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ABSTRACT 

FRACTURE STUDIES ON OPTICAL FIBRES 
Lee Eng Wah 

The fracture behaviour of optical fibre was studied both 
in pure tension and combined tension and torsion. The 
results were analysed in terms of failure statistics and 
fracture mechanics. Electron microscopy techniques were 
employed to ascertain possible flaw size and their location 
which may contribute to the failure of the fibre. Three 
flaw mechanisms were shown to exist arising from large 
surface flaws, bulk flaws and inherent surface defects due 
to the pulling process. 

The long term mechanical reliability of optical fibre is 
of major concern to the manufacturers. The phenomenon of 
subcritical crack growth was investigated by dynamic 
fatigue tests both in air as well as in acidic and alkaline 
environments. The parameter 'stress corrosion suscept- 
ibilities' in the various environments were evaluated. 
Results indicated that the presence of water in the environ- 
ment significantly contributes to the subcritical crack 
growth rate in the fibre. In solutions, the presence of 
OH- ions further enhances this effect. Removal of water 
and OH- ions after presoaking the fibre was shown to effect 
a complete recovery of the strength. 

Design diagrams for optical fibre were constructed. These 
diagrams incorporate the statistical nature of the strength 
as well as the time dependent behaviour of the fibre. The 
value of such a diagram is to estimate the proof stress 
required for a given working stress and a given length of 
time if no failure is to be assured. 



ACKNOWLEDGEMENTS 

I wish to thank the Middlesex Polytechnic and Standard 

Telecommunication Laboratories Limited for providing 

facilities, materials and financial support. In 

particular, I would also like to thank Dr CJ Spears and 

Mr MM Ramsay for their help as supervisors to my work 

and Mrs V Norman for typing the manuscript so efficiently. 

My grateful thanks are due to Mr G Adie and Mr M Hart for 

their technical support and Dr J Lees and Mr I Scanlon 

for their valuable discussions. 



CHAPTER 1 

1.1 INTRODUCTION 

Beacon fires were used to break the news of the fall of Troy 

and the King's homecoming to his Queen, Clytemaestra in 

1084 B. C. at the palace of Argos in Greece. Until quite 

recent times the call for rapid communications has always 
invariably been due to military demands rather than to 

social or commercial needs, and the situation in France was 

no exception. The appearance of the system of semaphore 

telegraphs, designed by Claude Chappe, turned the military 

balance towards revolutionary France. The Chappe system of 

telegraphs rendered invaluable service to the French 

government for more than half a century and when it was 
finally closed down in 1852, it comprised a total of 556 

stations with a total length of more than 4000 kilometres. 

By the middle of the nineteenth century, light communication 

techniques had been mainly superceded; firstly by the 

electric telegraph and, later, with the advent of telephone 

and radio communication. 

Interest in optical communication was revived as a result 

of the achievement of the first laser(') in the early 

sixties. The coherent nature of laser light enabled 

optical frequencies to be viewed as an extension of the 

radio and microwave spectrum. 

Transmitting optical signals in the form of laser light 

through the atmosphere was generally too unreliable due to 

interference of fog, rain and dust. Despite these problems, 

optical communication systems transmitted through the 

atmosphere were developed for distances of a few hundred 

metres. Such modest links have been built for linkage of 
outside television camera to its base vehicle. 
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Laser light, guided through a gas filled pipe with lenses 

placed at regular intervals of about one hundred metres to 

collimate the beam, was investigated as a possible 
transmission medium(2). Telecommunication systems, based 

on this technique, offered remarkable performance in terms 

of bandwidth and repeater separations. Owing to the 

complexity and high cost to build and install, this system 
did not meet any real need. 

Optical fibre, with core and cladding structure, invented 

in 1954(3'4), described its use as a medium for transporting 

optical images such as fibrescope. It was not until 1966, 

after careful studies that Kao and Hockham(5) proposed its 

use in a cable as a long distance transmission medium in 

optical communication. Their idealised system is as 

shown 

signal 
processing coupling repeater coupling si nal 

prIcessmg 

detector electrical 
signal out 

YVV 

4 
optical 
fibre 

Components of Optical Fibre Communication System 
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The optical source to be used was a Gallium Arsenide laser, 

optical fibre was to carry the signals and the detector was 

anticipated to be a silicon photodiode. This became the 

basis for the development of optical fibre communication 

system. 

Rapid technological advances followed in optical components 

such as sources, detectors, lenses and fibres. There was 

increasing evidence that optical fibre communication would 

become the next generation of telecommunication system. 

Optical fibre advantages become obvious with the very low 

losses incurred, typically: 2.5 db/km at 850 nm, 
0.7 db/km at 1300 nm, and 0.3 db/km at 1550 nm. High 

bandwidth, coupled with relatively small fibre, require 

fewer repeaters, and so enable a more efficient utilisation 

of duct space. As such, buried electronics (e. g. 

repeaters) in the cities, could be eliminated and confined 

to terminal buildings, thus making installation, operation 

and maintenance of the system much easier and cheaper. This 
is particularly attractive to civil telecommunication 

usages. 

The components of the optical fibre system are virtually 

metal-free and, therefore, electromagnetic interference can 
be eliminated. Cables may be made metal-free or not 
dependent on the application. Such a feature has great 
benefit to military users where sensitive electronic 
systems are often packaged alongside electrical power 
system in aircraft, ships and vehicles. 

The fused silica raw material for the manufacture of optical 
fibre is relatively cheap and abundant. This has another 
major advantage over conventional systems, as copper is 

getting scarce and their supplies often unreliable. 
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LIGHT PROPAGATION THROUGH OPTICAL FIBRE 

Current optical fibre itself is a thin fused silica fibre 

of the order of 100 dun having a core/cladding structure. 
The core is carefully doped to produce a higher refractive 
index. Total internal reflection occurs when light enters 
the core material of higher refractive index and strikes 

the interface of the lower refractive index cladding. The 
interface reflects the light through the fibre until it is 

emitted at the end. 

Initial work in fabricating optical fibres for communication 

was mainly concerned with reducing its optical losses due 

to absorption, scattering and microbending. This was 
necessary in order to allow sufficiently long spacings 
so as to be competitive with existing communication systems. 

It is now possible to produce extremely low loss fibre by 

the modified chemical vapour deposition technique(6) 

This process consists of depositing layers of doped high 
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silica glasses inside a silica support tube which is sub- 

sequently collapsed to form a solid rod preform. The 

preform is passed into a high temperature furnace and drawn 

into fibres. 

As extremely low loss optical fibre has been achieved, its 

mechanical properties become a major concern. Kilometre 

lengths of fibre without fracture-producing flaws are 

necessary. The fibres to be incorporated into a cable will 

have to withstand the mechanical stresses imposed upon 

them during manufacture, installation and service life. 

Early attempts to produce long lengths of fibre suffered 

severe setbacks because the mechanical strength could not 
be controlled. The highly reactive surface of the fibre on 

exposure to atmosphere caused flaws to nucleate, so providing 

potential fracture sites. Also, as the fibre came into 

direct contact with the take-up drum, more flaws were 

generated. These surface problems were largely overcome 
by on-line coating with a silicone resin (primary coating) 

as soon as the fibre was pulled. This primary coating 

served as a barrier against the environmental interaction 

and also protected the fibre from minor impact and abrasion 
during other subsequent processings. 

Consequently, the pristine strength which was believed to 

exist as soon as the-fibre was pulled was maintained and 

relatively long lengths of flaw free fibre could be 

achieved. Although the primary coating inhibited to a 

great degree the nucleation of large surface flaws, it was 

found that they could not be totally eliminated. It was, 

therefore, very important to identify the particularly large 

flaws which contributed to the low strength so that steps 

could be taken to eliminate or reduce their occurrance. 

Studies have shown that a mechanical strength of fused 

silica fibre is time dependent. This is recognised 
(7) 

to be due to subcritical crack growth under conditions of 
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stress and potentially corrosive environment. The under- 
lying mechanism to this phenomenon, often termed static 
fatigue is not fully understood. It is, therefore, 

important that careful study and evaluation be carried out 
in order to predict its long term strength. 

The aim of the present project is to identify the various 
types of flaws, their sources of origin and their distrib- 

ution. Both tensile and combined tension and torsion 

test methods for the application to optical fibre have been 

developed to study the effect of the fibre under combined 

stress systems. Optical fibres were also tested at 
different strain rates and under different environments to 

investigate the sub critical crack growth. 

The results obtained have been treated in terms of failure 

statistics and fracture mechanics. Scanning electron 
microscope has been used to examine the fracture surfaces 

and possible models of flaw and fracture mechanisms have 

been identified. 

1.2 INTRODUCTION TO MATERIALS 

The optical fibre used is made up of a silica based glass 
core which is normally doped with boric oxide (B203), 

germanium oxide (Ge02), and phosphorus pentoxide (P205). 

The cladding is usually of silica dope with boric oxide. 
Boric oxide lowers the refractive index and is, therefore, 

included in the cladding. The Ge02 and P205 dopants in 

the core are necessary to achieve higher refractive index 

as well as to improve deposition rate. Also, they 

provided a more compatible viscosity thus enabling a better 

dimensional stability. Step-index fibre has a core of 

uniform glass composition, whereas the graded-index fibre 

has a compositional change through the diameter of, the core 
to obtain a near parabolic index profile, as shown below : 
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SEM Micrograph of the core of a graded index 
fibre showing the deposited layers of dopants 
to achieve a near parabolic index profile. 

A thin layer of silicone resin was applied to the fibre 

prior to coating with polypropylene. The overall structure 

of the fibre is as shown below : 
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The structure of a typical secondary coated 
optical fibre. 



The optical fibres were supplied by Standard Tele- 

communication Laboratories Limited. Different batches 

of fibre were used in the experimental work. They are 
summarised in Table 1 below : 

Fibre No. Type Fibre Overall Secondary 
Dia. Primary Coating 

Coating Dia. 
Dia. 

237-117P Step 150 dun 210 run 1 mm 
Index 

560-207C Graded 105 pm 165 pm 1 mm 
Index 

731/831-797P Graded 125 dun 185 tun 1 mm 
Index 

TABLE 1: A Summary of the type of optical Fibres 
and their dimensions used in the exper- imental work. 
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CHAPTER 2 

EXPERIMENTAL 

2.1 TENSILE TEST OF OPTICAL FIBRE IN AIR 

Fracture stress of glass fibres usually fall far short of 

their theoretical values. This was explained by Griffith(Q) 

to be due to the existence of microcracks on the glass 

surface where the stress is concentrated round the tip of 

such cracks when the material is stressed. Consequently 

material at the tip begins to part before the mean stress 

reaches the bond strength of the glass. For this reason it 

is not surprising to find a wide variability in fracture 

strength resulting from the statistical variation of the 

glass surfaces. 

Fifty sequential samples of secondary coated optical fibre 

were stressed to fracture in order that meaningful 

statistics could be obtained. The gauge length and the 

strain rate were fixed at 0.5 m and 1.67 x 10-3 s-1 

respectively to be compatible with previous tensile measure- 

ments at Standard Telecommunication Laboratories. Tests 

were carried out on a bench top Instron tensometer 

(Model No. 1026) and capstan grips were used to support 

each end of the fibre (Fig. 1). The fracture loads on the 

actual fibres were calculated by subtracting the load 

carried by the coating from that of the composite. Secondary 

coated fibres were used in the experimental work because 

difficulties were encountered in gripping primary coated 

or bare fibre without any end effects. 

2.2 DYNAMIC FATIGUE TEST IN AIR 

The strength of optical fibres is known to be time-dependent. 

This phenomenon commonly known as static fatigue is believed 

to be due to slow growth of pre-existing surface flaws by a 

stress corrosion process. Consequently, the strength of. 

the fibre degrades under static as well as dynamic load. 
In order that long term prediction of optical fibre could 
be evaluated, the fatigue parameters will have to be obtained. 

-9- 



One method of achieving this is to carry out a dynamic 

fatigue test. 

Tensile tests were conducted with the Instron tensometer 

at strain rates ranging from 1.19 x 10-1 to 1.19 x 10-4 s-l 
The measurements were done in air of about 40% relative 
humidity and at 200C. Twenty samples were tested at each 

of the four different strain rates chosen. In all the 

tests the gauge lengths were fixed at 0.07 m. Different 

strain rates were obtained by varying the cross-head speed 

of the tensometer. The cross-head speeds chosen were 
0.5,5,50 and 500 mm min-1 which were the widest possible 
range of speeds obtainable from the tensometer. 

2.3 COMBINED TENSION AND TORSION TEST 

Optical fibres can be subjected to combined tension and 

torsional stresses during cabling. Data obtained from 

combined tension and torsion test would be of great interest 

to the cable designers. 

A method was developed to test similar 0.5 m gauge length 

optical fibre under combined tension and torsion. The 

torsion was applied by attaching the bottom grip of the 

Instron tensometer to a rotating motor at 10 rev. min-1. 
A predetermined level of torsion was first applied to the 

fibre, which was then stressed in tension up to its 

fracture point at a strain rate of 1.67 x 10-2 s-l. Fifty 

sequential specimens were tested at each level of torsion, 

which were as follows: 628,942,1257 and 1571 rad m-l. 
The total number of specimens tested totalled 250 specimens. 

This was thought a reasonable basis for a statistical study. 

2.4 COMBINED TENSION AND TORSION TEST AT 
DIFFERENT TEMPERATURES. 

Strength of glass fibre is known to depend not only on the 

surface state of the fibre but also the subcritical crack 
growth when the material is stressed. Stress corrosion 

was believed to be the cause of the subcritical crack 
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growth and therefore thought to be temperature sensitive. 

The tests were done in the same manner as the tension- 
torsion tests except that the specimens and grips were 
housed in a temperature cabinet (Instron Model 3111) during 

the test. The coolant used for low temperature tests was 
liquid nitrogen. 

The samples were subjected to an initial torsion of 
628 rad m-l and subsequently pulled to fracture over a 
temperature range of -40°C to +50°C. The gauge length was 
maintained at 0.2 m in order for the specimen to fit in the 
temperature cabinet. Test of ten samples was carried out 
at each temperature at increments of about 20°C. The 
temperature range was limited to these values because above 
this range softening of the polypropylene coating occurred, 
followed by pull out of the fibre from the jacket. At 
temperatures below -40°C brittle fracture of the plastic 
occurred before that of the fibre, which lead to slipping 
between the plastic and the fibre. 

2.5 TENSILE TEST IN DIFFERENT pH VALUES 

A container was constructed to adapt to the bottom grip of 
the Instron tensometer (Fig. 2). This enabled optical 
fibre to be tested in a variety of solutions. 

Secondary coated optical fibre was cut into lengths of 
about 0.3 m from a reel. Batches of 60 samples were then 

presoaked in solutions of hydrochloric acid of pH 1.0 and 
sodium hydroxide of pH 13 for 1/ months to allow complete 
transfer of ionic electrolytes through the plastic coatings. 
Half the samples of each batch were tensile tested in the 

solutions under the same pH values at which they were pre- 
soaked and the next were dried in an oven at 400C for 
4 days and tested in laboratory environment. Again tensile 
tests were conducted on the Instron 1026 at a crosshead 
speed of 20 mm min-1 over a gauge length of 0.2 m corres- 
ponding to a strain rate of 1.67 x 10 s-1. -2 
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2.6 DYNAMIC FATIGUE TEST IN DIFFERENT PH VALUES. 

In view of the weakening effect of the optical fibre, 

observed when tested in alkaline environment, it was thought 

worthwhile to investigate the dynamic fatigue effect of the 

fibre in different ionic solution of different pH values. 

These tests would provide fatigue parameters for long-term 

strength predictions and sub-critical crack growth under 

such environments. 

Different batches of optical fibres were presoaked in 

distilled water and solutions of hydrochloric acid and sodium 

hydroxide of different strengths for 1/ months to allow 

complete ionic diffusion through the coatings. The concen- 

trations of the hydrochloric acid in which the fibres were 

presoaked were 0.1N, 1, ON and 5. ON. Each batch of the 

fibres were tested at different strain rates by varying the 

crosshead speed of the tensometer. Twenty samples were 

tested at each of the strain rates. The strain rates chosen 

. 
-1 were 1.19 x 10,1.19 x 10-2 , 1.19 x 10-3 , 1.19 x 10-4 s-1 

2.7 SCANNING ELECTRON MICROSCOPE ANALYSIS OF 
FRACTURE SURFACES. 

Brittle failure often leaves behind fracture markings. These 

markings can reveal the origin of the fracture and the 

direction from which it propagates. Therefore, fracture of 

optical fibre under various loading conditions can be under- 

stood by examining its fracture surface. 

Optical microscopes could not provide the necessary resolution 

and depth of focus for the study of fracture surfaces of 

optical fibres. Therefore a scanning electron microscope 
had to be employed. The scanning electron microscope used 

was an ISI SUPER III A. 

The optical fibre being non-conducting had to be coated with 

gold. This was necessary to prevent charging effect when 
the electron beam of the microscope scans across the sample. 
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Four samples were mounted on a stub as shown in Fig. (3). 

Silver dag was then applied between the stub and the base 

of the sample so that good electrical contact could be 

achieved. The samples and stub were then coated with gold 

with a sputter coater unit (Polaron ES 100). The optimum 

coating condition were found to be 2.5 kV and 20 mA for 

about 1/ minutes. 
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CHAPTER 3 

RESULTS 

3.1 TENSILE TESTS OF OPTICAL FIBRE IN AIR 

The probability of failure of optical fibre of a given length 

has been found to be well described by the Weibull distrib- 

utions 
(9). 

The probability of failure F(x) is expressed 
by the function : 

F(x) =1- exp ( -(V ) .... 3.1.1 

where O"f is the fracture stress and lLand p are constants. 

Weibull probability graph paper with ordinate In ln(1 1 
F(x) 

and abscissa in C-f was used to plot the fracture stresses 

obtained from the tensile tests as shown in Fig. (4). The 

graph showed three distinct regions. About 90% of the 

specimens fell in the upper end of the curve, 5% in the 

plateau region and 5% in the lower end. 

Fractographic analysis of the weaker specimens corresponding 
to the lower end of the Weibull plot revealed markings 
typically that of a brittle failure, as seen in Fig. (5). 

Three different regions were visible. These regions were 
(1) the mirror (a flat, smooth region), bounded by 

(2) the onset of mist (a region of small ridges), which was 
bounded, in turn by (3) the hackle (a region of larger 

ridges), as indicated in Fig. (6). The origin of fracture of 
these weak specimens were predominantly from the surface of 
the fibre. The 'inner' mirror size (ri) which was the radius 
bounded by the mirror region before the onset of the mist 

region was estimated to be about 3.25)xm Fig. (6). 

Internal flaws (Fig. 7) were observed from specimens in the 
'plateau' region of the Weibull curve. At the upper end 
of the curve, the fracture origin could not be detarmined 
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from the fractograph. This is due to the release of a large 

amount of strain energy during the fracture process thus 

shattering the fracture surfaces. 

3.2 DYNAMIC FATIGUE TEST IN AIR 
(10) 

It has been demonstrated by Wiederhorn that a good 

representation of subcritical crack growth in glasses is 

given by 

AKIN ..... 3.2.1 

where V is the subcritical crack velocity, KI the stress 
intensity factor and A and N are constants that depend on 

environment and material composition. 

Based on the assumption that failure of glass occurs from 

stress dependent growth of pre-existing flaws to dimensions 

critical for spontaneous crack propagation, it can be 

derived from equation 3.2.1. that 
N+1 

_2 N-2 f2 
N-2) 

(N+1)E 0-IC E 
.. 3.2.2. 

AY (N-2) KIC 

where Q-f = fracture, stress, E= strain rate, KID = critical 

stress intensity factor, Y= geometric constant, E= Young's 

Modulus and 0- IC = fracture stress in inert environment. 

If 2 `AY2 
(N-2) KICN-2 =B 

then log Q"f = N+l 
(log B+ log (N+1) + (N-2) log 0- C 

+ log E+ log E) . .... 3.2.3 

A graph of log G`f verus log E was plotted for secondary 
coated optical fibres tested in air at 20°C and 40% relative 
humidity (Fig. 8). From linear regression analysis of log Grf 

vs log the slope N+1 = 0.0375 corresponding to a value 
for N of 25.7. The intercept 

N+1 
(log B+ log (N+1)+(N-2) log 

p"IC + log E) = 9.81 ... 3.2.4. 
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Using the averaged inert strength of optical fibre as 

measured in liquid nitrogen temperature where fatigue is 

thought does not exist, OZC was found to be 12.6 x 109 Nm-2 
(11). 

From this value of OI0 , log B was found to be 10.28. 

It can also be derived from equation 3.2.1 that the time 
to failure (tf), under a constant applied stress ( a) due to 

subcritical crack growth, is 

tf =B C7-ICI-2 c-a-N 
...... 3.2.5 

hence log tf = log B+ (N-2) log (T-IC -N 1090a... 3.2.6 

substituting N= 25.7 and log B= 10.28 into equation 3.2.6 

log tf= 10.28 + 23.7 log 6, -IC - 25.7 log a ... 3.2.7 

Having shown a time to failure relationship with applied 

stress value, it would be worthwhile in the context of the 

optical fibre industry to link this relationship with failure 

statistics. The inert strength distribution of these optical 
fibres can be reasonably assumed to be given by Weibull 

distribution as mentioned earlier, hence 

log in 
1= 

log C ... 3.1.1. 
1-F(x) 

Assuming ß= 16 i. e. to be the same as that in air at 

room temperature (Fig. 9) and i)= 12.73 x 109 Nm2, then 

equation 3.1.1 becomes 

log In 1-F(x) = 16 log (CIC/12.73 x 109) .... 3.2.8. 

The minimum time to failure after proof testing is given 
by (10) 

1 
train -Bý )N-2 0A..... 

3.2.9 
atL 

where Q-p = proof stress. Using log B= 10.28 and N= 25.7 

then 

log tmin = 10.28 + 23.7 log (C/G ) -2 log C- a ... 3.2.10 

Substituting log 0'IC from equation 2.2.8 into equation 3.2.6 

log tf = 249.8 + 
23.7 log In (1-F(x)) - 25.7 log Q'a 

.,. 
3.2.11 
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A design diagram based on dynamic fatigue data given in the 

preceeding section where B= 10.28 and N= 25.7 is given in 

Fig. (10). The lines that run from left to right relate 
the minimum failure time after proof testing to the applied 

stress (equation 3.2.10), where the number over each end of 
the line gives the ratio (Q/ Oä ). Superimposed on the 

diagram is the failure probability without proof testing 
(equation 3.2.11). 

3.3 COMBINED TENSION AND TORSION TEST 

The data for various combinations of tension and torsion 

were plotted into Weibull curves in Fig. (. 11) and Fig. (12). 

In pure tension and three other different levels of 

torsion, severely flawed specimens were observed as 
depicted by the presence of a 'tail' in the Weibull curves. 
At the lowest torsion level of 625 rad m-l, there were no 
badly flawed specimens, therefore a single straight line 

was obtained on the Weibull plot. 

Successive fracture stress of each sample from the reel of 
fibre were plotted in Fig. (13). There was a strong 
tendency for weak samples to fall very close to each other, 
indicating that larger flaw population was distributed over 

relatively short sections of the fibre. 

Decreasing tensile strengths were observed as increasing 

levels of torsion were applied to the optical fibre. (Fig. 14). 

This figure also shows that the degree of scatter increases 

with levels of torsional stress. This is also evidenced by 

a decrease in the slope of the Weibull curves as the levels 

of torsion were increased, indicating a greater spread of 

strength. 

3.4 TENSION AND TORSION TEST AT DIFFERENT TEMPERATURES. 

The averaged maximum principal stress of the ten tests was 

plotted against temperature as shown in Fig. (15). Severely 
flawed samples were excluded from the analysis. Over the 

range -20°C to 50°C the strength remained fairly constant at 
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a maximum principal stress of about 3.3 x 109 Nm-2. There 
was a gradual increase in strength below -200C. 

3.5 TENSILE TEST IN DIFFERENT pH VALUES 

Weibull curves of tensile strength in pH 1 and pH 13 were 
plotted in Fig. (16). Results showed that fibres presoaked 
and tested in pH 1 and pH 13 were both weaker than those 

stored and tested in the normal laboratory environment. 
Fibres were stronger at a pH of 1 than those at pH 13. 

Table 2 showed the mean tensile strength and percentage 
strain of the fibres tested in the different pH conditions. 
The badly flawed specimens were excluded in this analysis. 
The mean strength of the fibres presoaked and tested in 

pH 1 and pH 13 showed a fall in strength of 4% and 4.5% 

respectively, as compared with those tested in laboratory 

conditions. Since the number of specimens tested were 
large this could not be due to experimental error. The 
difference between the strength measured in pH 1 and pH 13 

was about 6%. 

The loss of fracture stress level of the presoaked fibres 

was shown to be completely recoverable after drying in 

oven at 40°C for 4 days, as indicated in Table (2). 

3.6 DYNAMIC FATIGUE TEST IN DIFFERENT PH VALUES 

Log-log graphs of fracture stress against strain rate of 
secondary coated optical fibre, for different acidic and 
alkaline environments, are given in Fig. (17, a, b, c, d, e, f). 
The slopes of each graph were obtained by linear regression. 
From the slopes of the graphs the stress corrosion susceptib- 
ilities (N) for the various environments were calculated in 
the same manner as in Chapter 3.2. The results obtained 
are summarised in Table 3. 
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TS 2 CV % strain 
GN/m 

TS average 
stored at Lab. 3.68 8.7% 5.04 

atmosphere 
GN/m 

Presoaked and 
tested in HC1 of 3.54 4.6% 4.85 
pH 1.0. 

Presoaked and 
tested in NaOH 3.33 3.7% 4.56 
of pH 13. 

Presoaked in 
HC1. Dried in 3.62 3.9% 4.96 
oven and tested 
in lab. atmosphere. 

Presoaked in 
NaOH, dried in oven 3.68 4.9% 5.04 
and tested in lab. 
atmosphere. 

TS = tensile strength 
CV = coefficient of variance 

TABLE 2: The mean tensile strength and percentage strain 
at different environmental conditions. 

- 19 - 



Environmental 
Conditions 

Slope 
(1) 
(N+1) 

Stress Corrosion 
Susceptibility 

(N) 

5.0 N NaOH 0.0500 19.0 

1.0 N NaOH 0.0485 19.5 

0.1 N NaOH 0.0416 23.0 

DISTILLED WATER 0.0405 23.5 

0.1 N HCl 0.0375 25.5 

1.0 N HCl 0.0339 28.5 

TABLE 3: A summary of Stress Corrosion susceptibilities 
in both Acidic and Alkaline Environments. 

The stress corrosion susceptibility (N) of optical fibre 

in dstilled water obtained by dynamic fatigue was 23.5. 

This value falls to about 19.0 under sodium hydroxide 

solution of 5.0 N and increases to about 28.5 under hydro- 

chloric acid of 1.0 N. 
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DISCUSSIONS 

4.1 THE TENSILE STRENGTH OF OPTICAL FIBRE 

The variability of tensile strength of apparently identical 

samples of optical fibres tested is explained in terms 

of Griffith microcrack hypothesis(8). Microcracks or flaws 

on the surface or within the bulk of the specimens act to 

concentrate applied stress to values which would locally 

exceed the theoretical strength of the glass and permit 

crack propagation. The observed strength is largely dependent 

upon the size of the flaws present in each of the samples 
tested. Variation on the sizes of flaws present in the 

fibre would, therefore, lead to a statistical variation in 

tensile strength. 

A typical Weibull curve, Fig. (14) from the tensile tests 

did not produce a simple straight line. The presence of a 
'tail' at the lower end of the curve is observed. This 

suggests different flaw populations existing on the fibre 

which were generated from different sources. 

The large surface flaws which predominated at the weaker end 

of the Weibull curve are of particular interest. Potentially 

these are the flaws that may lead to fracture during 

cabling and service. Particles of dust in the pulling 

environment are believed to be the prime source of these 

large flaws(12). These particles which stick to the hot 

glass surface can generate flaws as the glass is cooled due 

to differential thermal expansion between the particles and 
the glass matrix. 

The strength of long lengths of optical fibre would be 

determined by the presence of the large surface flaws, as 
found in the tensile test of large samples of 0.5 m gauge 
lengths. Of the limited samples with large flaws obtained 
from the entire tensile tests a Weibull chart was 

plotted in Fig. (18). The straight line drawn through 
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the points is characterised by a slope P of about 5 and IL 

of 1.67 x 109 Nm-2. From a total length of 60m in 0.5 m 

gauge length samples tested, thirteen of these weak samples 

were found. This is equivalent to a flaw density of about 

one in every 5m length, assuming there was only one 

severe flaw in each sample. 

Fracture mechanics could be applied to predict critical 

flaw sizes, which, in turn, could be correlated to the 

different flaw populations found in the optical fibres. 

The relationships used are as follows 
(13) 

22 Ccrit -Z KIC 

2 O` 2 .... 4.1.1. 
f 

The equation assumed a semi-elliptical shape flaw where 
Ccrit is the critical flaw size, KID the critical stress 
intensity factor , 

ß"'f the nominal failure stress and 

Za constant which depends on flaw geometry. Wiederhorn 

et al(1 
4) in studying the subcritical crack growth of glass 

in vacuum of fused silica obtained a value of 0.74 MN m-ý 
for Kiff. At the time of fracture, the flaw usually 

approximates a semi circular shape as illustrated from the 

fractograph (Fig. 6). Based on this assumption a value of 
1.12 is calculated for Z. The critical flaw size Ccrit 

can then be correlated to the fracture stress C'f, as 

shown in Fig. (19). Fracture stress, at about 1.3 GNm 

corresponds to large surface flaw sizes of about 0.2m; 

whereas bulk flaws are of the order of 0.1 
,, 
Am. The high 

strength observed at the upper end of the Weibull curve 
indicates a critical flaw size of 0.03)m for this region. 

Melcholsky et a1(15) showed that the product of strength 

and square root of the inner mirror size is a constant 
which they refer to as the inner mirror constant 

C-f ri/ = Ai ... 4.1.2 

where ri is the inner mirror radius and Ai is the inner 
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mirror constant. From the weak specimens, the inner 

mirror constant Ai was calculated to be 2.24 MN m-3/2. 
Thus the fracture stress of the fibre can be estimated by 

measuring the mirror size in the fracture. 

Furthermore, by substituting 0f in equation (4.1.2) with 

equation (4.1.1), the following relationship can be 

obtained : 

2 Ai2 4.1.3. 
c crit Z2 KIc2 

...... 

From equation (4.1.3) the inner mirror to critical flaw 

size ratio ( ri/Ccrit) is a constant - estimated to be 

about 14.5. Re-writing equation (4.3,3) r1 "=C crit x const., 
for optical fibre ri = 14.5 Ccrit' Therefore, for a given 

mirror size, the flaw size could be evaluated. For example, 
the specimen that failed at 1.24 GN m-2 (Fig. 6), the 

flaw size estimated from the mirror size was 0.22,4m, and 
by using equation (4.1.1) the flaw size was calculated 
to be 0.25 )um (Fig. 19). The mirror size measurement could, 
therefore, be used to determine critical flaw size, 

particularly the large one, quite accurately ranging from 

strength values of between approximately 0.18 GN m2 to 

about 2.0 GN m -2. This technique could be used in pre- 
dicting flaw size of optical fibre which failed during 

fabrication or proof stressing where the actual failure 

stress is usually unknown. 

The internal flaws were probably due to the chemical dis- 

continuity inherent within the cross-section of the fibre. 

This source of flaws could originate from imperfect vapour 
deposition or during the collapsing stage of the preform. 
Flaws generated were carried through by the pulling process. 

The high strength observed in the upper end of the Weibüll 

curve is believed to be due to numerous minute surface 
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flaws existing on the preform which were subsequently 

carried through during the pulling process. This is 

evidenced by a substantial increase in strength by fire 

polishing the preform before the fibre is pulled, as found 

by Shonhorn et ai(16 . Further improvement in strength 

was observed if the preform was fibre polished and pulled 
by a laser puller, which produced very high surface temp- 

erature on the preform. 

4.2 DYNAMIC FATIGUE TEST IN AIR 

In the design of optical fibre cable, an important consid- 

eration is its long term mechanical reliability. It is, 

therefore, necessary to take into account not only the wide 

variability in fracture strength, but also the subcritical 

crack growth characteristics when the fibre is subjected to 

a residual mechanical stress. 

Long term mechanical reliability can be assured by proof 

testing whereby the components are subjected to stresses 

that are greater than those expected in service to eliminate 

the weak components. In this way, the fibre that survives 

the proof testing will have a minimum lifetime, as predicted 

by equation 3.2.9. provided no crack growth takes place 

during unloading. For proof testing to be effective, it 

should, therefore, be conducted under relatively inert 

environment with rapid unloading rates. 

Design diagrams for optical fibres are constructed to decide 

if proof testing is necessary, and, if so, the required proof 

stress necessary to assure a certain lifetime. The diagram 

obtained (Fig. 10) was based on dynamic fatigue and the 

failure probability curves were obtained from 0.5m gauge 
length tensile tests. It must be remembered that the 

severely flawed samples were excluded in the analysis. In 

practice the optical fibre used in a cable are much longer 

compared to the tested gauge length. By using a factor to 

take into account of the size effect using Weibull statistics 
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a design diagram was obtained for a kilometre length fibre 

as shown in Fig. (20). 

The design diagram can be used in the following manner. 
If the optical fibre is to operate under a stress of 
1 GNm-2 for 25 years, the failure probability without proof 
testing would be 1.3 x 10-3 or 0.13%, as indicated at the 

point of intersection in Fig. (20). Typically, the residual 
strain found in cabled optical fibre is within 0.25% 

compressive to 0.5% strain(17). The design diagram indicates 
that at these stress levels, the failure probability is 

extremely low, hence proof testing appeared to be quite un- 
necessary. It should be noted that the large flaws were 
excluded in the analysis, therefore only if these flaws can 
be eliminated, will the fibres be safe without proof testing. 

Results from the tensile test in the previous section showed 
presence of relatively large surface flaws. By using Weibull 
failure statistics of these flaws (Fig. 18), a design diagram 

was obtained as given in Fig. (. 21). If a typical value of 
0.2% strain (0.14 GNm-2) is taken as the residual strain of 
the fibre in the cable and 25 years service life is assumed, 
then 0.002% of the large flaws would fail if proof testing 
is not conducted, as indicated from the design diagram. To 

assure no failures, a proof stress ratio of 4.26 will be 

required corresponding to a proof stress of 0.6 GNm-2. 
Design diagram can also be used to predict failure rates 
during proof testing. For example, a proof stress of 
0.6 GNm-2 conducted under the same environmental conditions 
for 1 second would result in the percentage failure of the 
large flaws of about 0.08%. 

4.3 STRENGTH OF OPTICAL FIBRE UNDER COMBINED 
TENSION AND TORSION. 

Large surface flaws which resulted in low strength were 
mainly attributed to contamination of particles on the fibre 

surface, as discussed in section 4.1. These flaws can be 
generated either from the dust in the pulling environment or 
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the pulling environment of the preform rod. The tendency 

for the large flaws to occur close together along the fibre 

as observed in the tests suggested localised contamination 

of the rod would result in flaws distributed over a relat- 
ively short section. 

Another possible cause could be due to dust particles 

adhering on the surface of the fibre over a short section. 
This could happen if there was an intermittent draft in the 

vicinity of the pulling environment leading to dust particles 

settling over a short section of the fibre while the fibre 

was being pulled. 

The state of stress on the fibre subjected to combined tension 

and torsion can be described by the two principal stresses 
and 0-2 

c1' o E: z ± [(a) 
2+ -C 2 

2 
I/... 4.3.1 

where a-, y= 
tensile stress and T 

xy = torsional shear. 

If maximum principal stress Q-1 can be assumed to be the 

component contributing to the initiation and propagation of 
the flaws, then the above equation predicts a decrease in 

applied axial stress with an increase in torsion. 

This effect was seen in Fig. (11) and Fig. (12). Torsional 

stress can, therefore, have a serious detrimental effect 
in that it is very liable to increase the probability of 
failure of optical fibres in a cable. 

One of the main objectives in the study of failure of optical 
fibre in combined stresses is to determine how the strength 

compares with pure tensile strength. Table 3 below shows 

the state of stresses of fracture for various combination of 
tension and torsion on the surface of the component in 

terms of principal stresses. Each set of values represented 

an average of about 50 samples, the badly flawed samples 

were excluded. 

+ + 
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Angle of 
Twist (rm-1) 0 628 942 1257 1571 

a1, GN m-2 4.99 4.64 4.59 4.28 4.19 

-2 
2, GN m Q- 0 -0.23 -0.52 -0.99 -1.58 

TABLE 4: The mean principal stresses at fracture 
at various angle and twist. 

It is interesting to see from the table that with increasing 

torsion, the maximum principle stress ý decreases sig- 
nificantly compared with uniaxial tensile strength. 
Equation 4.3.1 is, therefore, not strictly applicable in 

predicting the fracture strength subjected to combined 

stresses. As tests at higher torsional levels took longer, 

some losses in strength could be attributed to a contrib- 

ution from static fatigue, but this could not account for all 
the loss as observed in the tests. 

Statistical theory of failure based on randomly distributed 

flaws suggests an increase in maximum principle stress 

under combined tension and torsion which further conflicted 

the data. This can be visualised by taking the case of a 

specimen subjected to idealised 'eqi' biaxial tension 

stress. Under this stress system the number of flaws would 
likely to propagate are more than the case of uniaxial 

tensile stress dependent on the directional distribution of 

the flaws. Consequently, uniaxial strength would be 

higher than that of 'equi' biaxial stress. Conversely, a 
'tensile/compression' state of stress as realised in a 
tension/torsion test would result in increase in strength 

compared with uniaxial stress as the number of operative 
flaws that are likely to lead to failure is reduced. 

The effect of the loss in maximum principal stress with 
increasing torsion can be explained in terms of orientation 
of flaws of the fibre. The preform flaws could be elongated 
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along the fibre axis when drawn down to fibre. These 

elongated flaws are not so critical to uniaxial tensile 

stress. Under a combined tension and torsion, the plane 
of the maximum principal stress moves away from the plane 
perpendicular to the fibre axis and, therefore, becomes 

more critical to the flaws. With increasing torsion, the 
plane of principal stress becomes even more critical and 
hence a reduction in strength was observed. This might 
also account for the decrease in Weibull slope as torsional 

stress was increased. 

There were insufficient data on the weak samples for 
thorough analysis to be carried out. Fractographic 
analyses of those specimens showed fractures initiating from 
both the bulk as well as the surface of the fibre (Fig. 22 

and Fig. 23). Surface flaws, as previously discussed, were 
thought to be caused by poor handling of the preform 
or the presence of dusts in the pulling environment, 
whereas bulk flaws were probably due to chemical discontin- 

uity inherent over the cross-section of the fibre. 

4.4 TENSION AND TORSION TEST AT DIFFERENT 
TEMPERATURES. 

Brittle fracture in glasses is known to be not only stress 
but time dependent. This is attributed mainly to sub- 
critical crack growth by a stress corrosion process in the 
presence of water 

(18). 
It was thought that for a stress 

corrosion process, the important parameters that would 
control the crack growth are the temperature and the partial 
pressure of water if it is in gaseous state. 

The effect of increasing temperature would be generally to 
increase the reaction rate between the silica and water 
and, the increased mobility of the water molecules will 
enhance the crack propagation rate, thus reducing the strength. 
This effect was not served over the temperature range of 
-20°C to 50°C. The constancy over this temperature range 
is attributed to the fall in the availability of adsorbed 
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water as the temperature increases(18). This resulted in an 
increase in strength thus compensating for the strength lost 

due to increased mobility of water molecules and water/ 

silica reaction rate. 

The increase in strength below 

the reduction in the amount of 

and low humidity environment ri 

nitrogen as coolant contribute 

water. 

-20°C can be accounted for by 

water present. Cooling effect 
esulting from using liquid 
to the low availability of 

Proctor et al(le) showed that fused silica fibre strength 

actually increased over the temperature range of 0- 200°C. 

They attributed this effect to the loss of water on the 

surface of the fibre to be the most important factor and that 

temperature had little effect on the strength to account for 

the increased strength observed. 

Duncan et al(11) in testing bare optical fibres under low 

temperature and varying humidity showed a steady increase in 

strength as temperature was lowered and achieved a strength 

of 12.6 GNm-2 at liquid nitrogen temperature. They also 

showed that similar increase in strength could be achieved 
by testing under a very dry environment at room temperature. 

It was concluded that strength in silica fibre is relatively 

temperature insensitive but is determined mainly by the 

amount of water present in the environment. 

4.5 TENSILE TEST IN DIFFERENT pH VALUES 

The shape of the Weibull curves under different pH values 
could be explained by the presence of different flaw 
poluations as discussed in section 4.1. The weaker end of 
the curves were dominated by the surface flaws and the 
intermediate strength by internal flaws. 

Compared to the specimens tested under normal laboratory- 

conditions, presoaked fibres showed a reduction in strength 
in both highly acidic and alkaline solutions. This again 
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suggests that the availability of water in the environment 

is the predominant factor in determining the subcritical 

crack growth and hence the strength of the fibre. The 

higher strengths observed in air compared to those in 

aqueous solutions is mainly due to the relatively dry 

environment in which they were tested. The abundance of 

water present in solution acted to increase the crack growth 

of the flaws thus contributing to the reduction in strength. 

In solutions, the fibre was observed to be stronger in 

acidic rather than alkaline environment. This weakening 

effect in alkaline solution is believed to be due to the 

presence of hydroxyl ions in the solution which modified 

the subcritical crack growth(7). The effect of hydroxyl 

ions is thought to aid in the stress corrosion process at 

the crack tip thus resulting in weakening the fibre. On 

the other hand the lack of hydroxyl ions in acidic environ- 

ment lead to an increase in its tensile strength of value 

somewhat 

When the fibre was dried after presoaking, the amount of 

water adsorbed on the fibre surface would decrease thus 

contributing to the increase in strength observed. 

Presoaking in either acidic or alkaline environment did not 

appear to permanently weaken or strength the fibre when 
dried. The active hydroxyl ions in solution became rather 
inactive as sodium hydroxide after undergoing the drying 

process and therefore would have little effect on the 

strength. The fibre strength after presoaking and drying 

reverted to its dependence on the availability of water 
present in its immediate environment. 

4.6 DYNAMIC FATIGUE TEST IN DIFFERENT pH VALUES 

Subcritical crack growth of fused silica under different 

environmental conditions can be studied from three types of 
experiments namely crack velocity, static fatigue and dynamic 
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fatigue. Wiederhorn and Johnson(19) have evaluated the 

effect of electrolyte pH on the crack propagation of 

silica by the crack velocity technique. Although this 

technique has provided fundamental information regarding 

subcritical crack growth, it may not be relevant to optical 
fibre mainly because the defects found on these components 

are quite different from the cracks induced onto the crack 

velocity specimens. Dynamic fatigue technique was, 

therefore, adopted as it could be carried out on the Instron 

Tensometer with some modifications. 

Stress corrosion susceptibility (N) of secondary coated 
optical fibres in distilled water found by dyanamic 
fatigue was compatible with the value of 22 obtained by 
WJ Duncan et al(10). The general trend in that stress 

corrosion susceptibilities are higher in acidic and lower 

in alkaline solutions agreed with the results obtained 
by Wiederhorn although the magnitudes are not the same. 
This could be due to the fact that crack velocity experiment 

uses macrocracks whereas in optical fibres the cracks are 

usually much smaller. In addition, plastic coating 

surrounding the fibres may act to inhibit the ion transport 

to the crack tip thus affecting the stress corrosion rate. 
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CONCLUSIONS 

Three different flaw populations were found to exist in a 

typical length of optical fibre. Large surface flaws 

operated at strength values of about 0.5 GN m-2. The 

origin of which was believed to be due to surface contam- 
ination of the preform rods or the presence of dust in the 

pulling environment. Internal flaws were mainly responsible 
for failure strength of between 2 GN m-2 to 3 GN m-2. 
This was caused by a build-up of stress during the chemical 

vapour deposition process. The high strength values of 

around 3.5 G. N m-2 to 5.0 GN m-2 were thought to be due to 

numerous minute inherent flaws that are characteristic 

of the pulled fibre surface. 

The general expression obtained from fracture mechanics 
(i. e. c_Z2 

KIC 4.1.1) was used to calculate flaw 

2O 2 

sizes. The origin of fracture in optical fibre particularly the 
the large surface flaws and internal flaws, could be loc- 

ated from the electron microscope fractographs. In addition, 
fractographic analysis was used to estimate flaw sizes 

especially the larger ones which were of particular interest. 

The inner mirror size measured from the fractograph to 
flaw size was found to be about 14.5. This technique was 
limited to strength values of between 0.18 GN m-2 to 
2.0 GN m2 above which the mirror was not observed and 
below which the mirror would extend over the entire fracture 

surface of the fibre. 

Tensile strength of optical fibre was found to increase with 
increasing strain rates. Stress corrosion susceptibility 
factor (N) was obtained from dynamic fatigue experiments 
at 20°C and 40% relative humidity. Under this environment 
a value of N= 26 was obtained which is compatible with 
results others determined by static fatigue experiments. 
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Dynamic fatigue studies are therefore a useful technique 

for evaluating the subcritical crack growth in optical 
fibres. 

Optical fibre in a typical cable can be subjected to 

stress values between 0.25% compressive strain and 0.5% 

tensile strain. Design diagrams constructed for an 

environment which related probability of failure, time to 

failure and operating stress of the optical fibre, 

indicated that if large surface flaws were eliminated, the 

failure probability was very low. For a typical value of 
0.2% strain (0.14 GN m-2) subjected to the fibre in a 

cable and 25 years of service life, 0.002% of the large 

flaws would fail if proof test was not conducted. To 

assure no failure under this service constraint the proof 

stress required was 0.6 GN m -2 

In testing optical fibres under combined tension and 

torsion, large flaws were found to be close to each other. 
This suggested that the preform rod used to produce the 

fibre was either contaminated locally or there was an 
intermittent draught in the vicinity of the pulling 

environment causing dust to adhere over short sections of 

the fibre. 

When the optical fibres were subjected to combined tension 

and torsion, the strength was found to decrease as the 

plane of maximum tensile stress was moved away from the 

plane perpendicular to the fibre axis. This suggested that 

the flaws were elongated along the fibre axis during the 

pulling process. The orientation of these flaws was not 

very sensitive to tensile stress but much more critical 

to combined tension and torsion. The maximum principal 

stress obtained by two dimensional stress analysis 
(i. e. Cr', =2±( (2 )2+ CXy2 )1124.3.1 

cannot fully describe the strength of the fibre when 
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subjected to combined tension and torsion. 

Tensile strength of secondary coated fibre remained relatively 

constant in the temperature range of -20°C to 50°C. There 

was a gradual increase in strength below -20°C. Strength 

of the fibre was thought to be relatively temperature insens- 

itive but much more sensitive to the availability of water 
in the environment. The increase in strength below -20°C 
was mainly due to the loss of available water on the fibre 

surface by the cooling effect. The testing temperature 

was constrained to -40°C to 50°C below this range brittle 

fracture of the plastic coating occurred before the fibre 

leading to fibre pull-out from the coating. Above 50°C 

necking of the polypropylene coating occurred before the 

fibre fractured hence the strength could not be accurately 

determined. 

Optical fibre presoaked and tested in acidic environment 

was found to have higher strengths than in alkaline 

environment. The presoaked fibre both in acidic and alkaline 

solutions when dried did not suffer any permanent damage 

compared to those stored in air environment. 

The stress corrosion susceptibilities factor increased with 
decreasing concentration of OH ions. Presence of OH ions 

was believed to contribute to the increased subcritical 

crack growth rate thus resulting in a lower stress corrosion 
susceptibility value in alkaline environment compared to 
that in acidic environment. 
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FIGURE 1: INSTRON TENSOMETER WITH CAPSTAN GRIPS 
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FIGURE 2: INSTRON TENSOMETER CONFIGURATION 
FOR TENSILE TESTING IN SOLUTIONS. 
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FIGURE 3: (A) CAPSTAN GRIP USED FOR TENSILE 
TESTING. 

(B) OPTICAL FIBRE SAMPLES MOUNTED 
ON ALUMINIUM STUB AND COATED 
WITH GOLD. 
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FIGURE 4 
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FIGURE 5: A typical SEM fractograph of a weak sample 
showing fracture originating on the surface. 

(600 x) 

FIGURE 6: The SEM micrograph of the fracture origin 
showing (a) the mirror (b) mist (c) hackle. 
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FIGURE 7: SEM fractograph showing origin 
of fracture in the bulk of the 
fibre. 
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FIGURE 9 
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FIGURE 10 

DESIGN DIAGRAM IN AIR EXCLUDING LARGE FLAWS 
FOR Q5 m GAUGE LENGTH 
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FIGURE 11 

9 

WEIBULL PROBABILITY FAILURE PLOTS OF FRACTURE 

STRESS FOR VARIOUS ANGLE OF TWISTS 
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FIGURE 12 

WEIBULL PROBABILIY FAIWRE PLOTS OF FRACTURE 

99.9r STRAIN FOR VARIOUS ANGLE OF TWISTS 
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FIGURE 14 
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FIGURE 15 
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FIGURE 16 

WEIBULL PROBABILITY FAILURE PLOTS OF 

999 FRACTURE STRESS FOR VARIOUS pH VALUES 
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FIGURE 17 (a) 

LOG FRACTURE STRESS VS LOG STRAIN RATE 

IN LON SODIUM HYDROXIDE SOLUTION 
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FIGURE 17 (b) 

LOG FRACTURE STRESS VS LOG STRAIN RATE 

9'8 r IN SON SODIUM HYDROXIDE SOLUTION 

Z q'7 

on 
0 

9.6 

LINEAR REGRESSION 
1 

99 f 00500 
N= 19.0 

9.4 
ao 1.0 

tog (s-') 

- 50 - 



FIGURE 17 (c) 

LOG FRACTURE STRESS VS LOG STRAIN RATE 
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FIGURE 17 (d) 

LOG FRACTURE STRESS VS LOG STRAIN RATE 
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FIGURE 17 (e) 

LOG FRACTURE STRESS VS LOG STRAIN RATE 
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FIGURE 17 (f) 

LOG FRACTURE STRESS VS LOG STRAIN RATE 
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FIGURE 18 

WEIBULL PROBABILITY FAILURE PLOTS OF 
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FIGURE 19 

GRAPH OF CRITICAL FLAW SIZE VS FRACTURE STRESS 
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FIGURE 20 

DESIGN DIAGRAM IN AIR EXCLUDING LARGE FLAWS 
FOR 1 Km. GAUGE LENGTH 
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FIGURE 21 

DESIGN DIAGRAM OF OPTICAL FIBRE IN AIR 
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FIGURE 22: SEM fractograph of optical fibre failed 
under combined tension and torsion due 
to surface flaw. 

FIGURE 23: Fractograph of optical fibre failed 
under combined tension and torsion 
due to internal flaw. 
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