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Abstract—This work aims to improve the accuracy of the
SVDD-based Intrusion Detection Systems. In this study we
are interested by approaches using only one-class classification,
namely the class of normal user sessions. Sessions are modeled
by vectors of points in a finite features space. The goal of using
the SVDD in anomaly detection is to find the hypersphere with
a minimal volume that encloses the entire scatter of points
(i.e. the normal sessions). This paper discusses the general
case where the shape of the scatter is arbitrary. In this case
some voids can occur between the scatter and the boundary
of the hypersphere, and mainly cause a distortion of the
data description that reduces the accuracy of the detection.
The objective of this work is to study and highlight the best
techniques that help removing voids and thus improving the ac-
curacy of the SVDD. Experimental results show that choosing
the appropriate techniques and parameters can significantly
improve the accuracy of the SVDD.

1. Introduction

The last decade has seen a remarkable Internet develop-
ment, characterized by the increasing speed, the power of
the available infrastructure, and the reliability of services
delivered to users. However, this development has been
accompanied by an increasing number of threats and cyber-
attacks. Intrusion Detection Systems (IDS) are hardware or
software solutions that automatically detect intrusions. They,
mainly, run in two modes: (i) The detection of signatures
of known attacks. (ii) The detection of sessions outside the
normal behavior (also called anomaly detection). In [11],
authors review most of recent works on intrusion detection.

In this work we are interested by the network anomaly
detection. Several methods have been proposed in this do-
main. In [21], authors propose a classification of methods
that detect anomalies on networks. Generally, recent meth-
ods are of two types: (i) Detection methods based on binary
classification that determines a boundary between positive
objects that represent the legitimate sessions and negative
objects that represent intrusive sessions. The most used
binary classification method is the Support Vector Machine
(SVM) [5] [17] [16]. (ii) Detection methods based on one-

class classification or data description which is a specific
kind of multi-class classification, where there is a single
target class of only positive objects, for which a boundary
is constructed.

The one-class classification method studied in the
present paper is the Supports Vectors Data Description
(SVDD) [18]. It aims at finding the minimal hypersphere
(with minimal radius) that encloses the entire training
dataset. The SVDD and its variants have many applications
such as, anomaly detection in the measurements of the
temperature and pressure in gas pipelines [14]. In [13]
authors use the SVDD in the detection of the sudden change
of engine temperature in hybrid electric vehicles. The SVDD
is also used in intrusion detection. In [10], authors propose
to solve the ambiguity problem, in case of points that are
close to the hypersphere boundary. They make a clustering at
these points by the K-means and then they reallocate these
clusters either within or outside the hypersphere. Another
variant of the SVDD based on uncertainty is proposed in
[12]; authors add to each object a confidence factor then
they adapt the training with a generalized SVDD.

In practice, having a scatter with a perfectly spherical
shape is very rare. So, in most cases, this type of modeling
leads to a hypersphere containing voids (very low-density
areas compared to the neighboring) which are external, when
they come in contact with the boundary of the hypersphere.
Voids may also be internal, when they are surrounded by
points with a high-density. In this case, the SVDD misrep-
resents the training set because voids increase the number
of false negatives. In [9], an approach based on finding the
largest void has been proposed to formally evaluate a one-
class classifier.

In this paper, we study and highlight methods that aim
to eliminate external voids in order to reduce the number
of false negatives and, therefore improve the detection ac-
curacy. First, the SVDD is tested with two types of kernels:
polynomial and Gaussian. Then some data preprocessing
techniques are used prior to the learning step. This pre-
processing consists to features scaling. Finally, in order to
improve the accuracy in the case of polynomial kernel, we
propose to use another preprocessing before the features
scaling, namely a data centering.
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This paper is organized as follows: In section 2 a theoret-
ical presentation of the SVDD is given. Section 3 discusses
methods used for removing voids. Section 4 presents an em-
pirical study and a comparison between discussed methods.
Section 5 concludes the study.

2. Support Vector Data Description (SVDD)

The SVDD is a one-class classification method, similar
to the conventional binary classification, except that instead
of having to distinguish between two different classes, one
has to decide whether an object belongs or not to a dominant
class of objects called “Target class”. Objects that do not
belong to the target class are called “Outliers”. It is worth
mentioning that if the training set does not contain a suf-
ficient number of attack samples, the binary classification
becomes inadequate, and a one-class classification based
on the description of the boundary of the training set is
required.

Moreover, the SVDD can be used as a multi-class clas-
sifier. In [19], authors propose to split the target class into
sub-groups; each one is bounded by an SVDD. An other
approach based on binary classification is proposed in [15];
where both the target class and the outliers are enclosed in
two different hyperspheres.

The SVDD method is inspired by the support vector
machine (SVM) [3]. Recall that the SVM technique tries
to find a hyper-plan that separates at the most two classes,
while the SVDD tries to find a hypersphere with minimum
radius that encloses all the training set. This hypersphere is
characterized by the center a and the radius R. Mathemati-
cally, this can be resolved by minimizing the cost function:

F (a,R) = R2 (1)

under the condition that the distance between each point
and the center is less than or equal to the radius R:

‖xi − a‖ ≤ R2(i = 1, ...N) (2)

To solve this nonlinear constrained optimization prob-
lem, the Lagrangian is introduced:

L(a,R, αi) = R2 −
N∑
i=1

αi(R
2− ‖ xi − a ‖2) (3)

where the αi ≥ 0 are the Lagrange multipliers.
Only few αi are not null, therefore only a few objects

of the training set are involved in the determination of
the hypersphere. These objects fall on the boundary of the
hypersphere and are called Support Vectors (SVs) (figure
1-A). After calculating SVs, the center is easily determined.
Indeed, we simply cancel the partial derivative of the La-
grangian with respect to a.

δL/δa = 0⇒ a = xi

N∑
i=1

αi (4)

The radius R is the distance between the center and any
of the support vectors. The identification of the center a

and the radius R from the training set, provides the learning
model that can be used to check if an object belongs or not
to the description. If the distance between an object and the
center a, is less than R, it is accepted and considered as an
object of the target class.

‖z − a‖2 ≤ R2 (5)

However, if the distance from the object to the center is
higher than R, it is rejected and considered as an Outlier.
It should be mentioned that the model of the sphere is too
simplistic. In practice, the scatter of points representing the
training set is never perfectly spherical. Therefore, there will
always be voids between the scatter of point and the contour
of the hypersphere. So, in order to obtain an accurate model,
this problem of external voids deserves a particular attention.
A first solution to this problem has been proposed by Tax
[18], which is inspired by the work proposed in [3].

3. Voids removal

3.1. Elimination of distant points

This solution is recommended when the training set con-
tains some objects that are distant from the whole set (Figure
1-B). In this case, we obtain a hypersphere relatively large,
which miss-describes the scatter of points (several external
voids occur inside the hypersphere). So, it is suggested to
reject these points before the training. This allows reducing
voids in the hypersphere. Theoretically, each point xi is
assigned a variable fi. Then, the cost function given by (1)
becomes:

F (a,R) = R2 + C

N∑
i=1

fi (6)

under the conditions:

‖ xi − a ‖2≤ R2 + fi and,
fi ≥ 0

(7)

C is a constant called regularization parameter.

Figure 1. SVDD hypersphere

Voids elimination reduces the number of false negatives.
However, rejection of distant points increases also the num-
ber of false positives. The parameter C, fixed by the user,
allows making compromise between these two situations.
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The Lagrangian associated with the optimization problem
becomes:

L(a,R, fi, αi, γi) = R2 + C
∑N

i=1 fi −∑N
i=1 αi(R

2 + fi− ‖ xi − a ‖2)−
∑N

i=1 γifi
(8)

Now, canceling the partial derivative of the Lagrangian
with respect to a and R leads to:

L =

N∑
i=1

αi(xi.xj)−
N∑
i=1

αiαj(xi.xj) (9)

under the constraint 0 ≤ αi ≤ C and C > 1/N . The
expression of the center a remains unchanged.

The major difficulty with this solution rely to the choice
of the parameter C. It depends on the shape and the
distribution of the scatter of points. This solution is most
effective when the scatter is more spherical and contains just
a few points that are distant from the majority. However, it
becomes less effective if the scatter is spread with respect
to one of feature space dimensions (Axis). In this case, the
distant points could not be avoided. An other solution that
takes into account the real shape of the scatter is explained
in section 3.2.

An opposing approach is detailed in [20]; instead of
eliminating distant objects, authors eliminate objects located
in high density area. Then, only points that fall on the
hypersphere boundary are used in the training. This solution
does not decrease the accuracy but reduces the learning time.

3.2. Kernel function

The introduction of a kernel function is used to learn
the spherical shape of the SVDD more flexibility. Implicitly,
through a function F , this approach consists to represent the
point’s xi into another space of feature with their images
F (xi) and the training is applied to this new space of
feature. Different functions F mean different new represen-
tations of the scatter and thus different learning models. The
best function is the one that represents the training set in
a spherical shape and keep outside the Outliers. Mathemat-
ically, everything is done by replacing the inner product
(xi.xj) in 9 by the function K(xi, xj) = F (xi).F (xj). The
literature provides different kernel functions, but the choice
of an appropriate kernel function depends on the dataset,
and only tests helps identifying the best function and the
best value of parameters to use for a given dataset. In the
following, we will limit our study to the presentation of two
families of frequently used functions.

3.2.1. Gaussian kernel. The Gaussian kernel function
also called Radial Basis Function (RBF) is defined by
K(xi, xj) = exp[− ‖ xi − xj ‖2 /s2]. This function does
not depend on the positions of points xi and xj , but depends
on the Euclidean distance ‖xi − xj‖ between these points.
This function is often chosen because it allows reducing
the dominance of the farthest points in the construction of
the learning model. s is a parameter fixed by the user. By
varying s, the whole model varies. We can have a scenario

between two extremes cases: (i) The over-training where
all points are support vectors and (ii) The standard SVDD
model (perfect hypersphere). The practical difficulty of this
function is the determination of the optimal value of the
parameters for a given dataset. Some works was carried
out to propose methods of estimation of an optimal value
for parameters that provide the best accuracy rate. In [14],
authors propose an heuristic to estimate the optimal value
of s, depending on the training set. Also, they have changed
the expression of the Gaussian kernel using different type of
distances. An intermediate approach between the rigidity of
the hypersphere and the flexibility offered by the Gaussian
kernel was proposed in [7]; this approach is based on
searching for the minimum hyperellipsoid that encloses all
the training set. This is more effective in the case of an
extended scatter of points; it helps to follow the shape of
the scatter without crossing the problem of choosing the
parameters.

3.2.2. Polynomial kernel. The expression of this function
is: K(xi, xj) = (1 + xi.xj)

d, d is the degree of the
polynomial.

This function transforms the scatter of points corre-
sponding to the training set from the original feature space to
another feature space of higher dimension, where an object
is represented by the original features and all the products of
these features up to degree d. For instance, in the case of a
vector space with two features xi(xi1, xi2) and xj(xj1, xj2),
the formula of the polynomial kernel of degree d = 2 is:

K(xi, xj) = [(xi1xi2)(xj1xj2)
T + 1]2 (10)

After development we obtain:

K(xi, xj) = (xi1)
2.(xj1)

2 + (xi2)
2.(xj2)

2 +
2(xi1.xj1)(xi2.xj2)+2(xi1.xj1)+2(xi2.xj2)+1

(11)

So, each point is represented in a new space with five
dimensions which are: x21, x22 , x1.x2, x1 and x2.

Clearly, unlike the Gaussian kernel, this function de-
pends on the positions of the point’s xi in the space,
regarding the reference center. Indeed, the value of the radius
R varies according to xi and the degree d. Choosing a
high degree d, generates a poor description if it contains
some points xi that are too far from the origin; it lead to
a large value of R. Moreover, the dimension of the new
space increases exponentially and requires more memory
resources for data storage.

3.3. Feature scaling

The feature scaling of a scatter points consists in chang-
ing the shape of the scatter according to the distance ratio
between points on each dimension. The feature scaling is
required if there is a significant discard between points in
one or more dimensions (i.e. the scatter is stretched over
some dimensions). It aims to reduce the distances between
the points and put them on similar scale. In [6], the author
classified the one-class classifiers into two types: a type
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that is not sensitive to the scaling, i.e. the accuracy of the
classifier does not vary by applying a features scaling such
as the Principal Components Analysis (PCA). The second
type of classifiers is sensitive to scaling such as the k-means,
k-nn and SVDD; because these classifiers depend on the
shape of the scatter. In the case of SVDD, more the shape
of the scatter is spherical, more the hypersphere describes
best the scatter (less external voids) and the accuracy rate
becomes higher. In [18], Tax provided a first method of
feature scaling, it is the scaling using the variance. Then, in
[8], authors has presented another two methods: one using
domain and the other using min-max.

1) Scaling using the variance: each value xlm of the
lth feature is divided by the variance the feature
set σl. In case where the points on a dimension are
spread; therefore, this helps to bring all the values
xlm on the same scale.

2) Scaling using the max: each value xlm of the lth
feature is divided by the maximal value the feature
set (maxl); thus, all the feature values will belong
to the interval [0, 1].

3) Scaling using the min-max: each value xlm of the
lth feature is divided by the minimal value of the
maximums of all features. All feature values will
belong to the interval [0, R], where R is the min-
max.

The feature scaling has a practical advantage. Searching
the spherical shape on another space, by using a kernel
function, lead to the problem of choosing the appropriate
kernel function and its parameters. It is better to transform,
in the original space, the scatter into a more spherical shape.
However, the disadvantage is that it treats each feature sep-
arately, whereas in reality, features are often interdependent,
which may break this interdependence and induces a loss of
precision.

3.4. Data centering

Regarding the polynomial kernel function K(xi, xj) =
(1 + xi.xi)

d, we recall that this function is strongly relied
to the values of xi. Thus, if the scatter contains some
points xi that are too far from the origin O, this would
lead to a relatively large hypersphere and therefore to a bad
description. In SVDD, what is important is not the position
of the points relatively to the center, but the shape of the
scatter and the distances between points. The idea is to
conserve the distance between points and make translation
of the origin O to the center of gravity of the scatter. On
each dimension l, the coordinate of the new origin O′, will
be:

O′
l = (maxl +minl)/2

Where maxl and minl are , the maximum and minimum
values on the feature l, respectively. In this way, the points
are said to be balanced around the center. This reduces the
feature values; and therefore, the minimum value of the
radius R.

4. Experiment

Before starting tests we have chosen and formated a
benchmark as needed. The details are given below.

4.1. Benchmark preprocessing

The tests are performed on the KDD99 benchmark. It
consists of a set of sessions labeled by normal or attack.
Each session is characterized by 42 features. Therefore, each
session may be represented by a vector of 42 coordinates.
Since this work is concerned by the one-class classification,
it is limited to only normal sessions. In [4], authors detail
the benchmark preprocessing steps to apply before starting
the test phase. Table (1) shows the size of the training set
and the testing set. In this work the library LIBSVM [2] is
used in the learning step.

TABLE 1. BENCHMARK OF TEST

training set testing set

normal sessions 67343 9711

intrusion sessions 0 12833

Features type transformation

Recall that the 42 features of this benchmark are of
three types: decimal features (continuous), Binary features
(0 or 1) or Nominal features (they take values from a finite
list). For example, the feature Protocol can be (TCP, UDP,
ICMP). There is no logical order between the elements of
this list. The SVDD is an oriented distance method. It must
calculate the distance between points. We have, for example,
two points xi and xj , calculating the distance ‖xil − xjl‖
following the dimension l is trivial in the case where l is a
decimal feature. If the feature is binary, this distance is zero
when xil and xjl are both equal to 1 or 0; or it is equal to
1 when xil differs from xjl (i.e. xil > xjl or xil < xjl).
So, the order between xi and xj is not important.

Nominal features need to be converted before calcu-
lating the distance. The conversion can be done using a
method based on classification trees [1]. It converts each
nominal feature A with N possible values (val1, ..., valn)
to N binary features, where the ith feature is “A=vali”.
For example, the features “Protocol”= (TCP, UDP, ICMP)
in converted to three binary features “Protocol = TCP”,
“Protocol = UDP”and “Protocol = ICMP”. If the protocol is
“TPC”, the feature “Protocol = TCP”is set to 1 and all others
are 0. In this way, nominal features are transformed to binary
features which allows calculation of the distances without
having to establish an order between the values of features.
On the KDD99 benchmark, this conversion increases the
number of feature from 42 to 122, so it adds 80 additional
binary features. There are some features that all values are
equal to 0, for example: no sessions is under the protocol
“ICMP” then the new feature “Protocol = ICMP”is always
equal to 0. These features were eliminated because they
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do not contribute to distinguish between points and also to
avoid computational problems (division by zero).

4.2. Test of kernel SVDD

The test of the standard SVDD presents an accuracy rate
of 61%. The results of the test of SVDD with polynomial
kernel by varying the degree d and the tests of SVDD with
Gaussian kernel by varying the parameter s are shown in
Figures 2 and 3, respectively.

Figure 2. Accuracy of polynomial kernel SVDD w.r.t. degree d

The best results are obtained for the degree d = 2 and
d = 3, then more we increase the value of d, more the
accuracy decreases. When, a value of the degree d is greater
than 4, the number of the feature in the new space becomes
enormous. We note that for the three values considered to d,
the results provided by the SVDD with polynomial kernel
are always better than that provided by standard SVDD.

Figure 3. Accuracy of the Gaussian kernel SVDD w.r.t. 1/s2

Figure 3 shows that the best accuracy is obtained when
the value of 1/s is between 0.0003 and 0.0007. Note that the
SVDD with polynomial kernel gives slightly better results
than the SVDD with Gaussian kernel. This is due to the
default position of the point scatter produced by the KDD99
benchmark. But the results from this SVDD are always
better than the standard SVDD.

4.3. Test of the feature scaling

We tested three standard scalling before learning with
the standard SVDD and SVDD with kernel function ( Gaus-
sian and polynomial). The best scores are in the table 2.

TABLE 2. RESULTS OF THE FEATURE SCALING

Without scaling Variance Domain Minmax

SVDD 61 71 82 61

SVDD+Gaussian 68 70 83 68

SVDD+Polynomial 70 67 79 70

The results summarized in table 2 illustrate that the
scaling by min-max did not improve the results because
of the existence of binary features where the maximum is
equal to 1, wich is also the minimum of the maximums of
all features. So the scaling (division by 1) does not change
the feature values and therefore it has no influence on the
model.

In the case of scaling by the variance, there is an
improvement of 10% for the standard SVDD. A slight im-
provement is obtained by using the Gaussian kernel, because
this way of scaling practically plays the same role as the
Gaussian kernel. The latter reduce the dominance of the
farthest points, and scaling by variance reduces distances
between the points and thus brings distant points.

The best results are obtained by applying the scaling by
domain. The standard SVDD and the SVDD with Gaussian
kernel give almost the same score of about 82% due to the
dominance of binary features (over than 80 binary features),
where default values are between 0 and 1

4.4. Test of data centering

Data are centred before the scaling step. The results
obtained are shown in Table 3.

TABLE 3. DATA CENTERING RESULTS

Scaling (domaine) Centring + Scaling (domaine)

SVDD 82 71

SVDD+Gaussian 83 83

SVDD+Polynomial 79
d=2 d=3 d=4

82.94 83.62 83.67

Following this preprocessing (scaling + centering), when
we increase the value of the degree d , the accuracy of
the learning with SVDD and polynomial kernel don’t de-
crease like in the case without preprocessing; However,
we found a slight improvement. We note that the SVDD
with polynomial kernel is improved to be at the same level
of performance as the standard SVDD and SVDD with
Gaussian kernel. Therefore, it is obvious that it would be
interesting to learn with the standard SVDD (simple model);
and deal with the problem of choosing the appropriate kernel
function and its parameters.



5. Conclusion

In this paper, the performance of intrusion detection
systems based on the SVDD method is tested using two
types of kernel functions, namely polynomial and Gaussian.
Both Kernel functions give a better score than the standard
SVDD. However, the most appropriate function as well as
its parameters can only be fixed experimentally, i.e. after
having the test results.

Then, a feature scaling technique is applied as a prepro-
cessing. As a result, we obtain an improvement in all tested
models, namely the standard SVDD, SVDD with Gaussian
kernel, and SVDD with polynomial kernel. But the latter
remains less powerful than the other. This is rectified by
applying another preprocessing, namely the data centering
which consists to moving the origin of the features spaces
to the gravity center of the scatter.

Therefore, after getting three scores (of the three models)
almost equal, we can say that the feature scaling and the data
centering allow to overcome the hard problem of choosing
the appropriate kernel function and its parameters.
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