MX 0700407 9

L

Middlesex
University

An investigation of the utility and value of process patterns in the
management of software development projects

Ahmad Hajizadeh Estabraghy

Thesis Submitied for the Degree of Doctor of Philosophy
Al Middlesex University

L, School of Computing Science
Middlesex University
London

June 2008

Director of Studies: Prof. Darren Dalcher

Supervisors : Prof. Colin Tully
: Prof. Anthony White

© Ahmad Hajizadeh Estabraghy 2008

To understand is to perceive patterns

Isaiah Berlin

Acknowledgements

1 would like to offer my sincere thanks to the following people for their help and support in this project.

First of all to my Director of Studies, Professor Darren Dalcher and my supervisors Professor Colin Tully and
Anthony White for their gnidance, encouragement and support throughout the life of this research project. Their
support was in particular essential in getting approvals from various parties, in particular the Ethics Committee,
for the experimental research method in this stndy to go ahead. As module teader for the experimented modules,
Professor White played a significant part in allowing his modules to take part in this unprecedented (at
Middlesex University) experimental study, and in the strategic and ethical issues concerned with the experiment.
Without his interest, help and support, this research work wonld not have been possible.

Thanks also to Dr. Dan Diaper for giving me valuable advice and insights in the design of the experiment for this
study.

1 wonld also like to thank (CMT3991 and CMT3992) module coordinators Dr Mike Censlive, John Platts and Dr
Yuan Luo (at the three campuses TP, HE and TM respectively) for their support. [would, in particular, like to
thank Dr Mike Censlive for his help and support in conducting the experiment. Dr Censlive generously offered
me his extensive experiences and knowledge of the details and structures of CMT3991 and CMT3992 modules
and gave me valuable suggestions for the experiment design through many meetings.

I would also like to thank Elaine Sheehan, school secretary at TM, for her help in various clerical tasks with the
experimentation,.

Finally, I would also like to thank all the CMT3991 and CMT3992 tutors and supervisors for their support of this
study and for allowing me to attend their seminars and talk to their students.

Pl1L6q082

Site MIDDLESEX
E UNIVERSITY

H LIBRARY

Accession o P

No. 07C040RA

Ctass Oos3 l

No. EST

Special '/

Collection

Abstract

Pattern theory has engendered much controversy in the field of architecture; yet it has bronght new insights to
the field of software engineering. Pattemns continue to play an important role in software engineering in general,
and in software development in particular. In this study, two preliminary surveys, focusing on the two fields of
architecture and software engineering, were carried out to investigate the role and effect of pattems. The surveys
indicate that while, patterns are unpopular within the architecture community and are criticised for stifling
creativity, software patterns are popular within the software community and a high proportion of software
development companies use them in their development practice. The resnlts however show that in the vast
majority of cases, pattern nsage is limited to design-based problems, involving a single type of pattern (i.e.
design pattems). The results further show that process-based pattems are seldom nsed in the software
development industry, which prompted the topic of the main investigation of this research to evaluate the effect
and utility of process pattemns.

A controlled experimental research method was designed and used to evaluate the utility and value of process
patterns in the management of software development projects. In this *2x2 factorial design’ experiment, the
subjects were divided in two groups of experimental and control, where the experimental groups were given a set
of process pattems to use in their software development projects. Overall, there were over 750 subjects involved
in this experiment and a total of 260 software development projects (individual and group projects) were
investigated. Measurements of a number of appropriate software attributes were taken during the life of the
projects though a devised goal-based measurement process. A further number of attributes were measured after
the projects were completed. Using metrics, a number of software attributes across the four major phases of the
development lifecycle (i.e. Requirement Analysis, Design, Implementation, and Delivery) were measured and
statistically analysed. In addition to these specific measurement data, official marks awarded to the projects by
the tutors were also nsed in the analysis. The objective was to determine if the experimental groups produced
software projects that were of higher guality, in terms of the measured software attributes, than the contro]
groups.

The experiment results show that, in the case of thirteen measured attributes, the treated groups scored
significantly higher than the control groups. The improvements are across all the four major development phases,
with at least two attribute in each phase, showing significant improvement. The experiment, therefore, confirms
that the application of process pattems in software development projects, improves the quality of the projects in
terms of a number of specific attributes such as productivity and defect density. The results further show that the
treated subjects in the group projects performed significantly better than those in the individual projects. This,
therefore, confirms that while the application of process pattems significantly improves the quality of both group
and individnal projects, the improvement is more prominent in the case of team projects. Process patterns are
thus shown to be more effective on team projects in improving the guality of software development projects.

Chapter 1

Table of Contents

TtrodUCtiOn AN OULHIE coecccersirrmnrsmsnmisiemsirtomsmasssoesstsssssssssssssnssssassss seoss ssssasssas seses 1

1.1 TEFOQUCHION . c.ooov e seeeee e seeeeee e eeeeseneeane et essmsentsssssntosbss st ansassiasnteatesensesansessmnnsnansasnsansenssmsnessesnsemnnsensnnns |

1.2 The Pattertt CORCEPEoooeoeeeeneeiniitet s eeesseaimtssstassssesassmaiesasessssassnessanestenesonnmssenmnsnssnsnsstnsasssstsssosons |

1.3 The Research Methods and Provess.....cioiiciniiiiin et ssn s s s en e raas 2
1.3.1 Research Question and HYPOthesis ...ttt s e sr s 3
1.3.2 Experimental MethodOIOBY ..o e e 3
1.3.3 The MEasUIEITBIIE PrOCESS . cciiveeceetimeeeeeireee e erceeeereeamsyeeeecns sinban b ssbas it oo eibsssn s sabs st serneerenbesans 5
1.3.4 Resnlts Presentation and ANALYSISc.oviereiermi s sre s sn s ss s s cns s et b s sasbs s 7

1.4 RESEAFCH CONCISIONS .vvooviveiieiieiiis it et ie ettt e e e eeae e e et s daE e AR s R e s bbb ok shat s shssm am e RaTe e 0b s n b e arats 7

1.5 Strengths 0f the ReSEUrCh ... oottt ittt s e e e e 8

1.6 THRESES OHHTIE «.c.eveeveeiivie et ieeeieeet e ceve e st tesacs s e s s te s sb e e e eass s era e e e et e e en e e sae e e e s e s sns£er eeeenrne s iR b e E s aR e aR R 8

Chapter 2 Software Engineering Patterns beraenae st st s rene e e s ben 10

2.1 TREFOAUCHON oo coovvcevcvciiicvcs s v cteas et e sns s s sas e sem e st esssasn st sssbebbaba b st saba b st ss e e s e et smenesssurrensssresaans 10

2.2 Software Engineering and Patterns .. PP TSRO RRROUSROOTY | /)
221 How Patterns Entered Software Englneenng .. 10
222 Software Pattern Definition.......ccui e orirreneereesieninteeesse i sbss st st st sae s asses s snne s 11
223 Pattern Elements and TYPESccoiviviiimiiiin it sisss s resis sttt e b b e s emee s sman s 11
224 What Patterns Are, and What They Are NOt ..o e, 12
225 Disregard fOr OrgiNality ...t e e sr e s e an
226 Characteristics of Patterns
2.27 Software Patterns and Pattern Principles ... sn et 14
228 Software Pattern Usage in INdnstrycovveeiiriimiimmirns st ee s et sssssnessnans 19

2.3 PAHETT DUSCUSSION ..o eeevseeratensstestasessasseste e s tanessan s s seemsemmssesssms s s s sesseeassseranernsrnannssssssisanisns 43
231 L (% (T PO U U RPPPOPPPROPOS 15
232 Can Patterns be HarmfLl? ..o e s s e e 16
233 Do Software Patterns WOTK? ... oo ierries s s s ss s sme s smesms s s s sa et srn e 16
234 Should Patterns Be FOrmalised? ..o vvivirioeieeer et s e sne s e esa s s s 17

2.4 Patterns in Software DeSigi. ... e s e s g2 e e 17

2.5 Patterns in the Software Development ProCess...............co.co i e 19

2.6 INSUPHCHONS M PAHEINS co...oeeeeveeeeeveseeeeeeneerenaeceemsinereaneneans UV POUPO 24
2.6.1 Patterns in Town and Building ArchiteCturevovvveriveieeeeteeeee e 24
2.6.2 Patterns in SOftWare DIESIZNcoocrriorr ettt e e 25
2,63 Patterns int DevelOPIuent PrOCESS ... s e e s e s i e 26
2.64 Software Process and Textnal Instructions..... ..o vvvvicininiimimiieie e e e 28
2.6.5 Can Patterns Benefit frorn Task Analysis? ..o e 29
2.6.6 Hierarchical Task ANALYSISccooviiimrinr vttt sesn s 29
2.6.7 Application of HTA in Patterns. ... et 31
2.6.8 Process Patterns Eruployed in the EXperimentation............cooovieciiiiiiviniinieiiinenin e s erereon 34

2.7 SHIIAIY ..ottt e e e SRR e 34

Chapter 3 Patternn USAZe SUI'VEYS cceccuscsersessssesmanssnsnssrssonsnssrsassrens 35

3.1 D a7 1Tt Te L IO DO SOOI 35

3.2 Architectiral PAHEITS SUIVEY oottt et a et e s bbb e s ee e s s nac s 35
3.2.1 A O G R25 1L o] ¢ L O PP PSP 35
322 SUIVEY DBLALS .. eet e et ee et et ce e ere s et re s e e e s et R 35
323 Architectural Pattern Survey ReSnltS... ..ot s 36

3.3 Survey of SOftWare OrganiSQUOMS. .. o e mueiuiserssiiinseiisrensissons s sts st oo bt s sanas s b st sasae s s 40
331 IMIOUIVALIOMS .veiveivrivreereeiissansssesseeseseetens teee e saesansasaubneatras s are s o ame b mba s et s 4508 er e s oA e ntprmmanpmEanb e menmbenans 40
332 L L= T OSSO OTP ST 40

333 Samples and Sampling Method ... b 41
334 SULVEY INSIMUIMENEcooiitimrrconmr s msssss s st rns s seessens o sssnsen sssnstansss et sosrssarnrenrs 1
335 Software Pattern Survey ReSUIS . oottt 42
3ud SUIIIIGI Ve cuiicee e eeee et er et nae et et ree e e e e AR RR AR AR RS e e e RS sR e R e asnan R b aaanes e nn e ne s s 49
Chapter 4 Software Experimentation and Measurementuuisssesssnens . 50
4.1 TFOAUCHION. c.oeeeee et a et e rn e e s et aba s bas s sres b st e matsmnsnassesatsnsenneseensansssstensnssnrnnnssass SO
4.2 Measurement Theory and DefiRifion.ttt 50
4.3 Purpose and Benefits of Software MeaSUFrement................coivimsisernineniirins s sesessnsinssnse D2
4.4 MEASUPEIMENTE SCALES ..o ii ittt s ettt et et et e ee et pe s bt bbb s ekt b eh et e £ eameee e eabd e et ds s b e b 53
4.5 Measurement TeORRIGUES...........ccocuii i ccuiiecrece ettt st e s n s s s s e s sma s nne s e enb b e sbeseesbnnn s 54
4.5.1 Direct and Indirect MEaSUIEMENLEc.ccviiuveririiriiine s sisnsse s s seresseessesem e seeor e seesmsnssesssesnessnsonsoan 54
A6 SOMIWAEE MEITTCS coocvociiiiieni st ettt v e e b e e ee e et e s r s er et b e b 55
4.6.1 Process and Product Metrics ...t s i st cinns e srsnss s one 55
4.6.2 Composite/HYbrid MeTHCS ...vvoiieee e e e e bbb ns 56
4.7 Measurement Validation ... ettt r et bbb 57
4.8 Software QUolity MEaSUFEIMEnNTcccoowi it emeeeeeae sttt bbb e 38
4.8.1 Factor Criteria Metric Models (FOMYvi e e ceeenecitismeecmee e e seeeessenm et ecasssasss 58
482 Goal Question Metric Model.........ooiiiiiiiiiiiii i s 60
4.9 Measurement of Qbject-Oriented Software.................cccoovmviiiiniiiii e 04
4.10 Saftware Measurement Issues and CRAllEnGescovvovvoeeiiicicii i, 02
4.11 Experimentation in Software ENGINeeringc.ocvoiivumimmininsnmnsim o s e 65
4.11.1 Expenimentation FrameWoOrK st b 65
4,12 Software Experimentation ISSUES ... e e s e se e e ey ses e e s sarneees 606
4,12.1 Flaws in Experiment Design and Conduct ..o s 67
4.12.2 Subjects it the EXPEAMENES ..o.c.vurnieecece e s 67
4,123 Costs and Publishing Limitations ... e 68
4.12.4 HUMEN FACTOTS ..ooieiiecieeeceee e e se s s ne s n e e s b e es s s s s a s s s it e rassan s anssemsmeenssmsen e an oas 68
4,125 Experiment QLAY .o.ocvoivreeiesieiiis ittt e e er e e e et e e e e 69
4.13 A Review of Pattern Related EXDEFIMENIS....c...c.ooviiviriiiimmieinimnis ittt s sa e e s 69
414 SUIMINGEY...ccoiiiiii e ettt e e e et e e e 72
Chapter 5 Experimental Methodologyceuumerenssemssssrssssrsssstiessrsssssnsas 73
S8 IRIPOAUCHOM. o covevvieiiieiesieti st s es et et es e s bnsne s et e s st e st sees s ben s bon s s st ams e se b e smn o bsseebsae s ereees PR
52 Experiment Definitions and HypothesiS ...t ssesssssceses 23
5.3 An Overview of the Experiment Designccooeiveiciiiiniiineiciinininisinissnniesiaisssnssesss s ensnsssnseess 784
5.4 An Overview of Isstes Involved ... s 76
54.1 Practical DI TICUITES. ...t e e cec e e eee e e e e ee e cae e ceeme e e cemee e e e bt bins ste st b s 76
5.4.2 Ethical/Staff ConmCemS.coviieieee i ciiisiesineie e ccn s st rs st e e e e e b naes e s e e e s e enseees 77
5.5 EXPEriment SPECIICQIION. ...o...ovevetecititisiiet ittt ss s e s e e e e s 77
5.5.1 Experimental Research SEIIMES . ..ovovvrrceerrrerrcrermeererenesreresees et et en e s bbb e 77
552 VAIADIES ottt e 77
553 THE TIEALTIENEeueeceeveeuieneeessentcss s ne et e smin s sess s et oanatese s saebe s ne e s s ens s emsrneassasesenansee st aE e b EaRet et e as 79
554 COMELON c- et e rr e gee et bbb st bbb em e aR eSS e bE S e A s oR s eR e RS Rs e Rt se e bR s e eE e b b em ne b e s 80
555 IOLEMAl VAIAILY <.ttt e s b en s ee e en s s e s 82
55.6 EXternal ValIdity ..ot et 82
5.6 EXperiment DESigr. ... oot e e s e 83
5.6.1 DESTEN MIOUEIS ..ot et bbb e R e e 83
562 Subject’s Awareness of the Experiment........oooooiiii 84

5.6.3 Subjects and Treatment APPUHCAKION ...ovvi i e e 84
564 Subjects Selection MethOdS ...t s 85
5.6.5 Group and Individual Projects ASSIENMENLSovueierennmes e 86
5.7 FXPEFIMENE CORAUCE..vuvteereesirissecceess s inms ittt e e s aas s sn s e s b m R b e s e nr e 86
5.7.1 APPlICAtON OF TLEALMIENE ... cvvvevrerererecienereeresemenss e sntse st sses s ettt s siabas bbb o0 DO
572 L T IR oSO PSP PR g7
573 Snbjects” Views 0n Process PAETNS ...t e s s s 88
574 Experiment Ontcome SCEMATIOSouioe it es et s b s e e s e snms s 88
5.8 ERICAL ISSUES «oeoeeeeieeeeeeteereeeeresssant e e e iete et sect st s bna b st e e she s o4 e e b b ee s sas SRR oe e R e et st e e s e e 89
5.9 Desipn CONSIFAINIS.correeaeesneaesists st s sesssmssssass s sassassas e seas e sr e e s e H4 e A EA S s Eas A en e e ane s sas e e e 90
BT LN T, T T VOO P PP 91
Chapter 6 Measurement PrOCESS wwsinemuimnmismsmnmsmsimsse e 92
6.1 FRUEFOQUETEOM ... v oeeeersees e veeeeeceee eabastessasstaresanesses s aaeanseneeentea s e ere s aee e aann g eet e 2ot eabEa e e aE e 2 mrmt e et e et emb e st e s s smeraben nie 92
6.2 Measurement Process Desigh ...t e e e e 92
6.2.1 GOM TADIES ...ttt em e sm e s s sRa R eR e e se s ee e eRe b e e e e s e e nn s 93
6.2.2 MELTIC SPECITICALIONS ... eu.voeeecvieieti ettt ettt st as e b s os o2 s ras s e e se s 96
6.3 Measurement PrOCess CORMUCT ..o v cimveesieeeeinsaieiesansa e tesnsssamasssssss st sas s b e b e sbe s st s s mserseassmsansensssansasnas 98
6.3.1 Data Collection PLOCEALIEociceriie e s siiiete e s re e e e s abs sab s bsbea s srpsme s s ssnn s 98
6.3.2 B 0T F T O SOOI 99
B.F SUIUTIATY . e eeeeereeeaeeeee et eee e eeseas ceebssa b e b s e R 1A eree s Rt e h e e s e ey e s eas s aes oE AR e S L at AR SRR ARA R R e e n s 99
Chapter 7 Results venernessasat e aaeshass ... 100
7.1 TREPOUCTION. ... ceos oot e e eisaeae s ee e e tr et ee bt m et edsab et st s ot 4 s shes 41024 0m e 2 srmne s A s e Rn e n bbb n bR e bR e s n rat e omtes 400
7.2 Applied Statistical MetROdSs..........ovievr i s 100
7.2.1 Parametric VS NON-PATAIMIELIIC ..cocviivirmni i st s s siass st sssn st sr s s eeese s e enssmn e sen s semseen e ben s senn e snnes 100
722 Identification and Treatment Of ONTHETSocvevieiiiieri et eri s 100
723 ot 1 118 p ol T £ TR O 101
7.3 TeAMS VS INAIVIAUAIS «ooeoeeeeeeeeeeeresteesiers s vt esmsrs s sessnesssn s s s s sateman e e et bensobesinis s easransensnnsns JOF
7.3.1 FUMNET ANALYSIScoovevveerereese e er e sor st en et s re s e b et e sh b se R e e eR e e e senas 103
7o SERSHVITY AMGIPSIS.c.oocoiieeis e ceseeeee ittt et ere et ee s seaeeae e e i03
7.5 Correlation/Regression ARGIVSIS......cocoiiiiiiiiiisii ettt e e s 104
7.5.1 Treatment Rate of USAZE......ocuviiiiriniviiiii i ce st s bbb s et sebsss s s bas st sb bbb nenes 105
7.6 Conducted Measurement Resulisccovvimiiciniciiiascriseerssmeesesssses st iss s s ba st s besns 105
7.6.1 Requirements Analysis PRASEocvvvieeiiiciccc e 106
7.6.2 DIESIZN PRASEcvvmusivereirese s eme s b b aa 2SR 114
7.6.3 IMPleMENtAtON PRASE ...oveueeece et e s e s 122
7.6.4 Delivery Phase e teeeeeeieiresiesreereeseestn et ey e e oEe e b AL A ba e e s E R e ESe bR e bbb s 136
7.7 TULOEF MAFKS RESUIES oot eiietiee e e eee et e et ee et e e s maen s bme s esn e ns s aeshatea st e e e saaan ssmmnansnmssnn s e erasensmmnnsnan 142
NN L5 3 4117 T U OO 142
7.7.2 Design and ANALYSIS ..o s 144
773 PTOJECt MANAZEINENLovcceeecrecicetie et en et sn e e e s s s e e s g e 145
7.74 Rt 7T L5 L) U O PO PP SRS 147
7.8 Subjects’ Views 0n Process PAUEITi........ocooo ittt sttt 149

7.0 SUITHAT ... oceeeeereeeeeesereeeeseeeemamseesesnt s sne sttt samst s st semrasenesnssssaeaionisssssssrasasssssssasssssssessassssassssssesss 190

Chapter 8 Analysis........ R —— 152
8.1 Introduction......... O P PO VSO U RO O PP RPN 152
8.2 CoHcise ReSULLS REPIESENIAIIANcoou ocieeeiaseneeeaeesamncs st cesansanssese s s st s etan e s s sta s ansassaa b an e an e ey s an e 152

8.3 An Analysis 0f the RESUIS ...c.oooveioieieieicee ettt 153

84 Research Hyporhesis..................: .. 159
8.5 A Discussion af the ReSulLS ...ttt sttt 159
8.5.1 L T4 103 F:1 I DAY 1T Ly Lo o PSR 160
8.5.2 Generalisations of the RESUILS ...t s 160

B0 SUIIIATY.....ovivieieneeieemet sttt et st et e et et b en b b es SRR h bbb e e bbb h 161
Chapter 9 Conclusion 162
9.1 FHEFOUCTION. ... ooeeseveeeeeeeeeeeeee et eas e st erme e sbene s ban s an s n st e sme e an e s ere e s san e s amn e m s v sansasemansessmnnas oo e sobeesasonen 162
9.2 Summary gf Main CORCEPISueveiivererieanioviitisisssesesnemsse s ssemsssensnesesesnsasssnsesssnssesssnesnsensessenssnsesnstese 1 02
0.3 RESEOFCH COMIPIDUIIONS . co.eeeeeeeceetietieeceeinsce st s et e et sas s st bbb e s an s e e v b e s sp e msar e s rssnsan e ane e e 164
9.3.1 Key CONLABULON.....ovviirie et b ea s an e e 164
9.3.2 Additional CONEEADILIONS ..vvv..veeeeeeeeereee e sser e se et e b bbb bbb s ab e e s e s nar s 164

G SUMMAEY Of RESUISvreoeeseveeseeee e emeaee e ses s e bbb st bbb s bbb s 165
LT T 711 77 7 OO USSR 169
0.6 ReSEAICR S IMPUCE...vres ittt sttt st se A s e e e e an e e 170
Q.7 FUIUEE WOIK oo iiei ittt eivaiesen e s eme e eem et m et e am e e e ame et e eemse e e bm s bbb s ehbt 4 bbb kb as s+ s bt m e Eabm shE e e bR san e ers 171
9.7.1 Software EXPErimMentationc..cocoiinirimsiniissssessieserssismssse stessssnsessssersborsonsrssssensssnssessnsssassnsananns 171
9.7.2 PALLETTIS . .vceuviveestersesssseeeenmeeceseeesmeeeeeseeeessbend ebbi e s aebhd e bbb e o b 444 as g e he R b e SR RS AR S b e SR b e raR e b RReRE s s b b RenE e e 171
Reference and Bibliography... 173
Appendix A. Experiment Details 192
APPendix B, Patlerns e ciescinissioresssisiscssmesssssasssssassssssssnsssisssstssastsssarsesstsass sassaasans saets 199
Appendix C. Metrics Specifications.......cccceececicnsinannsensinencssniossmenssesiaes 210
Appendix D. ReSUIS..coccuciseimeisaninesssasiasiasrissssasesssrsassnsssaseacassacans 27
Appendix E. Survey Questionnaires. ... 231

Table of Figures
Figure 2-1 Elements of a pattern (www.hillside.net) ..., 12
Figure 2-2 Hierarchical structure of process patlerns ... riesie e i e 21
Figure 2-3 Task process pattern for technical reviews ... e 21
Figure 2-4 Hierarchical structure of process patlerns ... 26
Figure 2-5 HTA for drawing @ ClOCK ... e e e 31
Figure 2-6 Section of the goal hierarchy for an acid distillation plant operator's task [Annett 2004] 31
Figure 2-7 An example of task hierarchy for the Implementation phase...........ccocovi i 32
Figure 2-8 Example of @ patlern SEQUENCEc...ovi ittt s ee e bbb e s a3
Figure 2-9 An example of a pattern construct using HTA ..., 33
Figure 3-1 Number of universities teaching architectural patterns ..o 36
Figure 3-2 Architects’ viewpoints in relation to pattern usage levels..........vnnn s, 37
Figure 3-3 Architects’ viewpoints in relation to courses on patterns ... s 37
Figure 3-4 Correlation between pattern usage and architect viewpoints ... 37
Figure 3-5 Companies uSING PALEINSccocir i e b s 42
Figure 3-6 Pattern usage in relation to arganisation Size................ci i 42
Figure 3-7 Correlation between pattern usability and pattern usage ... 43
Figure 3-8 Correlation between pattern usefulness and pattern Usage ... 43
Figure 3-9 Process Paterns USAQEccoviieiiiniiinieiisr sttt e ss e e et sas rngne s e me e s 45
Figure 3-10 Companies planning to use Patterns ... 45
Figure 3-11 Companies develaping PAMEIMS ... 46
Figure 3-12 Correlation between reusabifity and patteran USSQE ... e et 47
Figure 3-13 Correlation between maintainability and pattern Usage.............ccev v icnainnnns 47
Figure 3-14 Correlation between pattern usage and testability-reliability quality attributes................. 48
Figure 4-1 A model of measurement [Oman and Pfleeger 1997]cciivivnriininnninnese e 51
Figure 4-2 Measurement process and intelligence barrier [Kriz 18988] ... 52
Figure 4-3 Process pattern development through process impravement ..., 53
Figure 4-4 Factor-Criteria-Metrics general model ... i e 59
Figure 4-5 An example of FCM model for maintainability ... 59
Figure 4-6 Factor/Criteria/Metrics model (McCall/Boehm madel) ..o 59
Figure 4-7 The Goal Question Metric Model ... 60
Figure 4-8 V-GOM MO ..ottt bbb bt bt em et et e 60
Figure 4-9 SATC Model for Software Metrics Programme.............cccccormnniiniis i e 61
Figure 5-1 EXperimeant Design........ciiiii st e e s b e e 75
Figure 5-2 Capture and analysis of data to test the research hypothesis........cccoccvniiiiiciin, 76
Figure 5-3 Many-to-many relationship between process patterns 2nd metrcs ... 80
Figure 5-4 Random subject SEIeCHON ...t b a1
Figure 5-5 Maiching by precision control tEChNIQUE..........co i e e 81
Figure 5-6 EXperiment deSIGNt e e s e e e 83
Figure 5-7 Module CMT3991 {group projects) seminar Structure ... e 86
Figure 5-8 An QUICOME SCENAMO.......coiictiiriiiiiie ittt en s e b aafareaen e 88
Figure 5-9 An QUICOME SCENEIMO ... c.iiermrier et s s b bbb e aar b 88
Figure 5-10 AN QUICOME SCENAMO ..iviiisiie st ss e st ae g sb st e e s m s cni e ee e s et 88
Figure 5-11 AR QULCOME SCENATMO «..voiiiiitii et ar st e s bt e st e rbeab et sas e e s an e 89
Figure 7-1 Regression lINE ... b et e s e b e 104
Figure 7-2 Regression line scatter plot.............cooii i s 104
Figure 7-3 Rate logins to the treatment {i.e. process patterns) website ..., 105
Figure 7-4 Boxplot for percentage of traceable requirements. ... 106
Figure 7-5 Correlation between the no. of lagins and traceable requirementsccieeieeeeens 107
Figure 7-6 Correlation between the no. of logins and traceable requirements for individual projects 107
Figure 7-7 Boxplot for percentage of requirements specification reviewed ... 109
Figure 7-8 Boxplot far the percentage of defects fixed in RA.........ovc e, 111
Figure 7-9 Boxplot for percentage of RA time spent in teSting...........coooviiiii e 113
Figure 7-10 Boxplot for the percentage of design document reviewed. ..., 115
Figure 7-11 Baxplot for No. of Methads per Class ..o s 117
Figure 7-12 Boxplot for the percentage of defects lixed in design phase ... 119
Figure 7-13 Boxplot for percentage of Design phase time spent in testing ..o 121
Figure 7-14 Boxplot for Comment Density (Cam/100LOG).........ccoiiini e 123

Figure 7-15 Boxplot far percentage of source cade reviewed...........coevevmremnnsencnn e 125

http://www.hillside.net

Figure 7-16 Boxplot for defett density..... ..o e s 127
Figure 7-17 Boxplot for productivity in the Implementation phase ..., 129
Figure 7-18 Boxplot for overall produchivity ... i e 131
Figure 7-19 Boxplot for the percentage of defects fixed in the Implementation phase....................., 133
Figure 7-20 Boxplot for percentage of implementation time spent in testing ..o 135
Figure 7-21 Boxplof for test Case densitycco.ouiiiee e 137
Figure 7-22 Boxploi for percentage of defects fixed in the Delivery phase............cocoiin 139
Figure 7-23 Boxplot for percentage of Delivery phase time spent in testing.............c.ocoooiiiienn. 141
Figure 7-24 Boxplot for the product attribute ..., 143
Figure 7-25 Boxplot for the Design and Analysis marked attribute ... 144
Figure 7-26 Boxplot for project management marked atiribute..........oooviveiiiiiinnin 146
Figure 7-27 Boxplot for the evaluation attribute ..., 148
Figure 7-28 process pattern USefulness ... 150
Figure 7-29 Process patterns usability ..., 150
Figure 9-1 Correlation between reusability and pattern Usagecccoieiiiimiecic i, 166
Figure 9-2 Correlation between maintainability and pattern Usage...........ocooeiiieevieinnnniccin e 166
Figure App_A 1 Snapshots of onjine measurement fOrm ... 192
Figure APD_ B 1 OGN FOMM...ceo i e e e e 201
Figure App_B 2 Snapshot of a process patterns hosted online for the experiment.........cooc i, 201

Figure App_B 3 Snapshot of a process patterns hosted enline for the experiment..........ccccoeiee. 202

Xl

Table of Tables
Table 1-1 The analysed metrics and tUtOr MAMKS ... i i 7
Table 2-1 Pattern sequence to add support for service intertaces [Siddle 2007]cccoovinennnne 14
Table 2-2 Results summary [Beck et al. 1998]....ccoriiiii e 15
Table 2-3 GoF's design pattern elements [Gamma et al. 1995] ..., . 18
Table 2-4 Prototype process Pattern ... it s 20
Table 2-5 Elements of process pattern [Ambler 1998] ... 21
Table 2-6 Pattern elements in [D'souza and Wills 1999] PAIEINScooovniveeeeve st 22
Table 2-7 Pattern elements [Storrle 2000] PAREIMIS ... e e 23
Table 2-8 Pattern elements in Cary and Carlson [2002]cocovvverore e 23
Table 2-9 Window Place Palernttt s isns s b e e s 25
Table 2-10 QUdOOr r00mM PAIEEITI et e b e s s ranaes 25
Table 2-11 An example of a pattern sequence for building a8 porch ... 25
Table 2-12 Model-View-ContIONE....... ..o e creeecseraees e e e e s e st e saser e e en e e ssraees 26
Table 2-13 DECOPATOr PAREIToiiveeeee et ee e s e srmtssmt s s e er e ar e ar e et s enmtnes s nee s s saassmnans 26
Table 2-14 Requirement Analysis Pattern.. ..o e 27
Table 2-15 Big Ball of Mud pracess Pattierm ..o iriiiismiii st s 27
Table 2-16 A language tor object development from SCratCh......cc e 27
Table 2-17 Example of a process function (program) Qsterweil [1987)...........ccoiiiiiiii e, 28
Table 2-18 HT A NOTAONS ..o ettt cecre et cesre sttt e v e e e e smer e s e s e st s eneneesemmssensnsen s smnanreaaeaeeis 30
Tabla 2-19 Process Paern FaMGUAGE ... oot e sar s st et st e bbb b g e 32
Table 3-1 Correlation between pattern usage and viewpoiniS ... e 37
Table 3-2 An example of the SUNVEY QUESTIONS ... e 41
Table 3-3 Pattern usability reSUltS ... s e trteaianrer e s 42
Table 3-4 Pattern Usefulness RESUIS ...ttt s et e e srnea s 43
Table 3-5 Reasans for not USING PABINSccccviv v e s b e 45
Table 3-6 Parlicipants’ viewpaints on the effect of patterns on quality attributes ... 47
Table 3-7 Correlation analysis for testability, reliability, and pattern usage.............cccceoe s 48
Table 3-8 Patterns efect an COMMURICEHIONcccviiiii et e s et e smaassaeea 48
Table 4-1 Measurement SCBIE tYPES ... et e s e 54
Table 4-2 Examples of iNdireCt MEASUIESuiiii i i e e e i e 55
Table 4-3 Examples ot Internal and external attributes for products e retteran e eeereeeraneererps it 55
TADIE 4-4 G MEBIICS . o.iei v veiiireieesieeiuseaes e ereaemmeeaaae e et b ra i shhaeasbbee e anterime s s s sare s sE st s ome s sre st e s s ss bt esaan e esn 62
Table 4-5 Negative aspects of software measurement [Hall et al. 20071].............cniiinen 63
Table 4-6 Elements of the detinition Phase.......c.cco i ier e e s 66
Table 4-7 Elements of the planning phase. ... e e 66
Table 5-1 Experiment arrangements for the group projects. ... 74
Table 5-2 Experiment arrangements tor the individual Projects ... 74
Table 5-3 EXPENMENE QESIGN ... crerece et bbb b st e s s 75
Table 5-4 The independent VaRADIES ... i 78
Table 5-5 The 2 x 2 experiment design (independent variables)............oiiiiiin 84
Table 5-6 Relationships between the development phases and the marked attributes 87
Table 6-1 Goal Elements of the GAOM model ..., e 93
Table 6-2 GOM tor artefacts in the Requirement Analysis (RA) phase ... 94
Table 6-3 GOM for test and review inthe RA Phase ... e e 94
Table 6-4 GQM for effort in the RA Phase........coviviicir e s st e e 94
Table 6-5 GOM for artefacts in the Design PASe.........ccoeeierrrrie e eceneereenres s e ee e e e sss s 94
Table 6-6 GOM for test and review in the Design PhasSe ... s e 95
Table 6-7 GOM for effort in the Design PhasSecc.o e 95
Table 6-8 GQM for artefacts in the Implementation phase ... e 95
Table 6-9 GOM for testireview in the Implermentation phase.........c.ccoir 95
Table 6-10 GQOM for effort in the Implementation phase........coo i 96
Table 6-11 GOM for artefacts in the Delivery phase ... 96
Table 6-12 GQM for test/reviews in the Delivery phase.........ccoiinnii e 96
Table 6-13 GQM for effart in the Delivery Phase ... e 96
Table 6-14 Percentage of iraceable requirements metric (Metric 1) ... 97
Table 6-15 Number of traceable requirements measure (Measure 1) ... 97
Table 6-16 Number of requirements measure (MEASUNE 2} ..o e s 93

Table 7-1 Relationships between experiment groups and semesters ..., 102

Tabte 7-2 Statistics for percentage of traceable requirements..............cccovevveivii e e 106
Table 7-3 Statistics for the percentage of the requirements specification reviewed 108
Table 7-4 ReSUlS 13D18S I&YOUL ... cvcier et e et et e e e 109
Table 7-5 Statistical analysis for the ‘percentage of reviewed requirements specitication' metric 110
Table 7-6 Statistics far the percentage of defects fixed in RA phase ..., 111
Table 7-7 Statistical signiticance analysis for the ‘percentage of defects fixed’ metric..........ccccecvennee. 112
Table 7-8 Statistics for the percentage of RA phase time spent in testingcccocceein i 112
Table 7-9 Results of significance aNalYsis ... e e e 114
Table 7-10 Statistics for the percentage ot design document reviewedcccevievveen v, 115
Table 7-11 Statistical significance analySiScoco e 116
Table 7-12 Statistics for the no. of Methods Per Class ..o 117
Table 7-13 Statistical significance analysis for the ‘No. of methods per ¢lass' metric...........ccvein. 118
Table 7-14 Statistics for the percentage of defects fixed in the design phase........ccccivviiienivcivinnnens 119
Table 7-15 Statistical significance analysis for the ‘percentage of defects fixed’ metric................... 120
Table 7-16 Statistics for the percentage of the Design phase time spent in testingc.occ..... 121
Table 7-17 Statistical significance analysis.........ccoiuiiiiiiiiiiiiiiiis e e 122
Table 7-18 Statistics for the CommENt DENSItYcooviee et ra e aanaas 123
Table 7-19 Statistical significance analysis for the ‘Comment density’ metric........cce i, 124
Table 7-20 Statistics for the percentage of source code reviewed ... 125
Table 7-21 Statistical significance analysis for the ‘percentage of source code reviewed’ metric...... 126
Table 7-22 Statistics for the defect density in the source code.........ccoov o e 127
Table 7-23 Statistical significance analysis for the ‘defect density’ metric...........ccooinin e, 128
Table 7-24 Statistics for productivity in the Implementation phase ... 129
Table 7-25 Statistical significance analysis for the ‘Implementation productivity' metric 130
Table 7-26 Statistics for the averall produCtivItYcoc i e 131
Table 7-27 Statistical significance analysis for the ‘averall productivity’ metric ... 132
Table 7-28 Statistics for the percentage of detects fixed in the Implementation phase...................... 133
Table 7-29 Statistical significance analysis tor the '‘percentage of defects tixed' metric......cccovon. 134
Table 7-30 Statistics for the percentage of Implementation phase time spent in testing.................... 135
Table 7-31 Results of significance analysis ... e 136
Table 7-32 Statistics for test case density in the Delivery phase ... ccrenscnere e 137
Table 7-33 Statistical significance analysis for the ‘test case density metric ... iiieeies 138
Table 7-34 Statistics for the percentage of defects fixed in the Delivery phaseccccovveiiiinienes 139
Table 7-35 Statistical significance analysis for the ‘percentage of defects fixed' metric..................... 140
Table 7-36 Statistics for the percentage Delivery phase time spentintesting ..o s 140
Table 7-37 Statistical analysis far the ‘percentage of phase time spent in testing’ metric.................. 141
Table 7-38 Relationships between the development phases marked attributes............ocoociievinne, 142
Table 7-39 Statistics for the product attribute.........coiniiii e 142
Table 7-40 Stastistical significance analysis far the ‘product’ attribute.........ccviiinin 143
Table 7-41 Statistics tor the design and analysis marked attribute.........cccooceecci e e 144
Table 7-42 Statistical analysis for the ‘design and analysis’ marked attribute ... 145
Table 7-43 Statistics for the project management marked attribute.........ocoooviii i 146
Table 7-44 Statistical analysis for the ‘Project Management’ attribute ... 147
Table 7-45 Statistics for the evaluation attribute ... e 148
Table 7-46 Statistical analysis for the evaluation atlribute ... 149
Table 8-1 A concise representation of metrics/marks resulls ..o e 153
Table 8-2 Metrics that showed pasitive effect of process patterns and their effect size..................... 154
Table 8-3 Metrics that showed no significant effect of process patterns ... 154
Table 8-4 Metrics that showed process patterns had a more significant effect ... 158
Table 8-5 Tutor mark attribute, which showed positive effect of process patterns ... 159
Table 9-1 SumMmMary of the PFESURS ... e e e 167
Table 9-2 Improved aitributes and the effect SiZe ..o 167
Table App_A 1 Official marking criteria for group and individual projects.............ccoo e 196
Table App_A 2 Grading arrangements far proguct Criteria ... 196
Table App_A 3 Grading arrangements for evalualion criteria ... 197
Table App_A 4 Grading arrangements for Design and Analysis criteria...............cccoviiniiiiinene 197
Table App_A 5 Grading arrangements for Project management Criteria........ovvvevimiesiinesininnnne, 197

Table APP_C 1 A description of the elements ot the metric specification table ... 210

Xill

Table App_D 1 Significance analysis results for metrics et e e s b 228
Table App_D 2 Significance analysis results for fulor Marks ... 228

Table of Equations

Equation 4-1 Weighted Method per Class. ... e s e e 62
EQUALION 7-1 Z-SCOTE -.eeeirrecirerrarmameeeee e et smssas satie oo s e casen s s e b s bbb s b s sh b sh b e be s seeen s ae e emannnes 101
Equation 7-2 Independent Samples teSh.......ooi i s 102
Equation 7-3 Correlation COBICIONTccooriiiee e e b 104

Table ot Metrics (Indirect Metrics)

Metric 1 Percentage of Traceable RequireMents..............ccoo i e 211
Metric 2 Percentage of Defects FIXed ... 212
Metric 3 Percentage of Requirement Specification Document Reviewed.....................iii, 213
Metric 4 Percentage of Phase Time Spent on Testing..........cocvuenninini e 214
Metric 5 Percentage of Design Document Reviewed...................cciii 215
Metric 8 Methods per Class REHOc.ccciieir st s b s 216
MELFIC 7 PTOAUCTIVILY .- v eiveerne veerrnecreremeesmnnnesesins esstissteae e seeer s esseene s st et e be s e e s n e s e e s sessmnassns s arsnns snran 217
Metric 8 Percentage of Source Code Reviewed ... s e 218
Metric O Defect DENSIY ..ooooee e e e e e e 219
Metric 10 CommMENt AENSITY.......c..uiiiiuii i s 220
Metric 11 Test Case per Requirement Ralio...........coviirererereca e e s ceier e e e 221

Table of Measures (Direct Metrics)

Measure 1 Number of Traceable Requirements ... e 222
Measure 2 Number of REQUIFSIMENTS ..o ceverrenr et e e sr e e e e sr b e nans 222
Measure 3 Number of Detected DefBCIScovv e eries e nre e e e e re s sme e e e eme e s 223
Measure 4 Number of DefeCts FIXBO.......c.e it s srama e s s e s er s rne e s ere s 223
Measure 5 Time Spent in @ Development PRaSE... ...t i st sne s 223
Measure 6 Total Time Spent on Development Project ... e e 224
Measure 7 Time Spent in Testing in @ Development Phase ... 224
Measure 8 Size of Source Code (LOC)o et et ne e s rce e e e e s 224
MEasure 9 NUMDBDEr Of ClaSSESuriiiiiiiees e eeee et st e et e e e e e reeee s cstanseansecensen sasannsssessennnsnnars snennn 225
Measure 10 NUMDET OFf MEENOASic ittt et ee s s e e e e s smnne s e e e s s e s reeaenaan s smneeas 225
Measure 11 Number of Lines of COmMMENtcccov i et e e e e anseees 225

Measure 12 Number of Defined Test Cases .oiii it et ierin e et eeeeeeseeeeee e et e 226

Chapter 1 Introduction and Outline *

Chapter 1 Introduction and Outline

1.1 Introduction

With continuing advances in computing hardware, software can now be produced to simulate and auntomate
many complex human activities, thus making software development more complex and challenging. Therefore,
the capture and preservation of experience and ‘best practice’ in software development, in terms of both product
and process, is essential for the purpose of reuse. The pattern concept proposed by Alexander [1977, 1979]
provides a way of preserving such experience. This research aims to investigate whether pattemns are effective in
enhancing the quality of software development projects.

This chapter provides an introduction to the thesis and presents the research process through a streamlined
discussion. Specifically, this chapter presents the following main topics:

Background knowledge on patterns
Research methods and process
Research question and hypothesis
Research Conclusions

Thesis structure

These topics will be discussed in the following sections.

1.2 The Pattern Concept

It was the work of a team of researchers in the field of town and building architecture in the 1960’s and 1970’s,
and the philosophy of aesthetic and beauty in architecture that created the concept of patrern. The researchers
realised that there were repeating elements in great architectural structures, such as cathedrals and monasteries,
which made them pleasing to the eye and created feelings of joy and satisfaction to their observers, They called
these elements patterns and introduced a way of capturing and documenting them [Alexander 1977, 1979).

As software designs and methodologies were becoming more complex and versatile during the 1980’s, it was
realised that it was necessary to preserve and present proven software designs in a systematic and
methodological manner. This made some researches look into other disciplines for solutions. The work of
Alexander [1977, 1979] on the pattern concept inspired some researchers to adopt the concept in software
engineering. Alexander was already known in the software community with his work on the ‘synthesis of the
form’ [Alexander 1970], which played a key part in inspiring the Object Oriented paradigm in software
engineering. Researchers working on software development designs in the early 1990s found that the pattern
concept could help simplify some of the complexities involved in designing and developing software
applications. Based on Alexander’s pattern theory [Alexander 1977, 1979], they produced a number of patterns
that described solutions to a number of design problems. These patterns, named design patterns, were well
received in the computer science community and produced some excitement. Since 1994, many pattern
conferences (under the name PLoP — Pattern Language of programming) have been established all over the
world and numerous joumal papers and books on pattemns have since been produced.

In its simplest form, a pattern describes the solution to a problem in a context [Coplien 1995). Alexander [1977]
states the following to describe patterns: “Each pattern is a three-part rule, which expresses a relation between a
certain context, a problem, and a solution”. Patterns have the following fundamental characteristics [Winn and
Calder 2002]):

Present proven solutions and therefore cannot represent new concepts, designs, or solutions
Concem both product and process

Have a human element

Relate to other patterns to create a pattern language for a specific domain

Chapter 1 Introduction and Outline

Patterns have been used in many areas within software engineering including development, organisation,
software process, software modelling, etc [PLoP conferences 1994-2007]. Studies (e.g. [Manolescu et al. 2007])
have shown that patterns in the field of software design, referred to as design patterns, are the most widely used
patterns in the software industry. These patterns are concerned with coding and architecture design of programs.
There are copious works in terms of books and research papers on design patterns (e.g. PLaP 1994 — 2007
conferences, and journals such as JEEE software). Two of the most respected works on patterns in software
design and architecture are by Gamma et al. [1995] and Buschmann et al. [1996]). These and other works are
reviewed in Chapter 2. There have been many claims in the literature that design patterns improve software
quality [Gamma et al. 1995] [Buschmann et al. 1996]. Over the years, there has been some empirical research to
investigate the validity of such claims [Prechelt et al. 2002, 2001]. These investigations and their results are
discussed in the literature review chapters (Chapter 2, Chapter 4).

In addition to the use of the pattern concept in the technical design of software (i.e. product patterns), patterns
have also been applied in development process. These patterns, referred to as process patterns, have interested
researchers right from the outset of the pattern movement in the early 1990°s. While product patterns (e.g. design
patterns) describe the solution, process patterns describe the process that leads to the desired results. They
document proven process activities in a structured and consistent manner, in accordance with the pattern concept
and format. Coplien {1995] and Ambler [1998] define process patterns as “Patterns of activity within an
organisation and its projects”, and “Patterns which describe a proven solution, successful approach and/or series
of actions, for developing sofiware” respectively. Pressman [2005] states that process patterns provide a
consistent method for describing important characteristics of the software process. There are many published
works [Coplien 1995] [Ambler 1998, 1999] on process pattern, some of which will be discussed and reviewed in
Chapter 2. As well as the PLoP conferences, there have also been workshops on process pattems [SDPP 2002],
where papers have been presented and subsequently published in their proceedings.

Process patterns, in particular, are the subject of investigation in this research programme. Pattern anthors have
written and produced numerous process patterns published in books, journals and conference proceedings (key
works are reviewed in Chapter 2). Many authors have claimed that the nse of process patterns in software
developrment improved software quality [Coplien 1995] [Ambler 1998]. Pressman [2005] states that process
patterns provide an effective mechanism for describing any software process and, that by combining process
patterns, a software tearn can construct a process which best meets the needs of a project. However, there does
not appear to be any empirical studies substantiating claims of the beneficial utilities of process patterns. It has
been the main objective of this research programme to investigate such clairns and determine if the application of
process patterns in software development projects does indeed improve the quality of the projects.

1.3 The Research Methods and Process

Having briefly discussed the motivations for the research and, the underlying pattern concept, the research
method and process is discussed in this section. A number of research methods were studied and considered for
employment in this study. These included experimental, survey, existing data, action research, meta-analysis,
and case study, research methods. .

The key features of the experimental approach are manipulation and control. In order to test hypotheses, changes
are introduced into the environment, in the form of treatment, and the effects of the changes on the target are
observed or measured. The strength of this research method is that it makes it possible to exercise greater control
over the conditions of observation than in any other research method and, therefore, experimental studies have
long been regarded as the optimal way to test causal hypotheses [Singleton and Straits 1999]. Based on these
characteristics and its suitability to test the research’s main hypothesis, the experimental research method was
chosen as the main research method in this study. A further reason for the selection of this research method was
its suitability to provide a validation strategy for patterns.

Survey research provides the mechanism for acquiring information about one or more groups of people or
organisations. The ultimate goal is to leam about a large population by surveying a sample of that popuiation
[Leedy and Ormrod 2005]. Surveys are typically administered in face-to-face, telephone imterviews, paper-and-
pencil, or electronic guestionnaires. The validity and reliability of the survey instrument are key considerations
in survey research. Validity refers to the extent to which an empirical measure adequately reflects the real
meaning of the concept under consideration, and reliability is a matter of whether a pacticular technique, applied
repeatedly to the same object, would yield the same result each time [Babbie 2001]. The survey research methed
was used in this study to assess the popularity and usage levels of patterns within software and architecture
communities.

Chapter | Introduction and Outline

The use of existing rather than newly generated data provides a further research method. In this research method,
the researcher saves time by using the existing data rather than collecting new ones. Scientific research should
not be equated with the collection and analysis of criginal data [Babbie 2001]. In many situations, scientific
research can be designed and conducted through analysis of data already collected and compiled. As existing
data, the official marks awarded to the student projects were nsed in testing the research hypothesis,

1.3.1 Research Question and Hypothesis

A literature review process was undertaken in an attempt to narrow down the field of research on software
patterns and develop a research question. The literature review showed that there was a dearth of empirical
research that presented evidence of practical ntility and value of software patterns. This review also indicated
that the pattern concept received a mixed reception within the architecture community, in which the concept was
originally conceived.

In addition to the literature review, two preliminary surveys were conducted to help understand the current state
of affairs regarding the pattern concept, both within the software engineering and architecture communities. The
first survey, gauged the views of a number of UK software development companies, 67 of which responded
[Estabraghy and Dalcher 2007b]. The second survey ganged the views of architects in UK universities on the use
and value of architectural pattems. These preliminary surveys were aimed, not only to provide evidence of
pattern usage, but also to help in constructing and setting a research question (see Chapter 3). The result of these
surveys, in addition to the results of the literatnre reviews, pointed to a lack of published empirical research on
the practical application of process patterns.

Based on the results of the surveys and the literature reviews, the main goal of the research was set to evaluate
the utility and value of process patterns in the management of software development projects. The aim was to
determine whether process pattems would improve the quality of a software projects that use them. The research
question posed, therefore, was:

How does the application of process patterns in the management of a software development project
affect the quality of the project?

Based on the research question, the null and alternative hypothesis to be tested was:

Hy Application of process patterns in the management of a software development project
will ner improve the quality of the project

H, Application of process patterns in the management of a software development project
will improve the quality of the project

In investigating the research question and the corresponding hypothesis, the effect of process patterns on each of
the four major development phases (Requirement Analysis, Design, Implementation, and Delivery) of a software
development project was investigated through measurement and evaluation of a number of software attributes in
an experimental research method. The term software project is used thronghout this thesis to refer to the
mentioned four phases and the process and product involved in each. It does not include project activities such as
planning, scheduling, or estimation.

A controlled experimental research method, based on its suitability as discussed in previous section (Section
1.3), was designed and implemented to test the hypothesis. The process is described in the following section.

1.3.2 Experimental Methodology

Although patterns have been an important and influential component of software engineering in the last decade
[Buschmann 2007b], empirical studies on the effects and utility of patterns are rather rare. While there has been
some experimental research to evaluate the effect and value of design pattems [Prechelt 2001, 2002}, there
appeared to be no credible published empirical studies to investigate the utility and value of process patterns.
This study addressed this issue by carrying ont an empirical study to evaluate the effect and value of process
patterns by investigating the hypothesis that the deployment of process patterns in software development results
in better software development projects. ’

Chapter 1 Introduction and Outline

A literature survey of software experimentation indicated that, ideally, the experimental research method would
be best conducted in an industrial setting. However, due to the lack of finding suitable indnstnal organisations
willing to participate in this experiment, an option of conducting the experiment using students warking on
practical projects in an academic institution, such as Middlesex University, was considered. The literature survey
also indicated that majority of experimental researches in software engineering had nsed students as subjects and
such experiments are recognised by the scientific community as valid. Sjoberg et al. [2005] in their detailed
analysis of empirical software engineering found that 75% of the subjects in empirical investigations were
students.

Middlesex University was therefore selected as the setting for the experiment. Two course modules in software
project management for final-year undergraduates, that inclnded practical software development projects, were
selected. Students taking the modules over two semesters were chosen as the subjects of the expenment.
However, using students and live course modnles as subjects and objects of an experiment involved tackling
many inherent issues, particularly as this was the first time such an experiment was to take place at the
University and there was no precedence. An experiment design had to be designed which gained the approval of
the Ethics Committee as well as the course officials. Much negotiation, discussion, and design revision had to
take place before the experiment design was approved by the Ethics Committee and permission was granted to
carry out the experiment,

The devised controlled experiment involved two types of software projects (i.e. individual and group projects)
for the final year undergraduate students across two successive semesters. For each project type, students were
divided into two groups of experimental and contro} groups where the experimental groups received a number of
process patterns (98 in total), covering a complete development lifecycle (from Requirement Analysis to
Delivery). The process patterns (i.e. treatment condition) were hosted on a specifically designed website to be
used by the experimental groups in doing their software development project. The process pattemns were selected
from the literature, based on their suitability and appropriateness for the type and scope of the projects being
investigated in this experiment. The selected process patterns were further edited to make them concise, relevant,
and applicable to the type and scope of the projects nsed in the experiment. The frequency of access to the
process patterns for each subject was recorded and continnously monitored to ensure that materials were
accessed by expenimental gronps. The control gronps were not given access to these process patterns to use in
their prajects. Official project assignments were devised and prepared in cooperation with the module leader,
coordinators, and tutors, so that the experimental groups were required to use the given process pattems in their
projects. Throughout the two semesters, the researcher was actively involved in attending the relevant modules’
lectures and seminars, to answer any questions and queries on process patterns, to ensure that students
(experiment subjects) understood how to use the process patterns and that they were actively using them.

In evaluating the process patterns, ewo strategies were considered: 1) Evaluation of a smail number of individual
and specific process patterns, and 2) Evaluation of a system of process patterns covering 1 complete
development lifecycle. While option (1) initially nppeared to be preferred for its specificity and simplicity, it
suffered from the following two disadvantages:

e Proocess patterns are generally linked and related to each other and it is often impractical to isolate
individual process patterns and evaluate their effect on specific software quality attributes.

e It limits the scope of the study to specific process patterns, rather than a complete system of patterns.
Any results would therefore apply to those specific patterns rather than process patterns in general.

It was therefore decided to select and implement option (2), to study the effect of a complete system of process
patterns covering the complete development lifecycle {i.e. Requirement Analysis, Design, Implementation, and
Delivery). The objective of the experiment was, therefore, not to determine whether the employment of any
particular process pattern had an effect on the quality of a sofrware project, but to gauge the collective influence
of a whole system of process patterns. In this design, one or more software attributes could be affected by one or
more process patiems. There is therefore a many-to-many relationship between the process patterns and the
software attributes that they could affect. That is, more than one process pattern can affect the value of a single
attribute, and more than one attribute can be affected by a single process pattem (see Section 5.5.3).

The process patterns nsed as treatment in the experiment cover a complete development lifecycle and therefore
their possible effect is measured on the major development phases. In testing the experiment’s hypothesis, the
objective was to determine whether the development projects carried ont by the treated groups were of better
guality than those carried out by control groups. The evaluation of the development projects were performed

Chapter | Introduction and Outline

through a number of metrics based on collected measurements about the projects, as well as official marks given
to the projects by the project tutors and supervisors.

The key objective in these metrics was to determine any difference between the treated and control groups by
keeping the rules constant for both groups, with the treatment (i.e. process patterns) being the only differentiating
variable. The metric values were therefore used in this experiment in the context of comparing treated and
control groups. The metrics were devised to be applicable in the set environment for the comparison purposes of
the experiment, and did not require being necessarily generic. For example, defects are normally measured in
terms of ‘defect per 1000 line of code’ at industry level appiications. However, due to the small size of the
developed software in the projects under investigation, the defects were measured in ‘defect per 100 lines of
code’, Furthermore, while a flawless and well designed and conducted measurement process was desirable and
advantageous, many possible weaknesses and flaws in the employed measurement processes would be of no
serious harm to the objectives of the experiment, since they would be constant and equivalent for both treated
and control groups.

There were two sets of distinct and independent measurement data used in the experiment:

1. Official marks
Projects were marked by tutors on a number of attributes (12 in all). While most of these attributes were
concerned with the actual project report (i.e. abstract, introduction, conclusion...), there were some (i.e.
Design and analysis, product, evalnation, project management) which were directly related to the
development efforts in which this stndy was interested. These marks were made available to the
researcher and were used for the purpose of this study.

2. Collected measurements
A measurement process was devised and conducted to capture specific measurements on a wide range
of attributes, in accordance with the experiment’s goals. Such measurements were taken by the subjects,
during the lifetime of their projects and, were snbmitted through online forms for analysis. Further
measurements of a number of attributes were taken by the researcher by evalnating the completed
project reports.

The measurement process aimed to develop a tailor-made measurement plan, through which a number of
appropriate metrics would be devised, to evaluate the projects. This is briefly discussed in the next section.

1.3.3 The Measurement Process

Software measurement is not yet an exact science. While the software community agrees that measurement
should be an important activity in software development and engineering, there are disagreements on what and
how to measure software projects. Furthermore, while one can intuitively recognise quality attributes, there is a
lack of a universally accepted definition of software quality that can be accuratcly measured [Kitchenham and

Pfleeger 1996] [Ebert and Dumke 2007].

The literature review carried out indicated that software quality has been largely measured in terms of the end
product and process, rather than in terms of the quality of the individnal development phases in a complete
development lifecycle (see for example [Briand et al. 2001]). A distinguishing aspect of this experiment is that,
the quality of the development project in all its major individual phases (i.e. Requirement Analysis, Design,
Implementation, and Delivery) were investigated. Here are the characteristics of the devised measurement
process in this research:

* The measurement process was goal-oriented and was based on the Goal/Question/Metric (GQM) model
e Each major development phase was individually evalnated
e Software attributes related to each development phase were accessed.

There are numercus seftware metrics in the literature, developed for different purposes. While some of these
metrics can be rensed in other projects, the uniqueness of projects normally necessitates a study of the
measurement requirements specific to the projects under study [McGarry 2001]). A goal-oriented measurement
process, using the Goal/Question/Metrics paradigm {Basili and Rombach 1988], was devised for generating the
requited metrics and collecting/recording the required measurements for the expenment. The purpose of the
devised metrics was to measure the quality of the software projects under investigation, through the
measurement of a number of attributes, to evaluate the effect and utility of process patterns. For each

Chapter | Introduction and Outline

development phase, the devised metrics were used to measure the following categories of the process and
product attributes:

* Artefacts: Arefacts (such as code and documents) produced during each development phase
* Tests/reviews: The testing/reviewing quality of each development phase
* Effort: The proportion of time allocated to each phase

Two methods of collecting and recording data were vsed in the measurement process:

1. Measurements taken by the experiment subjects: These measurements were taken by the subjects,
during the life of their projects, and submitted through a specific online measurement form.

2. Measurements taken by the researcher: This was done after the completion of the projects and their
assessments by the medule tutors. The researcher studied each project report and recorded a number of
measures (¢.g. number of traceable requirements) for each project.

In addition to the two measorement types stated above, the tutor marks provided a further set of measurement
data that were nsed and mnalysed. The comprehensive set of measurements aimed to provide wide-ranging data
to enable the evaluation of vanous aspects of the development projects under investigation (in terms of both
process and product) for any differences between the control and treated groups. Due to the limitation on the
scope of the research, only a proportion of the measurement data were used for presentation and analysis in this
thesis report. '

A nomber of options for evaluating and analysing the measurements in terms using appropriate metric types
were considered. These are as follows:

1) Using the direct and indirect non-composite and non-hybrid metrics (e.g. ‘defect density’)
2) Devising a new strategy of combining related metrics to create composite/hybrid metrics to measure the
quality attributes.

While option (2) has the advantage of generating high level metrics that produces overall evaluation of multi-
faceted attributes, it is a complex method of normalising and combining metrics of different types compositely
and may have the disadvantage of producing less sensitive results (see Section 4.6.2 }. Option (1) was therefore
chosen for its advantages of greater simplicity and wider use.

Measurement data collected throngh the experiment were used to draw up a number of metrics to measure a
number of software attributes of interest. There were nlso a number of attribotes, marked by the tutors, which
were used in the experiment. The Table 1-1 list the metrics and tutor marks used in the experiment. The metrics
were aimed to measure attributes across the four major phases of the development lifecycle. There are, in all, 18
metrics involved. The result and analysis of the metrics and tutor marks will be presented in Chapter 7 and
Chapter 8.

Chapter 1 . Introduction and Outline

« Percentage of traceable requirements
5 Percentage of reviewed requirements specification

& Percentage of defects fixed

-1 Percentage of phase time spent in testing

Number of methods per class (Methods per Class Ratio)
Percentage of design document reviewed

| Percentage of defects fixed

Percentage of phase time spent in testing

Comment density

Percentage of code reviewed

Percentage of defects fixed

Productivity (Implementation Phase}

Productivity (Overall)

Defect density

Percentage of phase time spent in testing

Test case density (Test case per Requirement)
Percentage of defects fixed

Percentage of phase time spent in testing

Design

Metrics

Implementation -

Delivery

~ | Design and analysis
‘| Product

| Evalnation {tests)

Project management

Table 1-1 The analysed meirics and wtor marks

Having discussed the rmeasurement process through which metrics were devised and measurements were
collected, the presentation and analysis of the metrics results are briefly explained in the next section.

1.3.4 Results Presentation and Analysis

The values of the metrics, developed through the measurement process for each major development phase, were
presented and analysed for statistical significance nsing SPSS statistical analysis package. It was also analysed as
to whether there were any difference between the group projects and individual project in terms of the evalnated
metrics. Both, 2x2 Factorial ANOVA and independent samples t-test, statistical methods were applied to analyse
the metrics values and judge their statistical significance. Further analysis in terms of correlations between
metric values and logins to the online process pattemns, as well as sensitivity analysis of the metrics, were also
carried ont. Once the experimental research method was implemented and data was collected and analysed, they
would be presented in a thesis report.

1.4 Research Conclusions

The survey of the software industry indicated that while design patterns were being used in industry regularly,
little was known about process pattems and, its nsage in industry, was shown by the survey to be relatively low
[Estabraghy and Dalcher 2007b]. Many participants stated that software pattems improved software attributes
such as reusability, reliability, and maintainability. The survey of architects indicated that architectural patterns
were seen by many architects as an old fashioned and anti-creativity concept. It was discussed that the
architectural patiemn issues, such as anti-creativity, which were the major canses of their unpopularity, need not
necessarily be applicable to, or damage the ntility of, software pattems.

Analysis of the measurement data confirmed the main hypothesis, that the application of process pattems in the
management of software development projects, improved the quality of the projects. It showed that thirteen
measured software attributes were improved as a result of using process pattems. The analysis of the conducted
measurement showed that, for the majority of the evaluated attributes, there was a statistically significant
difference between projects that used process pattems and those that did not [Estabraghy and Dalcher 2007a].
The difference between the treated and control groups indicated that the treated groups performed better in all
the four development phases investigated. The analysis of the tmarks awarded to the projects, by the project
tutors and supervisors, showed that there was a statistically significant difference between the treated and control

Chapter 1 Introduction and Outline

groups for one (i.e. product) of the four development attributes marked (i.e. Design and Analysis, Prodnct,
Evaluation, Project management).

The resulis also showed that, for many metrics as well as the product attribute (as marked by tutars), the effect of
the treatment condition was higher on group projects than on individual projects. This indicates that the process
patterns have a more prominent effect on team projects than on individual projects. The resnlts also showed that
the majority of the subjects that nsed pattems (treated groups) found process patterns nseful and easy to use.

1.5 Strengths of the Research

In this research, two preliminary surveys were carried out on software patterns where there is scant previons
research. Only one recent publication [Manolescu et al. 2007] reports on a similar research survey. The surveys
investigate the architectural and software patterns, in terms of their populanty, in their respective communities
and discuss the reasons software pattems have been much more utilised and successful than architectural
patterns. There does not appear to be any published literature that has previously explored this topic.

There are a number of attributes that make the designed and implemented controlled experiment of high quality
in comparison to other software engineering experiments. These include:

Controlled Experiment: Controlled experiments are often expensive and difficult to conduct and
therefore only a small proportion (1.9%) of software experimentations are controlled experiments
[Sjoberg et al. 2005]. Hypothesis testing is also rare at around 1% of the software experiments [Tichy et
al. 1995]. ‘

Sensitivity Analysis: In the literature review carried out in this research, the proportion of software
experiments that inclnded sensitivity analysis was found to be extremely low. Except in a very few
specific cases, sensitivity analysis was not found to be routinely applied in the published software
engineering experiments.

Number of experiment subjects: The average number of subjects used in software experiments is 49
[Sjoberg et al. 2005]. This experiment involved a total of 752 subjects.

The experiment duration: The experiment was of a relatively long duration. It had two phases, which
spanned two semesters (a total of six months).

Real situation experiment: This experiment was done based on real final-year undergraduate stndent
projects (i.e. not for the purpose of the experiment only).

Coverage and evaluation of a complete development lifecyele: The experiment evaluated attributes from
a complete development lifecycle.

Detailed Siatistical Analysis: Referential, as well as descriptive statistical analysis was carried out to
statistically present and analyse the results,

In the next section, the outline of the thesis will be discnssed.

1.6 Thesis outline
The thesis contains nine chapters, which are briefly described in this section.

Chapter.1 - Introduction

- This chapter offers an introduction to the thesis. As well as providing the general layout of the thesis, it briefly
presents the bzeckground knowledge and describes the study’s research methods and process. The chapter also
presents the research question and the research hypothesis to be tested in this study.

Chapter 2 - Software Patterns

Software pattemns are the key element of this research project. This chapter therefore discusses the concept of
pattern and the issues involved. The chapter presents a literature review of the most relevant research. The
chapter also discusses whether task analysis could be utilised in developing and sequencing pattemns.

Chapter 1 latroduction and Qutline

Chapter 3 — Pattern Usage Surveys

Two preliminary surveys were designed and conducted in an attempt to understand the pattern issues and to help
derive the research question for this study. The chapter discusses why, while architectural pattems suffer from a
number of criticisms and deficiencies, software patterns are not affected. The chapter discusses the popularity of
both architectural and software patterns as indicated by the conducted surveys.

Chapter 4 - Software Measurement and Experimentation

Both software measurement and experimentation are important components of this research. This chapter
therefore presents and discusses the backgrounds to these two topics and reviews the related literature. The
chapter further discusses the current issnes and difficulties in both sofiware experimentation and software
mensurement.

Chapter 5 - Experimental Research Method

The experimental methodology is the main research method of this study. This research method is used to test
the research hypothesis that process patterns improve the quality of software projects. This chapter presents and
discusses the details of the design and conduct of the controlled experiment.

Chapter 6 - Measurement Process

The experimental research methodology includes a measurement process that defines the process of defining
measurement goals to be achieved and developing metrics that help achieve them. The chapter presents a
specific measurement process for this study, through which a number of software attributes are measured using a
number of defined metrics. The measurement process also defines the data collection and storage procedures.

Chapter 7 - Resnlts

The results of the controlled experiment are presented in this chapter. The detailed results of each of the defined
metrics are individually presented. The results of tutor marks used in the experiment will also be presented. The
results show whether each metric or tutor mark indicate significant improvements as a result of using process
patterns.

Chapter 8 —Analysis. :

This chapter present an analysis of the experiment results. 1t presents an overall and concise representation of the
results. It further discusses the results of each metric in terms of its effect and meaning on any particular
software attribute.

Chapter 9 - Conclusion

In this chapter a brief discussion of the research’s contributions and a summary of the achieved results are
presented. The chapter discusses the overall effect of this research in the field of software engineering.
Constraints and limitations of the study are also discussed. There will be a discussion and introduction of
possible areas of related research for future work.

Chapter 2 Software Engineening Patterns 10

Chapter 2 Software Engineering Patterns

2.1 Introduction

In this chapter the concept and application of pattems in software engineering is critically discussed and the main
related works are reviewed. There will be a discossion of the major concepts and components of software
patterns as well as the general issues surrounding the use of patterns in software engineering.

In the ‘software engineering and patterns’ section, there is a discussion of the main characteristics of the pattern
concept, its emergence and ntilisation in the field of software engineering. The ‘pattem discussion’ section
addresses the topical issues on software patterns such as pattern mining and pattern formalisation. ‘Patterns in
software program design’ discusses the patterns concerned with the product aspect of software development (e.g.
design patterns). This is followed by the ‘patterns in software development processes’ where patterns concerned
with development process activities (i.e. process patterns) are discussed and reviewed. In the final section, the
pattern concept is discussed with respect to task analysis utilities. The section covers the relationship between
task analysis and patterns and looks into task analysis with a view to determining whether it can be used in
developing and applying pattems.

2.2 Software Engineering and Patterns

Software patterns are becoming an important and integral part of software engineering and sofiware
development and numerous articles and books have been published on the subject [PLoP 1994 to 2007}. When in
an engineering discipline it is possible to name, study, and apply patterns relevant to that domain, it is an
indication of the maturity of the discipline [Booch 2008]. In this section, the background to the application of
patterns in software engineering is discussed.

2.2.1 How Patterns Entered Software Engineering

Following the research works of Alexander and his team on town building and architecture and the subsequent
publication of the work in a nnmber of books [Alexander 1977, 1979, and 1988], the concept of pattern was
explored by computer science researchers and software engineers with a view to determining its applicability in
software engineering. They realised that the partern concept might indeed be applicable in solving some of the
design problems in software engineering, due to similanties between the construction of architectural entities and
software applications. Cunningham and Beck [1987] were amongst the first researchers who introduced the
concept of patterns in software engineering with the publication of a paper on Smalltalk interfaces. This was
followed by the publication of some patterns for C++ produced by Coplien [1991]. Following the publication of
his thesis, Gamma continued his work in software designs and together with three other experts, known as the
‘Gang of Four’ (GoF), produced a design pattern book [Gamma et al. 1995] which is widely accepted as the
authoritative reference book on paftemns in software design and development. The publication and subsequent
acceptance of this book within the software community established the pattern concept in software engineering.
The pattern concept contributed towards the notion of agile process in software development methodologies such
as Extreme Programming (fourded by Beck [2000] who was one of the pioneers of the software pattern
movement).

The popularity of software patterns initiated a forum and a conference named PLoP (Pattern Language of
Programming Design) organised by a group of pattemn pionecers named the Hillside Group, in 1994. The group
set up the conference and devised a set of protocols for the conference to suit the pattern properties. Protocols
such as writer’s workshop instead of presentations, disregard of originality, and focus on practicability was and
still is what set it aside from other conferences [Buschmann 1996]. Apart from the main PLoP conference, held
in the USA, there are other worldwide PLoP conference (i.e. EuroPLoP, KoalaPLoP, ChiliPlop, MansorPLoP,
SugarLoafPLoP, VikingPLoP) which actively accept and publish papers on patterns. Intemational Journals such
as 1IEEE and ACM also publish patterns related papers from time to time.

For over a decade now software patterns have influenced the way software is designed and developed and have
become part of software development mainstream [Kircher and Volter 2007] [Buschmann et al. 2007}. While

Chapter 2 Software Engineering Patterns 1

traditionally patterns were generally used in Object-Oriented development, they are now influencing aspect-
oriented and model-driven software development. Design pattems are included in many CASE {Computer-Aided
Software Engineening) tools, which have encouraged the automated inclusion of an implementation of pattemns in
code. Although it should be noted that patterms should not be ideally used in this way as CASE tools do not
understand design and therefore, blind inclusion of pattermns in design might prove to be damaging (Kircher and
Vélter 2007]. Some studies have indicated that the majority of sottware development orgavisations studied used
patterns in their development practice {Manolescu et al. 2007] [Estabraghy and Dalcher 2007b). The populatity
and application of design patterns is such that many popular Integrated Development Environments (IBM, Sun)
now include tools for utilising design patterns by default. Furthermore, numerous books, scientific papers, and
articles are published on sofiware patterns (e.g. PLOP Conferences). It appears that the pattern concept has now
become one of the most widely applied and importaut ideas in software architecture and design and is becoming
a part of the software development practice. However, such success has so far been limited to a single type of
software pattem (i.e. design patterns, in particular Object-Oniented design patterns) partly due ta the simplicity in
the adoption and application of patiem concept in software design. Given the success of pattems in software
design, it is likely that other types of software patterns will also find success in implementation in due course, as
patterns mature and become betier understood within the software development industry.

2.2.2 Software Pattern Definition

There are vanious definitions given for patrern by different authors depending on their views of the concept.
While many simply define a pattern as ‘a proven solution to a problem in a context’, such a defivition facks the
recurrence aspect and appears teo simplified and incomplete. Each pattern is both a statement in a pattern
language and a configuration in a program [Gabriel 1996b] that conveys the essence of a proven solution to a
recurring problem within a certain context within competing forces [Appleton 2000]. Noble [2002] describes a
pattern as a sign where the signifier is the pattem’s solution and the signified is the pattemn's intent (i.e. its
problem, context, known uses, and rationale). Riehle and Zullighoven [1996] define pattern as the abstraction
from a concrete form, which keeps recurring in specific non-arbitrary contexts. Adelph et al. [2002] counsider
pattemns as strategies, stating that, as such, they help people thread their way through complex situations.
Alexander [1979] describes a pattern as a rule which describes what you have to do to generate the entity which
it defines. Alexander [1979] also provides many statements such as ‘Each pattem is a three-part rule, which
expresses a relation between a certain context, a problem, and a solution’. The fact is however that the pattern
concept is too profound and multidimensicnal to be able to be properly defined in one or two sentences and
therefore the definitions differ, depending on which aspect of the pattern is the focus of interest. Ove really needs
to read Alexander’s books [1977, 1979] carefully to fully understand the philosophy and concept of patterns.
However, for practical reasons it is generally agreed that essence of a pattern is a problem and a solution where
the problem is elaborated in terms of its context and applicable forces,

2.2.3 Pattern Elements and Types

Each pattern is described in terms of a number of elements. There have been many proposed formats for patterns
and the number of elements iv a pattern has vot been traditionatly fixed in order to render patterns flexible.
Caonsequently, pattemns have been published containing a range of between 3 to 13 elements. There are however
a few elements, which have become generally accepted to be included in the pattern temptate. The Figure 2-1
illustrates the way these elements are interlinked in providing the pattern solution. These elements are:

Name: It is a word or short, meaningful phrase to describe the pattem.

Problem: States the specific problem to be solved.

Context: States when to apply the pattern.

Forces: Preseuts the considerations that must be weighted to reach the best solution.

Solution: Describe the elements that make up the design, their relationships, respousibilities and
collaborations, but no implementation.

Resulting Context: A description of the state of the world after the pattern has been applied. Potential
users of the pattem can study this section to weigh the costs and beuefits.

Rationale: Explains the knowledge source and the key factors that makes the pattern useful and
effective

Relating Patterns: State other related patterns. They may solve the same problem or that are situated in
the same pattern hierarchy

Chapter 2 Software Engineering Patterns 12

Patrers User Ry, Dasign Problem

- | -

Contaxt Q% o

Eorces Constrained by

affects a

Resuiting Context S————= Rulsted Pottarms

is apphed
o0 I more

Exampies

Figure 2-1 Elements of a palterﬁ (www hillside.net)

While there are many types of software patterns, they can be broadly categorised into the following three types:

* Analysis pattern: concerns analysis models that address conceptual structures of business processes
rather than actual software implementations
Design patrerns: concerned with actual software (code and design) implementations
Process/Organisational Patterns: Concerned with organisational and development processes of
software development

Design patterns and process patterns will be further discussed in Sections 2.4 and 2.5 respectively.

2.2.4 What Patterns Are, and What They Are Not

There are sorme misconceptions and misunderstandings, within the software community, as to what constitutes a
pattern. Patterns in software design are used to capture knowledge and proven solutions to design problems and
provide a mechanisra for rensing the knowledge of experienced practitioners. They attempt to provide a proven
solution for problems that keep appearing repeatedly. Software patterns capture important practices of existing
methods and practices, and are not concrete software components, systems or design methods. They focus more
on the hurman activities of sofiware development than on operations that can be blindly antomated, and
encourage human intelligence that separates people frorn computers [Coplien 1996]. However, patterns are not a
“silver bullet” [Rising 1999] and do not address al the rense and other issves in software engineering. The value
of their application is largely dependent on both the environment in which they are implemented and the skills
and expertise of the pattern implernenters. Therefore, the fact that patterns are implemented in an application,
does not mean that they have been appropriately and properly implemented. In a pattern, the precise description
of the problem, and the context in which it is the best solution, is as important as the solution offered.
Accordingly, a full understanding of the problemn and the context is crucial in choosing appropriate patterns to
apply to specific problems.

It should be further noted that design patterns are not design processes. A design process, typically takes place
during the design stage of software construction and results in a concrete system providing solution to a specific
problemn. A design pattern, however, reflects a generic aspect rather than a particular system. An unlirnited
number of concrete systems or programs may conforim to a single design pattern and, therefore, progrars most
often constitute instances of design patterns.

2.2.5 Disregard for Originality

The concept of pattern relies heavily on proven solutions, and therefore the pattern community seek to capture
proven ideas and solutions in patterns. This is somewhat in contrast to the normal research and developrient
policies where innovation, invention and novelty are valued and rewarded. Therefore, by definition a solution
that is new and untried cannot be represented in a pattern — a solution can only become a pattern when it is
applied empirically and is proven to work in at least three different situations. Althongh the pattern community
has “comnplete disregard for onginality” [Gabriel 1996b], novel solutions are not comnpletely discarded as
existing patterns can be applied in novel ways to create novel designs and solutions. Furthermore, there is a
direct relationship between new solutions/concepts and patterns as today’s new ideas and proven solutions may
become tomorrow’s patterns. It is the researchers and practitioners endeavour to detect and extract workable

http://www.hillside.net

Chapter 2 Software Engineering Patterns 13

solutions in pattern formats, while discarding solutions that are new and novel. This is to ensure that patterns
document proven and workable solutions.

2.2.6 Characteristics of Patterns

For a solution 1o be a pattern, it has to have the following characteristics:

1. Contain the elements and structure of a pattern (i.e. pattern template}
2. Has to be recurring phenomena

It has been generally accepted within the pattern community that a solution has to have recurred at least three
times in different sitnations and by people other than the pattern anthor, in order for it to be a pattern [Hillside
Group]. This is referred to as the ‘rule of three’. If the pattern does not fully comply with this nule, it is called a
proto-pattern (a confirmed pattern in waiting).

Patterns by nature can be ‘good’ or ‘bad’. There are practices that are widespread and recurring, but the solntions
they provide are wrong. Such ‘bad’ (inappropriate) practices are captured in patterns that are called anti-patrerns
(also referred to as re-factoring pattern). In other words, anti-patterns are negative solutions that present more
problems than they address [Brown 1998]. There is however another more positive definition of anti-patterns in
which they contain both the correct and incorrect solution to the problem. In that context, the problem is depicted
as a commonly occurring mistake [Laplante 2006]. There exists an interesting relationship between pattern and
anti-patterns - patterns can often evolve into an anti-pattern. A popular pattern such as procedural programming
can be the popular paradigm of one era and fall out of favour in the next as its consequences are better
understood. Therefore while procedural programming would have been a ‘good’ pattern a couple of decades ago,
it can now be considered as an anti-pattern, partly because it does not provide the necessary encapsulation
mechanisms. Another example of anti-patterns in software project managernent is the sequential development
process (i.e. the waterfall process) which in the past would have been a pattern, but is now considered an anti-
pattern for many application types, as software requirernents are now considered rnoving targets [Brown 2000).
The term anti-pattern however has a negative connotation and it would be better to nse the term ‘re-factoring
patterns’ instead. For an exarnple of an anti-pattern (see Appendix B. Patterns),

It can be argued that the broad definition of pattern is too general, resulting in the generation of many patterns
that are too insignificant to be true patterns. Sorne within the pattern community believe that a pattern should
have characteristics beyond the attributes given above and Winn and Calder [2002] suggest nine such
characteristics. According to this characterisation, a pattern should:

Imiply an antefact

Bridge many levels of abstraction

Be both functional and non-functional
Be manifest in a solution

Capture system hot spots

Be part of a langnage

Be validated by use

Be grounded in a domain

Capture a big idea

N s W -

These characteristics however may be either too restrictive in some cases and/or rather vague (open to different
interpretations ~ €.g. ‘big idea’) in others. While in principle compliance to these criteria would render patterns
more nseful, it would lead to the generation of fewer patterns. While it is neither sensible nor feasible to generate
patterns for any insignificant problem, one has to be careful not to restrict the pattern requirements to the level
that would canse the generation of only patterns that are thought to be significant, and miss or ignore a vast
number of other potential patterns.

Patterns manifest their true power when they are part of a pattern language, rather than stand-alone, where they
are closely related and collaborate in solving a particular problern. Patterns in a pattern language are often so
closely interwoven that they cannot exist in isolation [Buschmann 2007]. Coplien [1995] produced one of the
first software pattern langoages in the field telecommunication systems. However, unfortunately many of the
most popular pattern collections produced [Garirna et al. 1995] {Buschmann 1996] are stand-alone patterns, One
way of enhancing the applicability and scope of stand-alone patterns, in order to apply to rnore cormplex
problems, is to incorporate thern into a sequence pattern. In effect, pattern sequences provide a way of

Chapter 2 Software Engineering Pattemns 14

combining pattems to solve wider design problems than can be solved by individual pattemns {Siddle 2007]. An
example of a sequence pattem is depicted in Table 2-1. The example demonstrates how a number of patterns are
executed in a sequence to achieve the required solution.

Pattern : Fonctionality in the Architecture
Explicit Interface Adds explicitly defined service interface
Encapsulated Introduces object representing service discovery context

Context Object
Decoupled Context | Decouples service from context implementation by introducing

Interface service discovery interface

Proxy Adds client-side object, implements explicit interface, and
encapsulates remote communication

Invoker Adds service side object, receives service invocations, and
invokes explicit service interface

Lookup Provides ability for service to obtain specific proxy for remote

service implementing explicit interface.

Table 2-1 Pattern sequence to add support for service interfaces [Siddle 2007)

2.2.7 Software Patterns and Pattern Principles

For all the popularity of pattems in software engineering, Alexander [1999], the pattemn concept founder, does
not seem to agree that his concept of pattern theory is fully understood and applied in software engineering. He
believes that the main principle and strength of pattems, which is in helping create components that are cohesive
and generative, has not been implemented in software engineering [ibid].

As well as the technical aspect, software pattems should emphasise the importance of the social and moral issues
in software applications and generally aim to improve human life through better software. This is something
which is, by large, missing in many types of software pattems (such as design patterns) because they only
address the technical aspect of software development. The exceptions are those that concern Human Computer
Interaction and nsability, which include the human factor [Graham 2003). One of the main and important
published works in the field of design pattems is the work of Gamma et al. [1995], which not only set the
standards for design pattems but has also had a major influence on the adoption and popularity of patterns in
software engineering. However, one can argue that these pattemns lack the key principles of patterns as proposed
and defined by Alexander [1977] (see Section 2.4). Based on the progress made so far and the forward trend, one
can predict that the role of software patterns will continue to diversify and improve future software engineering
tools and methodologies. However, it will probably be a long time before the software engineering discipline
will be able to fully implement and utilise the concept and principles of pattems. For that, software engineering
needs to become more mature. This view is supported by Gabriel {1996] who writes: “Software engineering is
not yet engineering and won’'t be, cannot be, for decades, if not centuries, because we cannot yet recognise the
important, repeatable parts. When we do we will have pattems — recurrences, predictability”.

The concept of software pattern needs to be given a fresh outlook and emphasis (o concentrate on the human,
harmony and aesthetic aspect of pattemns, rather than solely on its technical utility of capturing and recording
software design and experience. The technical benefits that so far have been attributed to the use of patterns
should not undermine its other essential utilities. Based on the theory and concept of pattems as proposed by
[Alexander 1977,1979], the pattern concept has much more fundamental value and potential and, so far, the
rather superficial and simplistic aspects (i.e. capturing design knowledge) are mostly being utilised in software
engineering through works such as [Gamma et al. 1995] and {Buschmann et al. 1996, 2007]. While pattems are
useful in capturing design knowledge, that should not be seen as their only contribution in software engineering.
Patterns” other important contribution in software engineering should be to help generate systems that fit
perfectly in the environment in which they operate by interlinking patterns that are individually and collectively
geared to create harmonious systems. Such outlook on the pattemn concept and their applications will result in
systems that will uitimately perform better. It is time software engineers moved oun, from considering patterms as
disparate solution packages, to understand and leverage the value and strength of pattems as a collection of
interlinked and cohesive solutious for generating perfectly adapted systems. It is only then that software
engineering will begin to benefit considerably by the pattem concept.

Chapter 2 Software Engineering Pattemns 15

2.2.8 Software Pattern Usage in Industry

Based on a review of the current literature on software engineering in this research, apart from few works such
as [Beck et al. 1996] [Manolescn et al. 2007], there has been little industrial level assessment of software
patterns. Consequently, part of this research included an investigation through a survey research, focusing on the
impact of patterns in the software development industry in the UK, discussed in Chapter 3, which showed that
the majority of respondents used software pattems. A recent work by {Manolescu et al. 2007] indicates that there
was an increasing gap between expert pattern nser/developers and the average software developer in terms of
utilising and developing pattems. The study however indicated that the majority of organisations investigated
used and attermnpted to develop software patterns. While the paper [ibid] reports on the popularity and usage rates
of various types of pattems in software development industry, the paper has not carried out statistical analysis of
the survey results, perhaps due to the insufficient number of respondents. In addition, the paper states that over
70 organisations responded to their survey but failed to elaborate on the exact number or the type and size of
respondent organisations. The results and conclusions of the paper however can be seen as some evidence of
pattern usage and a snapshot of the status of software pattern implementations in industry.

Beck et al. [1996] made a study of some large software development organisation with respect to their nsage of
design patterns. Their study indicated some positive results on the ntility of design patterns as depicted in Table
2-2. .

Patterns) L FCS
Are a good communications medium
Are extracted from working designs
Capture design essentials
Enable sharing of best practice
Are not necessarily object otiented
Should be introduced through mentoring
Are difficult time consuming to write
Require practice 1o write

T&T |“Motoroia: NR ;| Siemens | IBM:

A
v
v
v
v
v

<_] < |

2| |e]e]e]e]el
<] |efe|<e]e]e

L= PN PR P PN R P P
<_| <] AZ_Z_Z_E

Table 2-2 Results summary [Beck et al. 1996]

Based on their study, the paper made the following three, rather generalised, conclusions on design patterns; 1)
provide ‘shorthand’ for communicating complex concepts effectively between designers, 2) can be used to
record and encourage the reuse of “best practices”, and 3) capture the essential parts of a design in compact
form. Researchers and authors have since nsed these claims of the beneficial effect of design patterns as
evidence of the utility of design patterns. However, one should keep in mind that this was a small study based on
a small number of samples — too small to be able to generalise the results or make generalised conclusions.
Nonetheless, this paper reports on one of the first such studies to evalnate the utility of software pattems and,
while the conclusions achieved cannot be statistically generalised, they prompted other studies [Prechelt 2001,
2002] to evaluate patterns and examine the validity of the conclusions reported in this paper,

In the next section various important and topical issues and aspects of pattems is discussed.

2.3 Pattern Discussion

There are many issues on software patterns, which have generated many discussions and viewpoints within the
software engineering and pattem communities. In this section, these points and issues are raised and discussed.

2.3.1 Pattern Mining

There are a large number of ‘proven solutions to specific problems’ used by software practitioners. It is
important that such problemy/solution pairs, which are proven to work and are useful, should be extracted and
written up in pattemn format in a database repository, so that they can be utilised by others. Rising [1998]
proposed a number of ways of mining such experience and knowledge and reproducing them in pattem formats.
These techniques include interviewing, workshops, meetings, classes, books and articles. Pattern mining is
already happening and, apart from patterns presented in published books and papers, there are currently a
number of pattem repositories (e.g. Grady Booch’'s Handbook of software architecture
{(www.booch.com/architecture), Portland Pattern Repository [http://c2.comi/ppr}). However, while there is one that
contains over 2000 patterns [Booch 2008], most repositories contain very few pattems and many proposed and
published patterns are still scattered in various papers, articles and conference proceedings. While in engineering

http://www.booch.com/architecture
http://c2.com/ppr

Chapter 2 Software Engineering Patterns 16

disciplines, such as civil, mechanical, and electrical engineering, fundamental elements of the common
architecture styles in works can be exposed and compared, such actions are extrernely difficult if not impractical
in software-intensive systems due to a lack of architectural reference [ibid]. Many potential pattern users have
stated that they have had difficulty in finding appropriate patterns applicable to particular problems [Manolescu
et al. 2007]. There shonld be a more concerted effort by the pattern community to record such published patterns
in a repository, to make search and extractions of such patterns easier. However, having a repository where
articles on patterns are stored will not provide the desired outcorne. Rather than simply storing pattern papers
and articles in a repository, the patterns in such papers should be edited, categorised and stored in a database that
is based on key indices. Provision of such databases wounld render searching for the right patterns systematic and
more fruitful.

2.3.2 Can Patterns be Harmful?

Patterns can be harmful if they are inappropriately used and implemented. Patterns, in particular design patterns,
are often difficult to understand by inexperienced software engineers due to the complexity of the
problem/solution they describe, as well as the detailed and abstract way in which they are presented. Jalil and
Noah [2007] found novice prograrnmers had difficulty in systematically choosing and applying design patterns.
It is essential that the problern to be addressed is fully nnderstood with respect to its context and the forces acting
on it, before nsing a pattern to resolve it. There are two situntions where patterns can be harmful:

1. Alack of full understanding of the problem domain
2. Misunderstanding patterns

Patterns can therefore be misapplied, forced to fit, or overused in which case their application would be harmful
rather than beneficial. There are many instances in the literature [Shalloway 2003] in which incornplete
comprehension of the problem domain, or misunderstanding of patterns, may have cansed the application of
inappropriate patterns to the problem. Wendorff {2001] reports on a large commercial project where the
uncontrolled use of patterns contributed to severe maintenance problems, which required substantial re-
engineering effort to be put right.

It is important that the context in which a pattern is applicable is well understood before atternpting to use it. As
well as understanding and considering the applicable forces, one must also understand and take into account the
consequences of applying a pattern to a problem. A misunderstanding of these factors could result in a situation
where an application of a pattern could be harmful. For instance, the ‘code ownership’ process pattern requires
individual developers to own specific code that only they should modify. However, for this pattern to work the
architecture needs to be interface-based and, therefore, application of this pattern to other types of non-interfaced
architecture could prove harmful.

2.3.3 Do Software Patterns Work?

There have been many claims in the literature on the advantages and usefulness of software patterns [Buschmann
et al. 2007] {Gamma et al. 1995] {Beck 1996] [Gueheneuc 2001] [Rising 1998] [Larman 2002]. These include
the following:

e Provide 2 common vocabulary for designers to communicate documents and explore design alternatives,
and therefore improve comrnunication between designers and maintainers.

Offer “best practices” solution to common problems.

Capture/record the experiences of expert designers.

Help beginners to learn by example expert solutions.

Make the systern adopting patterns more flexible and easier to understand

Facilitate reusing, exporting and irmporting design ideas

Reduce the number of defects

While such claims may sound plausible, there has not yet been enough empirical research to verify them. It is
one of the aims of the research undertaken in this project to provide some evidence regarding the utility and
benefits of software patterns. There have been some empirical studies showing that patterns enhance
communication between designers by providing a shared vocabulary [Unger and Tichy 2000]. However, there
have also been some studies indicating that software patterns are disadvantageous for making software complex
and more error-prone [Biernan et al. 2003]. There is therefore a need for further empirical work to evaluate
software pattern potential and utility in software engineering. It has been the main aim of this research to provide

Chapter 2 Software Eungineering Patterns 17

some scientific evidence, through an empirical study, ou the utility and beuefits of software patterns. This study
has provided evideuce that the application of process patterns improve the quality of a software development
project in terms of a number of attributes (see Chapter 7 aud Chapter 8).

Oue, however, should be cautious in coucluding that patterns work by the results of a few studies. Many
empirical studies have limited scopes and their conclusions may ounly be valid for the environment in which they
are conducted. The question of whether software patterns work can only be convincingly answered when there
has been much more research carried out on various types and aspects of software patterns at both academic and
industrial levels. Furthermore, eveu if it is proven in theory that patterns work, the question remains whether
they would work iu practice as implemented in the software industry. Oue difficulty in pattern implemeutation
and usage is the need for cornplete undersianding of the pattern, as well as the problem they are aimed to solve.
Therefore, patterns may not work iun practice in some situations because they are implerneuted incorrectly. In
such situatious, it is not the pattems that do not work, but their implementation in a wrong and invalid context. It
is therefore esseutial that more empirical research, such as this, be conducted to enhance our understanding of
software parterns aud their streugth and weakuesses in helping to develop high quality software.

2.3.4 Should Patterns Be Formalised?

There is an on going argument on pattern formalisation within the pattern community. The exponents argue that
pattern formalisation is uecessary and provides a number of important advantages and benefits [Eden 1999]
[Dittmanu et al. 2002] [Bayley and Zhu 2007]. Formalisation of patterns would euhance the clarity and accuracy
of patterns, aud the relationships between them, by imposing logical and mathematical constraiuts. It wonid
further help in developing a more formalised pattern validation process, as well as making it easier to develop
comprehensive patterns tool support to automatically and systematically detect and implemeut patterns. There
are already many proposed techwmiques and tools for detecting GoF’s design patterns in a program, such as
[Tsantalis 2006], which is based oun calculating the similarity between a particular design pattern and the target
program, iu terms of the structural relationships between classes. A technique to formalise process patterns has
been proposed by Dittmanu et al. [2002] through introducing what they call a Process Pattern Description
Language (PPDL). The proposed PPDL uses UML notations to depict the necessary process tasks in solution
elerment of the pattern. While useful, the proposed technique only involves the addition of UML uotatious to the
solution element of the pattern and does not truly formalise process patterns. Furthermore, the proposed PPDL
will only be applicable to a restricted number of processes. In general, the formalisation of patterns may be
disadvautageous for the following reasons:

¢ Datterns are intangible, elusive, and heuce beyoud the scope of mathematical expression

¢ There is no fixed elemeunt in patterns, and everything can be changed about themn. In other words, if the
basic structure were fixed then it would not be a pattern any more. [Coplien 1996]

* Patterns are abstractious, or generalisations, and therefore are not appropriate to be expressed in
mathematical terms

¢ Formalising the solution makes it harder to grasp the key ideas of the pattern, programmers need
concrete informatiou that they can understand, vot au impressive formula.” [Buschmann et. al 1996]

¢ Formalisation damages the humaun factor notion of patterns rendering it more autornated and less humnan
oriented

While there are beuefits to formalising some types of patterns, the disadvantages that would ensue outweigh the
benefits. Patterns, therefore, should keep to their original principal of being flexible and abstract, and rernain un-
formalised aud free from coustraiuts that such a measure could impose. Formalisation may prove beneficial for
some types of software patterns in the future when both the software pattern coucept and the domain in which
they relate are better understood and established. Currently, however, formalisation of patterns is wueither
practical for all pattern types, wor is it feasible or beneficial. Research should be encouraged to develop tools for
pattern detection, composition, and application, accounting for the abstract and flexible nature of patterns.

Patterns are applied to both product and process aspects of software development. In the following section
patterns related to the product aspect of software development is discussed.

2.4 Patterns in Software Design

As discussed above, the first applications of patterns in computing science was in the field of software design
(i.e. design patterns). A design pattern names and explains a general desigu that addresses a recurring design
issue in a software application [Schmidt 2000]. It describes the problem and the solution, as well as when to

Chapter 2 Software Engineering Patterns 18

apply the solution and what would be the consequences of its application. It also offers implementation hints and
exarnples. The solution is a general arrangement of objects and classes and is customised and implemented 1o
solve the problem in that particular context.

Amongst the most prominent work on design pattern, is the work of GoF in the book ‘Design Patterns, Elements
of object oriented Software’ [Gamma et al. 1995]. The book introduces 23 object-oriented design patterns in all,
which are divided into three distinct categories of object creation, object structure, and object behaviour. Each
pattern within these categories presents a solution to a common recurring problem in software development.
Although there have been many more design patterns published since. these design patterns (known as GoF
Patterms) are the most widely known and used, and present solutions to the most common object-oriented design
problerus [Manolescu et al. 2007]. The impact of GoF’s work [Gamma et ul. 1995] has been such that often the
phrase ‘design pattems’ refers to the patterns introduced in this book. However, party due to the influence of this
book, most designers wrongly think that design patterns are only applicable in object-oriented designs
[Sommerville 2007]. Design patterns as a way of encapsulating experience are in fact equally applicable 1o all
software design approaches.

For the format and structure of the design patterns, GoF use a format that is more detailed than that which
Alexander vsed in ‘A Pattern Langmage’, containing 13 elements as depicted in Table 2-3. The comprehensive
set of elements can be considered as strength of the work in fully documenting all aspects of the introduced
pattens. However, it can be argued that it would have been perhaps more appropriate to the flexibility and
abstract nature of the pattern concept had there been fewer elements. That would not indicate a loss of content,
but a rearrangement to repackage the conveyed information in fewer elements. For example, some of these
elements (e.g. Motivation, Applicability, Consequences, Cotlaborations, and Participants) could be integrated
into more conventional pattern elements such as Forces and Context (2.2.3). It has to be acknowledged however
that software design and architecture is often complex and intrinsic and. therefore, one has to accept the extra
complexity in the pattern formats (e.g. no. of pattern elements) to enable futl and unambignous description of the
pattern at the expense of simplicity.

Paitern Name What is the paneen called?

Intent What problem does this pattern solve?

Also known as What are other names for this pattern?

Motivation What is an example scenaria for applying this paitern

Applicability When does this pattem apply?

Structure What are the class hierarchy diagrams for the objects in this pattern?
Participanis What are the objects that participate in this pattern?

Collaborotions How do these objects inleroperate?

Conseguences What are the trade-offs of using these

Implemeniation Which techniques or issues arise in applying this

Sample Code What is the exampie of the pattern in source code?

Known uses What are some examples of real system using this pattern?

Relaled palterns What other patterns, from this pattern collection, are related to this pattern?

Table 2-3 GoF's design pattern elements [Gamma et al. 1995]

Gamma et al. [1995] claim that their pattems have all been fully tested and proven to work. In fact, the last
element of the pattern format is "Known Uses’. which contains the details of where the pattems were applied.
Furthermore, the patterns were tested on a specifically developed application named ET++. Although there are a
number of patterns (23 in all) in this book, they fail to be coherent enough to form a pattern language. At one
level. they can be considered as just a library of C++ code templates. For these to comply with the true principles
of the pattern concept they needed to be much more cohereat. They are isolated and rather disjointed, and do not
interrelate as they would have in a pattern language. Gamma et al. [1995] admit that the design patterns
introduced in the book do not completely conform to the definition of a pattern langnage, arguing that it had not
been an aim or objective of the work to represent a pattem language. However, they produced 23 of the most
popular design patterns, which are widely used by software practitioners, about which many books and articles
have been published. The introduced patterns have been widely discussed and studied by both researchers and
practitioners [Beck et al. 1996] [Bieman et al. 2003] [Prechelt et al. 2002].

Apart from GoF’s book [Gamma et al. 1995], another important publication on design patterns is a book by
Buschmann et al. [1996] which defines several well-known design and architectural pattemns, such as the Proxy,

Chapter 2 Software Engineering Pattems 19

Whole-Part, Master-Slave, and Broker, presented in three hierarchical levels. At the highest level are the
architectural pattems, followed by the design pattems, and finally idioms. It introduces eight well-known
patterns where each pattern is described and discussed to a deeper level and more clearly than those introduced
by Gamma et al. [1995]. Patiems introduced in this book were amongst the first published software architectural
patterns, presenting some established architectural solutions in pattern formats. However, one weakness of the
book, which could prove problematic to the novice pattern user, is that it does not clarify, through examples or
otherwise, where and how the pattems should be used. Further volumes of this book have been periodically
published, each introducing many established software architectural patterns for different domains and
technologies.

There have been many claims in the literature regarding the positive effect of design pattemns. It is claimed that
designing an application with the proper use of design pattems would reduce the number of defects [Guehenenc
and Albin 2001]. There have also been other claims that using design pattems provides additional flexibility and
easier understanding of the design [Rising 1998] [Buschmann et al. 1996, 2007] [Larman 2002]. There have also
been some studies reporting negative effects of design pattemns. Bieman et al. [2003] studied five systems (three
proprietary systems and two open source systems) to identify the observable effects of the use of design patterns
on the changes that occur to the systems as they evolve. In this paper, a number of design pattemns were used in
the early versions of some applications and the errors contained in the later versions were compared to those
applications that did not use any design pattems. The study indicated that, in four ont of the five systems studied,
the application of design patterns made the systems more error prone. The use of design pattems appears to have
caused a higher number of errors, which is contrary to expectation. A number of reasons, such as incorrect
application of pattems, as well as a lack of understanding of the applied pattems by the involved programmers,
could have been the canse. The inconsistent and at times contradictory results reported in the literature, on the
very few stndies that have been carried out on pattem utility, necessitate further studies. Unfortunately, design
patterns have been asscciated with a degree of hype [Hillside Gronp] in the industry, and often it is taken for
granted by many that GoF’s design pattems are useful whenever and wherever they can be applied. The fact is
however that the value and utility of pattems can only be evaluated and judged through scientific studies that
excinde hype and bias. Unfortunately, so far only very few such studies are reported in the literature and there is
therefore a need for many more empirical studies to be conducted to evalnate software patterns,

Design patterns are, however, concerned with product (which is the result of the design), not the process of
designing. In the following section the process aspect of software development, and the application of patterns
within them, is discnssed.

2.5 Patterns in the Software Development Process

Development of a software application requires a development process that is designed to orchestrate and control
the activities and tasks within the software development project. The quality of software products relies
significantly on the quality of the process used to design, develop, deploy, and maintain them [Fuggetta 1998].
Patterns that deal with development process activities are referred to as process patterns. They are the main topic
of this research, in which their utility and effect in software development is empirically examined through
experimentation.

Process pattems attempt to provide a mechanism for communicating approaches to development that have
proven to be effective in practice. According to Ambler [1998], they are the reusable building blocks from which
organisations may tailor a mature software process. Process patterns are similar to design pattems in principle
and concept, except that they exist in the process domain. There are a number of works on this topic including a
two-volume book covering pattems in all major phases of a complete development lifecycle [Ambler 19938,
1999]. There are various definitions for process patterns. Coplien [1995] defines process pattemns as “Pattems of
activity within an organisation and its projects”. Storrle [2003] simply states that a process pattern describes a
piece of a process. Ambler {1998] defines process pattems as “Pattems which describe a proven solution,
successful approach and /or series of actions for developing software.”

A major contribution to the concept of process patterns is Coplien’s paper [Coplien 1993], which was presented
at the first PLoP (Pattemn Language of Programming) conference. This paper was the result of a three-year
research at the AT&T, which investigated the software organisational structure as well as the development
practices. Based on this study, the paper introduces 43 patterns, which it claims improve organisations’
development processes. These patterns follow a standard temptate consisting of five elements: Problem, Context,
Forces, Solutions, Resulting Context, and Rationale. Most of the patterns introduced in this paper are short and
concise. An example of a simplified process pattern introduced by Coplien [1995] is shown in Table 2-4.

Chapter 2 Softwum'Engineering Patterns 20

Name Prototype
Problem Early acquired requirements are difficult to validale without lesting
Context Trying to gather requirements necessary for test planning
Forces Requirements are always changing

Requiremenis are usually ambiguous
Solution Build a prototype. whose purpose is to understand requirements.
Resulting Context | A bener assessment of requirements to supplemem use cases

Table 2-4 Prototype process paitern

Coplien [1995] argues that an important and significant attribute of the process pattems he introduced is that they
are generative patterns (i.e. one pattem can indirectly cause the creation of other pattems or processes
[Alexander 1979]). In validating the introduced pattemns, Coplien [1995] uses both the ‘case study’ method and
what he calls ‘commonsense approach’. The patterns are based on combined empirical observations with a
rationale that attempts to explain them.

Whilst it is fully acceptable that the pattemns produced in Coplien’s paper are indeed the activities practiced at
AT&T at the time of this study, it is not always clear whether the introduced patterns are positive or negative in
their effect (i.e. whether they are ‘good’ or ‘bad’ patterns). While the validity of the pattems can be fully
endorsed, as they have appeared to occur in a real life situation, it has not been established whether every pattem
introduced will resolve the problem it has been claimed it should. A weakness of the work is its implemented
validation method where the author has often relied on his commonsense and rationale as a method of validating
the patterns. This implies that the pattem user would have to rely on the author’s commonsense and rationale, to
a certain extent, to accept that the introduced pattemns are useful and reliable. Furthermore, the claimed
generative aspect of the produced patterns has not been sufficiently substantiated. It has not been explained {e.g.
through examples) how and why the produced pattemns would cause the generation of other patterns. A further
weakness of the work is that, while the 43 patterns introduced in the paper are related, reference one another, and
present a catalogue or system of pattems, they do not form a pattern language. In order to form a pattern
language, the pattems needed to be closely linked structurally, and address the whole software development
domain.)

The strength of this work is in the production of a comprehensive set of process patterns, which were the result
of a 3-year case study research. The patterns are succinct and clearly written, presenting all the important pattern
elements such as forces and context. The author is also a respected pioneer of the software pattern movement,
and has written many books and papers on the subject [Coplien 1991, 1996, 2005]. The paper is widely
referenced and is generally accepted as one of the first papers and a key contribution to pattermns in organisational
and developmental process activities of software development organisations [Ambler |1998]. Many of the
patterns stated in this paper are used in the experiment (Appendix A. Experiment Details).

Ambler [1998, 1999] produced a system of process patterns defined hierarchically in terms of the level and
scope of the process they describe. These pattems ranged from high-level view of how a specific project phase
works, to a more detailed view of a specific task or activity. Three types of process pattemns are defined in a
hierarchical format:

1. Task process pattern depicts the detailed steps to perform a specific task such as the technical review

tasks.

Stage process pattern depicts the steps, which are often performed iteratively in a single project stage.

A stage process pattern is presented for each project stage (e.g. model stage)

3. Phase process pattern depicts the interactions between the stage process patterns for a single project
phase.

[

The hierarchical structure of these pattem types are depicted in Figure 2-2.

Chapter 2 Software Engineering Patterns 21

Levet 1. Phiase Process Fatters

E‘ . Levgl 2! Stage Process Palterrs

H& Yo 55 3.& —

Figure 2-2 Hierarchical structure of process patterns

Figure 2-3 presents an example of a task process pattern and depicts the activities involved in the ‘technical
review’ task process pattern.

Figure 2-3 Task process pattem for techrical reviews

A pattern template, composed of four elements, is used to present the patterns as shown in Table 2-5.

No | : Element . : L " Description
1 Name Name of the process pattern
2. [nitial Context The initial entry condition sets out the condition that has to be satisfied
in order 10 move to the nexi stage
3 Solution This element contains the main solutions provided by the pattern.
4 Resulting Context This element contains the conditions that have to be satisfied in order
to complete the pattern

Table 2-5 Elements of process patiern [Ambler 1998]

Ambler’s work [1998, 1999] has a number of positive points, which enhances the strength of the presented
patterns. While most work on process pattems deal with some aspect of the development process [Whitenack
1994] [Kerth 1995] [Delano 1998], this work covers a complete development lifecycle. The process patterns
encompass all major development activities such as requirement analysis, design, development, delivery, and
maintenance. The author uses his own experience as well as other documented evidence in writing and validating
the patterns. A further strength of the work is the introduction of three types of pattems and the establishment of
a hierarchy in which they are presented. The categorisation of the process patterns in three hierarchical levels has
helped to make the process patterns concise and easier to understand and implement. Such distinct categories of
patterns offer the pattern user the choice of employing any process patterns to the required level. For example,
the stage process pattern ‘program’ describes the activities necessary to accomplish the programming activity. A
pattern user may be satisfied with the general guidelines and solntions presented at this level of hierarchy.
However, if the nser required more details, they could go down a level and study the task process patterns related
to lower level activities. Depending on the nature and scope of the problem and the level of solution required, a
single or a group of patterns can be employed to solve a single process problem.

The work, however, suffers from some weaknesses. The three hierarchical levels wonid have benefited from
further lower levels with additional detail. The ‘task process patterns’ are too generic and are, therefore, long. It
would have been preferable for the task process patterns to be further divided into two hierarchical levels making
the process patterns into o 4-level hierarchy. There is also inconsistency in the pattern format as three different
formats are presented. While the format for the phase process pattern and stage process pattemn are similar, the
pattern format for the task process pattem is different, containing fewer elements. Althongh one can argne that
the different characteristics of the process pattern types necessitate different approaches in their formats, the
work would have benefited in terms of its clarity and substance if a consistent pattern format had been used. The
presented patterns further suffer from a lack of presentational quality. Some of the patterns are poorly presented
and edited and contain typographical and other mistakes (snch as unfinished sentences).

Chapter 2 Software Engineering Patterns 29

Another comprehensive work on process patterns is conducted by D’souza and Wills [1999] who present a set of
54 individual process patterns on object, component and framework developrnent. The process patterns cover
there categories of development activities, namely, business modelling, components specification, and
component implernentation. For each activity category, there are a number of pattems with differing levels of
granularity. The patterns for the business modelling activities include make a business model, present business
vocabulary and rule, invalve business experts, choose a level of abstraction, and generalise and specialise. The
pattern schema used has six elements as shown in Table 2-6.

No - Element : . Description

1 Name Name of the pattern

2 Intent An account of the rationale of the pattern - its benefits and application area.
3 Context Circumstances under which the paitern should be applied

4 Caonsideration Consideration of 1he forces involved

5 Strategy Strategy for presenting the solution

6 Benefit Advantages of applying the patterns

Table 2-6 Pattern elements in [D’souza and Wills 1999] patterns

One important attribute of this work is its attempt to present the patterns as a pattern language. The language
aspect of patterns is an important concept in the pattern theory, which unfortunately, has not been achieved in
key works on software patterns. For example, two classical and seminal works on software patterns, [Gamma et
al. 1995], and [Buschmann §996] are both catalogues of patterns rather than pattern languages. In a pattern
language, the pattern user is able to select individual patterns to form a sequence of patterns, in a manner that
collectively solve a particular non-trivial problem. In such pattern languages, there would be numerons ways in
which the patterns can collate and coalesce to selve a problem. This is analogical to the way infinite numbers of
sentences can be generated by linking words in a natural langnage.

Therefore, a key strength of this paper is that the introduced patterns incorporate some pattern language
characteristics in the presented patterns. For example, the patterns can be used to plan a route method for the
development of new applications, or for reengineering an existing one. Furthermore, the presented patterns cover
key tasks in the three components of the development activities mentioned above. The presented patterns are
lightweight and present a concise solution for each pattern and, where necessary, UML is used to explain and
clarify solutions. The work, however, suffers from some deficiencies. Althongh it is claimed that patterns are
used in case studies presented in the book, it has not been explained which patterns were used, and the
circurnstances of their application are not stated. The majority of patterns are concentrated on the design aspect
and there are few patterns on coding, testing and requirement analysis. Another weakness of the work is the
inconsistency in the pattern schema depicted in Table 2-6 where many patterns miss the Context and Benefit
elements.

In his PhD research, Storrle [2000] made a comprehensive study of process patterns, in which a number of
process patterns have been proposed. He has studied and investigated the architecture centric processes and has
anticipated that such processes would be best described by process patterns since they can be applied repeatedly
at several levels of abstraction. A non-hierarchical four level classification is used for the proposed process
patterns. These classifications are:

Abstraction level: Techniques and development styles

Phase: Specification, design, realisation and maintenance

Purpose: Administration, the construction of proper and quality assurance
Scope: Project, Component, Style

hal s

The template/format nsed for the pattern descrption is presented in Table 2-7.

Chapter 2 Software Engineering Patterns 23

No Element . Description

1 Title This is usually identical to the name of the task 1hat is supported by the pattern

2 Synonyms Other adequate names

3 Classification Abstraction level, phase, purpose and scope

4 Related Patterns Relationships to other patterns

3 Intent An account of the rationale of the pattern

6 Motivation A scenario thal illustrates the applicability conditions and purpose of 1he pattern.

7 Consequences Discussion of the advantages and disadvantages of using the pattern

8 Participants The actors, roles/resoutces, techniques, activities, tools and document types
involved in the process, and their respective roles.

9 Applicability The prerequisites for applying o paitern. the context where it may be applied.

10 Deliverables Describes what (parts of) documents are created or changed in which way by
applying the pattern

11 Process The central part of a process pattern is the description of the process fragment itself

Table 2-7 Pattern elements [Storrle 2000] patterns

The strength of this work is the classification, the pattern schema and the set of pattems it contains. The
classification proposed has the advantage of being analogical and compatible to the well-established pattemn
classification proposed in GoF's design patterns [Gamma et al. 1995]. Similarty, while the schema uses fewer
elements than those proposed in GoF’s design pattems, the elements adopted are suitable and correspond to the
nature of the process that the pattems describe. A further strength of the work is the number and scope of process
patterns proposed. In total, there are 25 pattems, each of which is well defined in accordance with the devised
pattermn schema.

The work, however, suffers from many weaknesses, one of which is the lack of pattern name and classification
in the pattern schema for the proposed patterns. Although each pattern introduced in this work has the name and
classification mentioned at top of the page, it is not included in the pattem schema (template). The absence of
these elements in the pattem schema conld make the process pattern ambignous and more difficult to nse. It
would further complicate the processing, recording and indexing of these patterns in a pattem repository
[Portland Pattern Repository]. Another weakness of this work is the quality and completeness of some of the
proposed patterns. Some of the patterns seem superficial and lack the broad and full details exemplified in other
works [Ambler 1998]. For example, in the pattern ‘Analyse Domain’, the solution offered for the process is,
“The structure and logic of the application domain should be analysed in the usual ways, resulting in a number of
class and activity diagrams in the respective views’. Here it is not clear what the ‘usual ways’ are, and such
pattemns or solutions, as offered in this paper, are not substantive and lack elaboration and clarity.

Cary and Carlson [2002] present 25 process pattems on requiretnents, analysis, and design. The pattems cover
issues such as communication, itevation, consistency, incompleteness, and flexibility. The pattems are
specifically aimed at framework development and reflect the anthor’s practical experience in framework
development. A framework is defined as a set of components working together to address a number of problems
in one or more domain, One of the strengths of this work is the number of elements the patterns contain and the
comprehensiveness in which each element is presented for all the pattems. The schema use is similar to that of
GoF’s design patterns and contains 12 elements, which are depicted in the Table 2-8.

No Element - Description

1 Name Name of pattern

2 Also known as Other names for the patten

3 [ntent What the pattern is about

4 Context The motivation for the patiern

5 Examples Examples from case study

6 Problems A concise slatement of the pattern addresses

7 Approaches Various solulion approaches

3 Solution A concise slatement of how the pattern recommends solving the problem
9 When to use Tradeoffs of the pattern, normally based on the case study

10 | Applicability A concise statement of the tradeoffs

11 Known uses Places the pattern was applied

12 | Related Panerns Dther patterns related to the current one and how they are related

Table 2-8 Pattern elements in Cary and Carlson (2002]

Chapter 2 Software Engineering Patterns 24

Although the book covers some key themes and aspects of framework developrment such as cornmunication and
flexibility, a weakness of the work is its limited coverage of the extent and depth of development process issues
concerned in framework development. However, the issues that are raised are covered well in the process
patterns that it presents. A further weakness of the work is that the introdnced process patterns are disjointed and
disparate and do not form a pattern language, fromm which a pattemn sequence could be generated to solve a
detailed and complex problem. While it presents examples of how individual patterns wonld solve the intended
problem, the work does not present scenarios in which a number of patterns could be interlinked to solve a
specific problerm or achieve a specific goal.

As part of the solution elements, patterns may contain instructions/tasks, which may he required to be carried ont
sequentially, in parallel or in no particnlar order. The hierarchical nature of patterns and the tasks/instructions
involved are discussed in the following section.

2.6 Instructions in Patterns

As part of its solution element, a pattern may contain one or more instructions (tasks) to be carried ont
sequentially, in parallel or in no particular order. In pattern langnages, where a nurnber of related patterns are
concerned with a particular problern dornain, the relationships between patterns are hierarchical [Alexander
1977]. A pattern langunage is a structured collection of patterns that build on each other to transform needs and
constraints into an architecture [Coplien et al. 2005]. Patterns in a pattern language work together in such a way
that a collection of patterns can be selected from the language to provide a solution for a complex problem.
Pattern languages have hierarchical structures, where different processes occur on different scales or levels, and
connections exist both on the sarne levels, and across levels [Salingaros 2000].

This hierarchical nature of patterns, in pattern languages or systerns, is present in both software and non-software
domains. The solution element of a higher-level pattern rmay contain tasks as part of its solution, each of which
conld themselves be presented as lower level pattern. For example, ‘architectural patterns” are concerned with
higher level design and architecture issnes, while ‘design patterns’ and idioms deal with problerns at a lower
level. This hierarchical nature of the patterns, in a pattern language, is a fundarnental concept of pattern. This is
illustrated and emphasised by Alexander [1977], where the introduced patterns in the field of architecture, are
hierarchically ordered, beginning with the very largest, for regions and towns, then working down throngh
neighbourhoods, clusters of buildings, buildings, rooms and alcoves, ending finally with the fine details of
construction. Each pattern is linked to certain larger patterns which come above it in the language, and to certain
smaller patterns which come below it. The pattern helps to complete those larger patterns which are above it in
the hierarchy, and is itself completed by those smaller patterns which are below it. In a pattern language,
therefore, the patterns at higher levels are decomposed into lower level patterns, which address smaller
problems. The decomposition of a higher task into srnaller, lower level tasks, is an important component of Task
Analysis. There therefore appears to be a relationship between patterns and task analysis which will be
investigated in the following sections.

While the solution elements of some patterns may present one or more instructions, to be carried out either
sequentially or in parallel, that is not a general rule. In order to explore the hierarchical structure and task-based
solutions in pattems, varions types of software and non-software patterns (i.e. building and architecture patterns,
design patterns, and process patterns) are discussed in the following sections. Process patterns in particular are
the focus of the discussion.

2.6.1 Patterns in Town and Building Architecture

The task based structure of architectural patterns are presented in two typical patterns ‘Window Place’ and
‘Outdoor room’ [Alexander 1977] shown in Table 2-9 and Table 2-10. In these patterns the solution is given as
one or more tasks to be carried ont to achieve the goal and generate the pattern. There could be another pattern
associated with each task that would present a decomposition of the given task. For example, the task ‘keep the
sill low” is dealt with another pattern ‘Low Sill (Pattern 222)’. The tasks in these patterns do not need to be
carried ont sequentially.

Chapter 2 Software Engineering Patterns . 28§

Pattern Name Window Place
Problem Design of aresidential room
Forces One wants to sil down and be comfortable
One is drawn toward the light
Solution [r every room where you spend any length of time during the day, make at least one window

into a "window place."

s Make it low and self-contained if there is room for that — (Alcoves Paitern 179)

s keep the sill low — (Low Sill Pattern 222)

* put in the exacl positions of frames. and mullicons, and seats afier the window place
is framed. according to the view outside — (Built-in Seats Patiern 202), (Narural
Doors and Windows Pattern 221)

* And set the window deep into the wall to soften light around the edges - (Deep
Reveals Pattern 223)

Table 2-9 Window Place Pattern

Pattern Name Qutdoor room

Problem Design of an outdoor room

Forces A garden is the place for lying in the grass, swinging, croquet, growing flowers, throwing a
ball for the dog. But there is another way of being outdoors: and it needs are not met by the
garden at ail, '

Sclution Build a place outdoors which has so much enclosure round it that it takes on the feeling of a
room., even though it is open to the sky. To do this, define it at the corners with columns,
perhaps roof it partially with a trellis or a sliding canvas roof, and create "walls" around it,
with fences. sitting walls, screens, hedges, or the exterior walls of the building itself.

Table 2-10 OQutdoor room Patiern

Any pattemn within the pattern language can be nsed in a sequence (also referred to as a construct or a language)
to generate a solution to a specific problem. For example, the outdoor room pattem above can be used in a
pattern sequence to build a porch, as shown in Table 2-11.

Neé & 207 Pattern ' Namie - 7. 5% 2 Pattérn No -
1 Private Terrace on the street 140
2 Sunny Place 161
k) Qutdoor Room 163
4 Six-foot Balcony 167
5 Paths and Goals 120
6 Ceiling Height Variety 190
7 Columns at the comers 212
8 Front Door Bench 242
9 Raised flowers 245
10 Different Chairs 251

Table 2-11 An example of a pattern sequence (also referred to as
language or consiruct) for building a porch

These two examples of architectural patterns demonstrated both the hierarchical and task odented nature of
patterns in the field of architecture. The following is a further example of the nature of pattems in the field of
software engineering.

2.6.2 Patterns in Software Design

The Model-View-Controller architecture pattern [Gamma et al. 1995] [Buschmann et al. 1996] presents a
methed of decoupling presentations from data in a software application. A simplified version of the pattern is
given in Table 2-12 below.

Chapter 2 Software Engineering Pattems : %

Pattern Name Model-View-Controller
Problem How to provide several nser interfaces to a set of data
Solution The following 1asks need to be accomplished

* Encapsulate core date in a model component. (Composite Paltern)

¢ Display information to the user using view component. (Factory Method Pattern),
{Decorator Patiern)

s Use a controller component to control user interaction with the system (Observer
Pattern), (Strategy Pattern)

Related Patterns | Composite Pattern, Method Pattern, Decorator Pattern, Observer Pattern Strategy Pattern

Table 2-12 Model-View-Controller

The solution presented in this pattern can be seen as a nnmber of tasks, each of which refer to other
hierarchically lower level pattemns (i.e. design patierns), that help accomplish the task. A further example is a
simplified version of the ‘Decorator’ design pattern [Gamma et al. 1995} shown in Table 2-13 where, in the
solution elemnent, the tasks that need to be carried out to accomplish the pattern are stated in a number of tasks.
The pattern presents its sclution as a number of tasks to be accomplished.

Pattern Name Decorator
Problem How to attach additicnal responsibilities to an object dynamically
Solution The following implementation issues should be considered:
e Define the interface for objects that can have responsibilities added to them
dynamically

* Define an object to which additional responsibilities can be attached

e Define a decorator interface 10 maintain a reference to the main object which
defines an interface that conforms to component’s interface

» Define a decorator object to add responsibilities to the main component

Table 2-13 Decorator Patiern

The examples above demonstrate the hierarchical and task oriented nature of architectural and design pattems in
software designs. In the following section, some examples of process patterns are presented, with a view to
illustrating their hierarchical and task oriented nature.

2.6.3 Patterns in Development Process

In the same way that there are patterns of different hierarchical levels (i.e. architectural pattemns, Design patterns,
Idiom patterns) in software engineering, there are also pattems of different hierarchical levels in software
development processes that are concemned with distinct levels of abstraction. This is depicted in Figure 2-4 (the
three pattem types depicted are further discussed in Section 2.5).

Level 1: Phase process
Patems. '

Level 2: Slage Process
Patterns.

Level 3: Task Process
Pattems -

Figure 2-4 Hierarchical structure of process patterns

Similar to the building architecture and software design pattems discussed in the previous sections, process
patterns present their solution element as a number of tasks to be accomplished [Ambler 1998]. This is illustrated
in a number of examples of process pattems shown in Table 2-14 and Table 2-15.

Chapter 2 Software Engineering Patterns 27

Pattern Name Requirement Analysis
Problem How should work proceed in the requirement aralysis phase
Solution In this phase, the project plan shonld be put in place and initial requirernents are defined.

The following parallel activities should be taking place in this phase. Note that all three
activities must be taking place at the same time.

s Defining and validating initial requiremnents {Paitern Stage_1_1)

* Defining the initial project management (Patterns Stage 2_1I)

e Jusiifying the project (Pattern Stage_3_1)

*__ Defining the project infrastmcture. (Pattern Stage 4 _I)

Table 2-14 Requirertient Analysis Paiern

Here each task is linked to a pattern at a lower hierarchy (i.e. a stage pattern) within the pattern language. The
pattern user may be satisfied with the solution provided at the phase level, or might decide to investigate the
related srage patterns to get further solutions.

The Table 2-15 depicts a further example of a process pattern, ‘Big ball of rud’ [Foot and Yoder 19971, which
contains a nurnber of tasks. The pattern suggests a number of tasks to be carried out in order to deal with the
stated problem of overgrown and tangled code. The tasks are represented as guidelines and suggestions and there
is no particular order in which they are to be carried out,

Pattern Name | Big Ball of Mud

Problem QOvergrown, tangled, haphazard spaghetti code is hard to comprehend, repair, or extend

Solution ¢ If you cannot easily make a mess go away, at least cordon it off. This restricts
the disorder

* Toa fixed area, keeps it out of sight, and can set the stage for additional
refactoring.

* If your code has declined to the point where it is beyond repair, or even
comprehension, throw it away it and start over

Table 2-15 Big Ball of Mud process pattern

Patterns in a pattern language can be cornbined in a large nurnber of ways to solve a problem [Alexander 1977].
For example, there are numerous ways of building a porch using a number of patterns (one example is shown in
Table 2-11). In accordance with this concept, individual patterns of different hierarchical levels in a process
pattern language, or system, can be compiled in many different ways to achieve different and specific solutions.
For example, a pattern sequence (also referred to as language or construct) for object development from scratch
[D’souza and Wills 1999] can be generated, using a number of patterns selected from a pattern language as
depicted in Table 2-16. Each pattern contains one or more tasks to be completed to accornplish the solution given
by the pattern. Scrme or all of these patterns could be used in a different sequence to solve a different problem
(e.g. re-factoring existing application).

No. : Patterns) - Description

| Make a Business Model Describe your nnderstanding of the users® concepts and concerns
and the vocabulary in which they express them

2 Make a Context Model with Use Cases Focus on the collaborations between your proposed system and
other objects — people. machines, other software sysiems

3 Construct a System Behaviour Spec Treating your system as a single object, create a type
specification for any system that would meet the requirements

4 Avoid Miracle, Refine the Spec Define more-detailed actions and attributes as a refinement,

5 lemplement Technical Architecture Define and implement major components of design as a
collaboration

6 Basic Design Take each system action and distribute responsibilities among
collaborating internal components.

7 Link and attribute ownership Extract common components and recast the design in terms of

' the components

8 Object Locality and link implementation | Decide how the basic design is split among machines,
applications and hosts.

9 Optimisation Perform locatised refinements for performance)

Table 2-16 A language for object development from scratch

Chapter 2 Software Engineering Pattems 28

In the above discussions and examples it has been demonstrated that the process pattern are not simply a set or
sequence of tight textual instructions, but are dynamic solutions that involve tasks to be performed sequentially,
in parallel, or optionally. An aspect of process pattems, which often makes them unsuitable as tight textual
instructions, is the necessary human involvement. There are often tasks in pattems and in software development
process that involve human judgment and decisions. There is however a fundamental question on the nature of
the software process itself, and that is whether software processes are instructions that can be represented in
software programs. This is discussed further in the next section.

2.6.4 Software Process and Textual Instructions

There is a school of thought that argues that the development process is essentially instruction-oriented and can
be represented by software programs. That is, software processes, in effect, consist of a number of defined
sequential instructions, which can be automated through software programs. There is however an argument that
the development process is too complex and a too human-oriented activity to be treated and represented as
software programs.

The argument about the concept of development processes, and the suvitability of their characteristics to be
represented in software programs, was proposed in an influential paper (software processes are software too) by
Osterweil [1987]. In this, and a subsequent paper [Osterweil 1997], he argued for rigorons process descriptions
to guide the key software processes, in which programming techniques and formalisms can best facilitate the
task. The proposal was for software processes descriptions to be expressed and formed using programming in an
activity referred to as *process programming’ or ‘process modelling’. As a proof of concept he helped develop a
process programming language, called Little-JIL [Cass et al. 2000], which is a graphical method for process
programming and defines processes that coordinate the activities of antonomous agents and their use of
resources during the performance of a task. An example of instruction-oriented software processes is illustrated
in a process function shown in Table 2-17.

Function All_Fn_Perf_OK(executable, tests);
declare execulable executable_code.
tests testsel,
case, numcases integer,
resubt derived_result;
All_Fn_Perf OK := True;
For case := 1 to numcases
{Comment. execution of the testcases in a testset array)
derive (executable, tests[case] .input_data, result)
{Comment. Compare results with expected behaviour; abort if any 1est execution does meet expectations
if Not resuhlOK {result, testcasefcase}.req_output)
then All_Fn_Perf_OK := False;
exit;
end loop;
end All_ Fn_Perf OK:

Table 2-17 Example of a process function (program) Osterweil [1987]

The program demonstrates how the testing process might be automated through a function, which loops through
a set of instructions until all test cases are executed and the results are recorded. Materialisation of process in this
sense might further benefit software measurement throngh the generation of new metrics (e.g. product size as no.
of objects in process program). Perhaps the most important benefit of such process programming is that it wounld
offer the possibility of reusing software processes.

There is however evidence that process programming is inappropriate and inapplicable for large applications
{programming in the large) [L.ehman 1987). The very existeace of a programming language places constraints on
thow a problem may be solved and limits human creativity. Furthermore, every stage and step of the
programming process requires thought, analysis and review of the earlier steps, which could mean repeated
refinements, or even redoing of the earlier models and steps, as the understanding of what came before evolves -
this would be impossible in a proceduralty formatted process program [ibid]. Process programs may be feasible
for small, well-structured, well-defined and understood applications (i.e. compilers). However, in cases where
the software project is large and complex, where not ail parameters could be well defined, using process
programs for the complete developruent process is neither feasible nor practical.

Since the publication of Osterweil’s paper [1987], software process modelling has gained much interest in the
software community among both academic researchers and practitioners [Madachy 2008]. However, while some

Chapter 2 Software Engineering Pattems 20

software process activities can be expressed in ‘well-defined’ and sequentinl textual instruction that can be
automatically and systematically executed in software programmes (as illustrated in Table 2-17), this would not
be currently appropriate or possible for complex and human-oriented software processes. While representation of
development process in textual instructions, upon which a software program can act, is greatly useful in
systematically organising and executing software development processes, complex processes cannot often be
properly represented in this way. Such complex processes often require human judgements and decisions to
determine the required process tasks in real-time, and cannot be completely pre-planned and programmed.

In the above discussions, an association between patterns and tasks was established. This wounld imply that
patterns could benefit from task analysis. This is discussed in the next section.

2.6.5 Can Patterns Benefit from Task Analysis?

As was demonstrated above, patterns contain tasks and can be themselves considered tasks, when they are nsed
in a sequence. The way a number of patterns are selected from a pattern language, to form a pattern sequence to
solve a particnlar problem, may be govemed by the method used for their selection This may be best
accomplished using task analysis in general and hierarchical task analysis in particular, due to the hierarchical
nature of the patterns.

A number of software and non-software patterns were discussed above in relation to the hierarchical and task-
oriented nature of their solution elements. Such decomposition of a higher task into smaller lower level tasks is
an important element of Hierarchical Task Analysis (HTA), which is discussed in the following section (Section
2.6.6). Furthermore, the method in which the solution in a pattem is decomposed into a number of tasks may
also be explained and analysed by task decomposition in HTA,

From one perspective, there appears to be a relationship between task analysis and patterns that has not been yet
explored in the literature. That is, if a pattern is defined in terms of a task that is to be performed to achieve a
goal, then task analysis becomes relevant and nseful. There are three ways in which hierarchical task analysis
can be applicable in making a pattern or a pattern langnage optimal and improve the quality of the solution it
provides. These are:

1. Developing individual patterns: The tasks and the order and sequence in which they should be
) performed in a pattern, whose solntion element includes a number of tasks.
2. Developing a Pattern Language: Clustering and grouping a set of related tasks into many individual
interlinked pattems.
3. Developing a pattern sequence (ie. a construct or language). The patterns selected from a pattern
language, to solve a problem, and the order and sequence in which they should be applied.

Task analysis may be most useful in circumstances where a problem is to be solved using patterns from one or
mote pattern languages caonsisting of a multitude of single patterns. In such circumstances, a proper analysis of
the problem to be solved and the goals and objectives to be attained is crucially important in choosing the right
patterns to apply in the right combination and order.

The hierarchical nature of patterns, as demonstrated in a number of examples above, helps the pattern solutions
to be of higher quality in terms of clarity and structure, which can be explained by a method of task analysis
called ‘Hierarchical Task Analysis’ (HTA). In the following section, the HT A method is discussed.

2.6.6 Hierarchical Task Analysis

Annett and Duncan [1967] proposed the Hierarchical Task Analysis to evaluate organisations’ training needs by
decomposing complex training tasks into a set of task components, which could then be trained. In this proposal,
a task is broken down and sequenced from top to bottom, thereby showing a hierarchical relationship amongst
the tasks. HTA's undedying technique is hierarchical decomposition, which analyses and presents the
behavioural aspects of complex tasks. It decomposes the tasks into subtasks, operations or actions and a structure
chart is then nsed to represent the tasks graphically. HTA concerns identifying and categorising tasks and
involves the notion of goal and task. A goal is simply defined as something to be achieved. Attainment of a goal
requires the completion of a plan that involves a number of individual tasks. A task is an activity that must be
carried ont to achieve a goal. The purpose of the HTA is to decompose the higher level tasks into lower level
tasks (i.e. sub-tasks), each of which will satisfy a sub-goal. Carroll [2000] states that a task, has to be real and not

Chapter 2 Software Engineering Patterns 30

divorced from actual user practice, be central to multiple user activity so that addressing it may have general
benefit, and require near-perfect execution.

HTA has been shown to be capable of providing useful descriptions of a variety of tasks in many contexts. It has
been shown to aid human decision-making in the design of teams and jobs, operating procedures, selection
methods, interface design. training, and reliability assessment [Ormerod and Shepherd 2004]. In interface design,
HTA provides a model for task execution, which enables designers to envisage the goals, tasks, subtasks,
operations, and plans for users’ activities. It is based on functional, rather than behavioural or psychometric
constructs, and uses a fundamental unit called an operation. The key features of an operation are the conditions
under which the goal is activated and satisfied, and the actions, which need to be performed to attain the goal
{Diaper and Stanton 2004]. These actions may themselves be defined in terms of sub-goals. For example, thirst
may be the condition that activates the goal of having a cup of tea, and sub-goals could include obtaining beiling
water, a teapot, a tea bag, a cup and so on.

At the highest level, a task consists of an operation which is defined in terms of its goals and which is measured
in real terms of production units, quality, or other criteria [Annett 1971]. The operations can be broken down into
sub-operations in a hierarchical relationship, each defined by a sub-goal. Therefore, to satisfy a goal in a
hierarchy, its immediate sub-goals have to be satisfied, and so on. The rules that govern the retationship between
the immediate super-ordinate and its sub-ordinates gnide the sequence with which each sub-goal is attained
[Stanton 2006]. These rules are facilitated by a number of notations, as depicted in Table 2-18.

Symbol. Meaning Example. . Description
> Then 1>2>3> 1 Thea 2 then 3
+& And 14243 1 And 2 And 3
/ Or 17273 1 Or20r3
: Any of 1:2:3 Choose any
K?> If condition K? Y>1 N>3 If K Then | Else 3

Table 2-18 HTA notations

There are a number of proposed guidelines in the literature for conducting HT A, which are fundamentally
similar [Annett 2004]. The basic heuristics for conduncting HTA is as follows [Hone and Stanton 2004]:

1. Define the purpose of the analysis

2. Define the boundaries of the system

3. Assess a vanety of sources of information about the system to be analysed

4. Describe the system goals and sub-goals

5. Try to keep the number of immediate sub-goals under any super-ordinate goal to a small number (i.e.
between 3 , and 10) '

6. Link goals to sub-goals and describe the condition under which sub-goals are triggered

7. Stop re-describing the sub-goals when you judge the analysis is fit for purpose

8. Try to verify the analysis with a subject matter expert

9. Be prepared to revive the analysis

For example, in instruction design, the instructional designer breaks down a task from top to bottom to show a
hierarchical relationship amongst the tasks, and then instruction is sequenced bottom up. A task at a higher level
cannot be performed until the subordinate tasks are all carried out. Once, as a result of the decomposition, a
comprehensive list of the tasks that make up a job or function are available, three major steps need be performed
to construct a hierarchy. These are: 1) Group and cluster the task that bear close resemblance to each other, 2)
Organise tasks within each group to show the hierarchical relationships, and 3) Consult with a subject matter
expert to determing the hierarchy’s accuracy.

Chapter 2 Software Engineering Pattems 3]

Lk""‘ . 'zf’ G f '1... PR b ’2 P
1w Facd: CdcwhandJ Chaode] []hoas; ﬂm}
Shape - shapa . Mont™. . _

Figure 2-5 HTA for drawing a clock

Examples of HTA, in drawing a clock and inspecting instruments in an acid distillation plan, is illustrated in
Figure 2-5 and Figure 2-6 respectively. Each task has a nnique number and a plan, which states the format under
which the sub-tasks are to be executed. For example, the draw face task (1) is dependent on tasks (1.1) and (1.2)
both of which need to be carried ont in order to achieve task (1).

Figure 2-6 Section of the goal hierarchy for an acid distillation plant operator’s task [Anneit 2004]

Having briefly discussed and outlined the principles of the HTA, the following section discusses ways in which
HTA can be ntilised in pattemns.

2.6.7 Application of HTA in Patterns

As illustrated earlier in Table 2-11, a pattern sequence consists of a number of individual patterns stringed
together to solve a problem. HTA can offer the designer the ability to structure the tasks in the pattern sequence
more specifically and systematically. Using HTA it is possible to develop a pattern sequence, where the patterns
involved can be set to be performed under certain conditions or in a certain order. This would make the
developed pattern sequence {solution) more specific to a defined set of problems or group of problems.

The tasks involved in the implementation (construction} phase of a development lifecycle can be decomposed
using HTA, as illnstrated in Figure 2-7. Each of these tasks (operations) counld be defined by a process pattern. In
this example, the medelling is achieved by satisfying the subordinate sub-goals.

Chapter 2 Software Engineering Patterns - 32

Figure 2-7 An example of task hierarchy for the Implementation phase
where each task could be performed by a process patiem

The HTA chart in Figure 2-7 depicts activities required in the implementation phase of a development process.
Here the HTA chart is a representation of a process pattem, which involves the engagement of other patterns to
achieve the goal of performing the tasks in the Implementation phase of a software development lifecycle. This
could be presented to a pattern language as a pre-defined pattern. It would however be possible to create a new
Implementation pattems with modified process tasks, based on the pre-defined pattern. This wonld give the
designer numerons options to construct solntions that are specific to a problem. For example, the implementation
pattern, depicted in the HTA chart Figure 2-7, presents a solution in terms of the tasks required to be performed
in the Implementation phase, which can be nsed as it is defined. However, one might need a solation that
involves other process activities that are not covered in this definition (e.g. optimising code) in the
Implementation phase. To do this one would create a new implementation process pattern based on the one
predefined, and add the extra process activity. The new pattern can then be added to the pattern language.

However, in addition to the option of creating new patterns, a solution can be devised, by linking one or more
pre-defined patterns selected from a pattern langnage to create a pattern sequence. The task analysis methods can
be used to determine the sequence of pattens needed to solve the problem.

Process Pattern Hierarchy Levels

1 2 3 : : fl
§ E 1 PI.I Pl,2 Pl 3 .
§ g § gll $2,2 £23 !
£ |...Pa [P CE T O X B

il
=i,
2
—
.
'
L]
=N
2 !
d L]
'
.
.
ENN
(>
I

Table 2-19 Process Paltern language

Task analysis can be employed to generate pattern sequences that can use individual pattems from all the
hierarchy levels of a pattern language. Theoretically, there could be n levels of hierarchy of process pattem
types. For each hierarchy level there could be m number of single patterns; the lower the hierarchy level of the
pattern type, the higher the number of single patterns it would contain. This is depicted in Table 2-19 where P,
denotes pattern m of the hierarchy level n However, in practice there are only a few hierarchy levels, depending
on the granularity of the defined pattern types. For example, Ambler [1988] defines three levels of hierarchy
{Phase, Stage, and Task pattern) where there are only a few patterns at the highest level (i.e. development
phases) and tens of patterns at the third highest level (i.e. tasks).

Chapter 2 Software Engineering Patterns a3

.l
R S

Figure 2-8 Example of a pattern sequence

An example of a possible pattern sequence, to produce a solution to a specific problem using patterns in a pattern
language, is given in an HTA chart format in Figure 2-8. It demonstrates how patterns of different hierarchical
levels are linked usiag HTA to form a pattern sequence to solve a specific problem. The following are exarnples
of a number of possible pattern sequences, each designed to solve a specific problern. Each pattern sequence
contains a aumber of single patterns that are to be executed sequentially.

Seq_l =(P)2) (Ps2) (Po3) (P14) (Psa)
Seq_2=(P,2) (Ps2) (P12)
Seq_3 = (P3) (Ps2) (Py3) (P1s) (P12.4)

The pattern sequence Seq_1 above involves the application of the patterns (Py;), (Ps2). (Po3), (P(4). and (Ps4) in
the stated order. A powerful utility of HTA that can be leveraged in developing pattern sequences is the ability to
include conditicnal staternents. That enables the creation of a dynamic pattern sequences where the sequence of
patterns to be executed is not pre-defined. The series of patterns to be executed within the pattern sequence
would be dependent on some conditions. A specific example is presented in Figure 2-9, where the order in which
patterns are to be executed is variable. For example, to accomnplish the goal, pattern P, has to be applied
followed by pattern Ps;. However, to accomplish pattern Ps 5, either Pg; or Py 3 can be applied.

)

I
[i 1 .
T2gar) (T 22z) [22
(Py) [Psac] [“Prxisd]

Figure 2-9 An example of a pattern construct using HTA

As the repository of software patterns grows and pattern langnages could contain hundreds of patterns, a
systernatic method of selecting and implementing appropriate patterns, is necessary. Furthermore, often
individual patterns are unable to provide a complete solution to non-trivial problems where the application of a
sequence of patterns would be necessary. Some methods, such as using grammar in systematic selection of
patterns, have been proposed in the literature [Zdun 2007]. In this section, it has been demonstrated how the
methods of Hierarchical Task Analysis can be employed in constructing pattern-based solutions through pattern
sequences, based on a methodical selection and cornbination of patterns. The important advantage of this system
is the provision of conditional predicates {as demonstrated in Figure 2-9) which enables the construction of more
detailed and specific solutions. Furthermore, the systematic and well-defined pattern sequence generation based
on the proposed HT A methods, would make it suitable and feasible to create tools to facilitate pattern sequence
creation.

Chapter 2 Software Engineering Patterns . a4

2.6.8 Process Patterns Employed in the Experimentation

In this study, an experimental research was conducted to investigate the effectiveness of process pattems. The
experiment utilised edited versions of a number of process pattemns, which came from a variety of sources,
including [Ambler 1998, 19991, [D'souza and Wills 1999], [Storrle 2000], [Coplien 1995]. The way in which the
process patterns were made available to the experiment subjects is discussed in Section 3.5.3, and Section 53.75.7.
The *‘Appendix B. Patterns’ presents a sample of the patterns used for this experimental study.

2.7 Summary

In this chapter the pattern concept, as applied in software engineering, was discussed. As designing and
constructing architectural work has many similarities to software design and construction, the pattem concept,
which was originally conceived for architectural design, has proven to be applicable and useful in software
development. There are various definitions for patterns, but the simplest and widely used one is that ‘A pattem is
a proven solntion to a problem in a context’; although one can argue that this simplified definition is not
comprehensive enough (e.g. lacks recurrence aspect) to properly define pattern.

There are many topical issues in patterns currently being discussed within the pattern community. These inclnde
issues such as ‘whether patterns shonld be formalised’, or whether software patterns comply with the principles
of the patiem concept. These issues were discussed in detail.

The concept of patterns has been applied to software engineering in varions fields. They have been applied to
both product and process aspects of software development. Software patterns, where the emphasis is on
architectural and code level structure of the software application, are referred to as design patterns. Software
patterns, which define and describe the process involved in developing a software application, are referred to as
process patterns, In design pattems the works of Gamma et al. [1995] (Known as GoF), in which they captured
and presented 23 design pattems, has been well received by the software engineering community. In the area of
software processes, Coplien [1995] and Ambler [1998, 1999, 2002, 2005] have produced many established
process patterns. Some of these process patterns have been used for the experimentat research in this study.
There have however been few studies investigating the utility and effect of pattemns. This project addresses this
issue by conducting an investigation of the utility and effect of pattemns in software engineering.

The relationship between task analysis and patterns was discussed and, the possibility of using Hierarchical Task
Analysis in pattern usage and pattem development was explored. 1t was shown that the hierarchical structure is
one of the main aspects of the pattern concept. 1t hns been further shown, through a discussion of the
Hierarchical Task Analysis, that the presentation and analysis of tasks in a hierarchical manner proves
advantageous in achieving the desired goals. Application of HTA, in the development of patterns and pattern
sequences was explored and the benefits were ontlined.

In the next chapter, the detail of a preliminary study in the form of two surveys, to evaluate the usage levels of
pattems within both the architecture and software communities will be discussed.

Chapter 3 Pattern Usage Surveys a5

Chapter 3 Pattern Usage Surveys

3.1 Introduction

Survey research method is one way of obtaining valid scientific knowledge. The survey research provides a way
of observing some phenomenon and forming, testing, and validating theories based on the observations made
[Babbie 20011, In this study, two preliminary surveys were utilised in order to understand architectural and
software pattem issues and gauge the usage levels, and to help devising the research question. The objective, in
both surveys, was to capture data on a number of constructs (variables to measure) through devising a number of
questions in survey instruments. The data was to be provided by a sample of the population of interest (i.e.
software development organisations, and architects), drawn through devised sampling methods.

The first survey, which is discussed in the first section of this chapter, aimed to determine issues concemed in
architectural pattems, as well as their level of support within the architecture community, in an effort to make
sense of the concept in the original environmem. The survey investigates the views and opinions of the architects
in the architecture departments in UK universities on the pattem concept. The second survey attempted to gauge
the effect and volue of software pattems in software development companies. In this survey, a number of
software development companies were investigated to determine their use and application of pattems within
their software development practices. This will be discussed in the second section of this chapter.

3.2 Architectural Patterns Survey

In this section, the survey on the use of architectural patterns, by architects in academia, is discussed. The
survey’s aim was to investigate the views and opinions of the architects within the architecture departments of
UK universities on the pattern concept, and determine their popularity and usage in terms of the extent to which
they are taught in universities. The aim was to determine the difficulties and pitfalls that have damaged the
prospects of architectural pattemns, and to discuss whether such issues and difficulties would apply, and could
prove damaging, to software patterns.

3.2.1 Motivation

The concept of pattern languages in architecture has engendered much controversy within the architecture
community. While some universities taught the subject, many others completely avoided it. Since the pattern
concept was conceived in the field of architecture, and has therefore a longer history in this field, a study of how
patterns are perceived and utilised in architecture may indicate what could happen to software pattems and
provides valuable lessons. There appears to be no published surveys on the usability levels of pattem languages
by architects.

The objectives in this survey were to determine the popularity of architectural pattems, within the architecture
community (in academia), and determine their views and opinions on the strengths and weaknesses of the pattem
concept. The overall aim was to determine whether software pattems are likely to be influenced or undermined
by the same or similar difficulties found in the architectural pattems.

3.2.2 Survey Details

All UK universities, with an architecture department, were invited to participate in this survey. At the time of
this survey, there were found to be 36 such departments running undergraduate and/or postgraduate courses. In
this survey, emails and follow-up telephone calls were used to contact the samples, sending each a questionnaire
(in the form of a letter) to complete and retum. The questionnaire was emailed to the heads of the architecture
departments in the sample universities. They were invited to fill-in the questionnaire themselves, or pass it on to
another architect in their department. The questionnaire contained only two questions, to make it as inviting as
possible for participants to reply. Here are the two questions:

Chapter 3 Pattern Usage Surveys 36

Q. 1) Do you teach pattern langnages, as described in the book ‘A Pattern Language’ by Christopher
Alexander, in your department, in any undergraduate or post graduate courses?

None [] Undergraduate Postgraduate
Low Low
Moderate H Moderate H
High High

Q. 2) What are your views on the phitosophy and concept of Alexander’s pattern languages? Please
cornment:

Noviews [] = Negative [] WNeutral [] Positive [

In the following section, the results of the survey are presented and discussed.

3.2.3 Architectural Pattern Survey Results

A total number of 36 UK universities were found to operate an architecture departrnent, all of which were
surveyed in this study. A total of 26 responses were achieved for the total sample size of 36, which is a high
response rate of 72%. In order to present the resunlts of the surveys, the SPSS statistical package was used to offer
the statistics of the achieved results. In this section, the quantitative as well as qualitative results are discussed.

3.2.3.1 Quantitative Resnlts

As depicted in Figure 3-1, 22 out of the 26 (84.6%) universities that responded did not teach patterns at any
levels. Out of the rernaining four who taught patterns (15.4%), two taught at undergraduate levels, one at
postgraduate and one at both nndergraduate and postgraduate levels.

30

None Postgraduate
Undergraduate Undergrte and Postg

Univarsilies leaching patlerns

Figure 3-1 Number of universities teaching architectural patierns

The architects were asked for their views on the pattern concept in architecture. A substantial proportion of the
respondents had a negative view of patterns. Out of the 26 expressed views, 13 were negative (50%), 9 neutral
(34.6%) and 4 positive (15.4%). The resuits therefore indicate that the majority of architects do not view patterns
us having positive effect on architecture.

Figure 3-2 and Figure 3-3 show architects’ viewpoints on pattern usage in relation to usage levels and courses
respectively. The figures show that in three out of the four nniversities whose representative architect expressed
a positive effect of patterns on architecture, the pattern usage level was low. None of the universities whose
representative architect expressed a negative view of patterns nsed patterns in their curriculum,

Chapter 3 Pattern Usage Surveys 37

Optnions Opinions
FAsegans [C__ [Yaye
5 Elweuirs [F=Meutml
3] L LETTD MlFostive
Nohe Poxgmduate
uaage levels Undemraduate Undemgrte and Postg
Fignre 3-2 Architects” viewpoinis in relation 10 pattern usage Uniersities teaching patems
levels Figure 3-3 Architects’ viewpoints in relation to courses on paiterns

There appeared to be a relationship between pattern usage and architect’s viewpoints. A correlation analysis was
carried out which is depicted in Table 3-1 and the scatter plot in Figure 3-4 (Correlation analysis is discussed in
7.5). There is a statistically significant positive correlation between pastern usage and architect’s viewpoints with
Corr. Coef. =0.494, and Significance. P=0.02. Correlation is siguificant at the 0.05 level (2-tailed). Therefore,
as pattern usage increases, architects’ viewpoints also increase proportionally. Furthermore, an increase in
architects” viewpoints will be reflected in a proportional increase in pattern nsage.

3.50 - e R | Scale
CooT : ® 12
® 10
3.00) e 8
.
2 L e
€ 2,50
o * 2
o L)
q;) 2.00 "t Fitline for
5 Total
1.50-
: R Sq Linear =
1.00-" 0.244

Lo :
1.00 1.50 2.00 2.50
Pattern Usage

Figure 3-4 Correlation between pattern usage and architect viewpoinis

Pattern
Usage viewpoinis
Pattern Usage Pearson Correlation 1 494
Sig. (2-tailed) 010
N 26 26
Viewpoints Pearson Correlation 494 1
Sig. (2-tailed) 010
N 26 26

Table 3-1 Correlation between patern usage and viewpoints

Chapter 3 Pattern Usage Surveys 38

1n the following section, the qualitative data collected in the survey is discussed.

3.2.3.2 Qualitative Resulis

Senior representatives of architecture departments of UK universities were asked to express their opinioa about
architectural pattems in this survey. While many Heads of departments kindly responded to the survey
themselves, some dedicated the work to someoae in their departmenat. Some of the views expressed are listed in
the *Appendix D. Results’.

1t is ctear from the comments that the overwhelmiag majority of commentators did aot valve architectoral
pattemns as a contemporary, forward-looking concept, from which new ideas and works could be generated. It
appears that the architects believed that Alexander’s concept of pattem languages were rather old fashioned and
opinionated. It is interesting that there seemed to be much opposition to Alexander, and his concept of pattern
language, within the architecture community. This can be clearly felt by quotes such as “I co-ordinate first year
studio, and steer well clear of Pattem Language”. Some, however, believed that the pattern languages would
become popular in the future. These results are further discussed in the next section.

3.2.3.3 A Discussion of the Results

The results presented above indicate that there were a number of issues with architectural pattems, which
concern and dissuade architects to actively incorporate pattems in their design practice. It is interesting that the
research provides evidence that the pattern concept dees not have much support in the architecture community
for which it was conceived. The results indicate that the general views of the architects, within the academia,
seem to be that Christopher Alexander’s philosophy of pattern languages are “rather old and tired ideas” which
stifle creativity in architecture. Given the coacems and objections architects express about architectural patterns,
should the software commusity be concerned that the pattern issues and pitfalls, raised by the architects, could,
at some point, catch up with software engineering and render software patterns effectively harmful? The
majority of the surveyed architects criticised patterns as being anti-creativity, anthoritarian, unscientific, and old
fashioned. The question is whether the problems and issues that caused architectural patterns to be unpopular
within the architecture community, could also prove damaging to the prospects of software patterns in the future.
Based on these results, this section will discuss whether the issues raised in architectural pattemns could also
apply to software patterns, aow or in the future.

Anti-creativity

A large proportion of the respondents in the survey expressed the view that architectural patterns are anti-
creativity and authoritarian. This reflects the general views of many architects within the architecture community
[Saunders 2002] [Koha 2002] [Eakin 2003]. The argument is that patterns seem overwhelmingly auothenitarian
telling the reader what must be done in a controlled manner. This is in coaflict with individval freedom and
maximum choice and, therefore, patterns stifle creativity. It is furthermore argued that patterns are prescriptive
and require architects to design according to some specific set of rules demanded in the pattern. Such subservient
adoption of pattems, critiques argue, would effectively encourage architects to copy designs rather than to try
generating creative designs.

However, in reality, architectural pattems do not necessarily restrict creativity, nor do they hinder artistic
freedom [Salingaros 2000]. It all depends on how the pattern is vsed and employed in design. Patterns aim to
bring to the attention of the designers the designs that have been proven to work; solutions that are timeless.
Furthermore, there are an indefinite aumber of ways that the architectural pattems can be put together to
generate new designs, giving the designer the cheice and freedom to express their creativity. In effect, by
imposing constiaints, the patterns eliminate a large number of inferior possibilities, while allowing an infinite
number of possible plausible designs. Therefore, accusations and criticism of architectural pattems as being a
hiadiance to self-expression, which has caused architects to resist using patterns, seems to be unjustified. It
should also be borne in mind that while freedom of expression is important, the pnimary function of architecture
should be to provide structures that are comfortable and useful. In the current architectural paradigm, however, it
seems the emotional and physical comforts of the user are of only minor importance [Salingaros 1999]. Patterns
help architects (o create desigas that are useful as well as offering some levels of freedom of expression.

The creativity accusation is, however, far less significant in software patterns. While in architecture human
creativity in preseating artistic structures is important, in software engineering the emphasis is not 50 much on
the antistic aesthetics of the software. What are crucial in software development are designs that are robust,

Chapter 3 Pattern Usage Surveys 39

efficient and have been shown to work in practice. Furthermore, while software patterns provide the overall and
a high-level solution 10 a problem, the exact implementation of the software pattern is not defined by the
patterns. This gives the software architects and developers the ability to be creative in implementing the pattern
solution.

Based on the importance attached to creativity (as expressed by the respondents in the survey), we recommend
that software pattern authors should endeavour to generate patterns that would offer pattern users maximum
choice in implementation styles, while not undermining the quality, clarity, and un-ambiguity of the patterns.

Qutdated and old fashion

A further criticism of the architectural patterns, expressed by the survey respondents, was that the architectural
patterns were old fashioned and out of date. The criticism is that architectural patterns are set in, and reflect, the
past and therefore, while they would be applicable and snitable for their time, they are out of place for the
modem era. For example, patterns that architects nsed to build cathedrals and other historic buildings a few
centuries ago are not necessarily suitable and desired by the today’s modem society. Times have changed and
architecture has and will continue to change.

While architecture is a discipline that is thousands of years old, software engineering is relatively young.
Therefore, while architectural patterns could reflect structures that are hundreds or even thousands of years old,
software patterns reflect designs and solutions that are merely a few decades old. For example, pattern in Object-
Oriented programming which is currently the most popular programming paradigm have an age of about two
decades. This is, however, not to say that software patterns do not age or outdate. Software patterns over time
could be obsolete, due to many reasons such as the technology on which they are based. As the technologies
change and improve, patterns based on the older technologies will outdate and die out. For example, software
patterns on the Waterfall Process Model [Royce 1970] that would have been perfectly valid to be used a couple
of decades ago (partly due to the insufficient computing resources), would now be almost obsolete in their
original form for many types of software development projects, as the technologies and computing resources
have changed and improved.

There is, therefore, nothing wrong in software patterns getting old and outdated. It is inevitable that many
software patterns, especially domain and platform specific patterns i.e. J2EE patterns, will have an expiry date in
terms of the validity of the solution they provide. We recommend that pattern authors should ensure that they
fully state the scope and the context in which the pattemns they are producing are applicable. This would ensure
that the pattern user wounld know if the patterns they were going to use would work for the specific problem to
which they are applied. Such details, in scope and context, would further inform the pattern users whether the
pattern would work, if some underlying technologies changed (e.g. whether they are platform dependent).
Therefore, technically, no sofiware pattern (new and old) should run the risk of being misapplied, if the context
under which the pattern is applicable (i.e. patten’s context element) is properly and fally defined.

Unscientific

A further criticism of the architectural patterns, expressed by the architects in the survey, is that there is litile
proof for the theories and assertions and that the main evidence has been the anthor’s own work, opinion, and
imagination. The argument is that the architectural patterns are opinion-based, subjective, and not scientifically
validated. Some [Saunders 1999, 2002] have argued that the architectural patterns are based on observation,
without methodology. Critics, further point to some of the assertions in the architectural pattemns such as “we
guess ...” or “Several studies show ...” and suggests that such statements has littie scientific suppout [ibid].

In software patterns, however, the scientific extraction and validation process may differ, according to the type
of software pattern in question. Technical software pattems may be more scientific, due to their technical nature.
While observation is the main method by which such pattems are extracted and formed, they are easier to verify
and validate. The validity of pattemns can be judged by the applications that implement them. If, for example, a
software pattern has been implemented in three applications that have all operated successfully for sometime,
then the pattern can be considered validated. Tn fact the software pattern community has recommended, what is
called, “rule of three” which requires each pattern to have been observed to operate successfully in three
different situations. As well as being observed in a number of successful applications, sofiware pattems can be
further validated by testing and evaluating them for various quality attributes in specifically written applications.
For example, in addition to noting the applications that had successfully implemented the patterns, Gamma et al.
[1995] further validated their patterns through a specifically written software application.

Chapter 3 Pattern Usage Surveys A0

While such validation methods are possible for software pattemns dealing with software design (i.e. design
pattemns), process and human-oriented software pattemns, such as process/organisation pattems, are more difficult
to validate scientifically. Often the only validation offered in these types of software pattemns is the pattern
author’s experience [Coplien 1995] [Ambler 1998]. Experimentation, as a validation method for process and
organisational patterns, has been proposed in this research project [Estabraghy and Dalcher 2007a]. Therefore,
process and human-based pattemns can also be scientifically validated (albeit more time consuming and
expensive than design patterns). Validity of process patterns can also be checked by their implementation in
successful software development projects.

Given the criticism of patterns, as being unscientific and invalidated, expressed in the survey, we recommend
that software pattern authors should do more to ensure that the software patterns they author are scientifically
extracted and are fully validated. A strict adherence to the “rule of three”, as well as evideuce of independent
validation tests (where possible), are recommended.

Having discussed the survey on the architectural patterns in this section, in the following section the second
survey to investigate the effect and utility of software patterns is discussed.

3.3 Survey of Software Organisations

In this section, the survey research method on the use and application of pattems in software development
projects in industry is discussed.

3.3.1 Motivations

Over the years, the application of the pattern concept in software engineering has been widely written about and
investigated through books, journals and conference literature. The purpose of this investigation was to carry out
a study of software pattemns to evaluate their impact on software development practices in software development
organisations. While academics develop theories leading to the introduction of new technologies, it is the
software industry that implements the theories in practice. Studies show that over-dependence on unreliable new
technology is one of the main causes of software project failure [Glass 1998]. 1t is therefore important to gauge
the software industry’s viewpoints, experiences, and reactions on any new and introduced piece of technology
(such as software pattemns) with the aim of evaluating their utility and improve them accordingly. In this study, a
survey research method was designed and implemented in order to investigate the experiences and opinions of
software development organisations on the impact and application of pattems in their development practice.

3.3.2 Related Work

There have been numerons publications in the form of books, joumals and conference papers on software
pattems (see for example, [Buschmann et al. 1996, 2007] [Coplien et al. 2005] [Gamma et al. 1995] [Fowler
1997, 2002)). There are many claims, with some empirical verification, that software pattems can capture the
essential compouent of a design, be used to record and reuse best practices, and provide the vocabulary for
communicating complex concepts effectively [Gamma et al. 1995][Beck et al. 1996][Buschmann 2007]. While
there have also been some experimental studies to investigate the impact of software patterns on software
development projects [Prechelt 2001, 2002] [Unger and Tichy 2000}, there is very little published research
investigating the impact and value of software pattemns in the software industry. A recent survey research,
conducted at the IBM [Manolescu et al. 2007] (see Section 2.2.8), which surveyed over 70 software development
organisations, indicates a widening gap between pattern experts and the avernge software developer and
designer. The study found that while software patterns written by experts had included many types and aspects
of software development (e.g. process, architecture, and integration), software developers and practitioners had
only concentrated their efforts on the 23 design pattems introduced by Gamma et al. [1995]. Many of the
findings in this survey research correspond to the works of Manolescu et al. [2007], which strengthens the results
and conclusions reached by both studies. The details will be further discussed in this chapter.

The Patterns_Central [2005] website ran a survey on software pattems. The survey showed that 50% of the
respondents believed that patterns were useful. The survey also indicated that 59% of respondents used pattems.
However, 32% of the respondents believed that patterns were either misused or misunderstood. For further
details of the survey’s results, see Appendix D. Results.

Chapter 3 Pattern Usage Surveys 4]

3.3.3 Samples and Sampling Method

Sampling is a process of selecting the samples for the survey. A number of sampling techniques were considered
for their snitability for this research and the ‘Systematic Random Sampling’ method was chosen. Systematic
Random Sampling is appropriate when the selection of a sample needs to be taken from a list [Sapsford 2007]
(i.e. a list of software development organisations). A sampling fraction (k) was calculated by dividing the
population (i.e. software development organisations) by the required sample size of 500. A random number was
then selected between one and k, and beginning with the selected random number every k™ unit in the list was
selected as a sample member. Therefore, 500 organisations were selected to participate in this survey, 67 of
which accepted.

The sample for the survey was selected from a complete list of the software development organisations in the
U.K that are listed in the Kompass Business Directory [Kompass]. Althongh most large organisations have a
computer department, and may develop software for their internal vse, this survey aimed to specifically study
those organisation that develop software for sale and are listed as software development organisations in the
directory. Based on the software development organisations listed in the Kompass directory, a sample of 500
software development organisations were randomly selected, using the sampling method discussed above, to be
surveyed. The sampling unit (or unit of analysis) of the study is an individoal software development
organisation. A member of the development tenm, from participating organisations, provided the data for the
survey as the representative of each sampled organisation.

A number of methods of collecting data [Babbie 1990] were employed in this survey. These included one-to-one
interviews with representztives of the 67 snmple organisations. Where such interviews were not achievable or
available, telephone interviews were conducted to collect the required data (this was the most used method). A
questionnaire was also hosted on a specific website through which the participating organisations could complete
und submit their responses. The collected data, captured through the stated methods, were recorded in 1 database,
which was subsequently used by the SPSS statistical package for analysis.

3.3.4 Survey Instrument

The survey instrument was designed to capture the data of interest {i.e. constructs) through a number of specific
and unambiguouns questions set in a questionnaire. The data of interest were of the following major type:

Organisation’s type and attributes: These types of questions capture data about the characteristics of
the participating organisations (e.g. number of employees, [SO 9000 registered)

Patien usage: Questions about the practice of using and implementing patterns (e.g. type of patterns
used, effect of patterns on reliability, efficiency etc.)

Pattern development: These types of question aim to capture data from organisations that develop
patterns (e.g. type of patterns developed and whether developed patterns are published externally)
Non-Pattern usage: This type of question captures the responses of organisations that do not use
patterns (e.g. reason for not using patterns, any plans for employing patterns).

The questions were presented to the participant organisations through the data collection methods discussed in
‘data collection methods above’. The Table 3-2 presents an example of the questions that appear in the survey
_instrument. The complete survey instrument is in ‘Appendix E. Survey Questionnaires’.

What do you believe to be the effect of application of patterns on the following software
quality attributes? ' . . . -

Reliability | Positive [] Negative || Nentrl |_] Don't Know LJ
Usability. Positive E] Negative | Neutral || Don't Know ||
Changeability . | Positive | | Negative |_] Neutral [_] Don’t Know L]
Interoperability | Positive (] Negative || Nentral [_| Don’t Know ||
Efficiency Paositive || Negative |_] Neutral [} Don't Know ||
Reusability Paositive D Negative L] Neutral || Don'tKnow [l
Testability Positive Negative [_] Neotral [_] Don’t Know [|
Portability Positive Negalive U Neutral |_] Don't Know | |
Maintainability { Positive [_] Negative |_| Nentral [_] Don’t Know L]

Table 3-2 An example of the survey guestions

Chapter 3 Pattern Usage Surveys 42

3.3.5 Software Pattern Survey Results

A total number of 375] corpanies were listed as software development companies in the Kormpass business
directory. Ont of a sarnple size of 500, a total of 67 respondents were achieved. Given the organisations’ low
response rates at around 7% [Walonick 1997], this is an acceptable size and is comparable to other software
eagineering surveys (for example [Manolescu et al. 2007) [Tang et at. 2006) [Lethbridge 2000]). In the
following sections, the details of the resnlts of the survey instrument are presented and discussed. Some of the
results are presented in ‘Appendix D. Results’.

3.3.5.1 Pattern Usage

As depicted in Figure 3-5, 40 out of the 67 (59.7%) respondents nsed pattermns in their software development
practices. The Figure 3-6 illustrates pattern nsage in relation to organisation size. The figure shows that the size
of the companies has an affect on the pattemns usage level. Small companies with less than 10 staff formed the
category with the least usage, with onty 8.3% of the companies using pattemns. One reason for this counld be that,
the smaller companies are more likely to be involved in the development of small and predominantly graphical-
based web applications, where software patterns have currently minimal utility. Between 75 to 100% of the
surveyed software development organisations over the size of 50 employees used patterns.

42 b

Patterns Lke

Elne
.Y-:

i

<10 10-50 51-100 101 -200 200

Count

Organization Emplyee Size

Patterns Use

. . Figure 3-6 Pattern usage in relation to organisation size
Figure 3-5 Companies using patterns

The participants were asked to state their views on both usability and usefulness of pattemns. The results are
presented in Table 3-3 and Table 3-4. It is interesting that the respondents’ views on both usability and
usefulness appeared to correspond to their level of pattemn wsage. Therefore, the correlation between pattern
usability and pattern usage variables was investigated which is shown in Figure 3-7 (Correlation analysis method
is described in Section 7.5). The results show that there is a statistically significant positive correlation between
the two variables (pattern usabiliry and pattern usage) with Corr. Coef. r=0.65, and Significance P=0.000. There
is also a statistically significant positive correlation between pattem usefulness and pattern usage with Corr.
Coef. r=0.562, and Significance. P=0.001. The correlation is depicted in the scatter plot in Figure 3-8.

Pattern Usability (Ease-of-use)

Pattern Type Easy | Moderate | Difficult | Very Difficult
Analysis Patterns | 0 1 0 0
Design Patterns 5 9 15 11
Process patterns U] 5] 0

Tabte 3-3 Pattern usability results

Chapter 3 Pattern Usage Surveys

43

Correlation - Pattern Usability and Usage

4,00 R 1 Scale
T e 10
® 38
e &
3.50 1T« 4
+ 2
g gtl' f
it line for
83.00- Total
=2
2.50
R Sq Linear =
‘ 0.429
200 . H
T T 1 T | T
1.00 150 200 250 300 350 4.00
Usability

Figure 3-7 Correlation between pattern usability and paltern usage

Pattern Usefulness

Pattern Type Nil | Slight | Moderate | Considerable
Analysis Pattemns { 0 0 1 0
Design Patterns 2 2 15 21
Process patterns 0 2 3 1

Table 3-4 Pattern Usefulness Results

Correlation - Pattern Usage and Usefulness

' ’ o Fit line for
2 00 El R . Total

Usefulness

R Sq Linear =
0.315

| T T
2.00 2.50 3.00 3.50 4.00

Usage

Figure 3-8 Correlation between patiern usefulness and pattern usage

Chapter 3 Pattem Usage Surveys 44

The resnlts indicate that the more the users find patterns easy to use, the more they use them. It appears that
when practitioners have confidence and skills in'using pattern, the pattern nsage levels increases proportionally.
It also appears that the more they use pattemns, the more they are convinced of their nsefulness. Therefore, there
are some steps and actions that can be taken by the pattern community and software organisations in encounraging
a wider use of patterns:

* Provision of training: One of the main reasons for not using pattems has been shown in this survey to
be the lack of skilled practitioners. Manolescu et al. [2007] also found that onily 10% of software
developers in the surveyed organisations had been on a pattem-training course. If the level and quality
of pattern usage is to increase substantially, provision of training for software engineers shonld be taken
more seriously by the software organisations. We recommend that they shonld aim to schednle
comprehensive pattern training programmes for their software engineers. Training would enhance the
skills and confidence of software engineers to use patterns, which would proportionally increase pattern
usage as shown in this study. Since, this study and others [Prechelt 2001, 2002]{Beck 1996], have
shown that pattern nsage has a positive effect on software quality, any incurred training costs wonld be
likely to prove valuable investments in terms of producing better quality software.

e Provision of a wider choice of pattern: A more comprehensive pattern knowledge that includes a
wide choice of patterns in various domains provides greater opportunities for practitioners to employ
pattems to solve a wider range of problems, which would effectively increase pattern usage.
Comprehensive pattemn repositories, such as [Booch 2008), with relevant search and indexing facilities,
would encourage more software engineers to employ pattems. As shown in this study, any increase in
pattern usage is proportionally reflected in pattern nsefulness, and conversely, pattern nsefulness will
encourage greater pattern usage. This relationship between the pattern usage and the nsability and
usefulness of patterns is important to leverage in enhancing software quality throngh grater nse of
patterns.

* Provision of research on nsefulness of patterns: Evidence of the usefulness of patterns wonld also
encourage practitioners to employ patterns because it has been indicated in the survey that as the rate of
pattern usage increase, the pattem usefulness will also increase proportionally. It is therefore important
that substantial research on the evaluation of utility and usefulness of patterns, such as this study, at
both academia and industry be frequently conducted.

One of the issues with pattems, as indicated by the survey, is the minimal nuse of process-based patterns. The
results show that pattern nsage is overwhelmingly concentrated on design patterns and that process pattemns
usage is very low comparatively. The Figure 3-9 shows the proportion of companies nsing process patterns. Only
six out of the 67 (8.9%) respondents nsed process patterns, and only one out of the 67 (1.5%) surveyed
companies used pattems frequently. It therefore appears from the sample, that while many companies were
satisfied that the employment of design patterns were useful in software development design and architecture,
they were not convinced that the application of process pattems was beneficial to software development practice.
This resnlt prompted the main research topic of this study to investigate the ntility of process patterns. One of
the reasons for the low usage of process pattern in industry could be becanse formal development methodologies
and processes are little understood and practiced in many immature software development companies. Some
studies have shown that 35% of software development organisations have an ad hoc, individual-based, and
informal development process in place [Yourdon 2008]. Evidence of positive effect of process pattemns, as
sought in this research, could encourage software organisations to use them in their development practice.

Chapter 3

Pattern Usage Surveys

45

30

10 - 540

Organization Employee Sixa

Process Patt'n Usage
[WOt at all
[E]saidom
EllFrequently

Figure 3-9 Process patterns usage

Companies that did not use patterns gave 2 number of reasons as to the rationale for not doing so. The results are

depicted in Table 3-5. Eighty eight percent of the respondents gave ‘lack of skilled staff’, as a reason for not

using patterns, which showed that such organisations felt that patterns required the expertise that they did not
have within their development teams. Patterns are often hard for inexperienced practitioners to use properly and

this appears to be one of the reasons hindering companies in using them. A substantial proportion of

organisations (819%) felt that patterns are not required in their software development practice, These views were
mostly expressed by small software development companies who were involved in developing small user-
interface based web applications for which fewer patterns are available compared to larger and multi-tiered
applications. Such companies therefore believe that patterns would not provide a significant advantage in their

practice.

Reasons: - - | Yes—Answers % -| No - Answers %
Lack of Skilled' Staff. ~ -- 38 12
Patterns outdate quickly: 33 67
Patlerns are not required:”. 81 19
Patterns have side effects - 29 71
Not Fulty Reliable™ - . : 22 78

Table 3-5 Reasons for not using patterns

The surveyed organisations were asked if they had plans to use patterns in the future. Ten out of the 27 (37%)
that did not use patterns said that they had uno plans, while 17 (63%) planned to use patterns in the next 12
months, as is illustrated in Figure 3-10. It shows that the majority of the companies that were not using patterns
at the time, had decided that pattern usage would be beneficial to their practice, and were considering using them

in the futore.

70

No Plans

Next 3 Months

Plan To Lse Patterns

Next 12 Months

Figure 3-10 Companies planning to use patterns

Chapter 3 Pattern Usage Surveys 6

3.3.5.2 Pattern Development

While the popularity and application of using pattems in software development practice is high and steadily
growing [Buschmann 2007b], the survey showed that ounly a relatively small percentage of the software
development organisations were engaged in developing patterns. As depicted in Figure 3-11 only four of the 67
respondents (6%) developed patterns. This indicates that while many companies utilise software patterns that
have been published in the literature, very few are prepared to put in the effort to extract and write up patterns
based ou their own company-wide experience and practice and publish them. One reason for this is the lack of
sufficient training in extracting and writing patterns [Manolescu et al. 2007]. There should therefore be a
councerted effort by the pattern community to encourage, and provide support for software development
organisations to engage seriously in producing and mining pattems. In particular, the pattern community should
establish an authoritative pattern repository, with useful indexing facility, to which pattern users can both
contribute and refer. The partem community should further encourage software organisations to put in place
training programmes on pattern development for their development teams. Training and practice, is immensely
important in providing the necessary skills for development teams to be able to write quality pattemns. The
pattern community has introduced a shepherding process in which an experienced patterns write helps beginners
to write patterns for publication. The shepherding mechanism should be encourage to be used and adopted iv the
software industry in increasing the number of engineers that have the skill to extract and write pattems. It should
be bome in mind that badly written so-called patterns are worse than vot producing pattems at all, as any
solution that they provide could be misleading and therefore damaging to the applications that use them (see
Section 2.3.2).

Pattaern Dovalopmant

Figure 3-11 Companies developing patterns

3.3.5.3 Pattern’s Effect on Software Quality

Participants’ opinions were sought in the survey regarding the effect of pattems on a vumber of software quality
attributes. The results are presented in Table 3-6.

Use Patterns | Positive | Negative | Neutral [Don’t Know
: % % % |- %
e Yes 55.0 5.5 27.0 12.5
Testability . 17" ™77 7 37 1T Ton”) 2o T T o T]
Ce ' Total 344 33 250 374
Yes 775 50 10.0 75
Reusability: - .- =~ "N~ 777 ” 74° 1" 00" 7T 33T T T sse T
S Total 49.2 29 73 30.3
T Yes 57.5 1.5 20.0 15.0
Maintainability |~ = "y, ™ 7 77 00 |T 33T 33T T T wio T
S Total 343 59 134 6.0
' Yes 65.0 15.0 12.5 125
Portability. - T N Y S N L
- Total 38.8 104 90 443
Yes 80.0 25 100 75
Changeability |~ """ 53717 5337 7T T35 T T %50 T

Chaplf:l: 3 Pattern Usage Surveys 47

Total 307 30 1.5 38.7
. T Yes 82.5 25 12,5 25
Interoperability {~ = Ty, = = 7|7 % 00 1" 377" 33T T T eza” T
R Total 493 34 9.0 386
. Yes 42.0 20.0 35.0 23
Efficiency = =~ {7~ N~ " 7 ™ 3717 00" 7T AT T T BEe T
] Total 26.6 ny 239 373
L ¢ Yes 55.0 375 225 150
Reliability .~ " 1=~ 70" 771" 00" 1" 00" 7" T7aT T T 920" 7]
LT Total 13§ 224 16.4 46

Table 3-6 Participants’ viewpoints on the effect of patterns on quality attributes

Reusability, changeability, and interoperability were the quality attributes that had the highest score of between
77 and 83%. The score shows that a substantial majority of the respondents that used patterns viewed these three
attributes as the most influential benefits of software patterns. However, only 42% thought that the usage of
patterns would improve efficiency, while 20% believed that in fact patterns had a negative effect on efficiency.
The results on the reliability attribute were surprising. While 55% of the respondents that used patterns believed
they had a positive effect on reliability, 37.5% thought that it had a negative effect, which is a surprisingly high
proportion. This was rather unexpected because patterns, theoretically being proven solutions, should not be
unreliable or have a negative effect on the reliability of the software that adopts them. The results indicate that
while patterns may be reliable themselves, they do not necessarily enhance the reliability of the software that use
them and could indeed in some cases decrease their reliability. 1t appears to suggest that patterns could influence
aspects of a software development in a way that renders the resulting software less reliable. We recommend that
further empirical/experimental investigations to be conducted to determine the effect of patterns on the reliability
of the software that employ them. Such investigations could outline specific deficiencies and issues with patterns
with regard to the reliability attribute and recommend strategies to resolve thern.

The correlation between pattern usage and their effect on both reusability and maintainability were investigated
which are presented in Figure 3-12, and Figure 3-13. There is a statistically significant and positive correlation
between pattern usage and the reusability attribute with Corr. Coef. R=0.523, and Sig. p=0.001. There is also a
statistically significant and positive correlation between pattern usage and the maintainability attribute with Corr.
Coef. R=0.459, and Sig. p=0.007.

3.00 .- Scale 300 0 Scale
® 15 ' e 20
* 10 o ® 15
>.250- :) . 5 g‘ 2.50+ * 10
= -0 B « 5
2 ; Fit line g Bl -0
3 : . ;
O Total _E p— o1
e SN 32 gl Total
1.80 e 150", - +;
15 R Sq Linear = R SqLinear =
1.00 1. : o 1308 rooq L b
1.00 150 200 250 3.00 1.00 150 200 250 300
Pattern Usage Pattern Usage
Figure 3-12 Correlation between reusability and pattern | Figure 3-13 Correlation between maintainability and patiern
usage usage

There was also found to be a statistically significant positive correlation between restability, reliabiliry, and
pattern usage as depicted in Figure 3-14 and Table 3-7. The results indicate that as pattern usage increases,
testability and reliability of the application that implements thern will also increase proportionally. This outlines
a further benefit of pattern usage, which is to enhance both testability and reliability proportionally. The results

Chapter 3 Pattern Usage Surveys 48

further show that there is a positive correlation between testability and reliability, indicating that any change in
either attributes is proportionally reflected in the other.

Paitern Usage | Reliability | Testability
Pearson Correlation 1
Pattern Usage Slg_(Z-lmled)
N 40
Pearson Correlation 465
Religbility | og @aled) | 002 |
N 40
Pearson Correlalion 529
Testability | 08 @ailed) 1 000 |
N 40

Table 3-7 Correlation analysis for testability, reliability. and patiern usage (significant at the 0.01 level)

Carrelation - Testability, Reliability, and Usage

Scale
®12
e 10
e 8
*

[= I e |

050"y 5075 55 3.50
Reliabiijyy, ~ pot®

LU
Usage :

Figure 3-14 Correlation between pattern usage and tesiability-reliability quality attributes

The positive effect of pattern, on communication between team members, has been reported by some studies
[Beck et al. 1996] [Hahsler 2005] [Unger and Tichy 2000]. The survey results, depicted in Table 3-8,
corresponds to those findings in indicating that the majority of the surveyed participants believed that patterns
improved communication between development team members.

Question Yes | No Doa’t
(Pattern Users Only) Do % Know %
Do you believe palterns coniribule towards better communication between 61 27 12
sofiware development team members

Table 3-8 Patterns’ effect on communication

Further results are presented in the ‘Appendix D. Results’.

Chapter 3 Pattemn Usage Surveys 49

3.4 Summary

This chapter discussed two preliminary surveys to evalvate the impact and usage of both architectural and
software patterns. In the first survey, architects from 26 participating UK universities were asked for their
viewpoints and teaching practices on pattems. The results of the survey showed that, 22 out of the 26 (84.6%)
that responded did not teach pattems at any level. Out of the remaining four that tanght pattems, two taught it at
undergraduate levels, one at postgraduate and ove at both undergraduate and postgraduate levels. There was
found to be a positive correlation between pattern usage and architect’s viewpoints, The survey also showed that
the architects’ viewpoints about patterns remained divided, but generally, support levels for pattems were shown
to be low. While the majority of the surveyed architects did vot favour patterns, some believed that it was an
important concept that was timeless and was relevant now avd iv the future. Issues such as anti-creativity and
unscientific aspects were amongst the main criticisms of the architectural patterns. The chapter discussed
whether such issues also applied to software pattems.

In the second survey, a sample of software development companies were asked about their usage of pattems in
their software development practices. Questions that were asked included whether they thought software patterns
contributed towards software quality attributes such as, reliability, usability, and efficiency. The survey result
indicated that 40 out of the 67 survey respoudents (59.7%), used pattemns in their software developmeut
practices. However, only four out of the 67 (i.e. 6%) companies that replied to the survey produced pattems. The
results also indicated that process pattems were seldom employed. Ouvly 6 out of 67 respondents said that they
used process patterns (8.9%). There was alse found te be a statistically significant and positive correlation
between pattern usage and quality attributes such as reliability, testability, maintainability, and reliability.

The survey results indicated that, while design pattems were shown to be regularly used by software
organisations, it appeared that process pattemns were seldom vsed in the industry. The results prompted the main
topic of this research to investigate the utility of process patterns through an experimewntal research method that
involved software measurement. In the next chapter, therefore, software experimentation and measurement
concepts will be discussed.

Chapter 4 Software Experimentation and Measurement 50

Chapter 4 Software Experimentation and Measurement

4.1 Introduction

As briefly discussed in the introduction Chapter 1, software experimentation and software measurement are
important topics and components of this research programme. Measirement is an essential element of the
scientific process and includes such activities as measuring the variables to differentiate cases, measuring the
changes in behaviour, and measuring the causes and effects. The key to the term software engineering is
‘engineering’ which intrinsically implies measurement and control. Grady [1992] stated, “Nothing should be
accepted as software engineering unless it has been measured and proven”. Demarco [1982] further noted, “You
cannot control what you cannot measure” thus encapsulating the importance of measurement in software
engineering. One area in which measurement is the essential component is in software experimentation.
Software measurement and software experimentation are closely linked, as the experimentation process often
involves measurement of some software attributes or entities. Experimental research methods can be employed
in software engineering for many types of studies, one of which is to evaluate and validate new as well as
established technologies and concepts (e.g. software patterns).

Based on the quantity and quality of software experimentations and measurements reported in the literature,
neither software experimentation nor software measurement appear to have reached the maturity in software
engineering that is enjoyed in other fields of science, such as physics, partly due to the relatively young age of
just a few decades [Kozielek 2005] [Zelkowitz and Wallace 1998). Our knowledge of software measurement is
currently flawed to the extent that even international software measurement standards {(i.e. 1SO/IEC 15393),
upon which practitioners often rely for support, have given misleading advice on software measurement
[Kitchenham and Colin 2007]. As measurement is an essential component of experimentation, weaknesses in
software measurement have a direct influence on the quality of experimentation. Such weaknesses have caused
experimentation in software engineering to be a difficult and challenging undertaking and have therefore
attracted fewer researchers resulting in lack of quality software experimentations [Tichy 1998].

Software measurement concepts and process is employed to measure and evaluate a number of attributes of
software development projects through an experimental research method for assessing the utility and effect of
process patterns. In this chapter, both software experimentation and software measurement in software
engineering are reviewed including a discussion of software experimentation and measurement issues. The first
section of this chapter refers to software measurement, where software measurement concept, software quality
measurement, and software metrics are discussed. The second section discusses software experimental research,
where there is a review of related works as well as a discussion of issues and difficulties in experimental research
in software engineering,

4.2 Measurement Theory and Definition

Measurement theory is detailed and mathematically complex [Stevens 1946] [Torgerson 1958] [Campbell 1928)
[Pfanzagl 1971]. Nonetheless, it is necessary that measurement in software engineering be based on sound
theoretical and mathematical practice, to produce verifiable and valid results, Measurement theory deals with
fundamental issues such as, the concept and meaning of measurement, the types of attributes that can and cannot
be measured and their scales, the definition of measurement scales, meaningful measurement statements, the
acceptable error margin, and whether what is measured is really the targeted attribute. Based on previous works
on measurement theories, many have proposed measurement frameworks and principles for software
measurement [Zuse 1998] [Fenton 1994] [Morasca and Briand 1997] [Fenton and Melton 1996]. It would appear
however, that measurement theory constraints are too strict and have not therefore been used on buitding new
measures but mostly used to analyse the properties of the existing ones [Morasca 2003], Furthermore, many of
the methods and theories proposed contain misrepresentation and flaws [Briand and Emam1996] [Morasca et al.
1997b]. For example, some take issne with the notion that complexity metrics are additive, measurements fall
into a number of distinct type scale levels, or that certain statistical techniques are not appropriate for some types
of measures [Briand and Emam 1996]. Furthermore, many hard problems such as errors in modelling process
and measurement process are not adequately addressed in software measurement theory [Shepperd and Ince
1993]. There is no established system of measurements in software engineering and therefore sofiware engineers

Chapter 4 Sofiware Experimentation and Measurement Sl

often may need to consider techniques such as, rules of thumb, analogue conclusions and statemeants of trends,
expertise, estimations, aud predictions [Ebert and Dumke 2007]. Despite the outlined difficulties and flaws, the
employment of the software measurement principles and guidelines is valuable in devising a validated
measurement process.

Measurement is defined in a number of ways depending on where the emphasis and the focus of interest are
placed. It is defined as “the process of empirical, objective, assignment of numbers to properties of objects or
events of the real world in such a way as to describe them” [Finkelstein 1982]. It is further defined as “the
process by which numbers or symbols are assigned to attributes of entities in the real world in such a way as to
characterise them according to clearly defined rules” [Fenton and Pfleeger 1997). In the latter definition,
however, there are disagreements on the nature of the model/theory under which the rules are defined. While
traditionalist argue that the ideal mode is the cansal mode (i.e. change in the attribute canses a change in the
value that will resnlt from a measurement), our understanding of causal relationships for many variables are
limited and so it would therefore, be impossible to discuss measurements of those variables in cansal terms. It is
for this reason the IEEE 1061 standard refers to correlation for validating a measure. Correlations however do
not prove causal relationships and therefore this strategy is risk-prone [ibid]

Measurement is also defined as a mapping from the empincal world, to a more formal and mathematical world
[Oman and Pfleeger 1997]. This mapping is depicted in Figure 4-1. The concept shared in all these definitions is
that measurement is about the way numbers or symbols are assigned to entities to reflect a description or
characterisation of an attribute. The values could represent a measure of the effectiveness of the development
process or the quality of the products. Furthermore, such assignment of numbers is important in order to enable
the differentiation and comparison of entities of interest. It should however be noted that assignment of symbols
or entities such as vectors may prove problematic in some cases for the absence of >’ or "<’ relations and may
be only applicable to nominal scales. Based on the concepts and definitions outlined, for the purpose of this
research the software measurement is defined as, the procedure of an empirical assignment of numbers,
according to rules derived from a model or theory, to attributes of software engineering entities in order to
describe them.

Emplrical {Real} World Formal {Mathematical) World

Appiiy L—
Sk
[Magritice)

Scale type e mend 15

Figure 4-1 A model of measurement [Oman and Pfleeger 1997)

Although the terms measurements, measure, and metrics are often used interchangeably, they are in fact different
in meaning. For the purpose of this research, the term measure is defined as ‘a number or symbol designating the
value of a property of a software attribute’. A measure is the product of the measurement process. There is
however some controversy about the usage of the tertn ‘metric’. The term was originally defined for the purpose
of geometry mathematics (distance function [Hamming 1950]), and its usage in software measurement is
problematic for being imprecise and perhaps misleading in some situations. While many authors (e.g.
[Kitchenham and Mendes 2004] [Goodman 2004] [Grady 1994]) have used the term and continue to use it, some
[Zuse 1998] [Whitmire 1997] have declined its usage. There are also efforts being made in homogenising the
international standards to delete the word metric from the glossary of software measurement terms altogether.
However the fact is that the term ‘metric’ is curreatly used in the software literature and will probably continue
to be used until there is a universally agreed convention against its usage. Therefore, for the purpose of this
research, metric is defined as “a quantitative measure of the degree to which a system, component, or process,
possesses a given attribute.” based on the IEEE 610 definition. In practice a measure usually refers to lower
level, more concrete measurement such as LOC (lines of code) and metric, to more abstract and higher level
measurement nsually derived from a measure, but there is typically overlap where either term can be used. An
entity can be both a measure and a metric, depending on the context. For example, LOC as a oumber
representing the number of lines of code is a measure; however, LOC as a way of measuring the number of lines

Chapter 4 . Software Experimentation and Measurement 52

of code is a metric. It is clear that the vuse of both terms causes confusion and ambignity and this is another
reason for the argument to eradicate the term metric and the use the term measure in all cases.

Measurements are collected and analysed through a measurement process that includes the identification of the
entity (e.g. a module) and its atributes of interest (e.g. size), followed by mapping the attnbutes to a
mathematical representation (e.g. lines of code). Finally, the mathematical representation is interpreted in terms

_of their meaning in the empircal world (e.g. the size is too large, may need to be broken down). This is
illustrated in Figure 4-2. '

Having given a brief introduction to the measurement definition and theory, in the following section the purpose
and benefits of software measurement are discussed.

4.3 Purpose and Benefits of Software Measurement

The role and imporiance of measurement in science cannot be overstated. Lord Kelvin [Thompson 1917]
characterised this importance in stating that, “numerical accuracy is the soul of science”. While people find it
necessary to understand many features of the empirical world (i.e. complexity of a software program), our brain
is incapable of producing relevant empirical results from real world observations (empirical relational system)
due to what Kriz [1988] calls intelligence barrier as depicted in Figure 4-2. It makes it therefore necessary to use
such tools as numbers and symbols in mathematics and statistics (numerical relational system) to bypass the
intelligence barrier, by properly translating empirical information to numerical objects and relations. The
resulted numerical objects and relations can then be employed to improve the quality of software products.

-Reduced ¢
Numbers .

+ Relavant Resuts

(5 - Interpretation I}

Figure 4-2 Measurement process and intelligence barrier {Kriz 1988]

Measurement is important for deriving the basis for estimation, quality control and prediction as well as to
provide help with many activities such as tracking project progress, determining relative complexity, analysing
defects, and experimentally validating best practices [Grady 1994]. Measures (e.g. effort, cost, duration, faults,
failures, and changes) are valuable for understanding and improving the software development processes as they
define targets to aim for in developing high quality software [Fenton and Pfleeger 1991]. In an empirical study,
Hall et al. {2001] found that both managers and developers viewed many aspects of measurement beneficial 1o
the software projects. in particular, they viewed the tracking of progress, improvement of planning and
estimation, and identification of specific problems to be the major benefit of measurement.

A key benefit of measurement, directly related to the topic of this research (i.e. process patterns), is in process
improvement. Development processes are improved through continuous quality assessment [Sommerville 2007].
It is through attempts in improving software development processes that process patterns are often formed and
established. When a process activity is matured though measurement and quality assessment and repeatedly
produces workable and proven solution in different applicable circumstances, it becames a ‘process pattern’ in
practice. It then needs to be written up in accordance with the structural and contextual requirements of pattern
and be offered for publication as a process pattern. This is illustrated in Figure 4-3.

Chapter 4 Software Experimentation and Measurement 53

Figure 4-3 Process pattern development through process improvemeni

Software measurement provides the means of deriving a numeric value for an attribute of a software product or
process that facilitate objective compansons between techniques and processes. This is the context in which
measurement is employed in this research. The measurement process is used to compare the quality of a number
of software product and process attribotes in development processes that nse ‘process patterns’ and those that do
not. The methods and context in which the devised measurement process is used in the experimental research
method are discussed in detail in Chapter 5, and Chapter 6.

Measurement scales provide the principles and the yardstick on which measurements can be based. There are
many types of measurement scales, which will be discussed in the following section.

4.4 Measurement Scales

Understanding the nature and scales of collected data is important for operations such as statistical tests,
aggregations, and correlations of the variables concerned. It is therefore important to determine the measurement
representation most suitable for the attribute to be measured. Stevens [1946] proposed the following four levels
of measurement which is widely adopted and nsed in software measurement: 1) nominal, 2) ordinal, 3) interval,
and 4) ratio. In addition to Steven’s four classes, a further scale called ‘absolute scale’ was also proposed. These
scales are listed in Table 4-1.

The nominal scale is the simplest scale and it only places the entities in different classifications. The classes are
identified by unique symbols, or nnmbers, and cannot be interpreted as anything other than identifiers. The only
comparisons that can be made between variable values are equality and inequality. There are.no ‘less than’ or
‘greater than’ relations among the classifying namnes, nor operations such as addition or subtraction. The ordinal
scale is nsed if the task is to order members of a group according to the extent to which they possess the chosen
attribute. Comparisons of greater and less can be made, in addition to equality and inequality. However,
operations such as conventional addition and subtraction are still meaningless. The interval scale allows the
magnitude of the attibute to be expressed nemerically, as a distance from some chosen point of reference. In this
scale, the differences between arbitrary pairs of measurements can be meaningfully compared and operations
such as addition and snbtraction are therefore meaningful. The zero point on this scale is arbitrary and negative
values can be used. The rario scale expresses the magnitude of the measure as a multiple of a chosen unit of
measurement. It preserves the ordering and the size of the intervals and the ratios between entities, and therefore
operations such as multiplication and division are meaningful. The absalate scale is used for counting and only
uses rational numbers. In contrast to the other four measurement scales, the absolute scale is not transferable.
That is, the scale 1s unique and cannot be rescaled. For example, while in non-absolute scales results of a
classification expressed in a system of pictorial symbols can be mapped into a system of colours, the alphabet, or
the set of natural and rational numbers, such transformation is not possible in the case of the absolute scale.

Chapter 4 Software Experimentation and Measurement 54

Scale Type | Admissible Scaling Defining Relations Application Examples
Transformations
Nominal' | M'=f(M) Equivalence Name of programming
languages
Ordinal M'=f({ M), Equivalence A ranking of failures (severity)
« | 1f M(AL1}=M(A2) Then | Greater than smaller than
’ | MYAL =M(A2)
Interval | M'=aM+b, a>0 Equivalence, Greater than/smatler than, Beginning date, End date of
i Relative scale values activities {as measures of time)
Ratio M'=aM, a>0 Equivalence, Greater than/smaller than, LOC (as a measure for program
) Relative scale values, Ratio berween value 5ize)
Absolute | M'=M Equivalence, Greater than smaller than, the number of occurrences of
Relative scale values, Ratio between scale something '
k values, Absolule scale values

Table 4-1 Measurement scale 1ypes

The categorisation of data into the scales described above suggests restrictions in the type of statistical analysis
that can be applied to each scale classification (e.g. parametric-test can only be applied to the interval and ratio
scales). For example, it is not meaningful to establish a statistical mean over an ordinal-type measurement, since
that assumes a constant interval between all the points of the scale, However, while the distinction between
categorical and continuous data is important, the rigid application of Steven's four measurement scales is not
necessary [Dewberry 2004]. Often this classification is too restrictive to apply to real world data and often lead
to degrading data by rank ordering and unnecessarily using nonparametric methods [Velleman and Wilkinson
1993] [Briand and Emam1996]. Furthermore, strict application of this taxonomy would substantially hinder the
progress of empirical research in software engineering. The experiment data in this research project were of type
interval or ratio (these are also referred to as continuous data) and parametric tests were used for their statistical
analysis as both these measurement scales are snitable for parametric tests even by strict adherence to Steven’s
[1946] principles.

Knowing and understanding techniques for measuring software attributes is important in using an appropriate
technique for measuring a particular attribute. In the following section, these techniques are presented and
discussed.

4.5 Measurement Techniques

While some software attnibutes can be measured directly, many can only be measured indirectly. In order to
measure such attributes, indirect measurement techniques are employed. In this research, both types of
measurements were used. These are discussed in the following section.

4.5.1 Direct and Indirect Measurement

Direct measurement refers to measurement of an attnbute when no other attribute has a direct or indirect
influence. A direct measure is defined as "a measure that does not depend upon other attributes.” [IEEE STD
1061]. Direct measurements are used to measure internal attributes. Examples of direct measures used in this
study are, no. of lines of code (LOC), test duration (time in hours), and defects discovered in testing.

Indirect {or Derived} measurements are used when an attribute can only be measured in relation to other
attributes. They are used to measure external attributes and may be necessary where temporal considerations
prevent direct measurement. Indirect (or derived) measures often demonstrate the interactions and relationships
between direct measures and are often a factor or function of a number of direct measures. Examples of indirect
measurements are, defect density, productivity, and test effectiveness. Table 4-2 below depicts a number of
examples of indirect measurements and the way they can be measured using direct measures. The Table 4-3
depicts internal and external attributes for software development products, which can be measured by direct or
indirect measurement techniques.

Chapter 4 Software Experimentation and Measurement 55

Indirect (Derived) Measures Evaination using direct measures
Programmer Productivity (LOC produced) / (effort). [This is a widely used. bul controversial
method of calculatiag productivity partly due to difficulties in defining
and measuring Lines of Code consistently]. Fuaction points are also
used instead of LOC,

Defect Density (No. of defects) / (size)

Defect Detectioa Efficiency (No. of defects derected) / (Total No. of defects)
Requirements Stability (No. of initial requirements) / {total No. of Reguirements)
Test Coverage (No. of items covered) / (101al No. of items)

System Spoilage (cffort speat fixing faults) / (Total project efforts)

Tabie 4-2 Examples of indirect measures

“+ Products - ‘s Internal Attribute - - = I "t External Attribute - ..~
Specification Size, re-use, modularity, redundancy, syntactic Comprehensibility,
correctness, mainainability
Design Size, re-use, modularity, coupling, cohesiveness. Complexity. mainlainability
fuactionality, '
Code Size. re-use, modularity, coupliag, fuactioaality, Reliability, usability,
algorithm complexity. structure maimainabilily
Test data Size. coverage. level Compreheasibility

Table 4-3 Examples of Intenal and exteraal attributes for products

An important aspect of indirect measure is that they should not exhibit unexpected discontinuities. For example,
in the definition of measurement M1, defined as M1=x/(y-1), the measurement M1 is undefined and invalid if y
were to be "one’. This measure therefore would be valid for conditions under which y would never have the
value ‘one’.

Software metrics are the essential component of a measurement process. They represent a method or formula in
measuring a software attribute. There are different types of software metrics, which will be discussed in the
following section.

4.6 Software Metrics

Software metrics deal with the measurement of the sofiware product and the process through which it is
developed. They are numerical measures of a product or process that is part of a software project. There are
however, difficulties in formalising standardised metrics for many software attributes that are generally and
entirely accepted by the software community as a whole. For example, although in the past three decades, there
have been many attempts to develop a single metric to provide a comprehensive measore of software
complexity, no one measure has been developed around which a consensus has been achieved [Pressman 2005].
The problem is that there are many different views of what constitutes software complexity and what attributes
of a system lead to it. There are therefore no standardised and universally agreed and applicable software metrics
on complexity and other attributes [Sommerville 2007].

Many characteristics and qualities are suggested by software practitioners and authors for a metric, some of
which are difficult to achieve in practice. For example Mills [1998] states that good metrics should be simple and
precisely definable, objective as far as possible, valid, and robust. Ince et al. [1993] argue that for a metric to be
truly wseful it should be measurable (i.e. be based on facts), independent (i.e. changes in its value does not effect
quality of software), accountable (i.e. contain detailed on how and when the metric was measured) and precise
(i.e. has known level of tolerance). Furthermore, Basili et al. [1996} also recommend that for maximum utility in
analytic studies and statistical analyses metrics should have data values that belong to appropnate measurement
sciles (see Section 4.4 Measurement Scales). While such desired attributes of a metric is something to aim for in
any measurement process, it is a challenging endeavour, which often proves hard to achieve in practice.
Measurement challenges are further discussed in the Section 4.10.

4.6.1 Process and Product Metrics

Product and process metrics are the two main types of software metrics both of which were used in this study.
While the product metrics measure the attributes of the software products, process metrics measure the attributes
of the process employed to obtain the results. Process metrics are therefore used to measure attributes of a

Chapter 4 Software Experimentation and Measurement 56

software development process. They measure process attributes such as, ‘Number of defects introduced per
developer hour” or ‘“Number of changes to requirements’. The most popular and referenced process metric types
include management support metrics, productivity metrics, efficiency metrics, process quality metrics, actual vs.
planned metrics, and traceability metrics [Grady 1992] [Humphrey 1989]. Product metrics are employed to
measure attributes of the software itself such as size or complexity. Products include any artefact or document,
such as prototypes, test hamesses, specification documents, that is produced during the life of software. Some
examples of more commonly used product metrics are: Lines of Code, Function Points, and Cyclomatic
Complexity.

Software metrics can be categorised into four main groups in accordance with the four major activities of a
development life cycle [Pressman and Ince 2000). These are as follows:

Metncs for the analysis model

Metnics for design model

Metrnics for scurce code and implementation
Metncs for testing

This classification of metrics reflects the metrics strategy designed for this study. The metrics employed in this
study through the measurement process fall into these categones. The measurement process designed for this
study is discussed in detail Chapter 6.

4.6.2 Composite/Hybrid Metrics

Composite/hybrid metrics are created by aggregating several resource (or other composite) metrics according to
a specific algorithm, such as averaging one or more metrics over a specific amount of time or by breaking them
down according to specific critena [Keller and Ludwig 2002).

The main advantage of using composite/hybrid metrics is that they enable measurement to be more generalised
and to represent a multitude of factors that affect the quality critena. Using a number of metnics in aggregation,
where each individual metnc probes a different aspect of an attribute, may give a more valid and precise measure
of the overall quality of the attribute. This is to offset some of the inadequacy of single metrics to satisfy many
measurement objectives. Single metrics are not sensitive to0 problems of quality factor trade-offs [Shepperd
1996] and a single metric is seldom adequate to encapsulate properties nf interest [Basili and Rombach 1988].
Furthermore, single metrics in isolation are too simplistic to provide adequate explanation for software
engineering phenomena [Shepperd and Ince 1993} In order te overcome such weaknesses, some authors have
proposed Composite/Hybrid metrics by combining the best aspects of existing metrics. Harrison and Magel
[1981] have shown that neither Halstead’s [1977] nor McCabe's {1976] complexity metric is sufficient
individually, and a combination of the two would produce a better metnic. A varied combination of metrics in
hybrid format has also been used by Munson and Khoshgoftaar {1990, 1992] in the form of relative complexity
metrics. Kitchenham and Mendes [2004] also used composite metrics to propose a method of productivity
measurement, Composite measures composed of multiple measures can further help reduce measurement errors
{(i.e. random errors, method vanance), since single measures are contaminated by irrelevant aspects (e.g.
extraneous varrables) of methods used [Campbell and Fiske]959]

There are however two issues with composite metrics that need careful attention and consideration:

l. Aggregation (e.g. averaging) of a number of primitive metrics could make the resulting composite
metric less sensitive {Melton 1990). Therefore, metrics have to be aggregated with careful consideration
not to adversely affect the sensibility of the resulting composite metncs. However, a little loss of
sensitivity may be acceptable if the resulting composite metric provides other benefits such as
simplicity and generality.

2. Conflict of scales and dimensional inconsistency in compositing the metrics could invalidate the
resulting metnic. For example, one has to be carefu] that metrics of different units are not
inappropriately aggregated.

Provided that those two points are taken into consideration, the inclusion of composite/hybrid metrics could be
beneficial and valuable in many measurement programmes. The use of composite metnics in this research was
considered. However, a decision was made not to use them since that wonld unnecessarily complicate the
measurement process and would run the nsk of producing less sensitive results.

Chapter 4 Software Experimentation and Measurement 57

An important element of a measurement process is the validation of the metrics used in the measurement
process. Having discussed the metrics in the previous section, in the following section the validation of metrics
is discussed.

4.7 Measurement Validation

A fundamental concept of measurement is that the measurement of an entity must not presume the measurement
of related entities other than the one being measured. A full understanding of what is being measured is
important. In particular, attention should be paid to the nature and scales of data collected, to ensure that any
aggregation and correlations of the data and vanables are valid and meaningful.

Validation of a software measure is the process of ensuring that the measure is a proper numerical
characterisation of the claimed attribute [Baker et al. 1990]. Often, however, it is assumed mistakenly that a
software measure is only valid if it can be shown to be an accurate predictor of some software attribute of
general interest like cost or reliability. This in fact is only true for the validation of a prediction system, which is
defined as “the usual empirical process, of establishing the accuracy of the prediction system in a given
environment, by empirical means” (i.e., by comparing model performance with known data points in a given
environment) [ibid]. There is, therefore, a difference between validation of a measure and validation of a
prediction system, Crucially a measure is not always part of a prediction system (e.g. program size used to
predict project effort).

A key attribute of a good measurement process is the quality of its validation considerations. Fenton and Melon
[1996] suggest two most important questions to ask in validating a measure, 1) how much do we know about the
attribute to be measured, and 2} how do we know that we are measuring the attribute we want to measure. These
two questions refer to what is called, “construct validity” and are the basis for major criticisns of software
metrics [Nance and Arthur 2002]. There is a negative correlation between a measure and its underlying attribute
as there will be more distortion when a measure is less tightly linked to its underlying attribute (Ebert and
Dumke 2007]. In order for a measure to be validated, the following four validity checks are necessary
[Kitchenham and Pfleeger 1995]:

* Attribute validity: Interested attribute (both directly and indirectly measurable) is actually exhibited by
the entity to be measured.
Unit validity: Employed measurement unit is an appropriate means of measuring the attribute.
Instrument validity: Any model underlying a measuring instrument is valid and the measuring
instrument is properly calibrated.

s Protocol validity: An acceptable measurement protocol is adopted.

Generally, there are a number of questions that need to be addressed in order to validate a metric. These include
[Kaner and Pond 2004]:

1) What is the purpose of this measure?

2) What is the scope of this measure?

3) What attribute are we trying to measure?

4) What is the natural scale of the atiribute we are trying to measure?
5) What is the natural scale for this metric?

Although validity consideration is an important component of a high quality measurement process, it is often
missing in published measurement-related research {Koziolek 2005]. While a complete validation process both
theoretical and empirical is often difficult to implement in practice, essential validation checks such as construct
validity should be pant of any measurement process. Continuous and systematic inclusions of such validity
routines in software measurement process not only enhances the probability of achieving validated measures, but
also generally helps in moving software engineering forward towards a more quantifiable and mature discipline.
In defining the measurermnent process for this study the validity issnes discussed in this section were considered
and implemented wherever applicable.

In the above section, the measurement principles and components such as metrics with regards to this research
were discussed. One important utility of metrics is their application in quality measurement and evaluation. This
is the context in which metrics were employed in this research. In the following section, therefore, quality
measurement techniques and issues are discussed.

Chapter 4 Software Expedmentation and Measurement 58

4.8 Software Quality Measurement

The main goal of software measurement is to improve software quality. As software is becoming increasingly
comptex and critical due to increasing business demands for more sophisticated software, the quality of software
products is a major concern for both software producers and nsers [Fuggetta 1998]. Software quality is probably
the most desired aud sounght after goal in software engineering which has so far been unattained [Blaine and
Cleland-Huang 2008]. While there have been improvements in the quality of software over the last couple of
decades, partly due to the advent of object-oriented development and the associated CASE support, software
quality measurement continues to be a challenging endeavour. Even after using the software for a long period, it
is difficult to measure software quality attributes such as maintainability [Sommerville 2007]. While the term,
‘quality” in software engineering might seem self-explanatory, there are many different views of what is meant
by quality and how it should be measured or assessed. The term, ‘software guality” denotes an elusive and
multidimensional concept [Gillies 1997], and software quality attaibutes are often in a conflicting relationship to
one another. For example, it may be that the application of a design pattern results in code that is, more flexible,
but more complex as well. Furthermore, although an increasing number of software quality standards emphasise
the need for measurement (ISO, SEl, and IEEE), tmost provide little detail as to what exactly should be measured
and how the results should be used in the assessment of software quality. The fundamental issue is that our
understanding of software quality and its measurement is not substantial [Oman and Pfleeger 1997). While
charactecdistics such as, fit for purpose, conformance to specification, degree of excellence, and timeliness are
often proposed for software quality, the problem however is that such characterstics and definitions are not
much nse in offedng the ability to quantify and measure quality. There is also an argument as to whether the
quality of the development process affects the quality of the delivered product directly. While the relationship
between process quality and product quality in software engineeting is complex and consequently (i.e. one
cannot predict how process change will influence the product), experience has shown that process quality has a
significant etfect on the quality of the software [Sommerville 2007).

Software constitutes a component of a larger system in which other components and factors such as humans,
other products, and hardware are involved. Therefore, the whole-system characteristics influence the critena for
software quality. Software quality is therefore difficult to define universally and unambiguously, resulting in the
quality measurement to be often a subjective task. There have been 2 number of proposed ways of measuring
software quality [Basili 1995] [Kitchenham and Pfleeger 1996] [Kitchenham and Mendes 2004]. One suggested
method is to investigate the ‘ilities’ (non-functional requirements) of the system in attributes such as stability,
maintainability, reliability, verifiability, portability or extendibility. However, measurement of such quality
atteibutes and their exact operational definition is the subject of much argument and disagreement. Furthermore,
there is no way of directly measuring such quality indicators. Another method is to investigate program
correctness throngh looking at the defect rate or defect density (i.e. defects / LOC). It is also possible to estimate
the number of defects that remain in a piece of code, when it is completed through a method called the ‘latent
defect rate’. However, the problem with this method of measuring quality is that, while it accounts for defects, it
does not cover other quality atttibutes essential to a quality software product. Furthermore, as the number of
defects detected is dependent upon the quality of inspection process [Schach 2005], the number of defects
recorded may not represent the actnal nurnber of defects in the software. The overall software quality can also be
measured as, weighted linear combination of a number of quality attributes such as reliability, performance,
security, fanlt tolerance, testability, and maintainability (i.e. Q = w,R + w,P +) as proposed by Voas and
Agresti [2004]. The problem with this proposal is however, the difficulty in accurately measuring the constituent
software attributes. In this project, attributes such as defect density are used to gauge the quality of the software
projects that use process patterns in comparison to those that do not. Software quality measurement is currently
imperfect, and metrics can only provide indications of quality rather than answers with absolute certainty. The
more important aspect of metrics is their benefit in developing a measurement culture within the software
development organisations through their continuous application in software development projects.

Basili [2005] identifies several quality measurement methodologies proposed in the literature. They can be
broadty categonsed into the following two types: (a) Factor/Critetia/Metvic model, and (b) goai-oriented models
{e.g. Goal/Questions/Metiic model - GQM). These are discussed in the following section.

4.8.1 Factor Criteria Metric Models (FCM)

The FMC models are the oldest (three decades) and the most well known quality measurement models and have
been nsed in many commercial applications worldwide. These models are tree-like, where higher branches hold
high-level quality factors such as reliability and maintainability. The quality factors themseives are composed of
lower level crtenia. such as the structured and conciseness, which are easier to understand than the factors. For

Chapter 4 Software Experimentation and Measurement 59

these criteria then the actual metrics are proposed. FCM models are depicted in Figure 4-4, Figure 4-5, and
Figure 4-6.

Fawtor 1

Metric u

Meawric b

Annbnte

Metric x

Factrn

Figure 4-4 Factor-Criteria-Meirics general model

METRIC

Figure 4-5 An example of FCM model for maimainability

FACTOR

Maimrinability

———

An implementation of the FCM quality model is proposed by McCall [1977]. It incorporates a number of criteria
in three major categories: product operation, product revision, and product transition (Figure 4-6). The model
proposes a set of factors that affect software quality which are known as the McCall factors. These factors are
based on three important aspects of software products, namely, operational charactenstics, changeability, and
adaptability.

Although widely used, the FCM model has some drawbacks and lirnitations. These include, 1) mapping the
criteria onto the metric is obscure, and 2) there is poor capacity for mapping quality problems to causes
[Marinescu 2004]. The criteria/metric mapping is “hidden” behind the arrows that liuk the quality criteria to the
metrics, making it impossible in most cases to trace back and determine the rules and principles that dictate the
mapping. Furthermore, the FCM does not help in finding the real causes of the detected quality flaws, because
abnormal metric values indicate the symptoms of a design or implementation problem and not the problem itself.
A treatment can only be advised or applied when the problem, not only a set of symptoms, is known,

Une Fuctor Criteria Mulrices

Usubility :
.
Elicicocy

Cormeciness

Operability
Troining
Compiuicaliveness
LO volume

1.0 raze

Access Canreol

Producy
DRCrarion

Aqeess audin

Sturage cilicicncy
Exeomion etlicicney
Traceabilily
Complaiciess
Accurucy

Error tolerunee
Consistency
Sunpliviy
Conciseness
Instrmenarion
Lixpandability
Genvraliny

o] Sell=descriptiveness
Modularity

Shachine independence
S saslem independencce

Prodixt
revision

Reusubiliy
Produt ‘ — "
NS Inion "

Figure 4-6 Factor/Criteria/Meincs model (McCall/Boehm model)

ENERERREREEENNRRRARANINE

Conuns connnendality
Xt commonaliy

http://A-.Ci.-n

Chapter 4 Software Experimentation and Measurement 60

4.8.2 Goal Question Metric Model

The Goal/Question/Metric (GQM) model is a mechanism that provides a framework for developing a metrics
programme. The approach was originally defined for evaluating defects for a set of projects for NASA. The
application iaitially involved a set of case study experiments [Basili and Weiss 1984], but was later expanded to
include various types of experimental approaches [Basili and Rombach 1988]. Goal-oriented measurement
provides a strategy for deriving measures from measurement goals, to ensure the consistency and completetess
of a measurement plan. The paradigm does not provide specific goals, but rather a framework for stating goals
and refining them into questions to provide a specification for the data needed to help achieve the goals. The
GQM as a goal-oriented measurement paradigm helps with the following tasks [Basili et al. 1994] [Basili 2005]:

* Ensure adequacy, consistency, and completeness of the measurement plan and therefore of data
collection.

* Maaage the complexity of the measurement programme

* Stimulate a structured discussion and promote consensus about measurement and improvement goals

One of the important aspects of GQM is that it forces problem definition and defines the metrics required to
address them. Furthermore, as well as being flexible and applicable to almost any software measurement
environment, GQM provides a context to understand metrics in addition to evaluating them by posing the
question to which a metric is aimed to provide an answer [Shepperd and Ince 1993]. GQM is however software
project centric and some have criticised it [Roche 1994] for being deficient in properly addressing the alignment
between the technical and business objectives. The GQM paradigm consists of three steps: 1) Generate goals, 2)
Derive related questions, and 3) Develop appropriate metrics. The structure is hierarchical as depicted in Figure
4-7.

goall

/ \/\//l\
\ /><J></_/ ENlE

Data i
Collcction

Figure 4-7 The Goal Quesiion Metric Model Figure 4-8 V-GQM Model

A weakness of the GQM model is that it is a standalone implementation and does not take into consideration
previous implementations for validation and other purposes. In addressing this weakness, some have proposed
that in addition to the top down approach, there should also be a bottom up procedure enhancing the usability
and scope of the GQM paradigm [Hefrer 1995]. Olsson [2001] aiso proposed a unseful exteasion to GQM in
which previous GQM implementations are studied, and lessons leamed are nsed as feedback to the carrent or
future GQM projects. This model is referred to as V-GQM and is depicted in Figure 4-8. Ancther weakness is
the difficulty for GQM users to link measurement goals to higher-level organisational goals. This is important in
providing the justification for an introduction of a measurement process. However, some have also been
proposed extensions to GQM to address this issue [Basili et al. 2007].

Based on GQM, the Software Assurance Technology Centre (SATC) at NASA [NASA SATC][Wilson 1997]
[Rosenberg 1996] developed a software quality metrics programme that covers risk management and quality
assessment of the process and products of software development projects. The SATC model for metrics
programme is depicted in Figure 4-9.

Chapter 4 Software Experimentation and Measurement 61

Quality_Aliributes Projuet Risks
1 -—h\'——ﬁ_\“ _— _,_..-—«"/- $
o e
4 Goals
S/ ¢ A
h]

H
~ ¢ Questions }
~ L) o
— \ S P
““*——-——A{ctncs____a-‘-

Improved Product/Pracess

Figure 4-9 SATC Model for Sofiware Metrics Programme

The SATC model defines a set of goals coveriag a complete developmeat lifecycle. The defined goals are then
associated to the software product and process attributes, for which a set of metrics is developed for their
measuremeat. There are four goals defined for this, which are requirements quality, product quality, testing
quality, and Implemeotation quality. la the implemented experimeatation and measurement model for this
research the GQM paradigm is used to develop a number of metrics to be used in the experimentation of this
rescarch. This is discussed i Chapter 6.

While the GQM paradigm offers a measuremeat model that is an improvemeat on the FCM model, the process is
not repeatable (i.e. people may refine goals differently and therefore reach different questions and metrics each
time). This is not, however, a significant weakness of the GQM paradigm since teamns generate goals and the
related questions and metrics according to their understanding of the circumstances. This inevitably means that
different teams would generate differeat questions and metrics, which would not necessarily be a disadvantage.
A further characteristic of GQM model is that it is not always clear when to stop geaerating questions and begin
defining metrics. In other words, the granularity levels of the questioas are left at the discretion of the teams
implementing GQM. This is, in a way advantageous, siace definiag granularity levels for the GQM would make
the paradigm too rigid, specific, and unsuitable to be applicable to all situations and circumstances for which it is
intended.

The quality evaluation for this research is done through a measurement process, in which a number of metrics
were selected to evaluate some quality attributes of the investigated software projects. Due to the benefits
outlited above and the unique nature of the measuremeant programme, the GQM model was adopted as the
measuremeat process strategy. A measurement process was devised and coaducted based on GQM model. The
detail of the devised GQM programme is discussed in detail in Chapter 6.

Many aspects of object-oriented (0-O) software are different to the classical software. As such, in many cases,
there are different ways of measuring object-oriented software attributes. la the following section, the
measurement techniques of object-oriented software are discussed.

4.9 Measurement of Object-Oriented Software

With the establishment of a popular programming paradigm catled object-orieated programming, many
researchers worked on providing metrics appropriate for the measurement of object-oriented applications and
projects. The Object-Oriented approach uses coacepts such as localisation, encapsulation, informatioa hiding,
inheritance, object abstraction, and polymorphism, making the software design and structure different to
procedural programming. While many have proposed useful {O-O) metrics (e.g. [Lorenz and Kidd 1994], [Abreu
1995)), the most iafluential and important work in the field of object-oriented measuremeat is produced by
Chidamber and Kemerer [1994], referred to as the CK metrics. The paper proposed six class-based metrics (suite
of metrics) to measure software desiga attributes such as complexity and efficiency indirectly (Table 4-4),

Chapter 4 Software Experimentation and Measurement 062

" Metrie) Definition/Description -

Weighted methods per class (WMC) Sum of weighted methods per class

Number of children (NOC) Number of immediate subclasses

Depth of inheritance Tree (DIT) Maximum length from the node to the root of the tree

Coupling between object classes (CBO) Count of classes to which this class is coupled

Respoense for a class (RFC) Number of methods in the set of all methods that can be invoked in
response lo a message sent o an object of a class

Lack of cohesion in methods (LCOM) The number of different methods within a class that reference a given
instance variable

Table 4-4 CK metrics

The WMC is used in this study as a measure of complexity. It is measured as:

n
WMC =) Ci
i=l
Equation 4-1 Weighted Method per Class

Where C; represent the complexity of method {i). The complexity of each method is often measured by the
cyclomatic complexity method [McCabe 1976], which is a count of the number of linearly independent paths
through the source code. A further method of assigning a weighted complexity measure of ‘one’ to each method
is also widely nsed. Chidamber and Kemerer [1994] who proposed the metric did not specify which complexity method
should be used other than saying that it should have the properties of the interval scale. Churcher and Sheppard [1995]
have found that assigning a weighted complexity measure of ‘1’ to each method is as good an approach as using
the cyclomatic complexity. This is the technique used to calculate WMC in the study.

The CK metrics, pnimarily applied to the concepts of classes, coupling and inheritance, were based on theoretical
foundations and do not suffer as much from the criticisms made of previously published OO metrics. Many
studies have reported positive results on the usefulness of CK metrics. It has been found that there is positive
correlation between the *depth of inheritance tree” (DIT) metric and the number of user-reported problems [Pant
1996]. Furthermore, the CK metrics were shown to be more effective predictor of fanlt proneness than extant
code metrics [Basili et al. 1998]. in a comparison of three metric suites, Olague et al. [2007] showed CK metrics
were better and more reliable predictors of fault-proneness than the MOOD [Abreu 1995] or QMOOD [Bansiya and
Davis 2002] metrics.

However, a weakness of the CK metrics is that they produce rather poor size and effort estimations and they
mostly concentrate on the application design. Some of the CK metrics are also criticised for failing to be based
on the empirical relation systems, and adhere to representational conditions [Hitz and Montazen 1996].
Nonetheless, it is widely accepted that CK metrics suite provide the foundation for OO measurement. Over the
years, much research has been carried out on the validation and extension of CK metrics [Subramanyam 2003]
[Basili et al. 1996] [Zhou 2006].

There are currently many difficulties and issues associated with software measurement. Having discussed
important aspects of software measurement in the above sections, in the following section the difficulties,
challenges, and issues with software measurement are discussed.

4.10 Software Measurement Issues and Challenges

Software measurement is a challenging but important component of a highly capable software engineering
culture [Wiegers 1999]. Althcugh measurement plays a central role in mainstream engineering disciplines, its
role in software engineering is currently far less prominent. Only one third of all software engineering companies
systematically employ techniques to measure their products and development projects {Meta 2002] [CIO 2003]
[1QPC 2003]. Both practitioners and researchers are instructed to use measurement in software development and
experimentation. There is however little concrete guidance about exactly how to start, and what has proven most
effective in actnal use [Oman and Pfleeger 1997]. Furthermore, measurements are done infrequently,
inconsistently and incompletely and it is often uaclear how the results were obtained, how experiments were
designed and executed, and which entities were measured and how [Fenton and Pfleeger 1991].

Chapter 4 Software Experimentation and Measurement 63

One difficulty with software measurements is that they are often subjective rather than objective, which means
that they are dependent on the environment in which they are made (e.g. the person(s} doing the measurement,
location, and circumstances). In addition, while there are many ways that software attributes can be measured
(e.g., size can be measured in lines of code, function points, tokens etc.), there are no industry wide standards
governing which metric to use [Pressman 2005].

There are currently a small proportion of software organisations, which have an established and successful
software measurement programme [Kaner and Bond 2004]. Ounly 20% of the organisations that implemented
measurement programmes stated that it led to advancements and increased the bottom line [Dekkers 1999]. The
intensive use of a single measure and, the use of too many measures are two of the top ten problems leading to
failure in the implementation of software measurement programs {Rubin 1996]. Many of those that do have a
measurement programme in place, have done so only to conform to criteria established in the standards such as
the Capability Maturity Model [Fenton 1999]. There may be many reasons for such resistance to measurement
programmes, one of which is the high costs involved in putting in place a comprehensive measurement
programme. Some studies have estimated this to be between 3 to 6% of the overall cost of development of a
software development project [Jones 1996] [Fenton 1999]. However, it is interesting that while the costs of
introducing a measurement programme can be around 1% of R&D [Ebert et al. 2005], studies have shown that
savings of as much as 10 — 20% on R&D can be made as a result [Kutz 2003]. One other reason for the lack of
interest in implementing a measurement programme is the possible disadvantages and damaging side effects of
such programmes. Table 4-3 lists a number of software measurement issues as viewed by developers and
managers [Hall et al. 2001]. Software practitioners are often afraid the measurement data will be used against
them and will take too much time to collect and analyse [Hoffman 2000]. They further express concern that
software measures are too political and do not prove anything, or, that the team will focus on getting the numbers
right rather than building good software [Wiegers 1999]. Productivity measurement, as the ratio of size over time
is an example. Some developers might be tempted to write unnecessarily longer and inflated code to improve
their productivity ratings. There is also an argument that, while using measurement practices might raise the rate
of project success to a higher level statistically, this is only a valid issue at the organisation level, not at the
individual project level. The reason is that projects usually have very short-term strategies and tight deadlines
and, therefore, dislike sustaining certain costs in exchange for eventual organisational-wide gains [Meli 2000].

No- |- Software measurement-issues- . Developers | Project. Senior:
% . | Managers-| Managers

. . L % %

1 Hard to measure what yon want to measure 15 25 0

2 Do not know how or if the data is being used 38 8 0

3 Detracts from the main engineering job 8 8 50

4 Difficult to collect, analyse, and use 23 58 50

5 Time consuming to collect data 38 67 25

Table 4-5 Negative aspects of software measurement [Hall et al. 2001]

By attempting to measure a software property, an assumption is made that the software property can be
measured and that there exists a validated relationship between what is being measured and what is to be
determined. In practice, however this is not often the case. Furthermore, while the evaluations of the external
attributes are often the aim of the measurement, they cannot be directly measured. Only internal attributes can be
directly measured. It is difficult to relate what can be measured through direct measurement to desirable
external quality attributes. Often, mistakenly, a linear relationship between components of a measure is assumed
[Erdogmus 2008a]. An example is the defect density metric, which is used to gauge software quality. If the
defect density is calculated to be 1.7 per KLOC for a software size of 10 KLOC, we cannot assume that the
defect density would be 17 KLOC for the software when the size is increased to 100KLOC.

A well-defined and consistent approach for assessment and review of development process activities is essential,
which can be achieved through software process measurement {Fenton and Neil 1999b]. There are however
difficulties in measuring process activities since they require active and concurrent assessment, rather than
retrospective analysis, often possible with software products. There is also the lack of universal acceptance of
methodological techniques for software development, forcing organisations to adapt measurement procedures to
the methodology in use [Nance and Arthur 2002]. A further problem is the difficulty in measuring an attribute in
isolation. Often an attribute to be measured is dependent or associated with other influential factors. For
example, code review quality is dependent on the thoroughness of the person carrying out the review to some
extent. Eliminating such influential factors to ensure accurate measurements is often difficuolt.

Chapter 4 Software Experimentation and Measurement 64

It appears that there is hardly any software atiribute, which can be measured repeatedly, consistently, and
accurately. For example, over the decades there have been many attempts to measure the expected size of
software products through metrics, such as ‘Lines of Code (ILOC)’ and ‘Function Points’. There are however
problems with both metrics in producing an accurate and reliable measure of software size. LOC presents a
measure of size only, in terms of program length, ignoning other attributes sach as complexity and functionality.
LOC further fails to consider factors such as verbosity of the programmer, the programming language, and
environmental complexities such as skills, pressure, tool support, and computing platform. Lack of standard
measurement method and langnage dependence is amongst other difficulties with this method of software size
measurement. However, it shonld be acknowledged that 1.OC is one the oldest and most popular and widely
used software size measure [Sommerville 2007] and has the advantage of being easy to collect - no other
measure is as well understood [Bassman 1995]. Furthermore, LOC tend to be more uniform and suffer less from
instability, due to low values, compared to coarse-grained size measures, such as number of function points or
use cases [Erdogmus 2008b]. While function-peints do not suffer from many of the weaknesses of LOC, such as
language dependency, they are difficult to compute and contain a large degree of subjectivity (e.g. dependent on
estimator). It is also questionable whether they truly measure functionality [Fenton and Pfleeger 1997].
Function-points are most useful for data-processing systems that are rich in input/ontput operations and it is
difficult to estimate function point counts for event driven systems, making them unsuitable for productivity
measurement [Furey and Kitchenham 1997][Armour 2002]. The size metrics are used in determining many
software attributes, such as defect density and productivity, as well as the cost and duration of the project.
However, since there are issnes with size metrics, the accuracy of any metric that is a derivative of size (e.g.
productivity and defect density) is also undermined. The LOC size metric has been used in this study to
determine defect density and productivity (see Chapter 7).

Software measurement is increasingly becoming an important factor for software organisations, toward the path
to capability and maturity, partly because it is a requirement of many standards such as CMMI and SPICE.
However, the existing measurement programmes are unable to deliver the required capability [Lawler and
Kitchenham 2003]. The advice offered by some international standards (i.e. ISQ), on the measurements of such
atiributes as productivity, has been shown to be unreliable [Kitchenham and Colin 2007). For maturity to be
achieved there is a need for benchmarking, which requires consistent measurement convention and definition
[McGarry 2001]. Such consistency is however difficult to achieve even within a single company. In a
benchmarking study, Heires [2001] was unable to analyse 63% of the projects because of incomplete or
unobtainable core metrics and incomplete projects. Furthermore, many projects lacked the necessary correctness
and validity to be included in the benchmarking database. It appears, therefore, that currently measurement
programmes suffer from both invalid and missing data, which, causes delays and reduces results validity, as well
a lack of metrics standards, which reduces data comparability.

The arguments put forward in this section have elaborated on some of the concerns, shortcomings, and flaws in
the practice of software measurement. While there are many research works and international standards
encouraging the software community and organisations to establish rigorous measurement programmes, the
progress seems to be slow. While software measurement may therefore be currently immature and flawed, it
serves a useful role in producing better software. Gilb [1988] supports this view by writing, “Anything that you
need to quantify can be measured in some way that is superior to not measuring it at all*. It should however be
borne in mind that measurement results may be subject to the flaws in measurement discussed above and may
therefore contain a large margin of error. For example, it is inadvisable to rely on the measurement results of a
single study to make a generalised conclusion about the true value and nature of a software attribute. There is an
argnment that, since currently software cannot be measured properly, it should be abandoned until such time that
our understanding of software has enhanced enough to enable its proper measurement {Zuse 1998}, Despite
flaws and immaturity, software projects can still benefit from a sound measurement process and many sofiware
maturity standards (e.g. CMMI) include a measurement component. Software measurement needs to be
continued earnestly, both theoretically and empirically, if not for the usefulness of the results that they currently
produce, at least for their value in the advancement of our understanding of software itself and the ways that it
can be measured. Any advancement in software measurement would benefit software organisations in better
controlling and evaluating software activities and products, to produce higher quality software. Sofiware
engineering, in comparison to civil and mechanical engineering, is a relatively young discipline and
measurement process and practice is essential in helping it move forward towards robustness, when we can
accurately and quantifiably measure and evaluate software attributes and software quality. Measurement based
tesearch projects, such as this, can play a small part in helping to improve our understanding of the software
measurement implications and gradually enhance our understanding of software engineering in general.

Chapter 4 Software Expernimentation and Measurement 65

Measorement provides the bases to evaluate quantifiably the benefits of new concepts or technologies and,
therefore, expetimental investigations, such as this project, would be practicaliy impossible to conduct without it.
The software community should accept, acknowledge, and account for the fact that currently resules of software
experiments, where software measurement is involved, may have large margins of error; the more convoluted
and complex the measurement, the larger the margins of error. In any measurement process one of the main
objectives should be to minimise such error margins through detailed considemtions of the measurement
environment and validity. The software community shonld endeavour to develop a culture of measurement based
software engineering to help move it forward towards a truly engineering based discipline, such as civil and
mechanical engineering. There is an on-going argument within the software community about whether software
engineening is a true engineening discipline. Some argne that while software development can be categorised as
engineering in the future once its problems are resolved throngh maturity, currently it is not an engineering
discipline [McConnell [998]. Without a proper measurement baseline, the term ‘software engineering’ is rather
inappropriate and misleading. Software development can only be a true engineering endeavour when its
attributes can be defined and measured properly, accurately, repeatedly, and consistently.

In the above sections, the software measurement topic, related to this study’s experimental research method, was
discussed. In the following section, the background and literature to software experimentation is discussed and
reviewed. The devised and conducted experimental research method is covered in detail in Chapter 5.

4.11 Experimentation in Software Engineering

Experimentation has long been regarded as the optimal way to test causal hypotheses [Singleton and Straits
1999]. While acknowledging the limitations of measurement, experiments, and human sensory perception,
Albert Einstein once said that no science could advance without good expermentation and measurement. An
experiment is a procedure for collecting scientific data in a systematic way, in order to maximise the chance of
answering an hypothesis correctly (confirmatory research), or to provide material for the genemtion of new
hypotheses (explanatory research) [Festing 2002]. Experiments are used, for instance, to contradict existing
theories, to validate measurements or to evaluate the accuracy of models. They can help build a relinble base of
knowledge and thus reduce nncertainty abont theories, methods, and tools {Tichy 1998]. They can lead to new,
useful, and unexpected insights and open new areas of investigation. Expedimentation can be further used to
evaluate new ideas or products, such as processes, tools, or development methodologies. In many cases the
expenments pravide, not only the best way of effectively evaluating an idea or product, but also the only way
[Oman and Pfleeger 1997}, I this study, the experimental method is employed as an evaluation mechanism to
assess the effectiveness of a concept (i.e. software patterns).

Controlled experiments, in particular, offer several important benefits. In a controlled expedment, the results
obtained from an experimental sample are compared against a control sample that is practically identical to the
experimental sample except for the variable whose effect is being tested. Controlled experiments can be used to
conduct well-defined and focused studies, to scrutinise and measure specific variables and the relationships
between them. They help in formulating hypotheses by enforcing the clear definition of the question being
studied, resnlting in studies with well-defined dependent and independent variables and well-defined hypotheses
[Basili 2007). Furthermore, results produced by controlled experiment have the potential of being statistically
significant. The experimental research carried out in this study is a controlled expeniment, which is fully
discussed in Chapter 5.

There is an increasing understanding in the sofiware engineering community that empirical studies are needed to
develop or improve processes, methods and tools for software development and maintenance [Sjoberg 2005].
Software engineering, in companison to other disciplines, is young and can certainly benefit from experimental
methods of analysis. However, experimental research is difficult, mainly because any flaws in experment
design, data collection. and data analysis, run the risk of invalidating the nchieved results and conclusions. The
quality of knowledge obtained by experimentai research is related to the quality of the data collected and the
degree of ngour employed in amalysing them.

4.11.1 Experimentation Framework

Basili et al. [1986] proposed a widely accepted and implemented experimental framewotrk. The proposed
framework has the advantage of dividing the experiment into o number of independent and well-defined
sequential phases. As experimental projects are all different, the framework does not attempt to presctibe a
particular technique of carrying out an experiment, but ontlines the points and elements that need to be
considered. It gnides the expenmenter through the experiment process from initiation to compietion. The

Chapter 4 Software Experimentation and Measnrement 66

framework was therefore employed in designing and conducting the experiment in this stndy. The framework
consists of four phases: 1) Definition, 2) Planning, 3) Operation, and 4) Interpretation. The Definition phase,
which is the first phase of the experimental process, contains six elements, as described in Table 4-6. This phase
sets ont the initial and important aspects of the experiment to be conducted. The phase ensures that the aims and
objective of the experiment is clear and that issnes surrounding the environmental aspects of the experiment are
well and unambiguonsly nnderstood. In this phase, elements such as experiments object, purpose, and scope are
defined.

The Planning phase of the experimentation process concerns the three elements of design, critera, and
measurement as listed in Table 4-7. Each element involves a number of activities that need to be considered in
planning the experiment. The Operation phase of the experimentation process includes the three elements of
preparation, execution, and analysis. For the preparation element , a pilot study conld be used to confirm the
experimental scenarios, organise experimental factors or inocnlate the subjects. The data is collected and
validated doring the execution of the experiment. For the analysis of data, a combination of gualitative and/or
quantitative methods can be used. Finally, the Interpretation phase of the experimental process consists of the
interpretation context, extrapolation, and impact elements. In this phase, the impact of the experiment in terms of
replication and application is discussed.

Parts | -. .0 . % Description- DR .
Motivation To understand, improve, validate or assess the effect of a certain phenomenon
Object The object of a study is the primary entity under examination (i.e. an end product, or a
process model)
Purpose This could be, for example. to evaluate the effectiveness of a testing process, to predict

system development costs. or assess the reliability of a software product
Perspective | Perspectives of the interested parties: developer, modifier, maintainer, project manager,
customer, user :

Domain This can be two types: 1) Individual programmer or programming teams, and 2) the
programmes or projects
Scope Single project, Multi-project, Replicated project

Table 4-6 Elements of the definition phase

. Design " . . vt E, Criterda . 0 - L o Measurement:. .o "
Experimental Design Direct Reflection of Cost/Quality Metric Definition
Incomplete Block Cost Goal-Question-Metric
Completely Randomised Errars Factor-Criteria-Metric
Randomised Block Changes Metric Validation
Fractiona! Factorial Reliability Data Collection
Multivariate analysis Correctness Objective Vs Subjective
Correlation Indirect Reflection of Cost/Quality Nominal/Classification
Factor Analysis Data Coupling Ordinal/Ranking
Regression Information Visibility Interval
Statistical Models Programmer Comprehension Ratio
Non-Parametric Execution Coverage Absolute
Sampling Size

Complexity

Table 4-7 Elements of the planning phase

The experimental design for this study is discussed in detail in Chapter 5. There are a number of issues that make
software experimentation challenging. Difficulties in designing and conducting software experimentation have
meant the publication of fewer experiments in software engineering than in other engineering disciplines. In the
following section, some of the major issues in software experimentation are discussed.

4,12 Software Experimentation 1ssues

Experimental studies in software engineering is time consuming and difficult to design and conduct [Shull and Basili
2004]. The two most important components of sofiware experimental research are the experiment design (e.g.
control of extraneous variables) and a sonnd and valid measurement process. However, software experimentation
design is often challenging, partly doe to the human factors involved in software engineering, which make the
control of variables difficnlt and imprecise. Difficnlties in software measurement, discussed in the previous

Chapter 4 Software Experimentation and Measurement 67

section, are the other major factors that make high guality software experimentation difficult to achieve. 1n this
section, some of the major problems and issues in software experimentation are discussed.

4.12.1 Flaws in Experiment Design and Conduct

Flawless experimental research in software engineering is hard to achieve. Poor statistical design and small-scale
experiments over too short a period are amongst problems ountlined in the literature [Fenton and Pfleeger 1994].
There are a number of questions that should be asked about any empirical research to judge the quality of its
results and conclusions. These include [ibid]:

15 it based on empirical evalnation and data rather than intunition advocacy?

Does it have a good experimental design?

Is it a toy situation or a real situation?

Are the experiments appropriate to achieving the goals of the experiment?

Was the experiment run for long enough to evaluate the true effect of the change in practice?

B LR —

However, unfortunately the reality of software experimental research is that only a small percentage wonld fully
comply with all the criteria stated above. Many studies [Tichy et al. 1995] [Sjoberg et al. 2005] report on the lack
of quality in the published experiments in sofiware engineering. While it is ideal to conduct experiments that
have tlawless experimental designs and measurement process, that are based on real sitnations, and that run over
a long period, such experiments would be extremely difficult for many researchers or research organisations to
conduct, partly due to the high costs and often nnavailable funds.

Experiment design and the measurement method and process have been important and major activities of this
research. 1t has also been an objective of the research to adhere to the experiment design and measurement
principles and guidelines (e.g. outlined by Kitchenham et al. [2002] and Basili et al. [1986]} to design a sound
experiment that does not suffer from the serious flaws. Proper experimental design (within the resource
constraints) is crucially important for an experiment to produce results that are accurate and valid. However,
very few empirical study designs are, or claim to be, flawless [Perry 2000]. In designing an experiment, one has
to consider a number of experimental errors that could creep in the process, which might affect the experiment
results and conclusions [Fenton and Pfleeger 1997]. These include errors of experimentation (e.g. invalid and
flawed design, observation (e.g. invalid and inaccurate data), and measurement {e.g. flawed and invalid measures
and measurement process). These errors have the potential of having a damaging influence in an experiment,
leading to wrong and misleading conclusions. There have been many published experimental works that have
produced questionable results and conclusions, due to inappropriate experimental design. For example,
Shneiderman [1977] indicated, throngh an experiment, that pseudo code should replace structured flowcharts as
a means of program and design documentation, which caused many anthors to advise against the use of
flowcharts. However, a subsequent experimental study {Scanlan 1989] showed that structured flowcharts are
preferable to pseudo code for program documentation, exposing a number of experimental flaws in the
Shneiderman’s study, such as overlooking several key variables in his experimental design.

4.12.2 Subjects in the Experiments

A common criticism of experiments in software engineering is that, in most studies, the snbjects are students,
making it difficult to generalise the results to apply to the professional development environment [Sjoberg et al.
2002]. Smdents are mostly nsed as subjects in software engineering experiments because they are more
accessible and generally inexpensive. However, using professionals in experiments conld have many advantages,
such as higher skill and experience levels, better nse of professional methods and tools, and better teamwork. On
the other hand, it is often impractical to employ multiple teams in industrial settings for the sake of completing
experiments, and developing the same product 2 number of times using different methods or approaches. This is
something that can be achieved in a stndent environment.

Planning and execution of empirical studies in industrial settings are complex and expensive, because they may
require a great deal of time, effort, and resource. The use of students in empirical studies provides a way of
reducing technical and organisarional risks and research costs. There are many situations where student snbjects
are either suitable or preferred. These include [Carver 2003]:

Obtaining preliminary evidence to confirm or refute a concept, theory, or technology
s Controiling factors that may affect the study
¢ Showing software organisations the relevance of the research

Chapter 4 Software Experimentation and Measurement 68

* Provision of nseful evidence to encourage software organisations to conduct further empirical studies

¢ Fine-tuning the organisation and details of an empirical study, before it is carried out in an industrial
environment

In many experiments, the subjects are part-titne students and will have had professional level work experience in
software development industry {Sjoberg et al. 2002]. Many studies, sach as this research, nse stndent sobjects
that are very close to graduation and entry into a professional environment. Indeed, some might have already had
some professional-level experience in sofiware engineering, not least doring their placement year. The
significant difference between stndent and professional subjects is not, therefore, always clear-cut. A
professional subject, who has just begun professional work, wonld be little different to a student subject who is
very close to graduation and who may have already had several years of software engineering experience in a
previous career. Furthermore, in some cases, students may be better snited to some experiments than
inexperienced professionals. For the benefit of software experimental research, it wonld be helpful if software
organisations planned and organised their developer’s time, in such a way that they could allocate some of their
time to participate in experimental research. It would also he helpful if the academic institutions, such as
universities, also designed their courses in a way that participation of students in experimental studies would be
easier and indeed encouraged.

4.12.3 Costs and Publishing Limitations

Experimental research is expensive to conduct and often requires more resources than non-empirical research
[Sjoberg et al. 2002]. However, experimental research may often provide the only practical means of confirming
or rejecting a theory or concept and, cost considerations, should not prohibit researchers from performing
detailed and high quality experimental studies. Both private and pubtic sponsors shonld view such costs, as long-
term investment in software research and development.

Constraints on time and cost are the reason that a lot of research work is done in small groups of students, rather
than in large-scale applications in commercial sitnations [Fenton and Pfleeger 1997]. However, it is generally
acknowledged that small investigations are better than no investigation at all. Furthermore, small experimental
projects may be appropriate for an initial venture into testing an idea, indicate directions for further investigation,
or test a research design and generally improve understanding and raise new guestions.

A further issve is that experimental studies are difficult to publish. Althongh experiments are conducted in the
real world and are theretore always flawed in some way, experimenters often confront reviewers who expect
perfection and absolute certainty [Tichy 1998]. In addition, many established joumnals seem to have difficulty in
finding editors and reviewers, capable of evaluating experimental work [ibid]. In encouraging more empirical
research and experiments in software engineering, it is important that the reviewers appreciate the inherent
difficulties involved in such research and be more lenient in their criteria for accepting such research for
publication.

4.12.4 Human Factors

There are some aspects of software engineering, compared to other science and engineering disciplines such as
mechanical engineering and physics, which make software engineering experimentation more complex and error
prone. One of these aspects is the intense human factors involved in software engineering. Most software is
designed, constructed, tested, managed, and wsed by humans and when measuring something as abstract as
software, human related factors (e.g. human characteristics, varying psychological and social aspects) come into
play, that make accurate evalnations of many software attributes challenging and multidimensional. Software
engineering is considered as a social process and, as such, is influenced by relationships among people involved
in the social context {e¢.g. corparate cuolture, organisational procedures) [Juristo and Moreno 2001]. It is not often
possible to accnrately evaluate all the influencing homan factors in an experiment a priori, in a deterministic
manner, and need 1o rely on statistical methods to estimate their influence. There is an argoment that, becanse
software engineering is a social process, it is inappropriate to view it as a natural process, such as in physics with
deterministic (rather than stochastic) effects to causes [Pfleeger 1999]. This implies that it requires a different
method of study, one that is based on a stochastic rather than deterministic approach. Such stochastic approach
to software experimentation would still need to follow the traditional methods of observing phenomena,
formulating explanations and theories and testing them [Tichy 1998]. The direct involvement of humans with
such complex psychology, cognition and secial behaviouwr, is an aspect of software engineering expenmentation
and measurement that makes such endeavours more complicated and challenging. Soch difficulties often deter
researchers from doing experimentation in software engineering [Juristo and Moreno 2001]. In many

Chapter 4 Software Experimentation and Measurement 69

experimental designs however, such as the one designed in this research project, the extraneous effects of the
human factors are minimal or neutralised, due to the random nature of the experimental groups and subjects {i.e.
any differences are randomly spread between the experimental and control groups).

4.12.5 Experiment Quality

A number of studies nave surveyed the quality and quantity of the published software experiments. They report
on a lack of quality in software experimentation in terms of experiment design and measurement. The studies
indicate that in majotity of cases the standard of experimentation quality, in terms of both the experimentation
process and the analysis of the outcomes, is low. The quality of the experiments is weak, partly due to design
flaws, lack of validation, and appropriate statistical methods to draw appropriate results and conclusions
[Keziolek 2003].

Tichy et al. [1995] conducted a survey, which studied over 400 research articles and studied the experimental
validation methods that they employed. Articles included those published hy ACM Transactions on Computer
Systems and |EEE Transactions on software engineering. There were also articles from other disciplines, such as
neural computing (NC) and optical engineering (OE). These two areas were chosen for comparison purposes,
because NE is relatively new (similar to Software engineering), and OE is, in contrast, an old and established
discipline. The study indicated that, over 40% of computer science papers and 50% software engineering papers
on design and modelling, completely excluded experimentation. However, only 14% of the NC and OE articles
contained no experimental evaluation. Furthermore, computer science papers contained a significantly lower
number of purely empirical studies than those in NC and OE. The articles with hypothesis testing were rare, at
only 1% in all articles. While in NC and OE 67% of the papers dedicated 20% of their space to experimental
validation, this proportion was much lower, at 31%, in computer science. The study therefore seems to disprove
the common perception, which attributes the insufficient experimentation in computer science, to the relative
young age of the discipline. At the time the study was undertaken, the NC discipline was only six years old, but
contained an established level of experimentation comparable to a much older discipline, such as OE. 1t therefore
appears that the relatively small number of experiments in software engineering compared to other disciplines
may be largely due to the lack of well-established experimentation and measurement cnlture and techniques in
software engineering. This is a factor which has beeun supported by some studies such as [Koziolek 2003].

A similar study carfied out by Zelkowitz and Wallace [1998], in which 612 Software Engineering papers,
published in IEEE Transactions on Software Engineering, IEEE Software, and the International Conference on
Software Engineering (ICSE), and 137 papers from other disciplines (i.e. Physics, and Psychology), published in
various corresponding journals, were reviewed and investigated. The results of this study were analogous to the
findings from the study carried out by Tichy et al. [1995] in terms of the quality and guantity of software
experiments. The study showed that almost a third of the articles studied had no experimental validation at all.
Only 30% of the articles had limited experimental validation, in which the experimenter and the subjects were
themselves developers of the products or technology under study, and included an inappropriate level of control.
Such experimentation is often referred to as pseudo experimentation, whose results may be highly biased and
therefore not reliable. The study further found that the experimentation goals and objectives were not defined
explicitly, clearly, and unambiguously.

A further investigation of the quality of software experiments was carried out by Sjoberg et al. {2005] who
surveyed over 5,400 scientific articles, published in leading journals and conferences from 19 countries. The
study found that only 1.9 % of the work involved and performed controlled experiments. One reason, for such a
small percentage of controlled experimentations, is due to the large resource necessary for conducting well-
designed experimeants [ibid]. The study showed that the number of subjects participating in the experiments
ranged from four to 266, with a mean value of 49, with approximately 75 percent of the snbjects being students.
The study further showed that reports were often vague and unsystematic and that there was often a lack of
comnsistent terminology. A strength of this study compared to others (for example Tichy et al. [1995], and
Zelkowitz and Wallace [1998]) is in the large number of articles that were surveyed, as well as in the structure
and the detailed content of the report. A weakness of this report, however, is that statistical significance analysis
has not been performed and, therefore, it is uncertain whether the results provided are statistically significant.
This may somewhat compromise the validity and accuracy of some of the results.

4.13 A Review of Pattern Related Experiments

There have been comparatively few published experimental studies on software patterns. While there are
numeraus patterns proposed in the literature, attempts at empirically validating such patterns or evaluating their

Chapter 4 Software Experimentation and Measurement 70

usefulness, are relatively few. Some of the reporied experiments on evaluating patterns are reviewed in this
section.

Prechelt [2002] carried out two similar experiments to assess the usefulness of design pattern documentation in
program maintenance. Subjects performed maintenance tasks on two programs, mnging from 360 to 560 LOC,
including comments. The experiments were designed to test whether it helped the maintainer if the design
pattemns in the program code were documented explicitly {using source code comments), compared to a well-
commented program without explicit reference to design patterns. The subjects were a combination of
undergraduate and graduate computer science students. The number of subjects for the first experiment was 74
(64 gradvates, and 10 undergraduates). For the second experiment, there were 22 subjects, alt of whom were
undergraduate students. All the subjects received a few weeks of tmining on design pattems before the
experiment. The subjects were divided into two groups of experimental and control groups, where the
experimental group received source codes with design pattems explicitly commented (calied Pattern Comment
Lines - PCL) as some extra comments. The control groups however received the source codes where design
pattemns were not commented explicitly. The performance of subjects was investigated by assessing the
completion time, grading answers, and counting correct solutions. The following two hypotheses were tested:

Hypothesis H1: By adding PCL, pattem-relevant maintenance tasks are completed
faster.
Hypothesis H2: By adding PCL, fewer errors are committed in pattem-retevant

maintenance tasks

The experimeats confirmed both hypotheses, and therefore supported the explicit nse of PLC for design pattems.
The maiu strength of this work is in the design and conduct of the experiment, in a field with few previous
experimental investigations. The work is also elaborative and detailed in terms of its discussion of the validity
issues of the experiment. Amongst other strengths of the work is its comprehensive statistical analysis of the
results, which includes an evaiuation of the statistical significance of the results, However, the work suffers from
a number of weaknesses, the main one of which is a weakness in the experiment design. The experimental
groups were offered comments on the design pattemns (i.e. PLC), in addition to the comments that both the
experimeutal and control groups received. That means that the experimental gronps had more lines of comments
than the control groups. It would have been more appropriate if the general comments, regarding the design
patterns, were replaced by the design pattem comments (PLC), rather than added to the general comments count.
In addition, while the number of subjects for the first experiment is a reasonable number of 74, the number of
subjects for the second experiment was low at only 22,

A further experiment to assess the effect of design pattems on the maintainability of software applications was
carried out by Prechelt et al. [2001]. The aim was to test if design pattemms should be vsed, even if the actual
design problem is simpler than that proposed by the pattem (i.e. not all of the functionality offered by the pattern
is actually requircd). The hypothesis to be tested was ‘A design pattern, P, does not improve performance of
subjects doing a maintenance exercise, X, on program, A, (containing P) when compared to subjects doing the
same exercise, X, on an altemative program, A, {not containing P)’. The experiment used three independent
variables (i.e. programs and change tasks, the program version, and the amount of pattem knowledge) and two
dependent variables (i.e. time and correctness). A total of 29 (eriginally planned 32, but 3 did not participate)
subjects, all professional software engineers with average professional programming (C++) experience of 2.4
years, were used. Fifteen of these subjects had aiready had some expenience of design pattems. The subjects
were divided into 4 groups {6 to 8 subjects per group), in which each group maintained one patern program
{containing design patterns), and one Alt program (not containing design pattems), with two or three work tasks
for each. A number of GoF’s design patterns [(Gamma et al. 1993] (Observer, Visitor, Decorator, and Abstract
Factory) were used, for which the subjects received two days of training. The groups were compared before and
after the design pattems training (i.c. pre-test and post-test), having been asked to perform a number of
maintenance tasks on four smatl software programs.

The results of the experiment indicated that the use of the Observer pattern, in a simple program, had a negative
effect on maintainability and the Visitor pattem was neutral. The Decorator pattern had a positive effect, and the
Abstract Factory pattern caused only small differences. Although the study did not indicate a clear positive effect
of some of the design pattems in the context of the experiment, it can be argued that, unless there is a clear
reason to prefer a simpler solution, it wouid be wise to use the design pattem sclution far the flexibility that it
would provide in handling possible future requirement changes. The experiment was well designed, and the fact
that the experiment involved two phases (i.e. pre-test and post-test), made the argument for the validity of its

Chapter 4 Software Experimentation and Measurement 71

outcomes and results stronger. The results were also statistically analysed and preseated. There were, however,
some issues that may be considered as the weakness of the experiment. These are as follows:

* Small number of subjects: Although measures were taken to ensure that the groups were randomly
selected and were similar in the relevant abilities, only four groups were involved.

* Familiarisation: A two-day design pattern course was probably too short for the subjects to fully
understand the design patterns under examination.

* Generalisation: Only four design patterns were used in this experiment. The resunlts are’ therefore
applicable 1o the examined patterns and cannot be generalised to inclnde all pattems. '

® Context: The experiment did not take place in a programming environment and the subjects nsed pen
and paper for thetr answers, rather than implementing and testing them in a real programming
environment.

In an attempt to verify the results achieved by Prechelt [2001], Vokac et al. [2004b] replicated the experiment. In
contrast to the original experiment, where 29 students were used as subjects, in this replication 44 paid
professionals (39 professionals from 11 companies, and 5 PhD and MSc students) took part as subjects. The
experiment also took place in a real programming environment, instead of being a pen and paper exercise. The
data from the original experiment was reanalysed, using the same regression model and estimation method, to
enable the comparisons between the results of the two experiments.

The results differed from the original experiment [Prechelt 2001], particularly in the case of Visitor and Observer
design pattemns. While the original experiment found the Visitor pattemn to have a neutral effect on
maintainability, the replicated study found that it had a negative effect. Furthermore, in contrast to the original
finding, this experiment indicated that the Observer pattern did not have a significant negative effect. The
general conclusion reached was that the tested design patterns had their 6wn characteristics and, it was therefore
not valid, to characterise such patterns as useful or harmful to the maintenance activities. While the two
experiments somewhat contradict each other, the resuit of this replication may be more valid and reliable, as it
has a number of advantages over the original experiment. These are: 1) A larger number of mostly professionals
were used, and 2) There was improvement in the experiment environment. The environment included a non-
intrusive logging software, to measure elapsed time, and saved, time-stamped copies of every file compiled. The
data provided by the logging system resulted in a more extensive quantitative analysis. Furthermore, this
replication conducted a more detailed statistical analysis of the results, than the original experiment,

An experiment to investigate the effect of design pattems on communication between developers was carmied out
by Unger and Tichy [2000]. This was done in order to test the claim that design patterns improved
communication between the members of the development team [Buschmann et al. 1996)]. The experiment
compared two-person teams, with and without pattern knowledge, communicating about program designs.
Verbal communication was captured with audio and video devices and the transcripts were analysed.
Communication was considered more effective if there were to be clear episodes of explanations and balanced
discussions during design work. The teams received a program design (containing design patterns) for
maintenance and were required to discussed how to design a number of given requirements changes into the
existing design. This took place in two phases (i.e. before and after the teams attended a three-month course on
design pattems). The results indicated that team communication improved in the post-test, compared to the pre-
test. These results therefore showed support for the claim that design patterns improved communication between
software developers.

There were however some weaknesses in this experiment that could have had an effect on the validity of the
experiment’s conclusions. One of the weaknesses is the small number of subjects used. Although there were
plans to use 7 teams (14 student subjects), some of the subjects did not participate in both pre-test and post-test
phases of the experiment and only 5 teams (10 subjects) fully participated. There was also a three months
interval between the pre-test and post-test phases of the experiment. Although during the three months the
subjects attended a course on design pattemns, it is possible thai they counld have gained skiils and knowledge,
other than design pattems, which caused their communication performance to be improved in the post-test phase.

Porter and Calder [2004] tested the applicability and usefulness of design patterns in teaching programming to
novice programmers through an experimental research. 1n this experiment two groups of students were selected
(experimental and control), where the experimental groups were given a set of design pattemns to use for their
assignmeat, while the control groups used non-pattern selutions. The works were evaluated upon the completion
of the assignmeats using a five level scoring mechanism (excellent, very good, good, satisfactory, poor). The
evaluation was based on the assessment of the quality of the works in terms of programming technique and style.

Chapter 4 Software Expedmentation and Measurement 72

It is not however stated what patterns were used in this experiment. A weakness of this expedment was the use
of a relatively small number of subjects (only 18). Furthermore, the work did not include any statistical
significance analysis of the results. Although the results achieved proved to be incooclusive, it showed that
researchers are, sedously considering the applicability of design patterns, as ao aid in pedagogy.

The effectiveness of design pattems in generating better quality designs were studied by Reibing [2001_b]
through experimentation. He examined two sets of desigons ooe of which used the State design pattern [Gamma
et al. 1995], and the other used no design pattems. The two designs were then compared for quality. The results
of this study proved to be interesting for the fact that two contradictory conclusions were achieved, depending on
how quality was defined. Using conventional OO guality metrics (i.e. WMC, DIT, NOC, CBO, see Table 4-4),
the study showed that contrary to the expectation, the metrics results indicated, that the designs that did oot use
design pattems were of better quality than those that did. The result leaves two interpretations: 1) the metrics that
were utilised were not good indicators of design quality, and 2) the application of design pattems in software
desigo reduces the quality of the resulting design. However, if flexibility is to be an indicator of quality, theo the
designs using design parterns proved to be of a higher quality. This exemplifies the subjective nature of software
quality and the ioherent difficulty in its definition and measurement. A software application could be considered
to be of high quality in one definitton and of low quality in another. Geverally, there should be a more
approptdate notion of software quality thar incorporates complexity ceiteria such as size and coupling, and the
flexibility considerations. A weakness of this work is that the resuits are based oo a single and relatively small
software program aud wo statistical analysis of the results were carried out. For the results to be fully valid, the
experiment should have been conducted on a sufficient number of applications where the results could have been
statistically validated. The results achieved cannot be, therefore, generalised.

4.14 Summary

Io this chapter, experimentation and measuremeot in software engineerdng, which are two main topics of this
research, were discussed. As software engineenog is relatively young in companson to some other engineedug
disciplines (e.g. civil and mechanical), it has oot reached a desired level of matudty with respect to both
expetimentation and measurement.

There are mainly two types of measurements in software engineering; direct and indirect, Direct measurement
refers to the measurement of an atiribute, when no other attibute has a direct or indirect influence (i.e. No. of
lines of code). On the other hand, indirect measurements are used when an attibute can only be measured in
relation to other arcibutes (i.e. efficiency, complexity, reliability). Indirect measurements are normaliy made
using direct measurements. Both types were used in this research.

Software quality is difficult to define and has been the subject of much discussion within the software
development community., While the term “‘quality” might seem self-explanatory, there are many different views
of what is meant by software quality and how it should be measured or assessed. There are mainly two widely
employed models of sofiware quality measurement: a) Factor Criteria Metdc model, and b) Goal Questions
Metric model (GQM), which were discussed in the chapier.

The establishmeot of a measurement process in software development organisations is encouraged in the
literature and by the intemational standards. In any measurement process, ‘what is measured’ and ‘how a
measurement is made’, should be carefully planned and counsidered. Furthermore, the benefits gained by a
measurement programme should be weighed against any disadvaatages such a programme may cause. That is,
care should be taken by the maoagers and measurement processes designers, not to include measures that may be
unnecessary or damaging (e.g. assessing and compating an individual programmer’s productivity), to the morals
of the organisation’s workforce.

Software experimeontation quality is currently low. There is a lack of validated and controlled experimental
studies in software engineering due to many reasons, such as, the cost and difficulties in carrying out high
quality experimentation. Countrolied expedmental research, such as the one designed and implemented in this
research, contributes to and advaaces the scieotific knowledgebase on expedmentation in software engineedng.

In the next chapter, the design and conduct of this study’s expetimental research method is discussed in detail.

Chapter 5 Experimental Methodology 73

Chapter 5 Experimental Methodology

5.1 Introduction

In any comprehensive research programme, the research method plays a crucial role, Indeed, the validity of the
research findings may depend on the suitability, appropriateness, and thoroughness of the applied research
method [Christensen 2006]. It was therefore a major prionity to devise a well designed an appropriate research
method to produce valid results.

The research design for this study involved a controlled experimental research methed. The background and a
literature review of software experimentation in software engineering were presented in the previons chapter
(Chapter 4). The experimental research method designed for this research was based on designs that are often
associated with research in psychology, involving human subjects. Application of such research methods in
software engineering is far less prevalent [Seaman 1999], and one of the contributions of this research
programme is the implementation of such experimental research methods in the field of software engineering. In
this controlled experiment, the experiment subjects were divided into experimental (treatment) and control
groups. The experimental groups received the treatment in the form of process pattems to use in their software
development projects. The control groups were nat given access to the process patterns (i.e. the treatment). It
was expected that the final analysis of the results would highlight a difference between the two groups, which
could be contributed to the application of the treatment. to the experimental groups.

In the first section of this chapter, the experimental definitions and hypothesis are introduced. This is followed
by an overview of the experiment and the issues involved. The experiment definitions and hypothesis is
discussed next followed by a discussion of the experiment design. The process of conducting experiments and
the ethical issues concemed are discussed towards the end of the chapter.

5.2 Experiment Definitions and Hypothesis

1t is more than a decade now since the concept of software pattems was conceived. While there have been
numerous papers and books on software patterns over the years, there have been few empirical studies of
software pattems to evaluate their utility and value in software development. Furthermore, almost all of these
studies have focussed on a single type of pattemn, namely thé ‘design pattem’. In this experimental research,
another type of software pattem (i.e. ‘process pattems’) is empirically studied to evaluate their utility and value
in software development process. There has been a great deal of work in both scientific and industrial contexts
towards identifying, writing up, and building support tools for software pattems. However, empirical studies on
the effects of patterns are rather rare. While there have been some empirical studies to evalnate the effect and
valve of design pattems (patterns concemned with software architecture and coding [Gamma et al. 1995]) on
various aspects of software development [Prechelt 2001, 2002, there appears to be no credible empiricat studies
to investigate the utility and value of process pattems. This study aims to address this issue by presenting an
empirical study on the effect and value of process patiemns.

The purpose of this study was 10 evaluate the utility and value of the application of process paiterns on a
software development project. The study, conducted throwgh an experimental research method, assessed the
effect of the application of process patiems on 260 software development projects. There were two types of
projects (128 individual projects and 132 group projects) under investigation in this study, which were the results
of two live university modules, involving software development-projects (CMT3991, and CMT3992). The two
project types were: '

s Group projects (Modute CMT3991, Computing Project Management). This module was a 12-week
duration modnie {(one semesier), in which students worked in teams of 5 individuals, on a software
development project to develop a software application.

s Individoal Projects (Module CMT3992, Undergraduate Computing Project). This module was also a
12 weeks duration module, in which individual students (who passed CMT3991) worked on their own,
distinct. software development project, with the help and advice of a supervisor.

Chapter 5 Experimental Methodology ' _ 74

The subjects for the experiment were final year undergradnate degree students who took modules CMT3991 and
CMT3992 discussed above. The study took place at Middlesex University in London, involving three campuses
where the two modules involved (i.e. experiment objects) ran.

The aim of the experiment was to investigate the following research question:

How does the application of process patterns in the management of a software development project
affect the quality of the project?

Based on the research question, the null and alternative hypothesis to be tested was:

Hy Application of process patterns in the management of a software development project
will not improve the quality of the project

H,; Application of process patterns in the management of a software development project
will improve the quality of the project

While there are many proposed development approaches (e.g. waterfall, iterative ...) proposed in software
development projects, they generally include four main phases or activities (i.e. Requirement analysis, Design,
Implementation, and Delivery) in their development lifecycle. In investigating the research guestion, the effect of
process patterns on each of these four main development phases is investigated through an expenmental research
method, which is discussed in this chapter. This involves the measurement and evaluation of a number of
software project attributes through metrics in each of the four main phases of the development lifecycle. The
metrics are selected through a measurement process discussed in Chapter 6.

5.3 An Overview of the Experiment Design

" In this section, an overview of the experiment plan and design is presented. The following statements of facts are
bullet pointed to describe concisely the circumstances of the experiment:

* The experiment was conducted across three campuses at Middlesex University, namely, Trent Park
(TP), Tottenham (TM), and Hendon (HE).
The experiment was conducted during two semesters.
CMT3991 students at Trent Park (TP) campns were in the treated groups in semester one, and were in
the control groups in semester two.

¢ CMT3991 students at Hendon (HE) were in the control groups in semester one (Seml) and in the
treated groups in semester two (Sem?2).

¢ CMT3991 students at Tottenham (TM) were in control groups in semester one. The CMT399] module
did not run in Sem?2 at TM, and therefore no student from TM took part in this semester.

s (CMT3992 module was involved in semester two only

s (CMT3992 students at Trent Park (TP) were in treated group, and those in Tottenham (TM) and Hendon
(HE) were in the control groups

These statements are further illustrated by Table 5-1, Table 5-2 and Figure 5-1.

[C5 Phiscs 00 [Seinestors M | A M odisie Sl | 90 Campiis Bufh| SN S Caties i
Trent Park Treated
One One CMT3991 Tottenham Control
Hendon Control
Two Two CMT3991 Trent Park Control
Hendon Treated

Table 5-1 Experiment arrangements for the group projects

Trent Park 4 Treated
Two CMT3992 Tottenham Control
Hendon Control

Table 5-2 Experiment arrangements for the individual projects

Chapter 5 Experimental Methodology

75

Irvcdhrictioant 7
L Projects)

ever

L3 S
frewn TF
CHERT

3 e

PRes SRR I
S Contol gz
e e

Figure 5-1 Experiment Design

The experiment was carried out in two phases (across two semesters), where the status of the treated and control
groups alternated between the semesters and the campuses, as illustrated in Table 5-3. This is to ensure that any
changes between the treated and control groups is independent of the status and specifics of the campuses and
the semesters in which the experiment is conducted. Therefore, any variation between the treated and control
groups can only be attributed to the application of process patterns and not variations or differences in the

semesters or campuses.

Phase 1 = Semesier One

Phase 2 = Semesier Two
= Treated

Phase 2

x = Comrol

TP Campus = Subjects taking module CMT3991 at
Trem Park Campus

HE & TM Campuses = Subjecis taking module
CMT3991 ai Hendon or Touenham sites

Table 5-3 Experiment design

As well as data gathered through measurement process, the official marks offered to the projects by tutors were
also considered in this experiment. Figure 5-2 depicts the strocture of a section of the experiment, in terms of the

two sets of data captured and analysed.

http://f~.it

Chapter 5 Experimental Methodology 76
The
Expesrimental
Method
& _lr
Group Projects h;?j; jec-tuu:.
2 . i
b 3 ¥ + +
“Measurement - Cificial Grades . Meosurmtment : Otfictat Grades
sml:l_zn :
Moasurement
Process -
Evaluste Matrics | Studert |
C T . OntaFesa:‘ .

¢

|7 el statisticel.representations |, I

1

Analyse Results *.

)

Anslyze Resutte ., - -

I

I jGeherellsa.Resmult‘s_'" S —|

i

| Confirm or Reject Hypatheses |

Figure 5-2 Capiure and analysis of data to test the research hypothesis

A number of important issues had to be carefully considered in designing the experiment. In the following
section, the issues concerned are outlined and discussed.

5.4 An Overview of Issues Involved

As this particular experimental study was the first of its kind to be carried out at the Middlesex University with
no precedence, many issues had to be considered and resolved. These issues can be categorised into the
following:

Practical and logistical Issues
= Ethical concerns
¢ Staff concerns

These issues are discussed in this section.

5.4.1 Practical Difficulties

In designing the experiment, many issues and questions had to be considered and answered. These are listed as
follows:

What type of experiment method would be appropriate for the study?

What are the variables involved?

What are the extraneous variables and what measures should be taken to control them?

How will the experimental (i.e. treated or conditioned) and control groups be selected? Will it be based
on voluntary or compulsory participation of the subject?

What should be the sample size in order that the results could be analysed for statistical significance?
Should the subjects be told about their participation in the expenment?

How can the treated and contrel groups be matched?

Should subjects be selected from students on the same degree courses {programmes)?

. Should the experiment be split across campuses?

10. How will the subjects receive the treatment condition?

11. How to make sure that the subjects use the given treatment (i.e. the process patterns)?

12. What incentives can be used to encourage subjects to use the treatment?

W -

\© 00 N o L

Chapter 5 Experimental Methodology 77

13. How to ensure that the treatment given to the experimental groups will not leak to the control groups?

14, How will the software projects be assessed in order to detect any differences between treated and
control group as a result of the treatment condition?

I5. What wili be the tutor’s influence on the outcome of the projects?

16. What would be the researchers influence on the outcome of the projects?

I7. How could the effect of differences and discrepancies in tutors marking and abilities be minimised on
the outcome of the experiment

18. Can the selected groups work on different projects or should they be given the same project titte?

19. What are the ethical issues concerned with the experiment?

20. How to ensure that subjects are treated fairly and equally, irrespective of their roles in the experiment?

The issues listed and their respective resolutions in the design of the experiment are discussed in this chapter.

5.4.2 Ethical/Staff Concerns

One of the major issues 1o consider was the ethical issues involved in using students in the experiment. Many
questions had to be answered and resolved in this regard, to satisfy Middlesex University’s Ethics Committee.
These ethical concerns are discussed in detail later in the chapter in Section 3.8.

The other issne was the concerns of lecturers and seminar tutors teaching the conrses that were to be nsed in the
experiment. Naturally, staff concerned with the courses, especially the teaching staff and the course leader,
wanted to ensure that the whole expenment was carried out ethically and fairly, with little or no extra work and
responsibilities for them. Fortunately, after many meetings with the staff concerned, and many iterations and
modification of the experiment’s design, their approval was achieved for the experiment to go ahead.

5.5 Experiment Specification

The design for this research programme includes a method of enquiry for its suitability and appropriateness for
testing the research hypothesis (i.e. the research question). In this section the experiments research setting,
experiment variables, control measures, and validity issues will be discussed.

5.5.1 Experimental Research Settings

There are different types of experimental approaches, which differ in terms of their applicability in different
situations and settings. [n designing the experiment for this study, the two main experimental approaches (i.e. a
laboratory setting, and a field setting) were considered. A {aboratory experiment is a study that is done in the
laboratory in which the experimenter manipulates one or more varables and controls the influence of the
extraneous (unwanted) vanables. Laboratory experimenis provide the best way to control or eliminate the
influence of extraneous variables [Shaughnessy 2002], This is accomplished by bringing the probiem into an
environment different from the subject’s normal settings. Although in such environment outside influences could
be eliminated, there is a price to pay in terms of the artificiality of the sitnation, which may not necessary reflect
the real sitnation. A field experiment is an experimental research that is done in a real life setting. Here, the
experimenter manipulates variables and controls the infiuence of as many extraneous variables as possible. In
contrast to taboratory experimentation, field studies are not generally subject to the artificiality problem. Their
primary disadvamage, however, is that the control of extraneous variables cannot be accomplished as well as
with laboratory experiments [ibid].

The experimental method for this research programme is a field experiment, since it is to be conducted in a real
life sitnation and setting. Although one can argue that student’s projects are artificial because they do not deal
with real life sitnation (e.g. business), they are real since they have targets and objectives that are apart from the
experiment. In other words, the projects were not being done for the sake of the experiment. In that sense,
therefore the study could be classifted as a field study.

5.5.2 Variables

An experiment contains a number of differem types of variables. A variable is some property of an event in the
world that has been measured (McBumey 2003). Variables in an experiment are entities which are subject to
variation and whose values are observed by the researcher. One advantage of the experimental approach is that it
provides excellent control techniques, allowing the researcher the ability to manipulate variables and observe

Chapter 5 Experimental Methodology 78

their effects [Christensen 2006]. The variables involved in this experiment will be discussed in the following
sections.

5.5.2.1 Independent Variables

The independent variable is the variable whose value is changed by the researcher, within a defined range, and
whose effect on the other variables is monitored and recorded. It is the variable that, according to the hypothesis,
creates the presumed effect [Singleton and Straits 1999]. The desired variation in the independent variable can be
achieved in varous ways. The following are two options for the treatment variable considered for
implementation in this research:

Presence versus absence: In this technigne, one group of subjects receives the treatment condition and
the other group does not. The two groups are then compared to determine if the group that received the
treatment differed to the groups that did not, with respect to the dependent variables.

Amount of variable: In this technique, different amounts of the variable are administered to each of the
several experimental groups. This technique can be used to find the minimum or maximum amount of
treatment required to induce a difference between the groups.

The presence versus absence technique was used for its suitability and applicability in this research. The other
option was rejected, as the experiment’s objective was not to study the effect of an individual or a particular
number of process patterns, but to determine whether the application and usage of process patterns, as a whole,
would produce any effect. Furthermore, treating a large number of process patterns individually, as independent
vadables, would be unnecessary and impractical in terms of statistical analysis. There were two independent
variables in this experiment, which were the treatment (presence or absence of process patterns) and the
semesters (Semester 1, and Semester 2), in which the experiment was conducted.

5.5.2.2 Dependent Variables

The dependent variable is the variable that measures the influence of the independent variable. By changing the
value or status of the independent variable (i.e. presence or absence of process patterns), it is presumed that there
will be changes in the value of the dependent variables. By observing, monitoring and recording the values of
these dependent variables, it will be possible to verify whether the research hypothesis is confirmed or rejected
[McBumey 2003].

In this experiment, we were interested in the effect of process patterns on different phases of a complete
development lifecycle, by measuring and evaluating a number of attributes from each phase. The artefacts (i.e.
documentations, models, source code, test plans) produced in the four major phases of the development lifecycle,
as well as the development process in each phase, are the components of the dependent vanables. The dependent
variables are the attributes to be evaluated for the four major phases of a development lifecycle {i.e. Requirement
Analysis, Design, Implementation, and Delivery). The dependent variables are listed in the Table 5-4.

Attributes
Requirements traceability
Requirement specification reviews
Granularity of modules
Comment density
Source code review
Defect density
Productivity
Defects removal ratio (for each development phase)
Test time allocation (for each development phase)
Test case density

Table 5-4 The independent variables

In an ideal world, we would want the independent variables to be the only variables affecting the dependent
variables. However, in the real world, there are often other variables that would also affect the dependent
variables [Kitchenham et al. 2002}. These vanables are referred as the extraneous variables. Extraneous

Chapter 5 Experimental Methodology 79

vanables are the unwanted variables such as, intelligence, past experience, leaming ability, programming skills,
and the expenmenter's effect that should be considered, planned for, and controlled, in order to minimise their
influence on the dependent vanables.

5.5.3 The Treatment

The expeniment’s treatment was a set of process pattemns used by the experimemal groups. The following
strategies were considered in selecting and preparing the set of process patterns:

1) Selection of a small mumber of individual and specific process patterns
2) Selection of a complete system of process patterns covering a complete development lifecycle

While option one initially appeared to be preferred for its specificity and simplicity, it suffered from the
following disadvantages:

» Process patterns are generally linked and related to each other, and it would therefore be impractical to
isolate individual process patterns and evaluate their effect on specific software quality attributes.

* It limits the scope of the study to specific process pattemns rather than a complete system of patterns.
Any results would therefore apply to those specific pattems, rather than a set of process pattems
covenng a complete development lifecycle.

It was therefore decided to adopt and implement option 2, to study the effect of a complete system of process
patterns covenng the whole development lifecycle (i.e. Requirement analysis, Design, Implementation, and
Delivery). Therefore, in compiling the list of process pattemns to be used, there were two primary objectives.
Firstly, the selected list of process patterns had to cover a complete development lifecycle, and secoudly, the
compiled process patterns had to be appropnate for the type of development projects under investigation.

A number of sources of process paiterns were investigated for their suitability for inclusion in this experiment.
Amongst the sources were a two volume-book on process pattems [Ambler 1998, 1999] that covered a full
development lifecycle, and a set of process pattems proposed in an influential paper by Coplien [1995] (see
Section 2.5). There were also a number of other sources from which process patterns were extracted to be used in
the expeniment which included [D’souza and Wills 1999] and [Storrle 2000] (see Section 2.5). While some of
these pattems were suitable enough to be included in the complied list as they came in their source, most had to
be edited 10 reduce their size to present a succinct version of the pattems. A total of 98 process patterns were
compiled for the purpose of the experiment. Some of the process patterns used in the experiment are presented in
the Appendix B. Pattems.

The evaluation method was designed to measure the overall affect of a system of process pattems on software
development projects through metrics, which measured a number of software attributes. The objective of the
experiment was not to determine whether the employment of any particular process pattem had an effect on the
quality of a software attribute, but to gauge the collective influence of the whole system of process pattems.
There is a many-to-many relationship between the presented process pattems and the atmbutes to be measured.
That is, one or more process patterns could affect a single attribute and the related metrics. Accordingly, a single
process pattern could affect one or more software attributes and the corresponding metnics. This relationship is
generally dependent on the type of the process pattern and its position in the process pattem hierarchy. The
higher-level process pattems in the hierarchy (i.e. more generic) would have a wider scope and would therefore
affect a higher number of attributes and the related metrics.

For example, ‘define and validate requirement’ process pattem (Appendix B. Patterns) would influence any
attribute (and the associated metrics) related to the definition and validation of requirements (e.g. requirement
ambiguity rates, requirement review quality). The pattern, "developing in pairs’ could have an effect on many
atributes and corresponding metrics across all the phases of the project (e.g. productivity, defect density, etc).
Therefore, single process pattems could affect multipte attnibutes of the development project and in tum affect
the value of the metrics employed to measure them. Similarly, o single software anribute and the metnic
measuring it could also be intluenced by one or more process patterns. For example, ‘defect density’ may be
affected by many process patterns of different hierarchical levels (e.g. code ownership, review of architecture,
ctc). An attribute and the refated metrics could be affected by all the individual patierns in the complete set of
process patterns. This many-to-many relationship between process patterns and the software attributes is
depicted in Figure 5-3.

Chapter 5 Experimental Methodology 80

PP=Process Pailem
M=Malric 1o measure'a software attbute

Figure 5-3 Many-to-many relmionship between process patterns and
melrics

5,54 Control

Extraneous variables cannot be eliminated and thus it is not possible to eliminate their influence from the
experiment. It is however possible to eliminate any differential influence that these variables may have across the
various levels of the independent variable [Campbell and Stanley }963]. In other words, it is possible to keep the
influence of these variables constant across the various levels of the independent variable.

For this experiment, a number of extraneous variables were identified and ways of controlling them were
devised. For example, the experimenter in this study played a part in subjecting the expenimental groups to the
treatment. Experimenter effects have been defined as the unintentional biasing effect that the experimenter can
have on the results of an experiment. Experimenter is not just a passive, non-influential agent in an expenment
but could in some cases be an active and potential source of bias [Rosenthal 1998] [McCrone 2004]. The
experimenter could also have a positive effect in reducing bias. They can help standardise the extent to which all
subjects understand the instructions [Aronson and Carlsmith 1968]. Furthermore, the experimenter may be
necessary to detect the occurrence of unanticipated phenomena, that could affect the outcome of the experiment,

and to identify ways of improving the experiment. In the final avalysis, the possible gains of having an
" experimenter must be weighed against the possible bias that they may introduce.

In this experiment, all efforts were made to ensure that the experimenter’s effect would not undermine the
validity of the experiment. The experimenter was responsible for introducing the process patiems to the
experimental groups through lectures and seminars. The experimenter was aware that anything beyond an
introduction to process patterns, to inform the experimental groups on how to access and use process patterns,
should not be offered to the subjects.

There is an established principle stating that the act of observing and conducting an experiment could affect the
outcome of the experiment [Landsberger 1958] [Parsons 1974]. This is referred to as the Hawthome Effect and
states that an individual’s behaviour may change if they are aware of being studied. This was based on an
experiment that showed that the productivity of employees seemed 10 improve, regardless of the employed
experimental manipulation. In other words, experiment subjects’ performance could improve as a result of just
being participants in the experiment, referred to as Hawthorne Effect. This effect was considered and influenced
the final design of the experiment as discussed in the Section 5.6.

Errors resulting from the misunderstanding of data can be minimised, if the person recording the data remains
aware of the necessity of making careful observations and ensures that data are accurately recorded [Sjoberg et
al. 2002). Another approach would be to use multiple observers or data recorders. In order to reduce ertors, the
data recording was done online through a single portal. This means that data was entered once only to the system
by the participants. The data was then made available to be accessed by statistical analysis packages or other
tools for analysis.

Experiments can use a number of techniques in selecting subjects in order to minimise the effect of extraneous
variables. Two such techmiques are referred to as randomisation and 'matching. Randomisation is a statistical
control technique that has the purpose of providing assurance that known, or unknown, extraneous variables will
not systematically bias the results of the study. It is one of the main techniques to control the known sources of
vanations [Shaughnessy 2002]. Random selection of subjects provides assurance that the sample is
representative of the population from which it is drown, and therefore ensures that the extraneous variables are
controiled. In order to implement a randomisation technique one, ideally, should randomly select subjects from a
potential poo! of subjects. These subjects should then be randomly assigned to the same number of groups as
there are treatment conditions. The treatment conditions should then be assigned to the experimental groups.
This is illustrated in Figure 5-4.

Chapter 5 Experimental Methodology) 81

I psete {0y wtine 1 100 L CHres gy

Figure 5-4 Random subject selection

Althonugh randomisation provides the best guard against interpreting differences in the dependent variables, as
being the result of variables other than the independent variable, it is not however the best technique for
determining the sensitivity of the experiment [Christensen 2006]. The sensitivity of an experiment can be
increased by matching the subject to the varions experimental groups. A second benefit of matching is that the
variables, on which subjects are matched, are controlled as constancy is achieved. For example, if subjects in all
treatment conditions are matched on intelligence, then the inelligence level of the subjects is held constant and
is therefore controlled for all groups.

A matching technique for controlling the extraneous variables, and increasing the sensitivity of the experiment,
is to equate subjects on the variable or variables to be controlled. If intelligence, for example, needs to be
controlled, then subjects in each of the experimental groups are at the same intelligence level. The technique of
precision control {Selltiz 1959] requires the experimenter to match subjects in the varions experimental groups,
on a case-by-case basis for each of the selected extraneons variables. The matching technique is illustrated in
Figure 5-5

i ol .to‘,tmvtrm
v%ﬁ’é?&ﬂﬁﬂﬁmx
2o,

Figure 5-5 Matching by precision control technique

Both randomisation and matching techniques were considered for use in this experiment. After considering
advantages and disadvantages of each technique, as applied to this particular experiment, it was decided that, due
to the availability of relatively large sample size, the randomisation technique wounld be the most appropriate
technique to be used for this experiment, It was therefore decided that the matching technigue would
unnecessarily complicate the experiment, without providing a significant advantage over the randomisation
technique.

Despite all efforts to control the effect of extraneons variables in the experiment, full control cannot be
practically achieved. Chnstensen [2006] writes, “It can never be for certain that complete control has been
affected in the experiment. All can be done is to increase probability that we have attained the desired control of
the extraneous variables that wonld represent sources of rival hypothesis”.

Chapter 5 Experimental Methodology 82

5.5.5 Internal Validity

Internal validity describes the extent to which research design and process affect the results in terms of the effect
of extraneons variables and is the most important and widely considered validity type McBumey [2003].
Experiments are internally valid when the obtained effect can be unambignonsly attributed to the manipulation
of the independent variable [Kitchenham et al. 2002]. In this experiment, it was iraportant that the measurement
data the students were to provide was valid. For this, the students had to be honest in the data they provided as
well as diligent to ensure that the data was correct. It was made clear to the students by the tutors and the
resenrcher that the measurement data they provided had no influence on the official marks they were awarded for
their project. They were requested therefore to be as honest as possible in providing the actnal data without any
exaggerations. There was a risk that the subjects’ answers on the measurement form might be influenced by
either what they thought should be a good answer to the measurement questions, or by what they thought the
officials would like to see. 1t was important to take steps in minimising such risks. [t was therefore made clear to
the subjects that they had to try to be truthful in providing mensurement data for the experiment, and that the best
data were those that truly reflected the reality of the sitation in their development project.

It was made clear to the subjects that they should carefully and seriously consider each of the measurement
questions and answer them carefully. The importance of carefully considered answers, in reaching correct
results and conclusions in this research, was explained to them. The importance of their input to the research, in
helping to make a possible contribution to the advancement of our knowledge of software engineering, was
further explained to them. It was therefore important that they were honest and diligent in providing
measurement data in this research

Random assignment of the subjects to the treatment and control groups ensures that any deficiencies in honesty
and diligence (discussed above) are uniformly spread in both treatment and control groups. Therefore, for the
purpose of this experiment, which involves comparing the performances of the two treated and control groups,
such factors do not affect the validity of the experiment objectives in any significant way and, therefore, would
not undermine the experiment’s internal validity.

A number of measurements were required to be taken by the researcher. These were generally measurement of
the quality of some software attributes. An evaluation method was devised through which the attributes were
methodically and consistently evalvated. The other important aspect was to ensure that there was no bias in the
evaluation of the projects, by the researcher. 1t is sometimes likely for a researcher to become biased towards a
concept, often unwittingly, dve to one’s belief and views and, therefore undermine the integrity of an
experimental study. It is therefore important that the researchers are aware of this fact and take extra care to
ensure that their input to the project does not suffer from bias [McCrone 2004). Such cautious approach, in the
evaluation of projects by the researcher, was taken to eliminate any bias that conld be damaging to the validity of
the results.

The respective universities lecturers marked the completed projects. In marking the projects, a number of aspects
of the development project were evatuated and marked. Although they were not evaluating all the aspect of the
development, in the way they were evaluated by the researcher, their evaluation marks provides another set of

~ measurement data, which were used in the experiment, to compare the treated and control groups. As the treated
and control groups were marked by the same tutors, any difference in marking is randomly spread between the
treated and control groups, and therefore had negligible effect the internal validity.

5.5.6 External Validity

External validity concems the generalisation of the experiment to other situations. As the circnmstances and
environment in which the experiment could take place might differ considerably, there are many extemal
validity issues. The following are the three main issues covered by external validity [Christensen 2006]:

* Other subjects: Would the experiment produce the same results with different subjects? (For example,
if professionals were to be used instead of students)

*» Other Times: Would the experiment produce the same results if it were conducted at another time?

¢ Other setting: Would the experiment produce the same results if it were conducted in other settings?
(1.e. being done in industry on commercial projects, using different tools, and being under different
pressure levels)

Work environment in industry is significantly different to universities. Ln industry, professionals are usually
.assigned to work on single development project, fulltime, with strict guidelines, demands, rules and constraints

Chapter 5 Experimental Methodology 83

issued by both managers and customers. The develeped application should work perfectly in a real business
environment, This is quite different to a university setting where students know that the application is not going
to be used and, are therefore, much more relaxed.

It can be argned that if in a university environment, where students are under fewer constraints, a difference
between the treated and control groups is noticed in the expeniment, any difference might be more prominent in
an industrial setting, where work is carried out in a more strict and disciplined manner, resulting in better
application of the treatment. That is, for example, if the application of the process patterns showed an
improvement in performance in a more relaxed environment, it is likely that a more stringent and focused
application of process patterns, in a more strict and better controlled environment (e.g. commercial
organisations), would show higher improvement levels. Furthermore, although students were used as subjects,
rather than professional practitioners, they were in their third (final) year of studies, close to their professional
start in industry. Therefore, it is perhaps possible to make a cautious assumption that, if the experiment was done
using professional subjects, the experiment would have produced similar results. However, this is a hypothesis
that needs to be tested in a replication and could be the subject of a future work.

Having discussed the fundamental concepts and various aspects of control issues within the experiment, in the
following section, design of the experiment is discussed.

5.6 Experiment Design

An overview of the experiment design was presented in Section 5.3. The experiment design is broadly discussed
in this section. The design issnes such as the involvement of subjects, the method of applying treatment, and the
methed of selecting subjects, as well as the design models are discussed. Figure 5-6 depicts the overall structure
of the experiment design.

O3B0
Stitems

Figure 5-6 Experiment design

5.6.1 Design models

As depicted in Figure 5-6, while in the case of group projects the experiment was conducted in two phases
{semesters), it was conducted for a single semester in the case of individual projects. The design medel devised
for project types therefore differed accordingly. While the number of dependent variables was the same across
both project types, the number of independent variables varied. In the case of group projects where the
experiment was conducted for two semesters, there were two independent variables, the treatment (presence or
absence) and the semesters (Seml and Sem2). By treating the ‘semester’ as independent vanable, the effect of
changes in semesters can be analysed to verify that any difference between the treated and control groups are not
due to changes in semesters (i.e. Seml and Sem2), but as a resuit of the application of the treatment.

For the group projects, therefore, the experiment design was modelled on an approach referred to as ‘2 x 2
between subjects factorial design’, also referred to as “two-way ANOVA design”, where there are two
independent variables involved. The design is referred to as “between subjects design” because the same subjects
were not used in both phases of the experiment (i.e. Students doing group projects in semester |, were different
to those in semester 2). The experiment design in terms of its independent variables is depicted in Table 5-5.

Chapter 5 Experimental Methodology 84

Independent Variable B (Semesters)
Independent Variable A | . Semester | Semester 2
{Treatment) - -) . .
Treated (presence of | Treated groups in Semester one | Treated groups in Semester two
§ - treatment) - - (Trent Park campus) (Hendon campus)
Control (absence of Control groups in Semester One | Centrol Groups in Semester two
treatment)” . | (Hendon & Totienham campus) (Trent Park campus)

Table 5-5 The 2 x 2 experiment design {independent variables)

In the case of individual projects, where a single semester is involved, there was only one independent variable,
which is the presence or absence of the treatment. The experiment design for the individual projects therefore
used the ‘independent samples t-test’ for their analysis. Section 7.2.3 will further discuss the two devised
experiment design models.

5.6.2 Subject’s Awareness of the Experiment

In determining how much the subjects should know about the experiment, a number of options were considered.
One option was to inform the subjects that the modules they were taking were being studied in an experimental
research and, therefore, they were the subjects in the experiment. They would be informed of the details of their
role in the experiment, such as whether they were in the treatment or coatrol groups. This option ran the risk of
the subjects in the experimental groups to perform to expectation, as they could assume that they were expected
to, or should, perform better. This option therefore would have the considerable disadvantage of suffering from
the Hawthorne Effect.

A second option considered was to inform the subjects of their participation in the experiment, without stating
whether they were in the control or experimental groups. This option had alse the disadvantage of suffering from
the Hawthomne Effect, but to a lesser extent (i.e. subject’s behaviour could be influenced by knowing that they
are being participants in the experiment).

A third and final option considered was to decline to inform the subjects of their participation in the experiment.

"The experiment, therefore, would go on without the knowledge of the subjects involved. in this way, subjects
would get on with the work as normal, without knowing that they were participating in an experimental study.
This option had the benefit of sustaining complete normality in the way the subjects carry out their project work.
While this strategy appeared to be the best, in terms of the integrity and clinical application of the experiment, it
suffered from some disadvantages. Firstly, the implementation of this strategy would be rather impractical, as it
would be difficult to keep the experiment a secret. More importantly, it would be ethically inappropriate that
people should take part in an experiment without their knowledge and consent [Singer and Vinson 2002].
Therefore, the second option was chosen in which the students were informed of their participation in the
experiment, without being told whether they were in the treated or control groups.

5.6.3 Subjects and Treatment Application

There had to be a way of ensuring that the subjects in the experimental groups would use the treatment
condition. In other words, there had to be an incentive for the subjects to fully participate and use the treatment
{i.e. process patterns). A number of possible solutions were considered. An option was to tell the subjects that
the treatment would improve their work. This option did not however appear to have enough persuasion power
to convingce all the subjects to use the treatment.

The other option considered was to arrange for marks to be allocated for the use of process patterns (i.e. the
treatment). In order to ensure that the control groups would also be entitled to the extra marks, they would also
be set a separate task, for which they would receive a mark equivalent to that of the experimental groups. That,
however, would mean modifying the curremt marking system for the module (group project) by adding other
elements entitled for marking. The nniversity used a computerised marking system called PAM, which did not
allow modification of the marking criteria. That option therefore did not appear feasible for practical reasons.
The marking approach is also detiled in documentation that was validated against the module. Changes to that
documentation could require a partial re-validation of the module.

Chapter 5 Experimental Methodology 85

The final option was to assign the project coursework, so that using the treatment would be a requirement. In this
design, the project assignments would be set such, that it would be specificatly required of the experimental
groups to nse process patterns (i.e. the treatment) in their project. Adherence to this requirement is reflected in a
marking criterion ‘reflecting on their approach’ in the PAM marking system. This option appeared to be the best
option, as it did not suffer from the disadvantage that the other options entailed. This was therefore the option
chosen to be nsed for this experiment.

5.6.4 Subjects Selection Methods

A nnmber of possibilities for selecting subjects were considered and analysed. The following is a description of
those that were considered, and the reason they were selected or rejected. .

5.6.4.1 Voluntary-Based Selection

In this design, stndents were to be given the option of participating in the experiment. Once volunteered, they
would then be assigned to either treatment or control group. In consulting relevant tutors and course leaders, it
was decided that there was a high possibility that a sufficient number of students woutd not volunteer for the
experiment. The problem was compounded by the fact the students for module CMT399] module worked in
teams of five and, therefore, all the members of the team had to volunteer to participate in the experiment. That
made the likelihood of finding a sufficient number of teams, volunteering for the experiment, small.
Furthermore, students that would volunteer to participate in the experiment might be from different seminars.
This would be impractical, as the snbjects could only receive help and instructions to use the treatment through
their seminar sessions and, having a mixture of control and experimental groups in a seminar, would make the
task impracticat. This design was therefore considered impractical and was dismissed.

5.6.4.2 Mandatory-Based Selection

In this method the students from all, or a selected number of seminars, wonld be required to participate in the
experiment. There would be two possibilities: 1) selecting a specific number of seminars for participation, and 2)
selecting all seminars.

In order to minimise the effect for the seminar tutors on the experiment, seminars with same tutors for treated
and controt groups were required. Therefore, any tutor teaching a treated group would also need to teach a
controt group. Therefore, from the module timetable, those seminars could be selected which satisfied this
condition. In selecting the seminars on this basis, there needed to be enough seminars shared between tutors, so
that the above condition could be satisfied (i.e. each tutor taught one treatment seminar and a matching control
seminar). There did not appear to be enough seminars shared between tutors from which seminars for the
experiment could be selected (that is, not enough seminars so that each tutor could be assigned to a treated and a
control group).

The other option of selecting all the seminars to participate in the experiment was considered. This option was
deemed appropnate as it ensured that there would be a maximum number of subjects for the experiment and was
therefore selected. There also seemed to be a concern regarding the leakage of treatment condition across the
control groups, where there were both control and experimental groups in the same campuses. In order to
prevent, or significantly decrease, the likelihood of control groups accessing the treatment condition, it was
decided o choose the treatment and control groups to be from different campuses. In this design, all the seminars
in a single campus would act as expernmental groups for one semester and as the control groups in the next, and
vice versa.

Students taking the module CMT3991 (group project) had a lecture and seminar-based tvition format. In each
seminar, there would normatly be four teams, and each team woutd normatly have five members. The seminars
were used to subject the experimental groups to the treatment condition. Therefore, all teams in the treated
seminar groups received the treatment. Students that completed module CMT3991 (group project) in the first
semester went on to take the modute CMT3992 (individual projects} in the second semester. The students that
took on a software development project were used as subjects. They were assigned to either experimental or
control groups in accordance with their gronp status (treated or controt) in the previous CMT399} module.

Figure 5-7 below illustrates the way students in Module CMT3991 (group projects) are assigned to the
experimental groups.

Chapter 5 Experimental Methodology 86

Groups
Studhwats arw groupmd and
ASBIE T 2 BTRCISS

it rremariil” 6ii, il

Figure 5-7 Module CMT399! (group projects) seminar structure

In the following section, a nurnber of issues about the details of the experiment design are discussed.

5.6.5 Group and Individual Projects Assignments

The project assignments for the module CMT3991 involved in the experiment had to be such that the work
involved would test the subjects on all the elements of interest in the experiment. Group projects for CMT3991
were normally based on software application development. As such, any project title would be suitable for the
experiment, as long as the subjects were told that they needed to follow a proper development lifecycle approach
and document each phase. It was however decided that setting a common project title for all subjects to work on,
would have the benefit of producing projects that would be easier to assess and compare. Therefore, in
cooperation with the module leader and seminar tutors, the researcher devised a single project assignment for
both treatment and control gronps.

Students that completed and passed the CMT3991 module went on to take the CMT3992 module, which
involved carrying out an individual project. The CMT3992 students chose the topic and title of their individual
projects. Those projects, which involved the development of a software application, were selected for
participation and analysis in this research.

Theoretical as well as practical aspects of the experiment design were presented in the above sections. In the
following section, issues involved in the conduct of the experiment are discussed.

5.7 Experiment Conduct
In this section, the two main aspects of conducting the experiment are discussed. These are:

1. Application of treatment condition
2. Data types

Application of treatment condition is discussed first followed by a discussion of the data collection procedure.

5.7.1 Application of Treatment

Once the experimental and control groups were selected, there needed to be a mechanism for subjecting the
experimental groups to the treatment condition (i.e. process patterns). The process pattemns in the form of web
pages were hosted on a specific website to which the treatment groups were given access. The treatment groups
were also given introductory training on the process pattemns and on how to access and use the materials on the
website. The researcher for this experiment used both the lecture sessions, as well as the seminars to introduce
the snbjects to process pattems and answer questions about their use. '

1t was decided that rather than giving the subjects hard copies of the materials to use, it would be preferable to
place them on a website for the following reasons:

Chapter 5 Experimental Methodology 87

1. Provision of a facility to ensure the right subjects vsed the process pattern materials. By issuing
log on 1Ds and security measures it was possible to ensure that the materials were available to the
treatment groups only

2. Provision of facilities to gauge and determine levels of material usage: By keeping a log of the
subjects who logged onto the system, it was possible to determine whether the subjects were actually
making use of the treatment. By keeping track of the data gathered in terms of who logged into the
system, it was possible to ensuze that all of the treatment groups were using the matevals and reminded
anyone who was wnot accessing the process pattems on the website to do so. Furthermore, the data
collected would be used to determine if there was a correlation between, the number of times subjects
logged in to the website to use the patterns and their performance in terms of the quality of the software
attributes measured.

3. Reduction in data errors: Measurement forms were also hosted on the website, which were available
to both treated and control groups. The ounline hosting of the measurement helped reduce data recording
errors and facilitated data analysis. In addition, it had the benefit of the resources associated with the
experiment to be available in one place.

Using an authentication system of username and password, the website presented a number of process patterns to
the authorised subjects (i.e. treatment groups). As well as the actual process pattemns, the website offered
guidelines on how to use the materials. A sample of the process patterns hosted on this site is included in the
*Appendix B. Pattemns’. The website also provided the facility for online forms for data collection and recording
through measuremeut forms. The forms were available to both treated and control groups. The data collection
procedure is discussed in the Section 6.3.1. The screenshots of the forms can be seen in ‘Appendix A.
Experiment Details’.

5.7.2 Data Types

Data for this experiment came from two main sources:

¢ Data from student records as marked by tutors
¢ Data collected from the measurement process

At the end of each semester, projects were submitted to the university to be assessed and marked by lecturers. A
software application called PAM assisted tutors in marking and recording the student marks for the two modules
(i.e. CMT3991, and CMT3992). The marking scheme used in assessing the project attributes was based on 5-
point scaling system (excellent, good, average, poor, very poor). The details of the marking critedia and scheme
are presented in the ‘Appendix A. Experiment Details’.

A number of distinct project attributes were assessed and marked by the tutors individuatly. While most of these
attributes were concemned with the actual project report (i.e. abstract, introduction, counclusion...), there were
some that were directly related to the development efforts which were of interest in this study. These are:

I. Design and analysis (assessing the quality of design and analysis of the application developed)
2. Product (assessing the quality of the end product)

3. Evaluation (assessing the quality of evaluation/testing methods applied)

4. Project Management (assessing the management quality of the project)

The attributes marked are depicted in Table 5-6 in relation to their respective development phase.

Officially Marked Attributes Development Phases
Design and Analysis Requirement Analysis, Design
Evaluation Delivery
Product Delivery, Implementation
Project Management Requirement Analysis, Design, Implementation, Delivery

Table 5-6 Relationships between the development phases and the marked atiributes

In addition to the tutor marks, measurements of many software attributes spanning a complete development
lifecycle were collected through a devised measurement process. The measurement process is discussed in detail

Chapter 5 Experimental Methodology 88

in Chapter 6. Once the projects were completed and submitied, they were officially marked by the seminar tutors
as normal. The projects were then passed on to the researcher for evaluation. The quality of their content was
evaluated by the researcher with regards to the attributes of interest. The subjects also submitted further
measurement data through the online forms. Online measurement forms were used in the experiment as
discussed in the Section 6.3.1.

5.7.3 Subjects’ Views on Process Patterns

The treated group’s views on their experience of using process patterns were sought through a questionnaire
hosted online, which contained two 4-point Likent scale questions. The questionnaire contained the following
questions:

1. How useful did you find process patterns in doing your project?

Notatall [Slightly q Moderately Very

2. How difficult/easy did you find the process patterns to understand?

Very difficult [Difficult [J Easy [Very easy []

There are a number of possible outcome scenarios for the final analysis of the data. In the following section,
some of these are discussed.

5.7.4 Experiment Outcome Scenarios

There were a number of possible outcomes with regard to the effect of patterns on performance. In this section,
some of these are discussed and illustrated through graphs. Performance here refers to the value of the software
attributes being measured in the experiment. As often customary in graphical representation of the experiment
data of this type, the performance trends in all the following outcome scenarios are represented by lines, in order
to make the relationship between the treated and control more graphically clear. It should therefore be noted that
these are not lines in the sense of regressing a number of points on the graph.

One scenario is that the treated groups in both semesters would do better than control groups. Figure 5-8 shows
performance levels for both control and experimental groups across the two semesters. It indicates that the
control group’s performatice is constant across the two semesters and is lower in value than that of experimental
groups, which is placed at a higher level. It also shows that the experimental group’s performance is constant
across the two semesters and is higher in value than that of control groups, which is placed at a lower level.

e ke e o [P

= Treated
w— CON{rol

—Control
——Treated

Porfanmence

Perfornnance

1

Semesters Semesters

Figure 5-8 An outcome Scenario Figure 5-9 An outcome Scenario

Another outcome scenario is illustrated in Figure 5-9. The figure shows performance levels for both contro! and
experimental groups across the two semesters. It indicates that the control group’s performance is constant
across the two semesters and is higher in value than that of experimental groups, which are placed at a lower
level. The figure also shows that the treated group’s performance is constant across the two semesters and is
lower in value than that of the control groups, which are placed at a lower level.

Chapter 5 Experimental Methodology 89

The Figure 5-10 depicts a scenario in which the control group’s performance is not constant across the two
semesters. While the control group’s performance is low in semester one, it is higher in semester 2. Similarly,
the treated control group’s performance is high in the first semester and low in the second. The Figure 5-11
depicts a further outcome scenario.

e .
£ . : : . - / Treated
5 ! .) e Contral E
g >< Troatad g Control
- : 1 e]
. ' v 2) 1 2
Sameasters Semester

Figure 5-11 An outcome scenario
Figure 5-10 An cutcome scenario

Experiments involving human subjects, must take all precantions to ensure that the experiment is wholly ethical
and that no human subject is adversely affected by the experiment in any way. The ethical issues concemed with
this experiment are discussed in the foilowing section.

5.8 Ethical Issues

As the experiment for this research project invoived human subjects, one of the main considerations was the
ethical concems invelved. There were two key objectives involved here; firstly, identifying the concemed ethical
issues, and secondly, addressing and resolving any identified issues [Duquenoy 2005_al. In order to ensure that
scientific research is carried out in an ethical manner, an attempt has been made by some organisations to
identify a number of ethical concems and propose guidelines for their resolutions. The American Psychological
Association [APA 2002] has produced a set of principles, referred to as the APA Code of Ethics, which aims to
provide a set of ethical guidelines to researchers and research organisations that adopt it (See Appendix A.
Experiment Details). However, adopting such a code of ethics could limit the field, scope and types of research
and therefore before adopting the code, one must consider the consequence of adopting such code ethics
[Shamoo 2002]. The API Code of Ethics were cousidered in this study and where appropriate adopted to achieve
the two key objectives stated above.

Ethical concemns can be broadly identified in the following three different areas [Diener and Grandell 1978],
which were considered in this project:

I. The relationships between society and science
2. Professional issues
3. Treatment of subjects

This experiment did not generally have any social effects and therefore produced no ethical concems in relation
to the first point. The professional issue is one that concems all scientific research, and this research programme
was no exception. It was a priority that the research programme was carried out objectively, accurateiy, and
honestly.

The treatment of the experiment subjects was the most fundamental ethical issue in this study and was therefore
given careful consideration and planning. In particular, the privacy and confidentiality issues of the subjects
[Singer and Vinson 2002] were carefully considered. As a result, the experiment was designed and conducted in
such a way, that no information about individual subjects, such as marks, or performance wouid be dispatched,
published or divulged, which was outside and beyond the normal university practice, without the fuli agreement
of individual subjects. The subjects’ consent 1o allow their projects to be nsed in the experiment, were acquired
through a consent form that they signed and submitted with their projects. In capturing and presenting the data
and the analysis, careful consideration was given to aggregating and anonymising the data, so that none of it
could be traced to its onigin in order to identify a particular individual snbject or subjects.. It was a policy of this
research 1o ensure that the experiment subjects did not suffer from any embarrassment as a result of their
participation. As final year students, many of the subjects might have already been under stress from the pressure

Chapter 5 Experimental Methodology %0

of work. The experiment took this into consideration in planning the design and conduct of the experiment not to
cause the experiment subjects undue stress.

In real life experimentation, one has to understand and appreciate the circumstances of the situation and the
constraints and compromises involved. This is discussed next.

5.9 Design Constraints

In studying real life situations, and designing and conducting experiments within them, to leam and understand
some phenomencn, or test some hypothesis, the researcher has to understand and take account of the
envircnmental constraints and limitations involved. Therefore, the nature of this study, as real life
experimentation, is such that it invariably brings constraints on the expeniment design. Some of these issues are
discussed below:

Selection of subjects of the same abilities to both control and treatment groups
Contral of the amount of treatment condition given to the treatment groups
Time given to accomplish project tasks

Variation in team sizes

Ethical issues

The key point is that the experiment design took all of those points into consideration and attempted to devise
the best possible solutions in a way that the internal/external validity of the experiment was not adversely
affected. These are explained in this section.

Students working on group projects had different abilities and characteristics. According to the university
regulations, they had to form a group or a tenm to work on a project of their own choosing. The teams could not
therefore, be specifically set up according to some crtenia (such as their ability), for the purpose of this
experiment. While the use of such a matching method might have been beneficial, it would have been generally
difficult to judge accurately students abilities according to some criteria, and then match them. Because of the
random nature of the experimental and control groups and the large number of subjects (sample size), any
differences and discrepancies in the groups were randomly dispersed between the control and treatment groups.
Any discrepancies would therefore be constant and would not adversely affect the results of the experiment.

It was not pessible to control and measure the amount of treatment condition (i.e. process patterns) that the
subjects used accurately. They were told to use as many as they needed for their project. However, while the
number of times ench subject accessed the process pattern pages on the website were recorded as a measure of
the usage rates (discussed in Section 5.7.1), the system did not record which patterns were accessed and used by
the subject. It would have been advantageous in terms of knowing the access rates of the used patterns, had the
system recorded such data.

Although there was a set amount of time the subjects had to work on their project as dictated by the academic
semesters, the actual amount of time they spent on development was based on their own estimation. They
declared how much time they spent on development activities on an cnline measurement form. . Subjects were
instructed to fill in the forms as accurately and ns honestly as possible. Their estimation of the time they spent in
each phase had to be accepted as the actual time spent.

Although there was a recommended team size of five for group projects, according to the university's rules, the
size of groups could change and in some cases did. However, this did not affect the experiment, as the project
efforts were based on person-hours spent on the project. Furthermore, any change in the team size affected both
treated and control groups, and was therefore a constant factor.

There is always an element of ethical concern in expeniments invoiving human subjects, which have to be fully
considered in the design and conduct of an experiment. Ethical issues concemed with this experiment had to be
dealt with head on and from the first principles meeting requirements, such as faimess, confidentiality, and
others. The experiment had to be devised in a way that would satisfy the University’s Ethics Committee that all
ethical issues were fully considered to prevent a breach of ethics,

Chapter 5 Experimental Methodology - 91

5.10 Summary

In this chapter, the experimental research method with respect to its design and implementation, was presented
and discussed. The purpose of the experimentation was to, evalnate and assess the utility and value of the
application of process pattems, on a software development project.

The experiment involved two types of software development projects (group, and individual) and had a two-
semester duration. In the case of group projects, the subjects were divided into teams and worked on a common
software development project. In the case of individual projects, subjects worked on their own software
development project.

A *2 x 2 between subjects factorial design’, also referred to as “two-way ANOVA design’ was devised where the
treated groups receive a set of process patterns to use in their development project. The control groups did not
used the patterns. The aim was to determine if there were any difference between the treated and control groups,
which conld be attributed to the nse of process pattemns. The experiment’s independent variables were the
presencefabsence of ‘process patterns’ and the semesters in which the experiment was conducted. The dependent
variables were a number of attribntes across the four major development phases (i.e. requirement Analysis,
Design, Implementation, and Delivery). The experiment required a comprehensive measurement process for data
collection and analysis. The data gathered through the measurement process, as well as the official tutor marks
awarded to the projects. were used in the experiment. Both the treatment (i.e. process patterns) and the
measurement forms were hosted online using a specifically developed website.

Many ethical and technical challenges had to be overcome in designing and conducting a sonnd controiled
experiment. These issues were discnssed in this chapter in detail. The measurement process devised for this will
be discussed in the next chapter (Chapter 6).

Chapter 6 Measurement Process 92

Chapter 6 Measurement Process

6.1 Introduction

In the previous chapter, the experimental research method was discussed, where the measurement process was

.one of its components. In this chapter the measurement process, devised and implemented to define and collect
the required measurements for the experiment, is discussed in detail. A devised measurement process was
necessary for the experiment to define the measurement goals which needed to be achieved, the measurements
and metrics that were required to achieve the goals, and the means by which the reqnired measurements could be
acquired.

The focus of discossion in this chapter, is the adaptation of the Goal/Question/Metric (GQM) model {Basili and
Weiss 1984], to create a tailor-made measurement process, approptiate and applicable to this study. The aim of
the measurement process was to provide the programme and the mechanism to measure a number of software
attributes, as part of the experiment design, in order to evaluate the effect of process patterns on software
development projects. The measurement concepts and the GOQM model, which underlies the measurement
process, were discussed in Chapter 4. In this chapter, the three elements of the GQM, in relation to the objectives
of the measurement processes, are defined and presented in detail. The full details of the goals, questions, and
metrics involved are presented in a number of specific tables. There is also a detailed definition and specification
of each defined metric, in table formats. However, due to the detailed and extensive nature of these tables, only a
few of them are depicted in the body of this chapter and the complete set of tables is presented in the ‘Appendix
C. Metrcs Specifications’. Other components of the measurement process, such as data collection procedure and
the tools used, are discussed towards the end of the chapter.

6.2 Measurement Process Design

Software measurement process is often employed for the estimation of future products, evaluation and analysis
of artefacts, structuring of the software process, improvement of techniques and methedologies, and the coatrol
of software process [Ebert et al. 2005]. In this project, the software measurement process was employed in the
context of evaluation, to test the experiment’s hypothesis that the application of process patterns in software
development, improved the quality of the software development project. Designing and conducting a
measurement programme is often a difficult endeavour and involve many intrcate issues that have to be
carefully handled [Briand 1997]. The measurement process procedures outlined in the literature, such as {Briand
and Basili 1999] and [Fenton and Pfleeger 1991], as well as guidelines proposed by Practical Software
Management [PSM], [NASA], and [1ISO/IEC 15939] standards, were considered in drawing up the measurement
process for this study. A great deal of attention was given to the design and conduct of the measurement process,
to ensure that it was appropriate and that the process was properly and accurately implemented.

The goal-oriented measurement process designed and implemented was based on the GQM model, which was
discussed in Section 4.8.2. This involved a number of steps and tasks as follows:

1. Define goals and sub-goals

2. Define questions to achieve goals

3. Define metrics to answer the questions
4. Define data collection procedure

Defining goals is the first element of the GQM model. Practice has shown the importance of specifying a
measurement goal precisely, since the selection and definition of suitable and nseful measures and models
depends strongly on the clarity of these early decisions [Basili and Rombach 1988]. The goal in the GQM model
has a number of elements that are depicted in a structure to assist the creation of clear and unambiguous goal
statements as showa in Table 6-1.

Chapter 6 Measurement Process Q3

Elements Definition
Object of Study What will be analysed
Purpose Why will the object be analysed
Quality Focus What property/attribute of 1he objecl will be analysed
Viewpoint Who uses the daia collected
Context In which environment

Table 6-1 Goal Elements of the GQM model

The goal statement had the following format, where the blanks were filled in accordance with the requirement of
any specific goal:

Analyse Jor the purpose of with respect to Jfrom the viewpoint of in the context of

The goals in the measurement process were depicied in the format stated above. The measurement was based on
the evaluation of some attributes in the four major development phases (Requirement Analysis, Design,
Implementation, and Delivery) of the development lifecycle and the measurement goals were defined
accordingly. As the ‘process pattems’ used in the experiment affected activities in a complete development
lifecycle, there were numerous possible goals that could be set. However due to the scope limitations of this
research, only a limited number of goals were set and analysed. There were a number of attributes in each
development phase that could be measured, which directly or indirectly related to software quality. Three
categories of the process and product attributes were selected that were appropriate for the measurement of the
two project types (individual and group projects) under investigation:

1. Artefacts: Artefacts (such as code and documents) produced during each development phase
2. Tests/reviews: The testing/reviewing quality of each development phase
3. Efforts: Proportion of time allocated to each phase

The artefact goals were concerned with the physical artefacts produced in each development phase and generally
involved product metrics. The goal was defined for the purpose of the evaluation of artefacts that were produced
in any of the four major development phases. Each development phase produced a number of specific artefacts,
which were measured for evaluation. The goal defined for each development phase therefore corresponded to the
artefacts produced in that phase. The test and review goals were defined with the aim of evaluating the quality
of tests and reviews, by assessing the implemented test and review process and product for each development
phase. This, for example, involved attributes such as document and code reviews. The efforts geal, aimed to
evaluate the proportion of time that was allocated to activities in each development phase. In particular, the goal
was to measure the proportion of the development phase time that was spent in testing.

For each goal, there were one or more related questions that aimed to determine the measures and metrics, which
were required to achieve it. There were many questions that could be set for any one stated goal. However, due
to the scope limitations of this research in terms of time resource, a limited number of questions were selected
for each goal {one or two questions per goal). These questions were presented in a number of tables (Table 6-2
to Table 6-13).

Metrics were the third and final element of the GQM model and provided the answers to the questions related to
the measurement goals. Each question, within a goal, required one or more metrics for their resolution. There
were many metrics (in isolation or in composition), that could have been used to answer any goal-related
questions. However, due to limitations on the scope of this research, only a small number of metrics were used
and analysed (one metric per question). The metrics, required to answer the measurement questions, were
defined for all the major development phases discussed above, and are presented in the GQM tables in the
following section.

6.2.1 GQM Tables

Having discussed the individual components of the GQM model for the measurement process, a number of
GQM ubles for each development phase were created. The tables contain three main sections corresponding to,
the goal, question. and metric components of the GQM model. Detailed rationales for the metrics, stated in GQM
tables, are given in metric specification tables in the ‘Appendix C. Metrics Specifications’. Examples of the
metric specification tables are presented and discussed in the Section 6.2.2. The measurement data for the

Chapter 6 Measurement Process

Q4

metrics were collected by the subjects and the researcher, through an online measurement form as discussed in

the Section 6.3.1.

The QM tables for the Reguirement Analysis (RA) phase are presented in the following tables (Table 6-2,

Table 6-3, and Table 6-4).

-~ ERA = e T s . o L. HONRTEY M ¥ X8

Analvse the requirement artefacts/documents
For the Purpose of evaluation
with Respect to RA artefacts quality
From the Viewpoint of the developer
in the Context of gronp and individual projects

B
J B SN Metﬁ

What percentage of the requirements is Percentage of traceable requirements

traceable? (Traceable Requirements per Totzl Requirements Ratio)

Table 6-2 GQM for artefacts in the Requirement Analysis (RA) phase

Analyse the requirement artefacts
For the Purpose of evaluation
with Respect to the RA testireview quality

From the Viewpoint of the developer

in the Context of group and mdmdual projects _

b S Qu " p
What percentage of reqmrements spemﬁcanun Percentage of reviewed requirements
document is reviewed specification
What propertion of the defects is corrected? Percentage of defects fixed

(Defect Fixed per Defects Detected Ratio)

Table 6-3 GOQM for 1est and review in the RA phase

. na;lzs the requirement artel'actsldocument

For the Purpose of evalnation
with Respect to the RA effort

From the Viewpoint of the developer
i'n the Context of group and individual pro_|ects

- Questions

(Test Time Per Phase time ratio)

Whal percentage of the RA phase time is spent in testing? Percentage of Phase Time Spent in Testing

Table 6-4 GQM for effort in the RA phase

The QM tables for the Design phase are presented in the following tables (Table 6-5, Table 6-6, and
Table 6-7).

. RS e Tl 0 et T Geak o e T B e e T T U

Analyse the design artefacts/document
For the Purpose of evalnation
with Respect to the design artefact quality

From the Viewpoint of the developer

in the Come.rt of group and individual pmJects
i, Questions . . - ™ T Methes R

What is the average class size] Number of melhads per class {Methods per Class Ratio)

Table 6-5 GQM for artefacts in the Design phase

Chapter 6 Measurement Process

@5

Goazl

Aneclyse the design artefacts/document
For the Purpose of Evaluation
with Respect to the design test qnality
From the Viewpoint of the developer
in the Context of group and individual pro]ects

Question. - : Metric.

What percentage of the desiga document is reviewed Percentage of reviewed design document

What proportion of the defects is corrected? Percentage of defects fixed
{Defect Fixed per Defects Detected Ratio)

Table 6-6 GQM for test and review in the Design phase

e B S 6= T ~ Goal e

Anaolyse the design artefacts/documents

For the Purpose of Evalnation
with Respect 1o the design effort

From the Viewpoint of the developer

m rhe Conrexr of group and individual projects

N Question: © . o " Metric K
What percentage of the Design phase time is Percentage of Phase Time Spent in Testing
spent in testing? {Test Time per Phase Time Ratio)

Table 6-7 GOM for effort in the Design phase

The QM tables for Implementation phase are presented in the following tables (Table 6-8, Table 6-9, and
Table 6-10)

Anglyse the Implementation artefacts/documents .
For the Purpose of evalnation

with Respect to the Implementation artefacts quality
From the Viewpoint of the developer

in the Context of group and individual projects

. Question: " R - Metric BNEREE
What percentage of the lines of code is commented" Comment Densnty (Comments per LOC Ratlo)
What is the rate of defects per lines of code? Defect Density
What is the productivity in the Implementation Implementation Productivity (LOC over
phase Implementation phase time)

What is the overall productivity Overall Productivity (LOC over Total Project Time)

Table 6-8 GQM for artefacts in the Implementation phase

Anolyse the Implementation artefacts/documents

For the Purpose of evaluation
with Respect to the Implementation test/review quality

From the Viewpoint of the developer

in the Context of group and individual projects
Question.” 7 - L “ Metric a

What percemage of the code is Percentage ol' source code reviewed
reviewed?

What proportion of defects is corrected? | Percentage of defects fixed
{Defect Fixed per Defects Detected Ratio)

Table 6-9 GQM for test/review in the [mplementation phase

Chapter 6 Measurement Process 96

Analyse the Implementation artefacts/documents

For the Purpose of evaluation
with Respect to the Implementotion effort

From the Viewpoint of the developer
in the Context of group and individual pro;ects

: Question ° § . i Metric !
What percentage of the Implementation Percentage of Phase Time Spent in Testing
phase time is spenl in testing? {Test Time per Phase time ratio)

Table 6-1¢ GQM for effort in the Implementation phase

The QM tables for the Delivery phase are presented in the following tables (Table 6-11, Table 6-12, and
Table 6-13)

s : Cceinot L Goalltl] L e
Anaolyse the Delivery artefacts/document

For the Purpose of evaluation
with Respect to the Delivery antefacts quality

From the Viewpeint of the develaper

m the Context of group and mdlndual pm_]ects
Question:: : . Metric_. K
How many test cases are defined per requirement] Teﬁt case densuty (Test Case per Reqmrement Ratia)

Table 6-11 GQM for artefacts in the Delivery phase

Analyse the Delivery artefacts/document
For the Purpose of evaluation
with Respect to the Delivery test quality

From the Viewpoint of the developer
in_the Context of group and individual pro jIZ'CL'S
- Question: . - Metric. - .
What proportion of detected defects is corrected?] Percenlage of defects fixed

Table 6-12 GQM for test/reviews in the Delivery phase

- Goal .. 7.

Anolyse the Delivery artefacts/document
For the Purpgse of evalualion
with Respect to the Delivery effort

From the Viewpoint of the developer
in the Context of gronp and individual pmjecis

Question : - . Metric) L
What percentage of the Delivery phase Percentage of Phase Time Spent in Testing
time is spent in testing? {Test Time Per Phase time ratio)

Table 6-13 GQM for effort in the Delivery phase

6.2.2 Metric Specifications

The metrics for answering the questions related to the specific goals were defined in the tables above. For each
metric that is defined, a specification table is defined that fully elaborates it. The specification of the measures
required in working out each metric are also presented in separate tables. The Table 6-14 shows the specification
table for the first metric above. The measures required for working out the metric are shown in Table 6-15 and
Table 6-16. The complete set of metric specification tables for all the defined metrics and their required
measures are given in the Appendix C. Metrics Specifications.

Chapter 6 Measurement Process 97

Percentage of Traceable Requirements
(Requirements Traced per Requirements Defined)

Definition Measures the percentage of the requirements that are traceable (Traceable Requirements per
Total Requirements Ratio)
GQM Goal Requirement Antefact Quality

GQM Question

What percentage of requirements is traceable?

Type Quantitative

Evaluation Method As per formula below

Applicable Phase Requirement Analysis

Rationale Requirements traceability refers to the ability to describe and follow the life of a requirement,
in both a forwards and backwards direction [Ramesh and Jarke 2001]. A requirement should
be linked to a higher level document (i.e. source), which could be a higher-level system
requirement, as well as downward to the design elements, source code, and test cases that are
constructed to implement and verify the requirement [Davis 1993][Hull et al. 2005].

Purpose This metric was used in the experiment to determine if there was any difference between the
treated and control groups in terms of the percentage of traceable requirements. The metric
will show whether as a result of using process patterns in the development projects, the
treated groups will have a higher percentage of their requirements traced to design, test, and
implementation.

Scope Small software development projects

Attribute to Measure

Traceability of Requirements

Metric Scale

Interval

Related M

EReguifediMeasarentent

Number of Requi

cable Requirements (Measu
R B e S Vd e i

Number of Traceable Requirements (NTR) NTR o0

Number of Requirements {NR)

Tahle 6-14 Percentage of traceable requirements metric (Metric 1)

T R P ST 1

Ninber of:Traceable REqGuirements

Definition Measures number of requirements that are traceable

Type Qualitative -

Source Researcher

Applicable Phase Requirement Analysis

Purpose This measure is used in the experiment to determine the percentage of traceable requirement.

Measurement Scale

[nterval

Measurement Method

Requirements in the requirement specification are individually read and checked for iraceability.
A requirement is traceable if it can be linked to its source and the related design, test and
implementation [Davis 1993] [Ramesh and Jarke 2001]. Total number of traceable requirements
are counted and recorded

Related metrics

Percentage of Traceable Requirements (Metric 1)

Table 6-15 Number of traceable requirements measure (Measure 1)

Chapter 6 Measurement Process 98

L DS e e i Number oF Requirements .- . - . - 1 w70 B
Definition Mcasurcs number of defined requirements
Type Quantitative
Source Experiment Subjects
Applicable Phase Requiremeni Analysis
"l-’-;irpose This measure is used in the experiment to determine the value of the two metrics: Percentage of

Traceable Requirements, and Test Case Density.

Measurement Scale Interval

Related metrics Percentage of Traceable Requirements (Metric 1), Test Case per Requirement Ratio (Metric 11)

Table 6-16 Number of requirements measure (measure 2)

6.3 Measurement Process Conduct

The designed measurement process required mechanisms for collecting and storing measurements. In this
section, the data collection procedure conducted to capture and store measurement data, as well as tools used are
discussed.

6.3.1 Data Collection Procedure

In defining the data collection procedure, a number of issues were considered which are dlscussed in this section.
Two methods of collecting and recording measurement were used:

1. Measnrements taken by the experiment snbjects: These measurements were taken by the subjects
during the life of their projects and were submitted by them through a specific online measurement
form (see Section 5.7.1). The measurement form contained a number of measurement questions, in
accordance with the measurement requirements of the devised measurement process.

2. Measurements taken by the researcher: This was done after the completion of the projects and their
assessments by the course tutors. The researcher studied and evaluated each project report with respect
to a number of attributes (e.g. number of traceable requirements). This was done for both the treated
and control projects.

During the course of the development projects, the subjects took measurements of various aspects of the project.
The responsibility for collecting, recording, and submitting measurement data was assigned o the individual
subjects in the case of individual projects, and to the groups in the case of group projects. The subject for the
group projects {(in both the treated and control groups) were instructed to take and record the data in their group
meetings. Each group had a group leader, who was asked to ensure that measurement tasks were discussed at
their gronp meetings and appropriate sections of the online measurement form were filled. The collected data
were stored in a relational database for structured storage and provision of facilities to run queries on the data for
analysis. This is further discussed in the Section 6.3.2.

The subjects were instructed to use an online data collection system, which was specifically designed and hosted
on an intermet website (see Appendix A. Expenment Details). The website hosted measurement forms that were
to be filled in by the subjects. There were also guidelines and help on how to fill in the form. As a caontingency
plan, the subjects were also given the option of recording their measurement data manually in paper forms, if for
some reason they could not use the online system. They were asked to include the completed form in their
project report. The vast majority of the subjects used the online system to submit their measurements as
instructed.

There were two issues related to the integnty and correctness of data. First, that the measurement data taken and
recorded were correct, and second, that the data was transferred to the database correctly. In order to ensure that
the data was correct and valid, the subjects were instructed to take and record the measurement data as carefully
and precisely as they could. In the case of group projects, teams.were encouraged to discuss the validity and

Chapter 6 Measurement Process 99

correctness of the measurements in their group meetings in order to reduce flaws. They were further instructed to
be meticnlous in completing the oaline measurement form. They were asked to recheck the values submitted and
correct any possible mistakes. The small number of measurement data that were submitted on paper by the
subjects with their project report, was inserted into the database twice by the researcher to eliminate the chance
of incorrect data entering the database.

6.3.2 Tools Used

In a measurement programme, a number of tools can be used to facilitate the process. The number and type of
the required tools, depends on the scope and sophistication of the measuremeat programme. It is essential that a
suitable medium to facilitate the data storage and analysis of the collected measurements be provided. A web
application was specifically devised to host the process patterns and the measurement forms (This was discussed
in Section 5.7.1). The website included a relational database management system that was used for the storage of
the submitted measurement data. The designed website and the included database for this measurement
programme had the following characteristics:)

The website was designed to be simple and easy to use

The database was designed to be flexible in case of any structural change requirements at later stages
The database was normalised to avoid repetition of data

The website and the included database incorporated security measures to prevent unauthorised access

The relational database was further important in systematically exporting the measurement data to a statistical
package for analysis (i.e. SPSS package).

The employment of a suitable statistical analysis package to statistically analyse and present the results was
important. Such tools further helped to analyse the results for correlations and statistical significance. In this
research, the SPSS statistical analysis tool was used. This is further discussed in Chapter 7.

6.4 Summary

A goal-oriented strategy based on the GQM model was implemented in this study. The GQM model defines a
practical way of implementing goal-oriented measurement. It introduced a mechanism for formulating goals for
the measurement programme, as well as defining metrics required to achieve the goals. The measurement
process involved the following main tasks:

Define goals

Define questious to answer to achieve the goals
Define metrics that provide answer to the questions
Define data collection procedure

Eali i S i

For each development phase (i.e. Requirement Analysis, Design, Implementation, and Delivery), the three
components of the GOQM were defined throngh GQM tables, which specified the goals, questions, and the related
metrics. A detailed specification and rationale for each involved metric was presented in individual tables, the
complete set of which is presented in the ‘Appendix C. Metrics Specifications’. For each metric, the data
collection procedure and storage was also defined and described, where the measurements taken by the subjects
were input to the system through online measurement forms hosted on a specific website. The measurement data
was stored in o relational database by the devised web application, which was subsequently imported to the
SPSS statistical package for analysis.

Having discussed the research methods (experimentation and measurement process} in the last two chapters, in
the following chapter (Chapter 7) the experiment results will be presented and discnssed.

Chapter 7 Results 100

Chapter 7 Results

7.1 Introduction

In this chapter, the results of the experimental research method are presented and statistically analysed using the
SPSS statistical analysis package. As discussed in Chapter 5, there were two types of projects involved in this
experiment; individual projects and group projects. The experiment had two phases in the case of group projects
(Semesterl, and Semester 2) and a single phase in the case of individnal project (Semester 1). The experiment
duration for each experiment phase was one semester. For both individual and group projects there .were two
distinct sources of measurement data, which were the measurement data collected through a measurement
process, and the marks given to the completed projects by tutors. In this chapter, both sowces of data are
presented and analysed with respect to the experiment’s objectives.

In the first section of the chapter, the results of the conducted measurements are presented and analysed,
followed by a presentation and analysis of the results of the official marks in the latter section. The results of the
treated groups’ views, on the usefulness and usability of process patterns, will be presented in the final section.
First, a brief discussion of the statistical methods employed is given in the following section.

7.2 Applied Statistical Methods

The first task in statistical analysis was to determine an appropriate statistical method for the analysis of the
collected data. This involved determining whether the data was of parametric or non-parametric nature. This is
discussed next.

7.2.1 Parametric Vs Non-parametric

The parametric or non-parametric nature of the data determined whether parametric or non-parametric tests were
appropriate for their analysis. An essential condition for parametric tests is that the data is normally distributed.
Non-parametric tests are appropriate when one or more variables in the data set violates the normality
assumption or the sample size is small (< 15 cases or subjects) [Moore and McCabe 1993]. Therefore, to
determine which method was appropriate for the analysis of the experiment data, the data needed to be tested for
normal distribution. This is generally done throngh investigating the statistics (Skewness and Kurtosis) of the
data and their graphical representation such as histograms. More specifically, the Kelmogorov test [Ree2001]
can be used to check for normality in data. It compares the scores in the sample to a set of normally distributed
scores with the same mean and standard deviation, If the test was non-significant (i.e. p>=0.05) then the
distribution would be normal, otherwise (i.e. p<0.05) it would be non-normal. In order to test the data in the
experiment for normality both methods (observation of graphical representations such as histograms, and
Kolmogorov test) were employed. These tests indicated the presence of some outliers, which had to be dealt with
in order for the data to pass the normal distribution test.

7.2.2 Identification and Treatment of Outliers

An outlier is a score very different from the rest of the data that causes a distortion of statistics (e.g. sample
means, variances) aad, therefore, the results that include outliers often cannot be easily generalised. There are
several other problematic effects of outliers [Field 2000] including inflated sums of squares, distortion of p-
values bias or distortion of estimates, and faulty conclusions. There are mainly two likely canses of outliers, both
of which were investigated in this research with respect to the experiment data. These are:

1. Data errors: These are caused by data recording or entry errors. All the outliers in the experiment were
of this type.

2. Rare event: Data, that for some acceptable, reason does not fit within the typical range of other data
values (e.g. A project with uncharacteristically targe LOC)

There are a number of ways of detecting outliers [Johnson and Bhattacharyya 2001], two of which (inter-
quartile-range (IQR) computation and z-score) were employed in this research. Boxplots, which were employed

Chapter 7 Results . 101

in this research to identify ontliers, use the inter-quartile-range (IQR) technique. Using a boxplot is an effective
approach, especially when working with large datasets that have continuous data, such as the one in this
research. Furthermore, boxplots make no distributional assumptions and depict extreme values, in a way that are
easily identified. The other method employed for identifying outliers was the z-score technique. Since virtnally
all mound-shaped data falls within 3 standard deviations of its mean, the z-scores of such data are virtnally all
between -3 and 3. Thus any data that has a z-score less than (-3) or greater than (+3) would be an outlier. The z-
score associated with the i™ observation of 1 random variable x is calculated as follows:

Equatioun 7-1 z-score

The Application of the outlier detection techniques showed that there were a small number of outliers in the data
set. There are a aumber of approaches proposed in the literature for resolving outlier problems, depending on the
nature of the detected outliers [Bamett 1994]. The following resolution methods were considered for
employment:

Correction: Re-checking the source of the data for possible data entry errors and correcting them.
Transformation: Transforming data (e.g. square roots and logarithms) is a way to soften the impact of
outliers, since they shrink larger values to a much greater extent than they shrink smaller values.
However, transformations may not fit into the theory of the mode!, or they may affect its interpretation
(e.g. change the relationship between the original vanable).

s Deletion: Only as a last resort should an ontliers be deleted, and then only if it is found that they are
legitimate errors that cannot be fixed, or lie so far outside the range of the remainder of the data that
they distort statistical inferences.

+ Changing the score (Winsorising): Use methods such as changing the score to be one unit above the
next highest score in the data set.

¢ Accommodation: Using methods (i.e. non-parametric) that are robust in the presence of outliers.

Closer examination of these outliers indicated that the occurrences of the outliers were all due to incorrect data
entry by the experiment subjects. In resolving the outliers, the corresponding subjects were consulted and the
erroneous data was replaced by the correct values, thus resolving the outliers. An example of this was an entry of
105 for ‘number of lines of code’ variable, which proved to be an outlier. On consultation with the relevant
subject, the true value was confirmed as 1050.

The parametric or non-parametric nature of the measurement data for the experiment vaniables were investigated,
using the discussed process. The investigation showed that the measurement data for the experiment variables
were normally distributed. Furthermore, the presence of a relatively large sample size (132 group projects, 128
individual projects) made the application of parametric tests to be justified. It was therefore appropnate to
perform parametric, rather thun non-parametric statistical tests.

7.2.3 Parametric Tests

Statistical analysis was empioyed in this experiment to evaluate and present the values of the vanables and carry
out statistical significance tests. Two methods of statistical analysis (i.e. Factorial Analysis of Vanance (Two
way ANOVA), and Independent Samples t-test) were used, depending on the circumstances and hypothesis
being tested. These are discussed below. '

7.2.3.1 Independent Samples t-Test

The independent samples t-test is used when there is one dependent and one independent varable, where there
are two experimental conditions (e.g. treated and control) and different subjects are assigned to each condition. It
is employed 1o determine if there is a significant difference between the means of the dependent vaniable through

Chapter 7 Results 102

variations in the independent varizble. As discussed above, the independent samples t-test is generally applicable’
to parametric test, where the data being tested is drawn from a normally distributed population with the same
variance. However, the independent samples t-test is a robust method that stands up to some violation of these
conditions [Howell 2002]. In this experiment, the independent samples t-test is employed to determine if there is
a significant difference between the means of dependent variables (e.g. a metric such as Defect Density) for the
independent variable experiment-groups (i.e. treated and control). This method is applied to the analysis of the
individual projects, since only a single semester was involved. A significant difference in a dependent variable
between the treated and control groups would indicate an effect of the treatment {i.e. process pattems). The
independent samples t-test is calculated as follows [Rees 20011]:-

- XX

SS4SS YT 1Y
=+
\rptns —2 A0 Ty
Equation 7-2 Independent samples t-test

Where, X is the mean for group |, X, is the mean for group 2, 83, is the sum of squares for group 1, S5, is the
sum of squares for group 2, n; is the number of subjects in group 1, and n; is the number of subjects in group 2.

There were, however, circumstances in the experiment where there were more than one independent variable
concermned. There were two independent variables, experiment group npe and semester, defined in the case of
group projects. In such cases the independent samples t-test would not be appropriate and the ‘Factorial
ANOVA’ (Two-way ANOVA) method is used for analysing the data. This is discussed next.

7.2.3.2 Two-way Analysis of Variance (ANOVA)

The two-way ANOVA (factorial ANOVA) examines the effects of multiple independent variables on one
dependent variable. It provides the technique to assess the significance of the effect of two independent variables
on a dependent vanable, and determine any interaction between the independent variables. As discussed in the
research method chapter (Chapter 5), the objective was to analyse the performance levels of the two
experimental groups (treated and control) with respect to a number of software attributes. This was done across
two semesters, where in each semester different subjects acted as treated or control groups. There were therefore
two independent variables, which were the experiment group-type (i.e. treated and control groups), and the
semester (i.e. semester 1 and semester 2). There was also a single dependent variable, which was the software
attribute (e.g. metric or tutor mark) being evaluated. The relationships between the experiment groups and
semesters are illustrated Table 7-1.

The aim was to determine whether there were any significant differences between the means of the groups across
each indépendent variable, That is, whether there was a significant difference in the performance levels of: a)
experimentat and control groups, and b) Semester | and semester 2 subjects. The aim was to determine if there
was any significant difference between mean values in the treated and control groups for any metric/mark, and
whether the difference in semesters affected the outcome.

Phase 1 = Semester One

Phase 1 = Semester Two Phase 1 | Phase 2
v = Treated FANN R J

X = Control ‘. Campus:® *
TP Campus = Subjects taking module CMT3991 at Trent ."HE & TM:: < N
Park Campus . Campuses™.

HE & TM Campuses = Subjects taking module CMT3991
at Hendon or Tottenham sites

Table 7-1 Relationships between experiment groups and semesters

The significance value (p) for the measurements of the independent variable, with respect to the dependent
variable, were evaluated and depicted in relevant tables in each section. The value-P represents the probability
that the difference between the means of the groups examined could have happened by chance. Conventionally,
it has to be less than 0.05 for statistical significance for a confidence level of 95%.

Chapter 7 Resnlts 103

7.3 Teams Vs Individuals

1n this experiment, two types of projects were under examination, group projects and individual projects. As well
as investigating any difference between the treated and control groups within each project type, this study
investigates whether the effect of process patterns was more prominent on group projects than on individual
projects. In investigating any significant difference in performance between the group-projects (teams) and
individual-projects (individuals), a two-way Analysis of Variance (two-way ANOV A) was nsed to determine the
effect of experiment project-type on all the values of the investigated software attributes. In this case, there were
two independent variables, the experiment group types (i.e. treated and control) and project types (i.e. individual
projects and group projects) and a single dependent varinble, which was the attribute being examined (e.g. defect
density).

7.3.1 Further Analysis

The results were further statistically analysed for significance, irrespective of project types and experiment
phases (i.e. semesters). In this analysis, both group and individual projects were considered collectively, without
taking into account their project type or the semester in which they were conducted. Although this analysis is
rather generic, without differentiating between group and individval projects, it has the advantage of a larger
sample size of 260 (132 of which are group projects and 128 individual projects).

The statistical analysis method used for this analysis is the independent samples t-test, discussed above, where,
in this case, the independent variable was the (experiment group type) and the dependent variable was the metric
or tutor mark being investigated. The results in this analysis were in line with those achieved where gronp and
individual projects were analysed individvally and separately. Results of this analysis are presented in the
Appendix D. Results.

7.4 Sensiﬁvity Analysis

Sensitivity analysis provides the means of evaluating sensitivities of measures with respect to parameters of
interest. It is, in general, a technigue for determining the behaviour of a system by successively changing input
values by a small amount and determining the changes in the outputs. However, for measurement data and
analysis, sensitivity analysis is defined more broadly. Lang and Secic [1997] and Kitchenham et al. [2002b]
propose the following tasks for sensitivity analysis before moving on to the statistical techniques:

1. Identify and treat outliers
2. Ensure that the data does not violate the assumptions of the tests nsed on them
3. Apply appropriate quality control procedures to verify your results

These gnidelines were followed, as discussed earlier in this chapter, where the measurement data was analysed
for outliers and distribution types (i.c. normal, non-normal} and their suitability for parametric statistical
analysis.

Having carried ont the initial steps of sensitivity analysis, the next step was to perform the mathematical and
statistical procedures. This is generally performed by varying the system’s parameters systematically, by o small
fixed percentage, so that the relative impacts of each parameter could be directly compared [Saltelli et al. 2004].

Given the following linear equation;

Y= Z;SIMZI

Where Y is the output, £; are fixed coefficients and Z; are the uncertain input factors with the following
distribution:

Zi=N(Zi.oy)Z; =0,i=12,..r.

Y
Sensitivity analysis is then calculated to be the derivative. such as: 54 = :7 =4

i-
i

Chapter 7 Results 104

The goal in sensitivity analysis is to show the effects of changing parameter values. The sensitivity, s = 2, is
A

the amount of change in its output Ao that occurs due to a change to input by amount Ai. This was the method
adopted to perform sensitivity analysis on the metrics and tutor marks in this research. By iteratively and
continuously varying metic/mark values by a small percentage, the change in the outcome was measured and
checked for statistical significance in each iteration. The objective of the sensitivity analysis here was to
determine the amount, by which the parameters can change, before voiding and nullifying the statistical
significance of the results (i.e. metric results would no longer be statistically significant) [Wakefield 2004].

In carrying out sensitivity analysis on metrics in this research, the value of each metric and tutor mark was
changed by a small percentage (0.1%) at a time, and the result was evaluated for statistical significance. This
simulation was carried out iteratively and systematically using the SPSS statistical package. The percentage of
change that could be tolerated (before affecting the statistical significance of the resuilts) was the sensitivity
margin of the metric or the tutor mark, The sensitivity analysis result, for each metric and mark, is presented in
the results in this chapter. This value is presented as the ‘sensitivity margin’, which is the percentage by which
the metric/mark value could change before the results would no longer be statistically significant.

7.5 Correlation/Regression Analysis

Correlation and regression analysis deal with relationships among variables and were employed here to
determine the correlation between pattern usage and metric/tutor mark values. The correlation coefficient r
(referred to as Pearson linear correlation) is a measure of the linear relationship between two variables or
atributes, and is defined as the ratio of the covariance of the sample populations to the product of their standard
deviations. Values of r are always between -1 and +1, where (r=+1) and (r=-1) indicates that two variables are
perfectly related in a positive or negative linear relationship respectively. A correlation coefficient of zero (i.e. r
= 0} indicates that there is no correlation between the two variables. Given two n-element sample populations, X
and Y, ris calculated as in Equation 7-3.

N-1 N-1 -r
1 x ¥
hl b
covariance of X and Y ST i = :
[=+ — — — N-1 M1 2 K-1 M-l H
{ standard deviatioa of X)(standard deviation of 1) 1 Y, ! ¥
1L || Lw|| mTL|n-|LF
i=0 = 1=0 k=0

Equation 7-3 Correlation coefficient

The correlation is high, if it can be ‘summarised’ by a straight line (sloped upwards or dowawards), called the

regression line of the form f(x) = Bg + B1x (depicted in Figure 7-1 and Figure 7-2), and the response variable Y is

modelled as: Y= f(X) + £ = Py + B;x + &, where the random noise & is assumed to have normal distribution Mg,
2

o).

3
X .
= 3 : cle ..
e 4 o o o ‘. - .. -'-./
x R N Lo . o ﬁ"&-"“-'" - v
< s . P R W~]
/ 4 - -.c .c.;*hn“' "y" - -
s i (g o
T -
X 1 * *
" r 3 1 i] 3 ¥ i SR
T
Figure 7-1 Regression line Figure 7-2 Regression line scauer plol

The correlation between the rate of treatment usage and the value of metrics/marks would indicate whether the
higher mate of pattern usage corresponded to higher values of the metrics/marks. The pattern rate of usage was
measured by the number of times the subjects logged in to the online treatment resource (see Section 5.7.1),

Chapter 7 Results 105

where the process patterns were hosted. The SPSS statistical analysis package tool was vsed to calculate the
correlation coefficient, the correlation statistical significance and to produce scatter plots of the carrelation for all
metrics and marks for the group and individual projects. The results are preseated in the results section of each
metric/mark io this chapter.

7.5.1 Treatment Rate of Usage

As discussed in the research method chapter (Chapter 5), the process patterns (i.e. treatment condition) were
hosted online through a website, to which only the treated groups had. The Figure 7-3 presents the average
number of logins for both types of projects during the 12 weeks semesters. lo the case of group projects there
were two 12 weeks semesters whose logins are averaged.

i i i i t iE [N - i
]] [l]]] i [) b =
20 =fimarbem e deen b e de s b d Ltwdenae| B
] 17 i IR i oo o e
I I R A T
I B Bt S et AL b e S R e R e Ry CR Y
b 4 ‘ i [H I i) F [}
¥ t a ' 13) t N 1 I T -—
L) r i i + 1 1 + 0 B 1] [
i e e e T e el At e S =
R ' + i ' ¥] ¥ ' PRI T [+]
» N AL A LN |’ g
| = e \ o - B 2 L RN IR O
@ ST i = G 8
Q [AR R L [R -
o 2
5 —
= oy ! <
g 20_ 'mw?v\v\:-‘i-.w,‘sium’}lwn m .8
PR * ¥
2 L ' g
15 z :r ; - ?
;ﬁ L A ? 2 :9
10 f=reiamet ok i %
oA T 1a
5 - i P PR Ar
1) [1 wyt
] 1 [[l 1 1 5 1 1B
| N S NN [N DD N N N N R R
wh wh wk wk wk wk wk wk wk wk wk wk
1 2 3 4 5 8 7 & 9 10 11 12
Semegter

Figure 7-3 Rate logins to the treatment (i.e. process patterns) website

There were an average total of 148 logins for each group projects, and 65 logios for each individual projects. The
results indicate that, whilst there had beea cootinuous aad regular usage of process patterns for both group and
individual projects, there had been a substaatially higher number of hits registered for group projects than the
individual projects. This is partially due to the aumber of members in the group projects. The other reason is
that, the studeats who took the individual projects had already completed the group projects, and had therefore
accessed the oaline patterns io the previous semester.

7.6 Conducted Measurement Results

The dependeat variables to be tested are a number of software attributes in the following four major development
lifecycle phases through a number of metrics as discossed in Chapter 6:

Requirement Analysis (RA)
Design

Implementation

Delivery

In this section the results of the metrics, for each development phase, are statistically analysed and presented
using the SPSS statistical package. The results of the metrics are presented io 2 number of tables and figures. For
each metric, there is a table that states the means and standard deviations, and a boxplot that depicts the range
and median values of the metrics with respect to project types, semesters, and experimental group types. A
further table for each metric presents the statistical sigoificance analysis of the metric.

Chapter 7 Resnlts

106

7.6.1 Requirements Analysis Phase

In this section the result of the metrics for the first development phase (i.e. Requirement Analysis) are presented.
For the details and specification of these and all other metrics in this research, see ‘Appendix C. Metrics
Specifications’. The results of the following metrics are presented in this section.

Percentage of traceable requirements
Percentage of reviewed requirements specification
Percentage of defects fixed
Percentage of (RA) phase time spent in testing

Project lype Experimental Type | Semester | Mean | N (no. of cases} | Std. Deviation
Group-Project Treated Semester 1 | 4585 47 7.743
Semester 2 | 49 72 18 7.560
Control Semester 1 | 35 74 47 5.738
_ Semester 2 | 40.35 20 7.775
Individual-Project | Treated Semester 2 | 46.97 66 9.217
Contro! Semester 2 | 41 .84 62 7.069

Table 7-2 Statistics for percentage of traceable requirements

@
tn
]

B8a8858853

Percentage of Traceable Requirements

Semester 1

Semester 2

Semester

Experimental
5 Type
2
3 [Treated
g [#] Control
o
L.
3 o

S,

[]

2

<

®

j08l0.4-dnoig

Figure 7-4 Boxplot for percentage of traceable requirements

The boxplot depicts the range of values
and median for the ‘percentage of
traceable requirements’ metric, for both
treated and control groups in both types
of projects. It shows that the range of
values is higher for treated than for
control gronps for both types of projects.

Chapter 7 Resuits

107

Group Projects Correlation

60.001-

55.00

50.00.

45.00

Y
bt
o
Nt

35004 7

Requirement Traceability %

30.00

I I I T 1 1 1 |
60 80 100 120 140 160 180 200

Logins
Figure 7-5 Correlation between the no. of logins to the online

patterns and the percentage of iraceable requirements for ihe
group projects

Individual Projects Correlation

70.00-" " -

60.00.

50.00-.

Requirement Traceability %
8
3
1

30.00"

T T T T T T T T
20.00 30.00 40.00 50.00 60.00 70.00 80.00 50.00
Logins

Figure 7-6 Correlation between the no. of logins to the online
patterns and the percentage of traceable requirements for the
individual projects

Percentage of Traceable requirement

The resulis of the statistical analysis to determine the statistical significance of any difference between treated

and control groups for each project type, are as follows:

Group Projects

A 2 x 2 independent measure ANOVA was carried out using the experiment group-

types (i.e. treated and control) and the semester {i.e. semester-one and semester-
twa), as the independent variables, and the “percentage of traceable requirements’ as
the dependent variable. There was a main effect for experimen: group-type, with
treated groups scoring significantly better than coatrol groups (i.e. p<0.05), p=006.
The main effect for the semesrer was not significant (i.e. p>0.05), p = 0.813. The
main effect for the interaction between experiment group-type and semester was
also not significant (i.e. p>0.03), p = 0.45.

The sensitivity analysis showed the sensitivity margin to be 19.1%.

There was a statistically significant positive correlation between this metric and
*logins’ r=0.32, p=0.030 as depicted in the scatter plot Figure 7-5.

Individual Projects

The mean difference in percentage of traceable requirements for treated and control

groups were compared using an independent samples t-test. The result showed that
there was a mean difference between the treated and coutrol groups, for the
percentage of traceable requirements, which was statistically significaat (i.e. p<0.05)

at p=0.011.

The sensitivity analysis showed the sensitivity margin to be 11.1%.

There was a statistically significant correlation between this metric and ‘logins’
r=0.44, p=0.009 as depicted in the scatter plot Figure 7-6.

Concluding Remarks

There was a mean difference between the treated and control groups, in both

individual and group projects for this metric, which was shown to be stadstically
significant. This indicates that treatment (i.e. use of process patterns) was effective.

Chapter 7 Results 108

The results of the statistical analysis to determine the statistical significance of the effect of project type on the
experiment group-types are as follows:

Group Projects & A 2 x 2 independent measure ANOVA was carried out using the two variables,

Individual projects experiment group-types (i.e. treated and control) and the projecr-type (i.e. Individual
project, and Group projects) as the independent variables, and the percentage of
traceable requirements as the dependent variable. There was 8 main effect for
experiment group-type, with treated groups scoring significantly better than control
groups (i.e. p<0.05), p=0.002. The main effect for the project-type was significant
(i.e. p<0.05), p = 0.023. The mazin effect for the interaction between experiment
group-rype and project type was also significant (i.e. p<0.05), p =0.014.

Concluding Remarks There is 8 statistically significant difference between group and individual projects,
in terms of the mean difference between the treated and control groups, for this
metric. This indicates that the treatment (i.e. use of process patterns) was more
effective on group projects than on individual projects for this metric.

3

" Metric Result Summary-" . . .

Percentage of traceable requirements

The results (depicted in Table 1-1 and Figure 7-4) show that treated groups had a higher percentage of traceable
requirements than the contrel groups for both group and individual projects which was shown to be statistically
significant. The results show that requirement traceability was improved by & sensitivity margin of 19.1% in
group projects and 11.1% in individusl projects. The results, therefore. indicate that the use of process patterns
has a significant positive effect in increasing the percentage of traceable requirements. Based on these resuits, it
can therefore be deduced that the application of process patterns improves the requirements traceability,

It has been further shown that the mean difference between the treated groups and control in the group projects,
in terms of the percentage of traceable requirements, was statistically significantly higher than in the individual
projects. This indicates that the employment of process patterns has been more effective in group projects than in
individual projects for this metric. It can therefore be deduced that process patterns are more effective on group
projects than individual projects in improving traceability requirements.

Project type Eiperlmemel Type | Semester | Mean | N (no. of cases) | Std. Devletion
Group-Project Treated Semester 1 | gg.34 47 11.495
Semester 2 | go.56 18 8.959
Contral Semester 1 56.28 47 7.228
Semester 2 | 51,00 20 4.768
Individual-Project | Treated Semester 2 | 62.59 66 7.324
Control Semester 2 | 55.90 &2 8.358

Table 7-3 Statistics for the percentage of the requirements specification reviewed

109

Chapter 7 Results
0 Experimental
3 Type
- [=%

80 g_j @] Treated
3 70 5 [=] Contral
3 s0- D
- . . 2.
£ 50~ g v
8 o ~ 2
I 40 - a
g =
- L]

Q
D
=
[1]
=
-1
g
D
N

Figure 7-7 Boxplol for percentage of requirements specification reviewed

Semester 1

Semester 2

Semester

The boxplot depicts the range of values
for the ‘percentage of requirements
specification reviewed’ metric for both
treated and control groups for both types
of the projects and in both semesters. The
boxplot indicates that the range of values
and median in all the groupings is higher
for treated than for control groups.

A full and detailed statistical analysis textuat repornt (as presented for the previons metric) on each metric would
make this report too excessive in size. Therefore, for the remaining analysed metrics/marks, a brief summary of
the results of the performed statistical analysis is presented in table format. The table’s main layout and sections
is depicted in Table 7-4 below.

No. _ Eléments - -
1 Metric title
2 Statistical analysis of group project
3 Statistical analysis of individual project
4 | Statistical analysis of difference between group and individual projects
5 Correlation analysis between number of logins and the metric value

Table 7-4 Results tables layout

Chapter 7 Results 110

Percentage of Reviewed Requiremeats Specification

Statistical significance analysis of mean difference between treated and control groups

2 x 2 independent Expeene ' Percentage of Revnewed'Requlmmean Specification Group Projects
measure ANOVA Semester
e Significance:p-valoe; .o 2o ...Description . o ity VAT %) |
0.002 There is a main effect for experrmem‘ gmnp-npe 20.6

lndependenl Samples

Percentage of Reviewed Requirements lndmdua rOJccr.s

t-test Specmcanon
- i Significance p=valve. 27 T : DD TS VI ty MATRID A)
B 0.013 There is a ma.m_cifﬂ:l_fﬂ' experiment group-type_ 101
Conclusion There is a statistically significant difference between the treated and control groups in both individuat and group
projects for this metric, This indicates that the treatment (i.e. use of process patterns) was statistically effective.
Statistical significance analysis of the effect of project type on the experiment group-types
e — il r—— - T P R T BT - ——— remm—
o Operatlon oz 55 . 1 oo Dependent'Variable - Pro, 5
2 x 2 independent measure Experiment group-type Percentage of Reviewed Group Projects
ANOVA Pr()ject lype Requuements Spemﬁcauon Individual projecis
NeE A SR RN W&Dm@k ,3733 ;;&ﬁ R w,v [i L8
___________ 0.006_.__._.____._____._________--__T_Tle_’F_'_S_ﬂ_1"_"’_‘_“_‘2f_f9‘3‘_f‘2’_€{l2€{'£"_3’£’3"’_“!’ nipe
0.010 The main effect for the group-type is significant
"""""" 000 T T T The ‘main effect for the interaction is sigmificant T
Cooclusion There is a statistically significant difference between group and individual projects in terms of the mean difference |

between the treated and control groups for this metric. This indicates that the treatment (i.e. use of process parterns) was
stalmlcally more effectwe on group pr()jects tha.n on individual projects for this metric.

) \ ere is a statistically significant positive comelation
0317 0.020 There is a statistically significant positive comelation

Table 7-5 Statistical analysis for the ‘percentage of reviewed requirements specification’ meltric

h “Metri¢ Result Summary.- ..
Percentage of reviewed requirements specification

The results (depicted in Table 7-3, Table 7-5, and Figure 7-7) show that treated groups reviewed a higher

percentage of the requirements specification than the control groups (for both group and individual projects)

which was shown to be statistically significant. The results show that the requirements specification review was

improved by a sensitivity margia of 20.6% in group projects and 10.1% in individual projects. The results

indicate that the use of process patterns had a positive effect on the percentage of the requirements specification

reviewed. Based on these results, it can therefore be deduced that the application of process patterns improves
the requirements specification reviews.

It has been further shown that the mean difference between the treated groups and control groups in group
projects, in terms of the percentage of reviewed requirements specification, was significantly higher than in the
individual projects. This indicates that the employment of process patterns has been more effective in group
projects than in individnal projects for this metric. It can therefore be deduced that process patterns are more
effective on group projects than individual projects in improving requirements specification reviews,

Chapter 7 Resnlts 11
Project type Experimentel Type | Semester. | Meen | N (no. of cases} | Std. Deviation
Group-Project Treated Semester 1 | g3 .68 47 10.867
Semester 2 | 4,06 18 9.545
Control Semester 1 | g3.60 47 10.137
Semester 2 | gp.25 20 10.249
Individuai-Project Treated Sermnester 2 | 80.85 66 10.458
Controi Semester 2 | 7g.77 62 9.723

Table 7-6 Statistics for the percentage of defects fixed in RA phase

Percentaga Corrected Defect

Semester 1

Semester 2

Semester

1031014 [ENPIAIPY,

103_[01&-d'n019

Experimental
Type

Trezted
[%] Control

adA} jooloig

Figure 7-8 Boxplol for the percentage of defects fixed in RA

The boxplot depicts the range of
values for the ‘Percentage of
fixed defects’ metric in the RA
phase for both treated and control
groups for both types of the
projects and in both semesters.
The boxplot indicates that there is
not a significant difference
between the treated and control in
the range of values for the metric.

Chapter 7 Results 112

Perceatage of Defects Fixed (RA phase)

Statistical significance analysis of mean difference between treated and control groups

2 x2 mdependent ' Exprie gup—ly ' ' Pen:emage of defectq fixed (RA pha.se) Group PrOjeClS

measure ANOVA Semester
Significance prvalue Description I Sensitivity,Margio'(%
___________ 0.143|.The main effect for the expericent group-type was not significant A
0.783 The main effect for the semester was not significant {No significant difference
... between treated and control
0.511 The main effect for the interaction was not significant groups)
(peration Independent Variable Dependéat)Variablé Piojects
Independent Samples t-test | Experiment group-iype Percentage of defects fixed (RA phase) Individual Projects
Sensitivity, MAargin (%], |
0.144. There main effect for experiment group-type was not significant N/A

{No significant difference between
m:aled and conlrol_gm _p‘. ps)_ |

Conclusioa There is not a statistically significant difference between the treated and control g groups in either individual or group
projects for this metric. This indicates that treatrent (i.e. use of process pattems) was not statistically effective,

tatistical significance analysis of the effi roject t n the experiment group-

ladependentV ariabies SRR Dependent,V ariabtel

2 x2 mdependentmeasure - Experiment group-type Percentage of defects fixed) Group Pects

Individual projects

ANOVA ___ Project-type

__________ 0.234].The main effect for the cxperiment group-type was not significant ___
0.213 The main effect for the group-type was not significant

""""" 0463 77| The main effect for the interaction was not significant 0 TTTTITTTITIRTIeTmmees

[Conclusion Therc is not a statistically significant difference between group and individual projects in terms of the mean difference |

between the treated and control groups for this metric. This indicates that treatment (i.e. use of process pattems) was not
statistically more effective on euher Emup or mdmdual projecls for this metric.

e
W Correlation. Coel(* Y] IN icance ()8 o | I
0.081 0.270 There is not a qlanqttcnlly significant poqttwe correlation Gmup Projects
0.101 0.291 There is not a statistically significant positive correlation Individual Projects

Table 7-7 Statistical significance analysis for the ‘percentage of defects fixed' metric

AR \ 1 ¢ ricIRzsult!Summary B N

Percentage of Defecis Fixed (RA phase)

The results (depicted in Table 7-6, Table 7-7, and Figure 7-8) show that there is vot a statistically significant
mean difference between the treated and coutrol groups, iu terms of the percentage of defects fixed, for both
group and individual projects. Based on these results, it can therefore be deduced that the use of process patterns
does not significantly increase the percentage of the defects fixed in the Requirement Avalysis phase.

It has been further shown that the difference berween the treated groups and control in group projects, in terms of
the percentage of defects fixed, was vot significantly different to those in the individual projects. It can therefore
be deduced that process patierns are not more effective in group projects than iv individual projects for this
metric.

Project type Experimenial Type | Semester | Mean | N (no. of cagses) | Std. Devletion
Group-Project Treated Semesler 1 { 22 53 a7 5.647
Semester 2 | 21 49 18 3.496
Control Semester 1 | 20.47 47 2.928
Semester 2 | 19,50 20 3.643
Individual-Project { Treated Semester 2 | 26.20 66 5.699
Control Semester2 | 04 12 52 3.964

Table 7-8 Siatistics for the percentage of RA phase time spent in testing

Chapter 7 Results 113
) The boxplot depicts the range of values
351 15 Expﬁ:_r;r;\:ntal and median for the ‘percentage of the RA
30 = - & @ Treated phase time spent in testing’ metnc for
18 Control both treated and coatrol groups in both
35 18 onto types of projects. It shows that the range
20 ‘ '35' of values is not higher for treated than
e K} o control groups for both types of projects.
15+ - 3
-]
e
<
h-
L]

Percentage of Req Ana time in testing

'
e

1:‘)a_fo.|d-dn'o.|l9

T
Semester 1

Semaester

Semester 2

Figure 7-9 Boxplot for percentage of RA time spent in testing

Chapter 7 Results 114

Percentage of Phase Time Spent in Testing (RA phase)

Statistical significance analysis of mean difference between treated and control groups

2 2 % 2 inc mdependem Experiment group-type Percentage of RA Phase Time Spent in Testing Group Pro_]ects
measure ANOVA Semester

0.494 The main effecl for the semester is not sngmﬁcanl (No significant difference
.. between treated and control
groups)

Endmdual PI‘O_]CC(S

N Sensitivily, MATTD. () ueaiin

There main effect for expcnmcnt group-type is not s1gn1ﬂcanl N/A
{No significant difference between
Jreated ang control groups) |
Conclusion There is not a statistically significant difference between the treated and control groups in either individual or group
projects for this metric. This indicates that treatment (i.e. use of process patterns) was not statistically effective.

Statistical significance analysis of the effect of project tvpe on e experiment group-lypes
AT ; DS pepdesy Varabiog I
2x2 |ndcpendenl measure Experiment group-type Pcrccntage of RA Phase Time Spenl in Group Pl'D]EClS

| ANOVA Project-type Testing Individual projects
__________ 034 .. F."E.“J?'_“_ ‘Eff_e_cl_ff’f_”_“E_"-_"P_“_"‘_’E'F!‘EEFE’PP_‘_Y_P" is not significant S
0.213 The main effect for the group-type is not significant
""""" 0463 """ "The main cffect for the interaction is nol significant TTTTTImTTIITIII
Conclusion Therc is nol a statistically significant difference between group and individual projects in terms of the mean difference |

between the ireated and control groups for this metric. This indicates that treatment (i.e. nse of process patterns) was not
siatistically more effective on either group or individual projects for this metric.

Cormrelation Analysis for the 'no. of |

al pro jects

ins’ and ‘this mem > for group and 1nd1v1d

0.113 0.123 There is not a statistically slgmf'cant positive correlation Group Projects
0.104 0.110 There is not a statistically significant positive correlation Individual Projects

Table 7-9 Results of significance analysis for the ‘percentage of RA phase time spent in testing’ metric

' EMetric ResulfiStummary A
Percentage of Phase Time Spent in Testing (RA phase)
The results (depicted in Table 7-8, Table 7-9, and Figure 7-9) show that there was not a statistically significant
mean difference between the treated and control groups in terms of the proportion of RA phase time spent in
testing. Based on these results, it can be deduced that the application of process patterns did not significantly
affect the proportion of RA phase time spent in testing.

It has been further shown that the mean difference between the treated groups and control groups in group
projects, in terms of the percentage of phase time spent on testing, was not significantly different to those in the
individnal projects. It can therefore be deduced that process patterns are not more effective in gronp projects than
in individual projects for this metric.

7.6.2 Design Phase

In this section the resnlt of the metrics in the second development phase (i.e. design) are presented. The
following metrics are analysed:

¢ Percentage of the design docurment reviewed
* No. of methods per class (Methods per Class ratio)

Chapter 7 Results

115

* Percentage of defects fixed
* Percentage of Design phase time spent in testing

Project type Experimental Type | Semester - | Mean | N(no. of cases) | Std. Deviation
Group-Project Treated Semester 1 | 42 51 47 7.793
Semaster 2 | 42 06 18 7.502
Control Semester 1| 31.11 47 6.623
Semester 2 | 2g 35 20 7.361
Individual-Project | Trested Semester 2 | 38.46 66 7.484
Control Semester 2 | 5g 5g B2 8.111

Table 7-10 Statistics for the percentage of design document reviewed

— [[s
o [=] o o
H I I 1

'E'xperimental-
Type
] Treated .
B contral

1Paloid-dnoig

Percentage of Design Doc reviewed
W = O B -
Q [e=] [e=] [e=]
I‘ L H i

[]
[=]
1

—_
(=]
1

adA) ma!o;d'

13alo1d-lIenpwipy

T
Semester 1

1.
Semester 2

Semester

Figure 7-10 Boxplot for the percentage of design document reviewed

The Boxplot depicts the range of
values for ‘Percentage of design
document reviewed’ metric for both
treated and control groups for
different project types and in
different semesters. The baxplot
indicates that the range of values and
median in all the groupings is higher
for cantrol than for treated groups.

Chapter 7 Results 116

Percentage of Design Document Reviewed

Statistical significance analysis of mean difference between treated and control groups

g JDependent Variable] AR
2x2 mdependcm measure Experiment group-type Percentage of Design Document Reviewed Group Projects
ANOVA Semester

The main effect for the interaction is not significant

2 | Indépendent\Variabied

Experiment group-type Percemage of De51gn Documem Revn:wed Individual Projects

Ths_n:- is a main effect for egenmen.‘gro_so npe.

[Conclusion There is a stansucally 51gn1ﬁcant ditference between the treated and control groups in both individual and group
projects for this metric, This indicates that the treatment (i.e. use of process pattems) was statistically effective.

tatistical significance analysis of the effeci of project t on the experiment group-types

B Oper st N : Dépendent,Variable R 0 Projectsny
2 x 2 independent measure Expenmcnt gmup type Percentage of Design Document Group Projects
ANOVA Project-type Reviewed Individual projects

0014 The main effect for the interaction is significant

Conclusion There is a statistically significant dlffen:nce between group and individual projects in terms of the mean dlfference
between the treated and control groups for this metric. This indicates that the treatment (i.e. use of process pattems) was
statistically more effective on group pro;ects than on individual projects for this metric,

There isa stanstlcally stgmﬂcam posl ive corretation
0.002 There is a statistically significant positive correlation Individual Projects

Table 7-11 Statistical significance analysis for the percentage of design documents reviewed metric

MetriciRésuli Summary

Percentage of Design Document Reviewed
The results (depicted in Table 7-10, Table 7-11, and Figure 7-10) show that treated groups reviewed a higher
percentage of the design document than the control groups (for both group and individual projects) which was
shown to be statistically significant. The resnlts indicate that the use of process pattems had a positive effect on
the percentage of the design document reviewed. The results show that the design document review was
improved by a sensitivity margin of 38.1% in group projects and 32.1% in individual projects. Based on these
results, it can therefore be deduced that the application of process patterns improves design reviews.

It has been further shown that the mean difference between the treated gronps and control groups in group
projects, in terms of the percentage of reviewed design document, was significantly higher than in the individual
projects. This indicates that the employment of process pattems has been more effective on group projects than
on individnal projects for this metric. 1t can therefore be deduced that process pattems are more effective on
group projects than individual projects in improving design reviews.

Chapter 7 Results ' 17
Prb]ect type Experimental Typa | Semester | Mean | N (no. of cases) | Std. Devistion
Group-Project Treated Semester 1 | g.13 47 2.393

Semester 2 | 5.7 18 2.278
Control Semester 1 | g.3g 47 1.888
Semester 2 | g.7g 20 2.451
Individusl-Project | Treated Semester 2| 7.30 66 2.556
Control Semester 2 | g 45 62 2.148
Table 7-12 Statistics for the no. of methods per class
The Boxplot depicts the range of values
15 Experimental for ‘Method per Class’ metric for both
a Type treated and control groups for different
25 1= Treated project types and in different semesters.
10 - g‘ i Controt The boxplot indicates that the range of
T values and medisn in all the groupings is
@ 7.5 Y .
8 2 higher for the control groups than for the
S a v treated groups.
& 1 2
@]
B -
g g
= o
5 125+ 3
2 %
S
i 51
-

Semester 1

Semester 2

Semester

Figure 7-11 Boxplot for No. of Methods per Class

Chapter 7 Results 118

No. of Methods per Class (Methods per Class Ratio)

Statistical significance analysis of mean difference between treated and control groups

SN O peratio SN | I Lidé pend énityV ariables SR PSR DepenidentiV ariable RN | MSRRNR P<ojcc SRR
2 x 2 independem Experimen? group-type Methods per Class Ratio Group Projects
measure ANOVA Semester

Significance p-value Description nsitivity, Margio (%)
0.007 There was a main effect for experiment group-type, 338

lndcpcnden[Samples t-test Expenmenl group-type Melhods pet Class Ratio Individual Projects
2002 _ _There wasamain *“—ff“' for e’523“'““-“'J“’.P_Y.‘.ze S | U S
Conclusion There i3 a slamucally slgmt‘canl dlfference between the treated and control groups in both individual and group

projects for this metric. This indicates that the treatment (i.e. use of process pattemns) was statislically effective.

Statistical significance analysis of the effect of project type on the experiment group-types

MR O tou NG | N L0 = e Y aria bles R | IS D penderit Y ariabic S
| 2 x2independem measure Experitment group-type Methods per Class Ratio Group Projects
ANOVA Project-lype Individual projects
Significauce povalue Description
0.003 There is a main effect for experiment group-type

TUTTTTTTT0031 T The main effect for the group-type is significan T

Couclusion There is a statistically significant difference between group and individual projects in terms of the mean difference
between the treated and control groups for this metric. This indicates that the reatment (i.e. use of process patterms) was
stanmcally more cffecllvc o group pmjec!s than on |nd1v1dual projects for this metric.

0421 . 0.00% There is astallsllca]ly significant posmve Com:lauon Group Projects

0.311 0.010 There is a statistically significant positive correlation Individual Projects

Table 7-13 Statistical significance analysis for the ‘No. of methods per class’ melric

- PR M etrici ResaltlSummary, Do

Nn. ol' Methods per Class (Methods per Class Ratm)
The results (depicted in Table 7-12, Table 7-13, and Figure 7-11) show that treated groups produced a lower
namber of methods per class than the coatrol groups for both groap and individual projects, which was shown to
be statistically significant. Classes with lower number of methods are less complex and more maintainable and
reusable. The results show that the method per class ratio was improved by a sensitivity margin of 33.8% in
group projects and 20.3% in individuval projects. The resalts, therefore. indicate that the use of process patterns
has a significantly positive effect in improving the modularity and granalarity of the design. Based on these
results, it can therefore be deduced that the application of process patterns improves the design modalarity and
granularity.

It has been further showa that the difference between the treated and control groups in group projects, in terms of
the number of methods per class, was significantly higher thao io the individual projects. This indicates that the
employment of process pattems has been more effective on group projects than on individual projects for this
metric. It can therefore be deduced that process pattemns are more effective on group projects than individual
projects in improving the design modalarity and granularity.

1e

Chapter 7 Results

Project type Experimental Type | Semester | Mean | N (no. ot cases) | Std. Devlstion

Graup-Project Treated Semester 1 | a3.91 47 7.967

Semester 2 | g1.72 18 7.094

Control Semester 1 | gz.91 47 8.035

Semester 2 | g1.a0 20 6.593

Individusl-Praject | Treated Semester 2 | 82.26 66 6.388

. Contral Semester 2 | g1 .76 62 6.963

Table 7-14 Statistics for the percentage of defects fixed in the design phase

pa[oj&dnmg

100

Percentage of defects fixed in Design

‘ pafoid-enpwpu]

Semester 1

Semester 2

Semester

Expearimental

adA) palold

Type-
El Treated
Cortrol

Figure 7-12 Boxplot for the percentage of defects fixed in design phase

The boxplot depicts the range of values
and median for the ‘Percentage of defects
fixed in the design phase’ metric for both
treated and control groups in both types
of projects. The boxplot indicates that
there is not a significant difference in the
range of these values between treated and
control groups for either type of projects.

I

Chapter 7 Results 120

Percentage of Defects Fixed (Design phase)

Statistical significance analysis of mean difierence between treated and control groups

2 x 2 independent Experiment group-type Percentage af defects ﬁxed (Dcstgn phase) Group Projects
measure ANOV A Semester
2 Signifi

(No significant difference between
treated and control groups)

lndmdual ijects
“WI

(No significant difference between
e O, 11 GO BTOUPS)

Conclusion There is rot 2 statistically significant difference between the treated and conrrol groups in either individual or group
projects for this metric. This indicates that treatment (i.e. use of process pattemns) was not statistically effective.

lndependent Samples t-test

Experiment group-type

0.119 T The main effect for expenmem group-[ype is not stgml'cam

Statistical significance analysis of the effect of project type on the experiment group-types

2 x 2 independent measure Experiment group-type T Percentage of defects fixed Group Projeels
Project-lype csign phase) Individual projects

The main effect for the interaction is not significant

Conclusion There is not a statistically significant difference between group and individual projects in terms of the mean difference
between the treated and control groups for this metric. This indicates that treatment (i.e. use of process pattems) was not
smtlsncally more effecuve on either group or individual projects for this metric,

gins' and ‘this metric’ for group and individual projects

"0.113 . 0130 There is not a siatlsncally 51gn1ﬁcam positive comelation Group PrOJecls ‘
0.084 0.182 There is not a statistically significant positive correlation Individual Projects

Table 7-15 Statistical significance analysis for the ‘percentage of defects fixed’ metric

Rty

SRR erricI Result. Summary K
Percentage of Defects Fixed (Design phase)
The resnlts (depicted in Table 7-14, Table 7-15, and Figure 7-12) show that there is not a statistically significant
mean difference between the treated and control groups for both group and individual projects in terms of the
percentage of defects fixed in the Design phase. Based on these resnlts it can therefore be concluded that the
application of process patterns do not significantly increase the proportion of the defects fixed in the Design
phase.

It has been further shown that the difference between the treated groups and control in group prajects in terms of
the percentage of defects fixed in the Design phase was not significantly different 1o those in the individnal
projects. It can therefore be deduced that process patterns are not more effective in gronp projects than individual
projects for this metric.

121

Chapter 7 Results

Project type Experimental Type | Semesgter | Mean | N (no. of cases) | Std. Devlation

Group-Project Treated Semester 1| 704 47 1.503

Semester 2 | 744 18 1.756

Control Semester 1 | 575 47 1.449

Semester 2 | 7.5 20 1.308

Individual-Project | Treated Semester 2 | 9.65 66 1.060

Control Semester2 | ggg g2 0.864

Table 7-16 Siatistics for the percentage of the Design phase time spent in testing

10.00-

65.00

8.00"

400~

Experimental
P ypen
B Treated:
Control

p2loid-dnoin

Percentage ef design time intesting

adA} 1090044

rfo Ld-enpipul

T
Semester 1

Semester 2

Semester

Figure 7-13 Boxplot for percentage of Design phase time spent in testing

The boxplot depicts the range of values
for the ‘Percentage of design time in
testing” metric for both treated and
control groups for different project types
and in different semesters. The boxplot
indicates that the range of values and
median in all the groupings is higher for
the treated groups than for control groups.

Chapter 7 Results 122

Percentage of Fhase Time Spent in Testing (Design phase)

Statistical significance analysis of mean difference between treated and copirol groups

& pa™y I §Dependint Vatiable] i
2 x 2 mdependent Experiment greup-type Perccmage of phase time spent in testing Group ijects
measure ANOVA Semester (Design phase)

0.422 The main effect for the semester is not mgruf"ca.n: (No significant difference between
.. treated and controf groups)

Percentage of phase time spent in testing lndividuél Préjects

(Design hase)

Independent Samples
st

0121 There main effect for expenment group-typt: is not sugmfcam N/A
(No significant difference between
e e e e e e e e e e e e G 2 CODTO grOUDS)

Coaclusioa There is not a stadstically significant difference between the treated and control groups in either individual or group
projects for this metric. This indicates that treatment (i.e. use of process pattems) was not statistically effective.

Statistical significance analysis of the effect of project type on the experiment group-types

Group PI‘OJCCIS
lndlwdual

0311 The main effect for the interaction is not significant

Couclusion There is not a statistically significant difference between group and individual projects in terms of the mean “ditference
between the treated and control groups for this metric. This indicates that treatment (i.e. use of process patterns) was not
\[amucally more effecnve on either group or individual projects for this metric,

no. of logins’ and ‘this mcmc for roup and individual proje

There is not a sr.ansncal]y 51gn1ﬁcant pesitive comelation Group Pt‘OJCC[S
0.091 0.190 There is not a statistically significant pesitive correlation Individual Projects

Table 7-17 Statistical significance analysis for the ‘percentage of Design phase time spent in testing’ metric

B Meérric Resiil Siimmary Bk o
Percentage of Phase Time Spent in Testing (Desngn)

The results (depicted in Table 7-16, Table 7-17, and Figure 7-13) show that the percentage of the Design phase time
spent for testing was not significantly different between the treated and control groups for both group and individual projects.
Based on these results, it can be deduced that the application of process patterns do not significantly affect the
proportion of the Design phase time spent in testing,

It has been further shown that the difference between the treated groups and control in group projects in terms of
the percentage of the Design phase time spent in testing was not significantly different to those in the individual
projects. It can therefore be deduced thar process patlerns are not more effective in group projects than individual
projects for this metric.

7.6.3 Implementation Phase

In this section the result of the third development phase (i.e. Implemeniation) are presented. The following
metrics are analysed:

Chapter 7 Results 123

Comment density

Percentage of source code reviewed

Percentage of defects fixed

Defect density

Productivity (Implementation phase)

Productivity (Overall)

* Percentage of Implementation phase time spent in testing

Project type Experimentel Type | Semesgter | Meen | N (no. of cases) | S5td. Devletion
Group-Project Treated Semester 1 | 7 57 47 1.802
Semester2 [g 94 18 1.745

Contro! Semester 1 | 4 59 47 1.233

Semester2 | 435 20 0.939

individual-Praject | Treated Semester2 | 6.84 66 1.501
Control Semester 2| 484 62 1.414

- Table 7-18 Statistics for the Comment Density

The boxplot depicts the range of values
Experimental | and median for the ‘comment density’
Type metric for both treated and control groups

10.00~ =+

8003~ X -g-' @ Treated | in both types of projects. It shows that the
—_ - -|§ [®contral | range of values is higher for treated than
§ 6001~ 2 12 for control groups for both types of
= - -8, projects.
[1-]
= 400+ a
£ ‘ J B
= =
3 200 o e = R S _g,
£ a
£ 10.00+) g
[==] : T a
Sod =1
E 8,00 e
£ A2
£ o &
& 6.00+ g
u} ¥
- 1a
4,007 A%
14
2.00-¢
T T
Semester 1 Semester 2
Semester

Figure 7-14 Boxplot for Comment Density (Com/{100LOC)

Chapter 7 Results 124

Comment Density

Statistical significance analysis of mean dilference between treated and control groups

T O pertica N | Mg | de pendentyV ariablés BN | ISR Depenident V uriablc SUCRINN | MENNERRGRE Fro;¢cis IR

2 x 2 independent Experiment group-type Comment Density Group Projects
measure ANOVA Semester
B ' Description PN S nsitivity margio (%)
___________ 9-9_(’9---__.______I}I‘E‘?_‘_s_“}!‘.“1‘.“.‘3[@9‘.f‘.’f‘?’.‘?‘?[‘.".“f?'.&f‘!‘f?.‘!’??-----_____________ 48.8
0.883 The main effect for the semnester is not significant
"""""" 0763 " “The main effect for the interaction is not significant
I O < raicn RN [MR 0 perdeatyV ariabic SN R Deperaent LV ariab e AENSSOA| SCRR Lo s SN
Independent Samples 1-test Experiment group-type Comment Density Individual Projects
Significance p:value Description Sensitivity, margin (%
0.001 There is am main effect for exﬂenmenl_groy_y_ge 37.6
Conclusion There is a slahsncally s:gmﬁcam difference between the treated and control groups in both individual and group

projects for lhﬁ metric. This indicates that the treatment {i.e. use of process patterns) was statistically effective.

L G o eraeis |, [LrlahemD I .. oy

[2 % 2 independs independent measure Experiment group-type Comment Density Group Projects
ANOVA Project-type Individual projecis
| Significance p-value Description
___________ 000 o eeieeieeeeeeesn...ereisamain effect for experiment groupype]
0.031 The main effect for the group-type is significant
"""""" 0016 T e ‘main effect for the interaction & sigmificant
Conusion— ~ There T2 stativically stemificant GiTerence berween group and maividudl projects T werms of the Tnean difrerence |

between the treated and control groups for this metric. This indicates that the treatment {i.e. use of process pattems) was
stalistically more effective on group pmjecls than on individual projects for this metric.

There is a statistically stgmt‘cam pouuve comlal1on Group P‘ro_jecls
There is a statistically significant positive correlation [ndividual Projects

Table 7-19 Statistical significance analysis for the ‘Comment density” metric

MetriciResultlSummary N

Comment Density

The results (depicted in Table 7-18, Table 7-19, and Figure 7-14) show that the comment density valve was
higher for treated grovps than control groups for both group and individual projects, which is shown to be
statistically significant. The results show that the comment density was improved by a sensitivity margin of
48.8% in group projects and 37.6% in individual projects. The results, therefore, indicate that the use of process
pattems has a significantly positive effect in increasing the comment density. Based on these results, it can
therefore be deduced that the application of process pattems improves comment density in the produced source
code.

It has been further shown that the mean difference between the treated groups and control in the group projects,
in terms of the comment density, was statistically significantly higher than in the individual projects. This
indicates that the employment of process patterns has been more effective on group projects than on individual
projects for this metric. 1t can therefore be deduced that process patterns are more effective in group projects
than in individual projects in improving comment density.

Chapter 7 Results 125

Project type Experimental Type | Semester | Mean | N (no. of cases) { Std. Deviation
Graup-Project Treated Semester 1 | 16.15 47 3.169
Semester 2 | 15,72 18 2.674

Control Semester 1 | 11 24 47 1.982

- Semester2 | g g2 20 2.074
Individual-Project | Treated Semester 2 | 13.51 66 2.381
Control Semester 2| g2g 62 2085

Table 7-20 Siatistics for the percentage of source code reviewed

Experimantal The boxplot depicts the range of values

Typa- | and median for the ‘percentage of code

] Treated reviewed’ metric for both treated and

- @ Control- | control groups in both types of projects. It

' : shows that the range of values is higher

for the treated groups than for the control
groups for both types of projects.

ga!m_d-.dnmg

adA) 1aalold

.Percentage of code reviewed

enpipUl

Poioid

T T
Semester 1 Semester 2
Semester

Figure 7-15 Boxplot for percentage of source code reviewed

Chapter 7 Resulis 126

Percentage of Source Code Reviewed

Statistical significance analysis of mean difference between treated and cantrol groups

s by BT ‘ Dépendent, Variah :
2x2 1ndependent Experiment group-type Pcn:entage of Saurce Code Rewewcd Gmup Prujects
measure ANOVA Semester

lndependent Sa mples 1-1est Experiment group-type

[__ 0000 ___ _Thereissmain effect for experiment growp-ivpe ____________—____4L9 ______|

Conclusion There is a statistically significant difference between the treated and control gmups in both individnal dnd group
projects for this metric. This indicates that the treatment (i.e. use of process pattemns) was statistically effective,

Statistical significance analysis of the effect of project {ype on the experiment group-types

2x2 mdependent measure Expenmenl group-type Percentage of Source Code Reviewed Group Projects

Conchusion There is a statistically slgmﬁcant difference between group and individual projects in terms of the mean difference |
be:ween the treated and control groups for this melnc Thls 1nd1cates that the treatment (i.e. use of process patterns) was

0280 0.021 ' There is a statistically significant pasitive correlation Group Pro_:ects)
0.32] 0.003 There is a statistically significant positive correlation Individual Projects

Table 7-21 Statistical significance anaiysis for the ‘percentage of source code reviewed’ metric

Meétric Result Siimmary
Percentage of source code reviewed

The results {(depicted in Table 7-20, Table 7-21, and Figure 7-15) show that treated groups reviewed a higher
percentage of the source code than the control groups in both group and individual projects, which was shown to
be statistically significant. The resnlts show that code review was improved by a sensitivity margin of 47.5% in
group projects and 41.9% in individual projects. The higher the percentage of the source code reviewed the
higher the likelihood of detecting and correcting any defects. The resnits, therefore, indicate that the nse of
process pattems has a significant positive effect in increasing the percentage of source code reviewed. Based on
these results, it can therefore be dednced that the application of process patterns improves code reviews.

It has been further shown that the mean difference between the treated groups and control in the gronp projects,
in terms of the percentage of reviewed source code, was statistically significantly higher than in the individual
projects. This indicates that the employment of process patterns has been more effective on group projects than
on individual projects for this metric. 1t can therefore be deduced that process patterns are mere effective in
group projects than in individual projects in improving code review,

Chapter 7 Results 127
Project type Experimentel Type | Semester | Meen | N {no. of cesea) | Std. Deviatlon
Group-Project Treated Semester 1 | 2 a3 47 1.168
Semester2 | a5 18 1.294
Control Semester 1 | .10 47 1.708
Semester 2 5.44 20 1.756
Individual-Project Treated Semester 2 | 3.36 66 1.381
Control Semester 2| 572 62 1.919

Table 7-22 Statistics for the defect density in the source code

..............

Defect density in Implementetion (def / 100
LoC)

103[014-fENpiApU|
odA) 109foud

' 1:3.a_lc:ud'-dn01.9

_Semester 1 Semester 2

Semester

Figure 7-16 Boxplot for defect density

Experimental
Type
Treated

[=] Control

The boxplot depicts the range of values
and median for the ‘defect density’ in the
source code for both treated and control
groups in both types of projects. It shows
that the range of values is higher for the
treated groups than for the control groups
for bath types of projects.

Chapter 7 Results 128

Defect Density

Statisiical significance analysis of mean difference between treated and control groups

2 X 2 mdependenr Experiment group-type Defbcl Densny Grcup Pro;ecls
measure ANOVA Semester
o Significance povatnet.. - LN T T S A O
___________ 99_0_2______________T_'z'zf_e_rf_a_ I‘!?P_‘Eff?EEf?[?’fP?E‘IE“E'EESE‘EE'E_‘IPP__________________ 39.2
0.781 The main effect for the semester is not significant
"""""" 0293 """ "The main effect for the interaction is not significant
sl 'Mﬁﬁﬁﬂﬂﬁ@*i. :
lndependent Samples Expenmem group-type Defect Densny Individual Projccts
t-test

[Significance p-value.: e e s s cTbeseripions” R e - Sexsitivity, Margin (%) 5o
_______0.202_ There is a main effect for experiment group-ty e___________ 37.3 _ E

Conclusion There is a sran:.ncally mgmﬁcam difference between the treated and control groups in both individoal and group

projects for this metric. This indicales that the treatment (i.e. use of process patterns) was statistically effective.

Statislical significance analysis of the effect of project type on the experiment group-lypes

2 x2 mdependent measire Expenmem group type Dcfect Den-my Group Projects
ANOVA _ Project- -type Individual projects
T Ty T S P S O N RO V7 [T T O R B IR
003 . There is. '_195 9_@;112 P_f{ﬂ_c;_fp_r_ewenmenr group‘type
0.553 The main effect for the group-type is not significant
"""""" G363 T T T T T TN Thee main effect for the interaction is not significant |
Conclusion _ There is not a statistically significant difference between group and individual projects in terms of the mean difference |

between the treated and control groups for this metric. This indicates that treamment (i.e. use of process pattems} was not
statistically more effective on either group or individual pl’OjeClS for this metric.

Cortr Iatlon Anal sis for l:h
0.294 0.036 There is a statistically slgmf‘canl posilive comelation Group Projects
0.327 0.012 There is a statistically significant positive correlation Individual Projects

Table 7-23 Statistical signiftcance analysis for the ‘defect density’ metric

<. Metric Resulf. Siummary &

Defect density
The results (depicted in Table 7-22, Table 7-23, and Figure 7-16) show that treated groups had a lower defect
density in the source code than the control groups for both group and individual projects which was shown to be
statistically significant. The lower the defect density, the higher the quality of code. The results show that defect
density was improved by a sensitivity margin of 39.2% in group projects and 37.3% in individual projects. The
results, therefore, indicate that the use of process patterns has a significant positive effect in lowering the defect
density in the source code. Based on these results, it can therefore be deduced that the application of process
patterns lowers the defect density in the source code.

It has been further shown that the difference between the treated groups and control in group projects in terms of
the defect density was not significantly different to those in the individnal projects. It can therefore be deduced
that process patterns are not more effective on group projects than individual projects for this metric.

Chapter 7 Results 129
Project type Experimental Typa | Semester | Mean | N (no. of cases) | Sid. Deviatlon
Group-Project Treated Semester 1 [g og 47 1319

Semester2 | g a7 18 0914

Control Semester 1 | .61 47 0.904

Semester 2 | §.63 20 1.194

Individual-Project | Treated Semester2 | 7.55 66 1.274

Control Semester2 | 5 gg 62 0.974

Table 7-24 Statistics for productivity in the [mplementation phase

The boxplot depicts the range of
1200] Experimental values and median for the
10,004 Ao Type productivity in the Implementation
-l Tfeﬂted phase, for both treated and control
8.00+ % L groups in both types of projects. It
12 shows that the range of values is
6.00~ s higher for the treated groups than for
a the control groups for both types of

4,004

ZQG_ * Rl

Implementation Productivity

6.00] -

4.00+

12604~
10,00~

8.00~)

adAj peloid

ma!m&-lenpmul

projects.

PR

200+

¥ T T
Semester 1 Semester 2
Semester

Figure 7-17 Boxplot for productivity in the Implementation phase

Chapter 7 Resnlts 130

Implementation Productivity

Statistical significance analysis of mean difference between treated and control groups

[0 OreT o e [[nde endentV aviablcs ¥l | 0NN Dependent,V ariable TRIPRAITGh: | Sl Projcts Nt
2 x 2 independent Experiment group-type Productivity (Implementation phaec) Group Projects

measure ANOVA Semester

vily; Margin'(%) BES
333

Indepcndent Samples I:xpenmenl group- lype

ere is a main e ect or expenmenl group-lype . 238

Conclusion There is a statistically significant difference between the treated and control groups in both individual and group
projects for this metric. This indicates that the treatment {i.e. use of process patterns) was statistically effective.

Statistical significance analysis of the effect of projeci tvpe on the experiment group-types

Experi.ment gmup-iype Group PI'OJCCIS
ANOVA] Project-type o * Individual projects

The main effect for the interaction is significant

Cooclusion There is a stamncally significant difference between group and individual projects in terms of the mean difference
between the treated and control groups for this metric. This indicates that the treatment (i.e. use of process patterns) was
stau:,nca_y more effecuve on Em_p_ProLcls than on mdwnduaJ:roLects for lhlS metnc

oup and |nd1vldua] projects

0.291 ‘ 0.013 There is a statistically slgmﬁcam positive comrelation Group Pro_]ects .
0402 0.000 There is a statistically ugmﬁcam positive correlation Individual Projects

Table 7-25 Statistical significance analysis for the "Implemeniation productivity’ metric

EMetriciResult!Summary

Implementation 'roductivity
The results (depicted in Table 7-24, Table 7-25, and Figure 7-17) showed that productivity in the
Implementation phase was higher in treated groups that in control groups in both group and individnal projects,
which was shown to be statistically significant. For the group projects, the productivity in the Implementation
phase was found to be 9.0 LOC per hour (72 LOC per day) for treated groups and 6.6 LOC per hour (52.8 LOC
per day) in the case of control groups. For the individual projects, the productivity in the Implementation phase
was found to be 7.5 LOC per hour (60 LOC per day) for the treated groups and 6.0 LOC per hout (48 LOC per
day) for the control groups. The results show that the implementation productivity was improved by a sensitivity
margin of 33.3% in group projects and 23.8% in individual projects. The results, therefore, indicate that the use
of process patterns has a significant positive effect in increasing productivity in the Implementation phase. Based
on these results, it can therefore be deduced that the application of process patterns improves implementation
productivity.

It has been further shown that the mean difference between the treated groups and control in the group projects,
in terms of productivity, was statistically significantly higher than in the individual projects. This indicates that
the employment of process patiems has been more effective on group projects than on individual projects for this
metric. It can therefore be deduced that process patterns are more effective in group projects than in individuoal
projects in increasing productivity in the Iimplementation phase.

Chapter 7 Results 131

Project type - Experlm}antal Type | Semester | Mean | N (no. of cases) | Std. Deviation
Graup-Project Trested - Semester 1 | 352 A7 0.522
Semester2 | 344 18 0.358

Contral Semester 1 [270 47 0.361

Semester2 | 265 20 0.477

individuai-Project | Treated Semester2 | 2.91 86 0.500
Contrai Semester2 | 2 40 62 0.402

Table 7-26 Statistics for the overall productivity

The boxplot depicts the range of

5.00 Experimental values and median for the oversll
_ o Type productivity metric for both treated
4,004 tES [Treated and control groups in both types of
' £’ [H controi projects. It shows that the range of
_'_q values is higher for the treated groups
- ,_% than for the coutrol groups for both
.§ 2.00-: 19 types of projects.
- 7
g1.00- s
2 a
[~
S s00- 2
5. 5 ®
g 4.00+ 8
a
—3
8
[~}
2,00 o
a
-1.00- : :
Semester 1 Semester 2
Semester

Figure 7-18 Boxplot for overall productivity

Chapter 7 Results - 132

Overall Productivity

Statistical significance analysis of mean difference between treated and control groups

R L e S A . I
2 x 2 independent Experiment group-type Overall Productivity Group Projects

measure ANOVA Semester

lndependem Samples t-test Expetiment group-type

0.001 There is a main effeci for expenmenl group lype . ' " 92

Cooclusioo There is a statistically significant difference between the irealed and control groups in both individual and group
projegts for this metric, This indicates that the treatment (i.e. use of process patterns) was statistically effective,

Statistical significance analysis of the effect of project type on the experiment group-types

0.014 The main effect for the interaction is significant

Conclusion There is a statistically significant difference between group and individual projects in lerms of the mean difference
between Ihe treated and control groups for this melric This indicales that the Ireatment (i.e. use of process patterns) was

Correlauon Anal sis for the ‘no, of lo ins’ und ‘this metnc for rou and 1nd1v1dual rojects

e e — PR e
0. 325 0.010 There is a stalistically significant pesitive correlation Group Projects
0.296 0.028 There is a statistically Signiﬁcan[posilive correlation Individual Projects

Table 7-27 Statistical significance analysis for the ‘overall productivity’ metric

MEIrICIRESTult SUmmary i
Overall Productivity

The results (depicted in Table 7-26, Table 7-27, and Figure 7-18) showed that the overail productivity (i.e.
complete development project) was higher in treated groups that in control groups in both group and individual
projects, which was shown to be statistically significant. For the group projects, the overall productivity {i.e.
complete development project) was found to be 3.5 LOC per hour (28 per day) for treated groups and 2,7 LOC
per hour (21.6 LOC per day) in the case of control groups. For the individual projects, the overall productivity
was found to be 2.9 LOC per hour (23.2 LOC per day) for treated groups and 2.4 LOC per hour (19.2 LOC per
day) for the control croups. The results show that overall productivity was improved by a sensitivity margin of
27.1% in group projects and 19.2% in individual projects. The results, therefore, indicate that the use of process
patterns has a significant positive effect in increasing the overail productivity. Based on these results, it can
therefore be deduced that the application of process patterns improves productivity.

It has been further shown that the mean difference between the treated groups and control in the group projects,
in terms of the overall productivity, was statistically significantly higher than in the individual projects. This
indicates that the employment of process patterns has been more effective on group projects than on individual
projects for this metric. It can therefore be deduced that process patterns are more effective in group projects
than in individual projects in increasing productivity.

Chapter 7 Results 133
Project type Experimental Type | Semester | Mean | N {no. of cases) | Std. Deviation
Group-Project Treated Semester 1 | g4 75 47 2.504
Semester 2 | 9525 18 3.109
Control Semester 1 [ga.78 47 3,002
Semester 2 | g5 o2 20 2.027
Individual-Project | Treated Semester 2 | 94.88 56 3.507
Control Semester 2 | g5 55 62 2538

Table 7-28 Staistics for the percentage of defects fixed in the Implementation phase

139[01&

100 7+ -

98—+

96‘: :
T
0) ST
g 924
D00 | emeewcnesd
85 S0 iimIiin| i
°oF 4. onnn
gz o
f
28 9
SE
5 96- -
S 94
[

92

90 -

88 -

Semester 1 Semester 2
* Semester

Figure 7-19 Boxploi for the percentage of defects fixed in the

Implementation phase

-[enpIAIpU|

adA) joafoug

Experimental
Type
Treated
[# Control

The boxplot depicts the range of values
and median for the ‘percentage of defects
fixed’ metric in the Implementation phase
for both treated and control groups in
both types of projects. It shows that there
is not a significant difference between the
treated and control groups in the range of

values for the group and

projects.

individua!l

Chapter 7 Results 134

Percentage of defects fixed (Implementation phase)

Statistical significance analysts of mean difference between treated and control groups

SR Operation FEXIRE | A Independent Variables i | D 215 1
2 % 2 independent Experimem group-type Percenlage tage of defecls fr xed (lmp]emen[auon Group Projects
measure ANOVA Semester phase)

(No significant difference
between treated and conteol
groups}

Independent Samples t-test Experiment group-type Percemage of defects fixed (Implementation Individoal Projects

expe iment gruup-type :

(No significant difference
between treated and control

S ..} A

Conclusion There is not a statistically significant difference between the treated and control groups in either individual or group
projects for this metric, This indicates that treatment (i.e. use of process pattems) was not statisticaily effective.

Siatistical significance analysis of the effect of project type on the experiment gronp-types

afibic 3 Dependent,Varial i
Ix2 1ndependem measure Expenmem group- type Percentage of defects ﬁxcd Group projects
ndividual projects

0.313 The main effect for the interaction is not significant

Conclusioo This irdicates that treatment (i.e. application of process pattems) was not stansncally more effective on group projects
than cn mdmdua!_Pr_oEc_ts_

C O TH B 1 CRUCR: (52 LICSEripl i
0.095 0.191 There is not a statistically significant positive correlation Group Pm}ects
(.086 0.210 There is not a statistically significant positive correlation Individual Projects

Tabfe 7-29 Statistical significance analysis for the ‘percentage of defects fixed’ metric

- AeFICIRESultiSumnmiary IR T

Percentage of defects fixed (Implementation phase)
The results (depicted in Table 7-28, Table 7-29, and Figure 7-19) show that there is not a statistically significant
mean difference between the treated and control groups for both group and individual projects in terms of the
percentage of defects fixed in the Implementation phase. Based on the results it can therefore be concluded that
the application of process patterns does not improve the quality of the Implementation phase in terms of the
percentage of defects fixed in the Implementation phase.

It has been further shown that the difference between the treated groups and control in gronp projects in terms of
the percentage of defects fixed in the lmplementation was not significantly different to those in the individual
projects. It can therefore be deduced that process patterns are not more effective in group projects that individual
projects for this metric.

Chapter 7 Resuits 135
Project type Experimental Type |} Semester | Mean | N (no. of cases) | Std. Deviation
Group-Project Treated Semester 1 | 13.17 47 3.571
Semester 2 | 15 56 18 2,935
Control Semester 1 | aag 47 25838
Semester 2 [10,60 20 2010
Individual-Project | Treated Semester 2 | 15.85 66 3.119
Control Semester 2 | 11 05 62 1.683

Table 7-30 Statistics for the percentage of Implememation phase time spent in testing

tJ

th
1
¥
1
i
»
¥
1

Experimental

2 o Type
ok : € i cortrol
-i 15+ i)
E {-\ ‘fen.
R & i s
2 th 3
— ;-‘ g-
g s 3
g 2
g 257 i 7§
2 |z %
H a
20 . H | ¥
s i, . g_
® i
g 159 @
E R . _3
2 10+ 4 ‘|=
-1} .
o T 2
Ged 5 on mne o o T e e e s w
T T
Semester 1 Semester 2
Semester

Figure 7-20 Boxplot for percentage of implementation time spent in testing

The boxplot depicts the range of
values for the metric ‘Percentage
of implememation time spent in
testing’ for both treated and
control groups for different
project types and in different
semesters. The Boxplot indicates
that the range of values and
median in all the groupings is
higher for the treated groups
than for the coatrol groups,

Chapter 7 Resnits 136

Percentage of Phase Time Spent in Testing (Implemeatatioo phase)

Statistical significance analysis of mean difference between treated and control groups

BB Operatior § [Ihdependent,v ariabics gl | #g Dependent)V ariable SPL PR
2 x 2 independent Experiment group-type Percemage of phase time spent in testing Group Projects

measure ANOVA Semester (Implementation phase)

lndependent Samples Experiment group-type Percemugc of phase time spcnt in testing Individual Projects
] (Imlememaucn haae)

23_4_______.

Conclusion There is a stausucally mgmf cant difference betwecn thc treated and control groups in both individual and group
projects for this metric. This indicates that the treatment (i.e. use of process patterns) was statistically effective.

Statistical significance analysis of the effect of project type on the experiment group-types

\ Dépeadent;y arable £
Experiment grcup-type Perccntage of phase time spent in testing Group Projects
ANOVA o Project-t ‘- (Imlememauon phase) Individual projec

The main effect for the interaction is significant

o o o o o o — — — S S S S S S S S S A SN S N A T Y W SN SR S S S SN SME N SN SN S SR SEN SER SER SR SER SR SN R SER SR SR S SR S S

Conclusion There is a statistically significan difference between group and individual prejects in terms of the mean difference
between the treated and control groups for this metric, This indicates that the treatment (i.e. use of process patterns} was
statistically more effective on Eroup pro_]ecls than on individual projects for this metric.

2 group and 1nd1v1dual

K%C&”ﬁmcm‘(t}@ : et
(074 0.194 There 15 not a staut:tlcally s:gmt"cant positive comrelation Group Projects
.103 0.096 There is not a statistically significant positive correlation Individual Projects

Table 7-31 Results of significance analysis for the ‘percentage of phase time spent in testing” metric

Percenta.ge of Pha.se time Spent in Testing (lmplementatlon phase}

The results (depicted in Table 7-30, Table 7-31, and Figure 7-20) show that there is a statistically significant
difference between the treated and contiol groups for both project types {i.e. gronp and individual) in the
percentage of the development time spent in the Implementation phase. The results show that the percentage of
phase time spent in implementation was improved by a sensitivity margin of 41.2% in group projects and 38.2%
in individual projects. The results, therefore, indicate that the use of process pattems has a significant positive
effect in increasing the percentage of phase time spent in tests. Based on these results, it can therefore be
dednced that the application of process patterns improves the proportion of phase time spent in tests

It has been further shown that the statistically significant difference between the treated groups and control in
group projects, in terms of the percentage of the lmplementation phase time spent for testing, was higher than in the
individpal projects. This indicates that the employment of process patterns has been more effective on group
projects than on individoal projects for this metric. It can therefore be dednced that process patterns are more
effective in group projects than in individual projects for this metric.

7.6.4 Delivery Phase

In this section the resnlt of the final development phase (i.e. Delivery) are presented. The following metrics are
analysed:

Chapter 7

Resnlts

137

Test Case Density

Percentage of defects fixed
Percentage of Delivery phase time spent in testing

Project type Experimental Type | Semester | Mean | N (no. of cases) | Std. Devletlon
Graup-Project Treated Semester 1| g.g5 47 0.281
Semester 2 | g8 18 0.236
Cantral Semester 1 | pa3 47 0.244
Semester2 | o.77 20 0.161
Individual-Project | Treated Semester 2 | 1.05 66 0.288
Contral Semester 2 | p.a2 52 0.185

Table 7-32 Statistics for test case density in the Delivery phase

Test Case Density (lest case / Requirement)

T
120
1.00
0.80
0604
0.40

Semester 1

Semester 2

Semester

Figure 7-21 Boxplot for test case density

| __ Experimental
a! ‘ Type
s [Treated
15 {® Cantrol
1@
e
@©
-8 o
a
®
[x]
=
9
]

The boxplot depicts the range of values
for the metric ‘Test Case Density’ for
both treated and control groups for
different project types and in different
semesters. The boxplot indicates that the
median in all the groupings is higher for
the treated groups than for the control
groups.

Chapter 7 Results 1

38

Test Case Density

Statistical significance analysis of mean difference between treated and control groups

¥ Opersation’: .. 1’@“ ‘ladependent Variables . .]

__Deépendent Variable = . .. - |57 Projects

2 x 2 independent Experiment group-type Test Case Density Group Projects
measure ANOVA Semester
Significance p-valoe » Description .- Sensitivity margin (%)
___________ ool . I}!‘?’F.‘F.“I main effect fos experimens growp-type . 19.4
0.713 The main effect for the semester is not significant
"""""" 0319 7" 'The main effect for the interaction is not significant

r P 7 Indepéndeot-Variable:
Independent Samp!es Experiment group-type

Test Case Density Individual Projects
t-test

ificance p-value, - - . Descriptoo, - vl Sensitivity margio (%)

____Tlle_re isan mam effect for ememmem_grugp n_ge 13.0

Conclusion

pmjectq for this metric. This indicates that the treatment (i.e. use of proce“ patterns) was statistically effective,

——— —

There is a sml:sl:c.xlly \lgmf"cnm difference between the treated and cantrol groups in both individual and group

b 3 ARy " 32 %é:ﬂf PRt jectsw
2 x2 mdependem measure Experiment group-type Test ‘sl Case Densny Group Projects
ANOVA Praject-type Individual projects

. Significance p-value i - :Description : i

___________ 9-_0_‘_3_...............--.....................“‘..".f?.‘?.a.'.Tl“}!‘.e.f.f??.‘f?'.‘f’fﬂ‘.('i’lﬁ'!‘.&’i’!‘fﬂ‘.‘li.’f.........-.....__.._______
0.021 The main effect for the group-type is significant

"""""" oot T T e ‘main effect for the interaction is significant |
Conclusion

utatiﬁlicn_‘y more effective on_grOEP_ProLch lhan an individua]_ProEcls Tor lhis metric
Corrclauon Anal snf r he no, of Io in and ‘this metric” for grou andn dmdual rojects

There is a statistically significant difference between group and individual projects in terms of the mean d:fference
between the treated and control groups for this metric. This indicates that the treatment (i.e. use of process pattemns) was

—— e e e

i Signifitance (PIE. 5. T D e T e Prolecioesi
0.009 There is a statistically significant positive correlation Gmup Projects
0.001 There is a statistically significant positive correlation Individual Projects

Table 7-33 Statistical significance analysis for the “test case densily’ metric

S e e T e Mefric Result: Sumimary.”. o= %0 57 7 T LT

Test Case density (Delivery phase)

The results (depicted in Table 7-32, Table 7-33, and Figure 7-21) show that the test case density was higher for
the treated groups than the control groups in both group and individual projects, which were shown to be
statistically significant. The results show that the test case density was improved by a sensitivity margin of
19.4% in group projects and 13.0% in individnal projects. The results, therefore, indicate that the use of process
patterns has a significant positive effect in increasing the test case density. Based on these results, it can
therefore be deduced that the application of process patterns improves the test case density.

It has been further shown that the mean difference beiween the treated gronps and control in the group projects,
in terms of the test case density, was statistically significantly higher than in the individual projects. This
indicates that the employment of process patterns has been more effective on group projects than on individuai

projects for this metric. It can therefore be deduced that process paiterms are more effective in group projects
than in individual prejects in improving test case density.

139

Chapter 7 Results

Project type Experimental Type | Semester | Mean | N (no. of cases) | Std. Devlation
Group-Project Treated Semester 1 | g3 23 47 3.577

Semester 2 | a9 g2 18 4.000

Control Semester 1 | gn_42 47 5889

Semester 2 | go 53 20 4.394

Individual-Project Treated Semester 2 | 94 61 66 2.505

Controt Semester 2 | g 34 62 2.327

Table 7-34 Statistics for the percentage of defects fixed in the Delivery phase

"5l01a-dno1

adA) paifoid

Percentage of defects fixed in Delivery

1901010 [ENPAIN,

T
Semaster 1.

T
Semester 2

Semester

Experimental

Type -

@ Treated
Control

Figure 7-22 Boxploi for percentage of defects fixed in the Delivery phase

The boxplot depicts the range of values
for the metric ‘Percentage of defects
fixed’ in the Delivery phase for both
treated and control groups for different
project types and in different semesters.
The boxplot indicates that the range of
value and median in all the groupings is
higher for the treated than for the control

groups.

Chapter 7 Results 140

Percentage of Defects Fixed (Delivery phase)

Statistical significance analysis of mean difference between treated and control groups

2 % 2 independent
measure ANOVA

Experiment group-type
Semester

lndependem Samples t-test Expenmem group type

a mam effcct for exzenmenl_gm@_yle

-———--—--——-—_———--—--

Conclusion

There is a statistically ugmf cant difference between the treated and control groups in both :ndmdual and group
projects for this metric. This indicates that the treatment (i.e. use of process pattems) was statistically effective,

Sratisticg] significance anatysis of the effect of project type on the experiment group-types

Grcup Pro_]ecls
Individual projects

Experiment group-typ.e
Project-type

The main effect for the interaction is not significant

This indicates that treatment {i.e. apphcauon of process pattems) was not statistically mare effective on group pl‘UjEClb
than on individual pro_]ects

Cunclusmn

Group Prots
Individual Projects

There is a statistically 51gn1t'cant posmve correlation
There is a statistically significant positive carrelation

—

Table 7-35 Statistical significance analysis for the *percentage of defects fixed' metric

Metric! Resull: Siinimdry,
Percentage of defects fixed (Delivery phase)

The results (depicted in Table 7-34, Table 7-35, and Figure 7-22) show that there is a statistically significant
mean difference between the treated and control groups for both group and individnal projects in terms of the
percentage of the defects fixed in the Delivery phase. The results show that requirement traceability was
improved by a sensitivity margin of 11.5% in group projects and 8.8% in individual projects. The results,
therefore, indicate that the use of process patterns has a significant positive effect in increasing the percentage of
defects fixed. Based on the results it can therefore be concluded that the application of process patiems increases
the proportion of defects fixed in the Delivery phase.

It has been further shown that the mean difference between the treated groups and control in group projects in
terms of the percentage of defects was not significantly different to those in the individual projects. It can therefore
be deduced that process patterns are not more effective in group projects than individusl projects for this metric.

Project type Experimental Type | Semester | Mean | N {no. of cases) | Std. Deviatlon
Group-Project Treated Semester 1 | 7968 47 7.599
Semester 2 | 7328 18 9.423
Control Semester 1 | 59,09 47 8.140
Semester 2 | 57.25 20 10.804
Individual-Project Treated Semester 2 | 70.86 66 7.736
Caontrol Semester 2 | g2.53 62 15.383

Table 7-36 Statistics for the percentage Delivery phase time spent in testing

Chapter 7 Results 141

The boxplot depicts the range of

%0 : ExpeimentalType volues and median for the
80T Treated ‘percentage of delivery phase
70 - Control time spent in testing’ metric for

both treated and control groups
in both types of projects. The
boxplot indicates that the range
of values and median in all the
groupings is higher for the
trested groups than for the
control groups.

60 -
50 =t
40
30 -

loa[m&mnpwpm

adA) 10afouyg

90 -

70-F i :
60 -
50
40
30 t-

Percentage of delivery time in testing

109[0Ja-dn019

Semaester 1 Semester 2
Semester

Figure 7-23 Boxplot for percentage of Delivery phase time spent in testing

Percentage of Phase Time Spent in Testing (Delivery phase)

Statistical significance analysis of mean difference between treated and contrel groups
T P T R .
TidependentiVariables BN} 4

Experiment group-type Percentage of phase time spent in testing Group Projects

2% 2 mdependent

measure ANOVA Semester {Delivery phase)

Independent Samples E;periment group-type Percenmge of phase time spent in testing Individual Projects
1-test (Deliveryhase)

; St : M8 |
E— L There i 4 man e for caperiment groupiype ___________ 12|
Coaclusion There is a statistically significant difference between the treated and control groups in both individual and group

projects for this metric. This indicates that the treatment (i.e. use of process pattems) was statistically effective.
Statistical significance analysis of the effect of project type on the experirtnent group-types

DEFaHOT A AGA Lodepetdent V arinbics 515 | IEWANIDEpendentlV acinble)

2 x 2 independent measure Experiment group-type Percentage of phase time spent in Gmup Pro_;ecls
ANOVA Pro;ec[-lype tcs[mg (Dcllvery phase) Individual projects

0.011 The main effect for the interaction is significant

Coaclusion There is a statistically significant difference between group and individual projects in terms of the mean difference
between the treated and control groups for this metric. This indicates that the treatment {i.e. use of process pattems) was
statistically more effective on group projects than on individual projects for this metric.

Con

relation Anal sis for the “no. of log

0.487 0.002 There isa qtamtlcally mgmﬁcan[pO\lllVE correlanon o Gmup Prn]ects
0.319 0.006 There is a statistically significant positive correlation Individual Projects

Fable 7-37 Statistical analysis for the ‘percentage of phase time spent in testing’ metric

Chapter 7 Results 142

etric Resuit Sum
Percentage of Phase Spent in Testing (Delivery phase)

The results (depicted in Table 7-36, Table 7-37, and Figure 7-23) indicated that the percentage of Delivery phase
time spent on testing was significantly higher for contrel groups than control for both group and individnal
projects. The results show that requirement traceability was improved by a sensitivity margin of 29.0% in group
projects and 12.1% in individual projects. The results, therefore, indicate that the nse of process patterns has a
significant positive effect in increasing the test case density. Based on the results it can be deduced that the
application of process patterns increased the propartion of the Delivery phase time spent in testing.

It has been further shown that the mean difference between the treated groups and control in the gronp projects,
in terms of the propertion of the Delivery phase time spent in testing, was statistically significantly higher than
in the individual projects, This indicates that the employment of process patterns has been more effective on
group projects than on individual projects for this metric. It can therefore be deduced that process patterns are
more effective in group projects for this metric.

Apart from data collected through conducting a measurement process (presented above), the official marks
awarded to projects by tutors for a number of attributes were also nsed in the experiment, which are presented
and analysed in the following section.

7.7 Tutor Marks Results

As discussed in the research method chapter (Chapter 5), the experiment was conducted on real and official
stndent project, which were marked by tutors after their completion. There were a number of project attributes,
which were marked separately by tutors. There were four attributes marked (i.e. ‘design and analysis’, product,
evaluation, and project management) which were directly related to the software attributes that the study was
investigating. The attributes marked are depicted in Table 7-38 in relation to their respective development phases.

- Officially:- Merked Attributes - .0 = o5 - Development Phages! /59 %% 27 70
Design and Analysis chmrcmcnt analy515 Design

Evaluation Delivery

Product Delivery, Implementation

Project Management Requirement Analysis, Design, Implementation, Delivery

Table 7-38 Relationships between the development phases marked atiributes

In this section, the statistical analysis of the marks awarded to the project by tutors for the four attributes stated
above are presented.

7.7.1 Product

This section analyses the marks awarded by the tutors to the software product attribute of both group and
individnal projects. The product attribute, as evaluated and marked by the tntors, represents a general evalnation
of the delivered software.

Project type Experimental Type | Semeater | Meen | N (no. of caaea) | Std. Deviation
Group-Project Treated Semester 1| 253 47 1.100
Semester 2 | 344 18 1,247
Control Semester 1 | 2.qg 47 0.989
Semester 2 | 3.00 20 1.257
Individual-Project Treated Semester 2 | 3.29 66 1.262
Control Semester2 | og7 62 1.337

Table 7-39 Statistics for the product attribute

Chapter 7 Results 143

The boxplot depicts the range values for the

5 f-—mn- 1 R TEE B Experimental product aunbute for both treated and
......... 1 AR I =1 Type control groups for different project types

4=f--r-mmns E < [® Treated | and in different semesters. The boxplot
revanasredteneass i ;% [#] Contral | indicates that the range of values and

3":‘;“::__ ; ot median in all the gronpings is higher for the

I D . : ‘_a;_ treated groups than for the control groups.
.......... dreemian i 28

P L .

Product
odi] 1vaload

et e d e

1990014 dnoug)

Semester 1 Semester 2

Semester

Figure 7-24 Boxplot for the product attribute

2x2 mdependent Expenmcnl group- 1ype Producl Group Projects
measure ANOVA Semester
Significance p-value Description Sensitivity,;Margin (%
0.004 There is a main effect for expeniment group-type ... 15.2
0.123 The main effect for the semester is not significant
"""""" 0343 77T The main effect for the interaction is not sigmificant
BRI O -t G | I L P a1}V a7ia bl BN | RRNRG < e 12511 712 BN | DA <1<
Independent Samples Experiment group-type Product Individual Projects
1-lest
I Sigoificance povalue Description Sensitivity,Margin (22 MR
e 0000 _Thereis a main effecs for expeniment group-type _____ ____________ "8 __ _]
Conclusion There is a statistically slgm['canl difference between the treated and contro! groups in both individual and group

projects for this atiribute, This indicates that the treatment (i.¢. use of process pattems) was statistically effective,
Stauistical significance analysis of the effect of projeci type on the expsriment group-types

[ERINO peratin NNMNS MORY e peadent;V ariables RNl | QR Dependent,v ariabic BN | NDRRGHRIIN Proi<<ts NURNENEIS
2 x 2 independent measure Experiment group-type Product Group Projects
___ANOVA Project-ty Individual projects
#lizcificaoce A T : N scition NERD — R
___‘?-99‘.1.........-..-....-..--..-___---------.“ﬂ..e.rs_'?.ﬂ_mﬂsp.effss'.f?f.%ffe‘zf_'m‘zfit.gﬂl{e.'r.ﬂes
0.033 The main effect for the group-type is significam
"""""" 0019 T T T T T e main effect for the interaction is significant 7]
Conclusion . There is a statistically sigaihoant difference between group and individual projects i tems of the mean difference |

between the treated and control groups for this attribute. This indicates that the treatment {i.¢. use of process panems)
was statistically more effecnvc on group pmlects 1ha.n on mdw:dual projecis for this aunbu[e

0424 0.001 There is a statistically significant positive comelation Group Projects

0.394 0.002 There is a statistically significant positive comelation Individual Projects

Table 7-40 Statistical significance analysis for the “product” attribute

Chapter 7 Results 144

Resull Sumnary

Product

The results (depicted in Table 7-39, Table 740, and Figure 7-24) show that there is a statistically significant
difference between the treated and control gronps for both project types (i.e. gronp and individual) for the value
of ‘product’. The results show that the product quality was improved by a sensitivity margin of 15.2% in group
projects and 12.9% in individual projects. The resuits, therefore, indicate that the use of process patterns has a
significant positive effect in increasing the value of the product attribute. Based on these results, it can therefore
be deduced that the application of process patterns improves the overall quality of the developed software.

It has been further shown that the mean difference between the treated groups and control groups in group
projects, in terms of the product, was statistically significantly higher than those in the individual projects. This
indicates that the employment of process patterns has been more effective in gronp projects than in individual
projects for this attribute. 1t can therefore be deduced that the process patterns are more effective on group
projects then individual projects in improving the overall guality of the product.

7.7.2 Design and Analysis

This section analyse the marks awarded to the software design and analysis attribute.

Project Type Experimental Type | Semester. | Mean-| N (no. of cases)-| Std. Deviation.
Group Project Treated Semester 1 | 364 a7 0.819
Semester 2 | 3.28 18 1.074
Cantrol Semester 1| a0 47 0.851
Semester2 | 3,20 20 0.768
Individual Project Treated Semester2 | 3.12 66 0.985
Control Semester2 | 3.05 52 0.956

Table 7-41 Statistics for the design and analysis marked attribute

The boxplot depicts the range of the
‘Design and Analysis’ values for both

= Exp%e_r!;g\:ntal treated and céntrol groups for different
o project types and in different semesters.
= Treated C
a . The boxplot indicates that the range of
c #{ Control Lo .
o values and median in all the groupings
éU is not significantly different between
0n
@ 3 the treated and control groups.
L 23 g
[] =]
< g
2
£ -
& 57 -
g - 3
?, 4.5 Q
o 4 2
=
3.5 o]
3 8.
a
2.5
2_.‘. P .. -
T T
Semester 1 Semester 2
Semester

Figure 7-25 Boxplot for the Design and Analysis marked atiribute

Chapter 7 Results 145

Design and Analysis

Statistical significance analysis of mean difference between treated and eontrol groups

WEDcocidentY ariabic)

2 x 2 independent Expenmenl group- type Design and Analysis Group Projects
measure ANOVA Semester
_ Significance p-valne Description ' Sensitivity Margin (%)
___________ 0202 There main cffect for the experiment group-iype is not significant _______ N/A
0.703

lndependenl Samples Experiment group-type Demgn and Analysas Individual Projects
t-test
Significance p-value ° ' Description - ! ~ Sensitivity Margin (%)
0.210 Thcrc is nota main effect f for Of experiment group _rae_____ N/A

Conclusion There is not a stamncally slgmﬁcam difference between the treated and control groups in either individnal or group
projects for this atiribute, This indicates that treatrwent (i.e. use of process pattemns) was not statistically effective.

Statistical significance analysis of the effect of project type on the experiment group-types

2 x 2 independent measure . Eiperimem group-type Demgn and Ana!ysls . . Group Projects
ANOVA _ Project-lype e Individual projects

0.381 The main effect for the interaction is not significant
Conclusion There is not a statistically significant difference between group and individual projects in terms of the mean difference
between the treated and control groups for this attribute. This indicates that treatment (i.e. use of process patiems) was
not statistically more effective on either group or individual prOJects for this metric.
Correlation Analysis for_the ‘no. of logi i

0262 004l There is a statistically signiﬁcam posilive correlation Group ijects)
0.248 0.042 There is a statistically significant positive correlation Individual Projects

Table 7-42 Statistical analysis for the ‘design and analysis’ marked atiribute

B Result Sumniary)
Design and Analysis

The resulis (depicted in Table 7-41, Table 7-42, and Figure 7-25) show that, while there is a slight difference
between the control and treated groups in terms of the quality of the ‘design and analysis’ attribute, the
difference s not statistically significant. This indicates that the use of process pattems did not have a significant
effect on the design and analysis attribute of the project.

The difference between the treated groups and control in group projects in terms of ‘design and analysis’
attribute was not significantly different to those in the individual projects. This indicates that the employment of
process patierns was not more effective in either group or individual projects for this attribute.

7.7.3 Project Management

This section analyse the marks awarded to the project management market attribute.

146

Chapter 7 Results

Project Type Experimental Type | Semester | Mean 'N (no. of cases) | Std. Deviation

Group Project Treated Semester 1 | 354 47 1.072

Semester2 | 357 18 0.840

Contral Semester1 | 357 47 0.827

Semester 2 | 365 20 0.875

Individuai Project Treated Semester2 | 3.18 66 0.959

Contral Semester2 | 313 g2 1.07%

Table 7-43 Statistics for the project management marked attribute

Experimental

108jo1d dnbjs

g] Type
1< B Treated
[»%
S Controi
P
§ 2 o
]
g Q
8 -
-y
5 ®
[T
S a
T
o.

Semester 1

Semester 2

Semester

Figure 7-26 Boxplot for project management marked attribute

The boxplot depicts the range of the
‘Project Management’ values for both
treated and control groups for different
project types and in different semesters.
The boxplot indicates that the range of
values and median in all the groupings is
not significantly different between the
treated and control groups.

Chapter 7 Results 147

Project Managemeat

Statistical significance analysis of mean difference between treated and control groups

2 x 2 independent Experiment group-type Group Projects

measure ANOVA Semester

hﬁﬁﬂﬁ@Ervmm» P ' T DeSCHPHO0 o e e
There main effcct for the expenmem group type is not significant

Sensifvify Margin (%)
N/A

Thgependent Variable

i

Independent Samples Experiment group-type

Thcre is not a main effecl for chnmentErou'E me

e e e e e e e e e e e e
Conclusion There is not a statistically slgmf jcant difference between the treated and control groups in either individnal or group
projects for this attribute. This indicates that treatment (i.e. use of process patterns) was not statistically effective.

Statistical significance analysis of the effect of project type on the experiment group-types

2 x 2 independent measure Expenment group-type Pl‘o_]ecl. Management Grcup ijccts
ANOVA Project-type Individual projects
ValSe S &
__________________________________ There s nota main effect for experiment groupnpe
The main effect for the group-type is not significant
"""""""""""""""""""""""""""" The main effect for the interaction is not significant
[Conctusion . There is not a swiistically significant difference between group and individual projects in terms of the mean difference |

between the treated and control groups for this attribute. This indicates that treatment (i.e. use of precess pattems) was
not slahsucally more effective on either gmup or individual projects for this metrc.

There is not a statistically .slgmﬁcanl positive correlation Group Projects
0.051 0.217 There is not a statistically mgmf’cam positive comelaticn [ndividual Projects

Table 7-44 Statistical analysis for the ‘Project Management’ attribute

* Result Summary: >4
Project Management
The results (depicted in Table 7-43, Table 7-44, and Figure 7-26) show that there is not a statistically significant
difference between the control and treated groups in terms of project management as evaluated and marked by
tutors. This indicates that the use of process patterns did not have a significant effect on the marked ‘project
management’ attribute.

The difference between the treated groups and control in group projects in terms project management was not
significantly different to those in the individual projects. This indicates that the employment of process patterns
was not more effective in group projects than individual projects for this attribute.

7.7.4 Evaluation

This section analyse the marks awarded to the software evaluation attribute.

Chapter 7 Results 148
Project Type Experimentel Type | Semester | Meen | N (no. of ceses) | Std. Devistion
Group Project Treated Semester 1 | 323 47 0.890
Semester 2 | 3.1 18 0.900
Caontrol Semester 1 | 313 47 1.076
Semester 2 | 3,05 20 0.686
Individual Project Treated Semester 2 | 3.18 66 0.959
Cantrol Semester2 | 513 62 1.079

Table 7-45 Statistics for the evaluarion attribute

Experimental
............ 5 Type
=3
L R e Treated
Y S S a
I I 15 =] Control
o o e el ok A B i Al g e - .P
=)
2_. h—ad
c Rt e it il b A b DD R D B - 8 3
o
g 4 e e .
| "
[R G -
(rr I ISR AUV v P S DO 5 ?
_ &
4 13
=
|G
3 | D
----------- 1.
2 18
1 —

Semester 1

Semester 2

Semester

Figure 7-27 Boxplat for the evaluation attribute

The boxplot depicts the range of the
‘Evaluation’ values for both treated and
control groups for different project types
and in different semesters. The boxplot
indicates that range of values and the
median in all the groupings is not
significantly different between the trested
and control groups.

Chapter 7 Results 149

Evaluation

Statistical significance analysis of mean difference between treated and control groups

O ration AR | W 12 Je pendentyV ariablcs RN | PSRN < vendent,y ariab| IR | I 7 /<< R

2 x 2 independent Experiment group-type Evaluation Group Projects
measure ANOVA Semester
Significance p-value Description Sensitivity;Margin (%)
___________ 0112 There main effect for the experimen: group-iype is not significam N/A
0.763 The main effect for the semesrer is not significant

"""""" 0625 """ 'The main effect for the interaction is not significant

W03t e I 0crendcut,y e i NN | ARG Doendent Y ariabic [R
Independent Samples Experiment group-type Evaluation Individual Projects
t-test

.____..2-292__.._13‘2"_" not 3 main ¢ °‘f°"' f°’°"E“”‘°“‘.Er°“.E.¥E°____....________’ﬂ"’_‘_______.

Cooclusion There is not a 5tansncally slgmﬂcanl difference between the treated and control groups in either individual or group

pro]ects t‘or um allnbute This indicates that trealment (1 e. use of process pallems) was not statistically effective.
] on the experiment

2 x 2 independent measure Experiment group-type Evaluauon Group Projects
ANQOVA Project-type - Individual projects
Significance p-value Description
___________ 0043 ... There is not a main effect for experimens group-npe —
0.551 The main effect for the group-type is not significant
"""""" 0363 T T T T The main effect for ihe interaction is not significant
" Conclusion . There is not a statistically significant difference between group and individual projects in terms of the mean difference |

between the treated and control groups for this attribute. This indicates that treatment (i.e. use of process patterns) was
not slausucnlly more effective on either group or individual projects for this metric.

0.102 Therc is not a stalmn:ally mgmf'cam po'smve correlallon Group Projects
0.068 0.197 There is not a stalistically significant positive correlation Individual Projects

Table 7-46 Siatistical analysis for the evaluation attribute

WResi s Suminary

Evaluation
The results {(depicted in Table 7-45, Table 7-46, and Figure 7-27) show that there was a slight difference between
the control and treated groups in terms of the quality of the evaluation. However, the difference was not
statistically significant. This indicates that the use of process patterns did not have a significant effect on the
‘evaluation” attribute.

The difference between the treated groups and control in group projects in terms of the evaluation process was
not significamly different to those in the individual projects. This indicates that the employment of process
patterns was not more effective in either group or individual projects for this attribute.

The results of marks, awarded to the four attributes presented above, indicated that the application of process
patterns improved the product attribute. The other three marked artributes were not significantly affected. This is
further discussed in 8.5.1.

7.8 Subjects’ Views on Process Pattern

The treated subjects were asked two 4-point Likert scale questions on their experience of using process patterns.
These two questions are given below:

1. How useful did you find process patterns in doing your project?

Not at alllC] Slightly(d Moderately [Very[d

Chapter 7 Results 150

2. How difficult/easy did you find the process patterns to understand?
Very difficult[] Difficuit [Easy[] Very easy [

As shown in Figure 7-28, only 8 percent of the subject found process pattems not nseful at all. Ont of 92 percent
that found process pattems useful, 24% found them slightly nseful, 40% moderately useful, and 28% very useful.

=0

Usefulness

Figure 7-28 process pattern usefulness

Figure 7-29 shows that 4% of the snbject found process pattemns very difficult to understand, and 22% difficult to
understand. Most subjects said that they found process pattems either easy (61%) or very easy (13%).

70

80 o

16

Very Dillicult Cif ficult

Understandability

Figure 7-29 Process patterns usability

7.9 Summary

The resuits of the metrics were presented and statistically analysed for statistical significance in this chapter. For
each metric, it was determined whether there was a statistically significant mean difference between the treated
and control gronps caused by the employment of process patterns. 1t was further analysed whether there were
any differences between the group projects and individual projects, for each metrics that indicated a more
prominent effect of process patterns on a particnlar project type (i.e. group or individual). The correlation
between each metric and the numbers of logins to the process pattern online resonrce (treatment) was also
analysed to determine if higher usage of process pattems correlated with improved performance in terms of
metric results.

For the majority of the metrics, a significant mean difference between the treated and control groups were
detected, indicating that the treated groups performed better on those atiributes. It was also found that there were
correlations between the number of logins and metrics values for the majority of the metrics that showed an
cffect of process pattems.

D

Chapter 7 Results 151

As well as the results of the metrics and measurements acquired through the measurement process, the marks
awarded to the projects, by tutors, were also equally analysed. The results showed that for three (‘design and
analysis’, evaluation, ‘project management’) out of the four attributes marked, there was no statisticaily
significant difference. The results however showed that the treated groups did significantly better than the
control groups for the ‘product’ attribute, indicating that process patterns improved the software product quality.

The results also showed that, for many metrics, as weil as the ‘product’ attribute (as marked by tutors), the effect
of the treatment conditicn was higher ot group projects than on individual projects. This indicates that the
process patterns have a more prominent effect on team projects than on individual projects for many attributes.
The results also showed that the majority of the subjects who used patterns (i.e. treated groups), found process
patterns useful and easy to use. In the next chapter, the results will be analysed and discussed.

Chapter 8 Analysis 152

Chapter 8 Analysis

8.1 Introduction

The resnlts of the experiment for each metnic tutor mark were presented and statistically analysed individually in
Chapter 7. The aim in this chapter is to analyse the results. There will be a concise representation of the results
presented in the previous chapter. There will also be a discussion of the metrics and tutor marks and their
corresponding software attnbutes, which were affected by process patterns. There will also be a discussion of
the metrics that showed process patterns had a more significant effect on group projects than individual projects.
The software attributes examined, which were not affected by process patterns, will also be listed and discussed.
Based on the analysis of the results, there will also be a discussion as to whether the research hypothesis is
accepted or rejected. In the final section of the chapter, there will be a discussion of the validity and
generalisation of the overall results.

8.2 Concise Results Representation

Having discussed each metric and tutor mark in detail in the previous chapter, in this section, Table 8-1, presents
a concise representation of the overall results, listing all metrics and tutor marks analysed in the experiment. For
each metric and mark Table 8-1 shows whether the following statements are true (V) or false (x):

Process pattems had a significant positive effect on group projects

Process pattermns had a significant positive effect on individual projects

The effect of process patterns on group projects was significantly higher

There was a corelation between the number of logins (to the online process patterns) and the value of
the metric/mark.

Chapter 8 Analysis 153

Individual Projects
Better Than lnd. Projects

D Rall i R Rt Ral R R Banhcs Rall B Bon R Rl Bl Ban B "Group Projects Performed
IMerrics/Marks

Projects

elelalealaix | Ll lalx (X <fadX X |22} positive Effect on

Percentage of traceable requirementis

Percentage of reviewed requirements specification
Percentage of defects fixed

Percentage of phase time spent in testing
Percentage of design document reviewed

Number of methods per class (Methods per Class Ralio)
Percentage of defects fixed

Percentage of phase time spent in testing
Comment density

Percentage of code reviewed

Productivity (lmplementation phase)

Productivity (complete development project)
Percentage of defects fixed

Defect density

Percentage of phase 1ime spent in tesling

Test case density (Test case per Requirement)
Percentage of defects fixed

Percentage of phase time spent in testing

Req
Analysis

Design

Metrics

Implementation

] X]2 %[% | =] Positive Effect on Group

Delivery

Design and analysis
Product

Evaluation {tests)
Project management

Marks

el Bl B R B s R Rl B Rall Bt Ran B ot Eall Bt Bt Bl R BVt Comelation: Logins and

XX |<yx
X IX | £]|X
X | X |2]X

Table 8-1 A concise representation of metrics/marks results

The results depicted in Table 8-1, show that the majority of the metrics indicate positive effects of process
patterns for both group and individual projects. Tn all the cases that showed a positive effect, both group and
individual projects were affected (i.e. there are no cases where there is only positive effect for one project type
and not for the other). It is also noticed that in majority of the cases that showed a positive effect, the effect was
higher on group projects than individual projects. This indicates that process patterns have a more prominent
effect on team projects than individual projects. The resnlts also show that, apart from one exception, there was a
correlation for all the metrics that showed an improvement due to the nse of patterns, between the number of
logins to the online pattems and the value of the metric/marks. This snggests that higher usage of process
patterns correspands to more favourable metric values and, therefore, to better associated attribute quality.

In the following section, the results are further discussed and analysed.

8.3 An Analysis of the Results

As depicted in Table 8-1, there are a number metrics that are deemed significant in indicating that, the
employment of process pattemns had a positive effect on the software attnbutes, which they measured. Thirteen
out of the eighteen metrics investigated showed a statistically significant difference between the treated and
control groups. The significant effect of each metric was analysed through sensitivity analysis as described in
Chapter 7. The sensitivity margins represent the percentage of change that conld take place in the metric’s
parameters before its conclusion was affected. Table 8-2 lists all the thirteen metrics that showed an
improvement as a result of using pattems, in order of the significance of their effect, as determined by the
sensitivity margins. The attribute most affected was the ‘source code review' with an overall sensitivity margin
of 44.7%. The least affected was the ‘defect removal ratio (measure by percentage of defects fixed) in the

Chapter 8 Analysis 154

Dclivery—phase, with an overall sensitivity margin of 10.2%. There were also a number of metrics which
indicated that process pattern usage had no significant effect on the associated atiributes. These are listed in
Table 8-3.

: Sensitivity Margin %
No Metric | Group Indiv. Mean
. Projects | Projects
1 Percentage of source code reviewed 47.5 419 447
2 Comment density 43.8 376 43.2
3 Percentage of phase time spent in testing (Implementation) 41.2 38.4 398
4 Defect density 39.2 313 382
5 Percentage design document reviewed 38.1 321 3501
6 Productivity (Implementation} 333 238 28.6
7 No. of metheds per class (Methods per Class Ratio) 338 203 27.1
3 Productivity (overail) 271 19.2 23.2
9 Percentage of phase time spent in testing (Delivery phase} 290 121 20.1
10 Test case density (Test case coverage) 19.4 13.0 16.2
11 Percentage of reviewed requirements specification 20.6 10.1 157
12 Percentage of traceable requirements 19.1 11.1 15.1
13 Percentage of defecis fixed (Delivery phase) 1.5 88 10.2

Table 8-2 Metrics that showed positive effect of process patterns and their effect size

No. . Metric

1 Percentage of phase time spent in 1esting (RA Phase)

2 Percentage of defects fixed (RA Phase)

3 Percentage of defects fixed (Design Phase}

4 Percentage of phase time spent in testing (Design phase)
5 Percentage of defects fixed (Implementation)

Table 8-3 Metrics that showed no significam effect of process patterns

As indicated in Table 8-2, pattems have been shown to have a positive etfect on the following software
attributes:

* Requirements Traceability: This attribute refers to the ability to describe and follow the life of a
requirement, in both a forwards and backwards direction {[Ramesh and Jarke 2001). A requirement
should be linked 10 a higher level document, which could be a higher-level system requirement, as well
as downward to the design elements, source code, and test cases that are constructed to implement and
verify the requirement [Davis 1993][Hull et al. 2003]. Therefore, higher requirement traceability is
desired in a software development project. This attribute was measured through the ‘percentage of
traceable requirements’ metric which showed a significantly higher value for the projects that used
process patterns. It has been shown that the employment of process patterns in software development
projects improves the requirement traceability by 15.1%. The use of patterns can therefore be said to
make a statistically significant improvement to the traceability of requirements.

e Reviews: Reviews are the most widely nsed approach for assessing softiware quality [Sommerville
2007). Furthermore. inspection of requirements and design are more effective than testing [Hinkle
20071, Anerror detected within the development process is 10 to 100 times less costly to fix, than a bug
found duning the application’s operation [Boehm and Basili 2001} [Standish Group 2007]). Boehm
[198]1] and Jones [1996] have shown that peer review has the most significant defect filtering
effectiveness rate of 65% (higher than unit testing of 60%). Therefore, the higher the perceatage of the
reviewed artefacts, the better the quality of the review process and better the chance of finding any
defects [Fagan 1976]. This attribute was measured wsing the following three metrics: Percentage of
reviewed requirements specification, percentage of design document reviewed, and percentage of
source code reviewed. The metrics showed a significantly higher value for the projects that used
process pattemns. It has been shown, through sensitivity analysis, that the employment of process
patterns in software development projects effectively improves the reviews process by an average of

Chapter 8 Analysis . 166

31.8% (i.e. Code rev. 44.7%, Design doc rev. 35.2%, and Req, spec. rev. 15.7%). The use of patterns
can therefore be said to make a statistically significant improvement to the review process.

¢ Granularity/Complexity of modules: An application developed with more finely granular objects (i.e.
lower methods per class, is likely to be more easily maintained and reusable. A larger number of
methods per class are likely to hinder extensibility and complicate testing due to the increased object
size and complexity. Furthermore. the larger the number of methods, the more complex the inheritance
tree and the more limiting the potential reuse and therefore the number of methods per class should be
kept as low as possible [Pressman and Ince 2000]. This attribute was measured through the *Methods
per Class Ratio’ metric. This metric was first proposed by Chidamber and Kemerer [1994], named
Weighted Method per Class (WMC), as a measure of complexity (see Section 4.9). The metric
produced results that were more favourable for projects that used process patterns. It has been shown,
through sensitivity analysis, that the employment of process patterns in software development projects
effectively improves the granularity-complexity modules (classes) by 27.1%. The use of patterns can
therefore be said to make a statistically significant improvement to the granularity/complexity of
modules.

e Comment Density: The comment density metrics is nseful for estimating the quality of the code
[Lorenz and Kidd 1994]. The higher the percentage of the code that is commented, the better the quality
of code in terms of readability, modifiability, and maintainability. It is generally recommended that
there should be as many lines of comments as lines of code [Ambler 1998]. The comment density
attribute is measured as the ratio of the lines of comments per lines of code (t.e. LOCom / LOC). The
metric showed a significantly higher value for the projects that used process pattems. It has been shown
that the employment of process patterns in software development projects improves the comment
density by 43.2%. The nse of patterns can therefore be said to make a statistically significant
improvement to the comment density.

¢ Productivity: Productivity evaluation is difficult and controversial, and even advice offered by ISO
15393 on productivity measuremnents have been shown to be misleading [Kitchenham and Colin 2007].
Difficulties in productivity measurement are partly due to the diverse and differing ways and views on
how input and output should be measured and the difficulty in measuring them [Kitchenham and
Mendes 2004] [Shepperd 1996] [Walton and Felix 1977]. For example, LOC as a measure of output
does not take into account many attributes such as verbosity of the programmer, the programming
language, and environmental complexity such as skills, pressure, tool support, and computing platform
(See Section 4.10). However, LOC and Function Point counts are the most common output
measurements used {Maxwell and Ferselius 2000]. While some argue that it is unsafe to measure
productivity as a ratio of two nurelated vanables [Kitchenham and Colin 2007]], productivity as size
over effort ratio is by far the most popular method of evaluating productivity. In a literature review of
the productivity measurement, Kitchenham and Mendes [2004] found that (with the exception of one)
all the surveyed papers to use this method of productivity evaluation. The method of productivity
measurement ermployed in this research is also size over effort, where size is measured in terms of the
number of lines of code (LOC), and effort in terms of person-hour. Although imperfect, this method of
productivity measurement (i.e. LOC/Effort) is widely used and provides a consistent measure of
productivity [MacCormack et al. 2003]. In this study, LOC measurement method and other related
factors and issues (e.g. verbosity of the programmer, the programming language, and envirenmental
complexity such as skills, pressure, tool support, computing platform), are randomly spread amongst the
control and treated groups, and have therefore neutralised effect. LOC over Effort is therefore deemed
appropnate for this study as a way of comparing treated and control groups in terms of their
productivity.

Productivity was measured for both the Implementation phase and the complete development project. It
was evaluated as size (LOC) over effort (time) where time was measured in terms of person-hour, rather
than day, since the subjects often spent part of the day working on the projects. The results can however
be easily extrapolated to ‘day’ as the unit of time (taking a day to be eight working hours) by
multiplying the results by 8. For example, productivity of 6 LOC per hour would be equivalent to 48
LOC per day. It has been shown that the employment of process patterns in software development
projects improves the productivity in the Implementation phase by 28.6% and the overall productivity
(for the complete development project) by 23.2%. The use of patterns can therefore be said to make a
statistically significant improvement to productivity.

Chapter 8 Analysis 166

Defect Density: This metric is generally used in industry for many purposes such as identifying
candidate components for further review, or analysing and tracking the impact of defect removal on
quality improvement [Ebert 2003]. It is the most commeonly used means of measuring quality of a piece
of software code and has become the de-facto industry standard measure of software quality [Fenton
and Pfleeger 1997]. It is measured as the number of defects detected per LOC ratio. The metric showed
a significantly higher value for the projects that used precess patterns. A reduction in the defect density
in source code is important, especially as studies have shown that up to 63% of defects occur at the
design and coding stages [Boehm 1981][Jones 1996]. It has been shown that the employment of process
patterns in software development projects improves the defect density by 38.2%. The use of patterns
can therefore said to make a statistically significant improvement to the defect density.

Test time allocation (lmplementation and Delivery phases): A right proportion of the phase time
allocated to testing is important in providing the necessary time for carrying ont the required testing
tasks adequately. A small proportion of the phase time allocated to tests would indicate a deficiency and
inadequacy in carrying out the test tasks properly. Normally between 30 to 40 percent of project effort
is spent on testing [Pressman and Ince 2000). It is generally recommended in the literature that in most’
cases, between 30 to 50 percent of the development effort should be allocated to testing [Six
sigma][Huang 2004].This attribute was measured through the “Percentage phase time spent in testing’
metric, which showed a significantly better value for the projects that used process patterns. It has been
shown that the employment of process patterns in software development projects improves time
allocation to testing by 40% and 20% in the Implementation and the Delivery phases respectively. The
use of patterns can therefore be snid to make a statistically significant improvement in allocating
appropriate test time to the Implementation and Delivery phases.

Test Case density (test case coverage): Every requirement should have one or more tests associated
with it [Laplante 2007]. This attributes was measured by the ‘test case density’ metric, which is
evalnated as the ratio of (No. of defined test cases) per (No. of requirements). A higher test case per
requirement ratio denotes a more thorongh and comprehensive test process, as it offers a higher
probability of detecting any defects. The metric results showed a significantly higher value for the
projects that used process patterns. It has been shown that the employment of process patterns in
software deveiopment projects improves the test case density by 16.2%. The use of patterns can
therefore be said to make a statistically significant improvement to the test case coverage.

Defect removal ratio (Delivery phase): Defect control and management is crucially important in
software development, as defects are a root cause of software failures [Jones 2007]. Therefore, a
development process in which more of the detected defects are fixed is more likely to produce a reliable
software praduct. This attributes was measured by the ‘percentage of defects fixed' metric, which is
evaluated as the ratio of (No. of defects fixed) per (No. of defects detected). This metric is nsed to
provide an indication of the quality of defect correction process and product, by assessing the
percentage of the defects that were fixed for each development phase. A higher value would indicate a
better defect correction process as well as a less erroneous product. This attributes was measured as the
ratio of the number of defects fixed per the number of defects detected. The results of the metric
showed a significantly higher value in the Delivery phase for the projects that nsed process patterns. It
has been shown that the employment of process patterns in seftware development projects improves the
defect removal ratio by 10.2% in the Delivery phase. The use of patterns can therefore be said to make a
statistically significant improvement to the defect removat mtio in the Delivery phase.

While patterns have been shown to improve the attributes ontlined above, the results indicate that they do not
make a significant difference to some attributes. These attributes are listed and described below.

Test time allocation (Requirement Analysis phase): The test time allocation attribute was described
above. The results showed that there was not a statistically significant mean difference between the
treated and control groups in terms of the amount of time they allocated to testing in the Requirement
Analysis phase. It can therefore be concluded that process patterns do not affect the proportion of the
RA phase time that is ailocated to testing.

Test time allocation (Design phase): The results showed that the allocation of test time in the Design
phase was not significantly affected by the use of process patterns. It can therefore be concluded that
process pattems do nat affect the proportion of phase time Design phase time that is allocated to testing.

Chapter 8 Analysis 167

¢ Defects removal ratio (RA phases): The defect removal ratio attribute was described above. The
results showed that there was not a statistically significant mean difference between the treated and
control groups in terms of the ratio of the ‘number of defects fixed’ per ‘number of defects detected’ in
the Requirement Analysis phase. It can therefore be concluded that process patterns do not affect the
defects removal ratio in the Requirement Analysis phase.

s Defects removal ratio (Design phases): The defect removal ratio attribute (described above) for the
Design phase, was not affected by the use of process patterns. It can therefore be concluded that process
patterns do not affect the defects removal ratic in the Design phase.

s Defects removal ratic (Implementation phases). The defect removal ratic attribute for the
Implementation phase was also not affected by the use of process patterns. It can therefore be concluded
that process patterns do net affect the defects removal ratio in the Implementation phase.

A trend can be observed in the improved attributes listed above. The trend points to significant improvements to
attributes in three general areas of, tests, reviews, and defects as a result of nsing process patterns. The
improvements in testing activities are substantiated by metrics (10), (9), and (3) [Table 8-2], which show
significant improvements in test related attributes. The improvements in reviews are substantiated by metrics (1},
(5), and (11) [Table 8-2], which show significant improvement in the reviews of the source code, design, and
requirements specifications. The improvements in defect control are substantiated by metrics (4) and (13) [Table
8-2], which also show significant improvement in defect density and defect removal ratio.

It is observed from the results that, although the use of patterns improved test time allocation in some phases,
they made no statistically significant difference in others. For example, while the test time allocation attribute
was significantly improved in both Implementation and Delivery phases, nc improvement is noticed in the cases
of the Requirement Analysis and Design phases. A closer look at the metric results indicate that both treated and
centrol groups spend a reascnable proportion of the RA phase time (22%) on testing and review. The proportion
of phase time spent on test was much lower in the case of the Design phase being around 8% for both the treated
and control groups, which is in general much too low, In both cases, the pattern usage does not appear to have
made any significant effect. The resnlts point to the conclusion that process patterns do net affect the proportion
of phase time allocated to testing in either RA or Design phases. However, it is important that there was a
significant improvement (39.8%) in the allocation of time in the Implementation phase, which invelved testing
and validating the developed source code, which is the backbone of the completed application. It is further
significant that there was also an improvement (20.1%) in the allecation of test time in the Delivery phase, which
involved “test in the large’ activities that tested the completed software application.

1t is alsc observed from the results that the use of process patterns had no significant effect on the defect removal
ratio attribute on three of the four development phases (i.e. RA, Design, and Implementation phases). The results
however, show that there is an improvement in the Delivery phase for this attribute as a result of using process
patterns. Considering that defect remcval ratio in the Delivery phase concerns the proportion of the defects
corrected in the completed application, improvement (10.2%) in this attribute, as a result of using patterns, is
significant in terms the quality (i.e. reduced defects) of the end product.

The trend, which emerges from the results, indicate that process patterns have the least effect on both, the defect
removal ratio and the test time allocation attributes, on the first three development phases, while having a
significant effect for both attributes on the last phase (i.e. Delivery). The trend further points to improvement in
many attributes such as requirement traceability, reviews, comment density, defect density, granularity-
complexity, and test case density. An important trend in improvement is neticed on preductivity. The results
showed that process patterns significantly improved productivity at both phase level (Implementation 28.6%)
and project level (23.2%). The higher improvement level on preductivity at the Implementation phase indicate
that developers were more preductive in this phase due to availability of better design documents generated in
the Design phase. The developers could concentrate their efforts on the implementation cf the prepared design,
rather than spending pertion of their time on the design implication of the code, and therefore be more
productive in the Implementation phase.

The Table 8-1 shows that there have been improvements in ail the four evalnated phases of the development
lifecycle through improvement tc at least two or more attributes in each phase. For example in the Delivery
phase, all the three measured attributes showed improvements as a result of using patterns. The Design phase
was also improved in terms of smaller granularity of objects, as measured by ‘Method per Class ratic” metric.

Chapter 8 Analysis 158

The Implementation and Requirement Analysis phases were also improved through improvements in attributes
such as reviews, requirements traceability, defect density, and comment density.

As detailed in Chapter 7 and listed in Table 8-1, there are a number of metrics, which indicate that process
patterns have a more significant effect on group projects than on individual projects. These metrics are listed in
Table 8-4.

Z
e

Metric
Percentage of traceable requirements
Percentage of reviewed requirements specification
No. of methods per class (Methods per Class Ratio}
Percentage of design document reviewed
Comment density
Percentage of code reviewed
Percentage of phase 1ime spent in testing (Implementation)
Productivity (in Implementation phase)
Productivity (overall)
1] Test case density {Test case per Requirement)
1 Percentage of phase time spent in testing (Delivery)

—|—loloe|d|on | & o] —

Table 8-4 Metrics that showed process panerns had a more significant effect on
group projects than on individual projects

Based on the metncs results listed in Table 8-4, patterns have been shown to have a more significant effect on
group projects than on individual projects on a anmber of attributes. These are:

Requirements traceability

Reviews

Granularity of modules

Comment density

Productivity

Test time allocation (Implementation and Delivery phases)
Test case density (Test case coverage)

The improved values in the group projects for the above attributes indicate that process pattemns are more
effective in team projects, where a number of individuals are directly involved in the project. Studies have
shown that effective communication between team members is an essential ingredient of successful software
projects [Futrell et al. 2002]. The reason for the improved effect of process patterns on team projects could
therefore be due to the influence of process patterns in producing commuaication within teams that are more
effective. This explanation is plausible due to that fact that design patterns have been shown to improve
communication within teams [Beck et al. 1996] [Hahsler 2005] [Unger and Tichy 2000]. The survey conducted
in this study (see Chapter 3, Table 3-8) also showed that 61% of respondent pattemn users believed that pattern
improved communication between development team members. It therefore appears that process pattems also
have a positive effect on improving communication within teams. There were also a number of metrics (i.e. the
defect density and the percentage of defects fixed), which showed that while process patterns had a positive
eftect, the effect was not more prominent in either project types.

In the case of tutor marks, the four attributes marked were design and analysis, evaluation, product, and project
management. In analysing the marks with regards to any difference between the treated and control groups, no
significant differences were found for three of the four attributes {as shown in Table 8-1}. These are ‘design and
analysis’, ‘evaluation’, and ‘project management’. There were however differences between treated and control
groups for the ‘product” attribute for both group and individual projects. The results show that the treated groups
received significantly higher marks for the ‘product’ attribute than the control groups, with sensitivity margin of
14.1% as shown in Table 8-5, indicating that the product in the case of the treated groups was of a higher quality.
Considering that the product atinbute of the project, as marked by the tutors. is a measure of the quality of the
delivered software product, it is significant that process patterns have been shown to improve the quality of this
atnibute. It can therefore be deduced that the application of process patterns improves the quality of the
delivered product. Furthermore, it has been shown that the mean difference for the product attribute, between the
treated groups and coatrol groups, was higher in the group projects than the individual projects. This iadicates
that group projects were more affected by the treatment (i.e. process patterns) than the individual projects for the

Chapter 8 Analysis , 159

product attribute. 1t can therefore, be concluded that the employment of process pattems is mare effective on
team projects than individual projects in producing a better quality product.

Sensitivity Margin %
No | Tuter Marks | Group Projects | Ind. Projects | Mean

1 Product 15.2 12.9 14.1

Table 8-5 Tutor mark attribute, which showed positive effect of process patterns

8.4 Research Hypothesis
The research question and hypothesis was discussed in the Section 5.2. The research’s null hypothesis is:

H, Application of process pattems in the management of a software development
project will not improve the quality of the project.

The research’s alternative hypothesis is:

H, Application of process pattems in the management of a software development
project will improve the quality of the project.

In order to test this hypothesis a number of software attributes, across the four major phases of a development
lifecycle, were measured and evaluated through an experimental research method. As shown in Table 8-1, there
were at least two or more attributes in each development phase that showed statisticalty significant improvement
as a result of employing process pattems in software development projects. It can therefore be said that process
pattems improve the overall quality of a software project. Based on these findings, the null hypothesis Hy is
rejected and therefore the altemative H, is accepted.

8.5 A Discussion of the Resulis

There are three main possibilities for the reason that iajority of metrics showed a significant difference between
the treated and control groups in favour of the treated groups. These three are:

1. The treated groups knew that they were part of an experimental study and made extra effort (more than
they normally would) to do better and perform to the expectation (the Hawthom effect).

2. The treated groups kmew that they were expected to follow the solutions provided by the process
pattems and therefore exaggerated their measurement data to conform to the expectation that pattems
improved performance.

3. The treated groups implemented the solutions provided by the process pattems, which resulted in higher
quality values for the measured attributes.

The Hawthom Effect [Parsons 1974] is an important aspect of an experiment design, which should be considered
carefully at experiment design {evel. In the design of the experiment, for this research, the Hawthom effect was
fully considered as discussed in the research method chapter (Chapter 5). Research in software engineetng has
shown that people can taitor their behaviour to the things they are measured against, and produce the expected
results {Weinberg and Schulman 1974]. While the students had to be told that they were participating in an
experiment for ethical reasons, they were not told whether they were in the control or treatment groups.
Therefore, any Hawthom effect would have applied to both the controi and treated groups and would therefore
not affect the outcome of the experiment to compare treated and control groups. Scenario (1) above is not
therefore applicable.

The researcher checked the measurement data, wherever possible during the evaluation of projects. Except in
very few discrepancies, which could be due to genuine mistakes, the data measurement provided by the subjects
corresponded with the project documents. Based on this. it is safe to deduce that measurement data that could not
be verified by the researcher, such as time spent in a phase, no. of defects fixed, percentage of source code
revigwed, etc. were also relinble and valid. Furthermore, any assumption of the exaggeration of measurement
data would also be equally applicable to the control groups, since the control groups were also aware of their
participation in the experiment and the importance ot the measurement data they provided. Neither groups were

Chapter 8 Analysis 160

told whether they were in the control or experimental groups. Therefore, even if such exaggeration did take place
to some extent, it would not have significantly nffected the results of the experiment since such exaggeration
would have affected both treated and contrel groups. Therefore, scenario (2) is also not applicable.

The only significant differential elements between the treated and control groups in the experiment were the
application of process patterns (treatment condition). While there were differing abilities and characteristics (i.e.
intelligence, hard-work) between the subjects, such extraneous variables were randomly dispersed across both
treated and control groups, due to the random nature of the control and treatment groups. Therefore, nny
significant difference between the treated and control groups can only be due to the introduction and
employment of process pattemns by the treated groups in their development projects. This factor was further
emphasised by the positive correlations found between pattern usage and metric values. Therefore, the difference
in metric values between the treated and control groups, can only be attributed to the use of process pattems by
the treated groups, as stated in scenario (3).

8.5.1 Official Evaluation

Project tutors carried out the official evaluation of the projects in order to mark the projects. However, their
evaluation showed a statistically significant difference between the treated and control in only one of the four
development attributes marked. That does not correspond with the metric evaluation, in which the majority of
metrics showed statistically significant difference in favour of the treated groups. This may be due to two
reasons: 1) A difference in the evaluation methods, and 2) A difference in the marking criteria.

While the metric evaluation method focussed on small and specific aspects of the development, such as defects
and review quality, the official method of evaluation was more generic, combining a number of attributes. This
would have caused a dilntion of the effect that could have led to any difference to be less prominent. For
example, there was just a single mark for ‘analysis and design’, which may be too big an attribute to be
evaluated by this method. The evaluation scheme (marking scheme) employed by the tutors conld have also
made a difference. For example, marking criteria and scheme for evaluating ‘design and analysis’ for grades,
‘good’ and excellent is as follows: Good = *Evidence of analysis and design in respect to the original problem’,
Excellent = ‘Analysis and design is explicit. All problems addressed’ (See Appendix A, Experiment Details, for
marking scheme detnils). The adopted 5-point scate may have not been sensitive enough to detect the
differences between the treated and control groups that would have otherwise been detected by the conducted
memnsurement process.

It is however significant that, for the ‘product’ attribute, which evalnated the quality of the produced software,
there was a significant difference between the treated and control groups in favour of the treated groups. This
indicates that the use of process patterns had a positive effect on the quality of the developed software.

8.5.2 Generalisations of the Results

The generalisation of the results is directly related to the external validity of the experiment design [Christensen
2006], which was discussed in the research method Chapter 5. The results presented and discussed have shown a
clear positive effect for many software attributes measured through specific metrics. The question is whether
these results can be generalised to apply to other settings, situations and circumstances. For example, the
experiment has shown that the use of process patterns increased comment density in the tested samples. Does it
follow therefore that the use of process patterns increases ‘comment density’ in general?

The statistical significance analysis carried ont on the sample population of the final year, software development,
undergraduates, showed that the mean difference between treated and control gronps was statistically significant
for the majority of the metrics as listed in Table 8-2. Therefore, such results would apply to the whole population
from which the sample was selected (i.e. final year computing undergmduates). Therefore, that makes it
statistically safe to state that process patierns (i.e. the treatment) improve the quaiity of requirement analysis in
final year, undergraduate, software development projects.

The results however can be further generalised to apply to the whole software community, if it can be shown that
the sample selected is n snmpled representation of the software community population. As the software
community includes a population of professional software developersfengineers from which no samples were
directly taken, it appears that the results may not be statistically applicable to the software community in general.
There is however, an argument that the final year undergraduates already have some years of software
engineering experience (some at professional levels) and are close to being professionals, and may therefore be

Chapter 8 Analysis 161

considered as a valid sample of the software development community {Carver 2003] [Sjoberg 2002]. Students
are widely used as samples/subjects in software engineering experimental research, and it is generatly accepted,
within the software community, that the resnlts nchieved in such experiments can be generalised [Sjoberg et al.
2003]. Therefore, based on the arguments presented in this section, the results and the conclusions achieved in
this experimental study are generalised to be universally applicable and acceptable.

8.6 Summary

In this chapter, the results presented in the previous chapter were analysed. It has been shown that patterns have
a positive effect on the following software atiributes:

Requirements Traceability

Reviews

Granularity of modules

Comment Density

Defect Density

Productivity

Test time allocation at liplementation and Delivery
Test case density (coverage)

Defect removal ratio (Delivery phase)

Furthermore, the results showed that process patterns have a more prominent effect on group projects than the
individual projects for the following attributes:

Requirement traceability
Reviews

Granularity of modules
Commeant density
Productivity

Test time allocation (Implementation and Delivery phases)
Test case density (test case coverage)

The resuits of the official tutor marks for the four marked attributes were also analysed. It was shown that the
employment of process patterns in software development projects improved the ‘product’ attribute. This
indicates that pattern usage improves the overall quality of the delivered software application.

Based on the results presented and analysed in this chapter, which showed the application of process patterns
improved a number of software attributes, the research’s alternative hypothesis was accepted. Therefore, the
study confirmed that the application of process patterns in the management of a software development project
will improve the guality of the project (at the very least in terms of thirteen different guality attributes measured
in this experiments and of the overall perception of the quality of the marked product as assessed by the
independent markers).

Chapter 9 Conclusion 162

Chapter 9 Conclusion

9.1 Introduction

The main aim of this research has been to investigate the utility and value of process patterns in the management
of software deveiopment projects. This chapter offers a summary of the main concepts, outlines the research
contributions, and provides a discnssion of the results. The chapter contains the following sections:

_ Summary of main concepts
Research contribution
Results summary
Limitations
Research’s Impact
Future Work

In the next section, the main concepts and topics concerned in this research witl be briefly discussed.

9.2 Summary of Main Concepts

The pattern concept, originating in architecture, has penetrated many areas of software engineering. Patterns are
currently employed in many domain and technology areas such as distibuted computing, security. object-
domain-uspect oriented devetopment, embedded systems, and development process [Buschmann et al. 2007].
While the pattern concept has been adopted and applied in many domains of softwure engineering, there are
many issues about patterns that are being discussed within the pattern community. Some criticise the patterns for
being vague in terms of their structure and context, and call for the pattern concept to be formalised to be more
nseful [Bayley and Zhu 2007][Taibi and Ngo 2001]). However, while formalisation would make it easier to
create pattern tools to assist with indexing, searching, and mining patterns, it would make the pattern concept too
restrictive, causing it to lose the flexibility and the abstract nature that is its fundamental characteristic.
Furthermore, although formalisation of patterns may be possible for some well-defined domains, such as
software design and architecture, it would be extremely difficult to implement fully in some areus of software
engineering such as development processes. Process patterns typically involve a human element, making them
unsuitable to be strictly formalised in any comprehensive manner. Fundamentally, both eleménts of process
pattern (i.e. development processes and patterns) are abstract to an extent, and are therefore inappropriate to
attempt to fully formalise and automate their extraction or implementation (see sections 2.6.4 and 2.3.4).

A further important issue with software patterns is, that while there are numerous software pattems stored in a
number of software pattern repositories [Booch 2008][Portland Pattern repository], it is difficult for pattern
users and software practitioners to find appropriate pattems that are best suited to the problem they are trying to
solve [Kampffmeyer and Zschaler 2007). This is partly due to inappropriate search mechanisms. Furthermore,
the pattern repositories do not document how a number of patterns can be nsed in a sequence, to solve more
intricate and comptex problems. The true power of the pattem concept is in the way a number of patterns can
interlink. and collaborate in a sequence to solve a problem. While some research is being done in this area (for
example [Siddle 2007]), this important aspect of patterns has not yet been researched and untilised in any
significant way. Software patterns can become much more wnseful and more widely nsed once considerable
progress is made in this area.

The value of the patterns concept as a method of capturing ‘best practice’ in the software development processes
was realised and docnmented early in the introduction of patterns in software engineering, in works such as
[Coplien 19951[Whitenack 1994][First PLoP conference Proc. 1994]. However, the pattern community and
software practitioners have by large concentrated on the product aspects and design utilities of the pattern
concept [e.g. design patterns]. There is currently far fewer published work on process-based patterns than on
software design and architecture-based patterns. The usage of development process-based patterns in the
software development industry has been much lower in cormparison to design-based patterns. One of the reasons
for the low usage of process pattems in industry could be becanse formal development methodologies and
processes are little understood and practiced in many immature software development companies. Some stndies

Chapter 9 Conclusion 163

have shown 35% of software development organisations have an ad hoc, individual-based, and informal
development process in place {Yourdon 2008). There has also been a dearth of empirical research assessing the
utility of patterns in software engineering. While there have been a few empirical studies to evaluate the effect
and value of design pattems on some aspects of sofiware development [Unger and Tichy 2000] [Prechelt 2001,
2002], there appears to be no credible empirical studies to investigate the utility and value of process pattems. In
addressing this issue, it was the main objective of this research to investigate empirically whether the application
of process pattems, in a seftware development project, improved its quality. As a resnlt, the research provided
evidence that the application of process pattems has a positive effect on many attributes, such as, traceability of
requirements, defect density, productivity, comment density, etc. These will be briefly discussed in the resnlts
section 9.4). This research has shown that process-based pattems can play an important part in improving
software development practice, by enhancing the quality of many software development atiributes.

Measurement is essential in producing tangible evidence in any field of science and engineering, While in some
fields. such as physics, measurement is a mature and well-understood process of crucial importance, it is much
less understoed in software engineering and therefore its role has not been anywhere as significant [Ebert and
Dumke 2007). There are those within the software community who argpe that proper and accurate measurement
in software engineering is currently impossible, because software engineering itself is not yet fully nnderstood. It
appears that software maturity and measurement are closely interlinked in that accurate measurement will only
be possible ouce software development practice is fully matured. Conversely, software development will not
reach full maturity until it can be accorately measured. However immature and flawed, measurement endeavour
has to be cantinved eamestly in software engineering, if not for the usefulness of the results that they currently
produce, at least for their value in the advancement of our understanding of software itself, and the ways that it
can be measured. The measurement concept and practice has been an impartant and integral part of the
controlled experimental research method devised for this research. Without software meuasurement concepts and
related metrics, it would be impossible to evalvate software attributes and therefare impossible to conduct such
experimentation to assess the utility of a concept, entity, or technology. Research works, such as this project,
play an important part in edging forward our understanding of software and its measurement concepts. One
feature of this research is that it has contributed to our understanding of the empirical application of software
measurement, by employing it in an experimental research. The research provides a demonstration of the way
the measurement concepts aud theories can be employed in experiments to evaluate software attributes. Such
research works, not only produce valuable measurement for evaluatian of software artefacts and attributes, but
also are usefnl in highlighting any deficiencies in the software measurement thearies and practices.

While in recent years there have been many mare empirical studies in software engineering than in the past, the
numbers and the quality of the studies in terms of validation still fall short of what is necessary and required, in
assisting the advancement of our understanding of software engineering [Sjoberg et al. 2005] [Koziolek 2003].
One of the main reasons for such lack of empirical research in software engineering is the difficulty in
performing validated empirical research in the field. While empirical research in basic sciences such as physics
and chemistry can be done in a laboratory environment, where vanables are perfectly controlled, empirical
research in software engineering is much more difficult. Software engineering takes place in the real world and
is heavily subjected to human facters and therefore designing and performing validated controlled experiments
under these circumstances is at best difficult and at times impossible. Difficulties in providing proper controls of
the variables in software engineering experiments could invalidate any results. Consequently, many researchers
appear to have shied away from vndertaking such research, especially as many joumals expect validated and
controlled experiments.

Although experimentation in real-life sitwations involving human subjects is tedious to design and conduct,
mainly due to difficulties in providing full contral over extraneous variables, experimenters however often
encounter reviewers that expect perfection and absolute certainty [Tichy 1998]. Furthermore, there are ofien
difficulties for experimenters to publish their work in joumals because many established joumals find it difficult
{0 find editors and reviewers capable of reviewing experimental warks [ibid]. It is however recognised that the
difficulty in carrying out perfectly controlled experiments, or producing perfectly validated results, should not
prevent researchers from performing empirical investigations in software engineering. Experiments are
conducted in the real world and are always flawed in some way [ibid]. Therefore, researchers shouid take the
opporunity to perform expenimental research even though the circnmstances may not adhere to the perfect
theoretical format. There are many challenges, such as improvement in synthesis of empirical evidence, which
requires the cooperation of academia and industry to provide the necessary resources to conduct a greater
number of quality empirical research projects [Sjeberg and Dyba 2007]. The empirical investigation, carried out
in this research programme, is an attempt to demonstrate a way of performing saftware experimentation within
an academic institution involving live courses. By no means is it claimed that the experiment has been perfectly

Chapter 9 Conclusion 164

controlled and flawless, or that it has produced perfectly validated and generalised results. Realistically the world
of software engineering does not currently make that possible. We have nonetheless tred to devise and perform
the experiments in this research as objectively and scientifically as possible, given the environmental context and
constraints. [n addition to its utility in evaluating the effect of process pattems, an important feature of this
experiment design is that it provides a method or a technique, for validating software pattens, which can
generally be vsed to validate any software pattern.

9.3 Research Contributions

This research programme has made a number of contributions to the scientific body of knowledge, which are
individually stated and are briefly discussed in this section.

9.3.1 Key Contribution

Provision of evidence thut the application of process patterns in

software development projects improves software project guality

This is the direct contribution (0 the research question. Evalnation of process patterns in terms of their effect on
software development projects has been the main aim of this study. An extensive two-part controlled experiment,
involving over 260 projects and over 750 subjects, spanning two semesters (one academic year) was designed
and conducted for this study. Such extensive, comprehensive and high-scoped experiments have been rare within
software engineering research. A number of software attributes, measured through metrics, showed that the
application of process patterns improved their quality {presented in the results section 9.4). [n general, the study
showed that the application of process patterns in software development projects, lead to improved quality
[Estabraghy and Daicher 20072] in at least thirteen of the measured attributes.

9.3.2 Additional Contributions

Determination of whether the application of process patterns varies in

terms of its influence on team and individual projects

One important and interesting resnlt, that the study produced, was to show that there were differences in the
effect of process pattems between group projects and individual projects. The study has provided evidence that
process patterns are more effective in team projects, than in single-person (individual) projects. This is further
discussed in the results section 9.4,

Provision of an experimental technique for validating patterns

The pattern community has introduced the three-rule, which states that a pattern is valid if it is observed in three
separate situations. That, however, does not differentiate between ‘good’ and ‘bad’ patterns. In other words, a
pattern may occur in three different situations but nevertheless be a ‘bad’ (e.g. inappropriate or harmful) pattern.
This study has provided a validation mechanism through experimentation, which could be employed to test the
validity (‘goodness’) of one or more patterns. The experimental design and conduct in this study can be used as a
model for others to evatuate the validity and usefulness of software patterns.

Design and implementation of an experimental methodolegy in real-

life situations

Experiments in ‘real-life’ settings are more difficult to design and conduct than those carried ont in taboratory
settings (controlled environment) where one can achieve relatively full control over variables. Results produced
in laboratory senings, however, may not extrapolate to real-life sitnations in which real people work on real
projects. The controlled experiment for this study was carried out in a ‘real-life” sitnation where the experiment
subjects (final-year undergraduate students) worked on their computing projects, which acted as the objects of
the experiments.

Provision of an example of carrying out software experimentation in
educational estahlishments using live courses

Educational establishments and students are valuable resources that can be employed for carrying out empirical
research in software engineering. This study has demonstrated that live courses and modules can be fruitfulty

Chapter 9 Conclusion 165

employed to carry out experimental investigation in software engineering. The experiment design and process
produced in this study can be used as a model or roadmap to carry ont further empirical research in snch
environments.

Provision of on_example of devising o meosurement process to
evaluate software projects

While measurement in software engineering is technically challenging and immature compared to other
engineering disciplines, it should be an essential component of software development projects in software
development organisations. In fact, one impornant measure of an organisation’s competency is the quality of its
implemented measurement process. This study has made a contribution in providing an example of devising a
tailor-rmade measurernent process for software project evaluation.

An investigation of issues in architectural patterns ond their implication _in software patterns

While some architects take the view that the pattems preserve profound designs in architecture and guide
architects, most argue that they stifles creativity and invention. Given the concerns and objections architects
express about architectural patterns, should the software community be concerned that the pattern issues raised
by the architects could at some point catch up with software patterns and render them effectively harmful? In this
study, architects within the UK universities were queried for their views on the impact and value of architectural
patterns. Based on the results, whether the issues raised in architectural patterns could also apply to software
patterns now or in the future, was discussed.

Provision of evidence of pattern usoge rates in the industry

While there have been numerous books, articles and papers on sofiware patterns in the last decade, few
published works produced evidence of software pattern usage-rates in the software development industry. A
survey of 67 software development companies in the UK showed that the majority of the surveyed companies
{60%) used software patterns. The survey also indicated that by far the most popular sofiware patterns were
design patterns, with only 7% of the surveyed companies using process patterns [Estabraghy and Dalcher
2007b]. '

9.4 Summary of Results

Two preliminary surveys were carried out at early stages of this research in order to provide an understanding of
how the pattern concept was used in practice, in both its original (i.e. architecture) and software engineering
fields, which helped in devising the research question. The architectural pattern survey indicated that
architectural patterns suffer from criticisms of being anti-creativity and prescriptive, and therefore enjoyed
minimal usage and support within the architectural community. Only 15.4% of the architects surveyed viewed
architectural patterns as having a positive effect on architecture. There was shown to be a positive correlation
between pattern usage levels and architects’ viewpoints. The software pattern survey, however, indicated that
software patterns were widely used in software development organisations. The results showed that 60% of the
surveyed software development organisations used patterns. The vast majority of these companies, however,
used software design-based patterns, such as design patterns, and only 5.7% of them used development process
based patterns such as process patterns. The majority of companies that used patterns stated that patterns
improved the quality of software attributes such as reliability, maintainability, testability, etc. There were found
to be positive correlations between pattern usage and sorne of these attributes as depicted in scatter plots in
Figure 9-1and Figure 9-2 (see Chapter 3). The survey also showed that only a small proportion of the surveyed
companies (6%) developed and published patterns. Of the companies that did not use pattems, 81% said that
they were unnecessary, and 88% said that they did not have skilled staff to use patterns. The fact that 81% of the
companies that did not use patterns, found patterns to be unnecessary in their practice, indicates that the pattern
community has much to do in introducing and publicising patterns. The pattern community should therefore
provide more support to encourage software practitioners, to actively leam and improve their pattern skills and,
to implement them in their software development practice. Furthermore, the community shonld demonstrate to
the software industry, the benefits that can be gained by using pattems. This research has played an important
part in providing evidence of the nsefulness of patterns in software development process, which could encourage
more software practitioners to employ patterns in their practice.

166

Chapter 9 Conclusion
3.00 Scale 3.00{" Scale
® 15 ®* 20
® 10 ® 15
- 2.50 . + 5 ::'i 2.50 e 10
= 0 E *+ 5
a i .
% 2,00 ___ [tiine £ 2.00- 2it ine
a Total e ’ e {08
" . . fsﬂ f Total
1.50~ - 150 . .
o R Sq Linear = ' Lo R Sq Linear =
1.00 {'E'l : F] - : I S%_gog 1.00]EI : E] S .249
T T T
1.00 150 200 250 3.00 1.00 150 200 250 3.00
Pattern Usage Pattern Usage
Figure 9-1 Correlation between reusability and panern usage | Figure 9-2 Correlation between maintainability and pattern
usage

An experimental research method was devised and implemented to investigate the research question and test the
research hypothesis (see Chapter 5). The experiment subjects were divided into two groups of treated and
control, where the treated groups used a set of process patterns (covering a complete development lifecycle) to
use in their software development projects. The objective was to determine if the use of process patterns as a
whole (i.e. not any particular process patterns), improved the quality of their software projects. The experiment,
involving two types of software development projects (group and individual), was designed and conducted,
throngh which a number of software attributes were measured using appropriate metrics. The marks awarded by
the ttors to four attributes of the projects under investigation were also used in the experiment, The results of
the metrics and tutor marks are summarised and presented in Table 9-1.

Chapter 9

Conclusion

167

Projects

Individual Projects

Better Than Ind. Projects

Meltrics/Marks -

-Metrics

Percentage of traceable requirements

Perceniage of reviewed requirements specification

Percentage of defects fixed

Req
Analysis

Percentage of phase time spent in testing

Percentage of design document reviewed

Number of methods per class (Methods per Class Ratio)

Percentage of defects fixed

Design

Percentage of phase time spent in testing

Comment density

Percentage of code reviewed

Productivity (Implementation phase)

Productivity (complete development project)

Percentage of defects fixed

Implementaticn

Defect density

Percentage of phase spent in testing

Test case density (Test case per Requirement)

Percentage of defects fixed

Delivery

Percentage of phase time Spent in Testing

] X A2 X X< 2 XX 202 Positive Effect on Group

X | X X (]2 2 bt IX (X | P XX |]] GroupProjects'Performed

dlafa X [l |2 IX (X | 2f L PX [X |2)] Positive Effect on

B Mai‘k}s

Design and analysis

Product

Evaluation (tests)

Project management

XX |]x

XXX
XX L)X

XX jalay gja]X | X (Ll X (X (<)) X X [<]<] Correlation: Logins and

Table 9-1 Summary of the results

Based on the results of meirics and tutor marks depicted in Table 9-1, palterns have been shown 1o improve a
number of software atiributes. The improved attributes, and the percemage of statistically significant
improvements, have been shown in Table 9-2.

Sensitivity Margin %
No Metric Group Ind.. Mean
Projects. | Projects
1 Percentage of source code reviewed 41.5 41.9 447
2 Comment density 488 376 432
3 Percentage of phase time spent in testing ([mplementation) 41.2 384 39.8
4 Defect density 39.2 37.3 38.2
5 Percentage design document reviewed J8.1 32.1 35.1
6 Productivity (Implementation) 33.3 23.8 286
7 No. of methods per class (Methods per Class Ratio) 338 20.3 27.1
g Productivity (overall) 271 19.2 232
9 Percentage of phase time spent in testing {Delivery phase) . 29.0 12.1 20.1
10 Test case density (Test case per Requirement) 19.4 13.0 16,2
1 Percentage of reviewed requirements specification 206 10.] 15.7
12 Percentage of traceable requirements 19.1 11.1 15.1
13 Percentage of defects fixed (Delivery phase) 1.5 88 10.2

Table 9-2 Improved antributes and the efiect size

Chapter 9 Conclusion 148

Each attribute listed above is an indicator of the quality of an aspect of a software development project and
therefore, improvements in these attributes are sought and desired by software practitioners (see Section 8.3). It
is significant that the usage of process patterns in software development projects. improves the quality of many
attributes as listed above. These results show that the application of process patterns improve software attributes
in development activities such as testing, reviews, and productivity. Furthermore, the Table 9-1 shows that the
application of process patterns resulted in significant improvements in software attributes related to the RA,
Design, Implementation, and Delivery phases. Significant improvement to many attributes across all the four
major development phases of a development lifecycle, has been shown to be an imponant advantage of using
process patterns in software development projects.

The difference between the effect of process pattems on group projects and individual projects were measured.
The result showed that for many aftributes the treated subjects in group projects performed significantly better
than the treated subjects in the individual projects. This indicates that process pattemns have a more prominent
effect on the group projects than individual projects. It has been shown [Table 9-1] that patterns have a more
significant effect on group projects than on individual projects for the following attributes:

¢ Requirements traceability

Reviews

Granularity of modules

Comment density

Productivity

Test time allocation (Implementation and Delivery phases}
Test case density (Test case per Requirement)

Product quality

The improved values in the group projects for the above attributes indicate that process pattemns are more
effective in team projects, where a number of individuals are directly involved. One possible reason for the
improved effect of process patterns on team projects could be due to the influence of process pattemns on
producing more effective communication within teams. It has already been shown that design pattemns improve
communication between development team members [Beck et al. 1996] [Prechelt 2002] [Unger and Tichy 2000]
{(see also Table 3-8). Based on the results achieved in this study, it appears that process patterns also have a
positive effect on improving communication within teams. Considering the importance of effective
communication in projects [Futrell et al. 20021, by improving communication between team members,
application of pracess patterns will play a role in helping to improve the software projects and therefore enhance
their chances of a successful completion.

The projects investigated in this study were officially marked by tutors. The four marked attributes of interest to
this study were ‘Design and Analysis’, ‘Evaluation’, ‘Product’, and ‘Project Management'. The marks were
subsequently analysed statistically for any difference between the treated and control groups. There were no
significant differences found between the treated and control groups for three of the four marked attributes. The
three marked attributes that showed no significant difference were, ‘Design and Analysis’, ‘Evaluation’, and
‘Project Management'. There were however differences between treated and control groups for the ‘product’
ateribuce for both group and individual projects. This showed that the treated groups received a higher mark for
the “product’ attribute, than the control groups indicating that the product in the case of the treated groups was of
a higher quality. It is significant that process pattemns have been shown to improve the quality of the product
attribute, considering that it is a measure of the quality of the delivered software product as evaluvated by the
tutors. Based on the results of this attribute, it can therefore be deduced that the application of process patterns
improves the quality of the product. Furthermore, it has been shown that the mean difference between the treated
groups and control in group projects, in terms of the product attribute, was higher than the individual projects.
This indicates that group projects were more affected by the treatment (i.e. process pattems) than the individual
projects for this attribute. Therefore, it can be concluded that the employment of process pattems, is more
effective on team projects than individual projects, in producing better product.

The experimental research method was to test the following null hypothesis:

Hy Application of process pattemns in the management of a software development project will nor
improve the quality of the project.

Chapter 9 Conclusion 169

The summary of the results preseated in Table 9-1, show that application of process patterns improved a number
of software attributes in each of the four major phases of the development lifecycle. Based on these findings the
stated oull hypothesis is rejected. Therefore, the alternative hypothesis that, the application of process patterns in
the management of a software development project will improve the quality of the project, is accepted.

There is always a degree of limitations on any comprehensive research project. This research programme is no
exception. The limitations of this research programme are discussed next.

9.5 Limitations

o studying real life sitvations and designing experiments withio that environment to learn and understand some
phenomenon or test some hypothesis, one has to uaderstand the coastraints and limitations invalved, and design
and conduct the experiment accordingly. Therefore, the nature of this study, as real life experimentation, is such
that it invariably brings constraints on the experimeat design. The maia issues are discussed below:

Selection of subjects of same abilities to both control and treatment groups
Cootrol of the amouot of treatment condition given to the treatment groups
Time given to accomplish project tasks

Variation in team sizes

Ethical issues

Experiment scope

The experimeont design considered the above points and found solutions in a way that the iaternal/external
validity of the experiment was oot adversely affected. These are explained io the following paragraphs.

Students working on group projects had different abilities and charactenistics. The stadents chose their own team
members to form a group to work on a common project. Students therefore could not be assigned to teams
according to their abilities. It is also generally difficult to judge accurately studeat abilities according to some
criteria and match them. However, due to the farge number of groups and their random nature, any differeaces
and discrepancies in the gronps were randomly dispersed between the control and experimental groups, and were
therefore constant and did not adversely affect the results of the experimeot.

It was not possible to control and measure accorately the exact amouat of treatment condition (i.e. process
patterns) that the subjects used. They were told to use as many process patterns as they aeeded for their project.
However, while the aumber of times each subject accessed the process pattern resource on the website were
recorded as a measure of the usage rate (discussed in Section 5.7.1), the system did not record which patterns
were accessed and used by the subject. It would have been advantageous in terms of knowing the access rates of
the individual used patterns, had the system recorded such data.

Although there was a set amount of time that the subjects had to work oo their project, the amount of time they
actually spent on the development activities was based on their owo statements. They declared how much time
they spent on development activities on an online measurement form. Their estimation of the time spent in each
phase was accepted to be approximate to the actual time spent. The subjects were required to fill-in the online
measvrement forms as accurately and as hooestly as they could. They were told that the values they entered on
the measurement forms would not have any effect on their marks tor their projects. However, because of the
random pature of the treated and control groups, any inaccuracies would be equally portioned to both treated and
coatrol groups and therefore would not affect the validity of the results.

Although there was normally a team size of five for group projects, the size of groups could change and in some
cases, it did. However this did not affect the experiment as time and effort was based on hours (person-hour)
speat on the project. Forthermore, any change in the team size affected both treated and control groups, and was
therefore a constant factor. Therefore, while a consistent group size would have been preferred, the change did
not affect the experiment’s objectives or results.

There is always an element of ethical concern in experimentations involving human subjects, which have to be
fully considered in the design and conduct of an experimeot. Ethical issues coacerned with the experiment had to
be dealt with head on and from the first priaciples, meeting requirements such as, fairness, confidentiality, and
others as discussed in Chapter 5. The design of the experiment had to be therefore devised ta such a way to
satisfy the University’s Ethics Committee, that all ethical issues were fully considered to preveat a breach of
ethics. Compromises had to be made and the experimeat design weat through a aumber of revisions before the

Chapter 9 Conclusion ' 170

committee approved it. The full ethical consideration of the experiment, however, did not cause any serious
weaknesses to the experiment design.

The experiment’s aim was set to cover a complete development lifecycle, which required an extensive set of
process patterns to be used. On reflection, it would have been better if the experiment concentrated on the
evaluation of a single phase of the development lifecycle (e.g. Requirement Analysis) and a few related
attnbutes. This would have required the use of a small number (less than 10) of process patterns, related to the
investigated development phase, which would have been easier to manage and control. Although the scope
would have been limited, the results would have provided the opportunity to scrutinise the effect of the
individual patterns. In addition, the devised measurement process, covering a complete development lifecycle,
proved too ambitious and excessive in terms of its attempt to coliect and analyse a large set of measurement data
(62 taken by subjects, and 12 by the researcher, for each project investigated), given the scope of the research.
The study of a single development phase would have meant a smaller, but perhaps more detailed set of
measurement data, could be collected and analysed.

fn the case of the two preliminary surveys, a higher number of participants would have helped decrease the
marginal errors. However, in both surveys sufficient numbers of participants took part to reach some genemlised
conclusions.

9.6 Research’s Impact

Prior to this research, the utility and value of process patterns in software development was unclear. While there
have been many theoretical works on process and organisational pattemns, there did not appear to be any
empirical studies to evaluate the utility and value of process patterns in improving the quality of software
development projects. While patterns have so far had a considerable impact on the design and architecture aspect
of software development in the form of software design patterns, their impact on the actual process of
developing software has been minimal.

The evidence gathered through a preliminary survey conducted in this research, as well as other studies (for
example [Manolescu et al. 2007]), indicate that while software design-based pattems such as design pattems are
popular and widely used, development process based patterns, such as process pattems are far less popular and
used. ft appears that the software development industry requires evidence of the usefulness of process-based
pattemns before they are will use and integrate them into their development processes. This research has done that
by investigating the utility of the process pattemns in software development practice, and provided evidence of its
usefulness in improving a number of software attributes. Indeed the experiment has shown that patterns do
improve the quality of software projects.

As a result of this study, there is now scientific research and relevant data available to the scientific community
in general, and the software engineering and pattern communities in particular, on the impact and effect of
process patterns in software development practice. The research provides evidence that the employment of
process pattern improves the quality of software development projects. More crucially, the research has indicated
thirteen specific measures that are improved as a result of applying process patterns. The results show that the
application of process patterns improves software attributes across the four major phases of the development
lifecycle (i.e. Requirement analysis, Design, implementation, and Delivery). This research complements other
empirical research [Prechelt et al. 2001, 2002] [Unger and Tichy 2000] on design patterns, in evaluating the
software patterns and providing evidence of their utility and value. This should encourage software practitioners
and the software industry in general to take more notice of the value of process-based software patterns, to
implement and employ them in their software development projects.

it is interesting that the survey research conducted in this study provides evidence that the pattem concept has
not received much support in the architecture community where it originated. This raises the question, whether
the software community would continue to embrace the pattem concept in the future. ft is hard 1o say in the long
term, but favourable pattern evaluation results such as this and others, as well as strong qualities, such as its
flexability to adapt to fast changing circumstances in software engineering, should provide software patterns a
relatively long lifespan. For the moment, certainly, software design patterns are continning to tise in popularity
within the software community [Buschmann et al. 2007b] and will therefore be with us for a little while yet. The
results and conclusions of this research should encourage a wider use of pattems in general and process patterns
in particular, making a difference in the way future software development is managed and produced.

Chapter 9 Conclusion 171

9.7 Future Work

This thesis has explored many issues in the area of software patterns, sofiware experimentation, and software
measurement. Both software measurement and software experimentation concepts were employed in this
research project to advance our understanding of software pattems and evaluate their ntility and value in
software engineering. In the following sections, the areas for future work are discussed in relation to these topics.

9.7.1 Software Experimentation

Educational establishments provide immense resources for experimental research. Resources such as courses,
modules, and students are invaluable in enabling researchers to pursue research in the field of software
engineering. One crucial aspect of tapping into such resources is the understanding of the ethical issues
concemed in nsing students and live courses, as the subjects and objects of the experimental research works,
This research demonstrated that, despite ethical and other constraints, such research in software engineering is
both possible and feasible. Further research is necessary in understanding the constraints involved, in design and
conduct of such experiments, and will provide guidelines and models of how to best design and conduct software
experimentation in such environments. There may always be a trade-off between the ueeds of the experimenter,
to find the best solutions to questions or hypotheses, and those of the ethical issues concemed when students are
subjects of the experiment. It is down to the experimenter to produce the best experiment design to find the best
solutions, while adhering to the concemed ethical issues and regulations. There is much scope for future work in
this area.

Future research could undertake to replicate this experiment in an industrial environment. Replicating the
experiment in industry involves different types of subjects (i.e. professionals), as well as different settings
(work/business environment). Because subjects in such an environment would be professionals mather than
students, ethical issues concemned may also be different. It would be nseful to determine if similar results or
conclusions would be achieved, if the experiment were replicated in an industrial setting.

Measurement in software engineering is still relatively young and immature. While there has been both
theoretical and practical work in this field in the last few decades, software engineering measurement is not as
much understood as measurements in some other engineering and science disciplines. Software engineering has
been changing and progressing rapidly through the advents of new technologies and, therefore, requires new and
appropriate methods of measuring and evaluating software to be constantly devised. There remains much more
research to be done, in order to gain a better understanding of software engineering, to enable us to devise
appropriate measuremnent theories, principles, and practices, to measure the ditferent aspects of software projects
and applications accurately and consistently.

9.7.2 Patterns

Experienced practitioners use solutions that have been proven in their experience o work. These are potential
patterns that should be extracted and stored in a specifically designed database repository, so that they can be
utilised by others. Rising [1998] proposed a number of ways of mining such experience and knowledge in
patterns. These techniques include interviewing, workshops, meetings, and classes. There are already many on-
going projects, which are being conducted by the pattern commumity, that aim to capture and store patterns. One
such significant example is Booch’s Handbook of software architecture [Booch 2008] containing over 2000
patterns. However, a problem with such pattern repositories is currently the lack of appropnate indexing and
search facilities, to enable pattern nsers to find the specific pattems that would apply and solve the particular
problems they are looking to resolve. Furthermore, the current repositories fail to provide and advise on how a
number of patterns within the repositories, can be linked in a sequence to solve more complex problems.
Therefore, further research needs to be conducted on devising an appropriate and specific system of patterns
repositories that would enable such indexing and search facilities.

There are currently many methodologies (e.g. Agile. OPEN, SSDM ...) that are being practiced in industry.
Practitioners of such methodologies will learn through repetition and experience the solutions that work and
those that do not. Whatever methodelogy is officially practiced and established in an organisation, it is not
fenced with a strict set of constraining rles. The methodology would be flexible and open to application
according to the problem at hand. In applying and conforming to the established methodology, practitioners find
solutions to process-related problems through time and experience. In mature organisations where development
methodology and process is established, expert practitioners have patterns of process solutions, (either in their
mind or written) that work. Often such knowledge lives in the ‘experts’ heads only and are not formally written

Chapter 9 Conclnsion 172

down and recorded. The pattern concept provides a medinm in which such knowledge is recorded precisely and
usefully for reuse. There is therefore, an area of research to establish how expert practitioners use their
knowledge and experience in providing solutions to development process related problems. Such research can
address questions such as what problem solving methods can be used and how the solutions can be captured in
the form of process patterns for reuse.

The concept of software patterns needs to be given a fresh look, to concentrate on the human, harmony, and
aesthetic aspects, rather than simply apply them as a technical meaus of capturing and recording software design
and experience. The pattern concept has much more meaning and potential and currently only some simplistic
aspects of it is being utilised. More research needs to be carried out in this area to establish the harmony and
aesthetic focus and aspect of patterns, (as documented by Alexander [1977, 1979] in the filed of architecture) in
software engineering.

While the terms harmony and aesthetics might seem foreign and out of place in the field of software engineering
and are more related to social sciences, the facts suggest otherwise. For example, software engineering involves
components that must work in harmony, to establish a perfect system and control mechanisms. Furthermore, as
software interacts with humans in one way or another, the aesthetics aspect of it becomes important in providing
an environment in which people enjoy using and interacting with software. While there has been much work
done on software patterns from a technical point of view, few seem to have focussed on the social aspects of
software patterns. Further work needs to be done in this area to understand the link between the pattern concept
and the social aspect of software systems.

The survey carried out in this study showed that most architects surveyed, believed that architectural patterns
stifled creativity. Further work needs to be done in this area to determine if patterns do hinder creativity in
software engineering.

The results of this study indicated that process patterns have a better effect on team projects than on individual
projects. Further work needs to be done to determine if the improvement rate is proportional to the size of the
teams. That is, whether, as the size of teams using process patterns increases, will there be a proportional effect
in terms of its effectiveness?

The pattern concept therefore provides a large area of research in sofiware engineering. While a fair amount of
research in this field is already taking place, which has resulted in hundreds of published papers, much more
research work remains o be done, focussing especially on other non-technical and aesthetic aspects of the
pattern concept in relation to harmonious software systems.

Reference and Bibliography

Reference and Bibliography

Abreu, FB. (1995), The MOOD Metrics Set, Proc. ECOOP'95 Workshop on Metrics
Adolph, S.. Bramble, P., Cockbum, A. (2002). Patterns for Effective Use Cases. Addison Wesley

Alexander, C. (1999). The origins of pattern theory: The future of the theory, and the generation of a living
world. [EEE Software, 16 (5): 71-82

Alexander, C. (1979). The timeless way of building, New York. Oxford University Press
Alexander, C. (1977). A pattern language, Oxford University Press

Alexander, C. (1970). Notes on the synthesis of form, Oxford University Press

Alexander, C. (1988). The Oregon Experiment, Oxford University Press

Alexander, C. (1995). The Mary Rose Museum, Oxford University Press

Alexander, C., Eisenman, P. (1983). Contrasting concepts of harmony in architecture, Lotus Intemational 40
Ambler, SW. (1998). Software process pattems, Cambridge University Press

Ambler, SW. (1999). More software process pattemns, Cambridge University Press

Ambler, SW. (2002). Agile modelling, John Wiley and Sons Inc

Ambler, SW. (2005). The enterprise unified process, Prentice Hall

American Psychological Association (Code of Ethics). (2002). http://www.api.org/fethics

Annett, J., Duncan, K. (1967}. Task analysis and training design. Occupational Psychology no. 41
Annett, Y., Duncan, K., Stammers, R., Gray, M. (1971). Task analysis. London: HMSO

Annett. J. (2004). Hierarchical task analysis, in handbook of cognitive task design, Diaper (2004) Chapter 3,
Mawhah NJ: Lawrence Erlbaum

Appleton, B. (2000). Patterns and Software: essential concepts and terrminology, www.enteract.com/~bradapp
Appleton, B. (1997). Patterns for conducting process improvement, proceedings of the 4® PLoP Conf.
Aronson, E., Carlsmith, IM. (1968). Experimentation in social psychology, the handbook of social psychology
Armour, P. (2002). Ten unmyths of project estimation, Comm. ACM, 45(11}, 15-18

Asteen, LA, (1988). The Science of Patterns, Science, 240: 611-616

Babbie, E. (2001). The practice of social research (9" Ed.}, Belmont, CA: Wadsworth/Thomson Leaming
Babbie, E. (1990). Survey research methods (2™ Ed). Belmont, CA: Wadsworth Publishing Company

Baker, AL.. Bieman, JM., Fenton, NE., Gustafson, D., Melton, A. (1990). A philosophy for software
measurement, J Systems Software, Vol 12, 277-281, July, 1990

Bansiya, J., Davis. C. (2002). A hierarchical model for object-oriented design quality assessment. [EEE
Transactions on Software Engineering, 28(1) pp 4-17

http://www.api.org/ethics
http://www.enteract.com/~bradapp

Reference and Bibliography

Bamett, V., Lewis, T. (1994). Qutliers in Statistical Data (3“i Ed). Wiley & Sons, New York

Basili, VR., (2005), Using Measurement to Build Core Competenciés in Software, Data and Analysis Centre for
Software Seminar

Basili, VR. (2007): The Role of Controlled Experiments in Software Engineering Research,” in Empirical
Software Engineering lssues, LNCS 4336

Basili, VR., Selby, RW_, Hutchens, DH. (1986). Experimentation in software engineering. IEEE Trans. Softw.,
Eng. 12 (1986), pp. 733-743

Basili, VR. (1996). The Role of Experimentation in Software Engineering: Past, Current, and Future. ICSE 18,
1996, pp. 442449

Basili, VR., Rombach, HD. (1988). The TAME project: Towards improvement-oriented software environments,
IEEE Trans. on Software Engineering 14(6), pp 758-773

Basili, VR, Caldiera, G., Rombach. D. (1994). Experience Factory. Encyclopaedia of Software Engineering,
volume I, pp. 469-476. John Wilcy & Sons

Basili, VR., Caldiera, G. (1995). lmprove Software Quality by Reusing Knowledge and Experience. Sloan
Management Review, 37(1): 55-64

Basili, VR., Shull, F., Lanubile, F., (1999). Building Knowledge through Families of Experiments, [EEE Trans.
Softw. Eng. 25 (1999), pp. 456473

Basili, VR. (I981). A controlled experiment quantitatively comparing software development approaches, 1EEE
Trans Soft Eng SE-7(3)

Basili, VR. (1980). Tutorial on Models and Metrics for Software Management and Engineering, IEEE Comp
Society Press (cat no EHO-167-7), New York

Basili VR., Reiter, R. (1979). Evaluating Automatable Measures of Software Models, IEEE Workshop on
Quantitative Software Models, Kiamesha, New York, 1979, pp. 107 - 116.

Basili, VR., Hutchens, D. (1983). An Empirical Study of a Syntactic Complexity Family, IEEE Trans. on Soft.
Eng., Vol. SE-9, No. 6, Nov 1983, pp. 663 - 672.

Basili, VR. et al., (1983). Metric Analysis and Data Validation Across FORTRAN Projects, 1EEE Trans. on Soft.
Eng., Vol. SE-9, No. 6, Nov 1983, pp. 652 - 663.

Basili, VR., Weiss, DM. (1984). A Methodology for Collection Valid Software Engineering Data. IEEE Trans.
on Soft. Eng., 10(11): 728-138, Nov 1984,

Basili, VR., Briand, L., Melo, WL. (1996). A Validation of Object-Oriented Design Metrics as Quality
Indicators, 1EEE Trans. on Soft. Eng. Oct 1996, 751-761

Basili. VR., Heidrich, J., Lindvalt, M., Miinch, J., Regardie, M. (2007). GQM" Strategies - Aligning Business
Strategies with Software Measurement. ESEM 2007: 488-490

Bassman, M. et al. (1995). Software Measurement Guidebook, Software Engineering Laboratory Series, Rev. 1,
pp- 2146

Bayley, I, Zhu. H. (2007). Formalising Design Patterns in Predicate Logic. SEFM 2007: 25-36
Beck, K. (2000). Extreme Programming Explained. Addison Wesley.

Beck, K., Coplien, JO., Crocker, R., Dominick, L., Meszaros, G., Paulisch, F., Vlissides, J. (1996). Industrial
Experience with Design Patterns, Proceedings of the 18th 1ICSE, [EEE Computer Society Press

Reference and Bibliagraphy

Benediktsson, O., Dalcher, D., Thorbergsson, H., (2006). Comparison of Software Development Life Cycles: A
Multi-project Experiment, 1EE Proc.-Softw., Val. 133, No. 3, June 2006, pp 87-101

Bergner, K. et al. (1998). A Componentware Development Methodology based on Process Patterns. In Joseph
Yoder, editor, Proc. 5Sth Annual Conf. on the Pattern Langnages of Programs (PLoP}

Bieman. J. et al, (2003). Design Patterns and Change Proneness, Proceedings of the IEEE-CS 9th International
Software Metrics Symposium (Metrics 2003)

Black, TR. (1999). Doing quantitative research in social sciences: an integrated approach to research design,
measurement and statistics, Sage Publications

Blaikie, NWH. (2003). Analyzing quantitative data from description to explanation, Sage Publications, London

Blaine, 1D., Cleland-Huang, J. (2008). Software Quality Requirements: How to Balance Competing Priorities,
IEEE Software Mar/April 08

Boehm, B., Basili, VR, (2001). Software Defect Reduction Top 10 List, [IEEE Computer, Jan 01
Boehm, BW. (1981). Sofiware Engineering Economics. Prentice Hall

Boehm, B., Brown, JR., Lipow. M. (1976). Quantitative Evaluation of Software Quality. Proc. 2nd Intl. Conf. on
Software Engineering. Long Beach, Calif.: IEEE Computer Society, Oct. 592-605

Boehm, B. et al. (1978). Characteristics of Software Quality, North Holland Publishing Co. New York
Booch, G. (2008). Handbook of software architecture (www.booch.com/architecture)
Bowling, A. (2002). Research methods in health (2"d Ed), Open University Press

Brendan, G. et al. (1996). Social Patterms in Productive Software Organizations. Annals of Software
Engineering, 259-286. Baltzer Science Publishers, Amsterdam

Briond, L., Bunse, C., Daly, J. (2001). A Controlled Experiment for Evalnating Quality Guidelines on The
Maintainability of Object-Oriented Designs. IEEE Trans. On Softw. Eng.,20 01, 27(6}, pp513-530

Briand, L., Bunse, C., Daly, J. (1997). An Experimental Comparison of the Maintainability of Object-Oriented
and Structural Design Documents. Empirical Software. Engineering

Briand, L., Differding, C., Rombach, HD. (1996). Practical Guidelines for Measurement-Based Process
Improvement, Software Process Improvement and Practice Jonmal

Briand, L. (1998). Object Oriented Software Environments, IEEE Trans. Softw Eng., 14 (6)

Briand, L, Morasca, S., Basili, VR. (1999). Defining and Validating Measures for Object-Based High-Level
Design, IEEE Trans. Software Eng., vol. 25, no. 5, pp. 722-741, Sept./Oct. 1999

Briand, LR., Emam, K., Morasca, S. (1996). On the Application of Measurement Theoary in Software
Engineering, Empirical Sofiware Engineering Joumal, 1(1): 61-88

Brooks, FP. (1975). The Mythical Man-Month, Benjamin/Cummings

Brooks, FP. (1995). The Mythical Man-Month: Essays on Software Engineering, Addison-Wesley

Brown, WJ. (2000). Anti-Patterns in Project Management, Wiley

Brown, W], et al. (1998). Anti-Patterns: Refactoring Software, Architectures, and Projects in Crisis, Wiley

Budgen, D. (2003). Software Design (2™ Ed). Boston: Addison-Wesley

http://www.booch.com/architecture

Reference and Bibliography

Budgen, D., Kitchenham, B. et al. (2005). lnternational workshop on realising evidence-based software
engineering. 1ICSE 2005: 687

Buschmann. F., Meunier, R., Rohnert, H., Sommerlad, P. (1996). Pattern-Oriented Software Architecture,
Volume 1. A System of Patterns. Wiley

Buschmann, F., Henney, K., Schmidt, D. (2007). Past, present, and future trends in software patterns, 1EEE
Software July/Aug 2007,

Buschmann, F., Henney, K., Schmidt, D. (2007b). Pattern-Oriented Software Architecture, Volume 2, Patterns
for Concurrent and Networked Objects. John Wiley & Sons Lid

Campbell, N. (1928), An Account of the Principles of Measurement and Calculation. London: Longmans Green

Campbell, D., Stanley, J. (1963). Experimemal and Quasi-experimental design for research, Chicago: Rand
McNally

Campbell, D., Fiske, D (1959}. Convergent and discriminate validation by the multi-trait-multi-method matrix.
Psychological Bulletin (56) pp 81-105

Canfora, G. et al. (2005). A family of experiments to validate metrics for software process maodels , Journal of
Systems and Software, Volume 77, Issue 2, 1 Aug 2005, pp. 113-129

Carey, §., Carlson, B. (2002) Framework Process Pauierns: lessons learned developing application, Adison
Wesley

Carroll. JM. (2000). Scenario-based design of human-computer interactions, MIT Press 2000

Carver, j., Jaccheri, L., Morasca, S., Shull, F. (2003). Issues in Using Students in Empirical Studies in Software
Engineering Education, Ninth International Software Metrics Symposium (METRICS'03)

Cass, AG. et al. (2000). Little-JIL/Juliette: A Process Definition Langunage and Interpreter. ICSE 2000

Chang, W. (2005). Impartial evaluation in software reliability practice, Article Journal of Systems and Software,
Volume 76, Issue 2, 1 May 2003, pp. 99-110

Chidamber. SR.. Kemerer, CF. (1994), A metrics suite for object oriented design, IEEE Trans Software Eng, 20
(6), 476-498

Christensen, I.B, (2006). Experimental Methodology (10" Ed), Allyn and Bacon inc

Chrcher, N., Sheppard, M (1995) “towards a conceptual framework for object oriented software metrics, ACM
SIGSOFT Software Engineering Notes, Vol 20, No, 2, April 1995

C10 2003, The CIO news letter, www.cio.com\research\itvalue\case.html

Coad, P., (1992). Object-Orented Patterns. Com. of the ACM, 1992, 35(9): p. 152-159.

Cockburn, A. (1996). Proritising Forces in Software Design, PLoP, 96

Cockburn, A. (2002). Agile Software Development. Addison-Wesley

Conte, SD., Dunsmore, HE., Shen, VY. (1986). Software Engineering Metrics and Models, Benjamin Cummings

Coplien, 10. (2006). Organizational Patterns: Beyond Technology to People. In Enterprise Information Systems
VI. Dordrecht. Netherlands, Spninger, 2006, pp. 43—52

Coplien. JO. (1991). Advanced C++ Programming Styles and Idioms. Addison-Wesley, 1991

file://www.cio.com/research/itvaIue/case.html

Reference and Bibliagraphy

Coplien, JO., Harrison, N. (2004). Organizational pattemns of agile software development, Preatice Hail

Coplien, JO. et al. (2005). Organizational Pattens: Buailding on the Agile Pattern Foundations. Cutter
Consortium, Agile Project Management Report 6(6), June 1, 2005

Coplien, JO., Neil Harrison. (2005). Organizational Patterns of Agile Sofiware Development. Upper Saddle
River, NJ: Prentice-Hall

Coplien, JO. (1995). A Developmeni Process Generative Pattern Language, Pattem Languages of Program
Design Addison Wesley, Reading, Mass., 1995. Also in the proceedings of PLoP Coaf. 1994

Coplien, JO., Schmidt. I. {(1995). Pattem Langnages of Program Design, Addison-Wesley Publishing Company
Coplien, JO., {(1996). Software Patterns, SIGs Book and Multimedia New York
Crosby, PB. (1980). Quality is Free. McGraw-!-[ill, London

Cunningham, W. (1995). The Checks Pattern Language for 1nformation Integrity in Pattemn Languages Program
Design, Addison-Wesley

Cunningham, W., Back, K. (1987). Using Pauermn Languages for Object-Oriented Programs, in Proc.
OOPSLA’87, Orlando

Cunningham, W. (1996). EPISODES: A Pattemn Lang-uage of Competitive Development, Pattern Languages of
Program Design 2, Addison-Wesley Publishing Company

Dalcher, D. (2003). Handbook for information systems research, Idea-Group Publishing

Dalcher, D. et al. (2005). Development Life Cycle Management: A Multi-project Experiment, ECBS'05, 1EEE
Computer Society Press

Dalcher, D., (2002). Life Cycle Design and Managemeat, in Project Management Pathways: A Practitioner’s
Guide, M. Stevens, Editor. 2002, APM Press: High Wycombe

Davis, A. et al. (1993). Identifying and Measuring Quality in a Software Requirements Specification, IEEE
Computer Society Press, Los Alamitos, CA, 1993

Dekkers, C., Bradley, M. (1999) It Is the People Who Count in Measurement: - The Truth about Measurement
Myths, Crosstalk, The Journal of Defense Engineering, June 1999

Delano, DE., Rising, L. (1998) Pattems for System Testing, Pattern Languages of Program Design 3, Addison
Wesley Longman, Inc., 1998., pp. 503-525

DeMarco, T. (1982). Coatrolling Software Projects, Management Measurement & estimation, Preatice Hall
Deming, WE (1986). Out of the Crisis, Cambridge, MA: MIT Press

Dewberry, C. (2004). Statistical Methods for Orgaaizational Research: Theory and Practice. Loadoa, Taylor and
Francis

Diaper, D., Staaton, N. (2004). The handbook of task analysis for human-computer interactian. NJ: Lawrence
Eribaum Associates.

Diener, E., Grandall, R. (1978). Ethics ia social and behavioural research, Chicago, University of Chicago

Dittmann, T., Gruha, V., Hagea, M. (2002). Improved support for the description and nsage of process patterns,
15t Workshop on Process Pattems, OOPSLA 2002

Dodani, M.H.(2003). Pattem Driven Software Engineering, Jounal of Object technology, Vol 2. No 2., 2003

Reference and Bibliagraphy
Deorling, A. (1993). SPICE: Software Process Improvement and Capability dEtermination. Software Quality
Joumat (2), (209)

D’Souza, DF., Wills, A. (1999). Objects, Components and Frameworks with UML. The Catalysis Approach.
Addison-Wesley

Duquenoy, P. et al. {2005_a). Secial, legal and professional issues of computing, Middlesex Uni. Press

Duguenoy, P. (2005_b} Ethics of computing in perspectives and policies on ICT in society, Springer and SBS
Media

Dyson, P., Longshaw, A. (2004). Architecting Enterprise Solutions: Patterns for High-Capability Internet-Based
Systems. John Wiley & Sons

Eakin, E (2003). Architecture's Irascible Reformer, New York Times, July 12, 2003
Ebert , C. et al. (2005} Best practices in software measurement, Springer
Ebert, C., Dumke, R. (2007). Software Measurement Establish- Extract-Evaluate-Execute, Springer

Eden, AH. (1999). Precise specification of design pattemns and tool support. in their application, Ph.D.
Dissertation, Department of Computer Science, Tel Aviv University

Eden, D. (2002). Replication, meta-analysis, scientific progress, and AMI's publication policy. Academy of
Munagement Journal, 45(5), 841-846.

Erdogmus, H. (2008a). The Infamous Ratio Measure, 1EE Software
Erdogmus, H. (2008b). Measurement Acgniescence, IEE Software

Estabraghy, A., Dalcher, D. (2007a). A Controlled Experiment to Investigate the Effect of “Process Patterns’ on
the Quality of Requirement Analysis, IEEE AICCSA May 2007

Estabraghy, A., Dalcher, D. (2007b). An Investigation of the Impact and Utility of ‘Software Patterns’ in
Software Development Industry, 20™ ICSSEA Dec 2007

Fagan, ME. (1976). Design and Code Inspections to Reduce Errors in Program Development. IBM Systems
Journal, 15(3): 185-211

Fang, X. (2001): Using a Coding Standard to Improve Program Quality. APAQS, pp 73-80

Fenton N., Ohlsson, N, (2000). Quantitative Analysis of Fanlts and Failures in a Complex Software System,
IEEE Trans. on Soft. Eng., 26(8), 797-814, 2000

Fenton, N., Pfleeger, SL (1991). Software Metrics: A Rigorous Approach, Chapman and Hall. NY

Fenton, N., Neil, M. (1999a), A Crtique of Software Defect Prediction Models, IEEE Trans. Software Eng.,
vol. 25, no. 5, pp. 675-689, Sept./Oct. 1999

Fenton, N., Pfleeger, SL (1997). Software Metrics: A Rigorous and Practical Approach (2™ Ed). PWS

Fenton, N. (1994). Software Measurement: A Necessary Scientific Basis, IEEE Trans. on Soft. Eng., Vol. 20,
No. 3. March 1994, pp. 199 - 206

Fenton, N., Pfleeger, SL.., Glass, RL. (1994). Science and substance: A challenge to software engineers. [EEE
Software, pp. 86--95, July 1994

Fenton, NE., Melton, A (1996). Measurement Theory and Sofiware Measurement, Software Measurement,
Intemational Thomson Computer Press, 1996, pp. 27-38

Reference and Bibliography

Fenton, N., Neil, M. (1999b). Software Metrics: successes, failures, and new direction. Jonrnal of Systems and
Software, 47, pp. 149-157

Ferrari, C. (1997). The Road to Maturity Navigating Between Craft and Science, IEEE Sofiware, Nov. 77-82.

Festing, MFW., Aliman, D. (2002). Guidelines for the design and statistical analysis of experiments using
laboratory animals. ILAR Journal 43(4): 244-258

Field, A. (2000). Discovering Statistics using SPSS for Windows, Sage Publications

Finkelstein, L. (1982). Theory and Philosophy of Measurement, in Theoretical Fundamentals, vol. 1, Handbook
of Measurement Science, John Wiley & Sons, 1982, pp. 1-30.

Florac, WA. et al. (1997). Practical Sofiware Measurement, Measuring for process management and
improvement, SEI Guidebook, CMU\SEI-97-HB-003

Florac, WA._, Carleton, AD. (1999). Measuring the Software Process: Statistical Process Control for Software
Process Improvement. Addison-Wesley

Foote, B. (1994). Lifecycle and Refactoring Patterns That Support Evolution and Revse. PLoP 94
Foot, B., Yoder, J. (1997). Big Ball of Mud, proceedings of PLoP 97

Foote, B. (1993) A Fractal Model of the Lifecycle of Reusable Objects. OOPLSA’93

Fowler. M, (1997). Analysis Patterns: Reusable Object Models. Addison-Wesley.

Fowler, M. et al. (2002). Pattemns of Enterprise Application Architecture, Addison-Wesley

Fuggetta, A. (1998) Applying GQM in an industrial software factory, ACM Trans. on Soft. Eng. and
Methodologies, Vol. 7, issue 4, pp 411-448

Furey, S., Kitchenham, B. (1997). Point/counterpoint: function points. IEEE Software, 14(2), 63-72
Futrell, R. et al. (2002} Quality Software Project Management, Prentice Hall

Gabriel, P. http://hillside.net/patterns/definition.html

Gabriel, P., Goldman, R. (2000). Mob Software: The Erotic Life of Code, OOPSLA 2000

Gabriel, R. (1996a). Repetition, Generativity, and Patterns, PLOP Book 2. Addison-Wesley

Gabriel, R. (1996b). Pattems of software, Oxford University Press

Gamma, E. et al. (1995). Design patterns: Elements of Reusable Object-Oriented Software. Addison Wesley

Ghezzi, C., Jazayeri, M. (2003). Fundamentals of Software Engineering (2 Ed). Prentice Hall, Upper Saddle
River, NJ

Gillies, A. (1997). Software Quality: Theory and Management, International Thomson Computer Press
Gilb, T. (1988). Principles of Software Engineering Management, Addison-Wesley, 1988.
Gilb, T. (1977), Software Metrics, Winthrop Publishers, Inc., Cambridge, Assachusetts

Gill. GK., Kemerer, CF. (1991). Cyclomatic Complexity Density and Software Maintenance Productivity, IEEE
Trans on Soft Eng, V 17, No. 12, Dec91, pp. 1284 - 1288.

Glass, R., Vessey, [., Ramesh, V. (2002). Research in Software Engineering: An Analysis of the Literature, J.
Information and Software Technology, voi. 44, no. 8, June 2002.

http://hillside.net/patterns/definition.html

Reference and Bibliography

Glass, RL. (1998). Software Runaways: Lessons Leamned from Massive Software Project Failures. Upper Saddle
River, NJ: Prentice-Hall

Gnats, M. et al. (2001). Towards a living software development process based on process pattermns, 8" Earopean
workshop on software process techaology 2001

Goodman, P. (2004). Software metrics - best practices for successful IT management. Philip Jan Rothstein,
FBCI, Brookfield, CT, USA, 2004

Grady, RB., Caswell, DL. (1987). Software Metrics: Establishing a Company-Wide Program. Englewood Cliffs,
NJ: Prentice-Hall, 1987 '

Grady, R. (1992). Practical Software Metrics for Project Management and Process lmprovement, Preatice Hall,
Englewood Cliffs, NJ

Grady, R. (1994) Successfully Applying Software Metrics, IEEE Comp, Vol. 27, No. 9, pp. 18 - 25

Graham, 1. (2003). A pattern language for web usability, Addison-Wesley, 2003

Gueheneuc, Y., Albin-Amiot, H. (2001) Using Design Patterns and Constraints to Automate the Detection and
Correction of later-Class Design Defects, Proc. 39th Int’l Conf. and Exhibition Technology of Object-Oriented
Laags and Sys, pp. 296-305, 2001

Hahsler, M. (2005) A quantitative study of the adoption of desiga patterns by opea source software developers.
ln S. Koch, editor, Free/Open Source Software Developmeant, pp. 103-123. 1dea Group

Hall, T., Featon, NE, (1997), Implementing effective software metrics programmes, IEEE Soft. 14(2), 55-66
Halstead, MH. (1977). Elements of Software Scieace, New York: Elsevier North Holland
Hall, T, Featon, NE. (1997) Implemeating effective software metrics programmes, IEEE Software, 14(2)

Hall, T., Baddoo, N., Wison, D. (2001) Measuremeat in software process improvement programmes, Spriager
New York pp. 73-82

Hamming, RW. (1950), Error detecting and error correcting codes. Bell System Tec. Joumal, 26(2):147-160
Hardy, GH. (1941). A Mathematician’s Apology (London 1941).

Harrison, W., Magel, K. (1981). A topological analysis of the complexity of computer programs with less than
three binary branches. SIGPLAN Not., 16(4):51-63, 1981

Harrison, NB. (1996) Organizational Patterns for Teams, Pattern Langunages of Program Design 2, Addison-
Wesley Publishing Company

Harrison, N. (1996). Patterns of productive software organizations, Bell Labs Techaical Journal, 1(1):138-145,
Hecksel, D. (2004). Software Development Patterns, PLOP’04 Conference

Hefner, K. (1995). An experience-based optimization of the Goal/Question/Paradigm. In Proceedings of the
Califomia Software Symposium

Heires, JT. (2001). What I Did Last Summer: A Software Development Benchmarking Case Stady, 1IEEE
Software, vol. 19, no. 5, Sept/Oct. 2001, p. 33

Heltn, R. (1995). Pattemns ia practice. JEEE Trans. on Software Engineering, 28(6), 595-606

Hetzel, B. (1993). Making Software Measurement Work: Building an Effective Measurement Program, QED
Technical Publishing Group, Boston, Massachusetts.

Reference and Bibliagraphy

Herbsleb, J. et al, (1997) Software guality and the capability maturity model. Communications of the ACM 40(6)
Hillside group (pattern community website). http://hillside.net/pattems/

Hinkle, M. (2007) Software Quality, Metrics, Process Improvement, and CMMI: An Interview with Dick
Fairley, IT Professional, vol. 9, no. 3, pp. 47-51, May/lun, 2007

Hitz, M., Montazeri, B. (1996), Chidamber and Kemerer's Metrics Suite: A Measurement Theory Perspective,
IEEE Trans Software Eng., vol. 22, no. 4, pp. 267-271, Apr. 1996

Hoffman, . (2000), The Darker Side of Metrics, Pacific Northwest Software Quality Conference

Hone, G. and Stanton, N. (2004} HTA: The development and use of tools for Hierarchical Task Analysis in the
Armed Forces and elsewhere, HFI-DTC

Howell, DC. (2002) Statistical Methods for Psychology (5" Ed). Duxberry press

Huang, C., Lo, J., Kuo, S., Lyn, M. (2004). Optimal Allocation of Testing-Resource Considering Cost,
Reliability, and Testing-Effort. PRDC 2004: 103-112

Huang, H., Zhang, S. (2003). Hierarchical process patterns: construct software processes in a stepwise way,
Systems, Man and Cybemetics, 2003. IEEE International Conference on

Hughes, B., Cotterell, M. (2005). Software Project Management, McGraw-Hill
Hull, E., Jackson, j., Dick, J. (2005). Requirements Engineering (2™ Ed). Springer
Humphrey, W. (1989). Managing the Sofiware Process, Reading, MA: Addison-Wesley, 1989

Hyatt, L. Rosenberg, L., (1996). A Software Quality Model and Metrics for Risk Assessment, Journal for
Software Quality, Nov. 96

IEEE Standard 730-2002, IEEE Standard for Software Quality Assurance Plans

IEEE Standard. 829-1998, IEEE Standard for Software Test Documentation

1IEEE Standard 830-1998, 1EEE Standard for Software Requirements Specifications
1EEE Standard 1028-1997, IEEE Standard for Software Reviews

1EEE Standard 1012-1998, 1EEE Standard for Software Verification and Validation
IEEE Standard 1061-1998, Standard for a Software Quality Metrics

Ince, DC. (2003). Developing Distributed and Ecommerce Applications, Addison Wesley

Ince, DC., Sharp, H., Woodman, M. (1993). Introduction to software project management and quality assurance,
McGraw-Hill

Ince, DC. (1998). Software Development: Fashioning the baroque, Oxford University Press

Ince, DC. (1991). Software Quality and Reliability: Tools and Methods, Intemational Thompson Computer Press
Ince, DC. (2000). From data structures to patterns, Macmillan Press Ltd

1QPC (2003). The intemational Quality and Productivity Centre. www.igpc.com

I1SO (international Organization for Standardization): 1SO 15393, www.iso.org

http://hillside.net/pattems/
http://www.iqpc.com
http://www.iso.org

Reference and Bibliagraphy

Jacobs, J. (1961). The death and life of great American cities. New York, Vintage Books

Jalil, MJ., Noah. S. (2007) The Difficulties of Using Design Patterns among Novices: Aan Exploratory Stady,
1EEE Computer Society

Jeffery, R., Scott, L (2002). Has twenty-five years of empirical software engineering made a difference?
Software Engiaeering Conference, 2002. pp. 539 - 546

Johnson, R., Bhattacharyya, G. (2001). Statistics: Priaciples and Methods (4™ Ed), Wiley, New York
Jones, C. (1986). Programmiag Productivity. New York, NY: McGraw-Hill

Jones, C. (2007). Estimatiag Software Costs (2"‘I Ed), McGraw-Hill

Jones C. (1996). Applied Software Measurement: assuring productivity and quality (2™ Ed), McGraw-Hill
Jung, 1. (1971), The experimeater’s dilemma, New York hopper & Co

Juristo, N., Moreno, A. (2001), Basics of Software Engineering Experimentation. Kluwer Academic

Kan, SH. (1995). Metrics and Models in Software Quality Eagineering, Addisoa-Wesley

Kampffmeyer, H., Zschaler, S. (2007). Finding the Pattern You Need: The Design Pattern lateat Oatology.
MoDELS 2007: 211-225

Kaner, C. Boad, W. (2004) Software Engineering Metrics: What do they measure and how do we know?
(METRICS "04) Chicago

Kaplan, RS. Norton, DP. (1996), The Balanced Scorecard. Boston: Harvard Uaiversity Press
Kaposi, A., Myers, M. (1994). Systems, models and measures, Springer-Verlag, London
Karacan, O. (2000). Orgaaisational Pattems, EuroPLoP Conf. Proceedings, EuroPLoP 2000

Keller, A., Ludwig, H. (2002). Defining and monitoring service level agreements for dynamic e-business.
Conference Proceedings (L1SA 2002), Philadelphia, USA

Kennedy, J., Bush, AJ. (1984). An introduction to the design and amalysis of experiments. Lanham, MD:
University Press of America, Inc.

Kerth, N. (1995). Caterpillar’s fate: A pattern language for transformation from analysis to design, in Pattern
Languages of Program Design, Addison-Wesley

Khazanchi, D. Munkvold, BE. (2003). Oa the rhetoric aad relevance of 1S research paradigms: a conceptual
framework and some propositions. 36th Hawaii Intemational Conference on System Sciences

Khoshgoftaar, TM. et al. (2005). Resource-oriented software quality classification models, Joumnal of Systems
and Software, Volame 76, Issue 2, 1 May 2005, pp. 111-126

Kimble, C., Selby, W. (2000). An interdisciplinary study of information systems: Christopher Alexarder and 15
failure (Proc. UKAIS, p256-265)

Kircher, M., Volter, M. (2007) Software Pattemns, 1EEE Software, July-Aug. 2007
Kitchenham, B., Pfleeger, SL., Pickard, L., Jones, P., Hoaglin, DC., Emam, K., Rosenberg, J. (2002).
Preliminary guidelines for empirical research in sofiware engineering. IEEE Traas. on Soft. Eag. 28 (8), 721-

734. Aung. 02

Kitcheaham, B., Dyb4, T., Jorgensen, M. (2004). Evidence-Based Software Engineering. 1CSE 2004: 273-281

Reference and Bibliography

Kitchenham, B., Mendes, E. (2004). Software Productivity Measurement Using Multiple Size Measures. IEEE
Trans. Software Eng. 30(12): 1023-1035

Kitchenham, B. (1987). Towards a constructive quality model, Soft Eng. Journal, July 87. pp. 105-113.
Kitchenham, B., Pfleeger, SL. (1996). Software Quality: The Elusive Target, IEEE Software, Jan 1996, pp 12-21

Kitchenham, B., Pfleeger, SL., Fenton, N. (1995). Towards a Framework for Software Measurement Validation,
IEEE Trans on Soft Eng, vol.21, No. 12, pp. 929 10 943, Dec95

Kitchenham, B., Colin, D. (2007) Misleading Metrics and Unsound Analyses IEEE Software Mar/Apr 2007
Kohn, W. (2002). The lost prophet of architecture, Wilson Quarterly Summer éOOZ
Kompass , http://www.kompass.co.nk

Koziolek, H. (2005). The Role of Experimentation in Software Engineering. Seminar Research Methods, Car!
von Ossietzky University of Oldenburg

Kriz, J. (1988) Facts and Artefacts in Social Science: An Epistemological and Methodological Analysis of
Empirical Social Science. McGraw Hill Research

Kroeber, AL. (1948). Anthropology: Culture, Patterns and Process. Harcourt, Brace and World
Kutz, M., et al. (2003). Kennzahlen in der IT. Dpunkt-verlag, Heidelberg, Germany

Lang, T., Secic, M. (1997). How to Report Statistics in Medicine: Annotated Guidelines for Authors, Editors and
Reviewers, American College of Physicians, 1997

Landsberger, H. (1958). Hawthome Revisited, Ithaca

Laplante, P., Niel, C (2006). Anti-patterns: ldentification, Refactoring, and Management, CRC Press 2006
Laplante, P, (2007) What every engineer should know about software engineering, CRC Press

Larman, C., (2004) Agile and Iterative Development: A Manager’s Guide. Addison-Wesley.

Larman, C., Basili, VR, (2003} Iterative and Incremental Development: A Brief History. JEEE Computer, 2003.
36(6): p. 47-56.

Larman, C. (2002). Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and
the Uni_ed Process (2™ Ed). Prentice-Hall

Lawler, J., Kitchenham, B. (2003) Measurement Modelling Technology, IEEE Software Jun 03

Leedy, PD., Ormrod, JE. (2003). Practical research: Planning and design (8" Ed.). New Jersey: Pearson Merrill
Prentice Hall .

Lehman, MM. (1980). Programs, life cycles, and laws of software evolution. [IEEE Trans. on Soft. Eng., 68(9).

Lehman, MM. (1987). Process Models, Process Programs, programming Support. Proc. 9™ Jntem. Conf.
Software Engineering, IEEE Cemputer Society 1987.

Lethbridge, TC. (2000), What Knowledge Is Important to a Sofiware Professional? [EEE Computer, Vol. 33,
No. 5, pp 44-50

Lewis, J. et al. (1991). An Empirical Study of the Object-Oriented Paradigm and Software Reuse, OOPSLA 91,
pp 184 - 196.

http://www.kompass.co.uk

Reference and Bibliography
Li, W. (1998). Another metric suite for object-oriented programming. Journal of Systems and Software,
44:155.162, 1998.

Linberg, KR. (1999). Software developer perceptions about software project failure: a case study, Journal of
Systems and Software, Volume 49, Issue 2-3, 1 Dec 1999, pp. 177-192

Lim, JS..et al. (2005). An empirical investigation of the impact of the object-oriented paradigm on the
maintainability of real-world mission-critical software, Journal of Systems and software, Volume 77, Issue 2, 1
August 2005, pp. 131-138

Lipsey, MW ., Wilson, DB. (2001). Practical meta-analysis. Thousand Qaks, CA: Sage Pub.

Lorenz, M., Kidd, J. (1994). Object-Oriented Software Metrics, Prentice Hall Publishing, 1994.

Ma, J., Wang, Y. (2006). A Quantitative Context Model of Software Process Patterns and Tts Application
Method Quality Software, Sixth International Conference on, Oct. 2006. pp. 243 - 250

MacCormack, A., Kemerer, CF., Cusumano, M., Crandall. B (2003) Software Development Practices: Exploring
the Trade-offs between Productivity and Quality, [EEE Software, vol. 20, no. 5, pp. 78-85

Madachy, RJ. (2008). Software Process Dynamics, Wiley-IEEE Press

McGarry, J. (2001). When It Comes to Measuring Software, Every Project Is Unique 1EEE Software, vol. 19,
no. 5, Sept./Oct. 2001

Manns, ML. (2002). Introducing patterns to organizations, EuroPLoP Conference Proceedings, EuroPLoP 2002

Manolescu, D., Kozaczyaski, W., Miller, A., Hogg, I. (2007), The Growing Divide in the Pattems World, IEEE
Software, Vol. 24, Issue 4, Jul-Aug 07, pp 61-67

Marco, A., Buxton, JN. (1987), The Craft of Software Engincering. Addison Wesley
Martin, R. (1994). Discovering Patterns in existing application, PloP94

Martin, J., MClure, C. (1985). Diagramming Techniques for Amalysts and Programmers. Prentice-Hall,
Englewood Cliffs, NJ.

Marinescu. R., Ratiu, D. (2004). Quantifying the Quality of Object-Oriented Design, Proceedings of the 11th
IEEE Working Conf. on Reverse Engineering (WCRE 2004), IEEE Computer Society Press

Maxwelt, JA. (1996). Qualitative research design: An iterative approach. CA: Sage Publications.

Maxwell, SE., Delaney, HD. (1990). Design experiments and analyzing data: A model comparison perspective.
Belmont. CA: Wadsworth Publishing.

Maxwell, KD.. Forselius, P. (2000) Benchmarking Software-Development Productivity, I[EEE Software, v.17
n.l, p.80-88, Jan 2000

McBurmey, DH. (2003). Research imethods (6"1 Ed), Brooks/Cole
McCabe, T. (1976). A Sofiware Complexity Measure, IEEE Trans. Soft Eng SE-2(4), 308-320

McCall, JA. et al. (1977). Factors in Software Quality, Tech. Report. RADC-TR-77-369, Rome Air
Development Ceatre, Air Force Systems Command, Griffiss Air Force Base, N. Y.

McConnell, S. (1996), Rapid Development: Taming Wild Software Schedules, M’soft Press

McConnell, 8. (1997). Software Project Survival Gaide. Microsoft Press

Reference and Bibliography ~

McConnell, S. (1998) Best Practices: The Art, Science, and Engineering of Software Development. [EEE
Software 15(1): 118-120 (1998)

McCrone, J. (2004) New Scientist, Print Edition. March 2004

Meli, R. (2000). Functional And Technical Software Measurement: Conflict Or Integration 7 FESMA-AEMES
2000 Conference Proceedings, Madrid, October 18-20 2000

Melton, AC., Gustafson, D., Bieman, J., Baker, A. (1990), A Mathematical perspective for software measures
research. [EE Software Engineering Journal, 5(5):246-254, 1990

Meszaros, G., Doble, J. (1997). A Pattern Language for Pattern Writing, Pattern Language of Program Design 3,
Addison-Wesley

Meszaros, G. (2007) Unit Test Patterns: Refactoring TestCode, Addison-Wesley, 2007

Meta Group (2002). The business of IT Portfolio-Management: Balancing risk, innovation, and ROIL.
WWW,metagroup.com

Miller, L, (2003). Pattern language, New York Times July 27, 2003
Mills, E. (1988). Software Metrics, SEI Curriculum Module SEI-CM-12-1.1, Carnegie Mellon University
Montgomery, DC. (1997). Design and analysis of experiments. New York : Wiley

Moote, D., McCabe, G (1993). Introduction to the Practice of Statistics. W.H. Freeman and Company, New
York. 1993.

Moore, GC., Benbasat, [. (1991). Development of an Instrument to Measure the Perceptions of Adopting an
Information Technology Innovation, ES Research, Sept, 1991, Vol. 2, No 3, pp 192-222.

Moore, J. (2000). Combining and Adapting Process Patterns for Flexible Workflow, 11th International
Workshop on Database and Expert Systems Applications, September 2000

Morasca, S. {2003). Foundations of a weak measurement-theoretic approach to software measurement. FASE
2003: 200-215

Morasca, S., Briand, L. (1997), Towards a Theoretical Framework for Measuring Software Auributes, presented
at 4th International Software Metrics Symposium (METRICS '97)

Morasca, S.. Briand, L., Basili, VR., Weyuker, E., Zelkowitz, M (1997b) Comments on Towards a Framework
for Software Measurement Validation, IEEE Trans on Soft Eng, pp. 187 - 188 Mar 1997

Mowbray, T., Malvean, R. (1997). CORBA Design patterns. New York: Wiley Computer Publishing

Moynihan, T, (1996). An Experimental Comparison of Object-Orientation and Functional-Decomposition as
Paradigms for Communicating System Functionality to Users. J. Systems Software, 1996. 33(2): p. 163-169

Munson, JC., Khoshgoftaar, TM. (1992) Dynamic Program Complexity: The Determinants of Performance and
Reliability, IEEE Software November, 1992, pp.48-55

Munson, JC., Khoshgoftaar, TM. (1990) Applications of a Relative Complexity Metric for Software Project
Management, Joumal of Systems and Software, Vol 12, No. 3, July 1990, pp. 283-293

Myers, GJ. (1975) Reliable Software through Composite Design, Van N Reinhold New York

Nance, RE., Anhur, JD. (2002). Managing software quality: A measurement framework for assessment and
prediction, Springer, London, 2002

NASA. Software Assurance Technology Centre SATC. hitp://satc.gsfc.nasa.gov

http://www.metagroup.com
http://satc.gsfc.nasa.gov

Reference and Bibliography

Noble, 1., Biddle, R. (2002). Patterns as signs. In ECOOP Proceedings
Oates, BJ. (2005). Researching Information Systems and Computing, Sage, 2005
Odell, JJ. (1998). Advanced Object—Oriented Analysis & Design using UML, Sigs Ref. Lib

Olague, HM. et al. (2007). Empirical Validation of Three Software Metrics Suites to Predict Fault-Proneness of
Object-Oriented Classes, IEEE Trans. Software Engineering Vol 33. No 6.

Olsson, T. (2001). V-GQM: A Feed-Back Approach to Validation of a GQM Stndy, Metrics "01 International
Software Metrics Symposiom, 2001

Oman. P, Pfleeger. SL. (1997). Applying software metrics IEEE Computer Society Press, CA

Ormerod, TC. Shepherd, A. (2004). Using task analysis for information requirements specification: The
Handbook of Task Analysis for Human-Compunter Interaction. Lawrence Erlbanm Associates

Osterweil, L. (1987). Software processes are software too, proceedings of ICSE 1987
Osterweil, LY. (1997). Software processes are software too, revisited. Proceedings of ICSE 1997

Page, S., Yates, C (1973). Attitude of psychologists towards the experimenter controls in research, The Canadian
psychologist, 14, 202-207

Pant, Y. et al. (1996). Generalization of Object-Oriented Components for Rense: Measurement of Effort and Size
Change, J. Object-Oriented Programming, vol. 9, pp. 19- 41, 1996

Park, RE. et al. (1996). Goal-Driven Software Measurement: A Guidebook (CMU/SEI-96-HB-002,
ADA313946). Pitsburgh, Pa.: Soft Eng Institute, Carnegie Mellon University, July 1996

Patterns Central website. http://www patternscentral.com
Pattern Community Website. http://www_hillside.net

" Perlis AF., Sayward, FG., Shaw, M. (1981). Software Metrics: An Analysis and Evalpation. Cambridge, Mass.:
MIT Press, 1981

Parsons, HM. (1974) What Happened at Hawthorne? Science, vol. 183, no. §, pp. 922-932, Mar, 1974
Perry, D. et al. (2000). Empirical studies of software engineering: a roadmap. 1ICSE’02 pp 345-355
Pfanzagl, J. (1971). Theory of Measurement (2™ Ed). Wurzburg, Physica-Verlag, 1971.

Pfleeger, SL.. Fenton, N., Page, S. (1994). Evaluating Software Engineering Standards, 1EEE Computer, Vol.
27, No. 9, September 1994, pp. 71 - 79.

Pfleeger, SL., Palmer, ID. (1990). Software Estimation for Object Oriented Systems, Fall Intemational Function
Point Users Group Conference, Texas, October 1-4, 1990, pp. 181 - 196.

Pfleeger, SL. et al. (1991). A Software Metrics Database: Support for Analysis and Decision-Making,
Proceedings of the Ninth Annual National Conference on Ada Technology, March 91, pp. 114 -119.

Pfleeger, SL. et al. (1997). Status Report on Software Measurement, IEEE Software, March/Apiil 1997, 33-43,
Pfleeger, SL. (1993). ‘Lessons Learned in Building a Corporate Metrics Program.”, IEEE Software, pp. 67-74.
Pfleeger, SL. (1999). Albert Einstein and Empirical Software Engineering. In: Computer 32 (99), 10, pp. 32-38

PLoP (1994 to 2007). The 1st to 13" Conference on Pattern Languages of Programs

http://www.patternscentral.com
http://www.hillside.net

Reference and Bibliography

Porter, R, Calder, PR. (2004). Patterns in Leaming to Progmm - An Experiment, Proceedings of ACE"2004.
pp-241-246

Portland Patiern Repository. hitp://c2.com/ppr/

PSM, Practical Software and Systems Measurement, http://www.psmsc.com/

Prechelt, L., Unger, B., Philippsen, M. Tichy, WF. (2002). Two Controlled Experiments Assessing the
Usefulness of Design Pattern Documentation in Program Maintenance. 1EEE Trans on Soft Engineering,
28(6):595-606, June 2002

Prechelt, L., Unger, B., Tichy, WF., Brdssler, P., Vouta, LG. (2001) A Coatrolled Experiment in Maintenance
Comparing Design Patterns to Simpler Solutions, IEEE Trans. on Soft. Eng., vol. 27, no. 12, pp. 1134-1144,
Dec. 2001

Pressman, R., Ince, D. (2000}, Software Engineering, a practitioner’s approach, European Adaptation, McGraw-
Hill

Pressman, R. (2005). Software Engineering: A practitioner's approach (6" Ed)., McGraw-Hill

Ramesh, B., Jarke, M. (2001). Toward Reference Models for Requirements Traceability, IEEE Trans. on Soft.
Eng., v.27 n.1, p.58-93, JanOl

Rees, D. (2001). Essential Statistics (4lh Ed). Chapman and Hall, 2001
Reibing, R. (2001 _a). Assessing the Quality of Object-Oriented Designs. OOPSL A 2001 Proc.

Reibing, R. (2001_b). The Impact of Pattern Use on Design Quality Position Paper for the OOPSLA 2001
Workshop .

Riehle, D., Zullighoven, H. (1996). Understanding and Using Pattems in Software Development. Theory and
Practice of Object Systems, Vol. 2(1), 1996, pp. 33-13.

Rising, L. (1998). CRC Handbook of Object Technology, CRC Press, 1998
Rising, L. (1999). Patterns: A Way to Reuse Expertise, IEEE Communications Mag. Vol. 37, No. 4.
Rising, L., Manns, ML. (2004). Fearless change: Patterns for introducing new ideas, Addison Wesley

Roche, IM, (1994). Software Metrics and Measurement Principles. ACM SIGSOFT Software Engineering Notes
19, 1, 1994, 77-85

Rolland, C., Prakash. N. (1993). Reusable Process Chunks. In Proc of 4th Intemational Conference on Database
and Expert Systems Applications. DEXA93, Prague Slovakia, September 1993,

Rombach, D. (1991). Practical Benefits of Goal-Oriented Measurement, in: Software Reliability and Metrics,
Elsevier Applied Science, 1991

Rosenberg, L. Hyatt, L., (1996). Developing a Successful Metrics Pragram, STC '96,

Rosenthal, R. (1998). Covert Communication in Classrooms, Clinics, and Courtrooms, Eye on Psi Chi. Vol. 3,
No. 1, pp. 18-22

Royce, W. (1970). Managing the Development of Large Sofiware Systems: Concepts and Techniques. Western
Electronic Show and Convention (WesCon) August 25-28, 1970, LA, USA

Rubin, HA. (1996). The Top 10 Mistakes in IT Measurement, IT Metrics Strategies, Vol. I1, No. 11, November
1996, www.cutter.com/benchmark/1996toc, html

http://c2.com/ppr/
http://www.psmsc.com/
http://www.cutter.com/benchmark/1996toc.html

Reference and Bibliography

Rudestam, KE., Newton, RR. (2001). Surviving your dissertation (2™ Ed), Sage Pub. Iac.
Salingaros, NA. (1999). Architecture, Patterns, and Mathematics. Nexus Network Joumal Apr 99,
Salingaros, NA. (2000). The Structure of Pattern Languages. Architectural Research Quarterly 4:149-161

Saltelli A. Tarnntola S., Campolongo, F. and Ratto, M., (2004}, Sensitivity Analysis in Practice. A Guide to
Assessing Scieatific Models, Joha Wiley & Soas.

Sapsford, R. (2007). Survey research (2"" Ed). Sage Publication
Sauaders, WS, (1999). From taste to judgment, Harvard Design Magazine, Winter-Spring, 1999, aumber 7
Saunders, WS. (2002). A Pattem Langunage: reviewed, Harvard Design Magazine, Winter-Spring, 2002, no. 16

Sauro, J., Kindlund, E. (2005): A method to standardize usability metrics into a single score, Proceedings of
ACM CHVHFCS 2005. pp. 401409

Schach, SR. (2005). Object-oriented and classical software engineering, McGraw-Hill

Scanlan, DA. (1989). Structured Flowcharts Outperform Pseudo code: An Experimental Comparison. 1EEE
Software 6(5): 28-36 (1989)

Schmidt, D, Stal, M., Rohnen, H., Buschmaann, F. (2000). Pattern-Oriented Software Architecture: Patterns for
~ Concurrent and Networked Objects. Wiley, 2000

Schmidt, CD. (1995). Using Design Patterns to Develop Reusable Object-Oriented Commuaication Software,
Communication of the ACM 1995

Schroeder, M. (1999). A Practical Guide to Object-Oriented Metrics, IT Professional, v.1 0.6, 30-36, Nov 1999
SDPP (2002). Proceedings of the 1st Workshop on Software Developmeat Patterns

SEL (1995). Software Measurement Guidebook. NASA, Goddard Space Flight Ceater, Software Engineering
Lab, SEL-94-102.

Seaman, CB. (1999). Qualitative methods in empirical studies of software engineering, 1EEE Transaction on
software engineering, Vol 25 No. 4 July 1999.

Selltiz, C. (1959). Research methods in social relations, Holt, New York
Shalloway, A. (2003). Can patterns be harmful, Cutter IT Joumal September 2003
Shamoo, A. (2002) Ethics of the Use of Human Subjects in Research, Garland Scieace

Simoas, CL., Parmee, IC., Coward, PD. (2003), 35 years on: to what exteat has software engineering design,
IEE Proceedings — Software, 150 (6)

Shaughnessy. JJ., Zechmeister EB. (2002). Research Methods in psychology, 6 Ed, McGraw-Hill
Shepherd, A. (2001). Hierarchical task analysis. New York: Taylor & Francis

Sheppel;d, M. (1996). Foundations of Software Measurement. Prentice Hall

Shepperd, M., Ince, DC. (1993). Derjvation and validation of software metrics, Clarendon Press

Shoeiderman, B., Mayer, R., McKay, D., and Heller, P. (1977). Experimeatal investigations of the utility of
detailed flowcharts in programming. Communications of the ACM 20, 6(1977), pp. 373-381

Reference and Bibliagraphy

Shull, F., Basili, VR. et al. {2004). Knowledge-Shaning 1ssues in Experimental Software Engineering. Empirical
Software Engineering An lnternational Jonmal, 9, n. 1-2, p. 111-137

Shull, F., Singer, J., Sjoberg, D. (2008) Guide to Advanced Empirical Software Engineering, Springer-Verlag
Siddle, J. (2007). Creating Software Architecture using Pattern Sequences, EauroPlop 2007

Silverman, M. (1974). The experimenter, Canadian psychologist 15

Singleton, 1., Straits, C. (1999). Approaches to social research (3rd Ed). Oxford University Press

Singer, j., Vinson, NJ. (2002). Ethical Issues in Empirical Studies of Software Engineering, JEEE Trans. on Soft.
Eng., vol. 28, no. 12, pp. 1171-1180, Dec., 2002

Six sigma http://software.isixsigma.com/library/content/c051207b.asp

Sjoberg, DIK., Anda, B., Arisholm, E., Dyba, T. et al. (2002). Conducting Realistic Experiments in Software
Engineering, Proceedings of the 2002 Intemational Symposium on Empirical Software Engineering (ISESE’02)

Sjoberg, DIK., Hannay, J., Hansen, O., Kampenes, V., Karahasanovic, Liborg N., Rekdal, A. (2005). A Survey
of Controlled Experiments in Software Engineering. IEEE Trans. on Software Engineering, Vol. 31, No. 9.

Sjoberg, D., Dyba, T., Jorgensen, M. (2007). The Future of Empirical Methods in Software Engineering
Research, 29th Intemnational Conference on Software Engineering (ICSE'07)

Software Enginecering Institute (SEI) http:/www.sei.cmu.edu/
Sommerville, 1. (2007). Software Engineering (8"‘ Ed), Addison-Wesley
Standish Group, (2007). Chaos Chronicles Online: Quality, The Standish Group Intemational, Inc

Stanton, NA. (2006). Hierarchical task analysis: Developments, applications, and extensions. Applied
Ergonomics 37, 55-79

Steen, LA. (1988). The Science of Patterns, Science vol. 240 pp. 611-616.
Stevens, S. (1946). On the theory of scales of measurement. Science, 103, 677-680
Storrle, H. (2003). Making agile processes scalable. In ProSim 03, 2003.

Storrle, H. (2001). Describing Process Patterns with UML. In Ambriola. Vincenzo (Ed.), Software Process
Technology, 8th Eur. Ws. EWSPT 2001

Storrle. H, (2000). Models of Software Architecture. PhD thesis, Ludwig-Maximiltans-Universitat Munchen,
Institut furlnformatik

Subramanyam, R. et al. (2003), Empirical Analysis of CK Metrics for Object-Orented Design Complexity:
Implications for Software Defects. IEEE Trans on Soft Eng 29(2003M, pp. 297-310

Taibi, T.,Ngo, DCL. (2001). Why and How Should Patterns Be Formalized. Joumnal of Object-Onented
Programming (JOOP}, vol. 14, no 4, 8-9

Tang, A., Babar, M., Gorton, 1., Han, J. (2006). A survey of architecture design rationale. Journal of Systems and
Software 79(12); 1792-1804

Thompson, DW. (1917). On Growth and Form, Dover Publications (Revised Edition 1992)

Tichy, WE. (1998). Should Computer Scientists Experiment More? IEEE Computer. pp. 32-40.

http://software.isixsigma.com/library/content/c05
http://www.sei.cmu.edu/

Reference and Bibliography

Tichy, WF., Lukowicz, P., Prechelt, L., Heinz, EA. (1995) Experimental evaluation in computer science: a
quantitative study, Joumal of System Software. 28 (1995), pp. 9-18

Thiessen, R. (1994). Mathematics, the Science of Patterns, AIMS, April 1994

Torgerson, S. (1958) Theory and Methods of Scaling. New York: John Wiley & Sons

Tully, C. (1998). Improving software practice: case experiences; Wiley; Chichester

Tully, C. et al. (1999). Software process analysis and improvement; IEEE Comp society, California PP 51-106.

Tsantalis, N., Chatzigeorgion, A., Stephanides, G. (2006). Design Pattern Detection Using Similarity Scoring.
IEEE transaction on software engineering, Vol. 32, No. 11, November 2006

Unger, B., Tichy, WF. (2000). Do design pattems improve communication, An experiment with pair design.
Proc. Int’l Workshop empirica! studies of software Maintenance

Velleman, PF. Wilkinson, L. (1993). Nominal, ordinal, interval, and ratio typologies are misleading. The
American Statistician, vol. 47 No. 1, 65-72

Voas, 1., Agresti, W. (2004). Software quality from a behavioural perspective, IT Pro, 6(4) pp 46-50, 2004.

Vokzc, M. (2004a). Defect Frequency and Design Patterns: An Empirical Study. IEEE Transaction on Software
Engineering, VOL. 30, NO. 12, Dec 2004

Vokac, M., Tichy, W. et al. (2004b). A Controlled Experiment Comparing the Maintainability of Programs
Designed with and withont Design Pattems: A Replication in a Real Programming Environment, Empirical

Software Eng., vol. 9, no. 3, pp. 149-195, 2004

Waketand, W. et al. (2004). Using design of experiments, sensitivity analysis, and hybrid simulation to evalnate
changes to a software development process. Software Process: Improvement and Practice 9(2): 107-119 (2004)

Walonick DS. (1997). Survival Statistics , Statpach Inc

Walton, CE., Felix, CP. (1977). A Method of Programming Measurement and Estimation, IBM Systems J. 16(1),
pp 54-65

Webster, B. (1995). Pitfalls of Object-Oriented Development, M&T Books, 1995

Wegner, P. (1976). Research Paradigms in Computer Science. Proceedings of the 2nd Intemational Conf. on
Software Engineering, San Francisco, Califomia, US, pp 322 - 330

Weir, C. (1998). Patterns for Designing in Teams, Pattern Languages of Program Design 3, Addison Wesley
Longman, Inc., 1998

Weinberg, G. (1992). Quatlity Software Management, Vol. 1, ‘Systems Thinking', Dorset House

Weinberg, G., Schulman, E. (1974). Goals and Performance in Computer Programming, Human Factors, vol. 16,
pp. 70-77

Wendorff, P. (2001). Assessment of Design Pattems during Software Reengineering Lessons Learned from a
Large Commercial Project, In Proceeding of CSMR’2001. pp. 77-84

Whitenack, B. (1994). RAPPeL: A Requirements-Analysis-Process Pattern Language. Based on the proceedings
of PLoP 1994.

Whitmire, SA. (1997). Object Oriented Design. Measnrement. John Wiley & Sons. Inc

Wiegers K. (1997), Software Metrics: Ten Traps to Avoid, Software Dev, Vol. 5, No. 10

Reference and Biblicgraphy

Wiegers, KE. (1999). A Software Metrics Primer, Software Development. July 1999

Wiedenbeck, S. (1999). Novice comprehension of small programs written in the procedural and object-oriented
styles. Intemational Journal of Human-Computer Studies. 51 (1) (99), pp. 71-87

Wilson, WM, Rosenberg, LH, Hyatt, LE (1997). Automated Analysis of Requirement Specifications, Nineteenth
Intemational Conference on Software Engineering (ICSE-1997)

Wilson, W. (1999) Writing Effective Natural Language Requirements Specifications, Crosstalk: The Joumal of
Defence Software Engineering, Feb 99.

Winer, BJ., Brown, DR., Michels, KM. (1991). Statistical principles in experimental design. New York:
McGraw-Hill, Inc.

Winn, T., Calder, PR. (2002). Is This a Pattern? IEEE Software 19(1): 59-66

Withall, S. (2007). Software requirements patterns, Microsoft press

Wohlin, C. et al. (2000) Experimentation in Software Engineering An Introduction, Kluwer Academic
Yourdon, E. (2008) Moving beyond SEI-CMM level one, Software Best Practice Conference, March 2008

Yu, TJ. et al. (1988). An Analysis of Several Software Defect Models, IEEE Trans Soft. Eng, Vol 14, No 9,
1988, pp 1261-1270

Zdun, U, (2007). Systematic pattern selection nsing pattern language grammars and design space analysis.
Softw., Pract. Exper. 37(9): 983-1016

Zelkowitz, MV., Wallace, DR. (1997). Experimental Validation in Software Engineering. In Information and
Software Technology 39 (1997), pp. 735-743

Zelkowitz, MV_, Wallace, DR. (11998). Experimental models for validating technology. IEEE Computer. 23-31

Zhou, Y. (2006), Empirical Analysis of Object-Oriented Design Metrics for Predicting High and Low Severity
Faults, [EEE Trans. Software Eng. 32(10); 771-789

Zuse, H. (1998). A Framework of Software Measurement. Berlin, Walter de Gruyter

Zuse, H. (1991). Software Complexity: Measures and Methods, De Gruyter. Berlin

Appendix A. Experiment Detdils

192

Appendix A. Experiment Details

In this sexton the following items are presented:

Sanapshots of online measurement form

The complete measuremeit form

Official marking scheme/criteria for group and individual projects
Group project assignment

American Psychological Association Code of Ethics

Snapshots of online measurement form

-t e i - L _}

Fodule I l Semeﬂer (1\2) | [| Cmpusi . Hj

Regui.rement Analxsls Phase Measures

e Numbef of’user reqmrement
-F

g“ Number and word counts, oE requu':m:nt stntements HNo.

1 Nl.n.mber ofdeﬁn:d use- caseu

} HNumber ofule -case dmg,ramx [E CRC Dwgamx[! Other RA diagrams l]

b o — porepy A,

Cwml.'lawe number oE houn (per:on hout) :pcnt in thu phal: I i

‘g
. ‘ Number oi‘ h.mc: rhu pha:: was r:vum:d (n c. lt:rahonl) [

i Nu.rnbcr ok‘mqmmmanz a):a{vas daagraznl remewrd S

e -)
' P:r age of reqtar anabms doc remewed I I

. ._! Cwmxlauve n\xrnber ofhou.r: (p:r:on houx) spent n t::ang and revl:w‘lng[}

urub:r of houzs (p:rson hour) sp:nl. n ﬁns phﬂse to Ex deﬁ:cu I]
numb er of de[‘acts f‘ound in thus phase l ,.‘

I ’Total number oE det‘ects Emed in thu pha,se l .. A

L Tral cpenbar AP saam o hara FEnr menive e iantad

_Module CMT3991 and CMT3992 Measurement Forrn ..:. i:: -

Lo b - PR LT R T e e e e b
o . Student Noi F.m Nam:si i Surna:n:sl i

Ettﬂ.i.t@lim!}mlLé}ii{fzmiﬂ.ﬂﬁj.iiiﬁiiﬂ.ﬂﬂmﬂf} et v

e ‘-.-!A in v

;,‘mmg it e ARG T PT UA LLS s e

i_-—_
R R e A R L f!JJ!_IHWW»a._A Jf_

Figure App_A 1 Snapshots of online measurement form

The complete measurement form

‘Module CMT3991-and CMT3992 Measurement Form -

Student Details

Student No.’, . First Namesl_ e Sumamesl -
Modulel - Scmester(l/2)| . Campusl ;)

Requirement Analysis Phase Measures

Number of user requirement {

Appendix A. Experiment Details 193

Number, and word counts, of requirement statements: No, I—' Word count l_
Number of defined nse-cases [-

Number of use-case diagrams _‘ CRC Diagrams r—' Other RA diagrams I_.—"
Comulative number of hours (person hour) spent in this phase: I.__,_..J

Nunmber of times this phase was revisited (i.c. iterations) r—

Number of requirement analysis diagrams reviewed _________,{

Percentage of requirement analysis document reviewed l_ - _]

Cumulative number of hours (person-hour) spent in testing and reviewing r}

Curnulative number of hours (person-hour) spent in this phase to fix defects ,:

Total number of defects found in this phase I__-

i

Total number of defects fixed in this phase I,.____E

Total number of team meetings held in this phase (for group projects) |

Total number of meetings held with project supervisor (for individual projects) 1 . . - J

Other info and comments relevant to this phase:

AL AA A A A, \i’A
R G B
At erd B a8 Bl

ol

Design Phase Measures

Number of class diagrams I e
Number of activity dlagramsl
Number of sequence diagrams I 3

Number of other Design diagrams | — __ Name, if any. ’,m. N
!

Number of user interface (Ul) screens)— . _{
Number of database tables I e

Number of database relationship diagramsl o

Number of words in the design document l___

Number of times this phase was revisited (i.e. iterations) I__
Percentage of design document reviewed lﬁ

Number of design models reviewed in this phase I_-—

Total number of defects found in this phase l

Appendix A. Expetiment Details 194

Total number of defects fixed I .

Cumulative number of hours (person hour) spent in the design phase: ’ -

Cumulative number of hours {person hour) spent in the testing the designsl R
Cumulative number of hours (person hour) spent in this phase on rework to fix defects I J
Total number of team meetings held in this phase (for group projects) ’ -

Total number of meetings held with project supervisor (for individual projects) I_.,H .i

Other info and comments relevant to this phase:

{5 [T A A P ol e
; ¢.| I A R R e b
R AL I SCTRE B ST N S T 30 5 R NI R SRR R PN T N

Implementation/Programming Phase

What programming language(s) was/were used for implementation: /... ..

Was a coding standard used I I yes what I,__ — e e

: I 1

Total nnmber of classes (modules, in the case of non-QOP) developed) . . . !
I !
Total nnmber of methods (functions, in the case of non-OOP) developed ! -1

Total number of developed source lines of code (SLOC) I...—.....m

Total number of inline comments I -
Number of database queries I '

Cumulative number of hours (person hour) spent in testing I e

Cumulative number of hours (person hour) spent in this phase ’_.__-_;

Number of times this phase was revisited (i.e. iterations) I :
1
Number of test cases developed 1.

Number of test cases executed I

Percentage of code inspected/reviewed IT

Total number of defects found in this phase lia

Total number of defects fixed l—

Cumulative number of hours spent (person hour) in this phase on rework to fix defects I—
Total number of team meetings held in this phase (for group projects) ,_

Total number of meetings held with project supervisor (for individval projects) I '

Other info and comments relevant to this phase:

Appendix A, Experiment Details 195

Delivery Phase Measures

Number of test cases developed for the application I . :

Number of test cases executed for the application I___ - ._Ji

Total number of defects found in the application .. ___°

Total number of defects ﬁxedl .

I !
Cumulative number of hours {person hour) spent in this phase: ..

Cumulative number of hours spent (person hour) in testingd.

I |
Cumulative number of hours spent (person hour) in this phase on rework to fix defects | - _._ 1

Total number of team meetings held in this phase (for group projects) !.... — !

| !
Total number of meetings held with project supervisor (for individual projects) 1.

Other info and comments relevaat to this phase:

P ; g
. Submit Fprm-l ; Beset.l

Appendix A. Experment Details 196

Official Marking Scheme/Criteria

Group and individual projects are marked by respective tutors on the 12 marking componeuts depicted in Table
App_A 1. Grading levels and their requirements for the results, design and analysis, evaluvation and product
criteria are depicted in Table App_A 2, Table App_A 3, Table App_A 4, and Table App_A 5 respectively.

Abstract

Introduction

Problem Definition

Analysis, Design & Method

Results/Product

Evaluation (of both process & results)

Conuclusion (section)

Use & Citation of literature

Research & Concepts

Presentation

Student Competence

Student Managemeut of the Project

Table App_A t Official marking criteria for group and individual projects

Marking Scheme for product Criteria

Fail

Poor

Average

Good

Excellent

No significant cesults.
OR

Product is not
working ot does not
appear to match any
part of the original
criteria without any
attempt at discussion
or justification.

Similar findings (or
products) are widely
available. Distinctive
aspects of the problem
not covered.

Weaknesses detract
seriously but are
acknowledged.
Results, or product,
incorporate adequate
testing or validation
activities

High standard reached
in documentation,
software and/or
methodology.
Findings fit the
problem studied and
alternatives are
compared.

OR

Software fails
gracefully. Remaining
errors are
acknowledged. Clear
indication of
assumptions and
crucial trade-off
decisions.

Results/proctuct offer
a notable original
feature, quality or
porpose. Pathway
indicated for further
development.
Findings are original
and could be applied
in other projects and
appear superior o the
usval alternatives OR
software is release
quality OR ontput of
particular quality
presented.
Documentation
includes advanced
issues. Deep
understanding of
assumptions and
trade-offs,

Table App_A 2 Grading arrangements for product criteria

Appendix A. Experiment Details

197

Marking Scheme for Evalnation Criteria

Fail

Poor

Average

Good

Excellent

No attempt at
evaluation, No
recommendations
stated. No clear idea
of how, or if, the
recommendations
could be
implemented.

Lacks objectivity.
Orly minor relevant
evaluation of the work
is presented. Limited
evaluation without
clear links to the
objectives.

Some evaluation with
some links to work
undertaken. Many key
issues identified.

Significant evaluation
of the outcome (or
product) with litile
emphasis on the
process and methods.
Clearly stated
evaluation firmly
based on evidence
provided. Feasible set
of recommendations
linked with project
objectives.

Reflective and
insightfu} evaluation
of the project and
associated
conclusions.
Assessment of both
process and outcome.
Choices of approaches
and methods re-visited
in light of outcomes.
Objectives fully
reviewed. Clear
understanding of
potential and
limitations.
Appropriate and
reqlistic
recommendations
consistent with

results.
Table App_A 3 Grading arrangements for evaiuation criteria
Marking Scheme for Design and Analysis Criteria
Fail Poor Average Good Excellent

Little attempt a1
analysis, synthesis and

Major gaps in the
analysis and/or design

Evidence of analysis
and design which

Evidence of analysis
and design in respect

Analysis and design is
explicit. All problems

design. Wrong with respect to the appear incomplete in to the original addressed.
problem addressed. original problem companson with problem. :
original problems.
Some missing aspects.
Table App_A 4 Grading arrangements for Design and Analysis criteria
Marking Scheme for Project management Criteria.
Fail Poor Average Good Excellent

Chaos. No planning or
organisation. No sign
of critical appraisal of
project pathway.

A minority of aspects
of the project are well
managed by the
sident.

Some aspects of the
project are well
managed by the
student, some
managed poorly or not
at all,

All aspects of the
project are managed
by the student, the
majority are managed
well. Sound planning.

The student evidences
self-motivation and
self-managemem
thronghout the
project. High level
planning and
organisational skills.

Table App_A 5 Grading arrangements for Project management criteria

Appendix A, Experiment Details

198

Project assignment for Group Project (CM'T3991)

A private clinic in London called Carex International wants to develop a web application for their intranet
system in which patients, doctors, nurses and other relevant healthcare workers can have appropriate access to
the system in order to store, retrieve and amend information about the patients. Security and confidentiality are
an important aspect of this system and users of the system must have access to a level appropriate to their
position and needs. The clinic’s system requirements are based on a standard clinic practice, which you are
required to collect through investigation. The following is a list of some of the characteristics of the clinic (others
will depend on your investigation and assumptions):

Tasks:

tJ

S

The clinic has 10 senior doctors, 20 junior doctors, 30 nurses and 5 administrators

The clinic has room for admissions for up to 95 patients.

Senior doctors can prescribe treatment at all times.

Junior doctors can only prescribe treatment that has been approved by a senior doctor.

Junior doctors can discharge patients once approved by a senior doctor.

Nurses cannot prescribe treatment, but will keep a log of patients’ conditions on the system.
Patients can only read their medical records but cannot modify them.

Doctors can have access to.an up-to-date record of ecach patient.

The clinic administrators need to know how many patients are currently admitted and how many are
due 10 be discharged.

The clinic administrators need to know how many deaths there had been amongst the admitted patients
within a period of time.

Senior doctors need to know how many patients they are responsible for.

Design and develop a software system for the clinic using an appropriate development lifecycle
containing (Requirement analysis, Design, Implementation, and Delivery) phases

Apan from the facts listed above, make any assumptions about the clinic and their requirements that
your investigation indicate appropriate and record them. Where possible, support your assumptions or
the requirement based on real life data gathered through interviews or other sources.

(For Experimental groups only) Wherever appropriate, use the process patterns given to you in the
pattem document and record all the instances where they were used.

Produce a report as detailed in the module handbook

Produce a user manual for the software

Excerpts from the American Psychological Association Code of Ethics
L.

2
3
4
5.
6.
7
8
0
1

0.

Institutional Approval

Informed Consent to Research

Informed Consent for Recording Voices and Images in Research
Client/Patient, Student, and Subordinate Research Participants
Dispensing With Informed Consent for Research

Offering Inducements for Research Participation

Deception in Research

Debriefing

Reporting Research Results

Plagiarism

Appendix B. Patterns 199

Appendix B. Patterns

This appendix contains the following sections

Pattern Philosophy

Screenshots frem the website hosting process patterns to be used by subjects
Sample of Process pattems ased for the experiment

Examples of geveral Pattemns

Pattern Theory Philosophy

A basic human impuise is to look for patterns in our surroundings such as time. For example, people organise
their daily activities around natural rhythms, sach as the rising and setting of the sau.

Although Christopher Alexander is often credited as the founder of the pattern coucept with his works iv
architecture in the 1960’s and 70's, the root of the pattern concepts goes back to earlier works iv the field of
mathematics and natural scieuces. Patterns have played a sigvificaut part in the field of mathematics aud science
accordiug to some mathematiciaus and scieutist. Heman beings evolved and gained the ability to do mathematics
because the mind mimics both watural and man-made patterns [Salingaros 1999]). Hardy [1941] notes ‘A
mathematician is a maker of patterns’. Steen [1988] also writes, “Mathematics is the science of pattems."”

It is also argued [Thiessen 1994] that Kepler's three laws of planetary motions were discovered as a result of his
search for patterns of the plavetary movemeuts. Furthermore, Newton's formulation of the laws of gravity was
also due to his search for patterns iv the astronomical data of his day [ibid]. More recently, patterns were defined
in the field of anthropology by Kroeber [1948] who introduced the coucept of patterns and defined it as follows:
“Patterns are those arrangements or systems of internal relationship which give to any cuiture its coherence or
plaun, and keep it from being a mere accumulation of random bits. They are therefore of primary importauce™
[ibid].

However, it was the extensive research work in the field of town and building architecture in the 1960s aund 70s
that really established patterns as a practical as well as philosophical concept in the field of architecture.
Alexander [1977. 1979, 1988] aud his colleagues at the Centre for Enviroumental Stnucture in Berkeley,
Califomia spent more than 20 years developing av approach that was based on a new attitude in architecture and
planning which he published in a number of books. Alexander believes that there is a way of building that spans
over thousands of years that has always been and will always be valid. He called this the timeless way, which is
discussed, in the next section.

Timeless way

At the core of all successful processes of growth, there is one fundamental invariant featore. which is responsible
for their success. This way of building has been behind almost all the way of building for thousands of years.
The way to identify it, as suggested by Alexander, is to go to a level of analysis, which is deep enough to show
what is iuvariant in all the differeut versions of this way. This hinges on a form of representation, which reveals
all possible coustruction processes, as versions of one deeper process. Examples of sach buildings are traditional
villages iu Africa, India and Japan as well as religions buoildiugs such as mosques, mounasteries of the middle
ages, and the temples of Japaun. Other examples are the mouutain huts of Norway and Austria, cloisters and
arcades of Euglish country towns and the cathedral of Pisa.

Alexander [1979] argues that this general deeper process that they all have in common is a quality that cannot be
named. He called this the gualiry without a name. This concept is discussed in the vext section.

The quality without a name

Iv order to seek the timeless way we mast first know the guality without a name. [Alexander 1979] defines this
as foilows: “There is a ceutral quality which is the root criteriou of life and spirit in a maun, a town a building or a
wildemess. This quality is objective and precise but cannot be named. The quatity cannot be named is vot due to

Appendix B. Patterns 200

its vagueness, but due to a lack of clear, precise and appropriate words to describe it because each word yon vse
to capture it has fuzzy edges and extensions which blors the central meaning of the quality [ibid]. Therefore,
terms, such as ‘alive’, ‘whole’, ‘comfortable’, ‘free’, ‘exact’, ‘egoless’ and ‘etemal’, used to describe this guality
are all insofficient to describe and name this quality.

There is a code, like genetic code, for human acts of building. There is a process that takes place in person’s
mind when he allows himself to generate building or a place that is alive. Alexander [1979] argued that this
process is a Iangunge, which he named a pattern lunguage. In the next section, this pattern langnage concept is
discnossed.

Pattern Languages

People can shape buildings for themselves and have done it for centuries, by using langnages, which is called
pattern languages. A pattern language can give a person who uses it the power to create an infinite variety of
new and unique buildings, just as his ordinary langnage gives him the power to create an infinite variety of
sentences. For thousands of years people have used these pattern languages to buoild houses and towns. In
traditional cultures, these processes were common. Even though there are hundreds of farmhouses in the Alps,
all similar, yet still each one is beautiful, filled with same elements but in unique combinations so that it is alive
and wonderful.

The question, for example, how is a farmer able to make a new bam, lies in the fact that every bam is made of
patterns. Although the farmer has some sort of an image of the bam in his mind, this image is not like a drawing
or a blue print. It is a system of pattemns that function like a language enabling the farmer to make a new bam
uniike the ones he made before by combining all the pattems that he knew in a new way. These patterns can be
combined and recombined to make an infinite variety of unique bams.

Appendix B. Paitems 20)

Screenshots from the website hosting process patterns to be used by subjects

| reto: it softmarregmaccn comioer st s

'Lngin, Form Proceas Patterns

To be used by atithorised nser for project aatigrirments ut Middlesex Univernity

Student Nof

i Flrst Name: f
i Surmame {
| Undversity Campns: ... =}

——

Module Numbers: - =] (CrrTAe91, Or CMT3IS2)

Pazzsword i { For help contact! a estabraghy@mdx. ac.uk)
et |
i
) g T T S T T R T U R e et

Figure App_B 1 Login form

ety weme.cktimary esaarch.comi o
o A - L 7 Sy ok

¥ 31}
sip bt

Pattern Name: Requirement Anaysis Fhese

;21

Problem Definitiony What should be done dunng the requirement analysis phase?

§
¥

Problem Deacription.

How 1o start a software development projact and lay the toundetion is crucially important. Furthermore, how to get the project
started and knowing whet should be done 11 this initial phase of the project 1s assental.

The main goal of the requiremen: analysis phase is to lay the foundation fer a successful project. Unfortunately, however, often the 5
temptetion is to ignore or pltay down the impertance of this phase end move on 1o the so called “the reat work” (i 6. the canstruction i
phese). This is ceused by lack of understending of the significance of the initiate phase and its critical importance in & successful
softwere devalopment project.

Context

AS this is the first phase of development, thers ere not mary entry condiions. Meie eie the two things that should be there before
sterting: :

» Thersis a requirement for the software,
« Thare is access to hardware, sottware and tools required. *

Salution: £

in this phase the projoct plan shauld be put in place and initial requirements get definad. The following parallel ectivities should be .
taking place in this phase. Mote that all twee activities must be taking place atthe same time. kX

1 Defining and validating initial requirements; (Ses Pattern Staga_i1_1.
2. Defining the initial project manegemert (See Pattomns Siage 2 1)
3. Justifying the project (See Pettem Slage_3_ 1),
4. Defining the project infrastructuro. (See Pattern Stage_4_ 7). i)
<
B b T s M R e I I TR N R AT 'El"'i%iﬁ%ﬁ_&f_@mf i

Figure App_B 2 Snapshot of a process patterns hosted online for the experiment

mailto:ii.estatiniatiy@mtlx.Bc.uk

Appendix B. Patterns

202

L Pavorhes - Yook, ©

3 G [I T B Sedich ifhirediiies . i5ivmaa {1 1Y

| AFSEE | Htp /v softmarswsser th comiorot es1oettm mELaow., | .1 -Htm

Pattern Nam+e; i Val itial r iremonts St
| Broblem’ How 10 denne and validate the imitiel requarerments tor an epplcesion
Problem Description;
In order that you know what exectly 1S required for the application and vwhat needs to be accomplisned et the end of the project, you
need to knaow what octions and proceduras yau should tollow. Defining and validating the initial requirements ensure that you have
.| ¢documented all thet is requited and have built a solid foundaton from which modeling can begin.
: Context
As this is the first stage of the tirst phase, there are not many entry conditons.
s Commitment (you need 1o make a commiiment to complete the swge_)

Solution:

] The following menn tosks have to ba done:

1. Define initial requirements (See Pattemn 7ask_1_7_1)

2. Document inikal requirements (See Fattetn Task _2_71_1
3, Vvahcarg imnal requiraments (Sea FPattemn Task
4, Prigritse Initiel requiramaeants (Sea Fahllarn 7ask

ESY

Project fask
« Metncs
Thare can be two maetncs.

1. MNumber of use-cases

L y ;‘;:;? 0 B D T S D T S A e IR D A RSy G I S

Figure App_B 3 Snapshot of a process patterns hosted online for the experiment

A Sample of Process patterns used for the experiment

The following is a shortened sample selection of process patterns, which were used in the expenment as

treatment.

Pattern Name: Program
Problem Definition: How should programming process proceed?
Solution;

This involves carrying out a number of tasks that are as follows:
Understand the models (See Pattern Task_[_1_3).
Reuse existing code and components (See Pattern Task_2 ! 3)
Document source code (See Pattern Task_3 1 3)
Wrnite object onented source code (See Pattem Task 4 1 3)
Synchronise Source code with models (See Pattern Task_5 [_3)
Optimise code (See Pattern Task 6 1 3)
Create a “build” (See Pattern Task 7 ! 3)

Now kW —

Pattern Name: Inspect Code
Problem: How to inspect code
Solution:

Code reviews often reveal problems that normal testing techniques do not; in particular, poor coding
practices that make your application difficult to extend and maintain. Code reviews should concentrate

on the following issues:
+ Making sure that the code satisfies the design
¢ Naming conventions for your classes, methods and attributes

* Code documentation standards and conventions

* Have yon documented what a method does?

¢ Have you documented what parameters must be passed?

¢ Have yon documented what values are returned by a method?
.

Have yon documented both what and why a piece code does what it does?

Appendix B. Patterns 203

* Wrting small methods that do one thing and ove thing well
* Simplifying the code

Pattern Name: Test source code
Problem Definition: How to carry out testing the source code
Solution:

The sclution involves carrying out the following tasks:-
Develop/update the master Test/QA plan (See Pattern Task I 4 2)
Validate your code (See Pattem Task 2 4 2)

Recard Defacts (See Pattern Task 3 4 2)

Pattern Name: Code testing techniques

Problem: How to do code testing

Solution:

There are four fundamental code-testing techviques:

Black Box testing: Also called interface testing is a technigue in which you create test cases based
only on the excepted functionality of a method, class or application without any knowledge of its
intermal workings. The goal of a black box testing is to ensure that the system can do what it should be
able to do but not how it does it.

White box testing: Also referred to as clear box testing or detailed testing, the basic idea in this is that
you lock at your code and then create tes1 cases that exercise it. The main advantage of white box
testing is that it enables you to create tests that will exercise specific lines of code that may not have
been tested by simple black box testing

Boundary-value testing: This is based ou the fact that you need to test your code to ensure that it
handles unusual and extreme sitvations. For example in a transaction if someoune tried to withdraw -
£5.00 or £0.00 the system does not crash and knows how to handle the situation.

Coverage and path testing: This is a technique in which you create a series of test cases desigu to test
all the code paths in your code. In many ways, this is simply a collection of white box test cases that
together exercise every line of code in your application at least once.

Pattern Name: Record defects
Problem: How to record defects
Snlution

By recording key information about the defect, you have an accurate description of the problem for
repairing it, and you have the data you need to identify week areas in your software process. It is
suggested to record the following information about a defect:
¢ Description of the defect
Date the defect was found
Name of the person who found it
Defect type
Stage the defect was found in
Stage that the defect was introduced in
Stage that the defect was removed in
Date the work was started
Date the defect was fixed
Steps to recreate the defect
Effort, in hours or work days, to fix the defect
Description of the solution

Pattern Name: Granularicy
Problem: What should be the components granularity levels?
Solution: :

Appendix B. Patterns 204

* Large methods/classes are more difficult to understand and maintain. Object get things done by
collaborating with each other and not by doing everything themselves. This results in smaller classes
and shorter methods. If they are large, it is an indication that there is a problem

Pattern Name: De-couple Stages
Problem: How do you de-couple stages (architecture, design, coding) in a development process?
Solution:
* Link each role 1o a central role that orchestrates process activities. Parallelism can be re-introduced if
the central role pipelines activities.
¢ For known and mature domains, serialize the steps. Handoffs between steps shonld take place via well-
defined interfaces. This makes it pessible to automate one or more of the steps, or to create a pattern
that lets inexpert staff carry out the step.

Pattern Name: Continnity or Seamlessness
Problem: How to build a system that clearly maps to a model of problem or real world
Solution:
* Build and integrate uset’s business model. Build a clear vocabnlary of the problem domain
¢ Cast system requirements in terms of the business model. If the domain model has been clearly defined,
system reguirements can be discussed and understood more precisely.
* Choose classes based on the business model to maintain traceability, deviations forced by performance,
current or planned reuse, and other constraints shonld be local and clearly documented.
¢ Maintain development layers (business model to code). Clear separation of domain’s system, and
technology infrastructure descriptions (and code) helps localise changes.
¢ Build many projects on the same model .

Related Patterns
Make a business Model, Construct a System Behaviour Spec

Pattern Name: Divide and Conquer
Problem: How to simplify large implementations
Solution:

* Construct the implementation to a specification as some form of composition of smaller components.
Each design should be constructed in terms of specifications of its parts. There may be many (or many
potential) implementations of each component. When you are devising the present implementation, do
not consider the internal details of the components. They will have their own decompositions.

Pattern Name: Prototype
Problem: Early acquired requirements are difficult to validate without testing.
Solution:
¢ The initial design of a system should focus on the requirements at hand, with broader applicability as a
secondary concem. Get something running quickly 1o obtain design feedback. Build a prototype. Apply
techniques such as nonns in the specification imply objects, verbs imply operations, and build on
existing objects using inheritance.

Related Patierns:
*Application Design is Bounded by Test Design’, "Architect Also Implements’, ‘Engage Customers’,
and *Scenarios Deftne Problem’.

Appendix B. Patterns 205

Pattern Name: Take No Small Slips
Problem: How long should the project take?
Solution:

* Measure how close the critical path (at least) of the schedule is doing. If it is three days beyond
schedule, track a “delusion index’ of three days. When the delusion index gets too ludicrous, then slip
the schedule. This helps avoid chuming the schedule

* Estimate completion dates using the remaining effort estimates in the work queue repont. Catculate each
contributor's earliest possible completion date, find the latest of these, and compare that to the hard
delivery date for the project. The difference is the completion headroom. The headroom may fluctuate,
but steady evaporation of headroom requires managemeant to reorder the work queue, possibly deferring
items to a later release date, creating a work split that removes poorly understood or difficult pieces, or
holding a recommitment meeting

Pattern Name: Process is Product

Problem: How should a process improvement initiative be organised and managed

Solution

* Treat it like a development project. Establish a repository to store process documentation and other

process anefacts. Use appropriate planning, tracking, configuration management, and other methods
and tools, just as they should be used for any other development project. Ensure that the visibility of the
project to upper management and the rest of the organisation is comparable to that of other important
projects.

Pattern Name: Process Follows Practice

Problem: How do you change the process to meet the required improvement goals?

Solution

¢ Stant by discovenng and understanding current practice throughout the group. Find existing process

documentation and talk to practitioners to understand how tasks are performed. Reconcile any
differences between actual and espoused processes. Document and review the newly characterised
process. Then iteratively and incrementally improve the process and ensure that the documentation is
updated appropriately.

Pattern Name: Developing in Pairs
Problem: People are scared to solve problems alone.
Solntion:

* Pair compatible designers to work together; together, they can produce more than the sum of the two
individually

* Do not emphasize an individuoal's special skills. Treat all development as a group activity. This will
produce better design decisions and will have a positive effect on the participants. Expenise is shared
and everyone in the group leamns.

* Allow individuals to create their own short-term work plans. Realize that most of the geoup activity in a
development episode will take place in pairs that find the time to work together. Do not call a meeting
to schedule a development episode. Let individuals make their own plans.

* Divide each task into urgent and deferred pieces. (No more than half should be urgeat.) Defer more
work if necessary to have sufficient headroom. Defer analysis and design for parts that will not be
implemented. Both halves of the split should appear in the work queue with different priorities.

Related Patterns:
Gronp Validation

Pattern Name: Requirement Walk-through
Solntion:
¢ When any member of the work group begins to consider any part of an implied requirement, assemble
the entire group. This is a good time to sketch the first informal work plan for that requirement, and it
can lead to staffing changes.

Appendix B. Patterns 206

A requirement walk-through will identify relevant information sources, which is retrieved, reviewed,
and absorbed as the development episode begins. Coliect these information sources as machine-
readable examnples. Annotate documents so the sources of information will not be lost.

Develop a series of well-formatted technical memoranda. Focus each memo on a single subject. Keep it
short. Carefully selected, well-written memos can substitute for comprehensive design documentation.

Pattern Name: Programming Episode
Solution:

Programming should be done in discrete episodes. Select appropriate deliverables for an episode and
commit sufficient resources to deliver them. Push for the decisions that can be made. Code the
decisions and review the code.

Pattern Name: Building the Right Things
Solution:

To capture, communicate, and validate software requirements, identify requiremnents sources. Devise a
work plan for interviewing and examining the sources and produce a set of interview results, Capture
and validate sponsor objectives as well as manage customer expectations. Priotitise requirements.
Establish and keep customer rapport during this process

Pattern Name: Defining Requirements
Solution:

Create and maintain a glossary of common business terms.

Use a basic template to specify requirements that organises the information into sections that reflect the
activities and types of deliverables needed.

To verify that behavioural requirements are correct and complete, have all interested parties read the
requirements specification. Conduct review meetings. Follow up on all issues raised. Use prototypes.
Continue requirements verification through each system development iteration.

Related Patterns

Requirements Validation, Behavioural Reguirements, Problem Domain Analysis

Pattern Name: Get Involved Early In Testing
Solution:

You are a system tester working on a large software project. To maximise support from the design
community, establish a working relationship with the designers early in the project, for example, learn
the system and the features along with the designers or attend reviews of requirements and design
documentation. luvite designers to reviews of test plans. Do not wait until you need to interact with a
designer; by that time it is too late. Trust must be built over time.

Start testing when an area is available, but not before. Reach agreement with designers that the area is
ready for testing. Agreement is easier if you get involved early.

When designers are behind schedule, give them the time they ask for. You will save effort in the long
rum; testing a poorer-quality system takes more time.

Development is drawing to a close. The system is stable. To give a quick evaluation of the overall
health of the system, use a favourite killer test to be run at any time. The test should provide good
systemn coverage and be expected to fail, in some manner, most of the time.

Pattern Name: Ambiguous Documentation
Solution:

To pinpoint possible problem areas, study the documentation. Look for areas that seem ambiguous or
poorly defined. If the designers can tell you everything, you need to know about a feature, it probably
works. It is what they cannot tell you that needs atiention. Get involved early to obtain this information
and point it out to designers.

Appendix B. Patterns 207

Related Patterns
Get lavolved Early, Designers Are Our Friends

Pattern Name: Scenanios Define Problem

Problem:
How to define design docaments effectively as vehicles to communicate the systems fanctions

Solation:

¢ Capture system functional requirements as use cases. This defines the problem, and the architecture can

proceed in earnest

Related Patterns:
Mercenary Analyst

Pattern Name: Group Validation
Problem; How to ensure product quality
Solation:
* The development team should validate the design.
¢ Techniques such as CRC cards and group debugging help socialise and solve problems. The CRC
design technique has been found to be a great team-builder, and an ideal way to socialise designs,
Studies of GBCS projects have found group debugging sessions to be unusually productive.
¢ Bringing the customer into these sessions can be particelarly helpful. The project must be careful to
ternper interactions between Customer and Developer, using the patterns mentioned in the Resulting
Context
¢+ Members of a validation team can also work with QA to fix root causes attributable to common classes
of software faults.
Related Patterns:
Developing in Pairs

Pattern Name: Application Design is Bounded by Test Design

Problem: When do you design and implement test plans and scripts?

Solation: .

¢ Scenario-dniven test design starts when the customer first agrees to scenanio requirements. Test design

evolves alomg with software design, bat only in response to customer scenario changes: the source
software is inaccessible to the tester. When development decides that architectural interfaces have
stabilised, low-level test design and implementation can proceed.

Related Patterns;
Engage QA, Scenarios Define Problem

Pattern Name: Code Ownership
Problem: A developer cannot keep up with a constantly changing base of implementation code.
Solation:

* Each code module in the system is owned by a single developer. Except in exceptional and explicit
circumstances, code may be modified only by its owner.

¢ Lack of code ownership is a major contribator to discovery effort in large-scale software development
today. Note that this goes hand-in-hand with architecture: to have ownership, there must be interfaces.

* Arguments against code ownership have beer many, bat empirical trerds uphold its value. Typical
concems include the tendency toward tennel vision, the implied sk of having only a single individual
who nnderstands a given piece of code ir-depth, and breakdown of global knowledge.

Related Patterns:
Conway's-law, Architect Also Implements, Review the Architecture, Engage Customers, Architect Also
Implements, Organisation Follows Market, lnterrupts Un-jam Blocking, Review the Architecture

Appendix B. Patterns 208

Pattern Name: Review the Architecture
Problem: Blind spots in the architecture and design
Solution:

* All architectural decisions should be reviewed by all architects. Architects should review each other’s
code. The reviews should be frequent--even daily--early in the project. Reviews should be informal,
with a minimum of paperwork.

Related Patterns:
Mercenary Analyst, Code Ownership

Pattern Name: Architect Also Implements
Problem: Preserving the architectural vision through to implementation
Solution:
¢ Beyond odvising and communicating with developers, Architects should also participate in
implementation.

Pattern Name: Patron

Problem: Giving a project continuity

Solution:

¢ Give the project access to a visible, high-level manager, who champions the cause of the project. The

patron can be the final arbiter for project decisions, which provides & driving force for the organisation
to make decisions quickly. The patron is accountable to remove project-level barriers that hinder
progress, and is responsible for the organisation's morale (sense of well-being).

Related Patterns:
Firewalls, Gatekeeper, Developer Controls Process is in place

Pattern Name: Developer Controls Process)
Problem: What role should be the focal point of project communication?
Solution:
¢ Place the developer role at a hub of the process for & given feature. A feature is a unit of system
functionality (implemented largely in software) that can be separately marketed, and for which
customers are willing to pay. The developer is the process information clearinghouse. Responsibilities
of developers include understanding requirements, reviewing the sotution structure and algorithm with
peers, building the implementation, and uait testing.
e Note that other hubs may exist as well.
Related Patterns:
Work Flows [nward, Move Respounsibilities, Mercenary Aanalyst, Firewalls, Gatekeeper, and Buffalo
Mountain.

Pattern Name: Form Follows Function
Problem: A project lacks well-defined roles
Solution:

* Group closely related activities (that is, those mutualiy coupled in their implementation, or which
manipulate the same artefacts, or that are semantically related to the same domain). Name the
abstractions resulting from the grouped activities, making them iato roles. The associated activities
become the responsibilities (job description) of the roles.

Resulting Contexi:
Organisation Follows Location, Organisation Follows Market, and Architect Also Implements.

Pattern Name: Size the Schedule
Problem: How long should the project take?
Solution:
¢ The extemal schedule is negotiated with the customer; the internal schedule. with development staff.
The internal schedule should be shorter than the external schedule by two or three weeks for a moderate

Appendix B. Patterns 209

project. If the two schedules cannot be reconciled, either customer needs, or the organisation's
resources, or the schedule itself must be re-negotiated.

* Reward developers for meeting the schedule

Related Patterns
Compensate Success,

Pattern Name: Self-Selecting Team
Problem: How to build teams
Solntion: .
¢ Build self-selecting teams, doing limited screening on the basis of track record and broad interests. An
empowered, enthusiastic team willing to take extraordinary measures to meet project goals

Pattern Name: Big Ball of Mud
Problem:
Overgrown, tangled, haphazard spaghetti code is hard to comprehend, repair, or extend, and tends to
grow even worse if it is not somehow brought under control
Solution:
s [f you cannot easily make a mess go away, at least cordon it off. This restricts the disorder
» Toafixed area, keeps it out of sight, and can set the stage for additional re-factoring.
* if your code has declined to the point where it is beyond repair, or even comprehension, throw it away it
and start over

Pattern Name: Development Artefacts

Problem:
What development artefacts are created, modified, or accessed within each activity?

Solution:
Consider evolution as interactions between the management and software development artefacts and the
users of the development process. Describe scenario instances as interactions between development
artefacts and nsers of the development process.

An example of Anti-Patterns [Coplien 1996]

Name: Egalitarian Compensation

Problem: Providing appropriate motivation for success

Context: A community of developers meeting night schedules in a high-payoff market.

Forces: Disparate rewards motivate those who receive them, but may frustrate their peers. You want to
encourage team cohesion, build team identity, and in general encourage team behavionr.

Supposed solution: The entire team (social unit) should receive comparable rewards, to avoid de-motivating
individuals who might assess their value by their salary relative to their peers.

Resulting Context: An organisation where people feel accepted as peers. However, leaders will still emerge and
there will still be an inequitable distribution of work; that distribution of work is no longer commensurate with
compensation. People figure this out, and lose one of their motivations to excel. The pattem has the opposite
effect of encouraging behaviour where people over-extend themselves.

Appendix C. Metric Specifications 210

Appendix C. Metrics Specifications

In this appendix, the specification of the metrics, used in this research, is presented in table formats. The
measurements presented here are divided into two groups: direct and, indirect (derived). The derived
measurements are presented in ‘metric tables” followed by direct measures (named mensures) which are
presented in ‘measure tables’.

The metric selected for this study are based on the GQM model described in Section 4.8.2 and 6.2, As the
process patterns nsed as treatment in the experiment cover a complete development lifecycle, there was a wide
range of software metrics that could be used in the experiment. However, due to scope limitation of this project,
a limited uumber of metrics were selected to be analysed and reported. The metrics cover the four major phases

of the development lifecycte (i.e. Requirement Analysis, Design, Implementation, and Delivery).

The tables contain a number of elements that are explained in Table APP_C 1 below.

il s Elementh Py TR T e e S B Description i [8 A T,

Definition A concise definition of the metric

GQM Goal The metrics were developed using the (Goal/Question/Metric) model to satisfy a quality
goal. This element states the GOM goal with which this metric is associated

GQM Question The associated GQM (Goal/Question/Metric) question. {i.¢. the question to which the
metric provides answer)

Type The nature of the metric iype. Can be either gualitative, quantitative or both.

Source The source of metric value (i.e. experiment subject, calculated. or researcher).

Applicable Phase The development phase to which the metric is applicable

Rationale A rationale for the metric and the objective to be achieved

Purpose The purpose and objective of the metric

Related metrics Other metrics that are related to this metric

Scope The scopes in which this metric is applied

Evaluation Method Procedure and method used for metric evaluation

Attribute to measure

The software atiribute that the metric is to measure

Measurement Scale

The least applicable measurement scale (i.e. nominal, ordinal, interval, ratio, absolute)
for the purpose of statistical analysis

Required Measurement

Other related measures that the metric requires to be evaluated

Metric’s Value

The way the metric value is attained

Table APP_C 1 A description of the elements of the meiric specification table

The following tables present metric specifications.

Appendix C. Metric Specifications 211

Metmie - _ — . —

Percentage of Traceable Requlremems
{Reguirements Traced per Requirements Defined)

Description

Definition Measures the percentage of the requiremenmts 1hm are traceable (Traceable Reqmrcrncms per
Total Requirements Ratio).

GQM Goal Requirement Artefact Quality

GQM Question What percentage of the requirements is traceable?

Type Quantitative

Evaluation Method As per formula below

Applicable Phase Requirement Analysis

Rationale Requiremenis traceability refers to the ability to describe and follow 1he life of a requirement. in
both a forwards and backwards direction [Ramesh and Jarke 2001]. A reguirement should be
linked 10 a higher level document (i.e. source), which could be a higher-level system
requirement. as well as downward to the design elements, source code, and test cases that are
constructed 1o implement and verify the requirement {Hull et al. 2005] [Davis 1993]. Therefore,
the higher the rate of traceable requiremenis in a software project, the higher the quality of the
requirements and the Requirement Analysis phase.

Parpose/Objective This metric was used in the experiment 10 determine if there was any difference between the
treated and control groups in terms of the percentage of traceable requirements. The metric will
show whether, as a result of using process patterns, the treated groups will have a higher
percentage of their requirements traced to design, tesi, and implementation.

Scope Small sofiware development projects

Attribate to Measure

Traceability of Requirements

Maetric Scale

Interval

Related Measure{s)

Number of Reqmremenls (Measure 2) Number ofTraceab!e Requirements (Measure 1)

'
7!

Required-Measurement. Metric's. Value

Number of Trncenblc Requiremens (NTR) . NTR 0

Number of Requirements (NR)

NR

Metric 1 Percentage of Traceable Requirements

Appendix C. Metric Specifications 212

Metric

Percentage of Defects Fixed
(Defect removal ratio)

Description

Definition

The metric measures percentage of defects that were fixed in a development phase.

GOQM Goal Test/Review Quality

GQM Question What percentage of detected defects is fixed?

Type Quantitative

Evaluation Method Calculated as per formula below

Applicable Phase Requirement analysis. Design, Implementation, and Delivery

Rationale Defect control and management is important in sofiware development, as defects are a root
cause of software failures [Jones 2007]. Therefore, a development process in which more of the
defects are fixed is more likely to produce a more reliable sofiware produci. This metric was
used to provide an indication of the quality of defect correction process by assessing the
percentage of the defects that were fixed, for each development phase. A higher value would
indicate a better defect correction process as well as a less erroneous product.

Purpose/Ohjective This metric was used in the experiment to determine if there was any difference between the
treated and control groups in terms of the percentage of the defects fixed. The metric will show
whether as a result of using process patterns the treated groups will fix a higher percentage of
the defects.

Scope Small software development projects

Attribute to Measure

Defect correction process

Metric Scale

Interval

Related Measure(s)

No. of Defects Detected (Measure 3). No. of Defects leed (Measure 4)

Tk * ¢ . Reguired Measurement: - s e, - Memic's Value » T b
No of Defects Fixed (NDF) NDF_ 0o
No. of Defects Detected (NDD) NDD

Metric 2 Percentage of Defects Fixed

Appendix C. Metric Specifications 213

Definition

GQM Goal

Test/Review Quality

GOQM Question

What percentage of the requirement specification document is reviewed?

Type

Quantitative

Source

Experiment Subjects

Applicable Phase

Requirement analysis

Rationale

Reviews are the most widely used approach for assessing software quality [Sommerville 2007].
The higher the percemage of the requirements document reviewed the better the guality of the
review process and the better the chance of finding any defects [Fagan 1976]. Furthermore.
inspection of requircrments and design are more effective than festing {Hinkle 2007]. Therefore,
a higher value for this metric would indicate a better process as well as a better product in terms
of the requirement specification document. However, one difficulty with this metric, as pointed
out by Nance and Arthur [2002], is that it does not take the thoroughness of the review into
consideration and the focus is on quantity rather than quality. This, however, does not affect the
results of the experiment, as the random nature of the treated and control groups means that
thoroughness of the reviews is equally spread between treated and control groups.

Purpose/Objective

This metric was used in the experiment determine if there was any difference between the
treated and control groups in terms of the percentage of RSD reviewed.

Scope

Small software development projects

Attribute to Measure

Requirement reviews

Metric Scale

Interval

Related Measure(s)

Percentage of Design Document Reviewed (Metric 5), Percentage of Source Code Reviewed
(Metric 8)

ReguirediMéasurementg

eiric:sVali

Percentage of RSD Reviewed

Percentage of RSD Rlevicwed

Metric 3 Percentage of Requirement Specification Document Reviewed

Appendix C. Metric Specifications

214

. Meric-

Peréenlage of Phase Time Spent in Testing
{Test Time Per Phase 1ime ratio)

L - - Deseription ™ o >

Deﬁniliofn

The metric measures the percentage of the development phase time spent in testing.

GOM Goal

Test/Review Quality

GQM Question

Whal percentage of phase time was spent in tesling?

Type

Quantitative

Evaluation Method

Calculated as per formula below

Applicable Fhase

Requirement analysis, Design, Implementation, and Delivery

Rationale

A right proportion of the phase time allocating to 1esting is important in providing 1he necessary
time for carrying ow the required testing tasks ndequately. A small proportion of the phase time
allocated to tests would indicate a deficiency and inadequacy in carrying out the test tasks
properly. Normally between 30 to 40 percent of project effort is spent on testing {Pressman and
Ince 2000]). It is generally recommended in the literature that in most cases between 30 to 50
percent of the developmem effort should be allocated to testing [Six sigma) [Huang 2004]. This,
however, should be much higher in the case of human-rated applications such as flight control.

Porpose/Objective

This metric was used in the experiment to determine if there were any difference between the
treated and conirol groups in the experiment in terms of the percentage of the phase time spent

tn testing,

Scope

Small software development projects

Attribute to Measure

Time Spent in Testing

Metric Scale Interval
Related Measare(s) Phase Test Time (Measure 7)., Phase Time (Measure 5)
. Required A{éasnrgme}_:rl'._ I Ce T Merric's Value]
Phase Test Time (PTT) PTT 100
Phase Time (PT) BT

Metric 4 Percentage of Phase Time Spent on Testing

Appendix C. Metric Specifications 215

- L “Métric T -
Percentage of Design Document Reviewed
(' ___ Description . i i , :
Definition The metric measures percentage of the design document reviewed.
GQM Goal Test/Review Quality

GQM Question

What percentage of the design document was reviewed?

Type Quantitative

Source Experiment Subjects

Applicable Phase Design

Rationale Inspection of requirements and design are more eflective than testing [Hinkle 2007]. The higher
the percentage of design document reviewed the beiter the chance of finding any defects in both
the modelling and related artefacts. Therefore. a higher value for this metric would indicate a
better process as well as a better product in terms the product design.

Purpose/Objective This metric was used in the experiment to determine if there was any difference between the
weated and control groups in terms of the proportion of design document reviewed.

Scope Small software development projects

Alttribute to Measure

Design Review Quality

Metric Scale

Interval

Related Measure(s)

Percentage of Source Code Reviewed (Metric 8), Percentage of Requirement Specification
Document Reviewed (Metric 3

S Required Measurement. e ;. Metric's Value -+

Percentage of Design Document Reviewed Percentage of Design Document Reviewed

Metric 5 Percentage of Design Document Reviewed

Appendix C. Metric Specifications 216

- s - - Meric
Methods per Class Ratio
i Description - e : -

Definition The metnc measures the average number of melhods per class, This is also referred lo as
WMC (Weighted Methods per Class) in Object Oriented terminology.

GOM Goal Design Artefacts Quality

GOM Question How many methods are defined per class?

Type Quantitative

Source Experiment Subjects

Applicable Phase Design

Rationale An application developed with more finely granular objects (i.e. a lower number of methods
per class) is likely to be more casily maintained and rcusable as objects should be smalier and
less complex [Schroeder 1999]. A larger number of methods per class are likely to hinder
extensibility and complicate testing due to the increased object size and complexity. The
[arger the number of methods, the more complex the inheritance tree and the more limiting
the potential reuse. Number of methods per class therefore should be kept as low as possible
[Pressman and Ince 2000]. This metric was first proposed by Chidamber and Kemerer [1994],
referred to as Weighted Method per Class, as a measure of complexity (see Section 4.9).

Purpose/Objective This metric was used in the experiment to determine if there was any difference between the
treated and control groups in terms of the number of methods per class ratio.

Scope Small software development projects

Attribute to Measure

Granularity/Complexity/maimainability

Metric Scale

[nterval

Related Measure(s)

Number of Classes {Measure 9) Number of Melhods {Measure 10)

No. of Classes (NOC)

Reéquired Measurement . LT . S Metrie’s Value. el E
No of Methods (NOM) NOM
NOC

Metric 6 Meihods per Class Ratio

Appendix C. Metric Specifications 217

. A - . Mefric

Productivity

- Description- .~ W B

Definition -

The metric measures productivity as ‘Rate of output per unit input’, where the output is the
value delivered and the input is the resources,

GOM Goal

Development Artefacts Quality

GQM Question

What is the produciivity of 1the development phase?

Type Quantitative

Evaluation Method As per formula below

Applicable Phase [mplementation

Rationale Productivity evaluation is difficult and controversial and even advice offered by 15O 15393 on

productivity measurements have been shown to be misleading [Kitchenham and Colin 2007].
Difficulties in productivity measurement are partly due to the diverse and differing ways and
views on how input and output should be measured and the difficulty in measuring them
[Kitchenham and Mendes 2004] [Shepperd 1996] [Walton and Felix 1977]. For example, LOC
as a measvre of ovtput does not take into account many attributes such as verbosity of the
programmer. the programming language. and environmental complexity such as skills. pressure.
tool support, computing platform (see Section 4.10). However. LOC and Function Point counts
are the most common output measurements used [Maxwell and Forselivs 2000]. While some
argue that it is unsafe to measure productivity as a ratio of two unrelated variables [Kitchenham
and Colin 2007]], productivity as size over effort ratio is by far the most popular method of
evaluating productivity. In a literatore review of the productivity measurement, Kitchenham and
Mendes [2004] found that (with the exception of one) all the surveyed papers to vse this method
of productivity evaluation, Althoogh imperfect, this method of productivity measurement (i.c.
LOC/Effort) is widely used and provides a consistent measure of productivity [MacCormack et
al. 2003].The method of productivity measurement employed in this research is also size over
effort, where size is measured in terms of the number of lines of code (LOC), and effort in terms
of person-hour. As the focus of the experiment is on the development phase, productivity in the
Implementation phase (i.e. time spent in the Implementation phase) is evaluated. The overall
productivity has also been evaluated.

The method by which LOC is measured, and other related factors and issues (e.g. verbosity of
the programmer, the programming language, and environmental complexity such as skills,
pressure. tool support. computing platform), are randomly spread amongst the control and
treated groups in this study. and have therefore neutralised effect. LOC over Effort is therefore
appropriate for this study as a way of comparing treated and control groups in terms of their
productivity.

Purpose/Objective

This metric was used in the experiment to determine if there was any difference between the
treated and control groups in terms of productivity.

Scope Small software development projects
Attribute to Measure Productivity
Metric Scale Interval

Related Measure(s)

Development Phase Time (Measure 5), LOC (Measure 8), Total development time (Measure 6)

L. - Required Measurement. . . - - T e ®, Metric’s Value
{Iniplementation:Productivity) A & .t Do .
No. of Lines of Code (LOC) LOC
Implementation Phase Time (IPT) IPT
Required Measurement. ., . . - Metric's Value
. {Overall Productivity)- .. . s : -
No. of Lines of Code (LOC) LOC
Total Development Time {TDT) TDP

Metric 7 Productivity

Appendix C. Metric Specifications 218

i © 7 Metric® -
Percentage of Source Code Rewewed

. B _ -Description - 2 bl S
Definition The metric measures percentage of source code 1hal wis reviewed,
GQOM Goal Review Quality
GQM Question What percentage of source code was reviewed?
Type Quantitative
Source Experiment Subjects

Applicable Phase

Implementation

Rationale An error detected within the development process is from 10 to 100 times less cesily to fix than a
defect found during the application’s operation [Boehm and Basili 2001] [Standish Group 2007].
The higher the percentage of code inspected the better the chance of finding faults and deficiencies
in code [Fagan 1976]. Therefore, a higher value for this metric would indicate a better process as
well as a better product in terms of the produced code.

Purpose/Objective The objective of the metric is to determine if there was any difference between the treated and
control groups in terms of the percentage of source code reviewed

Scope Small sofiware development projects

Attribute to Measure Code review

Metric Scale Interval

Related Measure(s) Percentage of Design Document Reviewed (Metric 5), Percentage of Requirement Specification
Document Rcv:cwcd (Mctnc 3)

coo RS Regriired Measureinerit:, T S Metric’s Valye 5T T R
Pcrcemagc of Source Code Reviewed Percemnge of Source Code Reviewed

Metric 8 Percentage of Source Code Reviewed

Appendix C. Metric Specifications . 219

R | { -1 R .

Defect Density

A A R 2510 R
Definition The metric measures defect density as the ratio of the number of defects to program length

(defect/size).

GQM Goal

Test/Review Quality

GOQM Question

What is the mte of 1he defect density?

Type

Quaniitative

Evaluation Method

Calculated as per formula below

Applicable Phase

[mplementation Phase

Rationale

_ guality improvement [Ebert 2005). A reduction in defect density is important especially -as

This metric is generally used in industry for many purposes such as identifying candidate
components for funther inspection or analysing and tracking the impact of defect removal on

studies have found that up to 65% of defects occur at the design and coding stages [Boehm
1981](Jones 1996]. It is the most commonly used means of measuring quality of a piece of
software code and has become the de-facto industry standard measure of software quality
[Fenton and Pfleeger 1997). Oqe criticism of this metric is that it relies on measures (i.e. defects
and size} which are difficult 10 define and measure. :

This metric was used in this research to provide an indication of the quality of the source code in
terms of defects. A lower value would indicate a better quality product (i.e. source code).

Purpose/Objective

This metric was used ia the experiment 1o determine if there was any difference between the
treated and control groups in terms of the rate of defect density. The metric will show whether
using process patterns by the treated groups reduced defect density.

Scope

Small sofiware development projects

Attribnte to Measure

Defect Density

Metric Scale

Interval

Related Measure(s)

No. uf Defecis Detected (Measure 3). Program Size LOC {Measure 8)

NN - - : i red/ Méasurenen RN | IR /- ic, 51V/d /ie SR
No. of Defects Detected (NDD) NDD

Program Size (LOC)

LOC

Metric 9 Defect Density

Appendix C. Metric Specifications 220

AR T AR

S fel e Mane 5

Comment Density

v Descriplion 3

Definition

The metric measures perceniage of source code that has been commented.

GQM Geal

Development Process Quality

GOQM Question

What percemage of lines of code is commented?

Type Quantitative

Evaluation Method As per formula below

Applicable Phase Imptementation

Rationale The comment density metrics is useful for estimating the quality of the code [Lorenz and Kidd
1994]. The higher the percentage of code that is commented the better the quality of code in
terms of readability, modifiability and maintainability. It is generally recommended that there
should be as many lines of comments as there lines of code [Ambler |998].

Purpose/Objective This metric was used in the experiment to determine if there was any difference between the
treated and conirol groups in terms of the propertion of source code commented.

Scope Small software development projects

Attribnte to Measnre

Code readability/clarity

Maetric Scale

Interval

Related Measure(s)

Number of Lines of Comment (Measure 1 1), LOC (Measure 8)

No. of Lines of Comments (LOCom) LOCom

No. of Source Lines of Code (LOC) LoC

Metric 10 Commeni density

Appendix C. Metric Specificatians 221

- « . Maric

Test Case Density
{Test case coverage)

e ... Description’ - - T e s
Definition The metric measures the extent to which testing covers the applications functionality. This is
also referred o as Test Case Coverage.
GQM Goal Test Quality

GQM Question

What is the test case per requirement ratio

Type

Quantitative

Evaluation Method

As per formula below

Applicable Phase

Delivery

Rationale

This metric provides an indication of the test coverage with respect to requirements. Every
requirement should have one or more tests associated with it [Laplante 2007]. A higher Test
Case per Requirement Ratio denotes a more thorough and comprehensive test process as it offers
a higher probability of detecting any defects.

Purpose/Objective

This metric was used in the experiment to determine if there was any difference between the
reated and control groups in test case density in terms of the ratio of the defined test cases per
requirements.

Scope

Small software development projects

Attribute to Measurse

Test Coverage

Metric Scale

Interval

Related Measure(s)

Number of Defined Test Cases (Measore 12), Number of Requirements (Measure 2)

Required Measurement. .~ R "Tor L Metric’s Value. T P

Nd. of Deﬁﬁéd Test Cases (NDTC) NDTC

No. of Requirements (NR)

NR

Metric 11 Test Case per Reguirement Ratio

Appendix C. Metric Specifications 222

The following tables present the measures (direct metrics) used to evaluate the values of the main metrics stated above.

Number of Traceable Requirements

Definition it is a measure of the number of the requirements that are traceable.

Type Qualitative

Source Experiment Subjects

Applicable Phase Requirement Analysis

Purpose/Objective This measure is used in the experiment to determine the percentage of traceable requirement.

Measurement Scale

Interval

Measurement Method

Requirements in the requirement specification are individually read and checked for traceability.
A requirement is traceable if it can be linked to its source and the related design, test, and
implementation [Davis 1993]. Total number of traceable requirements are counted and recorded.

Related Metrics

Percentage of Traceable Requirements (Metric 1)

Measuare 1 Number of Traceable Requirements

Number of Requirements

Definition It is a measure of the number of defined requirements.

Type Quantitative

Source Experiment Subjects

Applicable Phase Requirement Analysis

Purpose/Objective This measure is used in the experiment to determine the value of the two metrics - Percentage of

Traceable Requirements, and Test Case Density (Test Case per Requirement Ratio)

Measurement Scale

Interval

Related Metrics

Percentage of Traceable Requirements (Metric 1), Test Case per Requirement Ratio (Metric 11)

Measure 2 Number of Requirements

Appendix C. Metric Specifications 223

Number of Defects Detected .
Definition It is a measure of the number of defects detected in a development phase.
Type Quantitative
Source Experiment Subjects

Applicable Phase

Requirement analysis, Design, Implementation, and Delivery

Objective

This measure. in conjunction with ‘number of defects fixed’ measure, is used o work out the
‘percentage of defects fixed’ as an indication of defect correction quality.

Measnrement Scale

Interval

Notes

Defect detection is done by the developers (i.c. experiment subject). Number of defects detected is
dependent on the thoroughness with which the reviewer carries out the reviews (i.e. the more
thorough the reviewer. the more likely to detect any defects). However due to the random selection
of the subjects into experimental and control groups and the relatively high number of subjects, the
thoroughness of defect detection process is taken to be a constant across the treated and control
groups and therefore does not effect the objective of this measure.

Related Metrics

Defect Density (Metric 9). Percentage of Defects Fixed (Metric 2)

Measure 3 Number of Detected Defects

. Number of Defects Fixed.
Definition It is a measure of the number of defects fixed in a development phase.
Type Quantitative
Source Experiment Suhjects
Applicable Phase Requirement analysis, Design, Implementation, ‘and Delivery
Purpose/Objective This measure is used to calculate ‘the percentage of defects fixed’.

Measorement Scale

[nterval

Related Metrics

Percentage of Defects Fixed (Metric 2)

Measure 4 Number of Defects Fixed

. Phase Time_ .
Definition It is a measure of the time (person-hour) spent in a development phase
Type Quantitative
Source The value for this measure is provided by the experiment subjects

Applicable Phase

Requirement analysis. Design, [mplementation, and Delivery

Measnrement Scale

[aterval

Purpose/Objective

This measure is used in the experiment to calculate percentage phase time spent in the development
phase

Related Metrics

Percentage of Phase Time Spent on Testing (Metric 4)

Measure 5 Time Spent in a Development Phase

Appendix C. Metric Specifications 224

Development Time
Definition It is a measure of the time (person-hour) spent in the development project. Lt is the sum of time
spent in RA, Design, Implementation, and Delivery phases.
Type Quantitative
Source The value for this measure is provided by the experiment subjects

Measurement Scale

Interval

Purpose/Objective

This measure is used in the experiment to calculate overall productiviiy.

Related Metrics

Productivity {(Meiric 7)

Measure 6 Total Time Spent on Development Project

. Phase Test Time
Defiuition It is 2 measure of the time (person-honr) spent on 1esting in a developmeni phase.
Type Quantitative
Source Experiment Subjects
Applicable Phase Requirement analysis, Design. Implemensation, and Delivery

Measurement Scale

Interval

Purpose/Objective

This measure is used in the experiment o calculate 1he percentage of phase time spent in tests

Related Metrics

Percentage of Phase Time Spent on Testing (Metric 4)

Measure 7 Time Spent in Testing in a Development Phase

- Size of Source Code (1.LOC)

Definition It is a measure of the number of source lines of code. There are many different definitions and
interpretation of LOC, and therefore many ways to count LOC. For the purpose of the experiment,
a line of code is defined as follows:
"A line of code is any line of program text that is not a comment or blank line, regardless of the
number of statements or fragments of statements on the line. This specifically includes all lines
comaining program headers. declarations, and executable and non-executable statements.” [Conte
1986].

Type Quantitative

Source Experiment Subjects

Applicable Phase Implementation

Measuremeut Scale

Interval

Purpose/Objective

This measure was used to work out to productivity and comment density.

Notes

LOC is one the oldest and most widely used software size measure [Sommerville 2007). It has the
advantage of being easy 1o collect - no other measure is as well-understood [Bassman et al. 1995].
It however suffers from some weaknesses such as. being language dependent, equating length as a
measure of size without regards to complexily or functionality, discarding the fact that bad
software designs may cause excessive lines of code (see Section 4.10). However. as the LOC
weaknesses are randomly and universally spread between the control and treated groups in the
experiment. they will not affect 1he objective of the experimeni, which is 10 compare the treated
and control groups.

Related Metrics

Comment density {Metric 10), Productivity (Metric 7)

Measure 8 Size of Source Code (LOC)

Appendix C. Metric Specifications

225

. Number of Classes
Definition It is a measure of the number of classes developed
Type Quantitative
Source Experiment Subjects
Applicable Phase Design
Measurement Scale Interval

Purpose/Objective

This measure is used to determine methods per class ratio

Related Metrics

Methods per Class Ratio (Metric 6)

Measure 9 Numbet of Classes

‘. . : _Number of Methods:
Definition It is a measure of the number of methods developed
Type Quantitative
Securce Experiment Subjects
Applicable Phase Design
Measurement Scale Interval

Purpose/Objective

This measure is used to determine methods per class ratio.

Related Metrics

Methods per Class Ratio (Metric 6)

Measure 10 Number of Methods

Number of Lides of Comment ..’

Definition 7 It is a measure of the number of lines of comments.
Type Quantitative

Source Experiment Subjects

Applicable Phase Implementation

Measurement Scale

Interval

Purpose/Objective

This measure is used to determine comment density.

Related Metrics

Comment density {Metric 10)

Measure 11 Number of Lines of Comment

Appendix C. Metric Specifications

226
Number of Defined Test Cases.
Definition It is a measure of the number of defined test cases
Type Quantitative
Source Experiment subjects
Applicable Phase Delivery
Measurement Scale Interval

Purpose/Objective

This measure is used in the experiment to calculate test effectiveness ratio

Related Metrics

Test case coverage {(Metric 11)

Measure 12 Number of Defined Test Cases

Appendix D. Results 227

Appendix D. Results

Statistical analysis results, when the individual and group projects are combined, are depicted in the following
tables. The first set of tables presents the analysis of the metrics followed by analysis of official marks awarded
to the four attributes of the software project (i.e. product, design and analysis, evaluution, and project
management).

Operation Independent Variable Dependent Variable Projects
[ndependent Samples Experiment group-type Sofiware Arribuie Individual and Group
t-1e5t (Treated, and Control) Projects
Phase Metric P_ value Comment
Percentage of Traceable requirement 0.003 Valne for treated groups was significantly

higher than control groups. Therefore, positive
effect of process patters is confirmed.

Requirement Percentage of Reviewed Requirements 0019 Value for treated groups was significantly
Analysis Specification higher than contrel groups. Therefore, positive
effect of process patiers is confirmed.
Percentage of Defects Fixed (RA 0.162 There was not a statistically signiftcant
Phase) difference between the treated and control
groups.
Percentage of phase time spent in 0.194 There was not a statistically significant
testing difference between the treated and control
groups.
Percentage of design document 0.000 Vatwe for control groups was significanly
reviewed higher than treated groups. Therefore, positive
effect of process patters is confirmed.
Number of methods per class 0.001 Value for control groups was significantly
Design (Methods per Class Ratio) higher 1han treated groups. Therefore, positive
effect of process patiers is confirmed.
Percentage of Defecis Fixed (Design 0.242 There was not a stanstically significant
Phase) difference between the treated and control
Zroups.
Percentage of phase time spent in 0.097 There was not a statistically significant
testing (Design Phase) difference between the treated and control
groups
Comment Density 0.025 Value for treated groups was significantly

higher than control groups. Therefore, positive
effect of process patters is confirmed.
Percentage of Code Reviewed 0.011 Value for treated groups was significantly
higher than control groups. Therefore. positive
effect of process patters is confirmed.

Productivity (Implementation phase) 0.001 Value for treated groups was significantly
higher than control groups. Therefore, positive
Implementation effect of process patters is confirmed.
Productivity {complete development 0.003 Value for treated groups was significantly
project) higher than control groups. Therefore, posilive
effect of process patters is confirmed.
Percentage of defects fixed 0.197 There was not a statistically significam
difference between the treated and control
gTOUpS.
Defect Density 0.012 Value for control groups was significantly

higher than treated groups. Therefore. positive
effect of process patters is confirmed.

Percentage of implementation phase 0.000 Value for control groups was significantly

time spent in testing higher than treated groups. Therefore, positive
effect of process patters is confirmed.

Test case density (Test case per 0.001 Value for treated groups was significantly

Requirement) higher than control groups. Therefore. positive

effect of process patters is confirmed.

Appendix D. Results

228

Delivery

spent in testing

Value for reated groups was significantly
higher than contro! groups. Therefore. positive
effect of process patters is confirmed.

Percentage of defects fixed 0.003 Value for treated groups was significantly
higher than control groups. Therefore. positive
effect of process patters is confirmed.

Percentage of Delivery phase time 0.000

Table App_D 1 Significance analysis results for metrics for individual and group projects combined

Operation Independent Variable Dependent Variable Projects
Independent Samples | Experiment group-type Software Attribute Individual and Group
1-1€51 Projects
Software Attribute P_value Comment

Design and Analysis 0.182 There was not a statistically significam difference between the treated
and control groups.

Produci 0.004 Value for treated groups was significantly higher than control groups.
Therefore. positive effect of process patters is confirmed.

Project Management 0.143 There was not a statistically significam difference between the treated
and control groups.

Evaluation 0.106 There was Aot a statistically significant difference between the treated
and conlrﬂgroups.

Table App_D 2 Significance analysis results for tutor marks for individual and group projects combined

Results of the conducted survey on software patterns

Question Yes %o | No %
Do you believe there are risks involved in using patterns 19 81
Do you use patieras in sofiware development? 60 40
Do you wrile patterns 6 94
Do you publish patterns 6 94
Do you develop domain-specific patierns 3 97
Question Never Seldom | Frequently | Always
(Pattern Users Only) % To To %
Do you validate patterns that you use S0 7 3 0
Question External Rationale Using test | Other
{Pattern Users Only) Evaluations % To cases % To
How do you validate paiterns that you use 0 0 10 0

What types of pattern do you use and in what capacity
(Pattern Users Only)

Pattern Type Never % | Seldom % | Frequently % | Extensively %
Analysis Patterns 97 0 3 0
Design Patterns 0 15 63 22
Process paiterns 85 12 3 0

Appendix D. Results

229

Where do you get your patterns

(Pattern Users Only)
Pattern Type Never % | Seldom % | Frequently % | Extensively %
1n-house produced 90 0 10 0
Books 13 17 42 28
Joumais, Conf. Proceedings 45 40 12 3
Pattern Community (repositories) 30 35 28 7

Do you have concerns about using patterns because

{Pattern Users Only
Pattern Type None 9% | Slightly % | Moderately 9 | Extremely %
Patierns could be outdated 22 60 18 0
Patterns could have unknown side effects 18 47 35 0
Your tearmm may not be sufficiently proficient in patterns 20 45 32 3

Results of patterncentral.com website survey

Curtsy of Patternscentral.com

Are patterns just hype or do they provide great value? (Total Votes: 572)

Yes. big time hype
Patterns are definitely valuable

Patterns are valuable. but they tend to be misused

Don't know, but 1 want to learn more
1 couldn't really care less

82%
49.8%
31.8%
8.4%
1.8%

Does your organisation support the use of patterns? (Total Votes: 375)

Yes, and we know what we're doing

Yes. but patterns aren't really understood

No

| work alone and use pattemns where appropriate

[work alone and don't use patiemns

29.6%
31.5%
10.4%
25.6%
2.9%

Are you actively using Patterns in your software development? (Total Votes: 938)

What's a Patiern?
Have read about them
Sometimes
Whenever possible

5.6%

12.0%
232%
59.2%

http://patterncentral.com
http://Patternscentral.com

Appendix D. Results 220

Some of the views expressed in the survey (Chapter 3) by architects on architectural patterns

“My own view is that the book was a simplistic atternpt to link behaviour to form, and had a underlying
'romantic’ agenda which prioritised a particular, traditional vocabulary (Arts and Crafts especially) over less
'aesthetic’ forms of architecture (Brutalism for exampie). In short, a work of its time”

[Dr. Vanghan Hart Bath University)

*... While sharing some of their criticisms, | wouldn't be so dismissive as my colleagues about the book. Some
of the ideas in it have percolated quite far into diffuse thinking about buildings, getting into the heads of many a
solo architect or small practices, and leading them to be more observant, even if they may not be aware of the
source.” [Dr. Mark Wilson Jones] Bath University

**.... I do feel that this is timeless, but not so fashionable. It will come around again as people re-discover the
social/hamanist agenda” [Fiona Mclachian, Head of architecture, University of Edinburgh]

*... The book I think is considered rather old-fashioned - even naive.”
[Prof. Robert Kronenburg, Head of school of architecture, University of Liverpool]

... whilst Alexander's language is extremely useful to describe buildings from a technological or even
functional standpoint, it is not particularly well suited for the conceptualisation of buildings from an experiential
point of view.” [Carlos Calderon, Glamorgan University]

“I certainly use 'A Pattern Language’ as a text for my Theory of Landscape Architecture course, but 1 am always
anxious to stress that it should be used as an 'ideas book', a stimulus to creative thinking,
rather than some kind of infallible recipe book™ [Dr. [an H. Thompson, University of Newcastie]

"My opinion of the beok is that it is outdated, and, even when published, prescriptive in the wrong way.
Architectaral design and theory has moved a very long way since the book was published”
{Prof. Mike Jenks, Head of Department, Oxford Brookes University]

“I think that it is now considered rather old and tired. Certainly never tanght' in a schoo! of architecture in my
experience”. [Todd Wakefield, Head School of Architecture. University of Porismouth]

"My own view of the pattern langnage is that it is too prescriptive and relies too heavily on normalised views of
huaman behaviowr. If applied rigorously it removes many opportanities for creativity in design” [Dr. Christopher
Tweed, Queen’s University Belfast]

**.....in the "pattern language', what is and is not a pattern seems to be decided by Alexander”
[Professor Bill Hillier, Space Syntax UCL)

"1 co-ordinate first year studio, and steer well clear of Pattern Langnage”
[Stephen Walker Sheffield University]

1. Alexander not well liked, not "designery”..... ot enough aesthetics, too much about feelings
2. Alexander (like me) is no relativist - what is "opinion" to most critics is objective fact to others - I mean staff
like that we all yearn for sanlight, enclosure, rhythm, boundary etc
3. Pattern Language gives yon a structare to understand a human-based approach to design - as opposed to the
standard one led by expediency, egotism, detail etc”

[Malcolm Fraser, Leading Architect, Edinburgh University]

A Pattern Langunage offers descriptions of all the parts, but not a description or understanding of how those
parts can come together to produce social meaning; while it is beautifully written and illustrated, it does not
teach how to design”

[Tim Stonor, Space Syntax UCL]

Appendix F - Published Papers 231

Appendix E. Survey Questionnaires

The questionnaires for the two surveys are presented in this appendix.

¢ Survey of UK software development companies on their usage of patterns
¢ Survey of UK universities on their views and teachings of architectural patterns

Appendix F - Published Papers

232

Survey Questionnaire: on.Software Patterns

Section A. General-,

=3

Al) How. .mény employees does your organisation have?
Lessthan 10 L] 10-500 s1-100 O 101200 O 200+ 0

A2) What Capability Maturity Model (CMM/SPICE) Level is your development
process is currently at?
Not Measured [0 Levell O Level2 [Level3 OLevel4 O Levels [

A3) Is your company IS09000 (or other ISO standards) registered?
Yes [No [J Others | |

Ad4) What programming languages do you use for software development?
None [J Java [l C++ [c# O vB OO OthersO
If others please state :

AS) What scripting languages do you use for software development?
None [J Jsp OO aAasp OO pHP 0O HT™ML O OthersOd
If others please state

A6) What do you believe to be the effect of application of patterns on the following
software quality attributes?

Reliahility Positivel] Negatich Neutralld Don’t Know U
Usability Positivel] Negativeld Neutralld Don’t Know U
Changeability Positiveld Negativel] NeutrallLJ] Don’t Know U
Interoperability Positivel | Negativel] Neutrall] Don’t Know U
Efficiency Positivel] Negativeld NeutraltJ Don’t Know L
Reusability Positivel | Negativeld Neutralld Don’t Know U
Testability Positivel] NegativeD Neutralld Don’t Know U
Portability Positivel,]| Negativel] Neutrall! Don’t Know U

L]

Maintainability Positive] Negativeld Neutral'd Don’t Know

A7) Do you believe patterns contribute towards better communication between
software development team members
Yes [J No O Don’t Know [l

AB) Do you helieve there are risks involved in using patterns
Nil [0 Slight 0 Moderate] Considerable [Don’t Know O

Appendix F — Published Papers

233

A9) Does your firm use patterns in software development?
Yes [] No [
If No Go to Section D, Future Plan

A10) Does your firm generate (produce, write) patterns?
Yes [No [

If No go to Section C, Pattern Usage

s rn:- Development -

Please fill in this section if your organisation generate (write) patterns

B1) Does your firm publish externally the patterns it develops?
Yes [] No O

B2) Does yonr firm develop domain-specific patterns (e.g. Telecommnnication)?

No O Yes [] Name []

B3) Do you have a repository of in-house developed patterns?

Analysis Patterns o] 1-10(] 11-200] 21-507 50+ (1

Design Patterns od 1-100 11-200 21-500 50+ O

Process patterns o0 1-100d 11-2001 21-50] 50+ [

Other patterns ol 1. 100d 11-200 21-50Q 50+ O
Please State:

Please fill in this section if your organisation uses patterns.

C1) What types of pattern do you use and in what capacity?

Analysis Patterns Never [Seldom [J Frequentlyld Extensively []

Design Patierns Never [1 Seldom [FrequentlyC] Extensively [

Process Patterns Never [J Seldom [Frequently[] Extensively [

Others Never [J Seldom [J Frequentlyy] Extensively []

If Others please state where:

C2) Where do you get your patterns?

In-house produced Never [0 Seldom [0 Frequently[] Extensively [

Books Never [1 Seldom [0 Frequently[] Extensively [l

Journals Never (1 Seldom [0 Frequenttyl] Extensively L[]

Pattern Community Never [1 Seldom [FrequentlyT] Extensively [J

Business Partners Never [Seldom [Frequenilyl] Extensively [J

Appendix F — Published Papers

234

Others Never [0 Seldom [J Frequentlyl]1 Extensively [J
If Others please state where:

C3) If you use any of the patterns below, how do you rate their ease-of-use?

Analysis Patterns Easy(d Moderate [] Difficult (O Very difficult [
Design Pattern Easy[O0 Moderate [1 Difficult 0 Very difficult (O
Process Patterns Easy[d Moderate (0 Difficult 0 Very difficult O

C4) If you use any of the patterns below, how do you rate their usefulness?

Analysis Patterns Nil O Slight [0 Moderaie[] Considerable [
Design Patterns Nil O Slight [0 Moderate[] Considerable []
Process Patterns Nil [0 Slight [Moderate [1 Considerable [

CS5) Do you have concerns about using patterns because:
Patterns could be outdated.

No Concerns | L | [| Extreme Concerns
Patterns could have unknown side effects.

No Concerns | | ! | | Extreme Coucerns
Your team may not be sufficiently proficient in patterns.

No Concerns | | I 1 | Extreme Concerns
Others

No Concerns | | [| | Extreme Concerns

If Others 'please state the reason:

C6) Do you validate patterus that you use by testing or other methods?
Never [] Seldom [] Frequently] Always []

C7) How do you validate patterns that you use
External Evaluations [
Rationale O
Using test cases O
Other (Please specify) [

Appendix F - Published Papers

235

Sectlon D Futuxje Plan C et e :

Dl) You do not use patterns in your company because
You believe patterns do not provide an Yes U No [
uadvantage (technical or economic)
Y ou do not have the skill set Yes [] No LJ
Patterns may be outdated Yes [J No LI
You do not trust patterns to provide the Yes UJ No LI
best solution
Your software development practices Yes Ll No LJ
do not require patterns ,
You believe patterns couid have adverse Yes Ll No [

side effects
Other Reasons (Please Specify)

D2) Does your firm plan to use patterns in the future?
No plans [[] Next 3 months [_] Next6Months [] Next 12 Months []

Section E. Comments

Please state below any comments that yon wonld like to make on patterns.

Appendix F - Published Papers 236

Questionnaire to the Architecture Departments of UK universities

Dear Sir,

As part of a PhD level research at Middlesex University, we are evaluating the works of Christopher Alexander
on patterns - specifically his book “A Pattern Language”. 1 would therefore be grateful if yon wounld kindly
answer the following two questions:

Q. 1) Do you teach pattemn langnages, as described in the book ‘A Pattern Language’ by Christopher -
Alexander, in your department, in any undergraduate or postgraduate courses and at what level of

nsage?
None [0 Undergraduate Postgraduate
Low Low
Moderate a Moderate a
High High

Q. 2) What are your views on the philosophy and concept of Alexander’s pattern languages?

No views [] Negative [] Nentral [] Positive [

Please Comment.

Thanks very much for your help.
Best Regards

Ahmad Estabraghy
Computer Science Dept,
Middlesex University,
London.

