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Abstract

We propose a novel method for learning visual concepts
and their correspondence to the words of a natural lan-
guage. The concepts and correspondences are jointly inferred
from video clips depicting simple actions involving multi-
ple objects, together with corresponding natural language
commands that would elicit these actions. Individual objects
are first detected, together with quantitative measurements
of their colour, shape, location and motion. Visual concepts
emerge from the co-occurrence of regions within a measure-
ment space and words of the language. The method is eval-
uated on a set of videos generated automatically using com-
puter graphics from a database of initial and goal configura-
tions of objects. Each video is annotated with multiple com-
mands in natural language obtained from human annotators
using crowd sourcing.

Introduction
Learning linguistic and visual concepts from videos and tex-
tual descriptions without having a pre-defined set of repre-
sentations is a challenging yet important task. For example,
humans are born without the knowledge of how many repre-
sentations for directions there are in the world, or how they
are described in natural language. In some situations, it is
better to use the 4 directions representation (front, right, left,
back), in others, one can use the 8 directions (front, front
right, right, etc.). Humans are capable of learning these dif-
ferent representations of directions, and at the same time
learn the words that describe them in natural language, with-
out having these concepts pre-programmed into their brains.
Such learning ability makes us more capable of operating in
different situations, hence the importance of this task.

We exemplify our approach by showing how unsuper-
vised learning of concepts in the following feature spaces
is possible: colours, shapes, locations, and actions. For ex-
ample, in the sentence “pick up the blue block” our aim is
to learn that the phrase pick up is a concept in the actions
feature space, the word blue is a concept in the colour fea-
ture space and the word block is a concept in the shape fea-
ture space. A key challenge of this task arises from the fact
that the system does not know how many concepts there are
to learn in each feature space. To avoid this dilemma, re-
searchers have used constraints to simplify the setting suf-
ficiently to enable learning to take place. For example, they

only presented the system with a single concept to learn at
a time (e.g. a single object in the scene), such that it al-
ways knows which concept is to be learned (Roy et al. 1999,
Steels et al. 2002, Kumar et al. 2014, Parde et al. 2015). In
other cases, certain hard-coded knowledge was provided ini-
tially (e.g. the colours, or directions), which the system used
as fundamental basis to expand its knowledge (Siskind 1996,
Dominey et al. 2005, Sridhar et al. 2010, Dubba et al. 2014,
Yu et al. 2015).

In this paper, we present a novel system that uses a more
relaxed set of assumptions, and does not use any hard-coded
knowledge in any feature space. Yet we show that our system
is still capable of learning about language and vision, from
linguistic and visual inputs, such as video sequences with
textual descriptions. The main goal is to learn natural lan-
guage words and their representation in visual domains (e.g.
the word blue is represented by a subset of the colour fea-
ture space). We will refer to the words that have visual rep-
resentations as concrete linguistic concepts (e.g. the word
blue has a representation in the colour space, therefore, blue
is a concrete linguistic concept). We will refer to these vi-
sual representations as visual concepts (e.g. the blue colour
in the colour feature space is a visual concept). Finally, we
will use the term groundings to refer to the connections be-
tween the different linguistic concepts and visual concepts.
The word ‘concrete’ in the concrete linguistic concepts is
used to distinguish it from abstract concepts (e.g. love, hate,
real numbers). In this paper we will focus on learning con-
crete concepts only, so we will omit ‘concrete’ in the sequel
since no confusion will arise.

Connecting Language and Vision Framework
The architecture of the learning framework can be sum-
marised in the following steps (i) the system receives lin-
guistic and visual inputs, a video and a sentence describing
it, (ii) the inputs are used to generate candidates for both vi-
sual concepts and linguistic concepts, (iii) these candidates
are used to build all possible hypotheses that might ground
language and vision, (iv) the system tests the hypotheses,
and uses the accepted hypotheses to learn about language
and vision. Steps (i,ii) are discussed in §Visual-Linguistic
Representation of the World, and steps (iii,iv) are discussed
in §Connecting Language and Vision.



Assumptions
We assume no hard-coded knowledge is given in any feature
space, but we make a number of assumptions that help the
system in attaining its ambitious goal to connect language
and vision. In order to focus on the learning and grounding
issues rather than on basic vision processing, we assume that
our system is capable of distinguishing and tracking objects
in the world, and is capable of computing the basic percep-
tual properties: colour, shape, and location. We also assume
(at least for the location feature), that the camera is static
(so location values refer to the same position across frames).
Also, since it will be helpful to segment each video into a
number of intervals, we make the assumption that whether
the values in an object feature space are changing or not pro-
vide suitable segmentation points.

Visual-Linguistic Representation of the World
The system receives as inputs (i) a video sequence (with
objects already tracked), and (ii) a sentence describing the
video, with upper case letters changed to lower case and
punctuation characters removed (as these would not be ex-
plicitly present in spoken language). Both inputs are rep-
resented in a way that allows for efficient and incremental
learning as will be discussed in the following sections.

Linguistic Input Representation
The linguistic inputs are represented as n-grams. An n-gram
is a sequence of n consecutive words. These n-grams are ex-
tracted from the input sentence, and are used as candidates
for linguistic concepts as shown in Fig. 1; the term ‘can-
didates’ is used to indicate that these n-grams have not yet
been connected to a visual concept.

Visual Input Representation
The system receives a video sequence as a visual input, from
which it extracts visual information about the different (i)
objects (colours, shapes, and locations), and (ii) actions (in-
tervals). A mixture of Gaussian models is used to abstract
and represent the information from the different objects’ fea-
tures, and a number of intervals are used to represent the ac-
tions (as shown in the visual concepts in Fig. 1). We will
discuss these two representations further below.

Objects’ Representation: Three pre-defined visual fea-
tures are computed for the objects in the input video:
colours, shapes, and locations (These features are just ex-
amples; many further features could be added easily). It is
assumed that the system has no pre-given knowledge in any
of these feature spaces. The features we use are as follows:

1. colour : Object → [0, 360) × [0, 1] × [0, 1]; colour(o)
gives a hue, saturation, and value (HSV) colour value per
pixel.

2. shape : Object → Rh; shape(o) gives a histogram of
oriented gradients (HOG) values, with a size of 7200 (30
by 30 pixels with 8 directions per pixel).

3. loc : Object→ R×R×R; loc(o) gives an x,y,z coordi-
nate location with respect to the system’s base frame.

Figure 1: The video sequence and description are used to
extract all possible visual and linguistic concept candidates.

Actions’ Representations: In this paper, we say that an
action has happened if there is a change in the state of an
object (e.g. the action pick up is defined by a change in the
location feature of an object). The changes in a video are
represented using intervals. We divide the video sequence
into intervals based on whether an object feature is chang-
ing or not; the changes are measured across all the features
for an object. For example, if an object was static and then
started moving, we segment the video at this point; the first
segment for the interval during which the object is static, and
the second during which it is moving. The system uses these
intervals as a way to represent the different actions that hap-
pened in a video. This representation can be applicable to
a wide variety of basic actions (verbs), such as (pick up, put
down, move, place, shift, take, remove) which are manifested
by changes in the location feature, (paint) by a change in the
colour feature, or (cut) by a change in the shape feature. In
this paper, we aim to learn (i) the representations of the dif-
ferent actions in vision, and (ii) the words that describe these
different actions in natural language.

Connecting Language and Vision
To learn how to connect the candidate linguistic and visual
concepts, we use an approach similar to that presented in
Hebbian theory, which can be summarized by the phrase:
“Cells that fire together, wire together” (Schatz 1992). This
idea can be translated into our system as: candidate visual
and linguistic concepts that appear together, are connected
together. As an example, the 1-gram red and the colour red
will appear consistently together more often than the 1-gram
red and the colour green. Based on this idea, the system uses
the inputs (linguistic descriptions and videos) to find the can-
didate concepts with the strongest associations.

The system will create one to many mapping between
each candidate linguistic concept and candidate visual con-
cepts (e.g. the 1-gram red is associated with a high prob-
ability to a subset of the colour space associated with the
colour red, and other visual concepts). In order to find out
which of these mappings are correct, the system tests the va-
lidity of each one of them. The correct mappings will then



be used to learn about language and vision. The validation
and learning procedures are done in an incremental way by
processing each video and description individually. These
procedures can be described by the following three steps: (i)
Compute the strength of the association links between the
candidate visual and linguistic concepts, (ii) test the valid-
ity of the visual-linguistic associations using the language-
vision matching test described bellow, and finally (iii) use
the concepts that pass the test to update the system’s knowl-
edge about language and vision.

1) Associating Candidate Concepts
To determine which candidate concepts should be connected
together, we follow the frequentist approach (Everitt and
Skrondal 2002). We keep track of the frequency at which
each candidate visual and linguistic concept appears indi-
vidually in all videos, and the frequency with which the two
appear together. The system uses these frequencies to com-
pute the conditional probabilities that associate each candi-
date linguistic concept with a candidate visual concept.

In our incremental learning process, the system is intro-
duced to new candidate concepts over time (e.g. new n-
grams, colours, actions, etc). When this happens, new con-
cepts that are seen for the first time should be created, and
the ones that have been seen before should have their fre-
quencies updated. In order to update or create new candidate
visual concepts (Gaussian component), we use an Incremen-
tal Gaussian Mixture Model (IGMM) approach (Song and
Wang 2005) to merge or create new candidate concepts.

In order to find which candidate concepts have the highest
association between them, we use their frequencies to com-
pute the conditional probabilities between them. The condi-
tional probability between each pair of candidates represents
the strength of associating these pairs together. The com-
putation of this conditional probability is shown in Eq. 1,
where l is a candidate linguistic concept, v is a candidate vi-
sual concept, Fl is the frequency at which l appeared in all
the videos processed so far, Fvl is the frequency of seeing
both l and v together in the same video in all videos so far.
This probability function is computed between every pair of
candidate linguistic and visual concepts.

P (v|l) = Fvl

Fl
(1)

2) Language-Vision Matching Test (LVMT)
For each new video, once the frequencies of the candidate
concepts have been updated, the system tests which of the
candidates are correct. At this stage, the system has a set
of the strongest associations between candidate concepts. In
the absence of a supervising teacher, the system needs to val-
idate the correctness of these associations in an unsupervised
way using a Language Vision Matching Test (LVMT) which
we have developed for this purpose. This is done by compar-
ing the input video with multiple synthesized virtual videos,
where each virtual video reflects a different association. For
example, if the system does not know what the 1-gram red
means, but it found that it has 3 potential strong associations

with the colours red, blue and the location bottom left cor-
ner. The system generates 3 virtual videos that reflect these
associations as shown in Fig. 2 and checks which of these
virtual videos match the input video. Since substituting the
1-gram red with the colour red leads to a match with the in-
put video, the system accepts the grounding (1-gram red↔
red colour Gaussian component) as the correct grounding.

Figure 2: Generating different virtual videos from different
groundings of the 1-gram red for the LVMT.

Experimental Validation
To validate our system, we used the Train Robots dataset
which was designed to develop systems capable of under-
standing verbal spatial commands described in a natural
way (Dukes 2013). Non-expert users were asked to anno-
tate appropriate commands to 1000 pairs of different scenes.
Each scene pair is represented by an initial and desired goal
configuration; we automatically animated these to produce
videos. 7752 commands were collected using Amazon Me-
chanical Turk describing the 1000 scenes. We also translated
all the commands from English to Arabic, particular care
was taken on not to alter any command or change any mis-
takes in any of them. An example of the dataset if shown in
Fig. 3. The original dataset along with the videos and trans-
lated commands can be found at http://doi.org/10.5518/32.

Figure 3: An Example from the Train Robots dataset, the
Arabic sentence is translated from the English one.

Evaluation and Results
We evaluated the performance of our system based on its
ability to acquire correct visual-linguistic groundings. The
Train Robots dataset contains 20 different visual concepts
expressible in our chosen feature spaces (e.g. the colour
blue, the shape cube, etc) which our system managed to
learn all of them correctly. It also has 71 English and 91 Ara-
bic linguistic concepts (which map to visual features in our
chosen feature spaces), from which the system managed to



learn 62 (87.3%) and 80 (87.9%) concepts respectively. Ta-
ble 1 shows these results in more detail and some examples
of the learned concepts are shown in Fig. 4.

Grounding Visual and Linguistic Concepts
English Arabic

Visual Features Linguistic Visual Linguistic Visual
Colours 15/16 8/8 30/31 8/8

Shapes 18/18 4/4 22/24 4/4

Locations 17/17 5/5 16/16 5/5

Actions 12/20 3/3 12/20 3/3

Table 1: The results of grounding visual and linguistic con-
cepts in both English and Arabic. The numbers in each col-
umn (A/B) mean A correctly acquired concepts out of B
available concepts.

Figure 4: A sample of the learned English Linguist Concepts
and their perceptual representations (Visual Concepts). The
different images show the visual concepts learned, and the
words next to each image show the linguistic concept asso-
ciated with that visual concept.

Conclusion and Future Work
We have demonstrated for the first time that a system can
simultaneously learn about object features and actions by
connecting language and vision. The segmentation of videos
based on feature space changes corresponding to actions is
also a key contribution of the paper, acting as an intermedi-
ary representation between the continuous perceptual space,
and the purely symbolic linguistic structures. We plan to ex-
tend our system to learn: (1) relations between objects such
as (distance, direction); (2) grammar rules that govern the
sentence structure; (3) collective words such as (tower, pile);
(4) comparative and superlative relations such as (further,
furthest); and (5) higher arity relations such as (between).
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