r 1 56 .28 47 7.228

G roup-Project

Control

S e m e s t e r 2 51.00 20 4.768

Individual-Project Trea ted S e m e s t e r 2 62.59 66 7.324 Individual-Project
Control S e m e s t e r 2 55.90 62 8.358

Table 7-3 Statistics for the percentage of the requirements specification reviewed

Chapter 7 Results 109

9 0 -

7 0 -

6 0 - :

5 0 -

4 0 -

T
)„ . ,

• i ::::::r::
i

Expérimental
Type

[Ü Treated
*\ Control

Semester 1 Semester 2

Semester

Figure 7-7 Boxplot for percentage of requirements specification reviewed

The boxplot depicts the range of values
for the 'percentage of requirements
specification reviewed' metric for both
treated and control groups for both types
of the projects and in both Semesters. The
boxplot indicates that the range of values
and median in all the groupings is higher
for treated than for control groups.

A full and detailed Stat is t ical analysis textual report (as presented for the previous metric) on each metric would
make this report too excessive in size. Therefore, for the remaining analysed metrics/marks, a brief summary of
the results of the performed Statistical analysis is presented in table format. The table ' s main layout and sections
is depicted in Table 7-4 below.

No . E l e m e n t s .
1 Metric title
2 Statistical analysis of group project
3 Statistical analysis of individual project
4 Statistical analysis of difference between group and individual projects
5 Correlation analysis between number of logins and the metric value

Table 7-4 Results tables layout

Chapter 7 Results 110

Percentage of Reviewed Requirements Spécification

Siatistical significance analvsis of mean différence between treated and control erouos

, ^ Jndependent: Variable 1 »epeadcat Variabk

2 x 2 independent
measure ANOVA

Expenment group-type Percentage of Reviewed Requirements Spécification
Semester

Group Projects

...SiBiiificaacep-vaine V DescrÏDtîon " ï : Sensitività Marvin f%)
0.002 There is a main effect for experiment group-type 20.6

0.883 The main effect for the semester is not significant

0.543 The main effect for the interaction is not significant

iBckpendent Variati* Dépendent Variable l l l i É P r ô j e i
Independent Samples

t-test
Expenment group-type Percentage of Reviewed Requirements Individuai Projects

Spécification
Jj. Siçnifîcaucep-vaJuc _._ _ Description ScnsltivïtyManda (%)

0.013 There îs a main effect for expert meni:j>roup-rvpe 10.1
Conclusion There is a statistically significant différence between the treated and control groups in both individuai and group

projects for this metric. This indicates that the treatment (i.e. use of process pattems) was statistically effective.

Statistical sienificance analvsis of the effect of nroiect tvoe on the exoeriment erouD-tvnes

- - lodepvuden ̂ Variatili s DependêMVàriiililv > Projet ts

2 x 2 independent measure Expenment group-type Percentage o f Reviewed Group Projects
ANOVA Project-type Requirements Spécification Individuai projects

_.„'SiRnificance p-value Dèscriotioii
0.006 There is a main etfect for expenment group-type

0.010 The main effect for the group-type is significant

0.011 The main effect for the interaction is significant

CoDclusion There is a statistically significant différence between group and individuai projects in terms of the mean différence
between the treated and control groups for this metric. This indicates that the treatment (i.e. use o f process pattems) was
statistically more effective on group projects than on individuai projects for this metric.

Corrélation Analvsis for the ' n o . o f loeins' and 'this metric* for arouD and individuai Droiects

inscription. . t f-ny.1, I. f;fc.. . ^ ^ . ^
0.372 0.011 There is a statistically significant positive corrélation Group Projects
0.317 0.020 There is a statistically significant positive corrélation Individuai Projects

Table 7-5 Statistical analysis for the 'percentage of reviewed requirements spécification' metric

•• ,•• Mètrîc:RésuUSummary - . - . . , :
Percentage of reviewed requirements spécif ication

The results (depicted in Table 7-3, Table 7-5, and Figure 7-7) show that treated groups reviewed a higher

percentage of the requirements spécification than the control groups (for both group and individual projects)

which was shown to be statistically significant. The results show that the requirements spécification review was

improved by a sensitivity margin of 20 .6% in group projects and 1 0 . 1 % in individual projects. The results

indicate that the use of process patterns had a positive effect on the percentage of the requirements spécification

reviewed. Based on thèse results, it can therefore be deduced that the application of process patterns improves

the requirements spécification reviews.

It has been further shown that the mean différence between the treated groups and control groups in group

projects, in terms of the percentage of reviewed requirements spécification, was significantly higher than in the

individual projects. This indicates that the employment of process pat tems has been more effective in group

projects than in individual projects for this metric. It can therefore be deduced that process pattems are more

effective on group projects than individual projects in improving requirements spécification reviews.

Chapter 7 Results 111

Project t y p e Expe r imen ta l T y p e S e m e s t e r M e a n N (n o . of c a s e s) S td . Dévia t ion

Group-Project Trea ted S e m e s t e r 1 83.68 47 10.867 Group-Project Trea ted

S e m e s t e r 2 84.06 18 9.545

Group-Project

Control S e m e s t e r 1 33.60 47 10.137

Group-Project

Control

S e m e s t e r 2 80 .25 20 10.249

Individual-Project Trea ted S e m e s t e r 2 80 .85 66 10.458 Individual-Project
Control S e m e s t e r 2 79.77 62 9.723

T a b l e 7-6 Statistics for the percentage of defects fixed in RA phase

I 7 ° - : ï ï : : : ï ï : : : ï ï 7 L ï ï T : ï 3

1 0 0 '

9 0 '

8 0 '

70

6 0 '

50

ü 100
«
a

BïB
Experimental

Type

H Trea ted

[i] Control

S e m e s t e r 1 S e m e s t e r 2

S e m e s t e r

F i g u r e 7-8 Boxplot for the percentage of defects fixed in R A

The boxplot depicts the range of

values for the 'Percentage of

fixed defects ' metric in the RA

phase for both treated and control

groups for both types of the

projects and in both semesters .

The boxplot indicates that there is

not a significant différence

between the treated and control in

the range of values for the metric.

Chapter 7 Results 112

Percentage of Defects Fixed (RA phase)

Statistical sjgnjficance analvsis of mean difference between treated and control groups

[Opgratjorij

2 x 2 independent
measure ANOVA

| tedepcndcnt^Variables1|

Experiment group-type
Semester

Percentage of defects fixed (RA phase)

Significane^ p-_valûë|
0.143

0.783

Ï.5ÎÎ"

ÌDescription|
The main effect for the experiment group-type was not significant

The main effect for the semester was not signi ficant

The main effect for the interaction was not significant

I Sensi ti vit"(MarglìTl %) g
N/A

(No significant difference
between treated and control

groups)

I r j ^ i M n d ^ t ^ V a r ^ b t ë j

Experiment group-type

IDependcntkVflriâbiél

Percentage of defects fixed (RA phase)

IProjertsjj

Individuai Projects

[Gomment)
There main effect for experiment group-type was not significant N/A

(No significant difference between
treatedjmd control^roups)

Conclusion There is not a statistically significant difference between the treated and control groups in either individuai or group
projects for this metric. This indicates that treatment (i.e. use of process panems) was not statistically effective.

Statistical signi ficance analysis of the effect of project type on the experiment group-tvpes

lpdependenffi arabica]

Experiment group-type
Project-type

Percentage of defects fixed

[Projects]

Group Projects
Individuai projects

0.234 J The main effect for the experiment group-type was not significant
0.213

" 1X463'

The main effect for the group-type was not significant

The main effect for the interaction was not significant

Conclusion There is not a statistically significant difference between group and individuai projects in terms of the mean difference
between the treated and control groups for this metric. This indicates that treatment (i.e. use of process pattems) was not

^ ^ ^ ^ ^ ^ ^ ^ ^ ^ j j t a ^ i c a H v j r i m e ^ f i e ^

Corrélation Analysis for the 'no. of loeins' and 'this metric' for group and individuai projects

IDescriptiònl
There is not a statistically significant positive corrélation

,Project typel
Group Projects

0.101 0.291 ^lejjejs^ionnitadsted^vjjh^ Individuai Projects

Table 7-7 Statistical significance analysis for the 'percentage of defects fixed' metric

P e r c e n t a g e of Defects F i x e d (R A p h a s e)

The results (depicted in Table 7-6, Table 7-7, and Figure 7-8) show that there is not a statistically significant

mean difference between the treated and control groups, in terms of the percentage of defects fixed, for both

group and individuai projects. Based on thèse results, it can therefore be deduced that the use of process patterns

does not significantly increase the percentage of the defects fixed in the Requirement Analysis phase,

lt has been further shown that the difference between the treated groups and contro! in group projects, in terms of

the percentage of defects fixed, was not significantly différent to those in the individuai projects. It can therefore

be deduced that process patterns are not more effective in group projects than in individuai projects for this

metric.

Project type Expérimental Type Semester Mean N (no. of cases) Std. Deviation
Group-Project Trea ted S e m e s t e r 1 22 .63 47 5.647 Group-Project Trea ted

S e m e s t e r 2 21.49 18 3.496

Group-Project

Control S e m e s t e r 1 20.47 47 2.928

Group-Project

Control

S e m e s t e r 2 19.59 20 3.643

Individuai-Project Trea ted S e m e s t e r 2 26.20 66 5.699 Individuai-Project
Control S e m e s t e r 2 24.12 62 3.964

Table 7-8 Statist ics for the percentage of R A phase l ime spent in testing

Chapter 7 Resuïts 113

Semester 1

' - | - ; : .

ï

Semester 2

Expérimental
Type

a

<'. IS Treated

= («1 Control
"b
o

o

Semester

Figure 7-9 Boxplot for percentage of RA time spent in testing

The boxplot depicts the range of values
and médian for the 'percentage of the RA
phase time spent in testing' metric for
both treated and control groups in both
types of projects. It shows that the range
of values is not tugher for treated than
control groups for both types of projects.

Chapter 7 Results 114

Percentage of Phase Time Spent in Testing (RA phase)

Statistical significance analvsis of mean difference between trealed and control groups

ration

2 x 2 independent
measure ANOVA

ance]
0.353

"Ó~494

Experiment group-type
Semester

Percentage of RA Phase Time Spent in Testing Group Projects

The main effect for the e x p e r i m e n t g r o u p - t y p e is no t s i g n i f i c a n !

The m a i n ef fect for the Semester is not s i g n i f i c a n !

0.264 The main effect for the interaction is not significant

ätivity, Margin (%]
N/A

(No significant difference
between treated and control

groups)

Independent Samples t-test | Experiment group-type

lue

Percentage of RA Phase Time Spent in Testing Individuai Projects

ince.i
0.103

N I M C N Y

There main effect for experiment group-type is not significant N/A
(No significant difference between

treated and control groups)

Conclusion There is not a statistically significant difference between the treated and control groups in either individuai or group
projects for thìs metric. This indicates that treatment (i.e. use of process pattems) was not statistically effective.

Statistical significance analvsis of the effect of proiect type on the experiment groupj-types

2 x 2 independent measure
ANOVA

Experiment group-type
Proiect-t

0.234

Percentage of RA Phase Time Spent in
Testing

iComuniStl
The main effect for the experiment group-type is not significant

0.213

"Ö.463

The main effect for the group-type is not significant

The main effect for the interaction is not significant

Conclusion There is not a statistically significant difference between group and individuai projects in terms of the mean difference
between the treated and control groups for this metric. This indicates that treatment (i.e. use of process pattems) was not

^ ^ ^ ^ ^ ^ ^ ^ ^ ^ j t a ^ i s f i c a j l v j n o r e ^ f f ^

0.113 0.123 T^,^„,l?.,nPÜ„^,^,f?íl^ca^y significant positive corrélation Group Projects
0.104 0.110 ^Tie^s^ioU^ia^isfiadh^jig^^ Individuai Projects

Tab le 7-9 Results of significance analysis for the 'percentage of RA phase time spent in testing' metric

fMetri?ResultlSummarp
Percentage of Phase T i m e Spent in Tes t ing (RA phase)

The results (depicted in Table 7-8, Table 7-9, and Figure 7-9) show that there was not a statistically significant

mean difference between the treated and control groups in terms of the proportion of RA phase time spent in

testing. Based on thèse results, it can be deduced that the application of process pat tems did not significantly

affect the proportion of RA phase time spent in testing.

It has been further shown that the mean difference between the treated groups and control groups in group

projects, in terms of the percentage of phase time spent on testing, was not significantly différent to those in the

individuai projects. It can therefore be deduced that process pattems are not more effective in group projects than

in individuai projects for this metric.

7.6.2 Design Phase

In this section the resuit of the metrics in the second development phase (i.e. design) are presented. The

following metrics are analysed:

• Percentage of the design document reviewed

• No. of methods per class (Methods per Class ratio)

Chapter 7 Results 115

• Percentage of defects fixed
• Percentage of Design phase time spent in testing

Project type Experimental Type Semester Mean N(no. of cases) Std. Deviation
G roup-Project Treated Semester 1 4 2 . 5 1 4 7 7 . 7 9 3 G roup-Project Treated

Semester 2 4 2 . 0 6 1 8 7 . 5 0 2

G roup-Project

Control Semester 1 3 1 . 1 1 4 7 6 . 6 2 3

G roup-Project

Control

Semester 2 2 8 . 3 5 2 0 7 .361
Individual-Project Treated Semester 2 3 8 . 4 6 6 6 7 . 4 8 4 Individual-Project

Control Semester 2 2 8 . 2 8 6 2 6 .111

Table 7-10 Statistics for the percentage of design document reviewed

50-

I 40-

' 5 30-

g 20-

a
10-

'33
v
O 60-
» 50-

4 0 -
o
« 30-

2 0 -

1 0 -

T.
I
m
T

1
Semester 1

r-
Semester 2

Semester

Experimental
Type
I Treated -
I Control

Figure 7-10 Boxplot for the percentage of design document reviewed

The Boxplot depicts the range of
values for 'Percentage of design
document reviewed' metric for both
treated and control groups for
different project types and in
different semesters. The boxplot
indicates that the range of values and
median in all the groupings is higher
for control than for treated groups.

Chapter 7 Results 116

Percentage of Design Document Reviewed

Statistical significance analysis of mean difference between treated and control groups

'Operation en t'Variables]

2 x 2 independent measure
ANOVA

"Sffiul canee p^yalüe;

Ö.ooi
""Ö.686"

Experiment group-type
Semester

Percentage of Design Document Reviewed Group Projects

There is a main effect for experimenl group-type

The main effect for the semester is not significant

38.1

0.419 The main effect for the interaction is not significant

Signi l iS incc^yajw
0.004 There is a main effect for exgeriment_jroup-tyj)e 32.1

Conclusion There is a statistically significant difference between the treated and control groups in both individuai and group
^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ j i r o j e c f c ^ o r j j d s ^ n e t ^

Statistical significance analysis of the effect of project type on the experiment group-tvpes

2 x 2 independent measure
ANOVA

Experiment group-type
Project-type

Percentage of Design Document
Reviewed

^Significance J hu.
0.001

Group Projects
Individuai projects

There is a main effect for experiment group-type

0.011

"Ó.ÒÌ4

The main effect for the group-type is significant

The main effect for the interaction is significant

Conclusion There is a statistically significant difference between group and individuai projects in terms of the mean difference
between the treated and control groups for this metric. This indicates that the treatment (i.e. use of process patterns) was

^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ j t a ^ i s ^ i c d l v ^ n o r ^ f f e c ^ ^

0.343 0.001 There is a statistically significant positive corrélation Group Projects
0.321 0.002 Jjhe^ejsjnjtarisrioUJyjjig^^ Individuai Projects

Table 7-11 Statistical significance analysis for the percentage of design documents reviewed metric

fMetriclResukiSummarM
Percentage of Design Document Reviewed

The results (depicted in Table 7-10, Table 7-11 , and Figure 7-10) show that treated groups reviewed a higher
percentage of the design document than the control groups (for both group and individuai projects) which was
shown to be statistically significant. The results indicate that the use of process patterns had a positive effect on
the percentage of the design document reviewed. The results show that the design document review was
improved by a sensitivity margin of 3 8 . 1 % in group projects and 3 2 . 1 % in individuai projects. Based on thèse
results, it can therefore be deduced that the application of process patterns improves design reviews.

It has been further shown that the mean difference between the treated groups and control groups in group
projects, in terms of the percentage of reviewed design document, was significantly higher than in the individual
projects. This indicates that the employment of process patterns has been more effective on group projects than
on individual projects for this metric. It can therefore be deduced that process patterns are more effective on
group projects than individual projects in improving design reviews.

Chapter 7 Results 117

Project type Experimental Type Semester Mean N(no. of cases) Std. Deviation
G roup-Project Treated S e m e s t e r 1 6.13 47 2.393 G roup-Project Treated

S e m e s t e r 2 5.87 18 2.278

G roup-Project

Control S e m e s t e r 1 9.39 47 1.888

G roup-Project

Control

S e m e s t e r 2 9.76 20 2.451

Individual-Project Treated S e m e s t e r 2 7.30 66 2.556 Individual-Project
Control S e m e s t e r 2 9.46 62 2.148

Table 7-12 Statistics for the no. of methods per class

1

12.

5 "

5 -

o -

5

5

2.5 H

7 . 5 -

"D
O

f 1 5 -

I 2 . 5 -

1 0 -

7 . 5 -

5 -

2 . 5 -

Semes te r 1
1

S e m e s t e r 2

_ Experimental
3 Type
Q . _ _

<! H Trea ted

= M Control

o

•a
O
o c

Semester

The Boxplot depicts the range of values
for 'Method per Class ' metric for both
treated and control groups for different
project types and in different semesters.
The boxplot indicates that the range of
values and median in all the groupings is
higher for the control groups than for the
treated groups.

Figure 7-11 Boxplot for No. of Methods per Class

Chapter 7 Results 118

No. of Methods per Class (Methods per Class Ratio)

Statistical sienificance analvsis of mean différence beiween treated and control groups

[Indépendant tVariables] [DependentiVariable]

2 x 2 independent
measure A NO VA

Ex peri ment group-type
Semester

Methods per Class Ratio Group Projects

Significanee p^vaiuel
0007

0.789 "

n>êscriptiopj
There was a main effect for experiment group-type,

0.193

The main effect for the semester was not significane

The main effect for the interaction was not significant

Independent parinole

Independent Samples t-test Experiment group-type Methods per Class Ratio Individuai Projects

Conclusion

t P j ^ r i P U ô n Œ
There was a main effect for ex^eriment^roujvtyjje 20.3

There is a statistically significant différence between the treated and control groups in both individuai and group
^rojects^or^his^ne^ric^ni is^

Statistical sit-nificance analvsis of the effect of project type on the experiment group-types

Operation] llndependent'iyariables' Dépendent yV aria bici

2 x 2 independent measure
ANOVA

SifflifiaSceĵ v ì̂p^B
0.003

Methods per Class Ratio Experiment group-type
Project-type

There is a main effect for experiment group-type

Group Projects
Individuai projects

0.031

'0.013

The main effect for the group-type is significant

The main effect for the interaction is significant

Conclusion There is a statistically significant dìfference between group and individuai projects ìn terms of the mean difference
between the treated and control groups for this metric. This indicates that the treatment (i.e. use of process pattems) was
sta^is j ia i lb^nor^ffect^^ ^ ^ ^ ^ s t a ^ i s j i a m v j n o r ^ n e c u v ^

Corrélation Analvsis for the 'no, of ioginsJ_and_JhjsjiieiricJJ^

onXocf.-(rtiaiaa Signifia 11) j \ M W W 1 ' ' v " Y , ! " " " " i n p f f B M B Ì 11
0.009

• C o r r e l a t ion'O^f/ir)
0.421

rDescriptioril
There is a statistically significant positive corrélation

IProjéctltypel
Group Projects

0.311 0.010 There is a statisticallv^ignificant positive corrélation Jndividu^^ro|ects

Table 7-13 Statistical significance analysis for the ' N o . of methods per c lass ' metric

ÌMetriclRemtììSummary,
No. of M e t h o d s per Class (Methods per Class Ratio)

The results (depicted in Table 7-12, Table 7-13, and Figure 7-11) show that treated groups produced a lower

number of methods per class than the control groups for both group and individual projects, which was shown to

be statistically significant, Classes with lower number of methods are less complex and more maintainable and

reusable. The results show that the method per class ratio was improved by a sensitivity margin of 3 3 . 8 % in

group projects and 20.3% in individual projects. The results, therefore. indicate that the use of process patterns

has a significantly positive effect in improving the modularity and granularity of the design. Based on thèse

results, it can therefore be deduced that the application of process patterns improves the design modularity and

granularity.

It has been further shown that the difference between the treated and control groups in group projects, in terms of

the number of methods per class, was significantly higher than in the individual projects. This indicates that the

employment of process pattems has been more effective on group projects than on individual projects for this

metric. It can therefore be deduced that process pattems are more effective on group projects than individual

projects in improving the design modularity and granularity.

Chapter 7 Results 119

Project type Expérimental Type Semester Mean N (no. of cases) Std. Déviation
Group-Project Treated S e m e s t e r 1 83.91 47 7.967 Group-Project Treated

S e m e s t e r 2 81.72 18 7.094

Group-Project

Control S e m e s t e r 1 82.91 47 8.035

Group-Project

Control

S e m e s t e r 2 81.00 20 6.593

Individual-Project Trea ted S e m e s t e r 2 82.26 66 6.388 Individual-Project
Control S e m e s t e r 2 81.76 62 6.963

Table 7-14 Statistics for the percentage of defects fixed in the design phase

100-

95-

§, 90-

•£ 80-
•a
x 75-

C

« 70-
u

9
| j 10Q-

Ô 95-

" 90-j

g 85-

75-

70-
i

Semester 1 Semester 2

Semester

Expérimental
Type

Figure 7-12 Boxplot for the percentage of defects fixed in design phase

The boxplot depicts the range of values
and médian for the 'Percentage of defects
fixed in the design phase ' metric for both
treated and control groups in both types
of projects. The boxplot indîcates that
there is not a signiftcant différence in the
range of thèse values between treated and
control groups for either type of projects.

Chapter 7 Results 1 2 0

Percentage of Defects Fixed (Design phase)

Statistical significance analysis of mean difference between treated and conlrol groups

[Operation]

2 x 2 independen!
measure ANOVA

Experiment group-type
Semester

Percentage of defects fixed (Design phase) Group Projects

c Significane j ^ à l û e j
0.302

0.712

"0.603

0)èscîiptiônj

The main effect forexperiment group-type is not significan!

The main effect for the semester is not significan!
The main effect for the interaction is not significant

N/A
(No significan! difference between

treated and conlrol groups)

Independent Samples t-test Experiment group-type Percentage of defects fixed (Design phase) Individuai Projects

N/A
(No significan! difference between

treated and controijjrourjs)

Conclusion There is noi a statisfically significant difference between the treated and control groups in either individuai or group
^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ r o j e c t s j j o r ^ h i s j n e u i c ^

Staüstical significance analvsis of Ihe effect of project type on the experiment group-tvpes

Percentage of defects fixed
(Design phase)

Trie
There is a main effect for experiment group-type

0.543

"Ö.363

The main effect for the group-type is not significant

The main effect for the interaction is not significant

Conclusion There is not a statistically significant difference beiween group and individuai projects in terms of the mean difference
belween the treated and control groups for this metric. This indicates that treatment (i.e. use of process patterns) was not

^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ t a ^ i s ^ j o d l y j n o r e ^ Ï Ï i e c ^

Corrélation Analysis for the 'no. of logins' and 'this melric' for groupjtndjnth^vjdjj^^

0.113 0.130 There is not a satistically significant positive correlalion Group Projects
0.084 0.182 ^here^uioUnitmis^iaM Individuai Projects

T a b l e 7-15 Statistical significance analysis for the 'percentage of defects fixed' metric

iMèWiïResTMSumWîryi
P e r c e n t a g e of Defects F ixed (Des ign p h a s e)

The results (depicted in Table 7-14, Table 7-15, and Figure 7-12) show that there is not a statistically significant

mean difference between the treated and control groups for both group and individual projects in terms of the

percentage of defects fixed in the Design phase. Based on thèse results it can therefore be concluded that the

application of process pattems do not significantly increase the proportion of the defects fixed in the Design

phase.

It has been further shown that the difference between the treated groups and control in group projects in terms of

the percentage of defects fixed in the Design phase was not significantly différent to those in the individuai

projects. It can therefore be deduced that process pat tems are not more effective in group projects than individuai

projects for this metric.

Chapter 7 Results 121

Pro jec t t y p e Expe r imen ta l T y p e S e m e s t e r M e a n N (no . of c a s e s) S td . Devia t ion
G roup-Project Treated S e m e s t e r 1 7.04 47 1.503 G roup-Project Treated

S e m e s t e r 2 7.44 18 1.756

G roup-Project

Control S e m e s t e r 1 6.76 47 1.449

G roup-Project

Control

S e m e s t e r 2 7.15 20 1.309

Indivi dual-Project Treated S e m e s t e r 2 9.65 66 1.060 Indivi dual-Project
Control S e m e s t e r 2 8.98 62 0.864

Table 7-16 Statistics for the percentage of the Design phase time spent in testing

10.00-

a

4.00-

Experimental
Type ,

I Treated
I Control

S e m e s t e r 1 S e m e s t e r 2

Semester
Figure 7-13 Boxplot for percentage of Design phase time spent in testing

The boxplot depicts the range of values
for the 'Percentage of design t ime in
testing' metric for both treated and
control groups for different project types
and in different semesters. The boxplot
indicates that the range of values and
median in all the groupings is higher for
the treated groups than for control groups.

Chapter 7 Results 122

Percentage of Phase Time Spenl in Testing (Design phase)

Statistical significance analvsis of mean différence belween ireated and control groups

2 x 2 independent
measure ANOVA

Experiment group-type
Semester

Percentage of phase time spent in testing
(Design phase)

Group Projects

|Descri|&ôaf
The main e f fec t f o r the e x p e r i m e n t g r o u p - t y p e is not s ignificant

The m a i n e f fec t f o r the Semester is not signi f i can t

0.314 The main effect for the interaction is not significant

N/A
(No significant difference between

treated and control groups)

jDépeadentiVariablcl

Experiment group-type Percentage of phase time spent in testing
(Design phase)

There main effect for experiment group-type is not significant

Individuai Projects

SensiÜvity;MarginX%)
N/A

(No significant difference belween
treated and control_groups)

Conclusion There is not a statistically significant difference between the treated and control groups in either individuai or group
^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ j r o j e c t s j j o r j h i s j n e ^ ^

Statistical significance analvsis of the effect of project type on the experiment grpup-tvpes

Percentage of Phase Time Spent in
Testing (Design phase)

E&pnMoem|
The main effect for the experiment group-type is not significant

0.421

"Ö?31l"

The main effect for the group-type is not significant

The main effect for the interaction is not significant

Conclusion There is not a statistically significant difference between group and individuai projects in terms of the mean difference
between the treated and control groups for this metric. This indicates that treatment (i.e. use of process pattems) was not

^ ^ ^ ^ ^ ^ ^ ^ ^ ^ j t a ^ i s t i c a H y ^ n o ^ e f ^

0.120 0.203 Therejs not a statistically significant posjtive corrélation Group Projects_
0.091 0.190 T^ie^ejsjiotj^itau^s^ic^djvj^ Individuai Proiects

Table 7-17 Statistical significance analysis for the 'percen tage of Design phase t ime spent in test ing ' metric

fMetriciResultiSummary
Percentage of Phase T i m e Spent in Test ing (Design)

The results (depicted in Table 7-16, Table 7-17, and Figure 7-13) show that the percentage of the Design phase time

spent for testing was not significantly différent between the treated and control groups for both group and individuai projects.

Based on thèse results, it can be deduced that the application of process patterns do not significantly affect the

proportion of the Design phase time spent in testing.

It has been further shown that the difference between the treated groups and control in group projects in terms of

the percentage of the Design phase time spent in testing was not significantly différent to those in the individuai

projects. It can therefore be deduced that process pat tems are not more effective in group projects than individuai

projects for this metric.

7.6.3 Implementation Phase

In this section the resuit of the third development phase (i.e. Implementation) are presented. The following

metrics are analysed:

Chapter 7 Results 1 2 3

• Comment density

• Percentage of source code reviewed

• Percentage of defects fixed

• Defect density

• Productivity (Implementation phase)

• Productivity (Overall)

• Percentage of Implementation phase t ime spent in testing

Project type Expérimental Type Semester Mean N (no. of cases) Std. Deviation
Group-Project Trea ted S e m e s t e r 1 7 . 5 7 47 1 .802 Group-Project Trea ted

S e m e s t e r 2 6 .11 18 1 .745

Group-Project

Control S e m e s t e r 1 4 . 5 9 47 1 .233

Group-Project

Control

S e m e s t e r 2 4 . 3 5 20 0 . 9 3 9

Individual-Project Treated S e m e s t e r 2 6 . 8 4 66 1.501 Individual-Project

Control S e m e s t e r 2 4 . 8 4 62 1 .414

• Table 7-18 Statistics for the Comment Density

Expérimental
Type

I Treated

H Control

= 10.00-

I 8.00.-

£
5 6.00-
u

4.00-

2.00-

1 — — - r ~ ^ , .

HHBBSE -mm

1
Semes te r 1

Semester 2

Semester

Figure 7-14 Boxplot for Comment Density (Com/lOOLOC)

The boxplot depicts the range of values
and médian for the 'comment density '
metric for both treated and control groups
in both types of projects. It shows that the
range of values is higher for treated than
for control groups for both types of
projects.

Chapter 7 Results 124

Comment Density

Stafistical si Eni fi cari ce analvsis of mean différence between irealed and control erouos

• B l n (t p p e n d c n t v V » r i a h k ^ a ^ | B B i H r w - p e n d e n l V V û r i a b) (, 9 B M a | M V n H H P r n j e c t ^ a B H H B

2 x 2 independent
measure ANOVA

Experiment group-type Comment Density Group Projects
Semester

HVSi&nitlcance p^valuel
0.000

^^^^^
There is a main effect for experiment group-type 48.8

0.883 The main effect for the semester is not significali!

0.763 The main effect for the interaction is not significant

B ^ ^ H O b e n i l i ô n f m H j^BInrffiÏCTclënttVâriableBI | ̂ ^ H M i 1) Â n ^ n r i ^ t t V R l r % h I ë i a B H M M j •

Independent Samples t-test Experiment group-type Comment Density Individuai Projects

f^BSigmhcance*p^yaltrê^
0.001

• H l ^ ^ B H a H ^ ^ ^ H r) p s r n n t i ô i ï ^ K i l H i ^ ^ H ^ ^ ^ ^ ^ H H ^ B S < > n < < i t i v i t v . n i H n T] n < % l ^ ^ H
There is a main effect for exjKrimenUjrourMype 37.6

Conclusion There is a statistically significant différence between the treated and control groups in both individuai and group
projects for this metric. This indìcates that the treatment (i.e. use of process pattems) was statistically effective.

Statisiical sienificance analvsis of the effect of oroiect tvoe on the exoeriment eroun-tvoes

l ^ ^ M M O p e r a t i n n g ^ g j r a | M i n d e ^ n d e n t , V u 7 i a b l e s l ^ M H M

2 x 2 independent measure Experiment group-type Comment Density Group Projects
ANOVA Project-type Individuai projects

Sipjuncance, p-.valuel
0.023 There is a main effect for experiment group-type

0.031 The main effect for the group-type is signi ficanl

0.016 The main effect for the interaction is significant

Conclusion There is a statistically significarli différence between group and individuai projects in lerms of the mean différence
between the treated and control groups for this metric. This indicates that the treatment (i.e. use of process pattems) was
statistically more effective on group projects than on individuai projects for this metric.

Corrélation Analvsis for the 'no. of logins' and 'this metric' for erouD and individuai projects
iHCôrrelâtion .Coef/ltr)̂ ff K Sienificance (/?)*! • • P r n t A t v i w I H B

0.481 0.008 There is a statistically significant positive corrélation Group Projects
0.376 0.009 There is a statistically significant positive corrélation Individuai Projects

Table 7-19 Statistical significance analysis for the ' C o m m e n t densi ty ' metric

mmmmmmWÊÊËËÊmWËÊtÊÊËmïïMmWÊMêTr^RêTû'tâ
C o m m e n t Density

The results (depicted in Table 7-18, Table 7-19, and Figure 7-14) show that the comment density value was

higher for treated groups than control groups for both group and individuai projects, which is shown to be

statistically significant. The results show that the comment density was improved by a sensitivity margin of

4 8 . 8 % in group projects and 37 .6% in individuai projects. The results, therefore, indicate that the use of process

pat tems has a significantly positive effect in increasing the comment density. Based on thèse results, it can

therefore be deduced that the application of process pattems improves comment density in the produced source

code.

It has been further shown that the mean différence between the treated groups and control in the group projects,

in terms of the comment density, was statistically significantly higher than in the individuai projects. This

indicates that the employment of process pat tems has been more effective on group projects than on individuai

projects for this metric. It can therefore be deduced that process pat tems are more effective in group projects

than in individuai projects in improving comment density.

Chapter 7 Results 125

Project type Expérimental Type Semester Mean N (no. of cases) Std. Déviation
Group-Project Trea ted S e m e s t e r 1 1 6 . 1 5 47 3 . 1 6 9 Group-Project Trea ted

S e m e s t e r 2 1 5 . 7 2 18 2 . 6 7 4

Group-Project

Control S e m e s t e r 1 1 1 . 2 4 47 1 .982

Group-Project

Control

S e m e s t e r 2 9 . 8 2 20 2 . 0 7 4

Individuai-Project Trea ted S e m e s t e r 2 1 3 . 5 1 66 2 .381 Individuai-Project

Control S e m e s t e r 2 9 . 2 8 62 2 . 0 8 5

T a b l e 7-20 Statistics for the percentage of source code reviewed

10.00-

5 . 0 0 -
1

Semester 1

Expérimental
Type- '

j Treated
Control

Semes te r 2

Semester
F i g u r e 7-15 Boxplot for percentage of source code reviewed

The boxplot depicts the range of values
and médian for the 'percentage of code
reviewed' metric for both treated and
control groups in both types of projects. It
shows that the range of values is higher
for the treated groups than for the control
groups for both types of projects.

¿ 3

Chapter 7 Results 1 2 6

Percentage of Source Code Reviewed

Statistical sienificance analvsis of mean différence between treated and control erouDS

2 x 2 independent
measure ANOVA

Experiment group-type Percentage of Source Code Reviewed Group Projects
Semester

^ S Ì p B n a ' B i l w Duscriptiiin St i&urirv, Margini %)HP
0.002 There is a main effect for experiment group-type 47.5

0.183 The main effect for the semester is not significant

0.323 The main effect for the interaction is noi significant

F ^ a ^ y p e r ä t i o ü ^ l j g

Independent Samples t-test Experiment group-type Percentage of Source Code Reviewed Individuai Projects

' ^ ^ S i ^ j f i c t m c g ^ y a l i t t ^ D.-srrinli.wi ' ' " ' S i ifiitfvknMflnfaT (« I M I »
0.000 There is a main effect for expriment group-type 41.9

Conclusion There is a statistically significant différence between the treated and control groups in both individuai and group
projects for this metric. This indicates that the treatment (i.e. use of process pattems) was statistically effective.

Statistical sienificance analvsis of the effect of Droiect tvt>e on the experiment eroun-tvres

2 x 2 independent measure
ANOVA

iniSË SieDifirahce'p?vi il m

Experiment group-type Percentage of Source Code Reviewed Group Projects
Project-type Individuai projects

0.013 There is a main effect for experiment group-type

0.02! The main effect for the group-type is significant

0.012 The main effect for the interaction is significant

Conclusion There is a statistically significant difference between group and individuai projects in terms of the mean difference
between the treated and control groups for this metric. This indicates that the treatment (i.e. use of process pattems) was
_statistically more effective onj^ujj j j rojects than on individua^projects for this metric.

Correlatìon Analvsis for the 'no. of logins' and 'this metric' for group and individuai proiec s

IConretetiònCóef^Mi
0.289 0.021 .T̂ £rcJ?„ft.sB*$?fft1!y sign i fi cant pos i ti ve corre I at io n Group Projects
0.321 0.003 TJier̂ ^nìta îsriauJyjjigĵ ^ Jndividjtan̂ rojects

Table 7-21 Statistical significance analysis for the 'percentage of source code reviewed' metric

\ fetìic RèsuU Summary |
Percentage of source code reviewed

The results (depicted in Table 7-20, Table 7-21 , and Figure 7-15) show that treated groups reviewed a higher
percentage of the source code than the control groups in both group and individuai projects, which was shown to
be statistically significant. The results show that code review was improved by a sensitivity margin of 4 7 . 5 % in
group projects and 41 .9% in individuai projects. The higher the percentage of the source code reviewed the
higher the likelihood of detecting and correcting any defects. The results, therefore, indicate that the use of
process patterns has a significant positive effect in increasing the percentage of source code reviewed. Based on
thèse results, it can therefore be deduced that the application of process patterns improves code reviews.

It has been further shown that the mean difference between the treated groups and control in the group projects,
in terms of the percentage of reviewed source code, was statistically s igni f icante higher than in the individuai
projects. This indicates that the employment of process patterns has been more effective on group projects than
on individuai projects for this metric. It can therefore be deduced that process patterns are more effective in
group projects than in individuai projects in improving code review.

Chapter 7 Results 127

Project type Expérimental Type Semester Mean N(no. of cases) Std. Deviation
Group-Project Trea ted S e m e s t e r 1 2.83 47 1.168 Group-Project Trea ted

S e m e s t e r 2 3.58 18 1.294

Group-Project

Control S e m e s t e r 1 6.10 47 1.708

Group-Project

Control

S e m e s t e r 2 5.44 20 1.756

Individual-Project Treated S e m e s t e r 2 3.36 66 1.381 Individual-Project
Control S e m e s t e r 2 5.72 62 1.919

Table 7-22 Statistics for the defect density in the source code

8 -

2 2 -c

a o
a.-1

^ 8 - t e
>.
M
C
0)
T3

y — y —

• i

J—Y"-—

- M — - JL
*

. . . i • I
" T T . : : .

. S e m e s t e r 1 S e m e s t e r 2

Semester

Figure 7-16 Boxplot for defect density

_ Expérimental
3 Type

< §1 Treated

g (B | Control

o

5

The boxplot depicts the range of values
and median for the 'defect densi ty ' in the
source code for both treated and control
groups in both types of projects. It shows
that the range of values is higher for the
treated groups than for the control groups
for both types of projects.

Chapter 7 Results 128

Defect Density

Statistical si&nificance analvsis of mean différence between treated and control erouos

2 x 2 independent
measure ANOVA

Experiment group-type Defect Density
Semester

Group Projects

1 Significante p~ value- c Description s 1 * : - ^ ^ . c - SenslÜvitv Marein (%>
0.002 There is a main effect for experiment group-type 39.2

0.781 The main effect for the semester is not significant

0.293 The main effect for the interaction is not significant

Projet ts

Independent Samples
t-test

Experiment group-type Defect Density Individuai Projects

SUirnifIcance p-value - ~ ' ä* Describtîuav • . : SensirivitvMarrin(%) a;"t-~
0.000 There is a main effect for experiment group-type 37.3

Conclusion There is a statistically significant différence between the treated and control groups in both individuai and group
projects for this metric. This indicates that the treatment (i.e. use of process patients) was statistically effective.

Siatistical sienificance analvsis of the effect of Droiect tvre on the experiment grouD-tvDes

j g g j i j t i ï r h

2 x 2 independent measure Experiment group-type Defect Density Group Projects
ANOVA Project-type Individuai projects

"-. * Sunufieance p-vaìue?
0.103 There is not a main effect for experiment group-type

0.553 The main effect for the group-type is not significant

0.363 The main effect for the interaction is not significant

Conclusion There is not a statistically significant différence between group and individuai projects in terms of the mean différence
between the treated and control groups for this metric. This indicates that treatment (i.e. use of process pattems) was not
statistically more effective on either group or individuai projects for this metric.

Corrélation Analvsis for the 'no. of loeins* and 'this metric' for erouo and individuai Droiects
/ .S inni f iomcelPi lit Kcriptiiin

0.294 0.036 There is a statistically significant positive corrélation Group Projects

0.327 0.012 There is a statistically significant positive corrélation Individuai Projects

Table 7-23 Statistical signiftcance analysis for the "defect density' metric

Defect density

The results (depicted in Table 7-22, Table 7-23, and Figure 7-16) show that treated groups had a lower defect

density in the source code than the control groups for both group and individuai projects which was shown to be

statistically significant. The lower the defect density, the higher the quality of code. The results show that defect

density was improved by a sensitivity margin of 39 .2% in group projects and 3 7 . 3 % in individuai projects. The

results, therefore, indicate that the use of process patterns has a significant positive effect in lowering the defect

density in the source code. Based on thèse results, it can therefore be deduced that the application of process

pat tems lowers the defect density in the source code.

It has been further shown that the différence between the treated groups and control in group projects in terms of

the defect density was not significantly différent to those in the individuai projects. It can therefore be deduced

that process pattems are not more effective on group projects than individuai projects for this metric.

Chapter 7 Results 1 2 9

Project type Expérimental Type Semester Mean N (no. of cases) Std. Déviation
Group-Project Treated S e m es ter 1 8 . 9 8 47 1 .319 Group-Project Treated

S e m e s t e r 2 9 . 0 7 18 0 . 9 1 4

Group-Project

Control S e m e s t e r 1 6 . 6 1 47 0 . 9 0 4

Group-Project

Control

S e m e s t e r 2 6 . 6 3 20 1 .194

Individuai-Project Trea ted S e m e s t e r 2 7 . 5 5 66 1 .274 Individuai-Project
Control S e m e s t e r 2 5 . 9 9 62 0 . 9 7 4

Table 7-24 Statistics for productivity in the Implementation phase

o
3

•o
o

1 2 . 0 0 - •

1 0 . 0 0 -
T

1 0 . 0 0 - ZIO
8 . 0 0 -8 . 0 0 -

6 . 0 0 -

4 . 0 0 -

Expérimental
Type

Trea ted
= f H Control

S e m e s t e r 1 S e m e s t e r 2

Semester
Figure 7-17 Boxplot for productivity in the Implementation phase

The boxplot depicts the range of
values and médian for the
productivity in the Implementat ion
phase, for both treated and control
groups in both types of projects. It
shows that the range of values is
higher for the treated groups than for
the control groups for both types of
projects.

Chapter 7 Results 130

Implementation Productìvity

Statistical sienificance analvsis of mean différence between treated and control eroups

{tX^ARafe^ËdentA'ariâblc?
2 x 2 independent
measure A NOVA

Experiment group-type
Semester

Productivité (Implementation phase) Group Projects

|r>esc^pti.0BL
There is a main effect for experiment group-type
The main effect for the semester is not significant

0.122 The main effect for the interaction is not significant

^Opéràtionj IProJéctsj
Independent Samples

t-test
Experiment group-type Productivity (Implementation phase) Individuai Projects

There is a main effect for experiment group-type

Conclusion There is a statistically significant différence between the treated and contrai groups in both individual and group
^ ^ ^ _ ^ ^ ^ ^ ^ _ ^ ^ > r o j e c t s J o r j h i s j n ^

Statistical sienificance analvsis of the effect of project type on the experiment eroup-tvpes

Experiment group-type
Project-type

Productivity (Implementation phase) Group Projects
Individual projects

There is a main effect for experiment group-type

The main effect for the group-type is significant 0.031

"0.019 The main effect for the interaction is significant

Conclusion There is a statistically significant différence between group and individual projects in terms o f the mean différence
between the treated and control groups for this metric. This indicates that the treatment (i.e. use of process patterns) was
statistically m o r e effective o n j g r o u D j i r o i e c t s than on individuajjirojects for this metric.

Corrélation Analvsis for the 'no. of logins' and 'this metric' fo r g roup and individual projects

0.291 0.013 There is a statistically significant positive corrélation Group Projects
0.402 0.000 ^he^e^sjnjtatisriadjvjjign-iï^ Individual Projects

Table 7-25 Statistical significance analysis for the 'Implementation productivity' metric

I m p l e m e n t a t i o n P r o d u c t i v i t y

The results (depicted in Table 7-24, Table 7-25, and Figure 7-17) showed that productivity in the
Implementation phase was higher in treated groups that in control groups in both group and individual projects,
which was shown to be statistically significant. For the group projects, the productivity in the Implementat ion
phase was found to be 9.0 LOC per hour (72 LOC per day) for treated groups and 6.6 L O C per hour (52.8 L O C
per day) in the case of control groups. For the individual projects, the productivity in the Implementation phase
was found to be 7.5 LOC per hour (60 LOC per day) for the treated groups and 6.0 L O C per hour (48 L O C per
day) for the control groups. The results show that the implementation productivity was improved by a sensitivity
margin of 3 3 . 3 % in group projects and 2 3 . 8 % in individual projects. The results, therefore, indicate that the use
of process pat tems has a significant positive effect in increasing productivity in the Implementation phase. Based
on thèse results, it can therefore be deduced that the application of process patterns improves implementation
productivity.

It has been further shown that the mean différence between the treated groups and control in the group projects,
in terms of productivity, was statistically significantly higher than in the individual projects. This indicates that

the employment pf process patterns has been more effective on group projects than on individual projects for this

metric. It can therefore be deduced that process patterns are more effective in group projects than in individuai
projects in increasing productivity in the Implementation phase.

Chapter 7 Results 131

Project type Expérimental Type Semester Mean N (no. of cases) Std. Deviation
Group-Project Trea ted S e m e s t e r 1 3 . 5 2 47 0 . 5 2 2 Group-Project Trea ted

S e m e s t e r 2 3 . 4 4 18 0 . 3 5 8

Group-Project

Control S e m e s t e r 1 2 . 7 0 47 0 . 3 6 1

Group-Project

Control

S e m e s t e r 2 2 . 6 5 20 0 . 4 7 7

Individual-Project Trea ted S e m e s t e r 2 2 . 9 1 66 0 . 5 0 0 Individual-Project
Control S e m e s t e r 2 2 . 4 0 62 0 . 4 0 2

Table 7-26 Statistics for the overall productivity

The boxplot depicts the range of
values and median for the overall
productivity metric for both treated
and control groups in both types of
projects. It shows that the range of
values is higher for the treated groups
than for the control groups for both
types of projects.

1 ,

S e m e s t e r 1 S e m e s t e r 2

Semester
Figure 7-18 Boxplot for overall productivity

Chapter 7 Results 132

Overall Productivity

Statistical significance analvsis of mean différence between treated and control groups

2 x 2 independent
measure ANOVA

Experiment group-type
Semester

Overall Productivity Group Projects

p D e s c n ^ S n l
There is a main effect for experiment group-type

0.328

"Ô.Ï53

The main effect for the semester is not signifïcant

The main effect for the interaction is not signifïcant

Independent Samples t-test Experiment group-type Overall Productivity Individuai Projects

criptioiïj
There is a main effect for experiment group-type

Conclusion There is a statistically signifïcant différence between the treated and control groups in both individuai and group
^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ j i r o j e c t s J o r j M s ^ n M r ^ ^

Statistical significance analvsis of the effect of project type on the experiment group-types

2 x 2 independent measure
ANOVA

Experiment group-type
Project-type

0.015

Overall Productivity

There is a main effect for experiment group-type

Group Projects
Individuai projects

0.22

0 .014

The main effect for the group-type is signifïcant

The main effect for the interaction is signifïcant

Conclusion There is a statistically signifïcant différence between group and individuai projects in terms of the mean différence
between the treated and control groups for this metric. This indicates that the treatment (i.e. use of process pattems) was
statistically more effective onjjroiyjprojects than on_mdiyidua^projects for this metric.

Corrélation Analysis for..the 'no. of logins' and 'this metric' for group and individuai projects

0.325 0.010 There is a statistically signifïcant positive corrélation Group Projects
0.296 0.028 There is a statisticallv^ignificant positive corrélation Individuai Proi ijecls

Table 7-27 Statistical significance analysis for the 'overall productivity' metric

Overall Productivity

The results (depicted in Table 7-26, Table 7-27, and Figure 7-18) showed that the overall productivity (i.e.
complete development project) was higher in treated groups that in control groups in both group and individuai
projects, which was shown to be statistically signifïcant. For the group projects, the overall productivity (i.e.
complete development project) was found to be 3.5 LOC per hour (28 per day) for treated groups and 2.7 L O C
per hour (21.6 LOC per day) in the case of control groups. For the individuai projects, the overall productivity
was found to be 2.9 LOC per hour (23.2 LOC per day) for treated groups and 2.4 LOC per hour (19.2 LOC per
day) for the control croups. The results show that overall productivity was improved by a sensitivity margin of
2 7 . 1 % in group projects and 19.2% in individuai projects. The results, therefore, indicate that the use of process
patterns has a signifïcant positive effect in increasing the overall productivity. Based on thèse results, it can
therefore be deduced that the application of process patterns improves productivity.

It has been further shown that the mean différence between the treated groups and control in the group projects,
in terms of the overall productivity, was statistically significantly higher than in the individual projects. This
indicates that the employment of process pat tems has been more effective on group projects than on individual
projects for this metric. It can therefore be deduced that process pattems are more effective in group projects
than in individual projects in increasing productivity.

Chapier 7 Results 133

Project type Experimental Type Semester Mean N {no. of cases) Std. Déviation
Group-Project Treated Semester i 94.75 47 2.504 Group-Project Treated

Semester 2 95.25 18 3.109

Group-Project

Control Semester 1 93.78 47 3.002

Group-Project

Control

Semester 2 95.02 20 2.027

Individual-Project Treated Semester 2 94.88 66 3.507 Individual-Project
Control Semester 2 95.55 62 2.538

Table 7-28 Statistics for the percentage of defects fixed in the Implementat ion phase

Q O

*ï
£1
a a. o>E ta —
c
tu
a.

100

98

96

94

92

90

88

100

98

96

94

92

90

88

I B
* l

1 I •1 H a s
1 1 l

_ Experimental
= Type
<; [§] Treated

= @ Control

•o
CD

3

Semester 1 Semester 2

Semester

O
3
c
•o

"b
3

The boxplot depicts the range of values
and median for the 'percentage of defects
fixed' metric in the Implementation phase
for both treated and control groups in
both types of projects. It shows that there
is not a significant différence between the
treated and control groups in the range of
values for the group and individual
projects.

Figure 7-19 Boxplot for the percentage of defects fixed in the

Implementat ion phase

Chapter 7 Results 1 3 4

Percentage of defects fîxed (Implementation phase)

Statistical sJEnificance analysis of mean différence between treated and control eroups

2x2 independent
measure A NO VA

Experiment group-type
Semester

Percentage of defects fixed (Implementation
phase)

The main effect for experiment group-type is not significant

The main effect for the semester is not significant

0 7 3 0 The main effect for the interaction is noi significant

Group Projects

N/A

(No significant différence
between treated and control

groups)

Independent Samples t-test Experiment group-type Percentage of defects fixed (Implementation Individuai Projects
phase)

The main effect for experiment group-type is not significant N/A
(No significant différence
between treated and control

¿12!'E"J

Conclusion There is not a statistically significant différence between the treated and control groups in either individual or group
^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ j i r o j e c t ^ o r j h i s ^ ^

Statistica! significance analvsis of the effect of project type on the experiment group-tvpes

2 x 2 independent measure
ANOVA

0.122

Experiment group-type
Project-type

Percentage of defects fixed
(Implementation phase)

There is a main effect for experiment group-type

0.582

"Ó.3Ì3

The main effect for the group-type is not significant

The main effect for the interaction is not significant

Conclusion This indicates that treatment (i.e. application of process pattems) was not statistically more effective on group projects
than on individualjirojects. _

Corrélation Analysis for, (he 'no. of logjns' and "this metric' for group and individual projects

0.095
0.086

0.191
0.210

There is not a statistically significant positive corrélation
There is not a statisticallv^hinificant positive corrélation rjosi

Group Projects
Individual Proiects

Table 7-29 Statistical significance analysis for the 'percentage of defects fixed' metric

fltöetri$ResütifSummaryTi
Percentage of defects fîxed (Implementat ion phase)

The results (depicted in Table 7-28, Table 7-29, and Figure 7-19) show that there is not a statistically significant

mean différence between the treated and control groups for both group and individuai projects in terms of the

percentage of defects fixed in the Implementation phase. Based on the results it can therefore be concluded that

the application of process patterns does not improve the quality of the Implementation phase in terms of the

percentage of defects fixed in the Implementation phase.

It has been further shown that the différence between the treated groups and control in group projects in terms of

the percentage of defects fixed in the Implementation was not significantly différent to those in the individual

projects. It can therefore be deduced that process patterns are not more effective in group projects that individual

projects for this metric.

Chapter 7 Results Ì35

Project type Expérimental Type S e m e s t e r Mean N (no . of c a s e s) Std. Déviation
Group-Project Treated Sem ester 1 13.17 47 3.571 Group-Project Treated

Semester 2 15.56 18 2.935

Group-Project

Control Semester 1 8.89 47 2.838

Group-Project

Control

Semester 2 10.60 20 2.010

Individuai-Project Treated Semester 2 15.85 66 3.119 Individuai-Project
Control Semester 2 11.05 62 1.683

Table 7-30 Statistics for the percentage of Implementation phase lime spent in testing

2 5 -

S 20-<t>
t—

•S 15-
«
S
P 10-
s
e

I *
(0

Ì 2 5 H

Expérimental
9

 T y p e

3 9 Treated
€ GU Control
•b
o

a
•o
5 .

a

Semester 1 Semester 2

Semester

Figure 7-20 Boxplot for percentage of implementation time spent in testing

The boxplot depicts the range of
values for the metric 'Percentage
of implementation time spent in
testing' for both treated and
control groups for différent
project types and in différent
semesters. The Boxplot indicates
that the range of values and
médian in ali the groupings is
higher for the treated groups
than for the control groups.

Chapter 7 Results 1 3 6

Percentage of Phase Time Spent in Testing (Implementation phase)

Statistical significance analvsis of mean différence between treated and control erouns

\ mmmmmm
2 x 2 independent
measure ANOVA

Experiment group-type Percentage of phase time spent in testing
Seinester (Implementation phase)

Group Projects

0.041

"Ô.743

I Deserà ptionl

There is a main effect for experiment group-type

The main effect for the semester is not significant

0.345

Independent Samples
t-test

The main effect for the interaction is not significant

Experimentgroup-type

[Sig»'fict<nçe p . vaille

0.022 There jsa main effect for experi menl^roup-ty_rje

Percentage of phase time spent in testing
(Implementation phase)

;Dëscnption1

Individual Projects

38.4

Conclusion There is a statistically significant différence between the treated and control groups in both individual and group
^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ j > r o j e c t ^ o n M s j n e r à

Statistical significance analvsis of the effect of project type on the experiment group-types

2 x 2 independent measure
ANOVA

Experiment group-type
Project-type

There is a main effect for experiment group-type

0.020

'u .03Ï

The main effect for the group-type is significant

The main effect for the interaction is significant

Conclusion There is a statistically significant différence between group and individual projects in terms of the mean différence
between the treated and control groups for this metric. This indicates that the treatment (i.e. use of process pattems) was

^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ j t a ^ j s j j a U J y j n o r e ^ e ^ f c

Corrélation Analysis for the 'no. of loeins' and 'this metric' for group and individuai projects

mcommmeöeLmw I t S & n a T c a n c i ^ i Ä
0.074 0.194 There is not a statistically significant positive corrélation Group Projects

0.103 0.096 There is not a statistically significant positive corrélation Individual Projects

Table 7-31 Results of significance analysis for the 'percentage of phase time spent in testing' metric

Percentage of Phase time Spent in Testing (Implementation phase)

The results (depicted in Table 7-30, Table 7 -31 , and Figure 7-20) show that there is a statistically significant

différence between the treated and control groups for both project types <i.e. group and individual) in the

percentage of the development t ime spent in the Implementat ion phase. The results show that the percentage of

phase t ime spent in implementation was improved by a sensitivity margin of 4 1 . 2 % in group projects and 3 8 . 2 %

in individual projects. The results, therefore, indicate that the use of process pattems has a significant positive

effect in increasing the percentage of phase t ime spent in tests. Based on thèse results, it can therefore be

deduced that the application of process pat tems improves the proportion of phase time spent in tests

It has been further shown that the statistically significant différence between the treated groups and control in

group projects, in ternis of the percentage of the Implementation phase time spent for testing, was higher than in the

individual projects. This indicates that the employment of process pattems has been more effective on group

projects than on individual projects for this metric. It can therefore be deduced that process pattems are more

effective in group projects than in individual projects for this metric.

7.6.4 Delivery Phase

In this section the resuit of the final development phase (i.e. Delivery) are presented. The following metrics are

analysed:

Chapter 7 Results 137

• Test Case Density
• Percentage of defects fixed
• Percentage of Delivery phase time spent in testing

Project type Expérimental Type Semester Mean N (no. of cases) Std. Deviation
Group-Project Treated S e m e s t e r 1 0.96 47 0.281 Group-Project Treated

S e m e s t e r 2 0.98 18 0.236

Group-Project

Control S e m e s t e r 1 0.83 47 0.244

Group-Project

Control

S e m e s t e r 2 0.77 20 0.161

Individual-Project Trea ted S e m e s t e r 2 1.05 66 0.288 Individual-Project
Control S e m e s t e r 2 0.92 62 0.185

Table 7-32 Statistics for test case density in the Delivery phase

S"

1 . 4 0 -

1 . 2 0 -

1 . 0 0 -

0 . 8 0 -

0 . 6 0 -

0 . 4 0 -

1 . 4 0 -

1.20

1.00

0.80-1
0.60

0.40
§;5

— i —
Semes te r 1

I
Semes te r 2

Semester

Expérimental
Type

S Trea ted

3
Q .
<"

c H Control

O
CD'
O "O

CD

The boxplot depicts the range of values
for the metric 'Test Case Density ' for
both treated and control groups for
différent project types and in différent
S e m e s t e r s . The boxplot indicates that the
median in all the groupings is higher for
the treated groups than for the control
groups.

Figure 7-21 Boxplot for test case density

Chapter 7 Results 138

Test Case Density

Statistical sienificance analvsis of mean différence between treated and control S T O U D S

• ', Opération ^ - Independent V a r i a b l e s - _ | % .y- Dépendent Variable- ; j r Projects

2x2 independent
measure ANOVA

Experiment group-type Test Case Density
Semester

Group Projects

Significance p-value .Description -' . ~ Sensitivitv marcin (%) •
0.011 There is a main effect for experiment group-type 19.4

0.713 The main effect for the semester is not significant

0.319 The main effect fo r the interaction is not significant

^P_IndepéDdent,VàriabIeVa.t^ W^^^^f^epm^A^a^^i^^^. f &f%Projecte@;|i;*.
Independent Samples

t-test
Experiment group-type Test Case Density Individual Projects

• : Significance p-value Descriottoa. Sensitivitv murata 1%)
0.020 There is a main effect for experiment group-type 13.0

Conclusion There is a statistically significant différence between the treated and control groups in botb individual and group
projects for this metric. This indicates that the treatment (i.e. use of process pattems) was statistically effective.

Statistical sienificance analvsis of the effect of oroiect tvoe on the experiment erouD-tvoes

- j~^i||E Operariocit^g^! ; J: ; .̂ Independent Variante^ '•; ^^Dèp«ad^0àïïw!Msg40-
4 P r o j é c t s V , f ^ ^ . -

2 x 2 independent measure Experiment group-type Test Case Density
ANOVA Project-type

Group Projects
Individuai projects

" Sienificance p-value Descrintion
0.013 There is'a main effect for experiment group-type
0.021 The main effect fo r the group-type is significant

0.010 The main effect for the interaction is significant

Conclusion There is a statistically significant différence between group and individual projects in terni
between the treated and control groups for this metric. This indicates that the treatment (i.e. use
statisticaNv more effective on^grouDj>ro|ects than on individualjirojects for this metric.

Corrélation Analvsis for the 'no. of loeins' and 'this metric' for erouD and individual Droiec

of the mean différence
of process pattems) was

SS
'•h Corrélation'CoetMx\m, ̂SÌ2nifiuincc</>)r.: J B f c Project tvóeia&feS

0.391 0.009 There is a statistically significant positive corrélation Group Projects
0.412 0.001 There is a statistically significant positive corrélation Individual Projects

Table 7-33 Statistical significance analysis for the 'test case densi ty ' metric

[.Y* 1 Metric ResuitSûmmivyi - ̂ * • ' f ,
Test Case density (Del ivery phase)

The results (depicted in Table 7-32, Table 7-33, and Figure 7-21) show that the test case density was higher for

the treated groups than the control groups in both group and individual projects, which were shown to be

statistically significant. The results show that the test case density was improved by a sensitivity margin of

19.4% in group projects and 13.0% in individual projects. The results, therefore, indicate that the use of process

pat tems has a significant positive effect in increasing the test case density. Based on thèse results, it can

therefore be deduced that the application of process pa t tems improves the test case density.

It has been further shown that the mean différence between the treated groups and control in the group projects,

in terms of the test case density, was statistically significantly higher than in the individual projects. This

indicates that the employment of process pat tems has been more effective on group projects than on individual

projects for this metric. It can therefore be deduced that process pattems are more effective in group projects

than in individual projects in improving test case density.

Chapter 7 Results 139

Projec t t y p e Expé r imen ta l T y p e S e m e s t e r Mean N (no . of c a s e s) S t d . Dévia t ion
Group-Project Trea ted S e m e s t e r 1 9 3 . 2 3 47 3 . 5 7 7 Group-Project Trea ted

S e m e s t e r 2 8 9 . 9 2 18 4 . 0 0 0

Group-Project

Control S e m e s t e r 1 8 0 . 4 2 47 5 . 8 8 9

Group-Project

Control

S e m e s t e r 2 8 2 . 5 3 20 4 . 3 9 4

Individuai-Project Trea ted S e m e s t e r 2 9 4 . 6 1 66 2 . 5 0 5 Individuai-Project
Control S e m e s t e r 2 8 6 . 3 1 62 2 . 3 2 7

Table 7-34 Statistics for the percentage of defects fixed in the Delivery phase

1 0 0 . 0 0 -

9 5 . 0 0 -

I' 9 0 . 0 0 -

^ 8 5 . 0 0 -

.= 3 0 . 0 0 -

1 7 5 . 0 0 -

« 7 0 . 0 0 -

% 100.00-

•S 95.00-

S 90.00-

1. 8 5 . 0 0 -
u
« 80.00-CL

7 5 . 0 0 - -

7 0 : 0 0 -

Experimental
Type

Trea ted
Control

S e m e s t e r 1 S e m e s t e r 2

Semester
Figure 7-22 Boxplot for percentage of defects fixed in the Delivery phase

The boxplot depicts the range of values
for the metric 'Percentage of defects
fixed' in the Delivery phase for both
treated and control groups for différent
project types and in différent semesters.
The boxplot indicates that the range of
value and médian in ali the groupings is
higher for the treated than for the control
groups.

Chapter 7 Results 1 4 0

Percentage of Defects Fixed (Delivery phase)

Statistical significarne analvsis of mean différence between ireated and control groups

2 x 2 independent
measure ANOVA

0.022

"0.7*93

Experiment group-type
Semester

Pereentage of defects fixed

[r^mpüopj
There is a main effect for experiment group-type

Group Projetts

11.5

0.249

The main effect for the semester is not significant

The main effect for the interaction is not significant

0.030 There is a main effect for exj jer iment^roup^yj^
Conclusion There is a statistically significant différence between the treated and control groups in both individual and group
^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ j j r o j e c j s f o r j i n ^

Statistical significance analvsis of the effect of project type on the experiment group-tvpes

K)perauön|
2 x 2 independent measure

ANOVA

!sFf~

Experiment group-type
Project-type

Pereentage of defects fixed

The main effect for experiment group-type is not significant

0.S73

Ö.3Ö3"

The main effect for the group-type is not significant

The main effect for the interaction is not significant

Conclusion This indicates that treatment (i.e. application of process patterns) was not statistically more effective on group projects
^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ h a n ^ r u n d i v i d u a ^ r o j e c t s ^ ^ ^

0.327
0.297

0.0131
0.023

There is a statistically significant.positive corrélation
There is a statistically significant positive corrélation

Project ty
Group Projects
Individual Projects

Table 7-35 Statistical significance analysis for the 'percentage of defects fixed' metric

ÌMetìiclResttUìSumnuayà
P e r c e n t a g e of defects fixed (Delivery phase)

The results (depicted in Table 7-34, Table 7-35, and Figure 7-22) show that there is a statistically significant
mean différence between the treated and control groups for both group and individual projects in terms of the
percentage of the defects fixed in the Delivery phase. The results show that requirement traceability was
improved by a sensitivity margin of 11.5% in group projects and 8.8% in individual projects. The results,
therefore, indicate that the use of process patterns has a significant positive effect in increasing the percentage of
defects fixed. Based on the results it can therefore be concluded that the application of process patterns increases
the proportion of defects fixed in the Delivery phase.

It has been further shown that the mean différence between the treated groups and control in group projects in
terms of the percentage of defects was not s igni f icante différent to those in the individual projects. It can therefore
be deduced that process patterns are not more effective in group projects than individual projects for this metric.

Project type Expérimental Type Semester Mean N (no. of cases) Std. Deviation
Group-Project Treated S e m e s t e r 1 79 .68 47 7.599 Group-Project Treated

S e m e s t e r 2 73 .28 18 9.423

Group-Project

Control S e m e s t e r 1 59.09 47 8.140

Group-Project

Control

Semes te r 2 57.25 20 10.804

Individual-Project Treated Semes te r 2 70.86 66 7.736 Individual-Project
Control Semes te r 2 62.53 62 15.383

Table 7-36 Statistics for the percentage Delivery phase Urne spent in testing

Chapter 7 Results 141

3 0 - -

S e m e s t e r 1 Semes te r 2

Expérimental Type

S Trea ted

EU Control

Semester

Figure 7-23 Boxplot for percentage of Delivery phase l ime spent in test ing

The boxplot depicts the range of
values and median for the
'percentage of delivery phase
t ime spent in testing' metric for
both treated and control groups
in both types of projects. The
boxplot indicates that the range
of values and median in all the
groupings is higher for the
treated groups than for the
control groups.

Percentage of Phase T i m e Spent in Tes t ing (Del ivery phase)

Statistical significance analysis of mean difference between treated and control groups

2 x 2 independent
measure ANOVA

0.394

"0.440

Experiment group-type
Semester

Percentage of phase t ime spent in test ing

(Delivery phase)

Group Projects

|nesmpuöj5|
There is a main effect for experiment group-type

The main effect for the semester is not signi ficant

The main effect for the interaction is not significant

Independent Samples
t-test

Experiment group-type Percentage of phase t ime spent in testing Individual Projects

(Delivery phase)

0.016 There is a main effect f o r e x p e r i m e n t ^ g r o u p - t y p e ^ ^ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ' _
Conclusion There is a statistically significant difference between the treated and control groups in both individual and group
^ ^ ^ ^ ^ ^ ^ ^ ^ ^ _ j) r o j e c f c ^ f o ^

Statistical significance analvsis of the effect of project type on the experiment group-tvpes

| ^ O j M ^ | l i l l i i f e ^ ^

2 x 2 independent measure
ANOVA

^ S t g n ^ c M c e ' p ^ v ' a i o e l
o.oöo

Experiment group-type
Project-type

Percentage of phase t ime spent in

testing (Del ivery phase)

There is a main effect for experiment group-type

Group Projects
Individual projects

0.010

"O.ÏÏIÏ

The main effect for the group-type is significant

The main effect for the interaction is significant

Conclusion There is a statistically significant difference between group and individual projects in terms of the mean difference
between the treated and control groups for this metric. This indicates that the treatment (i.e. use of process pattems) was

^ ^ ^ ^ ^ ^ ^ ^ ^ ^ s t j u i s t i c a l l _ ^

MCorrelätioglCdtf^
0.487 0.002 There is a statistically significant positive correlauon

IPrc
Group Projects

0.319 0.006 ^T ie r^ i j ^ j t a t i s t i ^^ Individual Projects

Table 7-37 Statistical analysis for the 'percentage of phase t ime spent in tes t ing ' metric

Chapter 7 Results 1 4 2

•. , • • • Metric Reutlt Summary
Percentaje of Phase Spent in Testing (Delivery phase)

The results (depicted in Table 7-36, Table 7-37, and Figure 7-23) indicated that the percentage of Delivery phase
time spent on testing was significantly higher for control groups than control for both group and individual
projects. The results show that requirement traceability was improved by a sensitivity margin of 29 .0% in group
projects and 12 .1% in individual projects. The results, therefore, indícate that the use of process patterns has a
significant positive effect in increasing the test case density. Based on the results it can be deduced that the
application of process patterns increased the proportion of the Delivery phase time spent in testing.

It has been further shown that the mean difference between the treated groups and control in the group projects,
in terms of the proportion of the Delivery phase time spent in testing, was statistically significantly higher than
in the individual projects. This indicates that the employment of process patterns has been more effective on
group projects than on individual projects for this metric. It can therefore be deduced that process patterns are
more effective in group projects for this metric.

Apart from data collected through conducting a measurement process (presented above) , the official marks
awarded to projects by tutors for a number of attributes were also used in the experiment, which are presented
and analysed in the following section.

7.7 Tutor Marks Results

As discussed in the research method chapter (Chapter 5), the experiment was conducted on real and official
student project, which were marked by tutors after their completion. There were a number of project attributes,
which were marked separately by tutors. There were four attributes marked (i.e. 'design and analysis ' , product,
evaluation, and project management) which were directly related to the software attributes that the study was
investigating. The attributes marked are depicted in Table 7-38 in relation to their respective development phases.

Officiallv M a r k e d Attr ibutes -''z. Deve lopment Phases l ,\ :=* '
Design and Analysis Requi rement analysis , Design
Evaluat ion Delivery
Product Delivery, Implementat ion
Project Management Requirement Analysis , Design, Implementa t ion , Delivery

Table 7-38 Relat ionships between the development phases marked attributes

In this section, the Statistical analysis of the marks awarded to the project by tutors for the four attributes stated
above are presented.

7.7.1 Product

This section analyses the marks awarded by the tutors to the software product attribute of both group and
individuai projects. The product attribute, as evaluated and marked by the tutors, represents a general evaluation
of the delivered software.

Project type Experimental Type Semester Mean N (no. of cases) Std. Deviation
Group-Project Treated Semester 1 3.53 47 1.100 Group-Project Treated

Semester 2 3.44 18 1.247

Group-Project

Control Semester 1 2.98 47 0.989

Group-Project

Control
Semester 2 3.00 20 1.257

Individuai-Project Treated Semester 2 3.29 66 1.262 Individuai-Project
Control Semester 2 2.87 62 1.337

Table 7-39 Statistics for the product attribute

Chapter 7 Results 1 4 3

a 1 - •

£ 5 - -r

Semester 1 Semester 2

Semester

Figure 7-24 Boxplot for the product attr ìbute

Expérimental
Type

Treated

[Ë] Control

The boxplot depicts the range values for the

product attribute for both treated and

control groups for différent project types

and in différent semesters. The boxplot

indicates that the range of values and

median in all the groupings is higher for the

treated groups than for the control groups.

Product

Statistical significance analvsis of mean différence between treated and control groups

Inriepcndent tV ariaMës^pg | Opération IDèipendeptyârtaMéÎ

2 x 2 independen! Experiment group-type
meas u re A NOVA Semester

Il Description
There is a main effect for experiment group-type

Product Group Projects

[Sensitivity] MarginT %H
15.2

0.123

"Ó.343

The main effect for the semester is not significant

The main effect for the interaction is not significant

[Operation] llndependeoliVâriâblel ¡DependEnljVariable]

Independent Samples Experiment group-type Produci Individual Projects

[Significance D é v a l u e

"o'ÖOl
Conclusion

i)^ripü<^^
_There i sa main effect for ex£erimen_iroup_y_e _ 12.9

There is a statistically significant différence between the treated and control groups in both individual and group
rjroiec^sJ^oMhjsjirrà

Statistical .significance analvsis of the effect of project type on the experiment gnjup-tvpes

IndependentiVariables] j Dépendent icaria M¿1
2 x 2 independent measure

ANOVA
BPSlftfliiïca nce'p-'val üe]

0.006

Experiment group-type
Project-type

Product

iDescr ipt lo i ÏM__BJ_____ |
There is a main effect for experiment group-type

Group Projects

0.033

"0.019

The main effect for the group-type is significant

The main effect for the interaction is significant

Conclusion There is a statistically significant différence between group and individual projects in terms of the mean différence
between the treated and conirol groups for ihis attribute. This indicates that the treatment (i.e. use of process pattems)

^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ « i s j i t a n ^ s t i c ^

Corrélation Analvsis for the 'no. of logins' and 'this metric' for group and individual projects

(CMTètatwg t Coef , ' f r f | | | H Significance u?J,
0.424 0.001

IPescripnoñl
There is a statistically significant positive corrélation

M B Project typel
Group Projects

0.394 0.002 There is a statisticallyjjignificant positive corrélation D O S Jndmdua^Pjjojects

Table 7-40 Statistical significance analysis for the 'product ' attribute

Chapter 7 Results 1 4 4

• • • Resuit Summary --• -'
Product

The results (depicted in Table 7-39, Table 7-40, and Figure 7-24) show that there is a statistically significant

différence between the treated and control groups for both project types (i.e. group and individual) for the value
of 'product ' . The results show that the product quality was improved by a sensitivity margin of 15.2% in group

projects and 12.9% in individual projects. The results, therefore, indicate that the use of process patterns has a
significant positive effect in increasing the value of the product attribute. Based on thèse results, it can therefore

be deduced that the application of process patterns improves the overall quality of the developed software.

It has been further shown that the mean différence between the treated groups and control groups in group
projects, in terms of the product, was statistically significantly higher than those in the individual projects. This

indicates that the employtnent of process patterns has been more effective in group projects than in individual
projects for this attribute. It can therefore be deduced that the process patterns are more effective on group

projects than individual projects in improving the overall quality of the product.

7.7.2 Design and Analysis

This section analyse the marks awarded to the software design and analysis attribute.

Project Type Expérimental Type Semester Mean N(no. of cases) Std. Deviation
Group Project Treated S e m e s t e r 1 3.64 47 0.819 Group Project Treated

S e m e s t e r 2 3.28 18 1.074

Group Project

Control S e m e s t e r 1 3.60 47 0.851

Group Project

Control

S e m e s t e r 2 3.20 20 0.768

Individuai Project Trea ted S e m e s t e r 2 3.12 66 0.985 Individuai Project
Control S e m e s t e r 2 3.06 62 0.956

Table 7-41 Statistics for the design and analysis marked attribute

Expérimental
Type

Treated

Control

S e m e s t e r 1 S e m e s t e r 2

Semester

The boxplot depicts the range of the
'Design and Analysis ' values for both
treated and côntrol groups for différent
project types and in différent semesters.
The boxplot indicates that the range of
values and médian in ail the groupings
is not significantly différent between
the treated and control groups.

Figure 7-25 Boxplot for the Design and Analysis marked attribute

Chapter 7 Results 145

Design and Analysis

Slatistical sienificance analvsis of mean différence between trealed and control erouos

Gjg^g|Ojperaaoâ|HnB| R t j l n d e p e n d « u ^ a j

2 x 2 independent
measure ANOVA

Experiment group-type Design and Analysis
Semester

Group Projects

Significance p-value
0.202

Description Sensitivity Margin (%)
There main effect for the experiment group-type is not significant N/A

0.703 The main effect for the semester is not significant

0.623 The main effect for the interaction is not significant

^ y ^ P r o j ë c ^ ^ ^ ^ j Independent Samples
t-test

Significance p-value
0.210

Experiment group-type Design and Analysis Individual Projects Independent Samples
t-test

Significance p-value
0.210

Description, Sensitivity Margin (%}
There is not a main effect for experiment group-type N/A

Conclusion There ìs not a statistically significarli différence between the treated and control groups in either individuai or group
projects for this attribute. This indicates that treatment (i.e. use of process patterns) was not statistically effective.

Slatistical significance analvsis of the effecl of Dro iect tvoe o n the e x p e r i m e n t trrouD-tvDes

2 x 2 independent measure Experiment group-type Design and Analysis Group Projects

0.090 There is not a main effect for experiment group-type

0.213 The main effect for the group-type is not significant

0.381 The main effect for the interaction i s not significan!

Conclusion There is not a statistically significant différence between group and individuai projects in terms of the mean différence
between the treated and control groups for this attribute. This ìndicates that treatment (i.e. use of process pattems) was
not statistically more effective on either group or individuai projects for this metric.

Corrélation Analvsis for the 'no. of loeins' and 'this metric' for eroun and individuai Droiec s

j j$ jS |^{f îean^(f) - l l ^ ^ i ^ i e c A : r Î T O Î i l i i i i
0.262 0.041 There is a statistically significant positive corrélation Group Projects

0.248 0.042 There is a statistically significant positive corrélation Individual Projects

Table 7-42 Statistical analysis for the 'design and analys is ' marked attr ibute

Design and Analysis

The results (depicted in Table 7-41 , Table 7-42, and Figure 7-25) show that, while there is a slight différence

between the control and treated groups in terms of the quality of the 'design and analysis ' attribute, the

différence is not statistically significant. This indicates that the use of process pattems did not have a significant

effect on the design and analysis attribute of the project.

The différence between the treated groups and control in group projects in terms of 'design and analysis '

attribute was not significantly différent to those in the individual projects. This indicates that the employment of

process patterns was not more effective in either group or individual projects for this attribute.

7.7.3 Project Management

This section analyse the marks awarded to the project management market attribute.

Chapter 7 Results 14Ó

Project Type Experimental Type Semester Mean N (no. of cases) Std. Deviation
Group Project Treated Semester 1 3.64 47 1.072 Group Project Treated

Semester 2 3.67 18 0.840

Group Project

Control Semester 1 3.57 47 0.927

Group Project

Control
Semester 2 3.65 20 0.875

Individual Project Treated Semester 2 3.18 66 0.959 Individual Project
Control Semester 2 3.13 62 1.079

Table 7-43 Statistics for the project management marked attribute

1 - --

Semester 1 Semester 2

Semester

Experimental
z> Type g. _
<; H Treated
c [H Control
"D
O

®" —
" 1

(D

a

o

"D

S

The boxplot depicts the range of the
'Project Management ' values for both
treated and control groups for différent
project types and in différent semesters.
The boxplot indicates that the range of
values and median in ail the groupings is
not significantly différent between the
treated and control groups.

Figure 7-26 Boxplot for project management marked attribute

Chapter 7 Results 147

Project Management

Statistical sienificance analvsis of mean difference between treated and control erouos

^gf to^ep«^tgi tóab |M^^ D e ^ d e n t i V É ^ b l e . S I ^ ^ S - ' & S ' ^ ^ . 3

2 x 2 independent
measure ANOVA

Experiment group-type Project Management Group Projects
Semester

Sienificance Shvalàe^ M\:-:lr&i-l.i,>^--4:.' **' "c- - Descriotion . T< :. / f - i / v ^ ' - ' ^ N : >?•> • Sensitivitv Margiii (%> ;
0.232 There main effect for the experiment group-type is not significant N/A

0.783 The main effect for the semester is not significant

0.513 The main effect for the interaction is not significant

I ^ K ^ á ^ S É S Í ^ ^ É ^ ^ A liependent Varialil* | P ^ ^ t ó §

Independent Samples
t-test

Experiment group-type Project Management Individual Projects

> Sianifîcanœ p-vatue '..'..< . : Etescribtton SeositívitY Mare ín IM*met i
0.110 There is not a main effect for expenmeni group-type N/A

Conclusion There is not a statistically significant différence between the treated and control groups in either individuai or group
projects for this attribute. This indicates that treatment (i.e. use of process pattems) was not statistically effective.

Statistical sienificance analvsis of the effect of Droiect tvpe on the experiment erouD-tvoes

2 x 2 independent measure Experiment group-type Project Management Group Projects
ANOVA Project-type Individual projects

>' k -V: SisuiGcance p-vàlue
0.103 There is not a main effect for experiment group-type

0.119 The main effect for the group-type is not significant

0.317 The main effect for the interaction is not significant

Conclusion There is not a statistically significant différence between group and individuai projects in ternis of the mean difference
between the treated and control groups for this attribute. This indicates that treatment (i.e. use of process pattems) was
not statistically more effective on either group or individuai projects for this metric.

Corrélation Analvsis for the 'no. of loeins' and 'this metric' for eroup and individual projec s
Descririil'ui • I T o i ^ l t v œ L

Group Projects 0.092 0.186 There is not a statistically significant positive corrélation

• I T o i ^ l t v œ L
Group Projects

0.051 0.217 There is not a statistically significant positive corrélation Individual Projects

Table 7-44 Statistical analysis for the 'Project Management' attribute

;RËSUUSUMINTKRY%

Project Management

The results (depicted in Table 7-43, Table 7-44, and Figure 7-26) show that there is not a statistically significant

difference between the control and treated groups in terms of project management as evaluated and marked by

tutors. This indicates that the use of process pat tems did not have a significant effect on the marked 'project

management ' attribute.

The difference between the treated groups and control in group projects in terms project management was not

significantly différent to those in the individual projects. This indicates that the employment of process patterns

was not more effective in group projects than individual projects for this attribute.

7.7.4 Evaluation

This section analyse the marks awarded to the software évaluation attribute.

Chapter 7 Results 1 4 8

Project Type Expérimental Type Semester Mean N(no. of cases) Std. Deviation
Group Project Treated Semester 1 3.23 47 0.890 Group Project Treated

Semester 2 3.11 18 0.900

Group Project

Control Semester 1 3.13 47 1.076

Group Project

Control

Semester 2 3.05 20 0.686
Individuai Project Treated Semester 2 3.18 66 0.959 Individuai Project

Control Semester 2 3.13 62 1.079

Table 7*45 Statistics for the évaluation attribute

1 -
1

Semester 1
1

Semester 2

Expérimental
Type

H l Treated
S Control

Semester

Figure 7-27 Boxplot for the évaluation attribute

The boxplot depicts the range of the
'Evaluat ion ' values for both treated and
control groups for différent project types
and in différent semesters. The boxplot
indicates that range of values and the
median in all the groupings is not
significantly différent between the treated
and control groups.

Chapter 7 Results 149

Evaluation

Statistical sienificance analysis of mean différence between treated and control grouDS

jMJB^BjOneratiônWJ^
H I nVtprvm rfiri i ̂ Vnri a h l i ^ | J | I • • • • T>p~oendent A'ariâb | P n m B 11

• jpn^rpjects l l l j l

2 x 2 independent
measure ANOVA

SJRnificance p^valùël
0.112

""0 .763 ~

Ex peri ment group-type
Sernester

Evaluation Group Projects

[üescripttonj
There main effect for the experiment group-type is not significant

0.625

The main effect for the sernester is not significant

The main effect for the interaction is not significant

Operation tadependentiVariablél Dépendent iVariâbte]

Independent Samples
t-test

Experiment group-type Evaluation Individuai Projects

[Signinc^ice^
0.092 Therejs not a main effect for expriment^rou£-type

Conclusion There is not a statistically significant différence between the treated and control groups in either individuai or group
^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ j j r o j e ^ t s ^ f o r j h i s j ì i r ^ ^

Statistical sienificance analysis of the effect of project type on the experiment eroup-tvpes

1 lndependentiy ariables] IpépenoentiVariâblé

2 x 2 independent measure
ANOVA

Experiment group-type
Project-type

Evaluation

Significance P;valuë|
0.143
0 . 55Ï

^DescripüonW

Group Projects
Individuai projects

mm There is noi a main effect for experiment group-type

The main effect for the group-type is not significant

The main effect for the interaction is not significant 0.363

Conclusion There is noi a statistically significant difference between group and individuai projects in terms of the mean difference
between the treated and control groups for this attribute. This ìndicates that treatment (i.e. use of process pattems) was

^ ^ ^ ^ ^ ^ ^ ^ ^ ^ n o ^ j a t i s f i c a U y m o ^

Corrélation Analysis for the 'no. of logins' and 'this metric' for group and individuai projects
aCorrëlatioï»Xocf.'(r)Mi »SittniflcänccI</;)HI

0.102 0.141 There is not a statistically significant positive corrélation
[PTOjçct'typcJ

Group Projects

0.068 0.197 ^Tejje^sjjo^ajita^is^ìaiHvjìi^ Individuai Projects

Table 7-46 Statistical analysis for the évaluation attribute

WmWmm^mWÊÊSÊÊmmWmWmWBÊÊmWÊRèTûUlS
Evaluation

The results (depicted in Table 7-45, Table 7-46, and Figure 7-27) show that there was a slight difference between

the control and treated groups in terms of the quality of the évaluation. However, the difference was not

statistically significant. This indicates that the use of process patterns did not have a significant effect on the

'évaluation' attribute.

The difference between the treated groups and control in group projects in terms of the évaluation process was

not significantly différent to those in the individual projects. This indicates that the employment of process

patterns was not more effective in either group or individual projects for this attribute.

The results of marks, awarded to the four attributes presented above, indicated that the application of process

patterns improved the producl attribute. The other three marked attributes were not significantly affected. This is

furtherdiscussed in 8.5.1.

7.8 Subjects' Views on Process Pattern

The treated subjects were asked two 4-point Likert scale quest ions on their expérience of using process patterns.

Thèse two questions are given below:

1. How useful did you find process patterns in doing your project?

N o t a t a l O S l i g h t l y D M o d e r a t e l y D V e r y D

Chapter 7 Results 150

2. H o w difficult/easy did you find the process patterns to understand?

Very d i f f i c u l t Q Difficult Q E a s y Q Very easy O

As shown in Figure 7-28, only 8 percent of the subject found process patterns not useful at ali. Out of 92 percent
that found process patterns useful, 2 4 % found them slightly useful, 4 0 % moderately useful, and 2 8 % very useful.

S O 1 1

N o t a t a l i Sl iaht ly Moderate ly Very

U s e f u l n e s s

Figure 7-28 process pattern usefulness

Figure 7-29 shows that 4 % of the subject found process patterns very difficult to understand, and 2 2 % difficult to

understand. Most subjects said that they found process patterns either easy (61%) or very easy (13%).

7 0

Very DifMeull DilHcult Easy Very Easy

U n d e r s t a n d a b i l i t y

Figure 7-29 Process patterns usability

7.9 Summary

The results of the metrics were presented and statistically analysed for statistical significance in this chapter. For
each metric, it was determined whether there was a statistically significant mean difference between the treated
and control groups caused by the employment of process patterns. It was further analysed whether there were

any differences between the group projects and individuai projects, for each metrics that indicated a more

prominent effect of process patterns on a particular project type (i.e. group or individuai). The correlation
between each metric and the numbers of logins to the process pattern online resource (treatment) was also
analysed to determine if higher usage of process patterns correlated with improved performance in terms of

metric results.

For the majority of the metrics, a signifìcant mean difference between the treated and control groups were

detected, indicating that the treated groups performed better on those attributes. It was also found that there were
correlations between the number of logins and metrics values for the majority of the metrics that showed an

effect of process patterns.

Chapter 7 Results 151

As well as the results of the metrics and measurements acquired through the measurement process, the marks
awarded to the projects, by tutors. were also equally analysed. The results showed that for three ('design and
analysis ' , évaluation, 'project management ') out of the four attributes marked, there was no statistically
significant différence. The results however showed that the treated groups did signiftcantly better than the
control groups for the 'product ' attribute, indicating that process pat tems improved the software product quality.

The results also showed that, for many metrics, as well as the 'product ' attribute (as marked by tutors), the effect
of the treatment condition was higher on group projects than on individual projects. This indicates that the
process pat tems have a more prominent effect on team projects than on individual projects for many attributes.
The results also showed that the majority of the subjects who used pat tems (i.e. treated groups), found process
pa t tems useful and easy to use. In the next chapter, the results will be analysed and discussed.

Chapter 8 Analysis 152

Chapter 8 Analysis

8.1 Introduction

The results of the experiment for each metric tutor mark were presented and statistically analysed individually in
Chapter 7. The aim in this chapter is to analyse the results. There will be a concise representation of the results
presented in the previous chapter. There will also be a discussion of the metrics and tutor marks and their
corresponding software attributes, which were affected by process patterns. There will also be a discussion of
the metrics that showed process patterns had a more significant effect on group projects than individuai projects.
The software attributes examined, which were not affected by process patterns, will also be listed and discussed.
Based on the analysis of the results, there will also be a discussion as to whether the research hypothesis is
accepted or rejected. In the final section of the chapter, there will be a discussion of the validity and
generalisation of the overall results.

Having discussed each metric and tutor mark in detail in the previous chapter, in this section. Table 8-1, presents
a concise representation of the overall results, listing ali metrics and tutor marks analysed in the experiment. For
each metric and mark Table 8-1 shows whether the following Statements are trae (V) or false (x):

• Process patterns had a significant positive effect on group projects
• Process patterns had a significant positive effect on individuai projects
• The effect of process patterns on group projects was significantly higher
• There was a correlation between the number of logins (to the online process patterns) and the value of

the metri c/mark.

8.2 Concise Results Representation

Chapter 8 Analysis 1 5 3

Po
si

tiv
e

Ef
fe

ct
 o

n
G

ro
up

Pr

oj
ec

ts

Po
si

tiv
e

Ef
fe

ct
 o

n
In

di
vi

du
al

 P
ro

je
ct

s

G
ro

up
 P

ro
je

ct
s

Pe
rf

or
m

ed

B
et

te
rT

ha
n

In
d.

 P
ro

ie
ct

s

C
or

re
la

tio
n:

 L
og

in
s

an
d

/M
et

ri
cs

/M
ar

ks

M
et

ri
cs

R
eq

.
A

na
ly

si
s Percentage of traceable requiremenls 1/

M
et

ri
cs

R
eq

.
A

na
ly

si
s

Percentage of reviewed requirements specifícation V >l V

M
et

ri
cs

R
eq

.
A

na
ly

si
s

Percentage of defects fixed X X X X

M
et

ri
cs

R
eq

.
A

na
ly

si
s

Percentage of phase time spent in testing X X X X

M
et

ri
cs

D
es

ig
n

Percentage of design document reviewed

M
et

ri
cs

D
es

ig
n Number of meihods per class (Methods per Class Ratio) V

M
et

ri
cs

D
es

ig
n

Percentage of defects fixed X X X X

M
et

ri
cs

D
es

ig
n

Percentage of phase time spent in testing X X X X

M
et

ri
cs

Im
pl

em
en

ta
lio

n

Comment density v1 V1 v1

M
et

ri
cs

Im
pl

em
en

ta
lio

n Percentage of code reviewed V V

M
et

ri
cs

Im
pl

em
en

ta
lio

n

Productivity (Implementation phase) V i/ M
et

ri
cs

Im
pl

em
en

ta
lio

n

Productivity (complete development project) V i/

M
et

ri
cs

Im
pl

em
en

ta
lio

n

Percentage of defects fixed X X X X

M
et

ri
cs

Im
pl

em
en

ta
lio

n

Defect density V1 V1 X V1

M
et

ri
cs

Im
pl

em
en

ta
lio

n

Percentage of phase time spent in testing V X

M
et

ri
cs

D
el

iv
er

y Test case density (Test case per Requirement) V1

M
et

ri
cs

D
el

iv
er

y

Percentage of defects fixed V X

M
et

ri
cs

D
el

iv
er

y

Percentage of phase time spent in testing V

M
ar

ks
 Design and analysis X X X v1

M
ar

ks

Product V v1

M
ar

ks

Evaluation (tests) X X X X M
ar

ks

Project management X X X X

Table 8-1 A concise représentation of metrics/marks results

The results depicted in Table 8-1, show that the majority of the metrics indicate positive effects of process
patterns for both group and individual projects. In ali the cases that showed a positive effect, both group and
individual projects were affected (i.e. there are no cases where there is only positive effect for one project type
and not for the other). It is also noticed that in majority of the cases that showed a positive effect, the effect was
higher on group projects than individual projects. This indicates that process patterns have a more prominent
effect on team projects than individual projects. The results also show that, apart from one exception, there was a
correlation for ail the metrics that showed an improvement due to the use of patterns, between the number of
logins to the online patterns and the value of the metric/marks. This suggests that higher usage of process
patterns corresponds to more favourable metric values and, therefore, to better associated attribute quality.

In the following section, the results are further discussed and analysed.

8.3 An Analysis of the Results

As depicted in Table 8-1, there are a number metrics that are deemed significant in indicating that, the
employment of process patterns had a positive effect on the software attributes, which they measured. Thirteen
out of the eighteen metrics investigated showed a statistically significant différence between the treated and
control groups. The significant effect of each metric was analysed through sensitivity analysis as described in
Chapter 7. The sensitivity margins represent the percentage of change that could take place in the metr ic 's
parameters before its conclusion was affected. Table 8-2 lists ali the thirteen metrics that showed an
improvement as a resuit of using patterns, in order of the significance of their effect, as determined by the
sensitivity margins. The attribute most affected was the 'source code review* with an overall sensitivity margin
of 44 .7%. The least affected was the 'defect removal ratio (measure by percentage of defects fixed) in the

Chapter 8 Analysis 154

Delivery phase, with an overall sensitivity margin of 10.2%. There were also a number of metrics which
indicateci that process pattern usage had no significant effect on the associated attributes. Thèse are listed in
Table 8-3.

No Metric
Sensitivity Margin %

No Metric Group
Projects

Indiv.
Projects

M e a n

1 Percenlage of source code reviewed 47.5 41.9 44.7

2 Comment density 48.8 37.6 43.2

3 Percentage of phase time spent in testing (Implementation) 41.2 38.4 39.8

4 Defect density 39.2 37.3 38.2

5 Percentage design document reviewed 38.1 32.1 35.1

6 Productivity (Implementation) 33.3 23.8 28.6

7 No. of methods per class (Methods per Class Ratio) 33.8 20.3 27.1

8 Productivity (overall) 27.1 19.2 23.2

9 Percentage of phase time spent in testing (Delivery phase) 29.0 12.1 20.1

10 Test case density (Test case coverage) 19.4 13.0 16.2

11 Percentage of reviewed requirements spécification 20.6 10.1 15.7

12 Percentage of traceable requirements 19.1 11.1 15.1
13 Percentage of defects fixed (Delivery phase) 11.5 8.8 10.2

Table 8-2 Metrics that showed positive effect of process patterns and their effect size

No. Metric
1 Percentage of phase time spent in testing (RA Phase)

2 Percentage of defects fixed (RA Phase)

3 Percentage of defects fixed (Design Phase)

4 Percentage of phase time spent in testing (Design phase)

5 Percentage of defects fixed (Implementation)

Table 8-3 Metrics that showed no significant effect of process patterns

As indicated in Table 8-2, patterns have been shown to have a positive effect on the following software
attributes:

• Requirements Traceability: This attribute refers to the ability to describe and follow the life of a
requirement, in both a forwards and backwards direction [Ramesh and Jarke 2001]. A requirement
should be linked to a higher level document, which could be a higher-level system requirement, as well
as downward to the design éléments, source code, and test cases that are constructed to implement and
verify the requirement [Davis 19931[Hull et al. 2005] . Therefore, higher requirement traceability is
desired in a software development project. This attribute was measured through the 'percentage of
traceable requirements ' metric which showed a signiftcantly higher value for the projects that used
process patterns. It has been shown that the employment of process patterns in software development
projects improves the requirement traceability by 15 .1%. The use of patterns can therefore be said to
make a statistically significant improvement to the traceability of requirements.

• Reviews: Reviews are the most widely used approach for assessing software quality [Sommervil le
2007] . Furthermore, inspection of requirements and design are more effective than testing [Hinkle
2007], An error detected within the development process is 10 to 100 times less costly to ftx, than a bug
found during the application's opération [Boehm and Basili 2001) [Standish Group 2007] . Boehm
[1981] and Jones [1996] have shown that peer review has the most significant defect filtering
effecliveness rate of 6 5 % (higher than unit testing of 60%) . Therefore, the higher the percentage of the
reviewed artefacts, the better the quality of the review process and better the chance of finding any
defects [Fagan 1976]. This attribute was measured using the following three metrics: Percentage of
reviewed requirements spécification, percentage of design document reviewed, and percentage of
source code reviewed. The metrics showed a signiftcantly higher value for the projects that used
process patterns. It has been shown, through sensitivity analysis, that the employment of process
patterns in software development projects effectively improves the reviews process by an average of

Chapter 8 Analysis 155

3 1 . 8 % (i.e. Code rev. 44 .7%, Design doc rev. 35 .2%, and Req. spec. rev. 15.7%). The use of patterns
can therefore be said to make a statistically significant improvement to the review process.

• Granularity/Complexity of modules: An application developed with more finely granular objects (i.e.
lower methods per class, is likely to be more easily maintained and reusable. A larger number of
methods per class are likely to hinder extensibility and complicate testing due to the increased object
size and complexity. Furthermore, the larger the number of methods, the more complex the inheritance
tree and the more limiting the potentini reuse and therefore the number of methods per class should be
kept as low as possible [Pressman and Ince 2000] . This attribute was measured through the 'Methods
per Class Ratio ' metric. This metric was first proposed by Chidamber and Kemerer [1994], named
Weighted Method per Class (WMC) , as a measure of complexity (see Section 4.9). The metric
produced results that were more favourable for projects that used process patterns. It has been shown,
through sensitivity analysis, that the employment of process patterns in software development projects
effectively improves the granularity-complexity modules (classes) by 2 7 . 1 % . The use of patterns can
therefore be said to make a statistically significant improvement to the granularity/complexity of
modules.

• Comment Density: The comment density metrics is useful for estimating the quality of the code
[Lorenz and Kidd 1994]. The higher the percentage of the code that is commented, the better the quality
of code in terms of readability, modifiability, and maintainability. It is generally recommended that
there should be as many Unes of comments as lines of code [Ambler 1998]. The comment densi ty
attribute is measured as the ratio of the lines of comments per lines of code (i.e. LOCom / LOC). The
metric showed a s ignif icante higher value for the projects that used process patterns. It has been shown
that the employment of process patterns in software development projects improves the comment
density by 43.2%. The use of patterns can therefore be said to make a statistically significant
improvement to the comment density.

• Productivity: Productivity évaluation is difficult and controversial, and even advice offered by ISO
15393 on productivity measurements have been shown to be misleading [Kitchenham and Colin 2007] .
Difficulties in productivity measurement are partly due to the diverse and differing ways and views on
how input and output should be measured and the difficulty in measuring them [Kitchenham and
Mendes 2004] [Shepperd 1996] [Walton and Felix 19771. For example, L O C as a measure of output
does not take into account many attributes such as verbosity of the programmer, the programming
language, and environmental complexity such as skills, pressure, tool support, and computing platform
(See Section 4.10). However, LOC and Function Point counts are the most common output

• measurements used [Maxwell and Forselius 2000] . While some argue that it is unsafe to measure
productivity as a ratio of two unrelated variables [Kitchenham and Colin 2007]] , productivity as size
over effort ratio is by far the most popular method of evaluating productivity. In a literaturę review of
the productivity measurement, Kitchenham and Mendes [2004] found that (with the exception of one)
all the surveyed papers to use this method of productivity évaluation. The method of productivity
measurement employed in this research is also size over effort, where size is measured in terms of the
number of lines of code (LOC), and effort in terms of person-hour. Although imperfect, this method of
productivity measurement (i.e. LOC/Effort) is widely used and provides a consistent measure of
productivity [MacCormack et al. 2003]. In this study, L O C measurement method and other related
factors and issues (e.g. verbosity of the programmer, the programming language, and environmental
complexity such as skills, pressure, tool support, computing platform), are randomly spread amongst the
control and treated groups, and have therefore neutralised effect. L O C over Effort is therefore deemed
appropriate for this study as a way of comparing treated and control groups in terms of their
productivity.

Productivity was measured for both the Implementation phase and the complete development project. It
was evaluated as size (LOC) over effort (rime) where t ime was measured in terms of person-hour, rather
than day, since the subjects often spent part of the day working on the projects. The results can however
be easily extrapolated to 'day ' as the unit of t ime (taking a day to be eight working hours) by
multiplying the results by 8. For example, productivity of 6 L O C per hour would be équivalent to 48
LOC per day. It has been shown that the employment of process patterns in software development
projects improves the productivity in the Implementation phase by 28 .6% and the overall productivity
(for the complete development project) by 23.2%. The use of patterns can therefore be said to make a
statistically significant improvement to productivity.

Chapter 8 Analysis 156

• Defect Densi ty: This metric is generally used in industry for many purposes such as identifying
candidate components for further review, or analysing and tracking the impact of defect removal on
quality improvement [Ebert 2005] . It is the most commonly used means of measuring quality of a piece
of software code and has become the de-facto industry standard measure of software quality [Fenton
and Pfleeger 1997]. It is measured as the number of defects detected per LOC ratio. The metric showed
a significantly higher value for the projects that used process patterns. A réduction in the defect densi ty
in source code is important, especially as studies have shown that up to 6 5 % of defects occur at the
design and coding stages [Boehm 1981 [[Jones 1996]. It has been shown that the employment of process
patterns in software development projects improves the defect density by 38.2%. The use of patterns
can therefore said to make a statistically significant improvement to the defect density.

• Tes t t i m e al locat ion (I m p l e m e n t a t i o n a n d Del ivery phases) : A right proportion of the phase t ime
allocated to testing is important in providing the necessary t ime for carrying out the required testing
tasks adequately. A small proportion of the phase time allocated to tests would indicate a deficiency and
inadequacy in carrying out the test tasks properly. Normally between 30 to 40 percent of project effort
is spent on testing [Pressman and Ince 2000], It is generally recommended in the literaturę that in most
cases, between 30 to 50 percent of the development effort should be allocated to testing [Six
sigma][Huang 2004].This attribute was measured through the 'Percentage phase time spent in test ing '
metric, which showed a significantly better value for the projects that used process patterns. It has been
shown that the employment of process patterns in software development projects improves t ime
allocation to testing by 4 0 % and 2 0 % in the Implementation and the Delivery phases respectively. The
use of patterns can therefore be said to make a statistically significant improvement in allocating
appropriate test time to the Implementation and Delivery phases.

• Tes t C a s e densi ty (test case coverage) : Every requirement should have one or more tests associated
with it [Laplante 2007] . This attributes was measured by the 'test case densi ty ' metric, which is
evaluated as the ratio of (No. of defined test cases) per (No. of requirements). A higher test case per
requirement ratio denotes a more thorough and comprehensive test process, as it offers a higher
probability of detecting any defects. The metric results showed a significantly higher value for the
projects that used process patterns. It has been shown that the employment of process patterns in
software development projects improves the test case density by 16.2%. The use of patterns can
therefore be said to make a statistically significant improvement to the test case coverage.

• Defect removal r a t io (Del ivery phase) : Defect control and management is crucially important in
software development, as defects are a root cause of software failures [Jones 2007]. Therefore, a
development process in which more of the detected defects are fixed is more likely to produce a reliable
software product. This attributes was measured by the 'percentage of defects fixed' metric, which is
evaluated as the ratio of (No. of defects fixed) per (No. of defects detected). This metric is used to
provide an indication of the quality of defect correction process and product, by assessing the
percentage of the defects that were fixed for each development phase. A higher value would indicate a
better defect correction process as well as a less erroneous product. This attributes was measured as the
ratio of the number of defects fixed per the number of defects detected. The results of the metric
showed a significantly higher value in the Delivery phase for the projects that used process patterns. It
has been shown that the employment of process patterns in software development projects improves the
defect removal ratio by 10.2% in the Delivery phase. The use of patterns can therefore be said to make a
statistically significant improvement to the defect removal ratio in the Delivery phase.

While patterns have been shown to improve the attributes outlined above, the results indicate that they do not
make a significant différence to some attributes. These attributes are listed and described below.

• Tes t t i m e al locat ion (R e q u i r e m e n t Analys i s phase) : The test time allocation attribute was described
above. The results showed that there was not a statistically significant mean différence between the
treated and control groups in terms of the amount of t ime they allocated to testing in the Requirement
Analysis phase. It can therefore be concluded that process patterns do not affect the proportion of the
RA phase time that is allocated to testing.

• Test t i m e al locat ion (Design phase) : The results showed that the allocation of test time in the Design
phase was not significantly affected by the use of process patterns. It can therefore be concluded that
process patterns do not affect the proportion of phase time Design phase time that is allocated to testing.

Chapter 8 Analysis 157

• Defects removal ratio (RA phases): The defect removal ratio attribute was described above. The
results showed that there was not a statisticalty significant mean différence between the treated and
control groups in terms of the ratio of the 'number of defects fixed' per 'number of defects detected' in
the Requirement Analysis phase. It can therefore be concluded that process patterns do not affect the
defects removal ratio in the Requirement Analysis phase.

• Defects removal ratio (Design phases): The defect removal ratio attribute (described above) for the
Design phase, was not affected by the use of process pat tems. It can therefore be concluded that process
patterns do not affect the defects removal ratio in the Design phase.

• Defects removal ratio (Implementation phases): The defect removal ratio attribute for the
Implementati on phase was also not affected by the use of process patterns. It can therefore be concluded
that process patterns do not affect the defects removal ratio in the Implementation phase.

A trend can be observed in the improved attributes listed above. The trend points to significant improvements to
attributes in three general areas of, tests, reviews, and defects as a resuit of using process patterns. The
improvements in testing activities are substantiated by metrics (10), (9), and (3) [Table 8-2], which show
significant improvements in test related attributes. The improvements in reviews are substantiated by metrics (I) ,
(5), and (11) [Table 8-2], which show significant improvement in the reviews of the source code, design, and
requirements spécifications. The improvements in defect control are substantiated by metrics (4) and (13) [Table
8-2], which also show significant improvement in defect density and defect removal ratio.

It is observed from the results that, although the use of patterns improved test t ime allocation in some phases,
they made no statistically significant différence in others. For example, while the test time allocation attribute
was significantly improved in both Implementation and Delivery phases, no improvement is noticed in the cases
of the Requirement Analysis and Design phases. A closer look at the metric results indicate that both treated and
control groups spend a reasonable proportion of the RA phase time (22%) on testing and review. The proportion
of phase time spent on test was much lower in the case of the Design phase being around 8% for both the treated
and control groups, which is in general much too low. In both cases, the pattern usage does not appear to have
made any significant effect. The results point to the conclusion that process patterns do not affect the proportion
of phase t ime allocated to testing in either RA or Design phases. However, it is important that there was a
significant improvement (39.8%) in the allocation of Urne in the Implementation phase, which involved testing
and validating the developed source code, which is the backbone of the completed application. It is further
significant that there was also an improvement (20.1 %) in the allocation of test t ime in the Delivery phase, which
involved 'test in the large' activities that tested the completed software application.

It is also observed from the results that the use of process patterns had no significant effect on the defect removal
ratio attribute on three of the four development phases (i.e. RA, Design, and Implementation phases). The results
however, show that there is an improvement in the Delivery phase for this attribute as a resuit of using process
pat tems. Considering that defect removal ratio in the Delivery phase concems the proportion of the defects
corrected in the completed application, improvement (10.2%) in this attribute, as a resuit of using pat tems, is
significant in terms the quality (i.e. reduced defects) of the end product.

The trend, which émerges from the results, indicate that process pattems have the least effect on both, the defect
removal ratio and the test time allocation attributes, on the first three development phases, while having a
significant effect for both attributes on the last phase (i.e. Delivery). The trend further points to improvement in
many attributes such as requirement traceability, reviews, comment density, defect density, granularity-
complexity, and test case density. An important trend in improvement is noticed on productivity. The results
showed that process patterns significantly improved productivity at both phase level (Implementation 28.6%)
and project level (23.2%). The higher improvement level on productivity at the Implementation phase indicate
that developers were more productive in this phase due to availability of better design documents generated in
the Design phase. The developers could concentrate their efforts on the implementation of the prepared design,
rather than spending portion of their time on the design implication of the code, and therefore be more
productive in the Implementation phase.

The Table 8-1 shows that there have been improvements in ali the four evaluated phases of the development
lifecycle through improvement to at least two or more attributes in each phase. For example in the Delivery
phase, ali the three measured attributes showed improvements as a resuit of using pattems. The Design phase
was also improved in terms of smaller granularity of objects, as measured by 'Method per Class rat io ' metric.

Chapter 8 Analysis 158

The Implementation and Requirement Analysis phases were also improved through improvements in attributes
such as reviews, requirements traceability, defect density, and comment density.

As detailed in Chapter 7 and listed in Table 8-1, there are a number of metrics, which indicate that process
pattems have a more significant effect on group projects than on individual projects. These metrics are listed in
Table 8-4.

No . M e t r i e
1 Percentage of traceable requirements
2 Percentage of reviewed requirements spécification
3 No. of methods per class (Methods per Class Ratio)
4 Percentage of design document reviewed
5 Comment density
6 Percentage of code reviewed
7 Percentage of phase time spent in testing (Implementation)
8 Productivity (in Implementation phase)
9 Productivity (overall)
10 Test case density (Test case per Requirement)
11 Percentage of phase time spent in testing (Delivery)

Table 8-4 Metrics that showed process patterns had a more significant effect on
group projects than on individual projects

Based on the metrics results listed in Table 8-4, patterns have been shown to have a more significant effect on
group projects than on individuai projects on a number of attributes. These are:

• Requirements traceability
• Reviews
• Granularity of modules
• Comment density
• Productivity
• Test time allocation (Implementation and Delivery phases)
• Test case density (Test case coverage)

The improved values in the group projects for the above attributes indicate that process patterns are more
effective in team projects, where a number of individuáis are directly involved in the project. Studies have
shown that effective communication between team members is an essential ingrédient of successful software
projects [Futrell et al. 2002] . The reason for the improved effect of process patterns on team projects could
therefore be due to the influence of process patterns in producing communicat ion within teams that are more
effective. This explanation is plausible due to that fact that design patterns have been shown to improve
communicat ion within teams [Beck et al. 1996] [Hahsler 2005] [Unger and Tichy 2000]. The survey conducted
in this study (see Chapter 3, Table 3-8) also showed that 6 1 % of respondent pattern users believed that pattern
improved communicat ion between development team members . It therefore appears that process patterns also
have a positive effect on improving communication within teams. There were also a number of metrics (i.e. the
defect density and the percentage of defects fixed), which showed that while process patterns had a positive
effect, the effect was not more prominent in either project types.

In the case of tutor marks, the four attributes marked were design and analysis, évaluation, product, and project
management. In analysing the marks with regards to any différence between the treated and control groups, no
significant différences were found for three of the four attributes (as shown in Table 8-1). These are 'design and
analysis ' , 'évaluat ion ' , and 'project management ' . There were however différences between treated and control
groups for the 'product ' attribute for both group and individual projects. The results show that the treated groups
received significantly higher marks for the 'product ' attribute than the control groups, with sensitivity margin of
14.1 % as shown in Table 8-5, indicating that the produci in the case of the treated groups was of a higher quality.
Considering that the product attribute of the project, as marked by the tutors. is a measure of the quality of the
delivered software product, it is significant that process patterns have been shown to improve the quality of this
attribute. It can therefore be deduced that the application of process patterns improves the quality of the
delivered product. Furthermore, it has been shown that the mean différence for the product attribute, between the
treated groups and control groups, was higher in the group projects than the individuai projects. This indicates
that group projects were more affected by the treatment (i.e. process patterns) than the individuai projects for the

Chapter 8 Analysis 159

product attribute. It can therefore, be concluded that the employment of process pattems is more effective on
team projects than individual projects in producing a better quality product.

Sensit ivi ty M a r g i n %
No T u t o r M a r k s Group Projects Ind. Projects Mean

1 Product 15.2 12.9 14.1

Table 8-5 Tutor mark attribute, which showed posi t ive effect of process patterns

8.4 Research Hypothesis

The research question and hypothesis was discussed in the Section 5.2. The research's nuil hypothesis is:

H 0 Application of process pat tems in the management of a software development
project will not improve the quality of the project

The research's alternative hypothesis is:

H t Application of process pat tems in the management of a software development
project will improve the quality of the project

In order to test this hypothesis a number of software attributes, across the four major phases of a development
lifecycle, were measured and evaluated through an experimental research method. As shown in Table 8-1, there
were at least two or more attributes in each development phase that showed statistically significant improvement
as a result of employing process pattems in software development projects. It can therefore be said that process
pat tems improve the overall quality of a software project. Based on these findings, the nuil hypothesis H 0 is
rejected and therefore the alternative H] is accepted.

8.5 A Discussion of the Results

There are three main possibilities for the reason that majority of metrics showed a significant difference between

the treated and control groups in favour of the treated groups. These three are:

1. The treated groups knew that they were part of an experimental study and made extra effort (more than

they normally would) to do better and perform to the expectation (the Hawthom effect).
2. The treated groups knew that they were expected to follow the solutions provided by the process

pat tems and therefore exaggerated their measurement data to conform to the expectation that pa t tems
improved performance.

3 . The treated groups ¡mplemented the solutions provided by the process pat tems, which resulted in higher
quality valúes for the measured attributes.

The Hawthom Effect [Parsons 1974] is an important aspect of an experiment design, which should be considered
carefully at experiment design level. In the design of the experiment, for this research, the Hawthom effect was
fully considered as discussed in the research method chapter (Chapter 5). Research in software engineering has
shown that people can tailor their behaviour to the things they are measured against, and produce the expected
results [Weinberg and Schulman 1974]. While the students had to be told that they were participating in an
experiment for ethical reasons, they were not told whether they were in the control or treatment groups.
Therefore, any Hawthom effect would have applied to both the control and treated groups and would therefore
not affect the outcome of the experiment to compare treated and control groups. Scenario (1) above ¡s not
therefore applicable.

The researcher checked the measurement data, wherever possible during the evaluation of projects. Except in
very few discrepancies, which could be due to genuine mistakes, the data measurement provided by the subjects
corresponded with the project documents. Based on this. it is safe to deduce that measurement data that could not
be verified by the researcher, such as time spent in a phase, no. of defects fixed, percentage of source code
reviewed, etc. were also reliable and valid. Furthermore, any assumption of the exaggeration of measurement
data would also be equally applicable to the control groups, since the control groups were also aware of their
participation in the experiment and the importance of the measurement data they provided. Neither groups were

Chapter 8 Analysis 160

told whether they were in the control or expérimental groups. Therefore, even if such exaggeration did take place
to some extent, it would not have significantly affected the results of the experiment since such exaggeration
would have affected both treated and control groups. Therefore, scenario (2) is also not applicable.

The only significant differential éléments between the treated and control groups in the experiment were the
application of process patterns (treatment condition). While there were differing abilities and characteristics (i.e.
intelligence, hard-work) between the subjects, such extraneous variables were randomly dispersed across both
treated and control groups, due to the random nature of the control and treatment groups. Therefore, any
significant différence between the treated and control groups can only be due to the introduction and
employment of process patterns by the treated groups in their development projects. This factor was further
emphasised by the positive corrélations found between pattern usage and metric values. Therefore, the différence
in metric values between the treated and control groups, can only be attributed to the use of process patterns by
the treated groups, as stated in scenario (3).

8.5.1 Officiai Evaluation

Project tutors carried out the officiai évaluation of the projects in order to mark the projects. However, their
évaluation showed a statistically significant différence between the treated and control in only one of the four
development attributes marked. That does not correspond with the metric évaluation, in which the majority of
metrics showed statistically significant différence in favour of the treated groups. This may be due to two
reasons: 1) A différence in the évaluation methods, and 2) A différence in the marking criteria.

While the metric évaluation method focussed on small and specific aspects of the development, such as defects
and review quality, the officiai method of évaluation was more generic, combining a number of attributes. This
would have caused a dilution of the effect that could have led to any différence to be less prominent. For
example, there was just a single mark for 'analysis and design ' , which may be too big an attribute to be
evaluated by this method. The évaluation scheme (marking scheme) employed by the tutors could have also
made a différence. For example, marking criteria and scheme for evaluating 'design and analysis ' for grades,
'good ' and excellent is as follows: Good = 'Evidence of analysis and design in respect to the original p rob lem' ,
Excellent = 'Analysis and design is explicit. All problems addressed' (See Appendix A. Experiment Details, for
marking scheme détails). The adopted 5-point scale may have not been sensitive enough to detect the
différences between the treated and control groups that would have otherwise been detected by the conducted
measurement process.

It is however significant that, for the 'product ' attribute, which evaluated the quality of the produced software,
there was a significant différence between the treated and control groups in favour of the treated groups. This
indicates that the use of process patterns had a positive effect on the quality of the developed software.

8.5.2 Généralisations of the Results

The généralisation of the results is directly related to the extemal validity of the experiment design [Christensen
2006] , which was discussed in the research method Chapter 5. The results presented and discussed have shown a
clear positive effect for many software attributes measured through specific metrics. The question is whether
thèse results can be generalised to apply to other settings, situations and circumstances. For example, the
experiment has shown that the use of process patterns increased comment density in the tested samples. Does it
follow therefore that the use of process patterns increases 'comment density ' in general?

The Statistical significance analysis carried out on the sample population of the final year, software development ,
undergraduates, showed that the mean différence between treated and control groups was statistically significant
for the majority of the metrics as listed in Table 8-2. Therefore, such results would apply to the whole population
from which the sample was selected (i.e. final year computing undergraduates). Therefore, that makes it
statistically safe to state that process patterns (i.e. the treatment) improve the quality of requirement analysis in
final year, undergraduate, software development projects.

The results however can be further generalised to apply to the whole software community , if it can be shown that
the sample selected is a sampled représentation of the software community population. As the software
communi ty includes a population of professional software developers/engineers from which no samples were

directly taken, it appears that the results may not be statistically applicable to the software community in general.

There is however, an argument that the final year undergraduates already have some years of software
engineering expérience (some at professional levels) and are close to being Professionals, and may therefore be

Chapter 8 Analysis loi

considered as a valid sample of the software development communi ty fCarver 2003] [Sjoberg 2002] . Students
are widely used as samples/subjects in software engineering expérimental research, and it is generally accepted,
within the software community , that the results achieved in such experiments can be generalised [Sjoberg et al.
2005] . Therefore, based on the arguments presented in this section, the results and the conclusions achieved in
this expérimental study are generalised to be universally applicable and acceptable.

8.6 Summary

In this chapter, the results presented in the previous chapter were analysed. It has been shown that patterns have
a positive effect on the following software attributes:

• Requirements Traceability
• Reviews
• Granularity of modules
• Comment Density
• Defect Density
• Productivity
• Test time allocation at Implementation and Delivery
• Test case density (coverage)
• Defect removal ratio (Delivery phase)

Furthermore, the results showed that process patterns have a more prominent effect on group projects than the
individual projects for the following attributes:

• Requirement traceability
• Reviews
• Granularity of modules
• Comment density
• Productivity
• Test time allocation (Implementation and Delivery phases)
• Test case density (test case coverage)

The results of the officiai tutor marks for the four marked attributes were also analysed. It was shown that the
employaient of process patterns in software development projects improved the 'product ' attribute. This
indícales that pattern usage improves the overall quality of the delivered software application.

Based on the results presented and analysed in this chapter, which showed the application of process patterns
improved a number of software attributes, the research's alternative hypothesis was accepted. Therefore, the
study confirmed that the application of process patterns in the management of a software development project
will improve the quality of the project (at the very least in terms of thirteen différent quality attributes measured
in this experiments and of the overall perception of the quality of the marked product as assessed by the
independent markers).

Chapter 9 Conclusion 162

Chapter 9 Conclusion

9.1 Introduction

The main aim of this research has been to investigate the utility and value of process patterns in the management
of software development projects. This chapter offers a summary of the main concepts, outlines the research
contributions, and provides a discussion of the results. The chapter contains the following sections:

• Summary of main concepts
• Research contribution
• Results summary
• Limitations
• Research 's Impact
• Future Work

In the next section, the main concepts and topics concerned in this research will be briefly discussed.

9.2 Summary of Main Concepts

The pattern concept, originating in architecture, has penetrated many areas of software engineering. Patterns are
currently employed in many domain and technology areas such as distributed computing, security, object-
domain-aspect oriented development, embedded systems, and development process [Buschmann et al. 2007] .
While the pattern concept has been adopted and applied in many domains of software engineering, there are
many issues about patterns that are being discussed within the pattern community. Some criticise the patterns for
being vague in terms of their structure and context, and call for the pattern concept to be formalised to be more
useful [Bayley and Zhu 2007](Taibi and Ngo 2001). However, while formalisation would make it easier to
create pattern tools to assist with indexing, searching, and mining patterns, it would make the pattern concept too
restrictive, causing it to lose the flexibility and the abstract nature that is its fundamental characteristic.
Furthermore, although formalisation of patterns may be possible for some well-defined domains, such as
software design and architecture, it would be extremely difficult to implement fully in some areas of software
engineering such as development processes. Process patterns typically involve a human element, making them
unsuitable to be strictly formalised in any comprehensive manner. Fundamentally, both elements of process
pattern (i.e. development processes and patterns) are abstract to an extent, and are therefore inappropriate to
attempt to fully formalise and automate their extraction or implementation (see sections 2.6.4 and 2.3.4).

A further important issue with software patterns is, that while there are numerous software patterns stored in a
number of software pattern repositories [Booch 2008][PortIand Pattern repository], it is difficult for pattern
users and software practitioners to find appropriate patterns that are best suited to the problem they are trying to
solve [Kampffmeyer and Zschaler 2007] . This is partly due to inappropriate search mechanisms. Furthermore,
the pattern repositories do not document how a number of patterns can be used in a sequence, to solve more
intricate and complex problems. The true power of the pattern concept is in the way a number of patterns can
interlink, and collaborate in a sequence to solve a problem. While some research is being done in this area (for
example [Siddle 2007]), this important aspect of patterns has not yet been researched and utilised in any
significant way. Software patterns can become much more useful and more widely used once considerable
progress is made in this area.

The value of the patterns concept as a method of capturing 'best practice ' in the software development processes
was realised and documented early in the introduction of patterns in software engineering, in works such as
[Coplien 1995][Whitenack 1994][First PLoP conference Proc. 1994]. However, the pattern communi ty and
software practitioners have by large concentrated on the product aspects and design utilities of the pattern
concept [e.g. design patterns]. There is currently far fewer published work on process-based patterns than on
software design and architecture-based patterns. The usage of development process-based patterns in the
software development industry has been much lower in comparison to design-based patterns. One of the reasons
for the low usage of process patterns in industry could be because formal development methodologies and
processes are little understood and practiced in many immature software development companies. Some studies

Chapter 9 Conclusion 1 6 3

nave shown 3 5 % of software development organisations have an ad hoc, individual-based, and informai
development process in place [Yourdon 2008] . There has also been a dearth of empirical research assessing the
utility of patterns in software engineering. While there have been a few empirical studies to evaluate the effect
and value of design patterns on some aspects of software development [Unger and Tichy 2000] [Prechelt 2 0 0 1 ,
2002] , there appears to be no crédible empirical studies to investigate the utility and value of process patterns. In
addressing this issue, it was the main objective of this research to investigate empirically whether the application
of process patterns, in a software development project, improved its quality. As a resuit, the research provided
évidence that the application of process patterns has a positive effect on many attributes, such as, traceability of
requirements, defect density, productivity, comment density, etc. Thèse will be briefly discussed in the results
section 9.4). This research has shown that process-based patterns can play an important part in improving
software development practice, by enhancing the quality of many software development attributes.

Measurement is essential in producing tangible évidence in any Field of science and engineering. While in some
fields. such as physics, measurement is a mature and well-understood process of crucial importance, it is much
less understood in software engineering and therefore its role has not been anywhere as significant [Ebert and
Dumke 2007] . There are those within the software communi ty who argue that proper and accurate measurement
in software engineering is currently impossible, because software engineering itself is not yet fully understood. It
appears that software maturity and measurement are closely interlinked in that accurate measurement will only
be possible once software development practice is fully matured. Conversely, software development will not
reach full maturity until it can be accurately measured. However immature and flawed, measurement endeavour
has to be continued earnestly in software engineering, if not for the usefulness of the results that they currently
produce, at least for their value in the advancement of our understanding of software itself, and the ways that it
can be measured. The measurement concept and practice has been an important and intégral part of the
controlied expérimental research method devised for this research. Without software measurement concepts and
related metrics, it would be impossible to evaluate software attributes and therefore impossible to conduct such
expérimentation to assess the utility of a concept, entity, or technology. Research works, such as this project,
play an important part in edging forward our understanding of software and its measurement concepts . One
feature of this research is that it has contributed to our understanding of the empirical application of software
measurement, by employing it in an expérimental research. The research provides a démonstration of the way
the measurement concepts and théories can be employed in experiments to evaluate software attributes. Such
research works, not only produce valuable measurement for évaluation of software artefacts and attributes, but
also are useful in highlighting any deficiencies in the software measurement théories and practices.

While in récent years there have been many more empirical studies in software engineering than in the past, the
numbers and the quality of the studies in terms of validation stili fall short of what is necessary and required, in
assisting the advancement of our understanding of software engineering [Sjoberg et al. 2005] [Koziołek 2005] .
One of the main reasons for such lack of empirical research in software engineering is the difficulty in
performing validated empirical research in the field. While empirical research in basic sciences such as physics
and chemistry can be done in a laboratory environment, where variables are perfectly controlied, empirical
research in software engineering is much more difficult. Software engineering takes place in the real world and
is heavily subjected to human factors and therefore designing and performing validated controlied experiments
under thèse circumstances is at best difficult and at times impossible. Diff icul tés in providing proper controls of
the variables in software engineering experiments could invalidate any results. Consequently, many researchers
appear to have shied away front undertaking such research, especially as many journals expect validated and
controlied experiments.

Although expérimentation in real-life situations involving human subjects is tedious to design and conduct ,
mainly due to diff icultés in providing full control over extraneous variables, experimenters however often
encounter reviewers that expect perfection and absolute certainty [Tichy 1998]. Furthermore, there are often
diff icultés for experimenters to publish their work in journals because many established journals find it difficult
to find editors and reviewers capable of reviewing expérimental works [ibid]. It is however recognised that the
difficulty in carrying out perfectly controlied experiments, or producing perfectly validated results, should not
prevent researchers from performing empirical investigations in software engineering. Experiments are
conducted in the real world and are always flawed in some way [ibid]. Therefore, researchers should take the
opportunity to perform expérimental research even though the circumstances may not adhère to the perfect
theoretical format. There are many challenges, such as improvement in synthesis of empirical évidence, which
requires the coopération of academia and industry to provide the necessary resources to conduct a greater
number of quality empirical research projects [Sjeberg and Dybâ 2007] . The empirical investigation, carried out
in this research programme, is an attempi to demonstrate a way of performing software expérimentation within
an académie institution involving live courses. By no means is it claimed that the experiment has been perfectly

Chapter 9 Conclusion 1Ó4

controlied and flawless, or that it has produced perfectly validated and generalised results. Realistically the world
of software engineering does not currently make that possible. W e have nonetheless tried to devise and perform
the experiments in this research as objectively and scientifically as possible, given the environmental context and
constraints. In addition to its utility in evaluating the effect of process pat tems, an important feature of this
experiment design is that it provides a method or a technique, for validating software pattems, which can
generally be used to validate any software pattern.

9.3 Research Contributions

This research programme has made a number of contributions to the scientific body of knowledge, which are
individually stated and are briefly discussed in this section.

9.3.1 Key Contribution

Provision of évidence that the application of process patterns in
software development projects improves software project quality

This is the direct contribution to the research question. Evaluation of process pat tems in terms of their effect on
software development projects has been the main aim of this study. An extensive two-part controlied experiment,
involving over 260 projects and over 750 subjects, spanning two Semesters (one académie year) was designed
and condueted for this study. Such extensive, comprehensive and high-scoped experiments have been rare within
software engineering research. A number of software attributes, measured through metrics, showed that the
application of process pat tems improved their quality (presented in the results section 9.4). In general, the study
showed that the application of process pat tems in software development projects, lead to improved quality
[Estabraghy and Dalcher 2007a] in at least thirteen of the measured attributes.

9.3.2 Additional Contributions

Determination of whether the application of process patterns varies in
terms ofits influence on team and individuai projects

One important and interesting result, that the study produced, was to show that there were différences in the
effect of process pat tems between group projects and individuai projects. The study has provided évidence that
process pat tems are more effective in team projects, than in single-person (individuai) projects. This is further
discussed in the results section 9.4.

Provision of an expérimental technique for validatine patterns

The pattern communi ty has introduced the three-rule, which states that a pattern is valid if it is observed in three
separate situations. That , however, does not differentiate between 'good ' and 'bad ' pat tems. In other words, a
pattern may occur in three différent situations but nevenheless be a 'bad ' (e.g. inappropriate or harmful) pattern.
This study has provided a validation mechanism through expérimentation, which could be employed to test the
validity ('goodness ') of one or more pat tems. The expérimental design and conduci in this study can be used as a
model for others to evaluate the validity and usefulness of software pat tems.

Design and implementation of an expérimental methodotosv in real-
life situations

Experiments in 'real-life' settings are more difficult to design and conduci than those carried out in laboratory
settings (controlied environment) where one can achieve relatively full control over variables. Results produced
in laboratory settings, however, may not extrapolate to real-life situations in which real people work on real
projects. The controlied experiment for this study was carried out in a 'real-life' situation where the experiment
subjects (final-year undergraduate students) worked on their computing projects, which acted as the objects of
the experiments.

Provision of an example of carrying out software expérimentation in
educational establishments using live courses

Educational establishments and students are valuable resources that can be employed for carrying out empirica!
research in software engineering. This study has demonstrated that live courses and modules can be fruitfully

Chapter 9 Conclusion 165

employée! to carry out expérimental investigation in software engineering. The experiment design and process
produced in this study can be used as a model or roadmap to carry out further empirical research in such
environments.

Provision of an example of devising a measurement process io

evaluate software projects

While measurement in software engineering is technically challenging and immature compared to other
engineering disciplines, it should be an essential component of software development projects in software
development organisations. In fact, one important measure of an organisation's competency is the quality of its
implemented measurement process. This study has made a contribution in providing an example of devising a
tailor-made measurement process for software project évaluation.

An investigation of issues in architectural patterns and their implication in software patterns

While some architects take the view that the patterns preserve profound designs in architecture and guide
architects, most argue that they stifles creativity and invention. Given the concems and objections architects
express about architectural patterns, should the software communi ty be concerned that the pattern issues raised
by the architects could al some point catch up with software patterns and render them effectively harmful? In this
study, architects within the U K univers i tés were queried for their views on the impact and value of architectural
patterns. Based on the results, whether the issues raised in architectural patterns could also apply to software
patterns now or in the future, was discussed.

Provision of évidence of pattern usage rates in the industry

While there have been numerous books, articles and papers on software patterns in the last decade, few
published works produced évidence of software pattern usage-rates in the software development industry. A
survey of 67 software development companies in the UK showed that the majority of the surveyed companies
(60%) used software patterns. The survey also indicated that by far the most popular software patterns were
design patterns, with only 7 % of the surveyed companies using process patterns [Estabraghy and Dalcher
2007b].

9.4 Summary of Results

Two preliminary surveys were carried out at early stages of this research in order to provide an understanding of
how the pattern concept was used in practice, in both its original (i.e. architecture) and software engineering
fields, which helped in devising the research question. The architectural pattern survey indicated that
architectural patterns suffer from criticisms of being anti-creativity and prescriptive, and therefore enjoyed
minimal usage and support within the architectural community. Only 15.4% of the architects surveyed viewed
architectural patterns as having a positive effect on architecture. There was shown to be a positive corrélation
between pattern usage levels and architects ' viewpoints. The software pattern survey, however, indicated that
software patterns were widely used in software development organisations. The results showed that 6 0 % of the
surveyed software development organisations used patterns. The vast majority of thèse companies, however,
used software design-based pattems, such as design patterns, and only 5 .7% of them used development process
based patterns such as process patterns. The majority of companies that used patterns stated that patterns
improved the quality of software attributes such as reliability, maintainability, testability, etc. There were found
to be positive corrélations between pattern usage and some of thèse attributes as depicted in scatter plots in
Figure 9 - l and Figure 9-2 (see Chapter 3). The survey also showed that only a small proportion of the surveyed
companies (6%) developed and published patterns. Of the companies that did not use patterns, 8 1 % said that
they were unnecessary, and 8 8 % said that they did not have skilled staff to use patterns. The fact that 81 % of the
companies that did not use patterns, found pattems to be unnecessary in their practice, indicates that the pattern
communi ty has much to do in introducing and publicising pattems. The pattern communi ty should therefore
provide more support to encourage software practitioners, to actively leam and improve their pattern skills and,
to implement them in their software development practice. Furthermore, the community should demonstrate to
the software industry, the benefils that can be gained by using pattems. This research has played an important
part in providing évidence of the usefulness of pattems in software development process, which could encourage
more software practitioners to employ pattems in their practice.

Chapter 9 Conclusion 1 6 6

3 . 0 0 -

2 . 5 0 -

15
(0 '
w •
3

OC
1.50-

1 .00-

/M

JH E

Scale
• 15

• 10

• 5

• o
Fit line
for
Total

R Sq Linear
0.309

1.00 1.50 2.00 2.50 3.00

Pattern Usage

Figure 9-1 Corrélation between reusabiliiy and pattern usage

3 . 0 0 -

> . 2 . 5 0 -

¿3

m
- 2 . 0 0 -
S
c

S 1.50H

1.00-

. El

JE B- -,
-

i r

1.00 1.50 2.00 2.50

Pattern Usage

Scale
I 20

• 15

• 10

• 5

• 0

Fit line
— tor

Total

R Sq Linear =
0.249

3.00

Figure 9-2 Corrélation between maintainability and pattern
usage

An expérimental research method was devised and implemented to investigate the research question and test the
research hypothesis (see Chapter 5). The experiment subjects were divided into two groups of treated and
control, where the treated groups used a set of process patterns (covering a complete development lifecycle) to
use in their software development projects. The objective was to determine if the use of process patterns as a
whole (i.e. not any particular process patterns), improved the quality of their software projects. The experiment,
involving two types of software development projects (group and individuai), was designed and conducted,
through which a number of software attributes were measured using appropriate metrics. The marks awarded by
the tutors to four attributes of the projects under investigation were also used in the experiment. The results of
the metrics and tutor marks are summarised and presented in Table 9 - 1 .

Chapter 9 Conclusion 167

P
os

it
iv

e
E

ff
ec

t
on

 G
ro

up

P
ro

je
ct

s

P
os

it
iv

e
E

ff
ec

t
on

In

di
vi

du
al

 P
ro

je
ct

s

G
ro

up
 P

ro
je

ct
s

P
er

fo
rm

ed

B
et

te
rT

ha
n

In
d.

 P
ro

je
ct

s

C
or

re
la

ti
on

:
L

og
in

s
an

d

M
et

ri
cs

/M
ar

ks
 *

M
et

ri
cs

R
eq

.
A

na
ly

si
s Percentage of traceable requirements

M
et

ri
cs

R
eq

.
A

na
ly

si
s

Percentage o f reviewed requirements specification

M
et

ri
cs

R
eq

.
A

na
ly

si
s

Percentage o f defects fixed X X X X

M
et

ri
cs

R
eq

.
A

na
ly

si
s

Percentage o f phase time spent in testing X X X X

M
et

ri
cs

D
es

ig
n

Percentage o f design document reviewed 1/

M
et

ri
cs

D
es

ig
n Number o f methods per class (Methods per Class Ratio) V

M
et

ri
cs

D
es

ig
n

Percentage of defects fixed X X X X

M
et

ri
cs

D
es

ig
n

Percentage of phase time spent in testing X X X X

M
et

ri
cs

Im
pl

em
en

ta
ti

on

Comment density v1 V V1

M
et

ri
cs

Im
pl

em
en

ta
ti

on

Percentage of code reviewed

M
et

ri
cs

Im
pl

em
en

ta
ti

on

Productívity (Implementation phase) v1 V M
et

ri
cs

Im
pl

em
en

ta
ti

on

Productivity (complete development project) v1 V

M
et

ri
cs

Im
pl

em
en

ta
ti

on

Percentage o f defects fixed X X X X

M
et

ri
cs

Im
pl

em
en

ta
ti

on

Defect density X

M
et

ri
cs

Im
pl

em
en

ta
ti

on

Percentage of phase spent in testing V X

M
et

ri
cs

D
el

iv
er

y Test case density (Test case per Requirement) v1 V1

M
et

ri
cs

D
el

iv
er

y

Percentage of defects fixed V1 X V1

M
et

ri
cs

D
el

iv
er

y

Percentage of phase time Spent in Testing V1 V

M
ar

k
s

Design and analysis X X X

M
ar

k
s

Product V V1

M
ar

k
s

Evaluation (tests) X X X X M
ar

k
s

Project management X X X X

Table 9-1 Summary of the results

Based on the results of metrics and tutor marks depicted in Table 9 -1 , patterns have been shown to improve a
number of software attributes. The improved attributes, and the percentage of statistica!ly significant
improvements, have been shown in Table 9-2.

N o Metrie
Sensitivity Margin %

N o Metrie Group
Projects

Ind.
Projects

Mean

1 Percentage of source code reviewed 47.5 41.9 44.7

2 Comment density 48.8 37.6 43.2

3 Percentage o f phase time spent in testing (Implementation) 41.2 38.4 39.8

4 Defect density 39.2 37.3 38.2

5 Percentage d e s i g n d o c u m e n t r e v i e w e d 38.1 32.1 35.1

6 Productivity (Implementation) 33.3 23.8 28.6

7 No. of methods per class (Methods per Class Ratio) 33.8 20.3 27.1

8 Productivity (overall) 27.1 19.2 23.2

9 Percentage of phase time spent in testing (Delivery phase) . 29.0 12.1 20.1

10 Test case density (Test case per Requirement) 19.4 13.0 16.2

11 Percentage o f reviewed requirements specification 20.6 10.1 15.7

12 Percentage o f traceable requirements 19.1 11.1 15.1
13 Percentage of defects fixed (Delivery phase) 11.5 8.8 10.2

Table 9-2 improved attributes and the effect size

Chapler 9 Conclusion 168

Each attribute listed above is an indicator of the quality of an aspect of a software development project and
therefore, improvements in thèse attributes are sought and desired by software practitioners (see Section 8.3). It
is signifïcant that the usage of process patterns in software development projects, improves the quality of many
attributes as listed above. These results show that the application of process patterns improve software attributes
in development activities such as testing, reviews, and productivity. Furthermore, the Table 9-1 shows that the
application of process patterns resulted in signifïcant improvements in software attributes related to the RA,
Design, Implementation, and Delivery phases. Signifïcant improvement to many attributes across ali the four
major development phases of a development lifecycle, has been shown to be an important advantage of using
process patterns in software development projects.

The différence between the effect of process patterns on group projects and individual projects were measured.
The resuit showed that for many attributes the treated subjects in group projects performed significantly better
than the treated subjects in the individual projects. This indicates that process patterns have a more prominent
effect on the group projects than individual projects. It has been shown [Table 9-1] that patterns have a more
signifïcant effect on group projects than on individual projects for the following attributes:

• Requirements traceability

• Reviews

• Granularity of modules

• Comment density

• Productivity

• Test time allocation (Implementation and Delivery phases)

• Test case density (Test case per Requirement)

• Product quality

The improved values in the group projects for the above attributes indicate that process patterns are more
effective in team projects, where a number of individuáis are directly involved. One possible reason for the
improved effect of process patterns on team projects could be due to the influence of process patterns on
producing more effective communicat ion within teams. It has already been shown that design patterns improve
communicat ion between development team members [Beck et al. 1996] [Prechelt 2002] [Unger and Tichy 2000]
(see also Table 3-8). Based on the results achieved in this study, it appears that process patterns also have a
positive effect on improving communicat ion within teams. Considering the importance of effective
communicat ion in projects [Futrell et al. 2002] , by improving communicat ion between team members ,
application of process patterns will play a role in helping to improve the software projects and therefore enhance
their chances of a successful completion.

The projects investigated in this study were offtcially marked by tutore. The four marked attributes of interest to
this study were 'Design and Analysis ' , 'Evaluat ion ' , 'Product ' , and 'Project Management ' . The marks were
subsequently analysed statistically for any différence between the treated and control groups. There were no
signifïcant différences found between the treated and control groups for three of the four marked attributes. The
three marked attributes that showed no signifïcant différence were, 'Design and Analysis ' , 'Evaluat ion ' , and
'Project Management*. There were however différences between treated and control groups for the 'product '
attribute for both group and individual projects. This showed that the treated groups received a higher mark for
the 'product ' attribute, than the control groups indicating that the product in the case of the treated groups was of
a higher quality. It is signifïcant that process patterns have been shown to improve the quality of the product
attribute, considering that it is a measure of the quality of the delivered software product as evaluated by the
tutore. Based on the results of this attribute, it can therefore be deduced that the application of process patterns
improves the quality of the product. Furthermore, it has been shown that the mean différence between the treated
groups and control in group projects, in terms of the product attribute, was higher than the individuai projects.
This indicates that group projects were more affected by the treatment (i.e. process patterns) than the individuai
projects for this attribute. Therefore, it can be concluded that the employment of process patterns, is more
effective on team projects than individuai projects. in producing better product.

The experimental research method was to test the following nuli hypothesis:

H 0 Application of process patterns in the management of a software development project will not
improve the quality of the project.

Chapter 9 Conclusion 169

The summary of the results presented in Table 9 -1 , show that application of process patterns improved a number
of software attributes in each of the four major phases of the development lifecycle. Based on these findings the
stated nuil hypothesis is rejected. Therefore, the alternative hypothesis that, the application of process patterns in
the management of a software development project will improve the quality of the project, is accepted.

There is always a degree of limitations on any comprehensive research project. This research programme is no
exception. The limitations of this research programme are discussed next.

9.5 Limitations

In studying real life situations and designing experiments within that environment to learn and understand some
phenomenon or test some hypothesis, one has to understand the constraints and limitations involved, and design
and conduct the experiment accordingly. Therefore, the nature of this study, as real life experimentadon, is such
that it invariably brings constraints on the experiment design. The main issues are discussed below:

• Selection of subjects of same abilities to both control and treatment groups
• Control of the amount of treatment condition given to the treatment groups
• Time given to accomplish project tasks
• Variation in team sizes
• Ethical issues
• Experiment scope

The experiment design considered the above points and found solutions in a way that the internal/external
validity of the experiment was not adversely affected. These are explained in the following paragraphs.

Students working on group projects had different abilities and characteristics. The students chose their own team
members to form a group to work on a common project . v Students therefore could not be assigned to teams
according to their abilities. It is also generally diffícult to judge accurately student abilities according to some
criteria and match them. However, due to the large number of groups and their random nature, any differences
and discrepancies in the groups were randomly dispersed between the control and experimental groups, and were
therefore constant and did not adversely affect the results of the experiment.

It was not possible to control and measure accurately the exact amount of treatment condition (i.e. process
patterns) that the subjects used. They were told to use as many process patterns as they needed for their project.
However , while the number of t imes each subject accessed the process pattern resource on the website were
recorded as a measure of the usage rate (discussed in Section 5.7.1), the system did not record which patterns
were accessed and used by the subject. It would have been advantageous in terms of knowing the access rates of
the individual used patterns, had the system recorded such data.

Although there was a set amount of time that the subjects had to work on their project, the amount of t ime they
actually spent on the development activities was based on their own statements. They declared how much t ime
they spent on development activities on an online measurement form. Their estimation of the time spent in each
phase was accepted to be approximate to the actual time spent. The subjects were required to fill-in the onl ine
measurement forms as accurately and as honestly as they could. They were told that the valúes they entered on
the measurement forms would not have any effect on their marks for their projects. However, because of the
random nature of the treated and control groups, any inaccuracies would be equally portioned to both treated and
control groups and therefore would not affect the validity of the results.

Although there was normally a team size of ftve for group projects, the size of groups could change and in some
cases, it did. However this did not affect the experiment as t ime and effort was based on hours (person-hour)
spent on the project. Furthermore, any change in the team size affected both treated and control groups, and was
therefore a constant factor. Therefore, while a consistent group size would have been preferred, the change did
not affect the exper iment ' s objectives or results.

There is always an element of ethical concern in experimentations involving human subjects, which have to be
fully considered in the design and conduct of an experiment. Ethical issues concerned with the experiment had to
be dealt with head on and from the first principies, meeting requirements such as, faimess, confidentiality, and
others as discussed in Chapter 5. The design of the experiment had to be therefore devised in such a way to
satisfy the Universi ty 's Ethics Commit tee , that all ethical issues were fully considered to prevent a breach of
ethics. Compromises had to be made and the experiment design went through a number of revisions before the

Chapter 9 Conclusion 1 7 0

committee approved it. The full ethical considération of the experiment, however, did not cause any serious
weaknesses to the experiment design.

The exper iment ' s aim was set to cover a complete development lifecycle, which required an extensive set of
process patterns to be used. On reflection, it would have been better if the experiment concentrated on the
évaluation of a single phase of the development lifecycle (e.g. Requirement Analysis) and a few related
attributes. This would have required the use of a small number (less than 10) of process patterns, related to the
investigated development phase, which would have been easier to manage and control. Although the scope
would have been limited, the results would have provided the opportunity to scrutinise the effect of the
individuai pat tems. In addition, the devised measurement process, covering a complete development lifecycle,
proved too ambilious and excessive in terms of its attempt to collect and analyse a large set of measurement data
(62 taken by subjects, and 12 by the researcher, for each project investigated), given the scope of the research.
The study of a single development phase would have meant a smaller, but perhaps more detailed set of
measurement data, could be collected and analysed.

In the case of the two preliminary surveys, a higher number of participants would have helped decrease the
marginal errors. However, in both surveys sufficient numbers of participants look part to reach some generalised
conclusions.

9.6 Research's Impact

Prior to this research, the utility and value of process patterns in software development was unclear. While there
have been many theoretical works on process and organisational patterns, there did not appear to be any
empirical studies to evaluate the utility and value of process pat tems in improving the quality of software
development projects. While pattems have so far had a considérable impact on the design and architecture aspect
of software development in the forni of software design pat tems, their impact on the actual process of
developing software has been minimal.

The évidence gathered through a preliminary survey conducted in this research, as well as other studies (for
example [Manolescu et al. 2007]), indicate that while software design-based pattems such as design pat tems are
popular and widely used, development process based pat tems, such as process pat tems are far less popular and
used. It appears that the software development industry requires évidence of the usefulness of process-based
pat tems before they are will use and integrate them into their development processes. This research has done that
by investigating the utility of the process pat tems in software development practice, and provided évidence of its
usefulness in improving a number of software attributes. Indeed the experiment has shown that pat tems do
improve the quality of software projects.

As a resuit of this study, there is now scientific research and relevant data available to the scientific communi ty
in general, and the software engineering and pattern communit ies in particular, on the impact and effect of
process pat tems in software development practice. The research provides évidence that the employment of
process pattern improves the quality of software development projects. More crucially, the research has indicated
thirteen spécifie measures that are improved as a resuit of applying process pat tems. The results show that the
application of process pattems improves software attributes across the four major phases of the development
lifecycle (i.e. Requirement analysis. Design, Implementation, and Delivery). This research compléments other
empirical research [Prechelt et al. 2001 , 2002] [Unger and Tichy 2000] on design pat tems, in evaluating the
software pattems and providing évidence of their utility and value. This should encourage software practitioners
and the software industry in general to take more notice of the value of process-based software pat tems, to
implement and employ them in their software development projects.

It is interesting that the survey research conducted in this study provides évidence that the pattern concept has
not received much support in the architecture community where it originated. This raises the question, whether
the software communi ty would continue to embrace the pattern concept in the future. It is hard to say in the long
term, but favourable pattern évaluation results such as this and others, as well as strong qualities. such as its
flexibility to adapt to fast changing circumstances in software engineering, should provide software pa t tems a
relatively long lifespan. For the moment, certainly, software design pattems are continuing to rise in popularity
within the software community IBuschmann et al. 2007b] and will therefore be with us for a little while yet. The
results and conclusions of this research should encourage a wider use of pat tems in general and process pa t tems
in particular, making a différence in the way future software development is managed and produced.

Chapter 9 Conclusion 171

9.7 Future Work

This thesis has explored many issues in the area of software patterns, software expérimentation, and software
measurement. Both software measurement and software expérimentation concepts were employed in this
research project to advance our understanding of software patterns and evaluate their utility and value in
software engineering. In the following sections, the areas for future work are discussed in relation to thèse topics.

9.7.1 Software Expérimentation

Educational establishments provide immense resources for expérimental research. Resources such as courses,
modules, and students are invaluable in enabling researchers to pursue research in the field of software
engineering. One crucial aspect of tapping into such resources is the understanding of the ethical issues
concemed in using students and live courses, as the subjects and objects of the expérimental research works.
This research demonstrated that, despite ethical and other constraints, such research in software engineering is
both possible and feasible. Further research is necessary in understanding the constraints involved, in design and
conduct of such experiments, and will provide guidelines and models of how to best design and conduct software
expérimentation in such environments. There may always be a trade-off between the needs of the expérimenter,
to Find the best solutions to questions or hypothèses, and those of the ethical issues concemed when students are
subjects of the experiment. It is down to the expérimenter to produce the best experiment design to find the best
solutions, while adhering to the concemed ethical issues and régulations. There is much scope for future work in
this area.

Future research could undertake to replicate this experiment in an industriai environment. Replicating the
experiment in industry involves différent types of subjects (i.e. p rofess iona l) , as well as différent settings
(work/business environment). Because subjects in such an environment would be profess iona l rather than
students, ethical issues concemed may also be différent'. It would be useful to determine if similar results or
conclusions would be achieved, if the experiment were replicated in an industriai setting.

Measurement in software engineering is stili relatively young and immature. While there has been both
theoretical and practical work in this Field in the last few décades, software engineering measurement is not as
much understood as measurements in some other engineering and science disciplines. Software engineering has
been changing and progressing rapidly through the advents of new technologies and, therefore, requires new and
appropriate methods of measuring and evaluating software to be constantly devised. There remains much more
research to be done, in order to gain a better understanding of software engineering, to enable us to devise
appropriate measurement théories, principles, and practices, to measure the différent aspects of software projects
and applications accurately and consistently.

9.7.2 Patterns

Experienced practitioners use solutions that have been proven in their expérience to work. Thèse are potential
patterns that should be extracted and stored in a specifically designed database repository, so that they can be
utilised by others. Rising [1998] proposed a number of ways of mining such expérience and knowledge in
patterns. Thèse techniques include interviewing, workshops, meetings, and classes. There are already many on-
going projects, which are being conducted by the pattern community , that aim to capture and store patterns. One
such significant example is Booch ' s Handbook of software architecture [Booch 2008] containing over 2000
patterns. However, a problem with such pattern repositories is currently the lack of appropriate indexing and
search facilities, to enable pattern users to find the spécifie patterns that would apply and solve the particular
problems they are looking to résolve. Furthermore, the current repositories fail to provide and advise on how a
number of patterns within the repositories, can be linked in a séquence to solve more complex problems.
Therefore, further research needs to be conducted on devising an appropriate and spécifie system of patterns
repositories that would enable such indexing and search facilities.

There are currently many méthodologies (e.g. Agile, OPEN. SSDM . . .) that are being practiced in industry.
Practitioners of such méthodologies will leam through répétition and expérience the solutions that work and
those that do not. Whatever methodology is officially practiced and established in an organisation, it is not
fenced with a strict set of constraining mies . The methodology would be flexible and open to application
according to the problem at hand. In applying and conforming to the established methodology, practitioners find
solutions to process-related problems through time and expérience. In mature organisations where development
methodology and process is established, expert practitioners have patterns of process solutions, (either in their
mind or written) that work. Often such knowledge lives in the 'exper ts ' heads only and are not formally written

Chapter 9 Conclusion 172

down and recorded. The pattern concept provides a medium in which such knowledge is recorded precisely and
usefully for reuse. There is therefore, an area of research to establish how expert practitioners use their
knowledge and expérience in providing solutions to development process related problems. Such research can
address questions such as what problem solving methods can be used and how the solutions can be captured in
the form of process patterns for reuse.

The concept of software pat tems needs to be given a fresh look, to concentrate on the human, harmony, and
aesthetic aspects, rather than simply apply them as a technical means of capturing and recording software design
and expérience. The pattern concept has much more meaning and potential and currently only some simplistic
aspects of it is being utilised. More research needs to be carried out in this area to establish the harmony and
aesthetic focus and aspect of patterns, (as documented by Alexander [1977, 1979] in the filed of architecture) in
software engineering.

While the terms harmony and aesthetics might seem foreign and out of place in the fteld of software engineering
and are more related to social sciences, the facts suggest otherwise. For example, software engineering involves
components that must work in harmony, to establish a perfect system and control mechanisms. Furthermore, as
software interacts with humans in one way or another, the aesthetics aspect of it becomes important in providing
an environment in which people enjoy using and interacting with software. While there has been much work
done on software pattems from a technical point of view, few seem to have focussed on the social aspects of
software pat tems. Further work needs to be done in this area to understand the link between the pattern concept
and the social aspect of software Systems.

The survey carried out in this study showed that most architects surveyed, believed that architectural pa t tems
stifled creativity. Further work needs to be done in this area to determine if pa t tems do hinder creativity in
software engineering.

The results of this study indicated that process pat tems have a better effect on team projects than on individuai
projects. Further work needs to be done to determine if the improvement rate is proportional to the size of the
teams. That is, whether, as the size of teams using process pat tems increases, will there be a proportional effect
in terms of its effectiveness?

The pattern concept therefore provides a large area of research in software engineering. While a fair amount of
research in this Fteld is already taking place, which has resulted in hundreds of published papers, much more
research work remains to be done, focussing especially on other non-technical and aesthetic aspects of the
pattern concept in relation to harmonious software Systems.

Reference and Bibliography

Abreu, FB. (1995). The M O O D Metrics Set, Proc. ECOOP'95 Workshop on Metrics

Adolph, S., Bramble, P., Cockburn, A. (2002). Patterns for Effective Use Cases. Addison Wesley

Alexander, C. (1999). The origins of pattern theory: The future of the theory, and the generation of a living
world. IEEE Software, 16 (5): 71-82

Alexander, C. (1979). The timeless way of building. New York. Oxford University Press

Alexander, C. (1977). A pattern language, Oxford University Press

Alexander, C. (1970). Notes on the synthesis of form, Oxford University Press

Alexander, C. (1988). The Oregon Experiment, Oxford University Press

Alexander, C. (1995). The Mary Rose Museum, Oxford University Press

Alexander, C , Eisenman, P. (1983). Contrasting concepts of harmony in architecture, Lotus International 4 0

Ambler, SW. (1998). Software process patterns, Cambridge University Press

Ambler, SW. (1999). More software process patterns, Cambridge University Press

Ambler, SW. (2002). Agile modelling, John Wiley and Sons Ine

Ambler, SW. (2005). The enterprise unified process. Prentice Hall

American Psychological Association (Code of Ethics). (2002). http://www.api.org/ethics

Annett, J., Duncan, K. (1967). Task analysis and training design. Occupational Psychology no. 41

Annett, J., Duncan, K., Stammers, R., Gray, M. (1971). Task analysis. London: H M S O

Annett. J. (2004). Hierarchical task analysis, in handbook of cognitive task design, Diaper (2004) Chapter 3,
Mawhah NJ: Lawrence Erlbaum

Appleton, B. (2000). Patterns and Software: essential concepts and terminology, www.enteract .com/~bradapp

Appleton, B. (1997). Patterns for conducting process improvement , proceedings of the 4 t h PLoP Conf.

Aronson, E., Carlsmith, JM. (1968). Experimentation in social psychology, the handbook of social psychology

Armour, P. (2002). Ten unmyths of project estimation, Comm. A C M . 45(11) , 15-18

Asteen, LA. (1988). The Science of Patterns, Science, 240: 611-616

Babbie. E. (2001). The practice of social research (9* Ed.), Belmont, CA: Wadsworth/Thomson Learning

Babbie, E. (1990). Survey research methods (2 n d Ed). Belmont, CA: Wadsworth Publishing Company

Baker, AL. , Bieman, JM. , Fenton, NE. , Gustafson, D., Melton, A. (1990). A philosophy for software
measurement, J Systems Software, Vol 12 , 277-281, July, 1990

Bansiya, J., Davis. C. (2002). A hierarchical model for object-oriented design quality assessment. IEEE
Transactions on Software Engineering, 28(1) pp 4-17

Reference and Bibliography

http://www.api.org/ethics
http://www.enteract.com/~bradapp

Reference and Bibliography

Barnett, V., Lewis, T. (1994). Outliers in Statistical Data (3 r a Ed). Wiley & Sons, New York

Basili, VR., (2005) , Using Measurement to Build Core Competencies in Software, Data and Analysis Centre for
Software Seminar

Basiii, VR. (2007): The Role of Controlied Experiments in Software Engineering Research," in Empirical
Software Engineering Issues, LNCS 4336

Basiii, VR., Selby, RW., Hutchens, DH. (1986). Experimentation in software engineering. IEEE Trans. Softw.
Eng. 12(1986) , pp. 733-743

Basiii, VR. (1996). The Role of Experi mentation in Software Engineering: Past, Current, and Future. ICSE 18,
1996, pp. 4 4 2 ^ 4 9

Basiii, VR., Rombach, HD. (1988). The T A M E project: Towards improve me nt-oriented software environments ,
IEEE Trans, on Software Engineering 14(6), pp 758-773

Basiii, VR, Caldiera, G., Rombach. D. (1994). Experience Factory. Encyclopaedia of Software Engineering,
volume 1, pp. 469-476. John Wiley & Sons

Basiii, VR., Caldiera, G. (1995). Improve Software Quali ty by Reusing Knowledge and Experience. Sloan
Management Review, 37(1): 55-64

Basiii, VR., Shull, F. , Lanubile, F., (1999). Building Knowledge through Families of Experiments, IEEE Trans.
Softw. Eng. 25 (1999), pp. 4 5 6 - 4 7 3

Basiii, VR. (1981). A controlied experiment quantitatively comparing software development approaches, IEEE
Trans Soft Eng SE-7(3)

Basili, VR. (1980). Tutorial on Models and Metrics for Software Management and Engineering, IEEE C o m p
Society Press (cat no EHO-167-7) , New York

Basiii VR., Reiter, R. (1979). Evaluating Automatable Measures of Software Models , IEEE Workshop on
Quantitative Software Models , Kiamesha, New York, 1979, pp. 107 - 116.

Basiii, VR., Hutchens, D. (1983). An Empirical Study of a Syntactic Complexity Family, IEEE Trans, on Soft.
Eng., Vol. SE-9, No . 6, Nov 1983, pp. 663 - 672.

Basiii. VR. et al.. (1983). Metrie Analysis and Data Validation Across F O R T R A N Projects, IEEE Trans, on Soft.
Eng., Vol. SE-9, No . 6, Nov 1983, pp. 652 - 663 .

Basiii, VR., Weiss, DM. (1984). A Methodology for Collection Valid Software Engineering Data. IEEE Trans.
onSof t . Eng., 10(11): 728-138, Nov 1984.

Basiii, VR., Briand, L., Melo, WL. (1996). A Validation of Object-Oriented Design Metrics as Quali ty
Indicatore, IEEE Trans, on Soft. Eng. Oct 1996, 751-761

Basiii. VR., Heidrich, J., Lindvall, M. . Münch, J., Regardie, M. (2007). GQM* Strategies - Aligning Business
Strategies with Software Measurement . E S E M 2007: 488-490

Bassman, M. et al. (1995). Software Measurement Guidebook, Software Engineering Laboratory Series, Rev. 1,
pp. 2 1 4 6

Bayley, I, Zhu, H. (2007). Formalising Design Patterns in Predicate Logic. SEFM 2007: 25-36

Beck, K. (2000). Extreme Programming Explained. Addison Wesley.

Beck, K., Coplien, JO. , Crocker, R„ Dominick, L., Meszaros , G., Paulisch, F., VHssides, J. (1996). Industrial
Experience with Design Patterns, Proceedings of the 18th ICSE, IEEE Computer Society Press

Reference and Bibliography

Benediktsson, O., Dalcher, D. , Thorbergsson, H., (2006). Comparison of Software Development Life Cycles: A
Multi-project Experiment, IEE Proc.-Softw., Vol. 153, No. 3, June 2006, pp 87-101

Bergner, K. et al. (1998). A Componentware Development Methodology based on Process Patterns. In Joseph
Yoder, editor, Proc. 5th Annual Conf. on the Pattem Languages of Programs (PLoP)

Bieman. J. et al. (2003). Design Pat tems and Change Proneness, Proceedings of the IEEE-CS 9th International
Software Metrics Symposium (Metrics 2003)

Black, TR. (1999). Döing quantitative research in social sciences: an integrated approach to research design,
measurement and statistics, Sage Publications

Blaikie, N W H . (2003). Analyzing quantitative data from description to explanation. Sage Publications, London

Blaine, JD. , Cleland-Huang, J. (2008). Software Quality Requirements: How to Balance Competing Priorities,
IEEE Software Mar/April 08

Boehm, B., Basiii, VR. (2001). Software Defect Reduction Top 10 List, IEEE Computer , Jan 01

Boehm, B W . (1981). Software Engineering Economics. Prentice Hall

Boehm, B., Brown, JR., Lipow. M. (1976). Quantitative Evaluation of Software Quality. Proc. 2nd Intl. Conf. on
Software Engineering. Long Beach, Calif.: IEEE Computer Society, Oct. 592-605

Boehm, B. et al. (1978). Characteristics of Software Quality, North Holland Publishing Co. New York

Booch, G. (2008). Handbook of software architecture (www.booch.com/architecture)

Bowling, A. (2002). Research methods in health (2 n d Ed), Open University Press

Brendan, G. et al. (1996). Social Pat tems in Productive Software Organizations. Annais of Software
Engineering, 259-286. Baltzer Science Publishers, Amsterdam

Briand. L., Bunse, C , Daly, J. (2001). A Controlled Experiment for Evaluating Quality Guidelines on The
Maintainability of Object-Oriented Designs. IEEE Trans. On Softw. Eng. ,20 0 1 , 27(6), pp513-530

Briand, L., Bunse, C , Daly, J. (1997). An Experimental Comparison of the Maintainabili ty of Object-Oriented
and Structural Design Documents. Empirical Software. Engineering

Briand, L., Differding, C , Rombach, HD. (1996). Practical Guidelines for Measurement-Based Process
Improvement, Software Process Improvement and Practice Journal

Briand, L. (1998). Object Oriented Software Environments, IEEE Trans. Softw Eng., 14 (6)

Briand, L, Morasca, S., Basiii, VR. (1999). Defining and Validating Measures for Object-Based High-Level
Design, IEEE Trans. Software Eng., vol. 25 , no. 5, pp. 722-741 , Sept./Oct. 1999

Briand, LR., Emam, K., Morasca, S. (1996). On the Application of Measurement Theory in Software
Engineering, Empirical Software Engineering Journal, 1(1): 61-88

Brooks, FP. (1975). The Mythical Man-Month, Benjamin/Cummings

Brooks, FP. (1995). The Mythical Man-Month: Essays on Software Engineering, Addison-Wesley

Brown, WJ. (2000). Anti-Pattems in Project Management, Wiley

Brown, WJ. et al. (1998). Anti-Pattems: Refactoring Software, Architectures, and Projects in Crisis, Wiley

Budgen, D. (2003). Software Design (2 n d Ed). Boston: Addison-Wesley

http://www.booch.com/architecture

Reference and Bibliography

Budgen, D., Kitchenham, B. et al. (2005). International Workshop on realising evidence-based Software
engineering. ICSE 2005: 687

Buschmann. F., Meunier, R., Rohnert, H., Sommerlad, P. (1996). Pattem-Oriented Software Architecture,
Volume 1, A System of Patterns. Wiley

Buschmann, F. , Henney, K., Schmidt, D. (2007). Past, present, and future trends in Software patterns, IEEE
Software July/Aug 2007.

Buschmann, F., Henney, K., Schmidt, D. (2007b). Pattem-Oriented Software Architecture, Volume 2, Pat tems
for Concurrent and Networked Objects. John Wiley & Sons Ltd

Campbell , N. (1928) , An Account of the Principles of Measurement and Calculation. London: Longmans Green

Campbell , D., Stanley, J. (1963). Experimental and Quasi-experimental design for research, Chicago: Rand
McNally

Campbell , D., Fiske, D (1959). Convergent and discriminate Validation by the multi-trait-multi-method matrix.
Psychological Bulletin (56) pp 81-105

Canfora, G. et al. (2005). A family of experiments to validate metrics for Software process models , Journal of
Systems and Software, Volume 77, Issue 2, I Aug 2005, pp. 113-129

Carey, J., Carlson, B. (2002) Framework Process Pat tems: lessons learned developing application, Adison
Wesley

Carroll. JM. (2000). Scenario-based design of human-computer interactions. M I T Press 2000

Carver, j . , Jaccheri, L., Morasca, S., Shull, F. (2003). Issues in Using Students in Empirical Studies in Software
Engineering Education, Ninth International Software Metrics Symposium (METRICS'03)

Cass, AG. et al. (2000). Little-JIL/Juliette: A Process Definition Language and Interpreter. ICSE 2000

Chang, W. (2005). Impartial evaluation in Software reliability practice, Article Journal of Systems and Software.
Volume 76, Issue 2, 1 May 2005, pp. 99-110

Chidamber. SR.. Kemerer, CF . (1994), A metrics suite for object oriented design, IEEE Trans Software Eng, 20
(6), 476-498

Christensen, LB, (2006). Experimental Methodology (10 t h Ed), Allyn and Bacon inc

Chrcher. N., Sheppard, M (1995) "towards a conceptual framework for object oriented Software metrics, A C M
SIGSOFT Software Engineering Notes, Vol 20, No. 2, April 1995

C I O 2003, The CIO news letter, www.cio.com\research\itvaIue\case.html

Coad, P„ (1992). Object-Oriented Pattems. Com. of the A C M , 1992. 35(9): p . 152-159.

Cockbum, A. (1996). Prioritising Forces in Software Design, PLoP, 9 6

Cockbum, A. (2002). Agile Software Development. Addison-Wesley

Conte, SD., Dunsmore, HE., Shen, VY. (1986). Software Engineering Metrics and Models , Benjamin Cummings

Coplien, JO. (2006). Organizational Pattems: Beyond Technology to People. In Enterprise Information Systems
VI. Dordrecht . Netherlands, Springer, 2006, pp. 4 3 — 5 2

Coplien, JO. (1991). Advanced C++ Programming Styles and Idioms. Addison-Wesley, 1991

file://www.cio.com/research/itvaIue/case.html

Reference and Bibliography

Coplien, JO. , Harrison, N. (2004). Organizational patterns of agile software development, Prentice Hall

Coplien, JO. et al. (2005). Organizational Patterns: Building on the Agile Pattern Foundations. Cutter
Consortium, Agile Project Management Report 6(6), June 1, 2005

Coplien, JO. , Neil Harrison. (2005). Organizational Patterns of Agile Software Development. Upper Saddle
River, NJ: Prentice-Hall

Coplien, J O . (1995). A Development Process Generative Pattern Language, Pattern Languages of Program
Design Addison Wesley, Reading, Mass. , 1995. Also in the proceedings of PLoP Conf. 1994

Coplien, JO. , Schmidt. D. (1995). Pattern Languages of Program Design, Addison-Wesley Publishing Company

Coplien, JO. , (1996). Software Patterns, SIGs Book and Mult imedia N e w York

Crosby, PB. (1980). Quality is Free. McGraw-Hill , London

Cunningham, W. (1995). The Checks Pattern Language for Information Integrity in Pattern Languages Program
Design, Addison-Wesley

Cunningham, W., Back, K. (1987). Using Pattern Languages for Object-Oriented Programs, in Proc.
OOPSLA'87 , Orlando

Cunningham, W. (1996). EPISODES: A Pattern Language of Competi t ive Development, Pattern Languages of
Program Design 2, Addison-Wesley Publishing Company

Dalcher, D. (2003). Handbook for information Systems research, Idea-Group Publishing

Dalcher, D. et al. (2005). Development Life Cycle Management : A Multi-project Experiment, ECBS'05 , IEEE
Computer Society Press

Dalcher, D., (2002). Life Cycle Design and Management , in Project Management Pathways: A Practitioner's
Guide, M. Stevens, Editor. 2002, APM Press: High Wycombe

Davis, A. et al. (1993). Identifying and Measuring Quality in a Software Requirements Specification, IEEE
Computer Society Press, Los Alamitos, CA, 1993

Dekkers, C , Bradley, M. (1999) It Is the People W h o Count in Measurement: The Truth about Measurement
Myths, Crosstalk, The Journal of Defense Engineering, June 1999

Delano, DE., Rising, L. (1998) Patterns for System Testing, Pattern Languages of Program Design 3 , Addison
Wesley Longman, Inc., 1998., pp. 503-525

DeMarco , T. (1982). Controlling Software Projects, Management Measurement & estimation, Prentice Hall

Deming, W E (1986). Out of the Crisis, Cambridge, MA: MIT Press

Dewberry, C. (2004). Statistical Methods for Organizational Research: Theory and Practice. London, Taylor and
Francis

Diaper, D., Stanton, N. (2004). The handbook of task analysis for human-computer interaction. NJ: Lawrence
Erlbaum Associates.

Diener, E., Grandall , R. (1978). Ethics in social and behavioural research, Chicago, University of Chicago

Dittmann, T., Gruhn, V., Hagen, M. (2002). Improved support for the description and usage of process patterns,
Ist Workshop on Process Pattems, OOPSLA 2002

Dodani, M.H.(2003) . Pattern Driven Software Engineering, Journal of Object technology, Voi 2. N o 2., 2003

Reference and Bibliography

Dorling, A. (1993). SPICE: Software Process Improvement and Capabili ty dEtermination. Software Quali ty
Journal (2), (209)

D 'Souza , DF. , Wills , A. (1999). Objects, Components and Frameworks with UML. The Catalysis Approach.
Addison-Wesley

Duquenoy, P. et al. (2005_a). Social, legal and professional issues of computing, Middlesex Uni. Press

Duquenoy, P. (2005_b) Ethics of computing in perspectives and policies on ICT in society, Springer and SBS
Media

Dyson, P., Longshaw, A. (2004). Architecting Enterprise Solutions: Patterns for High-Capability Internet-Based
Systems. John Wiley & Sons

Eakin, E (2003). Architecture's Irascible Reformer, New York Times , July 12, 2003

E b e r t , C. et al. (2005) Best practices in software measurement, Springer

Eberl , C , Dumke, R. (2007). Software Measurement Establish- Extract-Evaluate-Execute, Springer

Eden, AH. (1999). Precise specification of design pat tems and tool support, in their application, Ph.D.
Dissertation. Department of Computer Science, Tel Aviv University

Eden, D. (2002). Replication, meta-analysis, scientific progress, and AMJ's publication policy. Academy of
Management Journal, 45(5), 841 -846.

Erdogmus, H. (2008a). The Infamous Ratio Measure, IEE Software

Erdogmus, H. (2008b). Measurement Acquiescence, IEE Software

Estabraghy, A., Dalcher, D. (2007a). A Controlled Experiment to Investigate the Effect o f ' P r o c e s s Patterns' on
the Quality of Requirement Analysis, IEEE A I C C S A May 2007

Estabraghy, A., Dalcher, D. (2007b). An Investigation of the Impact and Utility of 'Software Patterns ' in
Software Development Industry, 2 0 t h ICSSEA Dec 2007

Fagan, M E . (1976). Design and Code Inspections to Reduce Errors in Program Development. IBM Systems
Journal, 15(3): 185-211

Fang, X. (2001): Using a Coding Standard to Improve Program Quality. A P A Q S , pp 73-80

Fenton N., Ohlsson, N, (2000). Quantitative Analysis of Faults and Failures in a Complex Software System,
IEEE Trans, on Soft. Eng., 26(8), 797-814, 2000

Fenton, N., Pfleeger, SL (1991). Software Metrics: A Rigorous Approach, Chapman and Hall. NY

Fenton, N., Neil, M. (1999a), A Critique of Software Defect Prediction Models , IEEE Trans. Software Eng.,
vol. 25 , no. 5, pp. 675-689, Sept iOct . 1999

Fenton, N., Pfleeger, SL (1997). Software Metrics: A Rigorous and Practical Approach (2 n d Ed). P W S

Fenton, N. (1994). Software Measurement: A Necessary Scientific Basis, IEEE Trans, on Soft. Eng., Vol. 20 ,
No . 3, March 1994, pp. 199 - 206

Fenton, N. , Pfleeger, SL., Glass, RL. (1994). Science and substance: A challenge to software engineers. IEEE
Software, pp. 8 6 - 9 5 , July 1994

Fenton, NE. , Melton, A (1996). Measurement Theory and Software Measurement, Software Measurement ,
International Thomson Computer Press, 1996, pp. 27-38

Reference and Bibliography

Fenton, N., Neil, M. (1999b). Software Metrics: successes, failures, and new direction. Journal of Systems and
Software, 47, pp. 149-157

Ferrari, C. (1997). The Road to Maturity Navigating Between Craft and Science, IEEE Software, Nov. 77-82.

Festing, MFW. , Altman, D. (2002). Guidelines for the design and Statistical analysis of experiments using
laboratory animáis. ILAR Journal 43(4) : 244-258

Field, A. (2000). Discovering Statistics using SPSS for Windows, Sage Publications

Finkelstein, L (1982). Theory and Philosophy of Measurement, in Theoretical Fundamentals , vol. 1, Handbook
of Measurement Science, John Wiley & Sons, 1982, pp. 1 -30.

Florac, WA. et al. (1997). Practical Software Measurement , Measuring for process management and
improvement, SEI Guidebook, CMU\SEI-97-HB-003

Florac, WA., Carleton, AD. (1999). Measuring the Software Process: Statistical Process Control for Software
Process Improvement. Addison-Wesley

Foote, B. (1994). Lifecycle and Refactoring Patterns That Support Evolution and Reuse. PLoP 94

Foot, B., Y o d e r , J . (1997). Big Ball o f M u d , proceedings of PLoP 97

Foote, B. (1993) A Fractal Model of the Lifecycle of Reusable Objects. O O P L S A ' 9 3

Fowler. M, (1997). Analysis Patterns: Reusable Object Models . Addison-Wesley.

Fowler, M. et al. (2002). Patterns of Enterprise Application Architecture, Addison-Wesley

Fuggetta, A. (1998) Applying G Q M in an industrial software factory, A C M Trans, on Soft. Eng. and
Methodologies, Vol. 7, issue 4, pp 411-448

Furey, S., KUchenham, B. (1997). Point/counterpoint: function points. IEEE Software, 14(2), 63-72

Futrell, R. et al. (2002) Quality Software Project Management, Prentice Hall

Gabriel, P. http://hillside.net/patterns/definition.html

Gabriel, P., Goldman, R. (2000). Mob Software: The Erotic Life of Code, O O P S L A 2000

Gabriel, R. (1996a). Repetition, Generativity, and Patterns, P L O P Book 2. Addison-Wesley

Gabriel, R. (1996b). Pat tems of software, Oxford University Press

Gamma, E. et al. (1995). Design patterns: Elements of Reusable Object-Oriented Software. Addison Wesley

Ghezzi, C , Jazayeri, M. (2003). Fundamentals of Software Engineering (2™1 Ed) . Prentice Hall, Upper Saddle
River, NJ

Gillies. A. (1997). Software Quality: Theory and Management , International Thomson Computer Press

Gilb, T. (1988). Principies of Software Engineering Management , Addison-Wesley, 1988.

Gilb, T. (1977), Software Metrics, Winthrop Publishers, Inc., Cambridge, Assachusetts

Gil!, GK., Kemerer, CF. (1991). Cyclomatic Complexity Density and Software Maintenance Productivity, IEEE
Trans on Soft Eng, V 17, No . 12, Dec91 , pp. 1284 - 1288.

Glass, R.. Vessey, I., Ramesh, V. (2002). Research in Software Engineering: An Analysis of the Literature, J.
Information and Software Technology, vol. 44 , no. 8, June 2002.

http://hillside.net/patterns/definition.html

Reference and Bibliography

Glass. RL. (1998). Software Runaways: Lessons Leamed from Massive Software Project Failures. Upper Saddle
River, NJ: Prentice-Hall

Gnats, M. et al. (2001). Towards a living Software development process based o n process patterns, 8 m European
Workshop on Software process technology 2001

Goodman, P. (2004). Software metrics - best practices for successful IT management . Philip Jan Rothstein,
FBCI . Brookfield, CT, USA, 2004

Grady, RB., Caswell, DL. (1987). Software Metrics: Establishing a Company-Wide Program. Englewood Cliffs,
NJ: Prentice-Hall, 1987

Grady, R. (1992). Practical Software Metrics for Project Management and Process Improvement, Prentice Hall ,
Englewood Cliffs, NJ

Grady, R. (1994) Successfully Applying Software Metrics, IEEE Comp, Vol. 27, No. 9, pp. 18 - 25

Graham, I. (2003). A pattern language for web usability, Addison-Wesley, 2003

Gueheneuc, Y., Albin-Amiot, H. (2001) Using Design Patterns and Constraints to Automate the Detection and
Correction of Inter-Class Design Defects, Proc. 39th Int'l Conf. and Exhibition Technology of Object-Oriented
Längs and Sys, pp. 296-305, 2001

Hahsler, M. (2005) A quantitative study of the adoption of design patterns by open source Software developers .
In S. Koch, editor, Free/Open Source Software Development, pp. 103-123. Idea Group

Hall, T., Fenton, NE. (1997). Implementing effective Software metrics programmes, IEEE Soft. 14(2), 55-66

Halstead, M H . (1977). Elements of Software Science, New York: Elsevier North Holland

Hall, T., Fenton, NE. (1997) Implementing effective Software metrics programmes, IEEE Software, 14(2)

Hall, T., Baddoo, N., Wison, D. (2001) Measurement in Software process improvement programmes, Springer
New York pp. 73-82

Hamming, R W . (1950), Error detecting and error correcting codes. Bell System Tee . Journal, 26(2): 147-160

Hardy, GH. (1941). A Mathematician's Apology (London 1941).

Harrison, W., Magel , K. (1981). A topological analysis of the complexity of Computer programs with less than
three binary branches. S IGPLAN Not., 16(4):51-63, 1981

Harrison, N B . (1996) Organizational Patterns for Teams, Pattern Languages of Program Design 2, Addison-
Wesley Publishing Company

Harrison, N. (1996). Patterns of produetive Software organizations, Bell Labs Technical Journal, 1(1): 138-145,

Hecksei, D. (2004). Software Development Patterns, P L O P ' 0 4 Conference

Hefner, K. (1995). An experience-based optimization of the Goal/Question/Paradigm. In Proceedings of the
California Software Symposium

Heires, JT. (2001). What I Did Last Summer: A Software Development Benchmarking Case Study, IEEE
Software, v o l . 19, no. 5, Sept/Oct. 2 0 0 1 , p . 33

Helm, R. (1995). Patterns in practice. IEEE Trans, on Software Engineering, 28(6), 595-606

Hetzel, B. (1993). Making Software Measurement Work: Building an Effective Measurement Program, Q E D
Technical Publishing Group, Boston, Massachusetts.

Reference and Bibliography

Herbsleb, J. et al. (1997) Software quality and the capability maturity model . Communicat ions of the A C M 40(6)

Hillside group (pattern communi ty website), http://hillside.net/pattems/

Hinkle, M. (2007) Software Quality, Metrics, Process Improvement, and C M M I : An Interview with Dick
Fairley, IT Professional, vol. 9, no. 3, pp. 4 7 - 5 1 , May/Jun, 2007

Hitz, M., Montazeri , B. (1996), Chidamber and Kemerer ' s Metrics Suite: A Measurement Theory Perspective,
IEEE Trans Software Eng., vol. 22, no. 4, pp. 267-271, Apr. 1996

Hoffman, D. (2000), The Darker Side of Metrics, Pacific Northwest Software Quality Conference

Hone, G. and Stanton, N. (2004) HTA: The development and use of tools for Hierarchical Task Analysis in the
Armed Forces and elsewhere, HFI-DTC

Howell, DC. (2002) Statistical Methods for Psychology (5 l h Ed) . Duxberry press

Huang, C , Lo, J., Kuo, S., Lyu, M . (2004). Optimal Allocation of Test ing-Resource Considering Cost,
Reliability, and Testing-Effort. PRDC 2004: 103-112

Huang, H., Zhang, S. (2003). Hierarchical process pattems: construct software processes in a stepwise way,
Systems, Man and Cybernetics, 2003 . IEEE International Conference on

Hughes, B., Cotterell, M. (2005). Software Project Management , McGraw-Hil l

Hull, E., Jackson, j . , Dick, J. (2005). Requirements Engineering (2 n d Ed). Springer

Humphrey, W. (1989). Managing the Software Process, Reading, M A : Addison-Wesley, 1989

Hyatt, L. Rosenberg, L., (1996). A Software Quality Model and Metrics for Risk Assessment, Journal for
Software Quality, Nov . 9 6

IEEE Standard 730-2002, IEEE Standard for Software Quality Assurance Plans

IEEE Standard. 829-1998, IEEE Standard for Software Test Documentat ion

IEEE Standard 830-1998, IEEE Standard for Software Requirements Specifications

IEEE Standard 1028-1997, IEEE Standard for Software Reviews

IEEE Standard 1012-1998, IEEE Standard for Software Verification and Validation

IEEE Standard 1061-1998, Standard for a Software Quality Metrics

Ince, DC. (2003). Developing Distributed and Ecommerce Applications, Addison Wesley

Ince, D C , Sharp, H., Woodman, M. (1993). Introduction to software project management and quality assurance,
McGraw-Hil l

Ince. DC. (1998). Software Development: Fashioning the baroque, Oxford University Press

Ince, DC. (1991). Software Quality and Reliability: Tools and Methods, International Thompson Computer Press

Ince, DC. (2000). From data structures to pat tems, Macmillan Press Ltd

IQPC (2003). The international Quality and Productivity Centre, www.iqpc.com

ISO (international Organization for Standardization): ISO 15393. www.iso.org

http://hillside.net/pattems/
http://www.iqpc.com
http://www.iso.org

Reference and Bibliography

Jacobs, J. (1961). The death and life of great American cities. New York, Vintage Books

Jalil, MJ., Noah. S. (2007) The Difficulties of Using Design Patterns among Novices: An Exploratory Study,
IEEE Computer Society

Jeffery, R., Scott, L (2002). Has twenty - f ive years of empirical Software engineering made a difference?
Software Engineering Conference, 2002. pp. 539 - 546

Johnson, R., Bhattacharyya, G. (2001). Statistics: Principles and Methods (4 m Ed), Wiley, New York

Jones, C. (1986). Programming Productivity. N e w York, N Y : McGraw-Hil l

Jones, C. (2007). Estimating Software Costs (2™* Ed), McGraw-Hil l

Jones C. (1996). Applied Software Measurement: assuring productivity and quality (2 n J Ed) , McGraw-Hill

Jung, J. (1971), The experimenter 's di lemma, New York hopper & C o

Juristo, N., Moreno, A. (2001), Basics of Software Engineering Experimentation. Kluwer Academic

Kan, SH. (1995). Metrics and Models in Software Quality Engineering, Addison-Wesley

Kampffmeyer, H., Zschaler, S. (2007). Finding the Pattern You Need: The Design Pattern Intent Ontology.
M o D E L S 2 0 0 7 : 2 1 1 - 2 2 5

Kaner, C. Bond, W. (2004) Software Engineering Metrics: What do they measure and how do we know?
(METRICS '04) Chicago

Kaplan, RS. Norton, DP. (1996), The Balanced Scorecard. Boston: Harvard University Press

Kaposi, A., Myers , M. (1994). Systems, models and measures , Springer-Verlag, London

Karacan, O. (2000). Organisational Patterns, EuroPLoP Conf. Proceedings, EuroPLoP 2000

Keller, A., Ludwig, H. (2002). DeFining and monitoring Service level agreements for dynamic e-business.
Conference Proceedings (LISA 2002), Philadelphia, USA

Kennedy, J., Bush, AJ. (1984). An introduction to the design and analysis of experiments. Lanham, M D :
University Press of America, Inc.

Kerth, N. (1995). Caterpillar 's fate: A pattem language for transformation from analysis to design, in Pattern
Languages of Program Design, Addison-Wesley

Khazanchi, D. Munkvold, BE. (2003). On the rhetoric and relevance of IS research paradigms; a conceptual
framework and some propositions. 36th Hawaii International Conference on System Sciences

Khoshgoftaar, T M . et al. (2005). Resource-oriented Software quality Classification models , Journal of Systems
and Software, Volume 76, Issue 2, 1 May 2005, pp. 111-126

Kimble, C , Selby, W. (2000). An interdisciplinary study of Information Systems: Christopher Alexander and IS
failure (Proc. UKAIS, p256-265)

Kircher, M. , Völler, M. (2007) Software Patterns, IEEE Software, July-Aug. 2007

Kitchenham, B., Pfleeger, SL., Pickard, L., Jones, P., Hoaglin, D C , Emam, K., Rosenberg, J. (2002) .
Preliminary guidelines for empirical research in Software engineering. IEEE Trans, o n Soft. Eng. 28 (8), 7 2 1 -
734. Aug. 02

Kitchenham, B., Dybä, T., J0rgensen, M. (2004). Evidence-Based Software Engineering. ICSE 2004: 273-281

Reference and Bibliography

Kitchenham, B„ Mendes , E. (2004). Software Productivity Measurement Using Multiple Size Measures . IEEE
Trans. Software Eng. 30(12): 1023-1035

Kitchenham, B. (1987). Towards a constructive quality model, Soft Eng. Journal, July 87. pp . 105-113.

Kitchenham, B., Pfleeger, SL. (1996). Software Quality: The Elusive Target, IEEE Software, Jan 1996, pp 12-21

Kitchenham, B., Pfleeger, SL., Fenton, N. (1995). Towards a Framework for Software Measurement Validation,
IEEE Trans on Soft Eng, vol .21 , No. 12, pp. 929 tO 943 , Dec95

Kitchenham, B. . Colin, D. (2007) Misleading Metrics and Unsound Analyses IEEE Software Mar/Apr 2007

Kohn. W. (2002). The lost prophet of architecture, Wilson Quarterly Summer 2002

K o m p a s s , ht tp: / /www.kompass.co.uk

Koziolek, H. (2005). The Role of Experimentation in Software Engineering. Seminar Research Methods , Carl
von Ossietzky University of Oldenburg

Kriz, J. (1988) Facts and Artefacts in Social Science: An Epistemological and Methodological Analysis of
Empirical Social Science. McGraw Hill Research

Kroeber, AL. (1948). Anthropology: Culture, Patterns and Process. Harcourt, Brace and World

Kutz, M., et al. (2003). Kennzahlen in der IT. Dp unkt-veri ag, Heidelberg, Germany

Lang, T., Secic, M. (1997). How to Report Statistics in Medicine: Annotated Guidelines for Authors, Editors and
Reviewers, American College of Physicians, 1997

Landsberger, H. (1958). Hawthorne Revisited, Ithaca

Laplante, P., Niel, C (2006). Anti-patterns: Identification, Refactoring, and Management , CRC Press 2006

Laplante, P. (2007) What every engineer should know about software engineering, C R C Press

Larman, C , (2004) Agile and Iterative Development: A Manager 's Guide. Addison-Wesley.

Larman, C , Basiii, VR. (2003) Iterative and Incremental Development: A Brief History. IEEE Computer, 2 0 0 3 .
36(6): p . 47-56.

Larman, C. (2002). Applying U M L and Patterns: An Introduction to Object-Oriented Analysis and Design and
the Uni_ed Process (2 0 d Ed). Prentice-Hall

Lawler, J., Kitchenham, B. (2003) Measurement Modelling Technology, IEEE Software Jun 03

Leedy, PD., Ormrod, JE. (2005). Practical research: Planning and design (8 * Ed.). New Jersey: Pearson Merrill
Prentice Hall

Lehman, M M . (1980). Programs, life cycles, and laws of software evolution. IEEE Trans, on Soft. Eng., 68(9) .

Lehman, M M . (1987) . Process Models , Process Programs, programming Support. Proc. 9 l h . Intern. Conf.
Software Engineering, IEEE Computer Society 1987.

Lethbridge, TC. (2000), What Knowledge Is Important to a Software Professional? IEEE Computer, Vol. 33 ,
No . 5, pp 44-50

Lewis , J. et al. (1991). An Empirical Study of the Object-Oriented Paradigm and Software Reuse, O O P S L A ' 9 1 ,
pp 1 8 4 - 196.

http://www.kompass.co.uk

Reference and Bibliography

Li, W. (1998). Another metric suite for object-oriented programming. Journal of Systems and Software,
44:155.162, 1998.

Linberg, KR. (1999). Software developer perceptions about Software project failure: a case study, Journal of
Systems and Software, Volume 49 , Issue 2-3 , 1 Dec 1999, pp. 177-192

Lim, JS.,et al. (2005). An empirical investigation of the impact of the object-oriented paradigm on the
maintainability of real-world mission-critical Software, Journal of Systems and Software, Volume 77, Issue 2, 1
August 2005, pp. 131-138

Lipsey, M W . , Wilson, D B . (2001). Practical meta-analysis. Thousand Oaks, CA: Sage Pub.

Lorenz, M., Kidd, J. (1994). Object-Oriented Software Metrics, Prentice Hall Publishing, 1994.

Ma, J., Wang, Y. (2006). A Quantitative Context Model of Software Process Patterns and Its Application
Method Quality Software, Sixth International Conference on, Oct. 2006. pp. 243 - 250

MacCormack, A., Kemerer, CF., Cusumano, M., Crandall. B (2003) Software Development Practices: Exploring
the Trade-offs between Productivity and Quality, IEEE Software, vol. 20, no. 5, pp. 78-85

Madachy, RJ. (2008). Software Process Dynamics, Wiley-IEEE Press

McGarry, J. (2001). When It Comes to Measuring Software, Every Project Is Unique IEEE Software, vol. 19,
no. 5, Sept./Oct. 2001

Manns , ML. (2002). Introducing patterns to organizations, EuroPLoP Conference Proceedings, EuroPLoP 2002

Manolescu, D., Kozaczynski, W., Miller, A., Hogg, J. (2007), The Growing Divide in the Patterns World, IEEE
Software, Vol. 24, Issue 4, Jul-Aug 07, pp 61-67

Marco, A., Buxton, JN. (1987), The Craft of Software Engineering. Addison Wesley

Martin, R. (1994). Discovering Patterns in existing application, PloP94

Martin, J., MClure, C. (1985). Diagramming Techniques for Analysts and Programmers. Prentice-Hall,
Englewood Cliffs, NJ.

Marinescu. R., Ratiu, D. (2004). Quantifying the Quality of Object-Oriented Design, Proceedings of the 1 Ith
IEEE Working Conf. on Reverse Engineering (W C R E 2004), IEEE Computer Society Press

Maxwell , JA. (1996). Qualitative research design: An iterative approach. CA: Sage Publications.

Maxwell . SE., Delaney, HD. (1990). Design experiments and analyzing data: A model comparison perspective.
Belmont. CA: Wadsworth Publishing.

Maxwell , KD.. Forselius, P. (2000) Benchmarking Software-Development Productivity, IEEE Software, v.17
n . l , p . 8 0 - 8 8 , J a n 2000

McBurney, DH. (2003). Research methods (6 * Ed), Brooks/Cole

McCabe , T. (1976). A Software Complexity Measure, IEEE Trans. Soft Eng SE-2(4), 308-320

McCall , JA. et al. (1977). Factors in Software Quality, Tech. Report. RADC-TR-77-369, Rome Air
Development Centre, Air Force Systems Command, Griffiss Air Force Base, N. Y.

McConnell , S. (1996) , Rapid Development: Taming Wild Software Schedules, M'sof t Press

McConnel l , S. (1997) . Software Project Survival Guide. Microsoft Press

Reference and Bibliography

McConnell , S. (1998) Best Practices: The Art, Science, and Engineering of Software Development. IEEE
Software 15(1): 118-120(1998)

McCrone. J. (2004) New Scientist, Print Edition. March 2004

Meli, R. (2000). Functional And Technical Software Measurement: Conflict Or Integration ? F E S M A - A E M E S
2000 Conference Proceedings, Madrid, October 18-20 2000

Melton, A C , Gustafson, D., Bieman, J., Baker, A. (1990), A Mathematical perspective for Software measures
research. IEE Software Engineering Journal, 5(5):246-254, 1990

Meszaros, G., Doble, J. (1997). A Pattern Language for Pattern Writing, Pattern Language of Program Design 3,
Addison-Wesley

Meszaros, G. (2007) Unit Test Pat tems: Refactoring TestCode, Addison-Wesley, 2007

Meta Group (2002). The business of IT Portfolio-Management: Balancing risk, innovation, and ROI.
www.metagroup.com

Miller, L. (2003). Pattem language, New York Times July 27, 2003

Mills, E. (1988). Software Metrics, SEI Curriculum Module SEI-CM-12-1 .1 , Carnegie Mellon University

Montgomery, DC. (1997). Design and analysis of experiments. New York : Wiley

Moore , D., McCabe , G (1993). Introduction to the Practice of Statistics. W.H. Freeman and Company , New
York, 1993.

Moore , G C , Benbasat, I. (1991). Development of an Instrument to Measure the Perceptions of Adopting an
Information Technology Innovation, IS Research, Sept, 1991, Vol. 2, N o 3, pp 192-222.

Moore , J. (2000). Combining and Adapting Process Pat tems for Flexible Workflow, l l t h International
Workshop on Database and Expert Systems Applications, September 2000

Morasca, S. (2003). Foundations of a weak measurement-theoretic approach to Software measurement. F A S E
2003 :200-215

Morasca, S., Briand, L. (1997), Towards a Theoretical Framework for Measuring Software Attributes, presented
at 4th International Software Metrics Symposium (METRICS '97)

Morasca, S., Briand, L., Basiii, VR., Weyuker, E., Zelkowitz, M (1997b) Comments on Towards a Framework
for Software Measurement Validation, IEEE Trans on Soft Eng, pp. 187 - 188 Mar 1997

Mowbray, T. , Malveau, R. (1997). C O R B A Design pat tems. New York: Wiley Computer Publishing

Moynihan, T. (1996). An Experimental Comparison of Object-Orientation and Functional-Decomposit ion as
Paradigms for Communicat ing System Functionality to Users. J. Systems Software, 1996. 33(2): p . 163-169

Munson, J C , Khoshgoftaar, TM. (1992) Dynamic Program Complexity: The Determinants of Performance and
Reliability, IEEE Software November, 1992, pp.48-55

Munson, J C , Khoshgoftaar, T M . (1990) Applications of a Relative Complexi ty Metrie for Software Project
Management , Journal of Systems and Software, Vol 12, No. 3, July 1990, pp. 283-293

Myers, GJ. (1975) Reliable Software through Composi te Design, Van N Reinhold New York

Nance, RE., Arthur, JD. (2002). Managing Software quality: A measurement framework for assessment and
prediction. Springer, London, 2002

NASA. Software Assurance Technology Centre S A T C http://satc.gsfc.nasa.gov

http://www.metagroup.com
http://satc.gsfc.nasa.gov

Reference and Bibliography

Noble, J., Biddle. R. (2002). Patterns as signs. In E C O O P Proceedings

Oates, BJ. (2005). Researching Information Systems and Comput ing, Sage, 2005

Odell, JJ. (1998). Advanced Object-Oriented Anaiysis & Design using UML, Sigs Ref. Lib

Olague, HM. et al. (2007). Empirical Validation of Three Software Metrics Suites to Predict Fault-Proneness of
Object-Oriented Classes, IEEE Trans. Software Engineering Voi 33 . N o 6.

Olsson, T. (2001). V-GQM: A Feed-Back Approach to Validation of a G Q M Study, Metrics '01 International
Software Metrics Symposium, 2001

Oman. P, Pfleeger. SL. (1997). Applying software metrics IEEE Computer Society Press, C A

Ormerod, T C . Shepherd, A. (2004). Using task analysis for information requirements specification: The
Handbook of Task Analysis for Human-Computer Interaction. Lawrence Erlbaum Associates

Osterweil, LJ. (1987). Software processes are software too, proceedings of ICSE 1987

Osterweil, LJ. (1997). Software processes are software too, revisited. Proceedings of ICSE 1997

Page, S., Yates, C (1973). Attitüde of psychologists towards the experimenter controls in research. The Canadian
psychologist, 14 ,202-207

Pant, Y. et al. (1996). Generalization of Object-Oriented Components for Reuse: Measurement of Effort and Size
Change, J. Object-Oriented Programming, voi. 9, pp. 1 9 - 4 1 , 1996

Park, RE. et al. (1996). Goal-Driven Software Measurement: A Guidebook (CMU/SEI-96-HB-002,
ADA313946) . Pittsburgh, Pa.: Soft Eng Institute, Carnegie Mellon University, July 1996

Patterns Central website, http://www.patternscentral.com

Pattern Communi ty Website, http://www.hillside.net

Perlis AF., Sayward, FG., Shaw, M. (1981). Software Metrics: An Analysis and Evaluation. Cambridge, Mass. :
MIT Press, 1981

Parsons, H M . (1974) What Happened at Hawthome? Science, voi. 183, no. 8, pp. 922 -932 , Mar. 1974

Perry, D. et al. (2000). Empirical studies of software engineering: a roadmap. ICSE '02 pp 345-355

Pfanzagl, J. (1971). Theory of Measurement (2™1 Ed). Wurzburg, Physica-Verlag, 1971.

Pfleeger, SL„ Fenton, N., Page, S. (1994). Evaluating Software Engineering Standards, IEEE Computer , Voi.
27, No . 9, September 1994, pp. 71 - 79 .

Pfleeger, SL., Palmer, JD. (1990). Software Estimation for Object Oriented Systems, Fall International Function
Point Users Group Conference, Texas, October 1-4, 1990, pp. 181 - 196.

Pfleeger, SL. et al. (1991). A Software Metrics Database: Support for Analysis and Decision-Making,
Proceedings of the Ninth Annual National Conference on Ada Technology, March 9 1 , pp. 114 - 119.

Pfleeger, SL. et al. (1997). Status Report on Software Measurement, IEEE Software, March/Aprii 1997, 33-43.

Pfleeger, SL. (1993). 'Lessons Learned in Building a Corporate Metrics Program. ' , IEEE Software, pp. 67-74.

Pfleeger, SL. (1999). Albert Einstein and Empirical Software Engineering. In: Computer 32 (99), 10, pp. 3 2 - 3 8

PLoP (1994 to 2007). The Ist to 131*1 Conference on Pattern Languages of Programs

http://www.patternscentral.com
http://www.hillside.net

Reference and Bibliography

Porter, R, Calder, PR. (2004). Patterns in Learning to Program - An Experiment, Proceedings of ACE'2004 .
pp.241-246

Portland Pattern Repository. http://c2.com/ppr/

PSM, Practica! Software and Systems Measurement, http:/ /www.psmsc.com/

Prechelt, L., Unger, B., Philippsen, M. Tichy, W F . (2002). Two Controlled Experiments Assessing the
Usefulness of Design Pattern Documentation in Program Maintenance. IEEE Trans on Soft Engineering,
28(6):595-606, June 2002

Prechelt, L., Unger, B., Tichy, WF. , Brössler, P., Votta, LG. (2001) A Controlled Experiment in Maintenance
Comparing Design Patterns to Simpler Solutions, IEEE Trans, on Soft. Eng., vol. 27, no. 12, pp. 1134-1144,
Dec. 2001

Pressman, R., Ince, D. (2000), Software Engineering, a practitioner 's approach, European Adaptation, M c G r a w -
Hill

Pressman, R. (2005). Software Engineering: A practitioner's approach (6^ Ed)., McGraw-Hil l

Ramesh, B., Jarke, M. (2001). Toward Reference Models for Requirements Traceability, IEEE Trans, on Soft.
Eng., v.27 n . I , p . 5 8 - 9 3 , J a n 0 1

Rees, D. (2001). Essential Statistics (4 * Ed). Chapman and Hall, 2001

Reibing, R. (2001_a). Assessing the Qual i tyof Object-Oriented Designs. O O P S L A 2001 Proc.

Reibing, R. (2001 J>) . The Impact of Pattern Use on Design Quality Position Paper for the O O P S L A 2001
Workshop

Riehle, D., Züllighoven, H. (1996). Understanding and Using Pattems in Software Development. Theory and
Practice of Object Systems, Vol. 2(1), 1996, pp. 33-13 .

Rising, L. (1998). CRC Handbook of Object Technology, CRC Press. 1998

Rising, L. (1999). Patterns: A Way to Reuse Expertise, IEEE Communicat ions Mag. Vol. 37, No. 4 .

Rising, L., Manns , ML. (2004). Fearless change: Pattems for introducing new ideas, Addison Wesley

Roche, JM, (1994). Software Metrics and Measurement Principles. A C M SIGSOFT Software Engineering Notes
19, 1, 1994, 77-85

Rolland, C , Prakash. N. (1993). Reusable Process Chunks. In Proc of 4th International Conference on Database
and Expert Systems Applications. DEXA93 , Prague Slovakia, September 1993.

Rombach, D. (1991). Practical Benefits of Goal-Oriented Measurement, in: Software Reliability and Metrics,
Elsevier Applied Science, 1991

Rosenberg, L. Hyatt, L., (1996). Developing a Successful Metrics Program, STC '96,

Rosenthal, R. (1998). Covert Communicat ion in Classrooms, Clinics, and Courtrooms, Eye on Psi Chi . Vol. 3 ,
No . 1, pp. 18-22

Royce, W. (1970). Managing the Development of Large Software Systems: Concepts and Techniques. Western
Electronic Show and Convention (WesCon) August 25-28, 1970, LA. USA

Rubin, HA. (1996). The Top 10 Mistakes in IT Measurement, IT Metrics Strategies, Vol. II, No. 11. November
1996, www.cutter .com/benchmark/1996toc.html

http://c2.com/ppr/
http://www.psmsc.com/
http://www.cutter.com/benchmark/1996toc.html

Reference and Bibliography

Rudestam, KE„ Newton, RR. (2001). Surviving yourdisser ta t ion (2 Ed), Sage Pub. Inc.

Salingaros, NA. (1999). Architecture, Patterns, and Mathematics . Nexus Network Journal Apr 99.

Salingaros, NA. (2000). The Structure of Pattern Languages. Architectural Research Quarterly 4:149-161

Saltelli A. Tarantola S., Campolongo, F. and Ratto, M , (2004), Sensitivity Analysis in Practice. A Guide to
Assessing Scienufic Models , John Wiley & Sons.

Sapsford, R. (2007). Survey research (2 n d Ed) , Sage Publication

Saunders, W S . (1999). From taste to judgment , Harvard Design Magazine, Winter-Spring, 1999, number 7

Saunders, W S . (2002). A Pattern Language: reviewed, Harvard Design Magazine , Winter-Spring, 2002, no. 16

Sauro, J., Kindlund, E. (2005): A method to standardize usability metrics into a single score, Proceedings of
A C M CHI/HFCS 2005. pp. 401-409

Schach, SR. (2005). Object-oriented and classica! software engineering, McGraw-Hil l

Scanlan, DA. (1989). Structured Flowcharts Outperform Pseudo code: An Experimental Comparison. IEEE
Software 6(5): 28-36 (1989)

Schmidt, D, Stai, M., Rohnert, H., Buschmann, F. (2000). Pattern-Oriented Software Architecture: Patterns for
Concurrent and Networked Objects. Wiley, 2000

Schmidt, C D. (1995). Using Design Patterns to Develop Reusable Object-Oriented Communicat ion Software,
Communicat ion of the A C M 1995

Schroeder, M. (1999). A Practical Guide to Object-Oriented Metrics, IT Professional, v. l n.6, 30-36, Nov 1999

S D P P (2002). Proceedings of the lst Workshop on Software Development Patterns

SEL (1995). Software Measurement Guidebook. NASA, Goddard Space Flight Center, Software Engineering
Lab, SEL-94-102.

Seaman, C B . (1999). Qualitative methods in empirical studies of software engineering, IEEE Transaction on
software engineering, Voi 25 No. 4 July 1999.

Selltiz, C. (1959). Research methods in social relations, Holt, New York

Shalloway, A. (2003). Can patterns be harmful. Cutter IT Journal September 2003

Shamoo, A. (2002) Ethics of the Use of Human Subjects in Research, Garland Science

Simons, CL., Parmee, I C , Coward, PD. (2003), 35 years on: to what extent has software engineering design,
IEE Proceedings - Software, 150 (6)

Shaughnessy. JJ., Zechmeister E B . (2002). Research Methods in psychology, 6* Ed, McGraw-Hil l

Shepherd, A. (2001). Hierarchical task analysis. New York: Taylor & Francis

Shepperd, M. (1996). Foundations of Software Measurement . Prentice Hall

Shepperd, M., Ince, DC. (1993). Derivation and validation of software metrics, Clarendon Press

Shneiderman, B., Mayer, R., McKay, D., and Heller, P. (1977). Experimental in vesti gations of the utility of
detailed flowcharts in programming. Communicat ions of the ACM 20, 6(1977), pp. 373-381

Reference and Bibliography

Shull, F. , Basili, VR. et al. (2004). Knowledge-Sharing Issues in Experimental Software Engineering. Empirical
Software Engineering An International Journal, 9, n. 1-2, p . 111-137

Shull, F., Singer, J., Sjoberg, D. (2008) Guide to Advanced Empirical Software Engineering, Springer-Verlag

Siddle, J. (2007). Creating Software Architecture using Pattern Sequences, EauroPlop 2007

Silverman, M. (1974). The experimenter, Canadian psychologist 15

Singleton, J., Straits, C. (1999). Approaches to social research (3 r J Ed). Oxford University Press

Singer, j . , Vinson, NJ. (2002). Ethical Issues in Empirical Studies of Software Engineering, IEEE Trans, on Soft.
Eng., voi. 28 , no. 12, pp. 1171-1180, D e e , 2002

Six s igma http://software.isixsigma.com/library/content/c051207b.asp

Sjoberg, DIK., Anda, B., Arisholm, E., Dyba, T. et al. (2002). Conducting Realistic Experiments in Software
Engineering, Proceedings of the 2002 International Symposium on Empirical Software Engineering (ISESE '02)

Sjoberg, DIK., Hannay, J., Hansen, O., Kampenes , V., Karahasanovic, Liborg N., Rekdal, A. (2005). A Survey
of Controlied Experiments in Software Engineering. IEEE Trans, on Software Engineering, Voi. 3 1 , No. 9.

Sj0berg, D., Dybä, T., Jorgensen, M. (2007). The Future of Empirical Methods in Software Engineering
Research, 29th International Conference on Software Engineering (ICSE'07)

Software Engineering Institute (SEI) http://www.sei.cmu.edu/

Sommervil le , I. (2007). Software Engineering (8 l h Ed) , Addison-Wesley

Standisti Group, (2007). Chaos Chronicles Online: Quality, The Standish Group International, Ine

Stanton, NA. (2006). Hierarchical task analysis: Developments, applications, and extensions. Applied
Ergonomics 37, 5 5 - 7 9

Steen, LA. (1988). The Science of Patterns, Science voi. 240 pp. 611 -616.

Stevens, S. (1946). On the theory of scales of measurement. Science, 103, 677-680

Storrle, H. (2003). Making agile processes scalable. In ProSim 0 3 , 2003.

Storrle, H. (2001). Describing Process Patterns with U M L . In Ambriola, Vincenzo (Ed.), Software Process
Technology, 8th Eur. Ws. E W S P T 2001

Storrle. H, (2000). Models of Software Architecture. PhD thesis, Ludwig-Maximilians-Universitat München ,
Institut furlnformatik

Subramanyam, R. et al. (2003), Empirical Analysis of CK Metrics for Object-Oriented Design Complexi ty:
Implications for Software Defects. IEEE Trans on Soft Eng 29(2003)4, pp. 297-310

Taibi , T. ,Ngo, DCL. (2001). Why and How Should Patterns Be Formalized. Journal of Object-Oriented
Programming (JOOP), voi. 14, no 4, 8-9

Tang , A., Babar, M., Gorton, I., Han, J. (2006). A survey of architecture design rationale. Journal of Systems and
Software 79(12): 1792-1804

Thompson, DW. (1917). O n G r o w t h and Form, Dover Publications (Revised Edition 1992)

Tichy, W E . (1998). Should Computer Scientists Experiment More? IEEE Computer, pp. 32-40.

http://software.isixsigma.com/library/content/c05
http://www.sei.cmu.edu/

Reference and Bibliography

Tichy, WF. . Lukowicz, P., Prechelt, L., Heinz, EA. (1995) Experimental evaluation in computer science: a
quantitative study, Journal of System Software. 28 (1995), pp. 9 -18

Thiessen, R. (1994). Mathematics , the Science of Patterns, AIMS, Aprii 1994

Torgerson, S. (1958) Theory and Methods of Scaling. New York: John Wiley & Sons

Tully, C. (1998). Improving software practice: case experiences; Wiley; Chichester

Tully, C. et al. (1999). Software process analysis and improvement; IEEE Comp society, California PP 51-106.

Tsantalis, N., Chatzigeorgiou, A., Stephanides, G. (2006). Design Pattern Detection Using Similarity Scoring.
IEEE transaction on software engineering, Voi. 32, No . 11, November 2006

Unger, B., Tichy, WF. (2000). Do design patterns improve communicat ion, An experiment with pair design.
Proc. Int'l Workshop empirical studies of software Maintenance

Veileman, PF. Wilkinson, L. (1993). Nominal , ordinai, interval, and ratio typologies are misleading. The
American Statistician, voi. 47 No . 1, 65-72 1

Voas, J., Agresti, -W. (2004). Software quality from a behavioural perspective, IT Pro, 6(4) pp 46-50, 2004.

Vokac, M. (2004a). Defect Frequency and Design Patterns: An Empirical Study. IEEE Transaction on Software
Engineering, VOL. 30, NO. 12, Dee 2004

Vokac. M., Tichy, W. et al. (2004b). A Controlied Experiment Comparing the Maintainability of Programs
Designed with and without Design Patterns: A Replication in a Real Programming Environment, Empirical
Software Eng., vol. 9, no. 3, pp. 149-195, 2004

Wakeland, W. et al. (2004). Using design of experiments, sensitivity analysis, and hybrid Simulation to evaluate
changes to a software development process. Software Process: Improvement and Practice 9(2): 107-119 (2004)

Walonick DS. (1997). Survival Statistics , Statpach Ine

Walton, CE. , Felix, CP. (1977). A Method of Programming Measurement and Estimation, IBM Systems J. 16(1),
pp 54-65

Webster, B. (1995). Pitfal lsof Object-Oriented Development, M & T Books, 1995

Wegner, P. (1976). Research Paradigms in Computer Science. Proceedings of the 2nd International Conf. on
Software Engineering, San Francisco, California, US, pp 322 - 330

Weir, C. (1998). Patterns for Designing in Teams, Pattern Languages of Program Design 3, Addison Wesley
Longman, Inc., 1998

Weinberg, G. (1992). Quality Software Management , Vol. 1, 'Systems Thinking' , Dorset House

Weinberg, G „ Schulman, E. (1974). Goals and Performance in Computer Programming, Human Factors, vol. 16,
pp. 70-77

Wendorff, P. (2001). Assessment of Design Patterns during Software Reengineering Lessons Learned from a
Large Commercial Project, In Proceeding of C S M R ' 2 0 0 1 . pp. 7 7 - 8 4

Whitenack, B. (1994). RAPPeL: A Requirements-Analysis-Process Pattern Language. Based on the proceedings
o f P L o P 1994.

Whitmire. SA. (1997). Object Oriented Design. Measurement . John Wiley & Sons. Ine

Wiegers K. (1997) , Software Metrics: Ten Traps to Avoid, Software Dev, Voi. 5, No. 10

Reference and Bibliography

Wiegers, KE. (1999). A Software Metrics Primer, Software Development. July 1999

Wiedenbeck, S. (1999). Novice comprehension of small programs written in the procedural and object-oriented
styles. International Journal of Human-Computer Studies. 5 1 (1) (99), pp. 71-87

Wilson, W M , Rosenberg, LH, Hyatt, LE (1997). Automated Analysis of Requirement Specifications, Nineteenth
International Conference on Software Engineering (ICSE-1997)

Wilson, W. (1999) Writing Effective Naturai Language Requirements Specifications, Crosstalk: The Journal of
Defence Software Engineering, Feb 99 .

Winer, BJ., Brown, DR., Michels , KM. (1991). Statistical principles in experimental design. N e w York:
McGraw-Hil l . Inc.

Winn, T., Calder, PR. (2002). Is This a Pattern? IEEE Software 19(1): 59-66

Withall , S. (2007). Software requirements patterns, Microsoft press

Wohlin. C. et al. (2000) Experimentation in Software Engineering An Introduction, Kluwer Academic

Yourdon, E. (2008) Moving beyond SEI -CMM level one, Software Best Practice Conference, March 2008

Yu. TJ. et al. (1988). An Analysis of Severa! Software Defect Models , IEEE Trans Soft. Eng, Voi 14, N o 9,
1988, pp 1261-1270

Zdun, U. (2007). Systematic pattern selection using pattern language grammars and design space analysis.
Softw., Pract. Exper. 37(9): 983-1016

Zelkowitz, MV. , Wallace, DR. (1997). Experimental Validation in Software Engineering. In Information and
Software Technology 39 (1997), pp. 7 3 5 - 7 4 3

Zelkowitz, MV. , Wallace, DR. (1998). Experimental models for validating technology. IEEE Computer. 23-31

Zhou, Y. (2006), Empirical Analysis of Object-Oriented Design Metrics for Predicting High and Low Severity
Faults. IEEE Trans. Software Eng. 32(10): 771-789

Zuse, H. (1998). A Framework of Software Measurement . Berlin, Walter de Gruyter

Zuse, H. (1991). Software Complexity: Measures and Methods, De Gruyter. Berlin

Appendix A. Experiment Détails 192

Appendix A. Experiment Détails

In this sexton the following items are presented:

• Snapshots of online measurement form

• The complète measurement form

• Officiai marking scheme/criteria for group and individual projects

• Group project assignment

• American Psychological Association Code of Ethics

Snapshots of online measurement form

J v T o d u l e ' . C K Í P T 3 9 9 1 a n d C î v T T 3 9 9 2 I v f e a s u r e m é n t F o r m "i

S t u d e n t D é t a i l s

i . Student No,| I First Namci | j Sumames \

Module I ,,") Semester Q\2i I Campus f

R e q i l i r e r u e r i t A n a l v s i s P h a s e M e a s u r e s

I Number of user requirement | ! • - " ~ J

" ' Zi • • "öl Number/and word counts, of R E Q U I R E M C R I T E T A L E M E N T S : No | j "Word count \

1 Numbei of define d uie-catei 1 ' . I

Number of use-cale di&grams I i CRC Diagrama | . j Other RA diagrama f_

, ^Cumulative number ofhouri (perion hour) spent in this phase: f"

f l'Iumber of timea this phase was revisited Çi.c. ite rado us) [~

i Number of rvtjutr+martt attctiyeis diagrama reviewed | _____

S !

[Percentage oî r*quir*m*nt anaiysxs document revicwed | I ™̂

"' |"~ — """" ' ~" ~~ . • r***i
^_ h |CumulSit3ve number of hours (P C R I O N - h o u r) spent in testing and reviewmg j {

\ Cumulative number of hours (pcrson-hour) spent in this phase ïo Gx defects | ' [' "

' «Total number of defects found in this phase | | ' .fât

j Total number of defects Ëxed in this phase | . . .1 Çjjp

Figure App_A 1 Snapshots of online measurement form

The complete measurement form

Module CMT3991 and CMT3992 Measurement Form

Student Détails

Student No.l- First N a m e s ' - Surnames

Module 1 Semester (1/2) I Campus

Requirement Analvsis Phase Measures

Number of user requirement

Appendix A. Experiment Détails 1 9 3

Number, and word counts, of requirement statements: No . < - > Word count

Number of defined use-cases >

Number of use-case diagrams I " CRC Diagrams 1 . '• Other RA diagrams

Cumulative number of hours (person hour) spent in this phase: 1

Number of t imes this phase was revisited (i.e. itérations) I

Number of requirement analysis diagrams reviewed I— 1

Percentage of requirement analysis document reviewed I 1

Cumulat ive number of hours (person-hour) spent in testing and reviewing I 1

Cumulative number of hours (person-hour) spent in this phase to fix defects

Total number of defects found in this phase I - -

Total number of defects fixed in this phase I—~—J

Total number of team meetings held in this phase (for group projects)

Total number of meetings held with project supervisor (for individual projects) ' - - - i

Other info and comments relevant to this phase:

Design Phase Measures

Number of class diagrams IT

Number of activity diagrams

Number of sequence diagrams 1-

Number of other Design diagrams Name, if any.

Number of user interface (UI) screens I 1

Number of database tables 1

Number of database relationship diagrams

Number of words in the design document 1.

Number of t imes this phase was revisited (i.e. itérations)

Percentage of design document reviewed |~~~™~^

Number of design models reviewed in this phase

Total number of defects found in this phase

Appendix A. Experiment Détails 194

Total number of defects fixed I

Cumulat ive number of hours (person hour) spent in the design phase: « -

Cumulative number of hours (person hour) spent in the testing the designs

Cumulative number of hours (person hour) spent in this phase on rework to fix defects

Total number of team meetings held in this phase (for group projects) I -

Total number of meetings held with project Supervisor (for individuai projects)

Other info and comments relevant to this phase:

? M i ^ ^ ^ M ^ v v f f t V . *

Implementat ion/Programming Phase

What programming language(s) was/were used for implementation:

Was a coding standard used If yes what

Total number of classes (modules, in the case of non-OOP) developed I - - - !

Total number of methods (functions, in the case of non-OOP) developed

Total number of developed source lines of code (SLOC)

Total number of inline comments

Number of database queries

Cumulative number of hours (person hour) spent in testing I

Cumulative number of hours (person hour) spent in this phase

Number of t imes this phase was revisited (i.e. itérations)

Number of test cases developed ' —

Number of test cases executed I 1

Percentage of code inspected/reviewed _ _

Total number of defects found in this phase *

Total number of defects fixed I

Cumulat ive number of hours spent (person hour) in this phase on rework to fix defects I-

Total number of team meetings held in this phase (for group projects) 1

Total number of meetings held with project supervisor (for individuai projects)

Other info and comments relevant to this phase:

Appendix A. Experiment Details 195

Delivery Phase Measures
Number of test cases developed for the application

Number of test cases executed for the application

Total number of defects found in the application

Total number of defects fixed I

Cumulat ive number of hours (person hour) spent in this phase:

Cumulat ive number of hours spent (person hour) in testing

Cumulat ive number of hours spent (person hour) in this phase on rework to fix defects I i

Total number of team meetings held in this phase (for group projects)

Total number of meetings held with project Supervisor (for individuai projects)

Other info and comments relevant to this phase:

Subrrit Form Reset

Appendix A. Experiment Details 196

Officiai Marking Scheme/Criteria

Group and individua! projects are marked by respective tutore on the 12 marking components depicted in Table
App_A 1. Grading levels and their requirements for the results, design and analysis, évaluation and product
criteria are depicted in Table App_A 2, Table App_A 3 , Table App_A 4 , and Table App_A 5 respectively.

Abstract
Introduction
Problem Definition
Analysis, Design & Method
Results/Product
Evaluation (of both process & results)
Conclusion (section)
Use & Citation of literature
Research & Concepts
Présentation
Student Compétence
Student Management of the Project

Table App_A 1 Officia! marking criteria for group and individuai projects

Markin e Scheme for product Criteria
Fail Poor Average Good Excellent

No significant results. Similar findings (or Weaknesses detract High standard reached Results/product offer
OR products) are widely seriously but are in documentation. a notable original
Product is not available. Distinctive acknowiedged. software and/or feature, quality or
working or does not aspects of the problem Results, or product. methodology. purpose. Pathway
appear to match any not covered. incorporate adequate Findings fit the indicated for further
part of the original testing or validation problem studied and development.
criteria without any activities alternatives are Findings are original
attempi at discussion compared. and coula" be applied
or justification. OR in other projects and

Software fails appear superior to the
gracefully. Remaining usual alternatives OR
errors are software is release
acknowiedged. Clear quality OR output of
indication of particular quality
assumptions and presented.
crucial trade-off Documentation
décisions. includes advanced

issues. Deep
understandîng of
assumptions and
trade-offs.

Table App_A 2 Grading arrangements for produci criteria

Appendix A. Experiment Details 197

Markin g Scheme for Evaluation Criteria
Fail Poor Average Good Excellent

N o attempt at
évaluation. N o
recommendations
stated. N o clear idea
of how, or if, the
recommendations
could be
imp lernen ted.

Lacks objectivity.
Only minor relevant
évaluation of the work
is presented. Limited
évaluation without
clear links to the
objectives.

Some évaluation with
some links to work
undertaken. Many key
issues identified.

Significant évaluation
of the outcome (or
product) with little
emphasis on the
process and methods.
Clearly stated
évaluation firmly
based on évidence
provided. Feasible set
of recommendations
linked with project
objectives.

Reflective and
insightful évaluation
o f the project and
associated
conclusions.
Assessment o f both
process and outcome.
Choices of approaches
and methods re-visited
in light of outcomes.
Objectives fully
reviewed. Clear
understanding of
potential and
limitations.
Appropriate and
realistic

recommendations
consistent with
results.

Table App_A 3 Grading arrangements for évaluation criteria

Marking Scheme for Design and Analysis Criteria
Fail Poor Average Good Excellent

Little attempi at
analysis, synthesis and
design. Wrong
problem addressed.

Major gaps in the
analysis and/or design
with respect to the
original problem

Evidence o f analysis
and design which
appear incomplete in
comparison with
original problems.
Some missing aspects.

Evidence o f analysis
and design in respect
to the original
problem.

Analysis and design is
explicit. Ail problems
addressed.

Tab le App_A 4 Grading arrangements for Design and Analysis criteria

Marking Scheme for Project management Criteria
Fail Poor Average Good Excellent

Chaos. N o planning or
organisation. N o sign
of criticai appraisal of
project pathway.

A minority of aspects
o f the project are well
managed by the
Student.

Some aspects of the
project are well
managed by the
student, some
managed poorly or not
at ali.

Ali aspects o f the
project are managed
by the student, the
majority are managed
weil. Sound planning.

The student évidences
self-motivation and
self-management
throughout the
project. High level
planning and
organisatìonal skills.

Table App_A 5 Grading arrangements for Project management criteria

Appendix A. Experiment Details 198

Project assignaient for Group Project (C M T 3 9 9 1)

A private clinic in London called Carex International wants to develop a web application for their intranet
system in which patients, doctors, nurses and other relevant healthcare workers can have appropriate access to
the system in order to store, retrieve and amend information about the patients. Security and confi denti ali ty are
an important aspect of this system and users of the system must have access to a level appropriate to their
position and needs. The clinic* s system requirements are based on a standard clinic practice, which you are
required to collect through investigation. The following is a list of some of the characteristics of the clinic (others
will dépend on your investigation and assumptions):

• The clinic has 10 senior doctors, 20 junior doctors, 30 nurses and 5 administrators
• The clinic has room for admissions for up to 95 patients.
• Senior doctors can prescribe treatment at ali t imes.
• Junior doctors can only prescribe treatment that has been approved by a senior doctor.
• Junior doctors can discharge patients once approved by a senior doctor.
• Nurses cannot prescribe treatment, but will keep a log of patients ' conditions on the system.
• Patients can only read their medicai records but cannot modify them.
• Doctors can have access to an up-to-date record of each patient.
• The clinic administrators need to know how many patients are currently admitted and how many are

due to be discharged.
• The clinic administrators need to know how many deaths there had been amongst the admitted patients

within a period of ti me.
• Senior doctors need to know how many patients they are responsible for.

Tasks:

1. Design and develop a software system for the clinic using an appropriate development lifecycle
containing (Requirement analysis, Design, Implementation, and Delivery) phases

2. Apart from the facts listed above, make any assumptions about the clinic and their requirements that
your investigation indicate appropriate and record them. Where possible, support your assumptions or
the requirement based on real Hfe data gathered through interviews or other sources.

3 . (For Expérimental groups only) Wherever appropriate, use the process patterns given to you in the
pattern document and record ali the instances where they were used.

4. Produce a report as detailed in the module handbook
5. Produce a user manual for the software

Excerpts from the American Psychological Association Code of Ethics
1. Institutional Approval
2. Informed Consent to Research
3. Informed Consent for Recording Voices and Images in Research
4 . Client/Patient, Student, and Subordinate Research Participants
5. Dispensing With Informed Consent for Research
6. Offering Inducements for Research Participation
7. Deception in Research
8. Debriefing
9. Reporting Research Results
10. Plagiarism

Appendix B. Patterns 199

Appendix B. Patterns

This appendix contains the following sections

• Pattern Philosophy

• Screenshots from the W e b s i t e hosting process patterns to be used by subjects

• Sample of Process patterns used for the experiment

• Examples of general Pat tems

Pattern Theory Philosophy

A basic human impulse is to look for patterns in our surroundings such as l ime. For example, people organise

their daily activities around natural rhythms, such as the rising and setting of the sun.

Although Christopher Alexander is often credited as the founder of the pattern concept with his works in
architecture in the 1960's and 70 ' s , the root of the pattern concepts goes back to earlier works in the field of
mathematics and natural sciences. Patterns have played a significant part in the field of mathematics and science
according to some mathematicians and scientist. Human beings evolved and gained the ability to do mathematics
because the mind mimics both natural and man-made patterns [Salingaros 1999]. Hardy [1941] notes 'A
mathematician is a maker of patterns ' . Steen [1988] also writes, "Mathematics is the science of patterns."

lt is also argued [Thiessen 1994] that Kepler 's three laws of planetary motions were discovered as a resuit of his
search for patterns of the planetary movements . Furthermore, Newton ' s formulation of the laws of gravity was
also due to his search for patterns in the astronomica! data of his day [ibid]. More recently, pat tems were defined
in the field of anthropology by Kroeber [1948] who introduced the concept of patterns and defined it as follows:
"Patterns are those arrangements or Systems of internai relationship which give to any culture its cohérence or
plan, and keep it front being a mere accumulation of random bits. They are therefore of primary importance"
[ibid].

However, it was the extensive research work in the field of town and building architecture in the 1960s and 70s
that really established pat tems as a practica! as well as philosophical concept in the field of architecture.
Alexander [1977, 1979, 1988] and his colleagues at the Centre for Environmental Structure in Berkeley,
California spent more than 20 years developing an approach that was based on a new attitude in architecture and
planning which he published in a number of books. Alexander believes that there is a way of building that Spans
over thousands of years that has always been and will always be valid. He called this the timeless way, which is
discussed, in the next section.

Timeless way

At the core of all successfui processes of growth, there is one fundamental invariant feature, which is responsible
for their success. This way of building has been behind almost all the way of building for thousands of years.
The way to identify it, as suggested by Alexander, is to go to a level of analysis, which is deep enough to show
what is invariant in all the différent versions of this way. This hinges on a form of représentation, which reveals
all possible construction processes, as versions of one deeper process. Examples of such buildings are traditional
villages in Africa, India and Japan as well as religious buildings such as mosques, monasteries of the middle
âges, and the temples of Japan. Other examples are the mountain huts of Norway and Austria, cloisters and
arcades of English country towns and the cathedral of Pisa.

Alexander [1979] argues that this general deeper process that they ali have in common is a quality thaï cannot be
named. He called this the quality without a nume. This concept is discussed in the next section.

The quality without a name

In order to seek the timeless way we must first know the quality without a name. [Alexander 1979] defines this

as follows: "There is a central quality which is the root criterion of life and spirit in a man, a town a building or a
wilderness. This quality is objective and precise but cannot be named. The quality cannot be named is not due to

Appendix B. Patterns 2 0 0

Us vagueness, but due to a lack of clear, precise and appropriate words to describe it because each word you use
to capture it has fuzzy edges and extensions which blurs the central meaning of the quality [ibid], Therefore,
terms, such as 'alive*, 'whole ' , 'comfortable ' , ' free ' , 'exact ' , 'egoless ' and 'e ternai ' , used to describe this quality
are ail insufficient to describe and name this quality.

There is a code, like genetic code, for human acts of building. There is a process that takes place in person ' s
mind when he al lows himself to generate building or a place that is alive. Alexander [1979] argued that this
process is a language, which he named a pattern language. In the next section, this pattern language concept is
discussed.

Pattern Languages

People can shape buildings for themselves and have done it for centuries, by using languages, which is called
pattern languages. A pattern language can give a person who uses it the power to create an infinite variety of
new and unique buildings, just as his ordinary language gives him the power to create an infinite variety of
sentences. For thousands of years people have used thèse pattern languages to build houses and towns. In
traditional cultures, thèse processes were common. Even though there are hundreds of farmhouses in the Alps,
ali similar, yet stili each one is beautiful, filled with same éléments but in unique combinat ions so that it is alive
and wonderful.

The question, for example, how is a farmer able to make a new barn, lies in the fact that every barn is made of
patterns. Although the farmer has some sort of an image of the bam in his mind, this image is not like a drawing

or a blue print. It is a system of patterns that function like a language enabling the farmer to make a new barn

unlike the ones he made before by combining ali the patterns that he knew in a new way. Thèse patterns can be
combined and recombined to make an infinite variety of unique barns.

Appendix B. Patterns 201

Screenshots from the Website hosting process patterns to be used by subjects

L o g i n «F"«>t"T¥l P r o c e s s P a t t e r n s

Tn t i c iiHiiii by t i u t h o r i ^ c d u s e r l ' o r p r o j e c t . F i H » Í £ 7 i r n u i t H u t M i d i U c s c x UriivtTHiry

Student No r

F i n i i Name F

Unlvcnlty C : : ampiii: | " i

IVI o dui* Numbrr: | . . . _£J (C l v r r a 9 9 1 , O r

Password ! C Fot help contact: ii.estatiniatiy@mtlx.BC.uk >

Figure App_B 1 Login form

1 ñb iiew Favw!» look t*sb " |

 r

. ft^kos I http ://www. scftmsY«earch-COfnjpror»sq»tterf4/ptase_l .htm

Pattam Ñama: Reauírement Ansiysis Phase

Pj-oblem DaflnttJort Whal should Ce done dunng me requirement atiaJysis phase? í"

Probl»m Oeaeripuon R

Hoy» to start a software development project and lay the foundation is crucialiy importan!. Furrhermore. how to get tne proiect 'f,
started and knovflng what should be done in this initial phase of the project is essential. f

The main goal of the requjremerr. anal/sis phase is to lay the foundation for a successful project. Unfortunately, howevar. often the fe
temptation is to ignore or play dcwn the importance of this phase and rnove on to the so called "the real work" (I e. the constructiort h
phase). This ¡s causea by lack of understanding of the signlficance of the initiate phase and ¡ts critical ¡mportance in e successful k
software development project. ¡

Conto xt :|-

As this is the first phase of development, there are not many entry conditions. Here are the two things that shouid be there before i.
starting: f

• There is a requirement for :he software, t

* There 's accessto hardware, software and tools required. ¡-

Solutlon: ^

ln this phase the project plan should be put in place and initial requirements get defined. The following parallel acttvities should be I
taking place in this phase. Note that aII three acnvities must be taking place atthe same time. I-

1 Defining andvalidating initial requirements; (See Paltern $LAGS_í_ 1). ¡
2. Defining the initial project management (See Pattems S¡AG&_2_ I) \
3. Justifying the project (See Pattem SLAGE_3_!). I
4. Defining the project infrastructure. (See Pattern Sf.3oe_^_/). i

Figure App_B 2 Snapshot of a process patterns hosted online for the experiment

mailto:ii.estatiniatiy@mtlx.Bc.uk

Appendix B. Patterns 202

' E»" 'fr*>^»— • '•ovo.«»..-' [OBl.̂ 'tW>;.> '•• < • -, - - . . . - H U B

~ i

P n t f m I P : S t a g e 1 1

P a t t e r n N a m » : Defipe and Vahdate Initial reauiremont5 S t a g e

P r o b l a n r H o w t o defirte and valtdate tne initial requiremenis tor an application

P r o b l a m D t i c r i p t t o n :

In order rhat you k n o n vitiat e x a c t e is required for the application and wrrat n e e d s to b e accompl i sned at trie end ot the project, you
n e e d to know what act ions and procédures you should follow. Defining and validoting the initial requiromonts ensure mat you havo
documen ted ail met le required and nave Duiit a solid toundonon fromwhrch modelling can begm.

C o n t e x t

As this i s the first s t a g e ot the first p h a s e , trière are noi many entry conditions.

• Commitment (you n e e d to m a k e a commitment to comple te ttie s t age)

S o l u t i o n :

The (onowing main tosks h ove to b e dono:

1 . Define initial requirements (S e e Pattern Task_ '_'_*)
2. Document initial requirernents (S e e Pattern Task__2_ l_ I)
3. Vohdato initial requirements (Soe Pattern TasR_3_ 1_ 1)
a. Prioriuse Initial requiremenis (S e e Pettarn Tast,._4_i_,f)

Project task 3=

• M ê m e s

There can b e Iwo metnes : ~§

1. Number of u s e - c a s e s - |

§2

Figure App_B 3 Snapshot of a process patterns hosted online for the experiment

A Sample of Process patterns used for the e x p e r i m e n t

The following is a shortened sample selection of process patterns, which were used in the experiment as

treatment.

Pattern Name: Program
Problem Définition: How should programming process proceed?
Solution:,

This involves carrying out a number of tasks that are as follows:
1. Understand the models (See Pattern Task ¡13).

2. Reuse existing code and components (See Pattern Task 2 13)

3. Document source code (See Pattern Task 3 13)
4. Write object oriented source code (See Pattern Task 4 1.3)

5. Synchronise Source code with models (See Pattern Task 5 13)

6. Optimise code (See Pattern Task 6 13)

7. Create a "build" (See Pattern Task 7 I 3)

Pattern Name: Inspect Code
Problem: How to inspect code
Solution:

Code reviews often reveal problems that normal testing techniques do not; in particular, poor coding
practices that make your application difficult to extend and maintain. Code reviews should concentrate
on the following issues:

• Making sure that the code satisfies the design

• Naming conventions for your classes, methods and attributes

• Code documentation standards and conventions

• Have you documented what a method does?

• Have you documented what parameters must be passed?

• Have you documented what values are returned by a method?

• Have you documented both what and why a piece code does what it does?

Appendix 8. Parterns 203

• Writing small melhods that do one thing and one thing well

• Simplifying the code

Pattern Name: Test source code
Problem Definition: How to carry out testing the source code

Solution:
• The solution involves carrying out the following tasks:-

• Develop/update the master Test /QA pian (See Pattern Task 14 2)

• Validate your code {See Pattern Task 2 4 2)

• Record Defects (See Pattern Task 3 4 2)

Pattern Name: Code testing techniques

Problema How to do code testing
Solution!
There are four fundamental code-testîng techniques:

• Black Box testing: Also called interface testing is a technique in which you create test cases based
only on the excepted functionality of a method, class or application without any knowledge of its

internai workings. The goal of a black box testing is to ensure that the system can do what it should be
able to do but not how it does it.

• White box testing: Also referred to as clear box testing or detailed testing, the basic idea in this is that

you look at your code and then create test cases that exercise it. The main advantage of white box

testing is that it enables you to create tests that will exercise specific unes of code that may not have

been tested by simple black box testing

• Boundary-value testing: This is based on the fact that you need to test your code to ensure that it

handles unusual and extreme situations. For example in a transaction if someone tried to withdraw -

£5.00 or £0.00 the system does not crash and knows how to handle the situation.

• Coverage and patti testing: This is a technique in which you create a séries of test cases design to test
ali the code paths in your code. In many ways, this is s imply a collection of white box test cases that

together exercise every line of code in your application at least once.

Pattern Name: Record defects
Problem: How to record defects
Solution

By recording key information about the defect, you have an accurate description of the problem for
repairing it, and you have the data you need to identify week areas in your software process. It is
suggested to record the following information about a defect:

• Description of the defect

• Date the defect was found

• Name of the person who found it

• Defect type

• Stage the defect was found in

• Stage that the defect was introduced in

• Stage that the defect was removed in

• Date the work was started

• Date the defect was fixed

• Steps to recreate the defect

• Effort, in hours or work days, to ftx the defect

• Description of the solution

Pattern Name: Granularity

Problem: What should be the components granularity levels?

Solution:

Appendix B. Patterns 204

• Large melhods/classes are more difficult to understand and maintain. Object get things done by
collaborating with each other and not by doing everylhing themselves. This results in smaller classes
and shorter methods. If they are large, it is an indication that there is a problem

Pattern Name: De-couple Stages
Problem: How do you de-couple stages (architecture, design, coding) in a development process?
Solution:

• Link each role to a central role that orchestrâtes process activities. Parallelism can be re-introduced if
the central role pipelines activities.

• For known and mature domains, serialize the Steps. Handoffs between steps should take place via well-
defined interfaces. This makes it possible to automate one or more of the steps, o r to create a pattern
that lets inexpert staff carry out the step.

Pattern Name: Continuity or Seamlessness
Problem: How to build a system that clearly maps to a model of problem or real world
Solution:

• Build and integrate user 's business model. Build a clear vocabulary of the problem domain

• Cast system requirements in terms of the business model . If the domain model has been clearly defined,
system requirements can be discussed and understood more precisely.

• Choose classes based on the business model to maintain traceability, déviations forced by performance,
current or planned reuse, and other constraints should be local and clearly documented.

• Maintain development layers (business model to code). Clear séparation of domain ' s system, and
technology infrastructure descriptions (and code) helps localise changes.

• Build many projects on the same model

Related Patterns
Make a business Model , Construct a System Behaviour Spec

Pattern Name: Divide and Conquer
Problem: How to simplify large implementations
Solution:

• Construct the implementation to a spécification as some form of composit ion of smaller componenls .
Each design should be constructed in terms of spécifications of its parts. There may be many (or many
potential) implementations of each component . When you are devising the présent implementation, do
not consìder the internai détails of the components . They will have their own décomposit ions.

Pattern Name: Prototype
Problem: Early acquired requirements are difficult to valídate without testing.
Solution:

• The initial design of a system should focus on the requirements at hand, with broader applicability as a
secondary concern. Get something running quickly to obtain design feedback. Build a prototype. Apply
techniques such as nouns in the spécification imply objects, verbs imply opérations, and build on
existing objects using inheritance.

Related Patterns:
'Application Design is Bounded by Test Design ' , "Architect A l so , Implemen t s \ 'Engage Customers ' ,
and 'Scénarios Define Problem*.

Appendix B. Patterns 205

Pattern Name: Take N o Small Slips

Problem: H o w long should the project take?
Solution:

• Measure how close the criticai path (at least) of the schedule is doing. If it is three days beyond
schedule, truck a "delusion index' of three days . When the delusion index gets too ludicrous, then slip

the schedule. This helps avoid churning the schedule

• Estimate completion dates using the remaining effort estimâtes in the work queue report. Calcúlate each
contributor's eariiest possible completion date, find the latest of thèse, and compare that to the hard
delivery date for the project. The différence is the complet ion headroom. The headroom may fluctuate,

but steady evaporation of headroom requires management to reorder the work queue, possibly deferring
items to a later reléase date, creating a work split that removes poorly understood o r difficult pièces, or

holding a recommitment meeting

Pattern Ñame: Process is Product

Problem: How should a process improvement initiative be organised and managed
Solution

• Treat ít like a development project. Establish a repository to store process documentation and other
process artefacts. Use appropriate planning, tracking, configuration management, and other methods

and tools, just as they should be used for any other development project. Ensure that the visibility of the
project to upper management and the rest of the organisation is comparable to that of other important

projects.

Pattern Name: Process Follows Practice

Problem: How do you change the process to meet the required improvement goals?
Solution

• Start by discovering and understanding current practice throughout the group. Find existing process
documentation and talk to practitioners to understand how tasks are perfonmed. Reconcile any
différences between actual and espoused processes. Document and review the newly characterised
process. Then iteratively and incrementally improve the process and ensure that the documentation is
updated appropriately.

Pattern Name: Developing in Pairs

Problem: People are scared to solve problems alone.

Solution:
• Pair compatible designers to work together; together, they can produce more than the sum of the two

individually

• Do not emphasize an individual's special skills. Treat all development as a group activity. This will
produce better design décisions and will have a positive effect on the participants. Expertise is shared

and everyone in the group learns.

• Allow individuáis to create their own short-term work plans. Realize that most of the group activity in a
development épisode will take place in pairs that find the time to work together. D o not call a meeting
to schedule a development épisode. Let individuáis make their own plans.

• Divide each task into urgent and deferred pièces. (No more than half should be urgent.) Defer more

work if necessary to have sufficient headroom. Defer analysis and design for parts that will not be
implemented. Both halves of the split should appear in the work queue with différent priorities.

Related Patterns:
Group Validation

Pattern Name: Requirement Walk-through
Solution:

• When any member of the work group begins to consider any part of an implied requirement, assemble
the entire group. This is a good time to sketch the first informal work plan for that requirement, and it

can lead to Staffing changes.

Appendix B. Patterns 206

• A requirement walk-through will identify relevant information sources, which is retrieved, reviewed,

and absorbed as the development épisode begins. Collect thèse information sources as machine-
readable examples. Annotate documents so the sources of information will not be lost.

• Develop a séries of well-formatted technical memoranda. Focus each m é m o on a single subject. Keep it
short. Carefully selected, well-written mémos can substitute for comprehensive design documentat ion.

Pattern Name: Programming Episode
Solution:

• Programming should be done in discrete episodes. Select appropriate deliverables for an episode and

commit sufficient resources to deliver them. Push for the decisions that can be made. Code the
decisions and review the code.

Pattern Name: Building the Right Things
Solution:

• To capture, communicate, and validate software requirements, identify requirements sources. Devise a

work plan for interviewing and examining the sources and produce a set of interview results. Capture
and validate sponsor objectives as well as manage customer expectations. Prioritise requirements.
Establish and keep customer rapport during this process

Pattern Name: Defining Requirements

Solution:
• Create and maintain a glossary of common business terms.

• Use a basic template to specify requirements that organises the information into sections that reflect the

activities and types of deliverables needed.

• T o verify that behavioural requirements are correct and complete, have all interested parties read the

requirements specification. Conduct review meetings. Follow up on all issues raised. Use prototypes.

Continue requirements verification through each system development iteration.

Related Patterns
Requirements Validation. Behavioural Requirements, Problem Domain Analysis

Pattern Name: Get Involved Early In Testing

Solution:
• You are a system tester working on a large software project. To maximise support from the design

community , establish a working relationship with the designers early in the project, for example, learn

the system and the features along with the designers or attend reviews of requirements and design

documentation. Invite designers to reviews of test plans. Do not wait until you need to interact with a
designer; by that t ime it is too late. Trust must be built over time.

• Start testing when an area is available, but not before. Reach agreement with designers that the area is

ready for testing. Agreement is easier if you get involved early.

• When designers are behind schedule, give them the time they ask for. You will save effort in the long
run; testing a poorer-quality system takes more t ime.

• Development is drawing to a close. The system is stable. To give a quick evaluation of the overall
health of the system, use a favourite killer test to be run at any time. The test should provide good

system coverage and be expected to fail, in some manner, most of the t ime.

Pattern Name: Ambiguous Documentation
Solution:

• To pinpoint possible problem areas, study the documentat ion. Look for areas that seem ambiguous or

poorly defined. If the designers can tell you everything, you need to know about a feature. it probably
works. It is what they cannot tell you that needs attention. Get involved early to obtain this information
and point it out to designers.

Appendix B. Patterns 207

Related Patterns
Get Involved Early, Designers Are Our Friends

Pattern Name: Scénarios Define Problem
Problem:

How to define design documents effectively as vehicles to communicate the Systems functions

Solution:
• Capture system functional requirements as use cases. This defines the problem, and the architecture can

proceed in earnest
Related Patterns:

Mercenary Analyst

Pattern Name: Group Validation

Problem: How to ensure produci quality
Solution:

• The development team should validate the design.

• Techniques such as CRC cards and group debugging help socialise and solve problems. The C R C

design technique has been found to be a great team-builder, and an ideal way to socialise designs.

Studies of G B C S projects have found group debugging sessions to be unusually productive.

• Bringing the customer into thèse sessions can be particularly helpful. The project must be careful to

temper interactions between Customer and Developer, using the patterns mentioned in the Resulting

Context

• Members of a validation team can also work with QA to fix root causes attributable to common classes

of software faults.

Related Patterns:
Developing in Pairs

Pattern Name: Application Design is Bounded by Test Design
Problem: When do you design and implement test plans and scripts?
Solution:

• Scenario-driven test design Starts when the customer first agrées to scenario requirements. Test design
evolves along with software design, but only in response to customer scenario changes: the source
software is inaccessible to the tester. When development décides that architectural interfaces have
stabilised, low-level test design and implementation can proceed.

Related Patterns:
Engage QA, Scénarios Define Problem

Pattern Name: Code Ownership
Problem: A developer cannot keep up with a constantly changing base of implementation code.

Solution:

• Each code module in the system is owned by a single developer. Except in exceptional and explicit

circumstances, code may be modified only by its owner.

• Lack of code ownership is a major contributor to discovery effort in large-scale software development
today. Note that this goes hand-in-hand with architecture: to have ownership, there must be interfaces.

• Arguments against code ownership have been many, but empirical trends uphold its value. Typical

concems include the tendency toward tunnel vision, the implied risk of having only a single individuai
who understands a given piece of code in-depth, and breakdown of global knowledge.

Related Patterns:
Conway's-law, Architect Also Implements, Review the Architecture, Engage Customers, Architect Also

Implements, Organisation Follows Market, Interrupts Un-jam Blocking, Review the Architecture

Appendix B. Parterns 208

Pattern Name: Review the Architecture
Problem: Blind spots in the architecture and design
Solution:

• All architectural decisions should be reviewed by all architects. Architects should review each o ther ' s
code. The reviews should be frequent—even daily—early in the project. Reviews should be informal,
with a minimum of paperwork.

Related Patterns:
Mercenary Analyst, Code Ownership

Pattern Name: Architect Also Implements
Problem: Preserving the architectural vision through to implementation
Solution:

• Beyond advising and communtcat ing with developers, Architects should also participate in
implementation.

Pattern Name: Patron
Problem: Giving a project continuity
Solution:

• Give the project access to a visible, high-level manager, who champions the cause of the project. The
patron can be the final arbiter for project decisions, which provides a driving force for the organisation
to make decisions quickly. The patron is accountable to remove project-level barriers that hinder
progress, and is responsible for the organisation's morale (sense of well-being).

Related Patterns:
Firewalls, Gatekeeper, Developer Controls Process is in place

Pattern Name: Developer Controls Process
Problem: What rôle should be the focal point of project communicat ion?
Solution:

• Place the developer rôle at a hub of the process for a given feature. A feature is a unit of System
functionality (implemented largely in software) that can be separately marketed, and for which
customers are willing to pay. The developer is the process information clearinghouse. Responsibili t ies
of developers include understanding requirements, reviewing the solution structure and algorithm with
peers, building the implementation, and unit testing.

• Note that other hubs may exist as well.
Related Patterns:

Work Flows Inward, Move Responsibilities, Mercenary Analyst, Firewalls, Gatekeeper, and Buffalo
Mountain.

Pattern Name: Form Follows Function
Problem: A project lacks well-defined rôles
Solution:

• Group closely related activities (that is, those mutually coupled in their implementation, or which
manipulate the same artefacts, or that are semantically related to the same domain). Name the
abstractions resulting from the grouped activities, making them into rôles. The associated activities
become the responsibilities (job description) of the rôles.

Resulting Context:
Organisation Follows Location, Organisation Follows Market, and Architect Also Implements.

Pattern Name: Size the Schedule
Problem: How long should the project take?
Solution:

• The external schedule is negotiated with the customer; the internai schedule, with development staff.
The internai schedule should be shorter than the external schedule by two or three weeks for a moderate

Appendix B. Patterns 209

project. If the two schedules cannot be reconciled, either customer needs, or the organisation's
resources, or the schedule itself must be re-negotiated.

• Reward developers for meeting the schedule

Related Patterns
Compensate Success,

Pattern Name: Self-Selecting Team
Problem: How to build teams
Solution:

• Build self-selecting teams, doing limited screening on the basis of track record and broad interests. An
empowered, enthusiastic team Willing to take extraordinary measures to meet project goals

Pattern Name: Big Ball of Mud
Problem:

Overgrown, tangled, haphazard spaghetti code is hard to comprehend, repair, or extend, and tends to
grow even worse if it is not somehow brought under control

Solution:
• If you cannot easily make a mess go away, at least cordon it off. This restricts the disorder
• To a fixed area, keeps it out of sight, and can set the stage for additional re-factoring.
• If your code has declined to the point where it is beyond repair, or even compréhension, throw it away it

and start over

Pattern Name: Development Artefacts
Problem:

What development artefacts are created, modified, or accessed within each activity?
Solution:

Consider évolution as interactions between the management and software development artefacts and the
users of the development process. Describe scénario instances as interactions between development
artefacts and users of the development process.

An example of Anti-Patterns [Coplien 19961

Name: Egalitarian Compensat ion
Problem: Providing appropriate motivation for success
Context: A community of developers meeting night schedules in a high-payoff market.
Forces: Disparate rewards motívate those who receive them, but may frústrate their peers. You want to
encourage team cohesión, build team identity, and in general encourage team behaviour.
Supposed solution: The entire team (social unit) should receive comparable rewards, to avoid de-motivating
individuáis who might assess their valué by their salary relative to their peers.
Resulting Context: An organisation where people feel accepted as peers. However, leaders will still emerge and
there will still be an inequitable distribution of work; that distribution of work is no longer commensurate with
compensat ion. People figure this out, and lose one of their motivations to excel. The pattern has the opposite
effect of encouraging behaviour where people over-extend themselves.

Appendix C. Metric Spécifications 210

Appendix C. Metrics Spécifications

In this appendix, the spécification of the metrics, used in this research, is presented in table formats. The

measurements presented here are divided into two groups: direct and, indirect (derived). The derived
measurements are presented in 'metric tables ' followed by direct measures (named measures) which are

presented in 'measure tables ' .

The metric selected for this study are based on the G Q M model described in Section 4.8.2 and 6.2. As the
process patterns used as treatment in the experiment cover a complete development lifecycle, there was a wide
range of software metrics that could be used in the experiment. However , due to scope limitation of this project,
a limited number of metrics were selected to be analysed and reported. The metrics cover the four major phases
of the development lifecycle (i.e. Requirement Analysis, Design, Implementation, and Delivery).

The tables contain a number of éléments that are explained in Table A P P _ C 1 below.

; >;>'.• "-' s - E l è m e n t i v ^ C - ^ ' ' :' ' * ' . ' ! * y - % Descr ipt ions* ' ' "' > "% 1 r'. --M"*

Définit ion A concise définition of the metric

G Q M Goal T h e metrics were developed using the (Goal /Quest ion/Metr ic) model to satisfy a qual i ty

goal. This é lément states the G Q M goal with which this metric is associated

G Q M Quest ion T h e associated G Q M (Goal /Quest ion/Metr ic) quest ion, (i .e. the question to which the

metric provides answer)

T y p e T h e nature of the metric type. Can b e either qualitative, quantitative or both.

Source T h e source of metric value (i.e. exper iment subject, calculated, or researcher).

Applicable Phase T h e deve lopment phase to which the metric is appl icable

Rationale A rationale for the metric and the objective to be achieved

Purpose The purpose and objective of the metr ic

Related metrics Other metrics that are related to this metric

Scope T h e scopes in which this metric is appl ied

Evaluat ion M e t h o d Procedure and method used for metric évaluation

Attribute to m e a s u r e T h e software attr ibute that the metric is to measure

Measurement Scale T h e least applicable measurement scale (i.e. nominal , ordinal , interval, rat io, absolute)

for the purpose of statistica! analysis

Required M e a s u r e m e n t Other related measures that the metr ic requires to be evaluated

Metric ' s Value T h e way the metric value is at tained

Table A P P _ C 1 A description of the éléments of the metric spécification table

The following tables présent metric spécifications.

Appendix C. Metric Spécifications 2 1 1

Percentage of Traceab le Requirements
(Requirements Traced per Requi rements Defined)

- Description

Définition Measures the percentage of the requi rements that are traceable (Traceable Requi rements per

Total Requi rements Rat io) .

G Q M Goal Requirement Artefact Qual i ty

G Q M Quest ion What percentage of the requi rements is t raceable?

T y p e Quantitat ive

Evaluat ion M e t h o d As per formula be low

Appl icable Phase Requirement Analysis

Rationale Requi rements traceability refers to the ability to descr ibe and follow the life of a requirement . in
both a forwards and backwards direction [Ramesh and Jarke 2001] . A requirement should be
l inked to a h igher level documen t (i.e. source) , which could be a higher-level sys tem
requirement . as well as d o w n w a r d to the design é léments , source code , and test cases that are
constructed to implement and verify the requirement [Hull et al . 2005] [Davis 1993]. Therefore,
the h igher the rate of traceable requirements in a software project , the higher the quality of the
requirements and the Requi rement Analysis phase .

Purpose /Object i ve This metric was used in the exper iment to de termine if there was any différence between the
treated and control g roups in t enus of the percentage of traceable requirements . T h e metric will
show whether , as a resuit of us ing process pat terns , the treated g roups will have a h igher
percentage of their requirements traced to design, test, and implementa t ion .

Scope Small software development projects

Attribute to M e a s u r e Traceabili ty of Requi rements

Metr ic Scale Interval

Related Measure(s) Number of Requirements (Measure 2), N u m b e r of Traceab le Requi rements (Measure 1)

Required'Measurement : :; . Mètric's Value •'
Number of Traceable Requirements (NTR) N T K X100
Number of Requi rements (NR) N R

Metr ic 1 Percentage of Traceable Requirements

Appendix C. Metrie Spécifications 212

- ' - Metrie
Percentage of Defects F ixed

(Defect removal ratio)

Description
Definition T h e metric measures percentage of defects that were fixed in a deve lopment phase.

G Q M Goal Tes t /Review Qual i ty

G Q M Quest ion What percentage of detected defects is fixed?

T y p e Quanti ta t ive

Ë vai us t ion iv i ethod Calculated as per formula be low

Appl icable Phase Requirement analysis . Des ign. Implementat ion, and Delivery

Rationale Defect control and management is important in software deve lopment , as defects are a root
cause of software faìlures [Jones 2007] . Therefore. a deve lopment process in which more of the
defects are fixed is more likely to produce a more reliable software product . Th i s metric was
used to provide an indication of the quali ty of defect correct ion process by assessing the
percentage of the defects that were fixed, for each deve lopment phase . A higher value would
indicate a better defect correct ion process as well as a less erroneous product .

Purpose /Obj ecti ve This metric was used in the experiment to de termine if there was any différence between the
treated and control groups in terms of the percentage of the defects fixed. The metric will s h o w
whether as a resuit of us ing process patterns the treated groups will fix a higher percentage of
the defects.

Scope Small software deve lopment projects

Attribute to M e a s u r e Defect correction process

Metr ie Scale Interval

Related Measure(s) No. of Defects Detected (Measure 3) . No . of Defects Fixed (Measure 4)
T^¿'. ReauìredMeasttrenientì .-- • * -"Metrie's Value •> •'; •

N o . of Defects Fixed (NDF) N D F *HK>

No. of Defects Detected (N D D) NDD

Metrie 2 Percentage of Defects Fixed

Appendix C. Metric Spécifications 213

' ' WMéïhcU
Percentage of Requirement Spécif icat ion Document Reviewed

Definit ion The metric measures the percentage of the requirement spécification document (RSD) rev iewed.

G Q M Goal Tes t /Review Qual i ty

G Q M Quest ion W h a t percentage of the requi rement spécification document is rev iewed?

T y p e Quanti ta t ive

Source Exper iment Subjects

Applicable Phase Requi rement analysis

Rationale Reviews are the most widely used approach for assessing software quali ty [Sommervi l le 2 0 0 7] .
T h e higher ihe percentage of the requi rements document reviewed the better the quali ty of the
review process and the better the chance of finding any defects [Fagan 1976]. Fur the rmore .
inspection of requirements and design arc more effective than testing [Hinkle 2007] , Therefore ,
a higher value for this metric would indicate a better process as well as a better produet in te rms
of the requirement spécification document . However , one difficulty with this metric. as po in ted
out by Nance and Arthur [2002] , is that it does not take the thoroughness of the rev iew into
considérat ion and the focus is on quant i ty rather than quali ty. This . however , does not affect the
results of the exper iment , as the r andom nature of the treated and control groups means that
thoroughness of the reviews is equally spread between treated and control groups.

Purpose/Object ive This metric was used in the exper iment détermine if there was any différence between the

treated and control groups in terms of the percentage of R S D reviewed.

Scope Small software deve lopment projects

Attribute to M e a s u r e Requirement reviews

Metric Scale Interval

Related Measure(s) Percentage of Design Document Rev iewed (Metr ic 5) . Percentage of Source C o d e Rev iewed
(Metr ic 8)

Percentage of R S D Reviewed Percentage of R S D Reviewed

M e t r i c 3 Percentage of Requi rement Spécification Document Rev iewed

Appendix C. Metrie Spécifications 2 1 4

'Metrie*
Percentage of Phase T i m e Spent in Tes t ing

(Test T ime Per Phase t ime ratio)
" J * Description ~ . '-u . '*: - ' . v . ;

Definition T h e me ine measures the percentage of the development phase l ime spent in tesiing.

G Q M Goal Tes t /Review Qual i ty

G Q M Quest ion What percentage of phase t ime was spent in tesi ing?

T y p e Quanti tat ive

Evaluat ion M e t h o d Calculated as per formula be low

Appl icable Phase Requirement analysis , Design, Implementa t ion , and Delivery

Rationale A righi proport ion of the phase l ime al locat ing to test ing is important in providing the necessary
l ime for carrying out the required test ing tasks adequately. A small proportion of the phase t ime
allocated to tests would indicate a def ic iency and inadequacy in carrying oui the test tasks
properly. Normal ly between 30 to 4 0 percent of project effort is spent on testing [Pressman and
Ince 2000] , It is general ly r e c o m m e n d e d in the literature that in most cases between 3 0 to 5 0
percent of the deve lopment effort should be allocated to testing [Six s igma] [Huang 2004] . This ,
however, should be much higher in the case of human-ra ted applicat ions such as flight control .

Purpose /Object ive This meiric was used in the exper iment io de termine if there were any différence between the
treated and control groups in the exper iment in terms of the percentage of the phase l ime spent
tn testing.

Scope Small software deve lopment projects

Attribute to M e a s u r e Time Spent in Test ing

Metrie Scale Interval

Related Measure(s) Phase Test T i m e (Measure 7) , Phase T i m e {Measure 5)

Required Méasurement . •- a Metric's Value

Phase Tes t T i m e (P T T) PTT
- — x 100

Phase T ime (PT) PT

Metr ie 4 Percentage of Phase T ime Spent on Tes t ing

Appendix C. Metrie Spécifications 215

-'.."-*'' 'Metrie ' <• "
Percentage of Des ign Document Reviewed

Description
Definition The metric measures percentage of the design document reviewed.

G Q M Goal Tes t /Review Quàl i ty

G Q M Quest ion What percentage of the design document was rev iewed?

T y p e Quanti tat ive

Source Exper iment Subjects

Appl icable Phase Design

Rationale Inspection of requi remenls and design are more effective lhan lesling [Hinkle 20071. The higher
the percentage of design documen t reviewed the better the chance of finding any defects in both
the model l ing and related artefacts. Therefore . a higher value for this metric would indicate a
better process as well as a better produet in terms the product design.

Purpose /Object ive This metric was used in the exper iment to dé termine if tnere was any différence between the
treated and control groups in te rms of the proport ion of design document reviewed.

Scope Small software deve lopment projects

Attribute to Measure Design Review Qual i ty

Metr ie Scale Interval

Related Measure(s) Percentage of Source Code Rev iewed (Metr ic 8), Percentage of Requirement Spécif icat ion
Document Reviewed (Metric 3)

\ Required Measurentent\ Met rie's Value
Percentage of Design Document Reviewed Percentage of Design Document Reviewed

Metr ic 5 Percentage of Design Document Reviewed

Appendix C. Metrie Specifications 2 1 6

- . ~ * • Metrie '
M e t h o d s per Class Rat io

Descriotion • 'r

Definit ion T h e metric measures the average number of me thods per class. This is also referred to as
W M C (Weighted Methods per Class) in Object Or iented lerminology.

G Q M Goal Design Artefacts Qual i ty

C O M Quest ion H o w many methods are defined per class?

T y p e Quanti ta t ive

Source Exper iment Subjects

Appl icable Phase Design

Rationale An application developed with more finely granular objects (i.e. a lower number of me thods
per class) is likely to be more easily mainta ined and rcusable as objects should be smaller and
less complex [Schroeder 1999]. A larger number of me thods per class are likely to h inder
extenstbil i ty and complicate testing d u e to the increased object size and complexi ty . T h e
larger the number of methods . the more complex the inheri tance tree and the more l imit ing
the potential reuse. Number of me thods per class therefore should be kept as low as possible
[Pressman and Ince 2000] . Th i s metric was first p roposed by Ch idamber and Kemerer [1994] ,
referred to as Weighted Method per Class , as a measure of complexi ty (see Section 4.9) .

Purpose /Object ive This metric was used in the experiment to de termine if there was any difference between the
treated and control groups in terms of the number of methods per class ratio.

Scope Small software deve lopment projects

Attribute to M e a s u r e Gran ular i ty/Complexi ty/maintainabi lity

Metr ie Scale Interval

Related Measure(s) Number of Classes {Measure 9) . N u m b e r of Me thods (Measure 10)
Réquired Measurement • - 1 > ; ' Meiric's Value, '

No. of Methods (N O M) N O M

N o . o f C l a s s e s (N O C) NOC

Metr ie 6 Methods per Class Ratio

Appendix C. Metric Spécifications 2 1 7

. I . " Metric

Productivity

Description- ~M .
Définit ion T h e metric measures product ivi ty as 'Rate of output per unit input', where the output is the

value delivered and the input is the resources .

G Q M Goal Development Artefacts Qual i ty

G Q M Quest ion What is the productivi ty of the development phasc?

T y p e Quanti ta t ive

Evaluat ion M e t h o d As per formula be low

Appl icable Phase I rupie mentat ion

Rationale Productivi ty évaluation is difficult and controversial and even advice offered by I S O 15393 on
productivi ty measurements nave been shown to be mis leading [Ki tchenham and Col in 2 0 0 7] .
Difficulties in productivi ty measurement are part ly due to the diverse and differing ways and
views on how input and output should be measured and the difficulty in measur ing them
[Ki tchenham and Mendes 2004] [Shepperd 1996] [Walton and Felix 1977] . For example , L O C
as a measure of output does not take into account many attrìbutes such as verbosity of the
programmer , the programming language, and envi ronmenta l complexi ty such as skills, pressure ,
tool support, comput ing platform (see Section 4 .10) . However , L O C and Function Point counts
are the most c o m m o n output measurements used [Maxwel l and Forsel ius 2000] , Whi l e some
argue that it is unsafe to measure productivi ty as a ratio of two unrelated variables [Ki tchenham
and Colin 2007]] , productivi ty as size over effort ratio is by far the most populär method of
evaluating productivity. In a literature review of the product ivi ty measurement , Ki tchenham and
Mendes [2004] found that (with the except ion of one) ali the surveyed papers to use this me thod
of product ivi ty évaluat ion. Al though imperfect, this method of productivi ty measurement (i .e.
LOC/Effort) is widely used and provides a consistent measure of productivi ty [MacCormack et
al. 2003] .The method of productivi ty measurement employed in this research is a lso size ove r
effort, where size is measured in terms of the number of Unes of code (LOC) , and effort in terms
of person-hour . As the focus of the experiment is on the deve lopment phase , product ivi ty in the
Implementa t ion phase (i.e. lime spent in the Implementat ion phase) is evaluated. T h e overall
productivi ty has also been evaluated.

The method by which L O C is measured, and other related factors and issues (e.g. verbosity of
the programmer , the programming language, and envi ronmenta l complexi ty such as skills,
pressure, tool support, comput ing platform), are r andomly spread amongst the control and
treated groups in this study, and have therefore neutralised effect. L O C over Effort is therefore
appropriate for this study as a way of compar ing treated and control groups in te rms of their
productivity.

Purpose /Object ive This metric was used in the exper iment lo dé termine if there was any différence be tween the
treated and control groups in terms of productivity.

Scope Small software development projeets

Attribute to M e a s u r e Productivi ty

Metr ic Scale Interval

Related Measure(s) Deve lopment Phase T ime (Measure 5), L O C (Measure 8) . Tota l development l ime (Measure 6)

Required Measurement \
(hpblementation-Productivité)

'. Metrie's Value

N o . of Lines of Code (LOC)

Implementat ion Phase T ime (1PT)

LOC

IPT

Required Measurement
(Overall Productivity}

Metric's Value

N o . of Lines of C o d e (LOC)

Total Development T ime (TDT)

LOC

TDP

Metr ic 7 Product ivi ty

Appendix C. Metrie Spécifications 218

• Metrie '

Percentage of Source Code Rev iewed

• ; ' r \ - ' Description : - - ~ \ ~

Definition The metric measures percentage of source c o d e that was reviewed.

G Q M Goal Review Qual i iy

G Q M Quest ion What percentage of source code was r ev iewed?

T y p e Quanti tat ive

Source Exper iment Subjects

Appl icable Phase Implementat ion

Rationale An error detected within the deve lopment process is from 10 to 100 t imes less costly to fix than a
defect found dur ing the appl ica t ion ' s opérat ion [Boehm and Basiii 2001] [Standish Group 2007] .
The higher the percentage of code inspected the better the chance of finding faults and deficiencies
in code [Fagan 1976]. Therefore, a higher value for this metric would indicate a better process as
well as a better produet in terms of the p roduced code .

Purpose /Object ive The objective of the metric is to dé termine if there was any différence between the treated and

control groups in terms of the percentage of source code reviewed

Scope Small software development projects

Attribute to M e a s u r e Code review

Metr ie Scale Inierval

Related Measure(s) Percentage of Design Document Reviewed (Metr ic 5) , Percentage of Requirement Spécification
Document Rev iewed (Metr ic 3)

Requirêd Measttrénent'- - ~ ; y : Met rie's Value J-
Percentage of Source C o d e Reviewed Percentage of Source Code Reviewed

Metr ic 8 Percentage of Source Code Rev iewed

Appendix C. Metric Spécifications 219

Defect Densi ty

Définit ion T h e metric measures defect densi ty as the ratio of the number of defects to p rogram length

(defect/size).

G Q M Goal Test /Review Qual i ty

G Q M Quest ion What is the rate of the defect densi ty?

T y p e Quanti tat ive

Evaluat ion M e t h o d Calculated as per formula be low

Appl icable Phase Implementat ion Phase

Rationale This metric is general ly used in industry for many purposes such as identifying candida te
components for further inspection o r analysing and tracking the impact of defect removal on
quality improvement (Ebert 2005] . A réduction in defect densi ty is important especial ly as
studies have found that u p to 6 5 % of defects occur at the design and coding stages [Boehm
1981][Jones 1996]. It is the most c o m m o n l y used means of measur ing quality of a piece of
software code and has become the de-facto industry standard measure of software quali ty
[Fenton and Pfieeger 1997]. One cri t icism of this metric is that it relies on measures (i .e. defects
and size) which are difficult to define and measure .

Th i s metric was used in this research to provide an indication of the qual i ty of the source c o d e in

terms of defects. A lower value would indicate a better quality produci (i .e. source code) .

Purpose /Obj ecti ve This metric was used in the exper iment to de termine if there was any différence be tween the
treated and control g roups in terms of the rate of defect densi ty . T h e metric will show whether
using process pat terns by the treated groups reduced defect density.

Scope Small software development projecls

Attribute to M e a s u r e Defecl Density

Metr ic Scale Interval

Related Measure(s) N o . of Defects Detected (Measure 3) . Program Size L O C (Measure 8)
!tm^ÊÈËÊÊÊËÈÊÈÈËÉÊÈkequired!Measuremen t JSIHHHNHHH

No. o f Defects Detected (N D D) N D D

Program Size (LOC) LOC

Metr ie 9 Defect Density

Appendix C. Metrie Spécifications 220

V 3 . f - 9 ' ^ - Mettiate
C o m m e n t Density

vj-^Zi'^.'-S • . ^Description^

Definition The m e t n e measures percentage of source code that has been commented .

G Q M Goal Development Process Qual i ty

G Q M Quest ion What percentage of lines of code is c o m m e n t e d ?

T y p e Quanti tat ive

Evaluat ion M e t h o d As per formula be low

Appl icable Phase Implementat ion

Rationale The comment densi ty metrics is useful for es t imat ing the quali ty of the code [Lorenz and Kidd
1994] . T h e higher the percentage of code that is c o m m e n t e d the better the quality of code in
terms of readabili ty, modifiabili ty and maintainabil i ty. It is general ly recommended that there
should be as m a n y lines of c o m m e n t s as there Unes of code [Ambler 1998].

Purpose /Object ive This metric was used in the exper iment to dé te rmine if there was any différence between the

treated and control groups in terms of the proport ion of source code commented .

Scope Small software deve lopment projects

Attribute to M e a s u r e Code readability/clarily

Metr ie Scale Interval

Related Measure(s) Number of Lines of C o m m e n t (Measure 11), L O C (Measure 8)

" J f ï ' î - * - v i e "
No . of Lines of C o m m e n t s (L O C o m) LOCom

No. of Source Lines of Code (LOC) LOC

Metr ie 10 C o m m e n t densi ty

Appendix C. Metrie Spécifications 221

* - Metrie

Test Case Density
(Tesi case coverage)

. \ " Ï Description . - , ' .- -

Definition The metric measures the extent to which testing C o v e r s the applications functionality. This is
also referred to as Test Case Coverage.

GQM Goal Test Quality

GQM Question What is the test case per requirement ratio

Type Quantitative

Evaluation Method As per formula below

Applicable Phase Delivery

Rationale This metric provides an indication of the test coverage with respect to requirements. Every
requirement should have one or more tests associated with it [Laplante 2007]. A higher Test
Case per Requirement Ratio denotes a more thorough and comprehensive test process as it offers
a higher probability of detecting any defects.

Purpose/Obj ecti ve This metric was used in the experiment to determine if there was any différence between the
treated and control groups in test case density in terms of the ratio of the defined test cases per
requirements.

Scope Small software development projects

Attribute to Measure Test Coverage

Metrie Scale Interval

Related Measure(s) Number of Defined Test Cases (Measure 12), Number of Requirements (Measure 2)

« r Required Measurement ' ' - Metrie's Value "- , - *

No. of Defined Test Cases (NDTC) N D T C

No. o f Requirements (NR) NR

Metrie 11 Test Case per Requirement Ratio

Appendix C. Metrie Specifications 222

The following lables present the measures (direct metrics) used to evaluate the values of the main metrics stated above.

N u m b e r of Traceable RequiremenLs
Definit ion 1t is a measure of the number of the requirements that are traceable.

Type Qualitative

Source Experiment Subjects

Appl icable Phase Requirement Analysis

Purpose /Objeet ive This measure is used in the experiment to determine the percentage of traceable requirement.

M e a s u r e m e n t Scale Interval

M e a s u r e m e n t M e t h o d Requirements in the requirement speeification are individually read and checked for traceability.
A requirement is traceable if it can be linked to its source and the related design, lest, and
implementation [Davis 1993]. Total number of traceable requirements are counted and recorded.

Related Metr ics Percentage of Traceable Requirements (Metrie 1)

Measure 1 Number of Traceable Requirements

N u m b e r of RequiremenLs
Definit ion It is a measure of the number of defined requirements.

T y p e Quantitative

Source Experiment Subjects

Appl icable Phase Requirement Analysis

Purpose /Objeet ive This measure is used in the experiment to determine the value of the two metrics - Percentage of
Traceable Requirements, and Test Case Density (Test Case per Requirement Ratio)

Meas urement Scale Interval

Related Metr ics Percentage of Traceable Requirements (Metrie 1), Test Case per Requirement Ratio (Metrie 11)

M e a s u r e 2 Number of Requirements

Appendix C. Metrie Spécifications 223

N u m b e r of Defects Detected
Definit ion 1t is a measure of the number of defects detected in a development phase.

T y p e Quantitative

Source Experiment Subjects

Appl icable Phase Requirement analysis, Design, Implementation, and Delivery

Object ive This measure. in conjunetion with 'number of defects fixed' measure, is used to work out the
'percentage of defects fixed' as an indication of defect correction quality.

Measurement Scale Interval

Notes Defect detection is done by the developers (i.e. experiment subject). Number of defects detected is
dépendent on the thoroughness with which the reviewer carries out the reviews (i.e. the more
thorough the reviewer. the more likely lo detect any defects). However due lo the random sélection
of the subjects into expérimental and control groups and the relatively high number of subjects, the
thoroughness of defect detection process is taken to be a constant across the treated and control
groups and therefore does not effect the objective of this measure.

Related Metr ics Defect Density (Metrie 9). Percentage of Defects Fixed (Metrie 2)

M e a s u r e 3 Number of Detected Defects

N u m b e r of Defects Fixed
Definit ion It is a measure of the number of defects fixed in a development phase.

T y p e Quantitative

Source Experiment Subjects

Appl icable Phase Requirement analysis. Design, Implementation, and Delivery

Purpose /Object ive This measure is used to calculate *the percentage of defects fixed'.

M e a s u r e m e n t Scale Interval

Related Metr ics Percentage of Defects Fixed (Metrie 2)

M e a s u r e 4 Number of Defects Fixed

Phase T i m e
Definit ion It is a measure of the lime (person-hour) spent in a development phase

T y p e Quantitative

Source The value for this measure is provided by the experiment subjects

Appl icable Phase Requirement analysis. Design, Implementation, and Delivery

M e a s u r e m e n t Scale Interval

Purpose /Object ive This measure is used in the experiment to calculate percentage phase time spent in the development
phase

Related Metr ics Percentage of Phase Time Spent on Testing (Metrie 4)

Measure 5 Time Spent in a Development Phase

Appendix C. Metrie Specifications 2 2 4

Deve lopment T i m e

Definit ion It is a measure of the l ime (person-hour) spent in the deve lopment project. 1t is the sum of Urne
spent in RA. Des ign . Implementa t ion , and Delivery phases .

Type Quanti ta t ive

Source The value for this measure is provided by the exper iment subjects

M e a s u r e m e n t Scale Interval

Purpose /Object ive This measure is used in the exper iment to calculate overall produetivity.

Related Metr ics Productivity (Metr ie 7)

M e a s u r e 6 Total T ime Spent on Development Project

Phase Test T i m e

Definit ion It is a measure of the t ime (person-hour) spent on test ing in a deve lopment phase .

T y p e Quanti tat ive

Source Experiment Subjects

Appl icable Phase Requirement analysis . Design. Implementat ion, and Delivery

M e a s u r e m e n t Scale Interval

Purpose /Object ive This measure is used in the exper iment to calculate the percentage of phase time spent in tests

Related Metr ics Percentage of Phase T i m e Spent on Tes t ing (Metr ie 4)

M e a s u r e 7 T ime Spent in Test ing in a Development Phase

Size of Source C o d e (L O C)

Definit ion It is a measure of the number of source Unes of code . There are many différent définitions and

interprétation of L O C . and therefore many ways to count L O C . For the purpose of the exper iment ,

a line of code is defined as follows:

"A line of code is any line of p rogram text that is not a c o m m e n t or blank line, regardless of the
number of Statements o r fragments of S t a t e m e n t s on the line. This speci ficai ly includes all l ines
containing program headers . déclarat ions, and exécutable and non-executable Statements." [Conte
1986).

T y p e Quanti tat ive

Source Experiment Subjects

Appl icable Phase Implementat ion

M e a s u r e m e n t Scale Inlerval

Purpose /Object ive This measure was used to work out to productivi ty and comment densi ty .

Notes LOC is one the oldest and most wìdely used software size measure [Sommervi l le 2007] . It has the
advantage of being easy io collect - no o ther measure is as wel l -unders tood [Bassman et al . 1995].
it however suffers from some weaknesses such as . being language dépendent , equating length as a
measure of size wiihout regards to complexi ty or functionality. discarding the fact that bad
software des igns may cause excess ive lines of c o d e (see Section 4 .10) . However . as the L O C
weaknesses are randomly and universally spread between the control and treated groups in the
experiment . they will not affect the objective of the exper iment , which is to compare the treated
and control groups .

Related Metr ics C o m m e n t densi ty (Metr ie i 0) , Productivity (Metr ie 7)

M e a s u r e 8 Size of Source Code (LOC)

Appendix C. Metrie Spécifications 225

Ntimber of Classes
Definit ion It is a measure of the number of classes developed

T y p e Quantitative

Source Experiment Subjects

Appl icable Phase Design

Meas urement Scale Interval

Purpose /Obj ect ive This measure is used to détermine methods per class ratio

Related Metr ics Methods per Class Ratio (Metrie 6)

M e a s u r e 9 Number of Classes

N u m b e r of M e t h o d s
Definit ion It is a measure of the number of methods developed

Type Quantitative

Source Experiment Subjects

Appl icable Phase Design

M e a s u r e m e n t Sca le Interval

Purpose /Object ive This measure is used to détermine methods per class ratio.

Related Metr ics Methods per Class Ratio (Metrie 6)

M e a s u r e 10 Number of Methods

N u m b e r of Lines o f C o m m e n t
Definit ion It is a measure of the number of lines of comments.

Type Quantitative

Source Experiment Subjects

Appl icable Phase Implementation

M e a s u r e m e n t Scale Interval

Purpose /Object ive This measure is used to détermine comment density.

Related Metr ics Comment density (Metrie 10)

Measure 11 Number of Lines of Comment

Appendixe. Metrie Specifications 2 2 6

Number of Defined Test Cases
Definition Il is a measure of the number of defined test cases

Type Quantitative

Source Experiment subjects

Applicable Phase Delivery

Measurement Scale Interval

Purpose/Objective This measure is used in the experiment to calculate test effectiveness ratio

Related Metrics Test case coverage {Metrie 11)

Measure 12 Number of Defined Test Cases

Appendix D. Results 2 2 7

Statistical analysis results, when the individual and group projects are combined, are depicted in the following
tables. The first set of tables presents the analysis of the metrics foliowed by analysis of official marks awarded
to the four attributes of the software project (i.e. product, design and analysis, evaluation, and project
management).

Operat ion Independen! Variable Dependent Variable PTQJ ects
Independent Samples

t-test
Experi ment group-type
(Trealed, and Control)

Software Attribute Individual and Group
Proiects

Phase Metrie P_ value Comment

Percentage of Traceable requirement 0.003 Value for treated groups was significantly
higher than control groups . Therefore, posi t ive
effect of process patters is confirmed.

Rcqui rement
Analysis

Percentage of Reviewed Requi rements
Spécification

0.019 Value for treated groups was significantly
higher than control groups . Therefore, posi t ive
effect of process patters is confirmed.

Percentage of Defects Fixed (RA
Phase)

0.162 There was not a statistically significant
différence between the treated and control
groups.

Percentage of phase t ime spent in
testing

0.194 There was not a statistically significant
différence between the treated and control
groups.

Percentage of design document
reviewed

0.000 Value for control groups was significantly
higher than treated groups . Therefore, posi t ive
effect of process patters is confirmed.

Design
N u m b e r of me thods per class
(Methods per Class Ratio)

0.001 Value for control groups was significantly
higher than treated groups . Therefore. posi t ive
effect of process patters is confirmed.

Percentage of Defects Fixed (Design
Phase)

0.242 There was not a statistically significant
différence between the treated and control
groups.

Percentage of phase t ime spent in
test ing (Design Phase)

0.097 There was not a statistically significant
différence between the treated and control
groups

C o m m e n t Densi ty 0.025 Value for treated g roups was significantly
higher than control groups . Therefore. posi t ive
effect of process patters is confirmed.

Percentage of C o d e Reviewed 0.011 Value for treated g roups was significantly
higher than control groups . Therefore, posi t ive
effect of process patters is confirmed.

Implementa t ion

Productivi ty (Implementat ion phase) 0.001 Value for treated g roups was significantly
higher than control groups . Therefore. posi t ive
effect of process patters is confirmed.

Productivi ty (comple te deve lopment
project)

0.003 Value for treated g roups was significantly
higher than control groups . Therefore, posi t ive
effect of process patters is confirmed.

Percentage of defects fixed 0.197 There was not a statistically significant
différence between the treated and control
groups.

Defect Densi ty 0.012 Value for control g roups was significantly
higher than treated groups . Therefore. posi t ive
effect of process patters is confirmed.

Percentage of Implementat ion phase
t ime spent in testing

0.000 Value for control g roups was significantly
higher than treated groups . Therefore, posi t ive
effect of process patters is confirmed.

Test case densi ty (Test case per
Requirement)

0.001 Value for treated groups was significantly
higher than control g roups . Therefore. posi t ive
effect of process patters is confirmed.

Appendix D. Results

Appendix D. Results 2 2 8

Delivery Percentage of defects fixed 0.003 Value for treated groups was significan ti y
higher than control groups. Therefore, positive
effect ofprocess patters is confirmed.

Delivery

Percentage of Delivery phase time
spent in testi ng

0.000 Value for treated groups was significante
higher than control groups. Therefore. positive
effect of process patters is confirmed.

Table App_D 1 Significance analysis results for metrics for individual and group projects combined

Operation Independent Variable Dependent Variable Proj ects
Independent Samples

t-test
Experiment group-lype Software Attribute Individuai and Group

^ ^ ^ ^ r o j e c t ^ ^ ^ ^

Software Attribute /*_ value Comment

Design and Analysis 0.182 There was noi a statistically significan! différence between the treated
and control groups.

Produci 0.004 Value for treated groups was significantly higher than control groups.
Therefore. positive effect of process patters is confirmed.

Project Management 0.143 There was not a statistically significant différence between the treated
and control groups.

Evaluation 0.106 There was not a statistically significant différence between the treated
and control groups.

Table App_D 2 Significance analysis results for tutor marks for individual and group projects combined

Results of the conducted survev on software patterns

Quest ion Yes % N o %
Do you believe there are risks involved in using patterns 19 81
Do you use patterns in software development? 60 40
Do you write patterns 6 94
Do you publish paiterns 6 94
Do you develop domain-specific patterns 3 97

Quest ion Never Se ldom Frequenüy Always

(Pattern Users OnJv) % % % %
Do you valídate patterns thaï you use 90 1 3 0

Quest ion
(Pattern Users Only)

Es terna i
Evaluat ions %

Rationale

%
Using test
cases %

Other
%

How do you valídate patterns ihat you use 0 0 10 0

What types of pattern d o you use and in what capacity
(Pattern Users O n l y)

Pattern T v p e Never % Se ldom % Frequently % Exlensivelv %
Analysis Pattems 97 0 3 0
Design Pattems 0 15 63 22
Process pattems 85 12 3 0

1

Appendix D. Results 2 2 9

W h e r e d o y o u get your pat terns
(Pattern Users Only)

Pattern T y p e Never % S e l d o m % Frequent ly % Extensively %
In-house produced 90 0 10 0
Books 13 17 4 2 28
Journa is , Conf. Proceedings 45 4 0 12 3
Pattern Communi ty (reposi tories) 30 35 28 7

D o y o u have concerns about using patterns because
(Pattern Users Only)

Pattern T y p e N o n e % Slightly % Moderate ly % Extreme!y %
Patterns could be outdated 22 60 18 0
Patterns could have unknown side effects 18 47 35 0
Your team may noi be sufficiently proficient in pat terns 2 0 45 32 3

Results of patterncentral.com website survey
Curtsy of Patternscentral.com

Are patterns just hype or d o they provide great value? (Total Votes: 572)

Yes. big t ime hype 8 .2%

Patterns are definitely valuable 4 9 . 8 %

Patterns are valuable, but they tend to be misused 3 1 . 8 %

Don't know, but I want to team more 8 .4%

I couldn ' t really care less 1.8%

Does your organisat ion support the use of patterns? (Total Votes: 375)

Yes , and we know what we're doing 2 9 . 6 %

Yes . but patterns aren't really unders tood 3 1 . 5 %

N o 10 .4%

I work a lone and use pat terns where appropriate 2 5 . 6 %

I work a lone and don' t use patterns 2 . 9 %

Are y o u actively using Patterns in your sof tware deve lopment? (Total Votes : 988)

What 's a Pattern? 5 .6%

Have read about them 12 .0%

Somet imes 2 3 . 2 %

Wheneve r possible 5 9 . 2 %

http://patterncentral.com
http://Patternscentral.com

Appendix D. Results 230

Some of the views expressed in the survey (Chapter 3) by architects on architectural patterns

"My own view is that the book was a simplistic attempt to link behaviour to form, and had a underlying
'romantic' agenda which prioritised a particular, traditional vocabulary (Arts and Crafts especially) over less
'aesthetic' forms of architecture (Brutalism for example) , in short, a work of its t ime"

[Dr. Vaughan Hart Bath University]

" . . . While sharing some of their criticisms, I wouldn't be so dismissive as my colleagues about the book. Some
of the ideas in it have percolated quite far into diffuse thinking about buildings, getting into the heads of many a
solo architect or small practices, and leading them to be more observant, even if they may not be aware of the
source." [Dr. Mark Wilson Jones] Bath University

" I do feel that this is timeless, but not so fashionable. It will come around again as people re-discover the
social/humanist agenda" [Fiona Mclachlan, Head of architecture, University of Edinburgh]

" . . . The book I think is considered rather old-fashioned - even naive."
[Prof. Robert Kronenburg, Head of school of architecture, University of Liverpool]

whilst Alexander's language is extremely useful to describe buildings from a technological or even
functional standpoint, it is not particularly well suited for the conceptualisation of buildings from an experiential
point of view." [Carlos Calderon, Glamorgan University]

"I certainly use 'A Pattern Language' as a text for my Theory of Landscape Architecture course, but I am always
anxious to stress that it should be used as an 'ideas book', a stimulus to creative thinking,
rather than some kind of infallible recipe book" [Dr. Ian H. Thompson, University of Newcastle]

"My opinion of the book is that it is outdated, and, even when published, prescriptive in the wrong way.
Architectural design and theory has moved a very long way since the book was published"
[Prof. Mike Jenks, Head of Department, Oxford Brookes University]

"I think that it is now considered rather old and tired. Certainly never 'taught' in a school of architecture in my
experience". [Todd Wakefield, Head School of Architecture. University of Portsmouth]

" M y own view of the pattern language is that it is too prescriptive and relies too heavily on normalised views of
human behaviour. If applied rigorously it removes many opportunities for creativity in design" [Dr. Christopher
Tweed, Queen ' s University Belfast]

" in the 'pattern language' , what is and is not a pattern seems to be decided by Alexander"
[Professor Bill Hillier, Space Syntax UCL]

"I co-ordinate first year studio, and steer well clear of Pattern Language"
[Stephen Walker Sheffield University]

" 1 . Alexander not well liked, not "designery" not enough aesthetics, too much about feelings
2. Alexander (like me) is no relativist - what is "opinion" to most critics is objective fact to others - 1 mean stuff
like that we all yearn for sunlight, enclosure, rhythm, boundary etc
3 . Pattern Language gives you a structure to understand a human-based approach to design - as opposed to the
standard one led by expediency, egotism, detail e tc"

[Malcolm Fraser, Leading Architect, Edinburgh University]

"A Pattern Language offers descriptions of all the parts, but not a description or understanding of how those
parts can come together to produce social meaning; while it is beautifully written and illustrated, it does not
teach how to design"
[Tim Stonor, Space Syntax UCL]

Appendix F - Published Papers 231

Appendix E. Survey Questionnaires

The questionnaires for the two surveys are presented in this appendix.

• Survey of UK software deveiopment companies on their usage of pa t tems
• Survey of UK universities on their views and teachings of architectural pat tems

Appendix F - Published Papers 232

Survev Questionnaire on Software Patterns

Section A. General
\ ' f-' - * '

Al) How many employées does your organisation have?
Less than lOD 1 0 - 5 0 • 5 1 - 1 0 0 • 101-200 • 2 0 0 + •

A2) What Capability M a tu rit y Model (CMM/SPICE) Level is your development
process is currently at?
Not Measured • Level 1 • Level 2 • Level 3 • Level 4 • Level 5 •

A3) Is your Company ISO9000 (or other ISO standards) registered?
Yes • No • Others I

A4) What programming languages do you use for software development?
NoneD Java • C++ • C# • VB • Others •
If others please state :

A5) What scripting languages do you use for software development?
NoneD JSP • ASP • PHP • HTML • OthersD
If others please state I

A6) What do you believe to be the effect of application of patterns on the following
software quality attributes?

Reliability PositiveD Negative CD Neutral • Don't Know •
Usability Positive!—1 Negative LJ Neutral U Don't Know U
Changeability Positive!—1 Negative 1—1 Neutral U Don't Know u Interoperability Positive!—! Negative !—1 Neutral 1—1 Don't Know u Efficiency Positive!—1 Negative 1—1 Neutral LI Don't Know u Reusability Positive!—! Negative 1—1 Neutral U Don't Know u Te stabil i ty Positive!—1 Negative 1—1 Neutral U Don't Know u
Portability PositiveU Negative 1—' Neutral U Don't Know u
Maintainability Positive!—1 Negative 1—' Neutral U Don't Know u

A7) Do you believe patterns contribute towards better communication between
software development team menibers
Yes • No • Don't Know •

A8) Do you believe there are risks involved in using patterns
Nil • Slight • ModerateD Considérable • Don't Know •

Appendix F - Published Papere 233

A9) Does your firm use patterns in software development?
Yes • No •

If No Go to Section Future Pian

AIO) Does your firm generate (produce, write) patterns?
Yes • No •

If No so to Section C. Pattern Usaee

SectiÖn>IB:| Pattern Development

Please fili in this section if your organisation generate (write) patterns

Bl) Does your firm publish externally the patterns it develops?
Yes • No •

B2) Does your firm develop do main-spécifie patterns (e.g. Télécommunication)?
No • Yes • Name []

B3) Do you have a re posi tory of in-house developed patterns?
Analysis Patterns OD 1 - 1 0 D 1 1 - 2 0 Q 21 - 50 • 50+ •
Design Patterns OD 1 - l O D 1 1 - 2 0 D 21 - 50 • 50+ •
Process patterns OD 1- ÌOD 1 1 - 2 0 D 2 1 - 5 0 Q 50+ •
Other patterns OD 1 - ÌOD 1 1 - 2 0 D 2 1 - 5 0 0 50+ •

Please State:

Section C. Pattern Usage

Please fili in this section if your organisation uses patterns.

Cl) What types of pattern do you use and in what capacity?
Analysis Patterns Never • Seldom • FrequentlyD Extensively •
Design Patterns Never • Seldom • FrequentlyD Extensively •
Process Patterns Never • Seldom • FrequentlyD Extensively •
Others Never • Seldom • FrequentlyO Extensively •
If Others please state where: I

C2) Where do you get your patterns?
In-house produced Never • Seldom • FrequentlyD Extensively •
Books Never • Seldom • FrequentlyD Extensively •
Journals Never • Seldom • FrequentlyD Extensively •
Pattern Community Never • Seldom • FrequentlyD Extensively D
Business Partners Never D Seldom D FrequentlyD Extensively D

Appendix F - Published Papers 234

Others Never • Seldom • FrequentlyO Extensively •
If Others please state where: I

C3) If you use any of the patterns below, how do you rate their ease-of-use?
Analysis Patterns Easy • Moderate • Difficult • Very difficult •
Design Pattern Easy • Moderate • Difficult • Very difficult •
Process Patterns EasyD Moderate • Difficult • Very difficult •

C4) If you use any of the patterns below, how do you rate their usefulness?
Analysis Patterns Nil • Slight • Moderate • Considérable •
Design Patterns Nil • Slight • Moderate • Considérable •
Process Patterns Nil • Slight • Moderate • Considérable •

C5) Do you have concerns about using patterns because:
Patterns could be outdated.

No Concerns I l_ I I I Extrême Concerns
Patterns could have unknown side effects.

No Concerns I I I I I Extrême Concerns
Your team may not be sufficiently proficient in patterns.

No Concerns I I I I I Extrême Concerns
Others

No Concerns I I I I I Extrême Concerns
If Others please state the reason:

C6) Do you validate patterns that you use by testing or other methods?
Never • Seldom (ZI Frequently EU Always

C7) How do you validate patterns that you use
External Evaluations •
Rationale •
Using test cases •
Other (Please specify) •

Appendix F - Published Papers 235

Section D. Future Plan
Dl) You do not use patterns in your company because:

You believe patterns do not provide an Yes
advantage (technical or economic)

side effects
Other Reasons (Please Specify)

No •

You do not have the skill set Yes • No u Patterns may be outdated Yes • No u You do not trust patterns to provide the
best solution

Yes • No u
Your software development practices Yes • No u do not require patterns
You believe patterns could have adverse Yes • No u

D2) Does your firm pian to use patterns in the future?
No plans • Next 3 months • NextóMonths • Nextl2Months •

Section E. Comment s

Please state below any commenta that you would like to make on patterns.

Appendix F - Published Papers 236

Questionnaire to the Architecture Departments of UK universities

Dear Sir,

As part of a PhD level research at Middlesex University, we are evaluating the works of Christopher Alexander
on patterns - spec i f ica la his book "A Pattern Language" . I would therefore be grateful if you would kindly
answer the following two questions:

Q. 1) Do you teach pattern languages, as described in the book 'A Pattern Language ' by Christopher
Alexander, in your department, in any undergraduate or postgraduate courses and at what leve! of
usage?

None IZ! Undergraduate Postgraduate
Low p—

Moderate _
High •

Low
Moderate

High

Q. 2) What are your views on the philosophy and concept of Alexander ' s pattern languages?

N o views • Negative • Neutral • Positive •

Please Comment .

Thanks very much for your help.

Best Regards

Ahmad Estabraghy
Computer Science Dept,
Middlesex University,
London.

