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ABSTRACT Searchable Encryption (SE) allows mobile devices with limited computing and storage
resources to outsource data to an untrusted cloud server. Users are able to search and retrieve the outsourced,
however, it suffers from information and privacy leakage. The reason is that most of the previous works rely
on the single cloud model, which allows that the cloud server get all the search information from users. In
this paper, we present a new scheme M-SSE that achieves both forward and backward security based on a
multi-cloud technique. The new scheme is secure against both adaptive file injection attack and size pattern
attack by utilizing multiple cloud servers. Experiment results show that our scheme is effective compared
with the other existing schemes.

INDEX TERMS searchable symmetric encryption, multi-cloud technique, forward security, backward
security

I. INTRODUCTION

With the wide use of cloud computing, a huge amount of data
are outsourced to the cloud servers from users with limited
computing and storage resources in Internet of Things (IoT).
Though cloud computing is able to provide the powerful
outsourcing services to users, the security and privacy have
become challenges. The reason is that the cloud servers and
the users are not in the same trust domain. Usually, the cloud
servers cannot be fully trusted by the users in the system. As
a result, how to protect the security and privacy of users is
a critical issue for the wide application of cloud computing
[20].

In order to protect data security, the users usually encrypt
their data before uploading them to the cloud [26]. Keyword
search and other data utilization become challenging for
applications in outsourced data, such as machine learning and
other data utilization with privacy protection [11], [12]. Tra-
ditional encryption methods such as symmetric encryption or
hybrid encryption can be used here to protect the data secu-
rity. However, after data encryption, data operations become
a challenge because the users cannot perform operation over
ciphertexts such as keyword search and range query [22].

Searchable encryption is one of the most basic prelim-
inaries for the data utilization in cloud computing [29].
However, all the previous works have only considered the
basic security requirements such as the confidentiality of data
and revocation of the search privilege etc. However, in cloud
computing environment, the adversary would launch stronger
and different attacks for the cloud data [16], [42], [44]. Thus,
the security and privacy issues for searchable encryption have
to be considered for variants attacks.

A. SEARCHABLE ENCRYPTION
To implement keyword search over ciphertexts, searchable
encryption requires the client to upload both the keyword
ciphertexts and the encrypted documents to the cloud [6],
[34]. When the client wants to search the documents con-
taining a certain keyword, the client generates a trapdoor
for this keyword and sends it to the server. After confirming
that a keyword ciphertext is matched with this trapdoor, the
server returns the matched document identifiers back to the
client [23]. Then, the client can retrieve the document by its
document identifier.

There are two kinds of searchable encryption methods,
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Public Key Encryption with Keyword Search (PEKS) [1]
and Searchable Symmetric Encryption (SSE). Derived from
public key cryptographic primitives, PEKS is mainly applied
in the design of complex SE schemes, such as conjunctive-
subset, multi-dimensional keyword search. Based on the
symmetric primitives, SSE can achieve good performance,
and it has gained more attention and been widely used in
encrypted storage and encrypted email systems.

Leakages of searchable encryption. However, in SSE,
the (often symmetric) deterministic encryption enables the
cloud server to observe the repeated queries and other leak-
ages [7], [19]. Typically, these leakages can be divided into
three types:

• Size pattern [39]. Some leakages of the SSE scheme
are about the size of the entries, the total number of
keywords and so on. That is to say, the server can
learn the number of keyword-document pairs stored in a
database.

• Search pattern [10]. This means that the server can learn
that the current query is linked with a past query. The
server can also learn the deterministic tokens of repeated
queries.

• Access pattern [10]. The server can observe the access
operation of the client, and then it can learn the docu-
ment identifiers and document matching keyword. We
can store documents in an ORAM when we request the
documents; the access pattern will be oblivious.

Attacks of searchable encryption. By abusing these leak-
ages, the malicious server can launch attacks such as infer-
ence attack [15], leakage abuse attack [5], file injection attack
[43], and so on. For the adversary, no matter how small the
leakage is, it can attack SSE schemes to reveal the client’s
privacy. The file injection attack is a novel attack that abuses
the leakage of the access pattern. It injects files containing
pre-defined keywords into the client and observes the file
access pattern on the server. When an injected file is fetched
but others are not, the malicious server can determine which
keyword is searched in the fetched injected file. In this way,
the malicious server can know the query privacy and even the
plaintext of the encrypted document.

The above leakages can be protected by utilizing ORAM,
like TWORAM [13]. Unfortunately, ORAM always involves
a huge bandwidth cost, massive storage usage and frequent
interactions between the client and the server. That is to say,
the SSE schemes based on ORAM are not practical [17]. As
a result, when designing a practical SSE scheme, we must
solve the trade-off between efficiency and leakage. Efficiency
involves storage requirements, latency and bandwidth, while
leakage concerns the size pattern, search pattern and access
pattern. Considering efficiency, most SSE schemes abandon
the ORAM and assume these leakages can be allowed.
Although some attacks have been proposed as described
above, in 2016, Zhang et al. [43] noted that the adaptive
file injection attack cannot be applied to a forward privacy
SSE scheme. Thus, the forward privacy becomes the basic

security goal of a practical SSE scheme.

B. MOTIVATION
Until now, there have only been a few schemes that achieve
forward privacy [3]. If the SSE scheme supports forward
privacy, it means that a malicious server cannot learn whether
a newly added document matches previous search queries.
Backward privacy is defined in the sense that a searching
keyword does not reveal the matching documents identifiers.
In 2017, Bost [4] proposed an SSE scheme that achieves both
forward and backward security. As far as we know, it is the
first scheme that is not based on ORAM to achieve forward
and backward security.

We stress that there is still too much information (size
pattern, search pattern, access pattern) to be leaked in SSE
schemes that achieve forward and backward security. And
many attacks can be launched. Further reducing leakages is
the objective of the design of the SSE scheme. Therefore,
we want to draw support from the multi-cloud technique to
reduce the leakage and improve efficiency. In other words, we
try to distribute these leakages into different non-colluding
clouds. For example, we allow a single cloud to observe part
of the size and search information, but we do not leak the
whole size pattern or search pattern to each cloud because
the clouds are non-colluding.

C. OUR CONTRIBUTIONS
We construct a forward and backward searchable encryption
scheme based on a multi-cloud technique called “M-SSE”.
This is a dynamic SSE scheme that supports both add
and delete operations, and it shows optimal performance
compared to typical SSE schemes. More specifically, we
draw support from the multi-cloud technique to distribute
part of the leakages to different clouds and avoid a single
cloud knowing the whole size or search pattern. Therefore,
M-SSE achieves small leakages.

As shown in Table 1, we can conclude that: 1) M-SSE
and Fides have the same asymptotic complexity in search
and update. The experiment result shows that M-SSE is
2× greater than Fides [4] in terms of speed because the
client can get the index matching keyword w from two
clouds simultaneously in M-SSE; 2) M-SSE and Fides can
achieve both forward and backward privacy, but only M-
SSE achieves the protection of the size pattern by distributing
leakages to different clouds.

II. RELATED WORK
A. SEARCHABLE ENCRYPTION
Cloud computing allows users to share cloud data securely
with other users [20] and outsource computing to the cloud
servers [36], [37], [40]. How to perform the data utilization is
a critical problem. In 2000, Song et al. [38] proposed the first
practical searchable encryption scheme implemented with
symmetric primitives. Many SSE schemes were subsequently
proposed, including static and dynamic schemes [8], [9].
Compared to dynamic SSE scheme, the static SSE scheme
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Table 1: Comparison with prior SSE schemes. N is the number of entries, which can be written as keyword/document pairs in the database, while W is the
number of distinct keywords, andD is the number of documents; nw is the size of the search result set matching keywordw, and aw is the total number of entries matching keyword
w. FP denotes forward-private, BP denotes backward-private, and SiP denotes size pattern.

Scheme Computation Communication FP BP SiPSearch Update Search Update

TWORAM
Õ(aw logN
+ log3N)

Õ(log2N)
Õ(aw logN
+ log3N)

Õ(log3N)
√

−
√

Σoϕoς [2] O(aw) O(1) O(nw) O(1)
√

− −
Fides O(aw) O(1) O(aw) O(1)

√
II −

M-SSE O(aw) O(1) O(aw) O(1)
√

II
√

does not support adding and deleting entries in the initialized
database or storage system. From a practical point of view,
dynamic SSE schemes are much more valuable.

Generally speaking, there are three approaches: inverted
index, tree and direct index of SSE. Among them, the
inverted index approach is used the most widely. The element
in inverted index is a (key, value), where key is a keyword and
value is the document identifiers that contain the keyword.

When searching for a keyword, we obtain all the document
identifiers matching the keyword. Therefore, compared with
other approaches, the inverted index approach costs the
minimal search time. This approach [10] was first proposed
in 2006; later, many SSE schemes [18], [35] were proposed
based on it.

There are also many other works on the data utilization
for cloud computing, such as the privacy machine learn-
ing [25]. To solve these above data utilization problems,
some cryptographic techniques have been proposed such
as homomorphic cryptography [30], [31], [41], cloud data
retrieval and verifiable computing [28]. The multiple cloud
setting has also been considered by [21] to realize the
reliability of the data deduplication. Actually, there are many
similarities between the construction of deduplication and
keyword search because both of them need to perform search
over the cloud data with some query.

Constructing the SSE scheme is challenging. We should
achieve less leakage and more optimal search and update
complexity. The SSE scheme implemented with ORAM [13],
[14] achieves the highest security guarantee. However, the
overhead of ORAM makes the search and update complexity
less optimal.

B. FORWARD AND BACKWARD PRIVATE SE SCHEMES
The notion of ORAM [24], [33] has been proposed to protect
the privacy of data retrieval. Stefanov [39] proposed an
ORAM-inspired forward-private SSE construction and was
the first to outline the forward privacy concept. Later, Bost
et al. [2] proposed a forward private SSE scheme that is
only implemented with trapdoor permutation and achieved
optimal search and update complexity. In 2016, Zhang et al.
[43] noted that the forward private scheme can defend against
the adaptive file injection attack; thus, forward privacy has
become the basic security goal of the SSE scheme. Until now,
several forward private SSE schemes have been proposed,
including sizepattern [39], TWORAM [13], Σoϕoς [2], and
so on.

In 2017, Bost [4] gave a formal backward private definition
and proposed the first SSE scheme that achieves both forward
and backward security without utilizing ORAM. According
to the number of metadata leakages about the inserted and
deleted entries, there are three levels of backward private
definitions: 1) Weak backward privacy. When inserting doc-
uments, it leaks the document’s currently matching keyword
w, when the update operations occurred, and the information
of the cancel operation; 2) Backward privacy with update pat-
tern. Compared with weak backward privacy, when inserting
documents, it reduces the information leakage of insertion
and deletion; 3) Backward privacy with insertion pattern.
Compared with Backward privacy with update pattern, when
inserting documents, it further reduces information leakage
when the update operations occurred.

C. TRAPDOOR PERMUTATION TECHNIQUE
A trapdoor permutation family

∏
comprises three algo-

rithms: Gen,Eval and Invert.

• Generate(1λ) is a randomized generation algorithm;
the input is 1λ and the output is the description i of a
permutation along with the corresponding trapdoor td
and x R←− Di. Furthermore, td is the trapdoor allowed
to evaluate π−1.

• Evaluate(1λ, i, x) is a deterministic algorithm, which
takes as input i ← Gen(1λ), x

R←− Sample(1λ, i) and
outputs y ∈ Di.Eval(1λ, i, ·) is a permutation odD for
all (i, td)

R←− Gen(1λ).
• Invert(1λ, (i, td), y) is a deterministic algorithm,

which takes as input (i, td)
R←− Gen(1λ), y ∈ Di and

outputs x ∈ Di. Therefore, Invert(1λ, (i, td), ·)
inverts a permutation.

The output of the Generate algorithm is a probability
distribution Π on permutations; therefore, (π, π−1)

R←− Π;
here, π is a permutation and π−1 is the inverse permutation.
Definition 1: The advantage of algorithm A in inverting a
trapdoor permutation family is:
AdvInvertA = P [x = A(1λ, (i, td), y) : (i, td), x

R←−
Generate(1λ), y ← Evaluate(1λ, i, x)].

TDP in Σoϕoς . As shown in Figure 1, only the client who
owes the trapdoor sk can generate the permutation (forward
chain), but the server who owes the public info pk can
evaluate this permutation (backward chain). We can also see
that the permutation about w is built by encrypting a random
value ST0(w) many times using the trapdoor sk (i.e., π−1

sk ).
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Figure 1: Trapdoor permutation technique

Meanwhile, it can be retrieved by decrypting the last one
using the public info pk (i.e., πpk).

The Σoϕoς [2] exploits the TDP to achieve the forward
secure searchable encryption. In particular, for each keyword
w, there is a permutation over the set that contains the search
tokens of keyword w denoted by D(w). In Σoϕoς [2], the
client maintains a counter c and its search token STc(w)
for each keyword w. When a keyword-document pair for
keyword w is added, the client will first produce a search
token by STc+1(w) ← π−1

sk (STc(w)) and then produce a
storage position (update token) UTc+1(w) using a keyed
hash, and finally update its client state and store the document
identifier inUTc+1(w) in the server. Because the latest search
token is stored in the client, the malicious server cannot know
where the UTc+1(w) is produced.

III. PRELIMINARIES
A. NOTATIONS
Let λ be the security parameter and negl(λ) be the negligible
function. As a λ bits string, the symmetric key is sampled
from {0, 1}λ. Let EK(m) denote encrypting m with key k
and Dk(c) denote decrypting c with key k. Let H(k,m)
denote a keyed hash function that takes as input message
m and key k and outputs a λ bits string. Let W denote
the keyword set stored on the client side. |W| denotes the
number of distinct keywords stored on the client side.

B. MULTIPLE CLOUD MODEL
With the development of cloud technology, we can divide our
database into small-scale databases stored in different clouds
that are non-colluding. In this paper, we use three clouds,
i.e, cloud c1, c2 and c3. Cloud c1 and c2 are used to store
documents and the indexes of keywords, while cloud c3 is
used for temporary storage to store the searched documents.

When the client performs a keyword search, we will search
from cloud c1 and c2 and then store the searched docu-
ments in cloud c3. That is, we do not write these searched
documents back immediately. If we do so, the malicious
servers (c1 and c2) can observe the connection between the
searched trapdoor and documents. On the contrary, we store
the searched documents in cloud c3. At some point in the
future, we can then write the part of the stored documents
back to the cloud c1 and c2. Therefore, c1 and c2 only get a
part of the search pattern leakage. Furthermore, with c3, we
can break the linkability between the searched keyword w
and the documents which match w.

C. SEARCHABLE SYMMETRIC ENCRYPTION
In order to use cloud resources, the client can store encrypted
documents in the cloud; this brings about the challenge of
how to search the encrypted document’s matching keyword
w. The SSE scheme can solve this problem. When a client
wants to search a keyword w, it computes a search token t
matching w and then sends t to the server. The server can
compute and retrieve the document’s identifier with token t
and then send these identifiers to the client side. According
to these identifiers, the client can download those documents
matching w.

A dynamic searchable encryption scheme always consists
of one algorithm and two protocols between clients and
server:

• Setup(DB): This is an initialization algorithm that takes
database DB as an input and gets (EDB, K,σ) as an
output, in which EDB is the encrypted database, K is a
secret key stored by the client and σ is the state of the
client.

• Search(K, q, σ; EDB): On the client side, the protocol
takes the key K and its state σ as the input and outputs
a query q about the keyword w. On the server side,
the protocol takes EDB as the input and outputs the
document identifiers matching keywordw. In this paper,
we only consider searching a single keyword operation.

• Update(K, σ, op, in; EDB): Adding and deleting a
document matching keyword w belong to the update
operations. When the client adds a document, the opwill
be set to add; otherwise, it will be set to del. The client
takes the key K, operation op, state σ and in as input.
Generally speaking, the client will generate a new block
and upload it to EDB on the server side.

D. FORWARD PRIVACY SECURITY
We borrow the formal definition of forward-secure in [2].
If the update operation does not leak any other information
more than itself, the scheme is forward private. In particular,
the server cannot determine whether the updated document
matches a keyword we queried before.
Definition 2: An L-adaptive-secure SSE scheme is forward
private if the leakage during the update operation can be
written as

LUpdt(op, in) = L′(op, (indi, ui)),

where (indi, ui) is the modified documents with the match-
ing keyword.

E. BACKWARD PRIVACY SECURITY
Backward privacy makes sure that the server can learn less
on keyword w. Generally speaking, for a keyword/document
pair (w, ind), it is added and then later deleted from the
database. When searching keyword w, the result does not re-
veal ind [39]. TimeDB(w) denotes a timestamp list matching
keyword w. When inserting a document into the database,
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we record a timestamp in TimeDB(w). When deleting docu-
ments, we delete the timestamp of when they were inserted.
Formally speaking, TimeDB(w) can be defined as:

TimeDB={(u, ind)|(u, add, (w, ind)) ∈ Q and ∀
u′, (u′, del, (w, ind)) /∈ Q},

where Q denotes the query list. Then,
DB = {ind|∃s.t.(u, ind) ∈ TimeDB(w)}.

Updates(w)is a list of timestamps of updates on w. It can
be defined as:

Updates(w) = {u|(u, add, (w, ind)) or
(u, del, (w, ind)) ∈ Q},

where Q denotes the query list.
DelHist(w) denotes the list of timestamps for the whole

deletion matching keyword w. It can be defined as:

DelHist(w)={(uadd, udel)|∃ ind s.t.
(udel, add, (w, ind)) ∈ Q}.

With these notions introduced here, we can describe three
levels of backward private.
Definition 3: For a L − adaptively − secure SSE scheme,
if the leakage function of search LSrch and update LUpdt
can be written as follows, this scheme is an insertion pattern
revealing backward-private.

LSrch(w) = L′′(TimeDB(w), aw),
LUpdt(op, w, ind) = L′(op),

where L′ and L′′ are stateless.
For a L−adaptively−secure SSE scheme, if the leakage

function of search LSrch and update LUpdt can be written as
follows, this scheme is an update pattern revealing backward-
private.

LSrch(w) = L′′(TimeDB(w), Updates(w)),
LUpdt(op, w, ind) = L′(op, w),

where L′ and L′′ are stateless.
For a L−adaptively−secure SSE scheme, if the leakage

function of search LSrch and update LUpdt can be written as
follows, this scheme is weakly backward-private.

LSrch(w) = L′′(TimeDB(w), DelHist(w)),
LUpdt(op, w, ind) = L′(op, w),

where L′ and L′′ are stateless.

IV. OUR CONSTRUCTION
In this section, we give a detailed description of our construc-
tion named “M-SSE”, a forward and backward secure search-
able encryption scheme based on the multi-cloud technique.
It not only supports add-and-delete operations but also can
defend against adaptive file injection attacks.

A. STORAGE STRUCTURE
Our M-SSE adopts inverted index schemes like Σoϕoς . Let
Lw denote the indexed list storing the identifiers (ind0,
ind1, . . . , indnw

) of documents which contain keyword w.
Furthermore, the size of Lw is nw.

Figure 2: Framework of M-SSE. There are three clouds in
the scheme: cloud c1 and c2 store documents and indexes as
other SSE paradigm; c3 is a temporary storage that stores the
searched documents.

We adopt three clouds, i.e., cloud c1, c2 and c3. One
cloud (c3) is used as temporary storage, but the others
(c1 and c2) are used as the normal servers supporting the
keyword search. For the cloud c1 and c2, the client uploads
encrypted documents and keyword ciphertexts to them. But
for a document, the client will randomly select a unique cloud
to store it. When performing search operations, the client
sends two different tokens to both the cloud c1 and c2 at
the same time. For cloud c3, it never supports a keyword
search because it is only designed to be temporary storage.
After keyword w is searched, we obtain the inverted list Lw
and all the documents containing keyword w. For security
considerations, we will not update these data to cloud c1
and c2 immediately; on the contrary, we will encrypt these
documents and then cache them to cloud c3.

On the client side, we adopt a map W to store the state of
each keyword. The state of keyword w can be denoted as the
tuple stw = (tokenl, tokenr, tag), where tokenl is the token
of the inverted list on cloud c1 and tokenr is that on cloud c2.
Tag is a label to show whether documents matching keyword
w are on c3. For each keyword w ∈W , the map W stores its
state stw.

Figure 2 shows the structure of M-SSE. Unlike Σoϕoς , we
store Ekw(ind, op) instead of (ind, op), where op can be add
or del, meaning add or delete operations, respectively. This
approach provides backward privacy.

B. OUR CONSTRUCTION
Algorithm 1 shows the formal description of our scheme, M-
SSE. The scheme supports both add and delete operations,
and the client sends these data blocks with different opera-
tions to cloud c1 or c2. In our scheme, H is a keyed hash
function whose output is µ bits long; furthermore, Ek(m)
and Dk(c) are implemented by an IND-CPA symmetric
encryption.

Update operation. When updating a document matching
keyword w, the client will generate a new data block and
randomly send it to cloud c1 or c2. Adding and deleting a
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Algorithm 1 M-SSE: Basic construction of Multi-cloud SSE
Setup()

1: KΣ
$←− {0, 1}λ

2: (SK,PK)
$←− KeyGen(1λ)

3: W,T ← empty map

Search(w, σ; EDB)
Client:

1: Kw ← F (KΣ, w)
2: (STc, c)←W [w]
3: If (STc, c) = ⊥ and Tag 6= ⊥
4: documents matching w are stored in c3
5: Else
6: Send (Kw, STc.tokenl, cl) to c1, (Kw, STc.tokenr, cr)
to c2
Cloud c1 and c2:

7: Run Σoϕoς − B.Search(w, σ; EDB) and get
EKS

(ind, op),
store the result in S

8: Send S to the client.
Client:

9: Decrypt S and get {ind : ∃ i, (indi, opi)
∩∀j > i, (indj , opj) 6= (ind, del)}

Update(w,c1, c2; EDB)
Client or cloud c3:

1: KS
$←− {0, 1}λ

2: Randomly select documents sending to c1 and c2
respectively.

3: Run Σoϕoς − B.Update(w,EKS
(ind, op), σ;EDB)

on cloud c1 and c2

document are implemented with the update operation. As for
the add operation, the document can be a fully new document
and also a document stored in c3, which has been searched
and downloaded. As for the delete operation, the document
must have already been stored in the database. The following
is a detailed approach:

Step 1: Select target cloud randomly. Select the cloud that
the new block will be sent to. The new block contains the
encryption of the new document identifier and the operation.
Therefore, a new block has two possible locations and thus it
support more privacy.

Step 2: Generate a new token. According to the result of
step 1, the client generates a new token for the new block. The
token has a corresponding relationship with the new block
matching keyword w. So the one who obtains the token can
get the corresponding document matching w.

Step 3: Update the mapW . If the new block is sent to cloud
c1, W [w].STw.tokenl and W [w].cl will be updated with the
new value; otherwise, W [w].STw.tokenr and W [w].cr will
be updated with the new value.

Search operation. The client generates a search token t
corresponding to keyword w. Search token t will allow the
server to retrieve document identifiers matching keyword w.

Following is the detailed approach:
Step 1: Retrieve map W . According to keyword w, we

will get the state of w. If W [w].STc.tokenl is not ⊥, we
will send W [w].STc.tokenl to cloud c1. Otherwise, we will
send W [w].STc.tokenr to cloud c2. If W [w].STc.tokenl
and W [w].STc.tokenr are ⊥, we will check whether the
documents match w in cloud c3.

Step 2: Merge the identifier. The data blocks received from
clouds are encrypted withKS , so the client will decrypt these
blocks first. For any indi, if there exist both (indi, add) and
(indi, del), we will ignore this indi.

Step 3: Get the documents. For any
indi = DKw

(EKw
(indi, op)), according to the position

map, we can know the position of the documents. Then,
sending the corresponding ind from step 2 to different
clouds can get the documents.

Step 4: Upload the searched result to cloud c3. Once we
have searched keyword w and got the documents, we will
then send the encrypted documents and identifiers to c3 and
reset Tag. After a while, we will update these documents to
c1 and c2 as new documents.

C. SECURITY ANALYSIS
We can use the Random Oracle Model to prove the security
of M-SSE.
Theorem 1: (Adaptive security of M-SSE). Define LS =
(LSearchS ,LUpdateS ), where
LSearchS = (sp(w), Hist(w)), LUpdateS (op, w, ind) =⊥.

M-SSE is LS − adaptive− secure.
Proof 4.1: Deriving several games from
SSERealM−SSEA (λ), which is a real-world game that can
help prove the theorem.

Game G0. G0 is the real world SSE security game
SSEReal. Formally speaking,

P [SSERealM−SSEA (λ) = 1] = P [G0 = 1].
Game G1. When confronting a new keyword w, G1 picks

a new key randomly instead of calling F when generating
KW . Furthermore, KW will be stored in a table key, so the
next time the same keyword w is confronted, we get the
KW from key. Therefore, if there is an adversary that can
build a reduction that is able to distinguish between F and
a truly random function, we can say that the adversary can
distinguish between G0 and G1. Formally speaking,

P [G0 = 1]− P [G1 = 1] ≤ AdvPRFF,B (λ),
where B is an efficient adversary.

According to the proof in Σoϕoς , we can conclude that
M-SSE is LS − adaptive− secure.
Theorem 2: (M-SSE can protect size pattern). Define
c.num = (c1.num, c2.num), where c1.num is the number
of documents matching keyword w in cloud c1 and c2.num
is the number of documents matching keyword w in cloud
c2. M-SSE can protect the size pattern.
Proof 4.2: We divide an encrypted database into two small
databases and store them in cloud c1 and c2. When perform-
ing a search operation, we send two tokens to c1 and c2. Then,
we merge the index and request document matching w. For
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c1, it only knows the number c1.num of document matching
w stored in c1; for c2, it only knows the number c2.num of
document matching w stored in c2. The total number c.num
of documents matching w is c1.num + c2.num. For non-
collusive clouds, they only know the number of documents
stored on them except the total number. Formally speaking,

P [c2 knows c1.num] = negl(λ),
P [c1 knows c2.num] = negl(λ),

where negl(λ) is the negligible function.
Therefore, we can say that with the support of the multi-

cloud technique, M-SSE can protect the size pattern.

D. LINKABILITY ANALYSIS
When searching keyword w, the client sends a trapdoor
Tokenl and Tokenr to the server and gets the index from the
clouds; then, the client can get the documents D matching
w from c1 and c2. If the client updates these documents
to c1 and c2 immediately, the server can know w, Tokenl,
Tokenr, and the documents D are related. In order to reduce
the linkability between w and the searched documents that
match w, we use another cloud c3 as a temporary storage
to store the documents that match w and have already been
searched. In this way, when searching keyword w′, the
client sends Token′l and Token′r to the server and then
gets the index. The client encrypts the index and gets the
true identifiers of the documents and then asks the server
for these documents D′. Next, these documents are sent to
c3 temporarily. Therefore, the server cannot know that w′,
Token′l, Token

′
r and documents D′ are related.

V. EXPERIMENTS AND EVALUATIONS
Our experiment focuses on the comparison of efficiency
between M-SSE and other typical SSE schemes. In the M-
SSE scheme, the search operation can be divided into two
parts; one is generating the token on the client side, and the
other is searching on the server side. The update operation
can also be divided into two parts; one is generating a new
block on the client side, and the other is uploading this new
block to the server side. We divide these operations into two
parts and observe the bandwidth, computation on the server
side and client side.

A. IMPLEMENTATION DETAILS
We implement the core function and benchmark of M-SSE
with C/C++. The cryptographic primitives in M-SSE use the
code provided by Σoϕoς [2]’s source code. We use HMAC
as the keyed hash function and use the OpenSSL’s BigNum
library to implement RSA. And we use RSA to implement
trapdoor permutation.

Experiment environment. For server storage, we use
RocksDB to store the map. Our experiment is run on a
desktop computer; it has single Inter Core i7-7700 3.60HZ
CPU, 2GB of RAM on ubuntu 14.0.4.

Parameter. We set the secure parameter λ to 128 bits.
The maximum number of keyword/document pairs range
from 140 to 14000000, which is determined by concrete

benchmarks. For symmetric primitives, cryptographic keys
are 128 bits long, and the length of RSA keys is 2048 bits
long.

B. EVALUATION
We evaluated the performance of M-SSE with 140000
keyword-document pairs. Three operations are considered in
the experiment: token generation, search operation and
update operation.

Token generation. As shown in Figure 3, during the
search operation, we evaluate the performance of token
generation. To the best of our knowledge, Fides has the
best performance in terms of token generation. M-SSE and
Fides are all based on the Σoϕoς scheme. While generating
tokens, M-SSE and Fides perform the same operation, so
the performance of token generation is almost the same. The
result of the experiment shows that the speed of M-SSE is
not worse than that of Fides, and it is almost the same as
Fides. However, M-SSE protects more privacy than Fides.
Figure 3 also shows that TWORAM is the most inefficient
one although it leaks the minimum information.

SSE operation. As shown in Figure 4 and Figure 5, we
compare the performance of search and update operations
with other schemes. For M-SSE and Fides, RSA opera-
tions will not be fully interleaved with disk accesses at
the beginning of the search operation. However, mutexes
and storage accesses will induce latency. M-SSE stores the
index matching keyword w on two clouds; thus we can
get the index simultaneously. Therefore, the speed of the
search operation is nearly 2× better than that of Fides. For
TWORAM, because of the complexity of ORAM itself, the
efficiency of the search operation and update operation are
much lower. We test these schemes with the same keyword/-
document pairs, keyword sets and benchmarks. Therefore,
the initialization and benchmarks are the same. We can
conclude that M-SSE has the same performance as Fides and
is much better than TWORAM.

Security level. With the support of the multi-cloud tech-
nique, M-SSE can distribute the leakages to different clouds.
If the clouds are non-collusive, M-SSE can reduce the infor-
mation known by each cloud. Therefore, M-SSE can protect
the size pattern. Furthermore, M-SSE can support forward-
privacy, so it can defend against file injection attacks. Based
on the backward-private level, M-SSE realizes backward
privacy with the update pattern.

M-SSE has nearly the same optimal performance as Fides,
which has the best performance of SSE, but it provides a
higher secure level. TWORAM leaks the minimum privacy,
but the performance is much worse than that of M-SSE.
Reducing the leakages from secure searchable encryption is
the main point of M-SSE. Therefore, we can say that M-SSE
strikes a good balance between efficiency and security.

VI. CONCLUSION
In this paper, we focus on how to improve the performance
of the SSE scheme and reduce its leakages. Based on non-
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Figure 3: Comparison of token generation.
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Figure 4: Comparison of Search operations.
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Figure 5: Comparison of Update operations. Keyword-document
pairs is set to 140000.

colluding clouds, we propose the M-SSE scheme, which
achieves both forward and backward security. Apart from
the good performance, M-SSE can protect the size pattern.
Distributing the leakages to different clouds to reduce the
information leakage may be a new idea to protect users’
privacy. In future work, we plan to design more secure
searchable encryption with better performance and the for-
ward secure order-preserving encryption scheme.
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