
A Programmers Guide to
MMT

Tony Clark, King’s College London

Andy Evans, University of York

Stuart Kent, University of Kent

CHAPTER 1 Introduction 1

CHAPTER 2 A Simple Example 3

CHAPTER 3 Data Values 13

Integers 13

Booleans 14

Strings 15

A Calculator for Integer Expressions 16

Collections 21

Sets 22

Sequences 23

Functions 23

A Tree Manipulation Package 25

Free Variables 28

Instances 34

Objects 35

DataBase Queries 35

State and Debugging 51

CHAPTER 4 Name Spaces 53

CHAPTER 5 Classes 55

Introduction 55

Class Definitions 56
Instantiation 57

Invariants 58

The Structure and Behaviour of Classes 68
The Classifier Interface 68
Methods 72
Constraints 73
Great Events of the Twentieth Centuryi

A Programmer’s Guide to MMT i

The Class Interface 73
Attributes 74

State Transition Machines 74

Inheritance and Method Combination 81
RunAll 83

CHAPTER 6 Packages 87

The Package Definition 88

Animals 89

The Package Interface 92

A Robot Command Language 93

Filmstrips 103

Calculations 114

CHAPTER 7 Snapshots 123

CHAPTER 8 Relations 125

CHAPTER 9 Templates 127

Quote - Unquote 128

Containership 129

Indexed Containership 132

CHAPTER 10 Graphical User Interfaces 137

CHAPTER 11 Diagrams 139

CHAPTER 12 Meta-programming in MMT 141

Metaclasses 142
ii Great Events of the Twentieth Century

ii A Programmer’s Guide To MMT

Metapackages 142

Classifiers and Data Types 142
Constants 143
Enumerated Types 145
Tuples 147
Ranges 148

CHAPTER 13 The MML Grammar 151
Great Events of the Twentieth Centuryiii

A Programmer’s Guide to MMT iii

iv Great Events of the Twentieth Century

iv A Programmer’s Guide To MMT

CHAPTER 1 Introduction
Software systems no longer consist of a small collection of modules whose interac-
tions are easy to control. The use of networking and the increasing speed of hard-
ware means that large distributed systems can implement a diverse range of
sophisticated applications.

Methods and tools for software development lag behind advances in hardware and
do not address the needs of heterogeneous system development. There have been
some advances in recent years, in particular object-oriented methods including the
Unified Modeling Language. However, there is increasing evidence that a silver
bullet for software development does not exist: no single development technology
is sufficient to support the life-cycle of large scale applications.

Each aspect of an application must be modelled and combined to form a complete
design. Aspects include the business logic, the component distibution, the informa-
tion structure and the use cases. Aspects overlap in terms of their information con-
tent and must be shown to be consistent.

Development proceeds by transforming different views of a system through a
number of increasingly detailed stages. Ultimately a system must be expressed as a
collection of interacting implementation modules. Aspect models are translated and
merged.
Great Events of the Twentieth Century1

A Programmer’s Guide to MMT 1

Introduction

2

2

In order for development to succeed as a quality controlled process all features
must be modelled including high level aspect models, low level implementation
models, consistency checks between models at the same level of abstraction and
translations between models at different levels of abstraction.

Our approach advocates treating software development as a series of transforma-
tions applied to models. Complexity in development is controlled by expressing
large models as a combination of smaller models. Diversity in applications is sup-
ported by the development of specific modelling languages at all levels of abstrac-
tion during development. Diverse languages are used in consort by modelling
consistency relationships that must be preserved by successive development refine-
ments.

To support this approach we have developed a method and technologies that sup-
port the method. The technologies have been implemented in terms of a meta-pro-
gramming environment called MMT. The aim of this book is to provide a primer
on MMT from the ground up.

MMT is a reflexive open meta-programming environment in the style of Smalltalk,
CLOS and ObjVLisp. It is organised as a virtual machine that runs a small object
language. A programming language (called MML) is performed on the VM by
translation to the smaller object language. Most features of MMT are written in
MML. Since MML is object-oriented its behaviour can be re-defined and extended
by the user.

MML provides a collection of classes that support most aspects of main-stream
object-oriented development. In addition MML implements features that directly
support the MMM method of object design.

This book is organised as a series of chapters. The order of the chapters reflects the
layering of MML libraries. The earlier chapters on data values and classes describe
essential features of the environment. Later chapters will be of interest to readers
who want to use advanced features of MMT, for example to develop new meta-lan-
guages or to tailor the graphical toolset.
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

CHAPTER 2 A Simple Example
Great Events of the Twentieth Century3

A Programmer’s Guide to MMT 3

A Simple Example

4

4

At its simplest level MMT can be viewed as an interactive object-oriented pro-
gramming environment. MML is a complete object-oriented programming lan-
guage with features including packages, classes, attributes, methods, inheritance,
objects and slots. This section provides an introduction to these features by devel-
oping a simple application in MML.

The example application is a library that consists of books and readers. New books
may be shelved in the library. New readers may be registered with the library. A
shelved book may be borrowed by a registered reader in which case the book is
removed from the library shelves. When the book is returned, it is replaced on the
library shelves.

The application is defined in a file called Library.pkg. The contents of this file is
developed below together with a commentary; the numbers on the left refer to the
line number in the file. MML keywords are in bold font.

1. package Lib

A .pkg file contains a definition, usually a package. Line 1 shows the start of the
definition of a package called Lib. A package definition consists of a collection of
sub-definitions.

2. class Library

Line 2 shows the start of a class definition contained in Lib. A class defines the
structure and behaviour for a collection of objects called its instances. The struc-
ture of a class is defined by its attributes:

3. books : Set(Lib::Book);

4. readers : Set(Lib::Reader);

The class Library defines two attributes named books and readers. The type of the
attribute named books is Set(Lib::Book) meaning that legal values of the slot
named books in instances of the class Library are sets of instances of the class
named Book defined in the package named Lib.

5. registerReader(r:Lib::Reader)

6. self.readers := (self.readers->including(r))

7. end

8. shelveBook(b:Lib::Book)

9. self.books := (self.books->including(b))

10. end
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

Lines 5 - 10 define methods that can be used to add new readers and books to a
library. The method registerReader has a single argument defined on line 5 called r.
The type declaration for r defines that the method will be supplied with instances of
the class named Reader which is defined in the package Lib. The body of the
method is defined in line 6: the currently registered readers are updated with the
new reader.

11. borrow(bookName:String,readerName:String)

12. if self.bookShelved(bookName) and

13. self.registeredReader(readerName)

14. then let book = self.findBook(bookName)

15. reader = self.findReader(readerName)

16. in self.removeBook(bookName) []

17. reader.borrow(book)

18. end

19. else state.error("Library::borrow")

20. endif

21. end

Lines 11 - 21 show the definition of a method that defines how books are borrowed
from a library. The body of the method provides examples of a conditional expres-
sion (lines 12 - 20) and a let expression that introduces local variables (lines 14 -
18), sequencing of execution (using the [] operator in line 16). The method body
also includes a collection of method calls, for for example reader.borrow(book) on
line 17 invokes the method named borrow on the object named reader and passes
bookName as an argument.

Line 19 shows how MMT handles errors. The name state refers to an object that
represents the MMT system. This object implements a number of system methods,
one of which is used to report errors.

22. return(bookName:String,readerName:String)

23. if self.borrows(readerName,bookName)

24. then let reader = self.findReader(readerName)

25. book = reader.findBook(bookName)

26. in reader.return(book) []

27. self.return(book)

28. end

29. else state.error("Library::return")

30. endif
Great Events of the Twentieth Century5

A Programmer’s Guide to MMT 5

A Simple Example

6

6

31. end

32. return(b:Library::Book)

33. self.books := (self.books->including(b))

34. end

35. removeBook(name:String)

36. self.books := (self.books->reject(b | b.name = name))

37. end

Lines 22 - 37 define methods used to return a book and remove a book that is cur-
rently borrowed.

The methods defined so far are all imperative since thay are used for their side
effects on a library object. Methods may also be defined as queries. A query is used
to produce a value in the context of a current object state; it does not cause any side
effects. MML methods may be defined to be queries, imperative or a mixture of the
two. The following is an example of a query:

38. borrows(r:String,b:String):Boolean

39. if self.registeredReader(r)

40. then self.findReader(r).borrows(b)

41. else false

42. endif

43. end

The query defined on lines 38 - 42 is supplied with a reader name and a book name
and returns true when the reader currently borrows the book. Note that in addition
to declaring the argument types, the method named borrows declares that its return
value is of type Boolean.

44. bookShelved(name:String):Boolean

45. self.books->exists(b | b.name = name)

46. end

47. registeredReader(name:String):Boolean

48. self.readers->exists(r | r.name = name)

49. end

50. findBook(name:String):Lib::Book

51. self.books->select(b | b.name = name).selectElement()

52. end

53. findReader(name:String):Lib::Book

54. self.readers->select(r | r.name = name).selectElement()
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

55. end

56. end

Lines 44 - 55 define a collection of queries. They provide examples of iteration
expressions: exists and select. An exists expression is applied to a collection (in
line 45 the set self.books) and returns true when one of the elements of the collec-
tion (referred to as b in the expression body on line 45) satisfies the boolean
expression body. A select expression is applied to a collection and returns a sub-
collection whose elements all satisfy a given boolean expression. On line 51 a col-
lection is created that consists of all books with the given name. A set has a method
named selectElement that randomly returns an element from the set.

Books and readers in a library are both examples of indexed elements. An indexed
element has a feature that is used to distinguish it from other elements of the same
type. In the case of books and readers we will use a name as a distinguishing fea-
ture. Rather than duplicate a name attribute in classes for books and readers we will
use inheritance. The following is a class of element that are indexed by name:

57. class Indexed

58. name : String;

59. init(s:Seq(Instance)):Object

60. self.name := (s->at(0)) []

61. self

62. end

63. toString():String

64. "<" + self.of.name + " " + self.name + ">"

65. end

66. end

Indexed provides examples of two standard MML features: object initialisation and
objct display. When a new instance of a class is created the object is initialised by
passing some initialisation values to the method named init. By default all classes
have an empty init method that may be redefined. The class named Indexed defines
an init method on lines 59 - 62. The method is passed a sequence of values and
must return the receiver of the message (self). The method expects the first element
of the initialisation values (at index 0) to be the name of the new object.

MMT displays objects by invoking their toString method (Java has a similar mech-
anism). By default, all objects have a toString method that cen be redefined. A gen-
eral rule is that an object is displayed in the form <Type Data> where Type
describes the type of the object and Data is some object-specific information about
Great Events of the Twentieth Century7

A Programmer’s Guide to MMT 7

A Simple Example

8

8

the object. In the case of Indexed, the name of the class of the receiver is the type
and the name is displayed as the data.

67. class Book extends Lib::Indexed end

Line 67 shows how a book is defined as a sub-class of Indexed.

68. class Reader extends Lib::Indexed

69. books : Set(Lib::Book);

70. borrow(b:Lib::Book)

71. self.books := (self.books->including(b))

72. end

73. borrows(n:String):Boolean

74. self.books->exists(b | b.name = n)

75. end

76. findBook(n:String):Lib::Book

77. self.books->select(b | b.name = n).selectElement()

78. end

79. return(b:Lib::Book)

80. self.books := (self.books->excluding(b))

81. end

82. end

Lines 68 - 82 complete the definition of the library classes. The class Reader is a
sub-class of Indexed. Methods named borrow and return provide examples of
including and excluding expressions which add and remove elements from sets.

MMT is an interactive environment. New definitions may be dynamically loaded
and become part of the top-level name space. When developing a new package it is
useful to define a test suite as a collection of package methods:

83. test()

84. let l = Lib::Library.new(Seq{})

85. fred = Lib::Reader.new(Seq{"Fred"})

86. barney = Lib::Reader.new(Seq{"Barney"})

87. b1 = Lib::Book.new(Seq{"Book1"})

88. b2 = Lib::Book.new(Seq{"Book2"})

89. in Lib::printLibrary(l) []

90. l.registerReader(fred) []

91. l.registerReader(barney) []

92. l.shelveBook(b1) []
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

93. l.shelveBook(b2) []

94. Lib::printLibrary(l) []

95. l.borrow("Book1","Fred") []

96. Lib::printLibrary(l) []

97. l.borrow("Book2","Barney") []

98. Lib::printLibrary(l) []

99. l.return("Book1","Fred") []

100. Lib::printLibrary(l)

101. end

102. end

Lines 83 - 102 define a package method called test. The method creates a number
of local objects by instantiating the library classes and then performs a number of
library operations using them. The printLibrary method is defined below:

103. printLibrary(l:Lib::Library)

104. ("Books = " + l.books.toString()).println() []

105. "Readers:".println() []

106. Lib::printReaders(l.readers) []

107. "\n".print()

108. end

109. printReaders(s:Set(Lib::Reader))

110. if not s->isEmpty

111. then let r = s.selectElement()

112. in Lib::printReader(r) []

113. Lib::printReaders(s->excluding(r))

114. end

115. endif

116. end

117. printReader(r:Lib::Reader)

118. (" " + r.name).println() []

119. (" Books: " + r.books.toString()).println()

120. end

121.end

The printing methods use the string operations called print and println to print to
the standard output. The println operation is the same as print except it appends a
newline (\n) character to the output.
Great Events of the Twentieth Century9

A Programmer’s Guide to MMT 9

A Simple Example

10

10
The library package is loaded into MMT by clicking on the load button on the
browser window, navigating to and selecting the file. Once loaded, the package
named Lib can be referenced by name in the MMT base window:

MMT> Lib;
<Package Lib>
MMT>

The MMT base window provides a read-eval-print cycle that allows developers to
interact with their models. For example the following transcript shows how the test
method is invoked:

MMT> Lib::test();
Books = Set{}
Readers:
Books = Set{<Book Book1>,<Book Book2>}
Readers:
Fred
Books: Set{}
Barney
Books: Set{}

Books = Set{<Book Book2>}
Readers:
Fred
Books: Set{<Book Book1>}
Barney
Books: Set{}

Books = Set{}
Readers:
Fred
Books: Set{<Book Book1>}
Barney
Books: Set{<Book Book2>}

Books = Set{<Book Book1>}
Readers:
Fred
Books: Set{}
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

Barney
Books: Set{<Book Book2>}
Great Events of the Twentieth Century11

A Programmer’s Guide to MMT 11

A Simple Example

12

12
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

CHAPTER 3 Data Values
MMT computes in terms of data values. The data values are: integers; booleans;
strings; sets; sequences; arrays; functions and objects. Everything in MMT is a data
value of one of these types. This chapter introduces the basic data value types.

Integers

MMT integers are all instances of the classifier named Integer. This classifier pro-
vides a collection of operations that may be performed on integers. Syntactic sup-
port for many of these operations is built in to the MMT parser so, for example, we
write 10 * 2 rather than 10.mul(2). The following interface shows the main integer
operations, the keyword metaclass declares that the MMT object named Integer is a
data type and the keyword extends declares that all integers are MMT instances
(the root of the MMT clas hierarchy).

1. classifier Integer metaclass DataType extends Instance

2. sqrt(other:Integer):Integer

3. add(other : Integer):Integer

4. sub(other : Integer):Integer

5. mul(other : Integer):Integer
Great Events of the Twentieth Century13

A Programmer’s Guide to MMT 13

Data Values

14

14
6. div(other : Integer):Integer

7. greater(other : Integer):Boolean

8. greaterOrEql(other : Integer):Boolean

9. less(other : Integer):Boolean

10. lessOrEql(other : Integer):Boolean

11. to(upper : Integer):Seq(Integer)

12. isWhiteSpace():Boolean

13. max(other : Integer):Integer

14. equals(other : Instance):Boolean

15. end

Most integer operations should be self explanatory. The method named to gener-
ates a sequence of integers starting with the receiver and ending with the argument
named upper.

The default value for an integer is 0.

Booleans

A boolean value is either true or false. These are builtin MMT constants with the
following interface:

1. classifier Boolean metaclass DataType extends Instance

2. and(other : Boolean):Boolean

3. or(other : Boolean):Boolean

4. not(other : Boolean):Boolean

5. xor(other : Boolean):Boolean

6. equals(other:Instance):Boolean

7. end

The default boolean value is true.
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

Strings
Strings

A string is a sequence of characters. Strings are builtin MMT values with the fol-
lowing interface:

1. classifier String metaclass DataType extends Instance

2. print():Instance

3. println():Instance

4. less(s : String):Boolean

5. greater(s : String):Boolean

6. equals(s : String):Boolean

7. add(s : String):String

8. at(n : Integer):Integer

9. hasPrefix(s : String):Boolean

10. strip1(c : Integer):String

11. stripPrefix(s : String):String

12. stripLeadingWhiteSpace():String

13. find(s : String):String

14. nextName():String

15. splitAt(char : Integer):Seq(String)

16. repeat(n : Integer):String

17. end

The method print prints a string to the standard output. The method println prints
and appends a newline character. Strings are compared using greater (>), less (<)
and equals (=). Strings are concatenated using add (+). The characters in a string
are indexed starting from 0, s->at(n) returns the character at index n. Th emethod
hasPrefix tests whether the recsiever has the given prefix. The method strip1
removes the first occurrence of the given character. The method stripPrefix
removes the given prefix. The method stripLeadingWhiteSpace removes leading
spaces and newline characters and returns a new string. The method find takes a
string and returns the longest suffix of the receiver that has the given string as a
prefix. The method nextName returns the longest prefix of the receiver that con-
sists of non-white space characters. The method splitAt returns a sequence of sub-
strings formed by splitting the receiver at the given character. The method repeat
returns a string that is the concatenation of the receiver with itself the given number
of times.
Great Events of the Twentieth Century15

A Programmer’s Guide to MMT 15

Data Values

16

16
The default string is empty ““.

A Calculator for Integer Expressions

The following example provides an example of integer operators in addition to
some useful string and sequence operations:

1. class Calc
2. input:String;

3. init(s:Seq(Instance)):Object

4. self.input := (s->at(0)) []

5. self

6. end

A calculator is created with a numeric expression represented as a string. Examples
of expressions are “10 + 2” and “10 + 2 > 37 - 3”. The evaluator for expressions is
to be implemented as a recursive descent parser:

7. exp():Integer

8. let b = self.compare()

9. in cond

10. self.match('&') then

11. self.consumeChar() []

12. b and self.exp();

13. self.match('|') then

14. self.consumeChar() []

15. b or self.exp();

16. else b

17. end

18. end

19. end

An expression is parsed and evaluated using the method named exp. Line 8 parses
a comparison expression (involving operators ‘>’, ‘<‘ and ‘=’) which returns an
integer or boolean b. Line 9 is the start of a conditional expression with multiple
cases. The first case on line 10 tests to see of an ‘&’ operator follows the compari-
son expression. If so then the operator is consumed, the following boolean value is
evaluated and combined with b using the infix boolean operator and. The second
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

A Calculator for Integer Expressions
case parses an or operator ‘|’. If no operators are found (line 16) then the evaluation
is complete and the value b is returned.

An MMT character is surrounded by quote characters. Characters are represented
ASCII integer codes and can therefore be compared using operators such as > and
=. Control characters are prefixed by a backslash for example ‘\n’ is the newline
character.

An MMT string is enclosed in string quotes. A string s may be transformed into a
sequence of characters using s->asSequence. The sequence may be processed as a
sequence of integers (perhaps translating to upper case or adding and removing
characters) and then translated back to a string using the method asString(). The
following expression causes no change to the string s: s->asSequence.asString().

The following methods use the same techniques as exp to encode evaluators for
various operators at different levels of precedence:

20. compare():Integer

21. let n = self.binary()

22. in

23. cond

24. self.match('>') then

25. self.consumeChar() []

26. n > self.compare();

27. self.match('<') then

28. self.consumeChar() []

29. n < self.compare();

30. self.match(‘=’) then

31. self.consumeChar() []

32. n = self.compare();

33. else n

34. end

35. end

36. end

37. binary():Integer

38. let n = self.unary()

39. in

40. cond

41. self.match('+') then

42. self.consumeChar() []
Great Events of the Twentieth Century17

A Programmer’s Guide to MMT 17

Data Values

18

18
43. n + self.binary();

44. self.match('-') then

45. self.consumeChar() []

46. n - self.binary();

47. self.match('*') then

48. self.consumeChar() []

49. n * self.binary();

50. self.match('/') then

51. self.consumeChar() []

52. n / self.binary();

53. else n

54. end

55. end

56. end

57.

58. unary():Integer

59. cond

60. self.match('~') then

61. self.consumeChar() []

62. not self.unary();

63. self.match('-') then

64. self.consumeChar() []

65. - self.unary();

66. else self.number()

67. end

68. end

The recursive descent expression parser terminates at integer numbers. A number
is a sequence of numeric characters or a general expression enclosed in parenthe-
ses. The number parser must arrange for a sequence of numeric characters to be
translated into the equivalent integer.

69. number():Integer

70. if self.endOfInput()

71. then state.error("Expecting a number.")

72. else let n = self.peekInteger()

73. in cond

74. self.isNumericChar(n) then

75. self.consumeChar() []
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

A Calculator for Integer Expressions
76. self.number(n);

77. self.match('(') then

78. self.consumeChar() []

79. let n = self.exp()

80. in self.consume(')') [] n

81. end;

82. else state.error("Expecting a numeric char.")

83. end

84. end

85. endif

86. end

The numeric expression parser calls a method with the same name on line 76. The
call passes a single argument whereas the definition of number on line 69 has no
arguments. This is an example of method overloading in MMT. A class may define
a number of methods with the same name (either directly or via inheritance) pro-
viding that the methods all have a different number of arguments.

The method named number with arity 1 is used to parse a sequence of numeric
characters and translate them into an integer. The method is recursive; it continu-
ally consumes integer characters and adds them to the running total n. Each time a
new integer is added the running total must be multiplied by 10.

87. number(n:Integer):Integer

88. if self.endOfInput()

89. then n

90. else let m = self.peekInteger()

91. in if self.isNumericChar(m)

92. then self.consumeChar() []

93. self.number((n * 10) + m)

94. else n

95. endif

96. end

97. endif

98. end

The parsing methods define in lines 1 - 98 use a number of auxilary methods to
manipulate the underlying input stream. These methods are defined below.

99. consume(c:Integer)
Great Events of the Twentieth Century19

A Programmer’s Guide to MMT 19

Data Values

20

20
100. if self.match(c)

101. then self.consumeChar()

102. else state.error("Expecting: " + c)

103. endif

104. end

105.

106. match(c:Integer):Boolean

107. self.stripLeadingWhiteSpace() []

108. if self.endOfInput()

109. then false

110. else self.peek() = c

111. endif

112. end

The method named consume expects to find the character c as the next input ele-
ment. If c is present then the character is consumed. The method named match
returns true when the next input character is c.

113. stripLeadingWhiteSpace()

114. self.input := (self.input.stripLeadingWhiteSpace())

115. end

The method named stripLeadingWhiteSpace on lines 113 - 115 continually con-
sumes white space characters at the head of the input until the input is exhausted or
a non-white space character is found. This uses a method defined by strings of the
same name.

116. endOfInput():Boolean

117. self.input = ""

118. end

The method endOfInput defined on lines 116 - 118 returns true when the sequence
of input characters is exhausted.

119. peek():Integer

120. self.stripLeadingWhiteSpace() []

121. self.input->asSequence->at(0)

122. end

123.

124. peekInteger():Integer

125. self.peek() - '0'
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

Collections
126. end

The ‘peeking’ methods defined on lines 119 - 126 are used to inspect the next input
character without consuming it. Line 125 shows how numeric characters can be
converted to integers by subtracting the ASCII character code for 0.

127. consumeChar()

128. self.input := (self.input->asSequence.tail.asString())

129. end

A character is consumed by the method defined on lines 127 - 129. The input is
translated to a sequence of characters. A sequence has slots for its head and tail.

The head is removed and the resulting sequence is translated back to a string1.

The class Calc is completed by defining a numeric character predicate:

130. isNumericChar(n:Integer):Boolean

131. n >= 0 and n < 10

132. end

133. end

Collections

MMT implements two types of collections: sets and sequences. Values of these
types are instances of the common super-class CollectionOfInstance that defines
common operations.

1. classifier CollectionOfInstance metaclass DataType extends Instance

2. size():Integer

3. isEmpty():Boolean

4. asSet():Set(Instance)

5. asSequence():Seq(Instance)

6. exists(f : Closure):Boolean

1. The input would probably be represented as a sequence of integer character codes if we
were doing this for real. Translating it back to a string gives the opportunity of showing
how a string is transformed. Note also the parentheses around the expression after := in
line 128, this is a quirk arising from the operator precedence of :=.
Great Events of the Twentieth Century21

A Programmer’s Guide to MMT 21

Data Values

22

22
7. forAll(f : Closure):Boolean

8. end

The method size returns the number of elements in the collection. The method
asSet translates the collection to a set. The method asSequence translates the col-
lection to a sequence. The method exists returns true when the collection contains
at least one element that satisfies the predicate f. The method forAll returns true

when every element in the collection satisfies the predicate f.2

Sets

A set is an instance of the data type SetOfInstance. SetOfInstance is an instance of
DataType and inherits from CollectionOfInstance:

1. classifier SetOfInstance metaclass DataType extends CollectionOfInstance

2. subset(s : Set(Instance)):Boolean

3. setUnion(s : Set(Instance)):Set(Instance)

4. setDifference(s : Set(Instance)):Set(Instance)

5. iterate(f : Closure, v : Instance):Instance

6. collect(f : Closure):Set(Instance)

7. reject(f : Closure):Set(Instance)

8. select(f : Closure):Set(Instance)

9. excluding(v : Instance):Set(Instance)

10. includes(v : Instance):Boolean

11. intersection(s : Set(Instance)):Set(Instance)

12. union(s : Set(Instance)):Set(Instance)

13. product(s : Set(Instance)):Set(Instance)

2. The language MML is OCL-like and as such provides specific syntax support for collec-
tion expressions using the arrow ->. For example: c->size, c->asSet and c->exists(x | x >
10). Each collection method that is defined by OCL is defined as an MML keyword.
Since keywords cannot be used for method names it is therefore not currently possible to
invoke s.size(). To get round this you can use << and >> around method names as in
s.<<“size”>>(). In this context the << and >>protect the method name from being inter-
preted as an MML keyword.
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

Sequences
14. flatten():Set(Instance)

15. power(Set(Set(Instance))

16. end

Sequences

1. classifier SeqOfInstance metaclass DataType extends CollectionOfInstance

2. iterate(f : Function, v : Instance):Instance

3. collect(f : Closure):Seq(Instance)

4. reject(f : Closure):Seq(Instance)

5. select(f : Closure):Seq(Instance)

6. append(s : SeqOfInstance):Seq(Instance)

7. at(i : Integer):Instance

8. last():Instance

9. separateWith(separator : String):String

10. zip(s : Seq(Instance)):Instance

11. flatten():Seq(Instance)

12. remove(v : Instance):Seq(Instance)

13. reverse():Seq(Instance)

14. qsort():Seq(Instance)

15. qsort(f : Closure):Seq(Instance)

16. end

Functions

MMT supports first class functions that can be created dynamically, stored in slots,
passed as argumentsto methods (and functions) and returns as results. Functions
provide a very flexible way of encoding behaviour and allow components to be
parameterised with respect to a wide range of different behaviours.

MMT functions are instances of the class Closure which has the following inter-
face:
Great Events of the Twentieth Century23

A Programmer’s Guide to MMT 23

Data Values

24

24
1. class Closure

2. sourceCode : Exp ;

3. self : Instance ;

4. body : Array ;

5. locals : Integer ;

6. globals : Array ;

7. args : Integer ;

8. globalNames : Seq(String) ;

9. argNames : Seq(String) ;

10. apply(args : Seq(Instance)):Instance

11. end

A function is created by evaluating an expression of the form:

fun(<argList>) [:<type>] <exp> end

where <argList> is a comma separated sequence of arg declarations. An arg decla-
ration is a name followed by an optional type of the form :<type>. The source code
of the function body is the value of the sourceCode slot of the function (line 2). The
source code is an expression object. MMT is a compiled system so changing the
source code of a function will not have any effect (although it is possible to recom-
pile a function this is not currently available).

Often a function is created in the context of a method in which case the special var-
iable ‘self’ refers to the receiver of the message that caused the method to be
invoked. A new function will capture the current value of self (line 3). This can be
modified by updating this slot. The body of a function is an array of VM instruc-
tions (line 4). A function is performed by applying it to arguments, the number of
arguments is the value of the slot args (line 7) and the names of the arguments are
the valueof the slot argNames (line 9).

A function contains references to variables that are defined in a surrounding scope.
These variabels are ‘global’ to the function; their names are held in the slot global-
Names (line 8) and their corresponding values are in globals (line 6). The maxi-
mum number of local variables that the function requires (related to the size of the
machine stack frame) is defined by locals (line 5).

A function is perfoemd by applying it to some arguments. The same effect can be
achieved by invoking the apply method (line 10).
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

A Tree Manipulation Package
A Tree Manipulation Package

The following example shows how operations over a recursively defined structure
can be parameterised with functions. The operations define the general mecha-
nisms for updating and transforming the structure.

A tree node contains some data and a sequence of children nodes:

1. package Trees

2. class Node

3. data : Instance;

4. nodes : Seq(Trees::Node);

The data part of a node is supplied whtn the node is created and child nodes may be
added using the addNode method. Line 11 provides an example of appending two
sequences together:

5. init(s:Seq(Instance)):Object

6. self.data := (s->at(0)) []

7. self

8. end

9.

10. addNode(n:Trees::Node)

11. self.nodes := (self.nodes->append(Seq{n}))

12. end

A useful tree operation involves applying an update to the data at each of the nodes
in the tree. The mechanics of such a tree transformation is the same for every data
update operation. MMT allows functions, or closures, as first class data values.
Great Events of the Twentieth Century25

A Programmer’s Guide to MMT 25

Data Values

26

26
Functions may be passed as arguments to methods, returned from methods, held in
collections and placed in object slots. Once created, a function is performed by
supplying it with its arguments. The following method defined a tree transforma-
tion. The particular data update operation is supplied as the value of the argument f:

13. transform(f:Closure)

14. self.data := (f(self.data)) []

15. self.nodes->collect(n | n.transform(f))

16. end

The transformation method defined on lines 13 - 16 performed an update in place
on all the data held in nodes. The operation therefore cannot change the shape of
the tree or produce a value computed in terms of the tree data. A much more flexi-
ble operation can be defined in terms of functions. A node consists of a data part
and a sequence of child nodes. The following method is supplied with a function
that transforms the data part of each node and a binary function that combines the
transformed data into new structures:

17. fold(binFun:Closure,unFun:Closure):Instance

18. self.nodes->iterate(n w = unFun(self.data) |

19. binFun(w,n.fold(binFun,unFun)))

20. end

21. end

The method named fold on lines 17 - 20 uses an iterate expression to transform and
combine the data elements in a node and its children. The iterate expresion on lines
18 - 19 selects each child node n in turn. The expression initialises w by applying
the unary function unFun to the data element. For each value of n the body of the
iterate expresion is performed on line 19 and the resulting value is the new value of
w for the next value of n. Each time round this loop the value of w is computed by
applying binFun to the current value of w and the folded value of the child node n.

The class Node defined on lines 1 - 21 defines a simple tree structure with some
general methods. The following method provides examples of how this could be
used to represent a tree of integers and perform some operations on the tree:

22. test()

23. let n1 = Trees::Node.new(Seq{1})

24. n2 = Trees::Node.new(Seq{2})

25. n3 = Trees::Node.new(Seq{3})

26. n4 = Trees::Node.new(Seq{4})
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

A Tree Manipulation Package
27. n5 = Trees::Node.new(Seq{5})

28. n6 = Trees::Node.new(Seq{6})

29. n7 = Trees::Node.new(Seq{7})

30. n8 = Trees::Node.new(Seq{8})

31. id = fun(x) x end

32. in n1.addNode(n2) []

33. n1.addNode(n3) []

34. n2.addNode(n4) []

35. n2.addNode(n5) []

36. n3.addNode(n6) []

37. n3.addNode(n7) []

38. n7.addNode(n8) []

Lines 22 - 38 create nodes n1 to n8 containing integers. The function named id per-
forms the identity operation. The addNode method is used to link up the nodes into
a tree structure.

39. n1.transform(fun(x) x + 1 end) []

The first example of a tree operation is shown on line 39 where every node is
updated by adding 1 to its data element.

40. n1.fold(fun(x,y) x + y end,id).toString().println() []

Line 40 folds the tree by adding up every element and then printing the result to the
standard output.

41. n1.fold(fun(x,y) x * y end,id).toString().println() []

Line 41 folds the tree by multiplying all the values together and then printing the
result.

42. n1.fold(

43. fun(s1,s2)

44. s1->append(s2)

45. end,

46. fun(x)

47. Seq{x}

48. end).toString().println() []
Great Events of the Twentieth Century27

A Programmer’s Guide to MMT 27

Data Values

28

28
Lines 42 - 48 define a fold that transforms a tree by flattening the structure and
returning a sequence of integers that is then printed to the standard output. This is
an example showing how the folding mechanism can be used to transform from
one structure to another. The following example shows how a tree can be trans-
formed into another tree of the same shape but where the data has been changed.
The example involves two fold transformations placed in sequence. The first trans-
formation copies the tree structure adding 10 to each data element. The second
transformation checks whether all elements in the tree are greater than 11:

49. n1.fold(

50. fun(node,child)

51. node.addNode(child) []

52. node

53. end,

54. fun(x)

55. Trees::Node.new(Seq{x+10})

56. end).fold(

57. fun(x,y)

58. x and y

59. end,

60. fun(x)

61. x > 11

62. end).toString().println()

63. end

64. end

65.

66. end

Free Variables

The source code of a function is an instance of the class Exp. All features of MMT
are represented as instances of MMT classes and MML is no exception. Access to
expressions is important because MMT can be used to construct models of systems
or prototype implementations and then transformations can be applied to both the
structure and behaviour of the system in order to realise it as a concrete implemen-
tation.
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

Free Variables
This section defines a package FreeVars that implements a method to calculate the
free variables of a function. The package is not particularly interesting in itself
(although it is used as part of the compiler for MMT) however it uses all the
classes representing MML source code and in particular their slots.

1. package FreeVars
2. freeVars(f:Closure):Set(String)

3. let e = f.sourceCode

4. a = f.argNames

5. in FreeVars::free(e).setDifference(a)

6. end

7. end

Lines 1 - 7 introduce the package FreeVars. The method freeVars is applied to a
closure and produces a set of free variable names defined in the body of the clo-
sure.

8. free(e:Exp):Set(String)

9. cond

10. e.isKindOf(Add) then

11. // e1 + e2

12. FreeVars::free(e.left)->union(FreeVars::free(e.right));

The method free (line 8) is applied to an expression and produces a set of free vari-
able names defined in the expression. Thr method proceeds by case analyisis on the
type of the expression e. Each case, tests the type of e and then calculates the free
variables in terms of the structure of the expression. In each case the calculation
involves referencing all the structural slots of the expression object.

Lines 10 - 12 show how the free variables of an addition expression are con-
structed. An addition expression consists of a left and a right sub-expression. The
free varibles of the addition expression are the union of the free varibles of the two
sub-expressions.

13. e.isKindOf(And) then

14. // e1 and e2
15. FreeVars::free(e.left)->union(FreeVars::free(e.right));

16. e.isKindOf(Append) then

17. // e1->append(e2)

18. FreeVars::free(e.left)->union(FreeVars::free(e.right));

19. e.isKindOf(Apply) then
Great Events of the Twentieth Century29

A Programmer’s Guide to MMT 29

Data Values

30

30
20. // e(e1,e2,...,en)

21. e.operands->iterate(x S = FreeVars::free(e.operator) |

22. S->union(FreeVars::free(x)));

23. e.isKindOf(AsSequence) then

24. // e->asSequence

25. FreeVars::free(e.exp);

26. e.isKindOf(AsSet) then

27. // e->asSet

28. FreeVars::free(e.exp);

29. e.isKindOf(At) then

30. //e1->at(e2)

31. FreeVars::free(e.left)->union(FreeVars::free(e.right));

32. e.isKindOf(AttributeDef) then

33. // n : t

34. Set{};

Lines 13 - 34 define how to construct the free variables of and expressions to
attribute definitions in class definitions. A class definition is as follows:

35. e.isKindOf(ClassDef) then

36. // class name metaclass meta extends supers atts methods inv end
37. FreeVars::free(e.meta)->union(

38. e.supers->iterate(x S = Set{} |

39. S->union(FreeVars::free(x)))->union(

40. e.attributes->iterate(a S = Set{} |

41. S->union(FreeVars::free(a)))->union(

42. e.methods->iterate(m S = Set{} |

43. S->union(FreeVars::free(m)))->union(

44. e.invariants->iterate(i S = Set{} |

45. S->union(FreeVars::free(i)))))));

A class definition consists of a metaclass (an expression), a sequence of super
classes (expressions), some attributes (attributes definitions), some methods
(method definitions) and invariants (constraint definitions).

46. e.isKindOf(Collect) then

47. // e1->collect(v | e2)
48. FreeVars::free(e.coll)->union(FreeVars::free(e.body)->excluding(e.var));

49. e.isKindOf(Div) then
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

Free Variables
50. // e1 / e2

51. FreeVars::free(e.left)->union(FreeVars::free(e.right));

52. e.isKindOf(Eql) then

53. // e1 = e2

54. FreeVars::free(e.left)->union(FreeVars::free(e.right));

55. e.isKindOf(Excluding) then

56. // e1->excluding(e2)

57. FreeVars::free(e.left)->union(FreeVars::free(e.right));

58. e.isKindOf(Exists) then

59. // e1->exists(v | e2)

60. FreeVars::free(e.coll)->union(FreeVars::free(e.body)->excluding(e.var));

61. e.isKindOf(FieldRef) then

62. // e1.n

63. FreeVars::free(e.obj);

64. e.isKindOf(First) then

65. // e1->first

66. FreeVars::free(e.exp);

67. e.isKindOf(Follows) then

68. // e1 [] e2
69. FreeVars::free(e.left)->union(FreeVars::free(e.right));

70. e.isKindOf(ForAll) then

71. // e1->forAll(v | e2)

72. FreeVars::free(e.coll)->union(FreeVars::free(e.body)->excluding(e.var));

73. e.isKindOf(Function) then

74. // fun(args) body end

75. FreeVars::free(e.body).setDifference(e.args->asSet);

76. e.isKindOf(Greater) then

77. // e1 > e2

78. FreeVars::free(e.left)->union(FreeVars::free(e.right));

79. e.isKindOf(GreaterOrEql) then

80. // e1 >= e2

81. FreeVars::free(e.left)->union(FreeVars::free(e.right));

82. e.isKindOf(Id) then

83. // name

84. Set{e.name};

85. e.isKindOf(If) then

86. // if test then consequent else alternative endif
Great Events of the Twentieth Century31

A Programmer’s Guide to MMT 31

Data Values

32

32
87. FreeVars::free(e.test)->union(

88. FreeVars::free(e.consequent)->union(

89. FreeVars::free(e.alternative)));

90. e.isKindOf(Implies) then

91. // e1 implies e2

92. FreeVars::free(e.left)->union(FreeVars::free(e.right));

93. e.isKindOf(Includes) then

94. // e1->includes(e2)

95. FreeVars::free(e.left)->union(FreeVars::free(e.right));

96. e.isKindOf(Including) then

97. // e1->including(e2)

98. FreeVars::free(e.left)->union(FreeVars::free(e.right));

99. e.isKindOf(Intersection) then

100. // e1->intersection(e2)

101. FreeVars::free(e.left)->union(FreeVars::free(e.right));

102. e.isKindOf(IsEmpty) then

103. // e->isEmpty

104. FreeVars::free(e.exp);

105. e.isKindOf(Iterate) then

106. // coll->iterate(var local = value | body)

107. FreeVars::free(e.coll)->union(

108. FreeVars::free(e.value)->union(

109. FreeVars::free(e.body)->excluding(e.local)->excluding(e.var)));

110. e.isKindOf(Last) then

111. // e1->last

112. FreeVars::free(e.exp);

113. e.isKindOf(Less) then

114. // e1 < e2

115. FreeVars::free(e.left)->union(FreeVars::free(e.right));

116. e.isKindOf(LessOrEql) then

117. // e1 <= e2

118. FreeVars::free(e.left)->union(FreeVars::free(e.right));

119. e.isKindOf(Let) then

120. // let v = e1 in e2 end

121. FreeVars::free(e.value)->union(

122. FreeVars::free(e.body)->excluding(e.local));

123. e.isKindOf(Literal) then

124. // an integer, string or boolean
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

Free Variables
125. Set{};

126. e.isKindOf(Mul) then

127. // e1 * e2

128. FreeVars::free(e.left)->union(FreeVars::free(e.right));

129. e.isKindOf(Neg) then

130. // - e

131. FreeVars::free(e.exp);

132. e.isKindOf(Not) then

133. // not e

134. FreeVars::free(e.exp);

135. e.isKindOf(NotEql) then

136. // e1 <> e2

137. FreeVars::free(e.left)->union(FreeVars::free(e.right));

138. e.isKindOf(Or) then

139. // e1 or e2

140. FreeVars::free(e.left)->union(FreeVars::free(e.right));

141. e.isKindOf(PairExp) then

142. // Seq{e1 | e2}

143. FreeVars::free(e.left)->union(FreeVars::free(e.right));

144. e.isKindOf(Prepend) then

145. // e1->prepend(e2)
146. FreeVars::free(e.left)->union(FreeVars::free(e.right));

147. e.isKindOf(Reject) then

148. // e1->reject(v | e2)

149. FreeVars::free(e.coll)->union(FreeVars::free(e.body)->excluding(e.var));

150. e.isKindOf(Select) then

151. // e1->select(v | e2)

152. FreeVars::free(e.coll)->union(FreeVars::free(e.body)->excluding(e.var));

153. e.isKindOf(Send) then

154. // e.m(e1,...,en)

155. e.args->iterate(a S = FreeVars::free(e.obj) | S->union(FreeVars::free(a)));

156. e.isKindOf(SeqExp) then

157. // Seq{e1,e2,...,en}

158. e.elements->iterate(x S = Set{} | S->union(FreeVars::free(x)));

159. e.isKindOf(SetExp) then

160. // Set{e1,e2,...,en}

161. e.elements->iterate(x S = Set{} | S->union(FreeVars::free(x)));
Great Events of the Twentieth Century33

A Programmer’s Guide to MMT 33

Data Values

34

34
162. e.isKindOf(Size) then

163. // e->size

164. FreeVars::free(e.exp);

165. e.isKindOf(Sub) then

166. // e1 - e2

167. FreeVars::free(e.left)->union(FreeVars::free(e.right));

168. e.isKindOf(SubSequence) then

169. // e->subsequence(e2,e2)

170. FreeVars::free(e.coll)->union(

171. FreeVars::free(e.lower)->union(

172. FreeVars::free(e.upper)));

173. e.isKindOf(SymmetricDifference) then

174. // e1->symmetricDifference(e2)

175. FreeVars::free(e.left)->union(FreeVars::free(e.right));

176. e.isKindOf(Union) then

177. // e1->union(e2)

178. FreeVars::free(e.left)->union(FreeVars::free(e.right));

179. e.isKindOf(Update) then

180. // e1.n := e2

181. FreeVars::free(e.obj)->union(

182. FreeVars::free(e.value));

183. e.isKindOf(Xor) then

184. // e1 xor e2

185. FreeVars::free(e.left)->union(FreeVars::free(e.right));

186. else state.error("FreeVars::free: unknown expression " + e.toString())

187. end

188. end

Instances

Eveything in MMT is an instance of some classifier. The class called Instance is the
root of the class hierarchy and therefore all classes inherit the features defined by
this class:

1. class Instance
2. of : Classifier

3. isKindOf(c : Classifier):Boolean
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

Objects
4. equals(other : Instance):Boolean

5. init():Instance

6. send(message : String, args : Seq(Instance)):Instance

7. end

Every instance has a slot named of that contains its classifier. The method isKindOf
is used to test whether an instance against any given classifier. Instances can be
compared using the method named equals. All instances can be initialised using the
method named init (this is distinct from the method with the same name defined by
Object). The method named send is used to send a message to an instance.

Objects

8. class Object extends Instance

9. slots : Set(Slot)

10. toString():String

11. init(s : Seq(Instance)):Object

12. initSlots():Object

13. slotValue(name : String):Instance

14. hasSlot(name : String):Boolean

15. setSlot(name : String, value : Instance)

16. copy():Object

17. end

DataBase Queries

The following example shows how objects, collections and functions can be com-
bined to implement a simple model of relational databases. The example also
shows how builtin operators such as + are overloaded for user defined classes.

A relational database table consists of columns and rows. Each column has a name
and a type. Each row contains a value of the specified type for each column. SQL is
Great Events of the Twentieth Century35

A Programmer’s Guide to MMT 35

Data Values

36

36
used to perform queries and updates on tables. Suppose that we have the following
table called ageTable:

The following SQL query:

SELECT name,age FROM ageTable WHERE age > 30

produces the following table:

Tables may be joined on common fields. The following table is called addressTa-
ble:

name : String age : Integer

Fred 41

Wilma 31

Barney 38

Bam Bam 3

Bart 9

Homer 38

Pebbles 3

name : String age : Integer

Fred 41

Wilma 31

Barney 38

Homer 38

name : String address : String

Fred Bedrock

Wilma Bedrock

Barney Bedrock

Bam Bam Bedrock

Bart Springfield
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

DataBase Queries
By joining ageTable and addressTable we get:

SQL allows rows to be deleted:

DELETE FROM ageTable WHERE age < 10

which updates the table by removing all rows that satisfy the condition. SQL
allows new rows to be added:

INSERT IN ageTable (name,age) (Betty,36)

Finally, SQL allows fields to be updated:

UPDATE IN ageTable married = false WHERE age < 16

Homer Springfield

Pebbles Bedrock

name : String age : Integer address : String

Fred 41 Bedrock

Wilma 31 Bedrock

Barney 38 Bedrock

Bam Bam 3 Bedrock

Bart 9 Springfield

Homer 38 Springfield

Pebbles 3 Bedrock

name : String address : String
Great Events of the Twentieth Century37

A Programmer’s Guide to MMT 37

Data Values

38

38
The following package defines a collection of classes that represent database
tables. SQL queries are represented as functions that range over instances of the
classes.

1. package DataBase

2. class Table

3. rows : DataBase::Rows;

4. cols : DataBase::Cols;

5. init(s:Seq(Instance)):Object

6. let rows = s->at(0)

7. cols = s->at(1)

8. in self.rows := rows []

9. self.cols := cols []

10. self

11. end

12. end

Lines 2 - 12 introduce a class that represents database tables. Each table consists of
a rows and columns. Rather than represent the values of the rows and cols
attributes of the class as sets of objects, we represent them as objects that contain
sets of objects (see below). This allows tables to delegate messages to all the rows
and columns.

13. toString():String

14. self.cols.toString() + "\n" +

15. "-".repeat(14).repeat(self.cols.names()->size) + "\n" +
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

DataBase Queries
16. self.rows.toString(self.cols.names()) + "\n"

17. end

Lines 13 - 17 define a toString method for database tables. A table is to be printed
out in tabular format: the column headings are printed followed by a line of ‘-’
characters then the rows are printed out. The rows are supplied with a sequence of
column names to ensure that the order in which the values are printed is consistent.

18. insert(values:Seq(Instance))

19. self.rows.insert(self.colNames(),values)

20. end

21. update(pred:Closure,updater:Closure):DataBase::Table

22. self.rows.update(pred,updater) [] self

23. end

24. delete(pred:Closure):DataBase::Table

25. self.rows.delete(pred) [] self

26. end

Lines 18 - 26 define methods for inserting a sequence of values as a row, updating
every row that satisfies a condition and deleting every row that satisfies a condi-
tion. The method named update takes two functions as arguments. The first func-
tion named pred expects a single row argument and returns either true or false. The
second function expects a single row argument and performs an update operation.
The method named delete expects a single function argument. The function expects
a single row argument and returns true when the row is to be deleted from the table.

27. colNames():Seq(String)

28. self.cols.names()

29. end

Lines 27 - 29 define an auxiliary table operation that returns a sequence of column
names. The table delegates responsibility of computing the names to the cols
object.

30. sel(names:Set(String),pred:Closure):DataBase::Table

31. DataBase::Table.new(Seq{self.rows.sel(names,pred),self.cols.sel(names)})

32. end

Lines 30 - 32 define the selection operator that filters a table with respect to a con-
dition. The method named sel is supplied with a set of column names and a func-
tion. The result of the selection is a new table with the given column names. The
Great Events of the Twentieth Century39

A Programmer’s Guide to MMT 39

Data Values

40

40
new table will contain copies of the rows from the receiver that satisfy the predi-
cate and have been trimmed to just have the given column names.

33. add(table:DataBase::Table):DataBase::Table

34. DataBase::Table.new(Seq{self.rows + table.rows,self.cols + table.cols})

35. end

36. end

Lines 33 - 35 define the join operator. The method is named add because MMT
allows classes to overload the + operator. This conveniently means that given two
tables, for example ageTable and addressTable, their join can be expressed by add-
ing them together: ageTable + addressTable.

A collection of columns is defined by the class Cols:

37. class Cols

38. cols : Seq(DataBase::Col);

39. init(s:Seq(Instance)):Object

40. self.cols := (s->at(0)) []

41. self

42. end

The columns are represented as a sequence so that they have a deterministic order-
ing. The display method for a collection of columns turns each column into a string
and then separates the resulting sequence with ‘|’ characters. Note that the collect
expression is supplied with a sequence but returns a set and therefore must be

translated into a sequence using asSequence.3

43. toString():String
44. self.cols->collect(col | col.toString())->asSequence.separateWith(" |")

45. end

The names of the columns are calculated by a method:

46. names():Seq(String)

47. self.cols->collect(col | col.name)->asSequence

48. end

3. This is an undesirable feature of MMT collection expressions - they all return sets. This
should be fixed in a future release.
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

DataBase Queries
it is important that the names are returned in the same order each time4.

49. binds(name:String):Boolean

50. self.names()->includes(name)

51. end

52. get(name:String):Classifier

53. self.cols->select(col | col.name = name).selectElement().type

54. end

Lines 49 - 54 define methods that check whether there is a column with a given
name and that returns the type of a given column name.

Lines 55 - 58 define selection for columns. Given a set of names, selection returns
a new set of columns with the given names.

55. sel(names:Set(String)):DataBase::Cols

56. DataBase.Cols.new(Seq{self.cols->select(col |

57. names->includes(col.name))->asSequence})

58. end

Two sets of columns are joined together to produce a single set of columns cntain-
ing the union of the two sets. The resulting set should contain a single entry for
each column with a given name (we assume that names occurring in both of the
operands of the join have the same type).

59. add(cols:DataBase::Cols):DataBase::Cols

60. DataBase::Cols.new(Seq{self.cols->append(cols.cols->reject(col |

61. self.names()->includes(col.name))->asSequence)})

62. end

63. end

A single column has a name and a type. The type of the column will be one of Inte-
ger, String or Boolean each of which is an object of type DataType:

64. class Col

65. name : String;

66. type : DataType;

67. init(s:Seq(Instance)):Object

4. Although collection expressions currently return sets, the underlying representation of a
set is ordered and will produce the same sequence each time.
Great Events of the Twentieth Century41

A Programmer’s Guide to MMT 41

Data Values

42

42
68. self.name := (s->at(0)) []

69. self.type := (s->at(1)) []

70. self

71. end

A column is displayed by concatenating its name and type and ensuring that the
resulting string fits into a standard width. The string manipulation is performed
using two auxiliary methods padTo and trunc that are defined later in the package
DataBase:

72. toString():String

73. DataBase::trunc(

74. DataBase::padTo(

75. " " + self.name + ":" + self.type.name,12),12)

76. end

77. end

The rows of a database are represented as an instance of the class Rows:

78. class Rows

79. rows : Set(DataBase::Row);

80. init(s:Seq(Instance)):Object

81. self.rows := (s->at(0)) []

82. self

83. end

The rows are not ordered and therefore the attribute named rows in line 79 is a set.
A collection of rows are displayed by displaying each row in turn and separating
the rows with a newline character:

84. toString(names:Seq(String)):String

85. self.rows->collect(row |

86. row.toString(names))->asSequence.separateWith("\n")

87. end

A new row is added using the method insert:

88. insert(names:Seq(String),values:Seq(Instance))

89. let pairs = names.zip(values)

90. entries = pairs->collect(initArgs | DataBase::Entry.new(initArgs))

91. row = DataBase::Row.new(Seq{entries})
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

DataBase Queries
92. in self.addRow(row)

93. end

94. end

95. addRow(r:DataBase::Row)

96. self.rows := (self.rows->including(r))

97. end

The sequence method named zip is used in line 89 to translate a pair of sequences
to a single sequence of pairs. Each pair is then the initialisation arguments in the
creation of a new row entry in line 90.

When rows are selected by truncating the rows to the appropriate named columns
and then filtering the rows that satisfy the given predicate:

98. sel(names:Set(String),pred:Closure):DataBase::Row

99. DataBase::Rows.new(Seq{self.rows->iterate(row R=Set{} |

100. let row' = row.sel(names)

101. in if pred(row')

102. then R->including(row')

103. else R

104. endif

105. end)})

106. end

Each row is exminated in turn by the iterate expression on line 99. The set R is a
new collection of filtered and truncated rows. Each row is truncated by selecting
the named entries on line 100. If the predicate is satisfied on line 101 then the trun-
cated row is added to the set R (line 102) otherwise R is unchanged for the next
iteration (line 103).

Two collections of rows are joined together by examining each pair of rows in turn:

107. add(rows:DataBase::Rows):DataBase::Rows

108. DataBase::Rows.new(Seq{self.rows->iterate(row R = Set{} |

109. rows.rows->iterate(row' R = R |

110. if row.canJoin(row')

111. then R->including(row + row')

112. else R

113. endif))})

114. end
Great Events of the Twentieth Century43

A Programmer’s Guide to MMT 43

Data Values

44

44
The predicate named canJoin on line 110 tests whether the two rows have the same
values for entries with the same name. If this is the case then the two rows are
joined (line 111) otherwise the combination of the two rows is illegal and the run-
ning collection of joined rows R is left unchanged for the next iteration (line 112).

Rows are updated and deleted using the following methods:

115. update(pred:Closure,updater:Closure)

116. self.rows->collect(row |

117. if pred(row)

118. then updater(row)

119. endif)

120. end

121. delete(pred:Closure)

122. self.rows := (self.rows->reject(row | pred(row)))

123. end

124. end

A row is a set of entries:

125. class Row

126. entries : Set(DataBase::Entry);

127. init(s:Seq(Instance)):Object

128. self.entries := (s->at(0)) []

129. self

130. end

131. toString(names:Seq(String)):String

132. names->collect(name |

133. let display = self.ref(name).toString()

134. in DataBase::trunc(DataBase::padTo(" "+display,12),12)

135. end)->asSequence.separateWith(" |")

136. end

The toString method on lines 131 - 136 displays the entry values of a row in fields
12 characters wide seperated with ‘|’ characters.

A row can be thought of as a set of values indxed by names. The following meth-
ods allow the values to be referenced and updated by name:

137. ref(name:String):Instance

138. if self.binds(name)
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

DataBase Queries
139. then self.get(name)

140. else state.error("Row::ref: no field named " + name)

141. endif

142. end

143. update(name:String,value:Instance)

144. if self.binds(name)

145. then self.set(name,value)

146. else state.error("Row::update: no field named " + name)

147. endif

148. end

149. set(name:String,value:Instance)

150. self.entries->select(entry |

151. entry.name = name).selectElement().value := value

152. end

153. binds(name:String):Boolean

154. self.entries->exists(entry | entry.name = name)

155. end

156. get(name:String):Instance

157. self.entries->select(entry | entry.name = name).selectElement().value

158. end

The select operator for a row produces a new row containing just the selected
names. Each of the entries in the new row are copies. The means that updates to the
new row will not affect the original row and vice versa.

159. sel(names:Set(String)):DataBase.Row

160. DataBase::Row.new(Seq{

161. self.entries->select(entry |

162. names->includes(entry.name))->collect(entry |

163. entry.copy())})

164. end

The join of two rows is defined by the method named add. The predicate canJoin is
used to test whether two rows are compatible:

165. canJoin(row:DataBase::Row):Boolean

166. self.names()->forAll(name |

167. if row.binds(name)

168. then self.get(name) = row.get(name)
Great Events of the Twentieth Century45

A Programmer’s Guide to MMT 45

Data Values

46

46
169. else true

170. endif)

171. end

172. add(row:DataBase::Row):DataBase::Row

173. DataBase::Row.new(Seq{self.entries->union(row.entries->reject(entry |

174. self.names()->includes(entry.name)))})

175. end

176. end

The class Entry just associates names and values:

177. class Entry

178. name : String;

179. value : Instance;

180. init(s:Seq(Instance)):Object

181. self.name := (s->at(0)) []

182. self.value := (s->at(1)) []

183. self

184. end

185. end

Tables are displayed in a uniform size column format. The package DataBase pro-
vides two auxiliary methods to support this:

186. trunc(s:String,len:Integer):String

187. s->asSequence.zip((0).to(s->size - 1))->iterate(pair S = Seq{} |

188. if pair->at(1) < len

189. then S->append(Seq{pair->at(0)})

190. else S

191. endif).asString()

192. end

193. padTo(s:String,len:Integer):String

194. s + (" ".repeat(len-(s->size)))

195. end

The following test suite is used for databases:

196. test()

197. let col1 = DataBase::Col.new(Seq{"name",String})

198. col2 = DataBase::Col.new(Seq{"age",Integer})
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

DataBase Queries
199. col3 = DataBase::Col.new(Seq{"address",String})

200. col4 = DataBase::Col.new(Seq{"married",Boolean})

201. cols1 = DataBase::Cols.new(Seq{Seq{col1,col2}})

202. cols2 = DataBase::Cols.new(Seq{Seq{col1,col3}})

203. cols3 = DataBase::Cols.new(Seq{Seq{col1,col4}})

204. rows1 = DataBase::Rows.new(Seq{Set{}})

205. rows2 = DataBase::Rows.new(Seq{Set{}})

206. rows3 = DataBase::Rows.new(Seq{Set{}})

207. ageTable = DataBase::Table.new(Seq{rows1,cols1})

208. addressTable = DataBase::Table.new(Seq{rows2,cols2})

209. marriedTable = DataBase::Table.new(Seq{rows3,cols3})

210. in ageTable.insert(Seq{"Fred",41}) []

211. ageTable.insert(Seq{"Wilma",31}) []

212. ageTable.insert(Seq{"Barney",38}) []

213. ageTable.insert(Seq{"Bam Bam",3}) []

214. ageTable.insert(Seq{"Bart",9}) []

215. ageTable.insert(Seq{"Homer",38}) []

216. ageTable.insert(Seq{"Pebbles",3}) []

217. addressTable.insert(Seq{"Fred","Bedrock"}) []

218. addressTable.insert(Seq{"Wilma","BedRock"}) []

219. addressTable.insert(Seq{"Barney","Bedrock"}) []

220. addressTable.insert(Seq{"Bam Bam","Bedrock"}) []

221. addressTable.insert(Seq{"Bart","Springfield"}) []

222. addressTable.insert(Seq{"Homer","Springfield"}) []

223. addressTable.insert(Seq{"Pebbles","Bedrock"}) []

224. marriedTable.insert(Seq{"Fred",true}) []

225. marriedTable.insert(Seq{"Wilma",true}) []

226. marriedTable.insert(Seq{"Barney",true}) []

227. marriedTable.insert(Seq{"Bam Bam",false}) []

228. marriedTable.insert(Seq{"Bart",false}) []

229. marriedTable.insert(Seq{"Homer",true}) []

230. marriedTable.insert(Seq{"Pebbles",false}) []

The main database table is the join of the age, address and married tables:

231. let table = ageTable + addressTable + marriedTable

The following lines show how tables are displayed:
Great Events of the Twentieth Century47

A Programmer’s Guide to MMT 47

Data Values

48

48
232. in ageTable.toString().println() []

name:String | age:Integer

 Fred | 4

 Wilma | 31

 Barney | 38

 Bam Bam | 3

 Bart | 9

 Homer | 38

 Pebbles | 3

233. addressTable.toString().println() []

name:String | address:Str

Fred | Bedrock

Wilma | BedRock

Barney | Bedrock

Bam Bam | Bedrock

Bart | Springfield

Homer | Springfield

Pebbles | Bedrock

234. marriedTable.toString().println() []

name:String | married:Boo

Fred | true

Wilma | true

Barney | true

Bam Bam | false

Bart | false
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

DataBase Queries
Homer | true

Pebbles | false

235. (ageTable + addressTable).toString().println() []

name:String | age:Integer | address:Str

--

Fred | 41 | Bedrock

Wilma | 31 | BedRock

Barney | 38 | Bedrock

Bam Bam | 3 | Bedrock

Bart | 9 | Springfield

Homer | 38 | Springfield

Pebbles | 3 | Bedrock

236. table.toString().println() []

name:String | age:Integer | address:Str | married:Boo

--

Fred | 41 | Bedrock | true

Wilma | 31 | BedRock | true

Barney | 38 | Bedrock | true

Bam Bam | 3 | Bedrock | false

Bart | 9 | Springfield | false

Homer | 38 | Springfield | true

Pebbles | 3 | Bedrock | false

237. table.sel(

238. Set{"name","age","married"},

239. fun(r)

240. r.ref("age") > 35

241. end).toString().println() []

name:String | age:Integer | married:Boo
Great Events of the Twentieth Century49

A Programmer’s Guide to MMT 49

Data Values

50

50
--

Fred | 41 | true

Barney | 38 | true

Homer | 38 | true

242. table.sel(

243. Set{"name","address"},

244. fun(r)

245. r.ref("address") = "Springfield"

246. end).sel(

247. Set{"name"},

248. fun(r)

249. true

250. end).toString().println() []

name:String

Bart

Homer

251. (ageTable + marriedTable).update(

252. fun(r)

253. r.get("name") = "Bart"

254. end,

255. fun(r)

256. r.update("married",true)

257. end).toString().println() []

name:String | age:Integer | married:Boo

--

Fred | 41 | true

Wilma | 31 | true

Barney | 38 | true

Bam Bam | 3 | false

Bart | 9 | true

Homer | 38 | true
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

State and Debugging
Pebbles | 3 | false

258. (ageTable + addressTable).delete(

259. fun(r)

260. r.get("age") > 20

261. end).toString().println()

name:String | age:Integer | address:Str

--

Bam Bam | 3 | Bedrock

Bart | 9 | Springfield

Pebbles | 3 | Bedrock

State and Debugging

The class State describes the MMT Virtual Machine. The distinguished variable
‘state’ is always bound to the currently executing instance of the class State. You
should not use ‘state’ as a variable name. The methods of State are machine utili-
ties and can be used to interact with the operating system and to debug MMT.
Great Events of the Twentieth Century51

A Programmer’s Guide to MMT 51

Data Values

52

52
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

CHAPTER 4 Name Spaces
A name space is a container of named values. The values in a name space can be
referred to by name with respect to the containing name space. MMT provides a
special syntax construct for name spaces: the infix ‘::’ operator. Objects that imple-
ment name spaces are instances of the MMT class NameSpaces::NameSpace.

The most common forms of name spaces in MMT are classes and packages. Classes
provide name spaces for their attributes, methods and invariants. Packages provide
name spaces for the definitions that they contain. For example, MMT provides a
package called Classes that contains definitions for class-like things. Amongst these
are the classes named Class and Classifier. These classes can be referenced as
Classes::Class and Classes::Classifier.

Classes define attributes named parents and methods. Given a class C the name
space lookups C::attributes and C::methods produce the collections of attributes
and methods defined by C. Returning to the Classes package,
Classes::Class::attributes produces the attributes defined by the class Class and
Classes::Classifier::methods produces the methods defined by the class Classifier.

Name spaces may name different categories of things. For example, a class names
attributes and methods. In general, the names of different categories of things
named in a name space may overlap. For example, there could be an attribute
named x and a method named x in the same class. Which one will be returned by
Great Events of the Twentieth Century53

A Programmer’s Guide to MMT 53

Name Spaces

54

54
C::x? In this case the name space mechanism via ‘::’ is no sufficient to support
multiple categories and C should provide a method for each category. For example
classes provide findAttribute and getMethod. Where a name is known not to be
shared between categories ‘::’ can be used safely.

1. class NameSpace

2. get(name : String):Set(Instance)

3. getOne(name : String):Instance

4. defines(name : String):Boolean

5. end

Lines 1 - 4 define the NameSpace interface. The method get (line 2) is used to
lookup a name in a name space and returns a set of values with the given name. The
method getOne (line 3) assumes that the name is defined in the name space and
returns exactly on value for the name. If the name has multiple definitions then get-
One must choose one: the default behaviour for getOne is to choose at random.

The predicate defines (line 4) is used to check whether a name space provides a
definition for a given name.

The syntax construct X::y is translated directly to X.getOne(“y”).
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

CHAPTER 5 Classes
Introduction

Like most object-oriented systems MMT is class-based. Objects are instances of
classes. Classes define the structure and behaviour of their instances. Unlike many
object-oriented systems, MMT classes are themselves objects whose structure and
behaviour are defined by meta-classes. By providing access to meta-classes, MMT
provides an open reflective architecture. For example, new objects are created by
sending a ‘new’ message to a class whose meta-class defines how the message is
handled.

MMT classes have a certain minimum structure and behaviour that is required for
the basic features of object-orientation to work properly. These features include
methods, attributes, object creation and inheritance. All features are implemented as
objects that are instances of default MMT classes. Some of these features can be
overriden in meta-classes. New features can be added by defining new meta-classes.
MMT provides a basic class definition syntax that is engineered to accommodate
the basic features.

This chapter describes the basic features of MMT classes.
Great Events of the Twentieth Century55

A Programmer’s Guide to MMT 55

Classes

56

56
Class Definitions

A class is created either by performing a class definition or by sending a meta-class
a ‘new’ message. This section describes the basic features of class definitions.

The following package provides a examples of attributes, methods, single inherit-
ance, run-super and object initialisation. The package defines a class representing
two dimensional points. Two dimentional points have two attributes: the x and y
position. The initial values of x and y are provided when a new point object is cre-
ated. A point may be moved to a new position and its distance to the origin calcu-
lated:

1. package SimpleClasses

2. class Point

3. x : Integer;

4. y : Integer;

5. init(s:Seq(Instance)):Object

6. self.x := (s->at(0)) []

7. self.y := (s->at(1)) []

8. self

9. end

10. toString():String

11. "(" + self.x + "," + self.y + ")"

12. end

13. move(x':Integer,y':Integer)

14. self.x := x' []

15. self.y := y'

16. end

17. dist():Integer

18. ((self.x * self.x) + (self.y * self.y)).sqrt()

19. end

20. end

A circle is an extension of a point. The class Circle inherits from the class Point.
Inheritance is declared using the extends clause of a class definition. If no inherit-
ance is specified then a class inherits from Object. By inheriting from Point, the
class Circle includes all of the attribute and method definitions from Point:

21. class Circle extends SimpleClasses::Point

22. radius : Integer;
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

Class Definitions
23. init(s:Seq(Instance)):Object

24. super.run(s) []

25. self.radius := (s->at(2)) []

26. self

27. end

28. toString():String

29. "<Circle " + super.run() + " r = " + self.radius + ">"

30. end

31. end

32. end

Lines 23 - 27 show an example of method redefinition. The class Circle inherits all
of the method definitions from Point. Circle may choose to redefine any inherited
methods. The body of a redefined method may refer to the inherited definition
using the method call super.run(args). An example of run super is shown on line 24
where the initialisation method of Circle makes use of the initialisation method of
Point. Line 29 shows how the Point toString method is called from the Circle
toString method.

Instantiation

An instance of a class is created by sending the class a ‘new’ message. The MMT
meta-class object creation protocol defines two methods for object creation:

1. Classifier::new():Object
Sending a class a ‘new’ message with no arguments will create and return a
new instance in which all the attributes are initialised to their default values.

2. Class::new(initArgs:Seq(Instance)):Object
Sending a class a ‘new’ message with a sequence of initialisation arguments
will create and return a new instance in which all the attributes are initialised to
their default values and then instance is sent an ‘init’ message with the initiali-
sation arguments. The default Object::init() method does nothing. Classes may
redefine this to initialise each new instance on a class-by-class basis.
Great Events of the Twentieth Century57

A Programmer’s Guide to MMT 57

Classes

58

58
Invariants

A class has a number of invariants. Invariants are inherited. An invariant is a condi-

tion that must hold for all instances of the class in all stable states1. Invariants are
useful for a number of development tasks:

1. Specifying a class. The invariant captures logical properties of the structure and
behaviour of a class without the developer having to state how the structure and
behaviour is realised.

2. Developing test cases for a class. The invariant expresses logical properties that
must be true in all stable states. Tests can be generated from the invariant that
can be run against objects.

3. Performing run-time checking. Invariants can be used during development to
check the design of object structure and behaviour; they can be performed at
various strategic points in the execution of a system to check object integrity.

The MMT class definition allows invariants to be expressed as boolean expressions
after the keyword inv. Each invariant has a name, a boolean expression and a fail
clause. A fail clause is a string expression that is evaluated in the context of an
instance of the class when the invariant fails. The fail clause is used to provide
diagnostic information.

Suppose that the age of a person is represented as an attribute and must be > 0:

1. class Person

2. age : Integer;

3. inv

4. AgeGreaterThan0

5. age > 0

6. fail: self.age + “ is not > 0”

7. end

8. end

Given an instance p of Person, the invariant can be checked in the following ways:

1. p.edit() creates an object editor window for p. An object editor includes a panel
describing the outcome of running all the invariants for the object.

1. A stable state for an object is defined by the designer of the object’s class. Often, an
object should be in a stable state when it is not in the middle of handling a message.
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

Invariants
2. p.check() performs all the invariants for p and returns a set of strings. If the set
is empty then the invariants are all satisfied for the current state of p. Otherwise
the set contains a set of diagnostic strings (created from the fail clauses of the
invariants).

3. Person.check(p) checks the instance p against the invariants of the class Person.
The result is a set of strings as described for 2 above.

The following example shows a more substantial use of invariants. Consider a sim-
ple modelling language consisting of classes, associations, attributes, methods and
inheritance. Instances of such a language can be displayed on UML-like class dia-
grams. The rules determining whether a diagram correctly represents a model can
be expressed as an invariant.

1. package Invariants

2. class Diagram

3. nodes : Set(Invariants::Node);

4. edges : Set(Invariants::Edge);

5. init(s:Seq(Instance)):Object

6. self.nodes := (s->at(0)) []
Great Events of the Twentieth Century59

A Programmer’s Guide to MMT 59

Classes

60

60
7. self.edges := (s->at(1)) []

8. self

9. end

10. end

Lines 1 -10 introduce the example package and define the class Diagram. A dia-
gram is a graph structure: nodes are things like boxes and text and edges link nodes
together. An edge has two ends attached to nodes, an edge has a label and has
shapes (such as triangles and arrow heads) at either end.

11. class Node

12. x : Integer;

13. y : Integer;

14. height : Integer;

15. width : Integer;

16. nodes : Set(Invariants::Node);

17. init(s:Seq(Instance)):Object

18. self.x := (s->at(0)) []

19. self.y := (s->at(1)) []

20. self.height := (s->at(2)) []

21. self.width := (s->at(3)) []

22. self.nodes := (s->at(4)) []

23. self

24. end

25. above(n:Invariants::Node):Boolean

26. self.x = n.x and

27. self.y + self.height = n.y

28. end

29. end

30. class TextNode extends Invariants::Node

31. text : String;

32. init(s:Seq(Instance)):Object

33. super.run(s) []

34. self.text := (s->at(5)) []

35. self

36. end

37. inv NoChildren self.nodes = Set{} fail: “No children allowed!”

38. end
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

Invariants
39. class Box extends Invariants::Node end

Lines 11 - 24 define the class Node. A node is placed at an (x,y) position on a grid
and has a height and width (the point (0,0) is at the top left of the grid). A node is
also a node container allowing nodes to be nested. The predicate named above
checks whether two nodes are placed on top of each other on a diagram.

Lines 30 - 37 define a sub-class of Node called TextNode. A text node displays
some text and has no children. Line 38 defines a sub-class of Node called Box. A
box draws a rectangle around its children.

40. class Edge

41. label : String;

42. end1 : Invariants::End;

43. end2 : Invariants::End;

44. init(s:Seq(Instance)):Object

45. self.label := (s->at(0)) []

46. self.end1 := (s->at(1)) []

47. self.end2 := (s->at(2)) []

48. self

49. end

50. end

51. class End

52. node : Invariants::Node;

53. shape : Invariants::Shape;

54. init(s:Seq(Instance)):Object

55. self.node := (s->at(0)) []

56. self.shape := (s->at(1)) []

57. self

58. end

59. end

60. class Shape end

61. class Nothing extends Invariants::Shape end

62. class Triangle extends Invariants::Shape end

63. class ArrowHead extends Invariants::Shape end

Lines 40 - 50 define the class Edge. An edge consists of two ends and a label (if the
label is not displayed then it is the empty string). Lines 51 - 59 define the class
EdgeEnd. The end of an edge is attached to a node and has a shape. Lines 60 - 63
Great Events of the Twentieth Century61

A Programmer’s Guide to MMT 61

Classes

62

62
define the shape classes. Shape is an abstract class, Nothing is used when no shape
is to be displayed.

64. class Model

65. classes : Set(Invariants::Klass);

66. associations : Set(Invariants::Assoc);

67. generalizations : Set(Invariants::Generalization);

Lines 64 - 67 defines the class that represents models in the modelling language. A

model consists of classes2, associations between the classes and generalizations
between the classes (inheritance). To simplify the example, associations are
directed from a source class to a target class.

68. diagram : Invariants::Diagram;

The diagram associated with a model is represented as an attribute of the model on
line 6. For the purposes of this example we assume that a model is created interac-
tively using a diagram tool. As the diagram is created, the model is populated. The
two need to be consistent. The model will be used by other tools (for example
translating to program code).

69. addClass(c:Invariants::Klass)

70. self.classes := (self.classes->including(c))

71. end

72. getClass(n:String):Invariants::Klass

73. self.classes->select(c | c.name = n).selectElement()

74. end

75. addGen(g:Invariants::Generalization)

76. self.generalizations := (self.generalizations->including(g))

77. end

78. addAssoc(a:Invariants::Assoc)

79. self.associations := (self.associations->including(a))

80. end

81. setDiagram(d:Invariants::Diagram)

82. self.diagram := d

2. We use the name Klass rather than Class so that the name does not clash with the MMT
class with the same name. Although packages are name spaces, a number of classes are
available everywhere; it is possible to shadow these classes but the mechanisms are
somewhat fiddly. In general it is best to avoid names such as Class, Attribute, Package
and Method.
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

Invariants
83. end

Lines 69 - 83 define a number of methods that set up a model.

84. inv

85. CheckDiagram

86. self.classes->forAll(c |

87. self.diagram.nodes->exists(n | c.isDiagram(n))) and

88. self.generalizations->forAll(g |

89. self.diagram.edges->exists(e | g.isDiagram(e))) and

90. self.associations->forAll(a |

91. self.diagram.edges->exists(e | a.isDiagram(e)))

92. fail: "Diagram is incorrect"

93. end

94. end

Lines 84 - 94 complete the class Model by defining the invariant named CheckDia-
gram. In order for a diagram to be consistent with a model all the classes must be
represented as class boxes (lines 86 - 87), all generalizations must be represented as
arrows from the sub-class to the super-class (lines 88 - 89) and all associations
must be represented as arrows from the source class to the target class (lines 90 -
91).

95. class Klass

96. name : String;

97. atts : Set(Invariants::Att);

98. meths : Set(Invariants::Meth);

99. init(s:Seq(Instance)):Object

100. self.name := (s->at(0)) []

101. self.atts := (s->at(1)) []

102. self.meths := (s->at(2)) []

103. self

104. end

Lines 95 - 104 introduce a class that represents classes in a model. A class is
checked against a diagram node using the method named isDiagram:

105. isDiagram(node:Invariants::Node):Boolean

106. node.nodes->size = 3 and

107. node.nodes->exists(n1 |

108. node.nodes->exists(n2 |
Great Events of the Twentieth Century63

A Programmer’s Guide to MMT 63

Classes

64

64
109. node.nodes->exists(n3 |

110. n1 <> n2 and

111. n2 <> n3 and

112. n1.above(n2) and

113. n2.above(n3) and

114. self.nameBox(n1) and

115. self.attsBox(n2) and

116. self.methsBox(n3))))

117. end

A class is represented by a diagram node (line 105). The node should have three
sub-nodes that it contains (line 106). There should be three distinct sub-nodes (n1,
n2 and n3 on lines 107 - 111) such that the nodes are arranged one above the other
(lines 112 and 113) where the top box contains the name of the class, the middle
box contains the attributes of the class and the bottom box contains the methods of
the box.

118. nameBox(n:Invariants::Node):Boolean

119. if n.isKindOf(Invariants::Box)

120. then if n.nodes->size = 1

121. then if n.nodes.selectElement().isKindOf(Invariants::TextNode)

122. then n.nodes.selectElement().text = self.name

123. else false

124. endif

125. else false

126. endif

127. else false

128. endif

129. end

Lines 118 - 129 define how a class checks that its name is displayed correctly. A
box on a diagram is a rectangle drawn around its contents. A text node displays
some text. A name box is a rectangle around the name of the class.

130. attsBox(n:Invariants::Node):Boolean

131. n.isKindOf(Invariants::Box) and

132. self.atts->forAll(a |

133. n.nodes->exists(n |

134. a.isDiagram(n)))

135. end
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

Invariants
136. methsBox(n:Invariants::Node):Boolean

137. n.isKindOf(Invariants::Box) and

138. self.meths->forAll(m |

139. n.nodes->exists(n |

140. m.isDiagram(n)))

141. end

142. end

Lines 130 - 142 define checks for class attributes and methods. Both are displayed
as boxes containing the type signatures of the appropriate features.

143. class Generalization

144. subClass : Invariants::Klass;

145. superClass : Invariants::Klass;

146. init(s:Seq(Instance)):Object

147. self.subClass := (s->at(0)) []

148. self.superClass := (s->at(1)) []

149. self

150. end

151. isDiagram(edge:Invariants::Node):Boolean

152. self.subClass.isDiagram(edge.end1.node) and

153. self.superClass.isDiagram(edge.end2.node) and

154. edge.end2.shape.isKindOf(Invariants::Triangle)

155. end

156. end

Lines 143 - 156 define how generalizations are represented in models. The predi-
cate isDiagram on lines 151 - 155 requires the corresponding diagram edge to link
the diagrammatic representations of the sub-class and super-class and for the end
attached to the super-class to have a triangle shape.

157. class Assoc

158. name : String;

159. src : Invariants::Klass;

160. tgt : Invariants::Klass;

161. init(s:Seq(Instance)):Object

162. self.name := (s->at(0)) []

163. self.src := (s->at(1)) []

164. self.tgt := (s->at(2)) []

165. self
Great Events of the Twentieth Century65

A Programmer’s Guide to MMT 65

Classes

66

66
166. end

167. isDiagram(edge:Invariants::Node):Boolean

168. self.src.isDiagram(edge.end1.node) and

169. self.tgt.isDiagram(edge.end2.node) and

170. edge.end2.shape.isKindOf(Invariants::ArrowHead) and

171. edge.label = self.name

172. end

173. end

The class Assoc on lines 157 - 173 holds between a source class and a target class.
The association is named. The predicate named isDiagram is satisfied by an edge
that links the corresponding diagrammtic representations of the associated classes
and has an arrow head at the target class end.

174. class Att

175. name : String;

176. type : String;

177. init(s:Seq(Instance)):Object

178. self.name := (s->at(0)) []

179. self.type := (s->at(1)) []

180. self

181. end

182. isDiagram(node:Invariants::Node):Boolean

183. if node.isKindOf(Invariants::TextNode)

184. then node.text = self.name + ":" + self.type

185. else false

186. endif

187. end

188. end

189. class Meth

190. name : String;

191. args : String;

192. type : String;

193. init(s:Seq(Instance)):Object

194. self.name := (s->at(0)) []

195. self.args := (s->at(1)) []

196. self.type := (s->at(2)) []

197. self

198. end
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

Invariants
199. isDiagram(node:Invariants::Node):Boolean

200. if node.isKindOf(Invariants::TextNode)

201. then node.text = self.name + self.args + ":" + self.type

202. else false

203. endif

204. end

205. end

Lines 174 - 205 define attributes and methods in models. Their diagram predicates
are similar: both require the associated node to be a text node containing a text rep-
resentation of the model element’s type signature.

The following simple test suite completes the invariants package. It shows a model
and its associated diagram. The model consists of two classes named c1 and c2. c2
inherits from c1. c1 defines an attribute named a1 and a method named m1. c2
defines an attribute named a2. An association named links from c1 to c2:

206. test()

207. let a1 = Invariants::Att.new(Seq{"a1","Integer"})

208. a2 = Invariants::Att.new(Seq{"a2","Boolean"})

209. m1 = Invariants::Meth.new(Seq{"m1","(Integer)","Integer"})

210. c1 = Invariants::Klass.new(Seq{"c1",Set{a1},Set{m1}})

211. c2 = Invariants::Klass.new(Seq{"c2",Set{a2},Set{}})

212. l = Invariants::Assoc.new(Seq{"a",c1,c2})

213. m = Invariants::Model.new(Seq{})

214. t1 = Invariants::TextNode.new(Seq{10,10,10,50,Set{},"c1"})

215. t2 = Invariants::TextNode.new(Seq{10,20,10,50,Set{},"a1:Integer"})

216. t3 = Invariants::TextNode.new(Seq{10,30,10,50,Set{},"m1(Integer):Integer"})

217. t4 = Invariants::TextNode.new(Seq{10,100,10,50,Set{},"c2"})

218. t5 = Invariants::TextNode.new(Seq{10,110,10,50,Set{},"a2:Boolean"})

219. t6 = Invariants::TextNode.new(Seq{10,120,10,50,Set{},""})

220. b1 = Invariants::Box.new(Seq{10,10,10,50,Set{t1}})

221. b2 = Invariants::Box.new(Seq{10,20,10,50,Set{t2}})

222. b3 = Invariants::Box.new(Seq{10,30,10,50,Set{t3}})

223. n1 = Invariants::Node.new(Seq{10,10,30,50,Set{b1,b2,b3}})

224. b4 = Invariants::Box.new(Seq{10,100,10,50,Set{t4}})

225. b5 = Invariants::Box.new(Seq{10,110,10,50,Set{t5}})

226. b6 = Invariants::Box.new(Seq{10,120,10,50,Set{t6}})

227. n2 = Invariants::Node.new(Seq{10,100,20,50,Set{b4,b5,b6}})
Great Events of the Twentieth Century67

A Programmer’s Guide to MMT 67

Classes

68

68
228. e1 = Invariants::End.new(Seq{n2,Invariants::Nothing.new(Seq{})})

229. e2 = Invariants::End.new(Seq{n1,Invariants::Triangle.new(Seq{})})

230. e3 = Invariants::End.new(Seq{n1,Invariants::Nothing.new(Seq{})})

231. e4 = Invariants::End.new(Seq{n2,Invariants::ArrowHead.new(Seq{})})

232. e = Invariants::Edge.new(Seq{"",e1,e2})

233. e' = Invariants::Edge.new(Seq{"a",e3,e4})

234. d = Invariants::Diagram.new(Seq{Set{n1,n2},Set{e,e'}})

235. in m.addClass(c1) []

236. m.addClass(c2) []

237. m.addAssoc(l) []

238. m.addGen(Invariants::Generalization.new(Seq{

239. m.getClass("c2"),m.getClass("c1")})) []

240. m.setDiagram(d) []

241. m

242. end

243. end

244.end

The Structure and Behaviour of Classes

MMT classes are objects and as such have structure and behaviour. The class inter-
face is split into two parts: the classifier interface and the class interface. A classi-
fier is an object that has instances which are not necessarily objects. Examples of
classifiers are Boolean and Integer. Instances of classifiers have behaviour and
invariants but no slots. A class is an object that is a classifier that defines attributes;
each attribute becomes a slot in the instances of the class, therefore instances of
classes are objects.

MMT defines two meta-classes: Classifier and Class. Class defines the basic fea-
tures necessary to be a classifier. Class inherits from Classifier and adds the extra
features necessary to be a class. This section defines the classifier and class inter-
faces and provides examples of their use.

The Classifier Interface

This section defines the interface of the MMT class Classifier.

1. class Classifier extends NameSpace
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

The Structure and Behaviour of Classes
2. initialised : Boolean ;

3. owner : Classifier ;

4. allMethods : Seq(BehaviouralFeature) ;

5. methods : Seq(BehaviouralFeature) ;

6. allConstraints : Set(Constraint) ;

7. invariant : Set(Constraint) ;

8. isAbstract : Boolean ;

9. allParents : Set(Classifier) ;

10. parents : Set(Classifier) ;

11. generator : Closure ;

12. docString : String ;

13. name : String ;

14. id : String ;

Lines 1 - 14 introduce the class Classifier and define its attributes. All classifiers
must be initialised (line 2) at most once; this is performed by calling the init
method. Usually you will not call the init method directly; it is performed automat-
ically when a class or package definition of performed or indirectly when a classi-
fier is created by sending a new message to a meta-class.

All classifiers have an owner (line 3) that is a classifier. If a classifier is contained
in a package then the package is the owner. If the classifier is not contained then it
is its own owner.

Classifiers define methods (lines 4 and 5). The locally defined methods of a classi-
fier are its methods, all the methods defined and inherited by the classifier are all-
Methods. The order in which methods occur in these sequences is important since
method lookup will invoke the first one found. Usually you should use the appro-
priate methods to add and remove methods to and from a classifier.

Classifiers define invariant constraints (lines 6 and 7). The locally defined con-
straints of a classifier are its invariant and all the constraints defined and inherited
are allConstraints. Usually you should use te appropriate methods to add and
remove constraints to and from and a classifier.

A classifier is abstract when it has no instances (line 8). This is currently not used.

Classifiers inherit methods and constraints from their parents (lines 9 and 10). The
locally defined super-classifiers are parents and the transitive closure of the parents
relation is allParents.
Great Events of the Twentieth Century69

A Programmer’s Guide to MMT 69

Classes

70

70
The generator of a classifier (line 11) is part of the MMT implementation and
should not be used.

A classifier has a documentation string (line 12) that describes its purpose and use.
A classifier has a name (line 13). A classifier has a unique identifier (line 14).

15. init(s : Seq(Instance)):Object

A classifier can be created by sending the class Classifier or one of its sub-classes a
new message. The initialisation arguments (line 15) should be a sequence of ele-
ments as follows: Seq{name,doc,parents,isAbstract}. All other components of a
classifier should be added usingthe appropriate classifier methods.

16. new():Instance

The class Classifier defines the instantiation protocol for MMT instances (line 16).
All classifiers can be instantiated with no initialisation arguments. The result is a
new instance of the classifier. By default this method is abstract: it must be given
suitable definitions by sub-classes of Classifier.

17. allLocalParents():Set(Classifier)

18. allInheritedParents():Set(Classifier)

19. allParents():Set(Classifier)

A classifier c has parents from which it inherits structure and behaviour. The transi-
tive closure of the parents relationship is computed by c.allLocalParents() (line 17).
In addition, c indirectly receives parents from its owner. Any classifiers defined by
c.owner (either locally or via inheritance) named c.name are computed by
c.allInheritedParents(). Finally, the complete set of parents for c is the union of the
local and inherited parents c.allParents() (line 19). Usually, you should use the
method allParents to acces the parents of a classifier.

20. inheritsFrom(c : Classifier):Boolean

The method inheritsFrom (line 20) can be used to test whether the receiver inherits
from another classifier.

21. default():Instance

All classifiers must specify a default value (line 21) that is used when a slot is ini-
tialised whose corresponding attribute type is the classifier. The default default
value is the class Instance.

22. allConstraints():Set(Constraint)
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

The Structure and Behaviour of Classes
All the constraints defined and inherited by a classifier are computed by the
method allConstraints (line 22). You should use this method to access all the con-
straints rather than the slot allConstraints.

23. checkInstance(instance : Instance):Set(String)

A classifier defines a collection of constraints that define how it classifies its
instances. The method checkInstance (line 23) is used to determine whether a given
candidate instance is correctly classified. The method runs all of the constraints
against the candidate and returns the set of diagnostic strings. Note that checking os
performed in super-class to sub-class order. If checking fails in a given class then it
does not progress to further classes (since failure in a super-class may mean that it
is not possible to perform subsequent tests).

24. allMethods():Seq(Method)

All the methods defined and inherited by a classifier are computed by the method
allMethods (line 24). You should use this in preference to the slot allMethods.

25. getMethod(name : String, arity : Integer):Method

26. removeMethod(name : String, arity : Integer):Method

27. addMethod(method : Method):Method

28. hasMethod(name : String, arity : Integer):Boolean

Lines 25 - 28 define methods that can be used to access methods defined by a clas-
sifier.

29. hasConstraint(name : String):Boolean

30. removeConstraint(name : String):Constraint

31. getConstraint(name : String, default : Instance):Instance

32. addInvariant(constraint : Constraint):Constraint

Lines 29 - 32 define methods that can be used to access constraints defined by a
classifier.

33. toDescription():String

34. toFlatDescription():String

35. end

Lines 33 - 34 define two methods that are used to produce a textual definition of a
classifier. The method toDescription produces the original definition of the classi-
fier. The method toFlatDescription produces a flattened definition by including all
of the inherited methods anc constraints.
Great Events of the Twentieth Century71

A Programmer’s Guide to MMT 71

Classes

72

72
Methods

This section defines the interface of the MMT class Method. Method is part of a
family of classes rooted at Behaviour::BehaviouralFeature. The class Behavioural-
Feature defines the essential components of an object that can be invoked by mes-
sage passing. The interface is as follows:

1. class BehaviouralFeature
2. knownToVM : Boolean ;

3. owner : Classifier ;

4. type : Classifier ;

5. types : Seq(Classifier) ;

6. args : Seq(String) ;

7. name : String ;

8. init(s : Seq(Instance)):Object

9. send(target : Instance,args : Seq(Instance)):Instance

10. apply(args : Seq(Instance)):Instance

11. end

A behavioural feature consists of a name (line 7), a sequence of argument names
(line 6), a sequence of argument types (line 5), a return type (line 4) and an owner
(line 5).

The boolean attribute named knownToVM (line 2) determines whether or not the
feature is directly executable by the MMT virtual machine. Methods defined in
package or class definitions are always known to the VM. You may define your
own sub-classes of BehaviouralFeature in order to define new message passing
protocols. In this case you must define a method named send (line 9) that the VM
will invoke on the target and arguments of the message. In addition, a method may
be used as a function and applied to arguments (line 10). The default message pass-
ing protocol is to report an error and the deault behavioural application protocol is
to send a message to the feature.

The initialisation arguments for a behavioural feature are:

Seq{name,args,types,type,owner}

The class Method implements a concrete behavioural feature.

12. class Method extends Behaviour::BehaviouralFeature
13. body : Closure ;
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

The Structure and Behaviour of Classes
14. docString : String ;

15. init(s : Seq(Instance)):Object

16. send(target : Instance, args : Seq(Instance)):Object

17. end

You may create a method directly and subsequently add it to a classifier. The ini-
tialisation arguments for the method (line 10) are:

Seq{name,args,types,type,owner,doc,body}

The body of a method is a function whose arity matches the number of arguments
defined for the method. The messag epassing protocol of a method (line 16)
invokes the body on the message arguments. If the body of a method instance is
updated then this will have effect the next time the method is invoked.

Constraints

This section defines the interface of the MMT class Constraint.

1. class Constraint

2. body : Closure ;

3. owner : Classifier ;

4. name : String ;

5. init(s:Seq(Instance)):Object

6. end

A constraint has a name (line 4), an owner (line 3) and a body (line 2). The body of
a constraint is a function of one argument. To test a constraint its body is supplied
with the candidate instance. The initialisation arguments for a constraint are:

Seq{name,owner,body}

The Class Interface

This section defines the interface of the MMT class Class.

1. class Class extends Classifier

2. allAttributes : Set(Attribute) ;

3. attributes : Set(Attribute) ;

4. allAttributes():Set(Attribute)

5. hasAttribute(name : String):Boolean
Great Events of the Twentieth Century73

A Programmer’s Guide to MMT 73

Classes

74

74
6. findAttribute(name : String):Instance

7. removeAttribute(name : String):Attribute

8. addAttribute(a : Attribute):Attribute

9. end

The class Class is a sub-class of Classifier (line 1). The local attributes are defined
by the the attribute named attributes (line 3). The attributes locally defined and
inherited are the value of allAttributes (line 2). You should use the method allAt-
tributes (line 4) to calculate all the attributes.

Attributes

This section defines the interface of MMT attributes.

1. class Attribute
2. docString : String ;

3. type : Classifier ;

4. name : String ;

5. init(s : Seq(Instance)):Object

6. end

State Transition Machines

The following example shows how classes can be treated as objects. The example
adds new attributes and methods to a class. In addition, the example implements a
new type of behavioural feature together with its own message passing protocol.

A state transition machine consists of transitions between states and describes
behaviour associated with a class of objects. A transition is labelled and contains
both a guard condition and an action. A transition is enabled when an instance
receives an event corresponding to the transition label, the instance is in the source
state and the guard is satisfied by the current instance state. Given a collection of
enabled transitions for an instance, the intended meaning is that one transition is
selected at random and the associated action is performed on the instance; the
instance makes a transition to the target state.

1. open Structure;
2. package Machines

3. class Machine
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

State Transition Machines
4. states : Set(String);

5. trans : Set(Machines::Transition);

6. init(s:Seq(Instance)):Object

7. self.states := (s->at(0)) []

8. self.trans := (s->at(1)) []

9. self

10. end

Line 1 is an open statement. It is used at the top of package files to place the names
defined by a package in scope for the rest of the file. There may be any number of
open statements at the top of a file. The the case of line 1 the package Structure is
opened because we know that we will be using initialised attributes later in the
package. Unlike Attribute the class InitialisedAttribute is not in scope by default
(they are both defined in the package Structure).

11. apply(args:Seq(Instance)):Instance

12. let c = args->at(0)

13. in self.addStateAtts(c) []

14. self.addTransMethods(c)

15. end

16. end

Supose that for convenience we wish to add the behaviour of a state machine M to
a class C by applying the machine to the class: M(C). Any MMT value may be
used as a function provided that it defines a method named apply. Lines 11 - 16
define the apply method for a machine. The arguments in the application are sup-
plied to the method as a sequence (line 11); therefore, each argument (in this case
c) must be extracted from the sequence (line 12).

To add the behaviour a state machine to a class we make the following assump-
tions. The states will be added as boolean attributes in the class. The transitions
will be added as methods: the label on the transition gives the name of the method.
Each transition method has exactly 1 argument (this simplifies the example since
otherwise we would have a number of similar cases handling different numbers of
arguments 2, 3, 4 etc.) The attributes are added on line 13 and the methods are
added on line 14.

17. addStateAtts(c:Class)

18. self.states->collect(s |

19. if c.hasAttribute(s)

20. then state.error("Machine::addStateAtts: " + s + " already present.")
Great Events of the Twentieth Century75

A Programmer’s Guide to MMT 75

Classes

76

76
21. else c.addAttribute(Attribute.new(Seq{s,Boolean}))

22. endif)

23. end

24. addTransMethods(c:Class)

25. let labels = self.trans->collect(t | t.label)

26. in labels->collect(l |

27. c.addMethod(Machines::MachineMethod.new(Seq{l,c,self})))

28. end

29. end

Lines 17 - 29 define methods to add state attributes and transition methods to a
class. Line 25 constructs the set of transition labels and then line 27 adds a method
for each label. The method is an instance of the class MachineMethod defined
below.

30. send(target:Instance,message:String,args:Seq(Instance)):Instance

31. let enabled = self.trans->select(t |

32. target.slotValue(t.src) and

33. t.label = message and

34. (t.guard)(target))

35. in if not enabled->isEmpty

36. then let choice = enabled.selectElement()

37. in choice(target,args)

38. end

39. else message + " was ignored: no transition enabled."

40. endif

41. end

42. end

A state machine defines the behaviour of an instance when the instance receieves a
named event. Such an event occurs in response to sending the a message to a target
instance. Lines 30 - 42 defines a method for handling such an event. Lines 31 - 33
construct a set of enabled transitions. A transtion is enabled when the target of the
message is in the source state, the message is the same as the transition label and
the guard on the transition is satisfied by the target.

If there is at least one enabled transition then one is selected at random (lines 35
and 36) and the transition is performed by applying it to the target and arguments.
If no transition is enabled then a suitable message is returned (line 39.
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

State Transition Machines
43. inv

44. TransitionsBetweenLegalStates

45. self.transitions->forAll(t |

46. self.states->includes(t.src) and self.states->includes(t.tgt))

47. fail: "transitions must be between states in " + self.states.toString()

48. end

49. end

The invarint defined on lines 44 - 48 requires that the transitions in a state machine
be defined between states defined for the machine. If this invariant is violated then
machine behaviour can go wrong since a transition could test a state variable that
does not exist.

50. class MachineMethod extends Behaviour::BehaviouralFeature

51. machine : Machines::Machine;

52. init(s:Seq(Instance)):Object

53. let name = s->at(0)

54. owner = s->at(1)

55. machine = s->at(2)

56. in self.machine := machine []

57. super.run(Seq{name,Seq{"arg"},Seq{Instance},Instance,owner})

58. end

59. end

60. send(target:Instance,args:Seq(Instance)):Instance

61. self.machine.send(target,self.name,args)

62. end

63. end

Lines 50 - 63 define a machine method class. Instances of this class are added to a
class for each transition label. When a machine method is invoked it sends a mes-
sage to machine which will perform the appropriate transition. Since a machine
method has no individual body, the class MachineMethod is a sub-class of Behav-
iouralFeature. The method named send on lines 60 - 62 defines the behaviour of a
machine method.

64. class Transition

65. src : String;

66. tgt : String;

67. label : String;

68. guard : Closure;
Great Events of the Twentieth Century77

A Programmer’s Guide to MMT 77

Classes

78

78
69. action : Closure;

70. init(s:Seq(Instance)):Object

71. self.src := (s->at(0)) []

72. self.tgt := (s->at(1)) []

73. self.label := (s->at(2)) []

74. self.guard := (s->at(3)) []

75. self.action := (s->at(4)) []

76. self

77. end

78. apply(args:Seq(Instance)):Instance

79. let target = args->at(0)

80. messageArgs = args->at(1)

81. in target.setSlot(self.src,false) []

82. target.setSlot(self.tgt,true) []

83. self.action.self := target []

84. (self.action)(messageArgs)

85. end

86. end

87. end

Lines 64 - 87 define the class Transition. A transition has a label, a source and tar-
get state, a guard and an action. The guard is a predicate that expects to be supplied
with an object. The action is a function that expects to be supplied with a sequence
of arguments.

Line 83 sets the value of the special variable ‘self’ in the action function of the
transition. Line 84 performs the action by applying the function to the supplied
arguments.

88. class DrinksMachine

89. coins : Integer;

90. drinks : Integer = 1;

91. price : Integer = 10;

92. end

Lines 88 - 92 define a simple class for a drinks machine. The drinks machine has a
slot for coins and a button for dispensing drinks once the the correct amount of
money has been inserted. The attribute coins is the amount of money currently
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

State Transition Machines
inserted; the attribute drinks is the number of individual drinks in the machine; the
attribute price is the price of each drink.

93. machine():Machines::Machine

94. let t1 = Machines::Transition.new(Seq{

95. "Idle","Vending",

96. "insertCoins",

97. fun(m)

98. m.drinks > 0

99. end,

100. fun(args)

101. self.coins := (self.coins + args->at(0))

102. end})

The method named machine (line 93) constructs and returns a machine defining the
behaviout of a drinks machine. The machine consists of three transitions. The first
transition (lines 94 - 102) represents the initial coins inserted in the machine which
changes from the idle state to the vending state. The guard on the transition
requires the machine to be non-empty. The action increases the amount of money.

103. t2 = Machines::Transition.new(Seq{

104. "Vending","Vending",

105. "insertCoins",

106. fun(m)

107. m.drinks > 0 and m.coins < m.price

108. end,

109. fun(args)

110. self.coins := (self.coins + args->at(0))

111. end})

The second transition (lines 103 - 111) defines the behaviour of the machine when
coins are inserted during the vending state. The coins are accepted until the amount
of money in the machine exceeds the price of a drink.

112. t3 = Machines::Transition.new(Seq{

113. "Vending","Idle",

114. "pressButton",

115. fun(m)

116. m.coins >= m.price

117. end,
Great Events of the Twentieth Century79

A Programmer’s Guide to MMT 79

Classes

80

80
118. fun(args)

119. self.coins := (self.coins - self.price) []

120. self.drinks := (self.drinks - 1)

121. end})

122. m = Machines.Machine.new(Seq{Set{"Idle","Vending"},Set{t1,t2,t3}})

123. in m

124. end

125. end

The final transition (lines 112 - 121) handles the case when sufficient money has
been inserted and the operator presses a button. The money is consumed and the
drink is dispensed. The machine makes a transition to the idle state waiting further
money.

126. printMachine(m:Machines::DrinksMachine)

127. ("coins = " + m.coins).println() []

128. ("drinks = " + m.drinks).println() []

129. ("idle = " + m.Idle).println() []

130. ("vending = " + m.Vending).println() []

131. "".println()

132. end

133. test()

134. (Machines::machine())(Machines::DrinksMachine) []

135. let m = Machines::DrinksMachine.new(Seq{})

136. in m.Idle := true []

137. Machines::printMachine(m) []

138. m.insertCoins(4) []

139. Machines::printMachine(m) []

140. m.insertCoins(7) []

141. Machines::printMachine(m) []

142. m.pressButton(0) []

143. Machines::printMachine(m)

144. end

145. end

146. end

Lines 133 - 145 define a small test suite for the drinks machine. The machine
behaviour is applied to the drinks machine class on line 134. The application
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

Inheritance and Method Combination
changes the class by side-effect. A new machine is created on line 135, the initial
state of the machine is set to idle on line 136. Drinks cost 10 pence, the customer
inserts 4 pence followed by 7 pence and then presses the button. The output is as
follows:

147. coins = 0

148. drinks = 1

149. idle = true

150. vending = false

151.

152. coins = 4

153. drinks = 1

154. idle = false

155. vending = true

156.

157. coins = 11

158. drinks = 1

159. idle = false

160. vending = true

161.

162. coins = 1

163. drinks = 0

164. idle = true

165. vending = false

Inheritance and Method Combination

One way of viewing inheritance is as a reuse mechanism. Definitions in a super-
class are reused when defining a sub-class. In particular methods in a super-class
are available in the sub-class. Another way of viewing inheritance is as a merging
mechanism for partial views of a type. Definitions given by a number of super-
class are merged to produce the sub-class. This section describes how method
merging is defined in MMT and how you can control method merging by defining
new types of methods.

Consider single inheritance between a super-class C and a sub-class D. C defines a
method named m. If D does not define a method named m then inheritance is
straightforward: m is available in both C and D. If D defines a method named m
Great Events of the Twentieth Century81

A Programmer’s Guide to MMT 81

Classes

82

82
then there is a conflict when a message m is sent to an instance of D. MMT
resolves this conflict by combining the two definitions to produce a single method
which is then invoked.

By default the method combination rule in MMT are to invoke the most specific
definition for a method in a left-to-right traversal of the inheritance lattice; and, to
make methods occurring subsequently in this ordering available in the body of the
invoked method by sending the special message ‘run’ to the object named ‘super’.

The default combination rule allows flexibility since the most specific method (in
the case of C and D, D::m) can choose whether to invoke the shadowed definition
(C::m) and how to merge the two results. For example:

1. class C
2. m(args)

3. // some body

4. end

5. end

6. class D extends C

7. m(args)

8. if // some condition

9. then super.run(exps)

10. else // some expression

11. endif

12. end

13. end

The default rule allows a shadowing method to choose not to invoke the shadowed
method, to invoke it once or to invoke it many times. If there are many classes
linked together in an inheritance chain, each providing a definition for a method
with the same name then the run super mechanism allows the individual methods
to be chained together when they are invoked.

Although the default rule is very flexible, it is an imperitive mechanism and is
therefore not especially declarative. To determine how methods are combined it is
necessary to trace the internal execution path of method invocations; it is not possi-
ble to see what effect method combination will have and how the results of meth-
ods will be combined just from looing at the method definitions from the outside.
In particular, since it is so imperative, it is often difficult to reason about the default
combination rules in conjunction with multiple inheritance, especially if a class
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

Inheritance and Method Combination
multiply inherits from classes with a multiple common super-classes (the diamond
import problem).

To support a more declarative form of method combination MMT has a number of
builtin combination rules that can be used to override the default. Furthermore,
new combination rules can be defined.

RunAll

When multiple inheritance is used to combine classes together, it is desirable for
methods to be merged so that they are all performed when an appropriate message
is sent to an instance. MMT provides a method combination rule called RunAll that
allows methods to be declared as being components of a larger method; when they
are merged they combine to form a single composite method.

Suppose that multiple inheritance is to be used to combine classes representing a
married person and a teacher to implement a married teacher. The following pack-
age defines four classes: Person, Teacher and Married that both independently
inherit from Person and MarriedPerson that multiply inherits from Person and
Teacher.

Each class defines a toString method that is used to display its instances. Each
toString method is a partial definition that is extended in sub-classes. When the
toString method is multiply inherited by MarriedTeacher, the result is a composite
method that combines the partial definitions from Married and Teacher.

1. package RunAllExample
2. class Person

3. name : String;

4. init(s:Seq(Instance)):Object

5. self.name := (s->at(0)) [] self

6. end

7. toString():String

8. "<" + self.of.name + self.toStringBody().separateWith(" ") + ">"

9. end

10. toStringBody():String metaclass(Behaviour::RunAll)

11. " name = " + self.name

12. end

13. end
Great Events of the Twentieth Century83

A Programmer’s Guide to MMT 83

Classes

84

84
The class Person defines a toString method on lines 7 - 9 that uses an auxiliary
method called toStringBody to transform the person slots to a string. The reason for
the autiliary method is to allow for arbitrary extensions to the display in sub-
classes.

The method toStringBody on lines 10 - 12 declares its metaclass to be the MMT
class Behaviour::RunAll. By default the metaclass of a method is Behav-
iour::Method that uses the default method combination rule. If an alternative meta-
class is specified then the method combination rule is given by its definition of
‘send’.

The class Behaviour::SendAll combines methods by performing all the methods
and returning their results as a sequence. The order in which the methods will be
invoked is a depth first left to right traversal of the inheritance lattice; although in
most cases this order should not be relevant and it is good design not to rely on it.

The method toString Body is defined to be of type Behaviour::RunAll because it is
intended to be extended in sub-classes. Each extension is a partial definition of the
method and all should be performed when an instance receives a toStringBody
message.

The classes Teacher and Married both extend the class Person:

14. class Teacher extends RunAllExample::Person

15. subject : String;

16. init(s:Seq(Instance)):Object

17. self.name := (s->at(0)) []

18. self.subject := (s->at(1)) []

19. self

20. end

21. toStringBody():String metaclass(Behaviour::RunAll)

22. " subject = " + self.subject

23. end

24. end

25. class Married extends RunAllExample::Person

26. spouse : String;

27. init(s:Seq(Instance)):Object

28. self.name := (s->at(0)) []

29. self.spouse := (s->at(1)) []

30. self
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

Inheritance and Method Combination
31. end

32. toStringBody():String metaclass(Behaviour::RunAll)

33. " spouse = " + self.spouse

34. end

35. end

Both Teacher and Married3 provide partial definitions of toStringBody on lines 21 -
23 and 32 - 34. Note that the metaclass in both cases is RunAll: all the metaclasses
for the same method name should be consistent in classes related by inheritance.

36. class MarriedTeacher

37. extends

38. RunAllExample::Married,

39. RunAllExample::Teacher

40. init(s:Seq(Instance)):Object

41. let name = s->at(0)

42. spouse = s->at(1)

43. subject = s->at(2)

44. in RunAllExample::Married::init.send(self,Seq{Seq{name,spouse}}) []

45. RunAllExample::Teacher::init.send(self,Seq{Seq{name,subject}}) []

46. self

47. end

48. end

49. end

50. end

Lines 36 - 49 define a class MarriedTeacher that inherits from both Married and
Teacher. The initialisation method directly calls the initialisation methods of the
two super-classes on lines 44 and 45. The display method for MarriedTeacher is
constructed automatically by the method combination rules so, for example, the
following object:

RunAllExample::MarriedTeacher.new(Seq{"fred","wilma","rockBreaking"})

3. The init methods of both Teacher and Married repeat the initialisation performed by Per-
son. A better design decision would havebeen to use super.run(s) in both cases rather than
self.name := (s->at(0)). Unfortunately a bug in MMT then prevents the initialisation
methods being invoked directly as in Married::init.send(self,Seq{name,spouse}) (see
later). So for the purposes of this example super.run is not used.
Great Events of the Twentieth Century85

A Programmer’s Guide to MMT 85

Classes

86

86
is displayed as:

<MarriedTeacher subject = rockBreaking spouse = wilma name = fred>
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

CHAPTER 6 Packages
MMT packages are containers of definitions. A package may contain class, associa-
tion, method and package definitions. A package provides a name space for its con-
tents. The main purpose of packages is to provide a grouping mechanism for system
components. Typically a package contains all the classes and associations relating
to a system module. A package may contain methods that are used to create, test
and animate instances of the package contents. Where a system module naturally
decomposes into a number of sub-modules its package can be structured in terms of
a number of nested sub-packages.

Packages can be specialised using inheritance. Package specialisation allows a sub-
package to inherit the contentsof the parent package. This mechanism supports
incremental system development, modularity and reuse. Systems can be developed
incrementally by constructing a minimal collection of packages, testing them and
then extending them with extra functionality using package specialisation. Systems
are modular since they can be expressed as the composition of a number of mod-
ules. Each module has a well defined interface and may be replaced with a different
module with minimal changes to client modules. System development can take
advantage of reuse by extending from a library of modules that are shared over a
wide range of applications.

MMT supports a novel form of package specialisation where definitions in pack-
ages are virtual in the sense of C++. A package P may contain a definition D that is
Great Events of the Twentieth Century87

A Programmer’s Guide to MMT 87

Packages

88

88
referenced throughout P. A package Q specialises P and specialises the definition D
(perhaps D is a class and Q adds some structure or behaviour to D). Q will inherit
all of the definitions in P including all references to D; however, references to D in
Q will result in the specialised D.

The MMT package specialisation mechanism provides a very flexible mechanism
for modular system development. Many different aspects of a system can be devel-
oped as independent packages. Each package can be tested independently. The
complete system is defined as the combination of the parts represented as a single
package that specialises all the part-packages. Package specialisation will ensure
that intra-package references are resolved correctly.

Packages are MMT objects. They may be manipulated just like any other object in
the system. This provides a very flexible development environment in which devel-
opers can implement their own system tools. For example a development team may
have a particular strategy for applying regression tests on all the modules in an
application. Such a strategy can easily be developed in MMT by constructing a
method that iterates over all the application packages, applying a suite of tests to
the classes and recording the results.

The structure and behaviour of packages are defined by the MMT class Package.
Since MMT is an open environment, the class Package is available to the developer
and may be specialised to support application specific structure and behaviour.

This chapter defines package definitions, the package interface and provides some
examples of package use.

The Package Definition

Packages can be created in the following two ways:

1. By performing a package definition. A package definition occurs in MML text
and is of the form package ... end.

2. By sending a ‘new’ message to the class Package.

The following is a simple package definition:

1. package P
2. class C
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

Animals
3. x : P::D;

4. end

5. class D

6. y : P::C;

7. end

8. end

Lines 1 - 9 define a package named P. The package contains two classes named C
and D. The class C has an attribute named x of type D and the class D has an
attribute named y of type C. The package P provides a name space. The name P is
scoped over the name space of P allowing the definitions for C and D to refer to
each other.

Given the definition of P above, the class C is referred to as P::C and similarly
P::D. Therefore, a new instance of C is created as P::C.new(Seq{}).

Animals

Packages may be used without specialisation to structure systems. If a package
name P is currently in scope then any of its contained definitions D are available as
P::D. In addition to structuring, packages can be used for incremental system defi-
nition using package specialisation. This section gives a simple example of a col-
lection of animals. The types of animals are built up incrementally using package
specialisation: a basic package of animal types is defined; the basic package is spe-
cialised in two different ways by adding new types of animals and extended exist-
ing animal types; finally, the two specialisations are merged by defining a package
that specialises both.

1. open Associations;
2. package Animals

3. class Animal

4. name : String;

5. toString():String

6. "<" + self.of.name + " " + self.name + ">"

7. end

8. end

9. class Person extends Animals::Animal end

10. class Dog extends Animals::Animal
Great Events of the Twentieth Century89

A Programmer’s Guide to MMT 89

Packages

90

90
11. inv

12. NotMr Pink

13. self.owner.name <> "Mr. Pink"

14. fail: "Mr Pink is not allowed to own dogs."

15. end

16. end

17. association Ownership

18. owns: Animals::Animal mult: *;

19. owner: Animals::Person mult: 1;

20. end

21. class Cat extends Animals::Animal end

22. end

Lines 1 - 22 define a package named Animals. Cats and dogs are owned by people
although Mr. Pink has been banned from owning a dog.

23. open Associations;

24. open Structure;

25. package NoisyAnimals extends Animals

26. class Parrot extends NoisyAnimals::Animal

27. stockPhrase : String = “Polly wants a cracker!”;

28. end

29. class Cat

30. purrVolume : Integer = 3;

31. end

32. class Dog

33. barkVolume : Integer = 5;

34. end

35. association FightsWith

36. enemies: NoisyAnimals::Cat mult: *;

37. enemies: NoisyAnimals::Dog mult: *;

38. end

39. end

Lines 23 - 39 define a specialisation of the package Animals. A new class named
Parrot is introduced. The Parrot class extends the Animal class on line 26; note that
since NoisyAnimals extends Animals, the class Animal is referenced with respect
to the name space NoisyAnimals (line 26).
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

Animals
The classes Cat and Dog are extended in NoisyAnimals. Since they are inherited
from Animals there is no need to use an extends clause on lines 29 and 32. A new
association between Cat and Dog is added on lines 35 - 38. The association refer-
ences the extended definitions via the NoisyAnimals name space.

40. open Structure;

41. package GreedyAnimals extends Animals

42. class Animal

43. food : String;

44. end

45. class Donkey extends GreedyAnimals::Animal end

46. class Cow extends GreedyAnimals::Animal end

47. class Dog

48. favouriteFood : String = “Doggy Chow”;

49. end

50. end

The class Animal is extended in GreedyAnimals to record the food that an animal
eats (line 43). New types of animal are added: Donkey and Cow. The class Dog is
extended with favourite food; the most popular form of dog food is specified as a
default value.

51. package CompleteAnimals

52. extends GreedyAnimals, NoisyAnimals

53. class Animal

54. age : Integer;

55. inv

56. AgeGreaterThan0

57. self.age >= 0

58. fail: "The age of animals must be >= 0."

59. end

60. end

61. end

Lines 51 - 61 define a package that extends both greedy and noisy animals. The
definition of classes Animal, Dog and Cat in in both GreedyAnimals and Noisy-
Animals are merged into single definitions in CompleteAnimals. The default merg-
ing rules currently select the left-most definition for attributes and methods defined
in the same class.
Great Events of the Twentieth Century91

A Programmer’s Guide to MMT 91

Packages

92

92
The Package Interface

An MMT package is an instance of the MMT class Package whose interface is
defined below:

1. class Package extends Classifier

2. contents : Set(Classifier) ;

3. allContents():Set(Classifier)

4. allMergedContents():Set(Classifier)

5. classes():Set(Class)

6. packages():Set(Package)

7. associations():Set(BinaryAssociation)

8. allClasses():Set(Class)

9. allPackages():Set(Package)

10. allAssociations():Set(BinaryAssociation)

11. add(c : Classifier):Classifier

12. remove(c : Classifier):Classifier

13. end

A package is a classifier and therefore a name space. Since it is a classifier (line 1)
it has instances each of which is a snapshot. A package contains definitions: local
definitions are those directly defined by the package and inherited definitions arise
indirectly through its parents. The local definitions are the contents of a package
(line 2). The method allContents (line 3) returns the complete set of contents of a
package: both local and inherited.

Since a package may have multiple parents, its allContents may contain two or
more definitions with the same name. The method allMergedContents (line 4)
returns a set of definitions where no name occurs more than once: multiple defini-
tions with the same name are merged. The merging rules for packages and merge
their contents. Where packages do not have multiple parents or do not have multi-
ple contents with the same name then the result of allContents and allMergedCon-
tents are the same.

The methods classes, packages and associations (lines 5 - 7) return the local defini-
tions of the appropriate category. The methods allClasses, allPackages and allAsso-
ciations (lines 8 - 10) return all the merged definitions of the appropriate category.

The methods add and remove are used to change the local contents of a package.
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

A Robot Command Language
A Robot Command Language

Package specialisation can be used to support a separation of concerns during
development. It is often possible in an application to be decomposed into control
modules and services modules. Package provide a mechanism by which these
aspects of an application can be developed independently and then merged using-
package specialisation.

This section provides a simple example of an applcation that is developed as three
packages: a module tht implements a control language; a module that implements a
collection of services; and a module that implements the control language in terms
of the services.

A robot lives on a grid of cells. Each cell may contain a stack of cones. The job of
the robot is to move around the grid moving cones between cells. At any instant in
time the robot is facing in one of the dorections: north; south; east; west. The robot
may turn 90 degrees left or right, may move forwards (if possible), may pick up a
cone from the current cell (is available) and may drop a cone onto the current cell
(if carried).

The world of the robot can be implemented as a package of services called Grids:

1. open Structure;

2. open Stacks;

3. package Robots

4. package Grids

5. class Grid

6. width : Integer;

7. height : Integer;

8. cells : Set(Grids::Cell);

9. init(s:Seq(Instance)):Object

10. self.width := (s->at(0)) []

11. self.height := (s->at(1)) []

12. self.initCells() []

13. self

14. end

The class named Grid implements the world inhabited by a robot. A grid is initial-
ised with a width and a height (lines 6,7 and 10, 11), the set of cells (line 8) is ini-
tialised to contain a cell at each co-ordinate (line 12):
Great Events of the Twentieth Century93

A Programmer’s Guide to MMT 93

Packages

94

94
15. initCells()

16. (0).to(self.height)->collect(y |

17. (0).to(self.width)->collect(x |

18. self.addCell(x,y)))

19. end

20. addCell(x:Integer,y:Integer)

21. self.cells := (self.cells->including(Grids::Cell.new(Seq{x,y})))

22. end

The cell found at a given co-ordinate position is found using the method cellAt:

23. cellAt(x:Integer,y:Integer):Grids::Cell

24. self.cells->select(cell | cell.x = x and cell.y = y).selectElement()

25. end

A grid is displayed by constructing a string that has a character representing each
cell; the grid string is constructed by iterating throught the cells adding a newline
character at the end of each row:

26. toString():String

27. (0).to(self.height)->iterate(y output = "" |

28. (0).to(self.width)->iterate(x output = output |

29. output + self.cellAt(x,y).contentString()) + "\n")

30. end

The position of an item in the grid is found by iterating through the cells:

31. position(item:Grids::Item):Grids::Cell

32. if self.inGrid(item)

33. then self.cells->select(cell | cell.contains(item)).selectElement()

34. else state.error("Grid::position: item not in grid " + item.toString())

35. endif

36. end

37. inGrid(item:Grids::Item):Boolean

38. self.cells->exists(cell | cell.contains(item))

39. end

When an item is dropped onto a grid it is added to the cell at the given location:

40. dropAt(item:Grids::Item,x:Integer,y:Integer)

41. self.cellAt(x,y).drop(item)
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

A Robot Command Language
42. end

43. end

Cells exist at a particular position in a grid and have contents. The contents are
organised as a stack: each time a new value is dropped onto a cell it is pushed onto
the stack of contents. Only the top element on a cell is available.

44. class Cell

45. x : Integer;

46. y : Integer;

47. contents : Stack = Stack.new();

48. init(s:Seq(Instance)):Object

49. self.x := (s->at(0)) []

50. self.y := (s->at(1)) []

51. self

52. end

53. contentString():String

54. cond

55. self.contents.empty() then ".";

56. else self.contents.top().toString()

57. end

58. end

59. empty():Boolean

60. self.contents.empty()

61. end

62. top():Grids::Item

63. self.contents.top()

64. end

65. drop(item:Grids::Item)

66. self.contents.push(item)

67. end

68. pop()

69. self.contents.pop()

70. end

71. contains(item:Grids::Item):Boolean

72. self.contents.contains(item)

73. end

74. end
Great Events of the Twentieth Century95

A Programmer’s Guide to MMT 95

Packages

96

96
Cells contain items. An item is either a cone or a robot. If a cell contains a robot
then, by convention, the robot should be the top cell element:

75. class Item

76. toString():String

77. "!"

78. end

79. end

80. class Cone extends Grids::Item

81. toString():String

82. "A"

83. end

84. end

A robot is facing in a given direction and is carrying a collection of items:

85. class Robot extends Grids::Item

86. direction : String = "north";

87. items : Set(Grids::Item);

88. toString():String

89. cond

90. self.direction = "north" then "^";

91. self.direction = "south" then "V";

92. self.direction = "west" then "<";

93. self.direction = "east" then ">";

94. else state.error("Robot::toString: unknown direction " +

95. self.direction)

96. end

97. end

A robot can grab an item:

98. grab(item:Grids::Item)

99. self.items := (self.items->including(item))

100. end

A robot can turn left or right:

101. left()

102. cond

103. self.direction = "north" then self.direction := "west";
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

A Robot Command Language
104. self.direction = "south" then self.direction := "east";

105. self.direction = "west" then self.direction := "south";

106. self.direction = "east" then self.direction := "north";

107. else state.error("Robot::left: unknown direction " + self.direction)

108. end

109. end

110. right()

111. cond

112. self.direction = "north" then self.direction := "east";

113. self.direction = "south" then self.direction := "west";

114. self.direction = "west" then self.direction := "north";

115. self.direction = "east" then self.direction := "south";

116. else state.error("Robot::right: unknown direction " + self.direction)

117. end

118. end

A robot may move forward one cell:

119. forward(grid:Grids::Grid)

120. let cell = grid.position(self)

121. in cond

122. self.direction = "north" then

123. if cell.y > 0

124. then cell.pop() [] grid.dropAt(self,cell.x,cell.y-1)

125. endif;

126. self.direction = "south" then

127. if cell.y < grid.height

128. then cell.pop() [] grid.dropAt(self,cell.x,cell.y+1)

129. endif;

130. self.direction = "west" then

131. if cell.x > 0

132. then cell.pop() [] grid.dropAt(self,cell.x-1,cell.y)

133. endif;

134. self.direction = "east" then

135. if cell.x < grid.width

136. then cell.pop() [] grid.dropAt(self,cell.x+1,cell.y)

137. endif

138. end

139. end
Great Events of the Twentieth Century97

A Programmer’s Guide to MMT 97

Packages

98

98
140. end

The forward method uses position (line 12) to find the cell containing the robot.
The conditional expression (lines 121 - 138) is used to analyse the current direction
that the robot is facing. In each case the the cell position is checked to ensure that
forward movement is legal. If the robot can make the move then it is removed from
the cell (cell.pop()) and dropped at the new location.

A robot can pick up the item at the head of the pile at its current location:

141. pickup(grid:Grids::Grid)

142. let cell = grid.position(self)

143. in cell.pop() []

144. if cell.empty()

145. then cell.drop(self)

146. else self.grab(cell.top()) []

147. cell.pop() []

148. cell.drop(self)

149. endif

150. end

151. end

By convention the robot is always the top element on the pile of items at its current
location. It is removed from the location (line 143) to reveal the pile underneath. If
the cell is then non-empty the top item is grabbed and removed from the cell and
the robot is added back.

A robot may drop one of the items it is carrying. For the purposes of this example,
if the robot is carrying more than one item then one is selected at random:

152. drop(grid:Grids::Grid)

153. if not self.items->isEmpty

154. then let cell = grid.position(self)

155. item = self.items.selectElement()

156. in cell.pop() [] cell.drop(item) [] cell.drop(self) []

157. self.items := (self.items->excluding(item))

158. end

159. endif

160. end

161. end
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

A Robot Command Language
162. end

The package Grids provides a collection of services that may be used by suitable
controller packages. Consider the case where a controller is to be designed that
uses a language of control commands to manipulate a robot in terms of the services
offered by Grids. The control command language can be separated into its syntax
and its semantics. The syntax defines appearance and structure of the control com-
mands; for the purposes of this example we present the abstract syntax. The seman-
tics defines how each command is performed using the services offered by Grids.

The abstract syntax of the control command language is defined by the package
Commands:

163. package Commands

164. class Command end

165. class Nothing extends Commands::Command end

166. class Left extends Commands::Command end

167. class Right extends Commands::Command end

168. class Forward extends Commands::Command end

169. class Drop extends Commands::Command end

170. class Pickup extends Commands::Command end

171. class Then extends Commands::Command

172. left : Commands::Command;

173. right : Commands::Command;

174. init(s:Seq(Instance)):Object

175. self.left := (s->at(0)) []

176. self.right := (s->at(1)) []

177. self

178. end

179. end

180. program(commands:Seq(Commands::Command)):Commands::Command

181. commands->iterate(command c = Commands::Nothing.new(Seq{}) |

182. Commands::Then.new(Seq{c,command}))

183. end

184. repeat(command:Commands::Command,n:Integer):Commands::Command

185. (1).to(n)->iterate(_ c = Commands::Nothing.new(Seq{}) |

186. Commands::Then.new(Seq{c,command}))

187. end

188. end
Great Events of the Twentieth Century99

A Programmer’s Guide to MMT 99

Packages

100

100
All commands are peformed with respect to a robot and a grid. The command
Nothing does nothing; Left and Right turn the robot 90 degrees in the appropriate
direction; Forward moves the robot one cell forward if possible; Pickup grabs the
top item from the cell occupied by the robot if available; Drop leaves one of the
items carried by the robot on top of its cell if available.

The package Commands provides an example of a language that is tailored specifi-
cally to an application domain. We are using a toy domain, however in general the
domain may be some aspect of a large application for example the business rules or
the control or the physical deployment. Each different aspect of an application at
each level of refinement is best expressed using a language that is tailored for the
purpose.

The package Commands defines the abstract syntax of a command language. Other
features that could be defined in Commands are the display of commands or a com-
mand editor. The packages Commands and Grids are composed using package spe-
cialisation; for each command we must define the services that are used to
implement it. This is done in the following package named Controller:

189. package Controller

190. extends

191. Robots::Commands,

192. Robots::Grids

193. class Command

194. perform(robot:Controller::Robot,grid:Controller::Grid)

195. state.error("Command::perform is abstract.")

196. end

197. end

The package Controller extends the definitions from both Commands and Grids
(lines 190 - 192). The class Command is extended with a method named ‘perform’
(lines 193 - 197) that adds semantics to each command: it must be re-defined on a
case-by-case basis.

198. class Nothing

199. perform(robot:Controller::Robot,grid:Controller::Grid)

200. grid

201. end

202. end
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

A Robot Command Language
A Nothing command is performed (lines 199 - 201) by leaving the robot in its cur-
rent state with respect to the grid.

203. class Left

204. perform(robot:Controller::Robot,grid:Controller::Grid)

205. robot.left()

206. end

207. end

208. class Right

209. perform(robot:Controller::Robot,grid:Controller::Grid)

210. robot.right()

211. end

212. end

213. class Forward

214. perform(robot:Controller::Robot,grid:Controller::Grid)

215. robot.forward(grid)

216. end

217. end

218. class Drop

219. perform(robot:Controller::Robot,grid:Controller::Grid)

220. robot.drop(grid)

221. end

222. end

223. class Pickup

224. perform(robot:Controller::Robot,grid:Controller::Grid)

225. robot.pickup(grid)

226. end

227. end

228. class Then

229. perform(robot:Controller::Robot,grid:Controller::Grid)

230. self.left.perform(robot,grid) [] self.right.perform(robot,grid)

231. end

232. end

233. end

Lines 203 - 233 show the semantics of each command. In most cases they simply
call the appropriate method of Robot, supplying the current state of the grid. The
exception is Then (lines 228 - 232) that performs the left command before the right
command.
Great Events of the Twentieth Century101

A Programmer’s Guide to MMT 101

Packages

102

102
The package Robots is completed with a simple test method that creates a grid,
drops two cones and a robot and then performs a simple program that moves the
robot around the grid and moves a cone from one cell to another:

234. test()

235. let grid = Robots::Controller::Grid.new(Seq{5,7})

236. cone1 = Robots::Controller::Cone.new(Seq{})

237. cone2 = Robots::Controller::Cone.new(Seq{})

238. robot = Robots::Controller::Robot.new(Seq{})

239. left = Robots::Controller::Left.new(Seq{})

240. forward = Robots::Controller::Forward.new(Seq{})

241. right = Robots::Controller::Right.new(Seq{})

242. pickup = Robots::Controller::Pickup.new(Seq{})

243. drop = Robots::Controller::Drop.new(Seq{})

244. repeat = Robots::Controller::repeat

245. program = Robots::Controller::program(Seq{

246. left,

247. repeat(forward,4),

248. right,

249. forward,

250. right,

251. repeat(forward,3),

252. pickup,

253. forward,

254. drop,

255. left,

256. forward})

257. in grid.toString().println() []

258. grid.dropAt(cone1,0,0) []

259. grid.dropAt(cone2,4,6) []

260. grid.dropAt(robot,5,7) []

261. grid.toString().println() []

262. program.perform(robot,grid) []

263. grid.toString().println()

264. end

265. end

266. end
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

Filmstrips
The command Robots::test() produces the following output:

......

......

......

......

......

......

......

......

A.....
......
......
......
......
......
....A.
.....^

A.....
......
......
......
......
.....^
.....A

......

Filmstrips

The Robot Command Language defined in the previous section provides an exam-
ple of separating a package of services from a language that uses those services.
The commands were given an imperative semantics using package specialisation
by defining a package called Controller that defines methods for each type of com-
mand.

Suppose that we have a language that expresses dynamic behaviour; UML has such
languages in the form of statecharts and collaboration diagrams. The language in
question is to be used to design part of the dynamic behaviour of a system and as
such we would like to test candidate executions of parts of the system against the
Great Events of the Twentieth Century103

A Programmer’s Guide to MMT 103

Packages

104

104
design. For such a scenario, an imperative semantics like the one we developed for
the robot command language is not appropriate because we have no way of repre-
senting executions and therefore no way of constructing one and presenting it to
MMT to test.

Executions of systems are sometimes referred to as filmstrips. The idea of a film-
strip is that is captures a step-by-step development of system execution in terms of
states; each step in the filmstrip describes a change in state. Although there are
many different data representations that may be used for filmstrips, including trees
and graphs, a simple representation is a sequence that encodes a linear filmstrip.

For example, a linear filmstrip for the robot system would be a sequence of grids
linked with a record of the operations that caused one grid to change into the next.

This section uses packages to develop a simple filmstrip application for integer
arithmetic. We develop a package of arithmetic expressions and an imperative state
machine that can be used to perform the expressions. A filmstrip for the language is
a sequence of machine states.

The package containing the example is called Eval:

1. open Stacks;

2. open Structure;

3. package Eval
4. package Exps

5. class Exp end

6. class Number extends Exps::Exp

7. value : Integer;

8. init(s:Seq(Instance)):Object

9. self.value := (s->at(0)) []

10. self

11. end

12. toString():String

13. self.value.toString()

14. end

15. end

16. class Add extends Exps::Exp

17. left : Exps::Exp;

18. right : Exps::Exp;
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

Filmstrips
19. init(s:Seq(Instance)):Object

20. self.left := (s->at(0)) []

21. self.right := (s->at(1)) []

22. self

23. end

24. toString():String

25. self.left.toString() + "+" + self.right.toString()

26. end

27. end

28. end

Lines 4 - 28 define a package of arithmetic expressions called Exps. For the pur-
poses of brevity the expressions are limited to numeric constants (lines 6 - 15) and
addition expressions (lines 16 - 27).

The package Machine defines the states that will occur in filmstrips and that will be
used in the imperative operational semantics of the expression language:

29. package Machine

30. class State

31. stack : Stack = Stack.new(Seq{});

32. control : Stack = Stack.new(Seq{});

33. init(s:Seq(Instance)):Object

34. if s->isEmpty

35. then self

36. else self.stack := (s->at(0)) []

37. self.control := (s->at(1)) []

38. self

39. endif

40. end

41. toString():String

42. "(" + self.stack.toString() + "," + self.control.toString() + ")"

43. end

A machine state (lines 31 and 32) consists of a value stack and a control stack.
Expressions and machine instructions live on the control stack. The results of per-
forming expressions (i.e. integers) live on the value stack. When the machine per-
forms an expression, the expressions and instructions are consumed from the top of
Great Events of the Twentieth Century105

A Programmer’s Guide to MMT 105

Packages

106

106
the control stack. If the resulting control item required operands then they are
found at the head of the value stack.

44. loadExp(e:Eval::Exps::Exp):Machine::State

45. self.control.push(e) []

46. self

47. end

48. loadVal(n:Integer):Machine::State

49. self.stack.push(n) []

50. self

51. end

Expressions and values are loaded onto the appropriate stacks using the methods
loadExp and loadVal defines on lines (44 - 51).

52. add(other:Machine::State):Machine::State

53. Machine.State.new(Seq{

54. self.stack + other.stack,

55. self.control + other.control})

56. end

57. end

Two machine states can be added together to produce a new machine state (lines 52
- 56). In adding together machine states their corresponding stacks are added
together.

58. class AddInstr

59. toString():String

60. "+"

61. end

62. end

63. end

In addition to performing expressions, the machine has its own instruction set.
Since the expression language is small, the instruction set is also small. A single
instruction is defined (lines 58 - 63) that will add up the top two integers on the
value stack.

The operational meaning of the language can be defined using an imperative
semantics. This allows us to animate expressions in our language. Not all lan-
guages that employ the idea of filmstrips lend themselves to defining such an oper-
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

Filmstrips
ational semantics because their meaning is highly ambiguous (meaning that each
expression leads to a very large number of possible filmstrips). This does not apply
here so we can define a machine as follows:

64. package Operational extends Eval::Exps, Eval::Machine

65. class State

66. perform()

67. if self.control.empty()

68. then self.stack.pop()

69. else self.control.pop().perform(self) [] self.perform()

70. endif

71. end

72. end

The package Operational extends both Exps and Machine (line 64) in order to add
methods named ‘perform’ to state and expression classes. The definition of per-
form encodes the semantics of the language.

The perform method for states (lines 66 - 72) continually pops a control item and
performs it with respect to the current machine state. When the control is
exhausted, the machine terminates returning the top value stack item.

73. class Number

74. perform(s:Operational::State)

75. s.stack.push(self.value)

76. end

77. end

When a number is performed (lines 73 - 77) the value of the number is pushed onto
the head of the value stack.

78. class Add

79. perform(s:Operational::State)

80. s.control.push(Operational::AddInstr.new(Seq{})) []

81. s.control.push(self.left) []

82. s.control.push(self.right)

83. end

84. end

When an addition is performed, a new add instruction is pushed on the control (line
80) followed by the left and right sub-expressions (lines 81 and 82). A design
Great Events of the Twentieth Century107

A Programmer’s Guide to MMT 107

Packages

108

108
choice arises here regarding the order in which the sub-expressions should be per-
formed. The machine cannot perform both sub-expressions concurrently since it is
a sequential machine. However, the expression language is free from side effects so
performing the sub-expressions in either order should be acceptable. We will return
to this issue when we look at filmstrips for the expression language.

85. class AddInstr

86. perform(s:Operational::State)

87. s.stack.push(s.stack.pop() + s.stack.pop())

88. end

89. end

An add instruction is performed by adding the two items at the top of the value
stack (line 87). The top two items are replaced by their sum.

90. eval(e:Operational::Exp):Integer

91. Operational::State.new(Seq{}).loadExp(e).perform()

92. end

93. end

The Operational package concludes with a useful method named ‘eval’ (lines 90 -
92). This method is used to perform an expression by loading it onto a fresh
machine state, running the machine and then returning the result of the expression.

The package Operational defines how to perform an expression. Suppose instead
we want to test a candidate expression evaluation to see if it conforms to the
semantics of expressions. Since the language we have developed is small, we can
do this by generating the set of filmstrips for an expression and then testing the

candidate to see if it belongs to the set1.

94. package Filmstrips extends Eval::Exps

95. class Filmstrip

96. states : Seq(Eval::Machine::State);

97. init(s:Seq(Instance)):Object

98. self.states := s []

99. self

100. end

1. Of course this technique will only work if the set of possible filmstrips for an expression
is small. On the other hand it is a viable way of defining all the legal filmstrips even if
other techniques are used to test candidate expression executions.
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

Filmstrips
101. toString():String

102. "<Filmstrip " + self.states->iterate(s S = Seq{} |

103. S + Seq{s.toString()}).separateWith(",") + ">"

104. end

Lines 94 - 104 introduce the package Filmstrips. A filmstrip is a sequence of
machine states.

Two filmstrips can be added together. This is best explained using an example.
Suppose f1 is the filmstrip (using a shorthand notation):

[([],[n1]),([n1],[])]

and f2 is the filmstrip:

[([],[n2]),([n2],[])]

then f1 + f2 is the filmstrip:

[([],[n1+n2]),([],[n1,n2,+]),([n1],[n2,+]),([n2,n1],[+]),([n3],[])]

where n3 = n1+n2. The filmstrip method add is defined as follows:

105. add(right:Filmstrips::Filmstrip):Filmstrips::Filmstrip

106. let lastLeft = self.states->last

107. firstLeft = self.states.head

108. leftExp = firstLeft.control.top()

109. leftVal = lastLeft.stack.top()

The resulting filmstrip describes the result of performing the receiver and then the
calculation described by the filmstrip right (line 105), Lines 106 - 109 extract some
required components from the left hand filmstrip. The expression leftExp (line
108) is the first sub-expression to be performed producing the value leftVal (line
109).

110. lastRight = right.states->last

111. firstRight = right.states.head

112. rightExp = firstRight.control.top()

113. rightVal = lastRight.stack.top()

Lines 110 - 113 extract the corresponding components from the right filmstrip that
is to be performed after the left filmstrip.
Great Events of the Twentieth Century109

A Programmer’s Guide to MMT 109

Packages

110

110
114. preState = Eval::Machine::State.new(Seq{})

115. postState = Eval::Machine::State.new(Seq{})

Lines 114 and 115 define two new states that will be the starting state and final
state of the new filmstrip. The starting state contains an empty value stack and has
the the addition of the left and right expressions as the single entry on the control
stack. The final state has the addition of the left and right values as the single entry
on the value stack and has an empty control stack.

116. addInstr = Eval::Machine::AddInstr.new(Seq{})

117. delayedRight =

118. let s = Eval::Machine::State.new(Seq{})

119. in s.loadExp(rightExp)

120. end

121. delayedInstr =

122. let s = Eval::Machine::State.new(Seq{})

123. in s.loadExp(addInstr)

124. end

125. performedLeft =

126. let s = Eval::Machine::State.new(Seq{})

127. in s.loadVal(leftVal)

128. end

Lines 116 - 128 define three new states. The state delayedRight will be added to the
states in the left filmstrip to record the pending right sub-expression. The state per-
fomedLeft will be added to the states in the right filmstrip to record the value pro-
duced by the left filmstrip. The state delayedInstr will be added to the states in both
left and right filmstrips to record the pending + instruction.

129. leftMergedStates = self.states->collect(s |

130. s + delayedRight + delayedInstr)->asSequence

131. rightMergedStates = right.states->collect(s |

132. s + performedLeft + delayedInstr)->asSequence

133. mergedStates = leftMergedStates + rightMergedStates.tail

Lines 129 - 133 merges the states form the left and right filmstrips. The states in the
left filmstrip are modified by adding the delayed right sub-expression and the
pending + instruction. The states in the right filmstrip are modified by adding the
result from the left filmstrip and the pending + instruction. The merged states are
the result of appending the two filmstrips. We drop the head of the right merged
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

Filmstrips
states because the last element of the right merged filmstrips and the head of the
right merged filmstrips are the same state.

134. in preState.loadExp(Eval::Exps::Add.new(Seq{leftExp,rightExp})) []

135. postState.loadVal(leftVal + rightVal) []

136. Filmstrips::Filmstrip.new(

137. Seq{preState} + mergedStates + Seq{postState})

138. end

139. end

140. end

Lines 134 - 139 construct the final merged filmstrip. The pre state and the post state
are modified by adding in the + expression and its result. Finally, lines 136 - 137
create and return a new filmstrip.

Each expression produces a set of filmstrips describing all possible ways of per-
forming the expression. In particular an addition expression can be performed two
ways: performing the left then performing the right or performing the right then
performing the left.

141. class Number

142. calculations():Set(Filmstrips::Filmstrip)

143. let pre = Eval::Machine::State.new(Seq{})

144. post = Eval::Machine::State.new(Seq{})

145. in pre.loadExp(self) []

146. post.loadVal(self.value) []

147. Set{Filmstrips::Filmstrip.new(Seq{pre,post})}

148. end

149. end

150. end

Lines 141 - 150 defines the calculations produced by a Number. A number calcula-
tion has the following shape:

[([],[n]),([n],[])]

151. class Add

152. calculations():Set(Filmstrips::Filmstrip)

153. self.addFilmstrips(self.left,self.right)->union(

154. self.addFilmstrips(self.right,self.left))
Great Events of the Twentieth Century111

A Programmer’s Guide to MMT 111

Packages

112

112
155. end

The filmstrips produced by an addition expression is the union of the calculations
produced by performing left then right and performing right then left (lines 153 and
154).

156. addFilmstrips(left:Filmstrips::Exp,right:Filmstrips::Exp):

157. Set(Filmstrips::Filmstrip)

158. let leftFilmstrips = left.calculations()

159. rightFilmstrips = right.calculations()

160. in leftFilmstrips->iterate(l C = Set{} |

161. rightFilmstrips->iterate(r C = C |

162. C->including(l + r)))

163. end

164. end

165. end

166. end

Lines 156 - 166 define a method that adds left and right sub-expressions of an addi-
tion expression. The result is a set of filmstrips containing the pair-wise concatena-
tion of left and right filmstrips (lines 160 - 162).

Given an expression e, the set e.calculations() contains all possible ways of per-
forming the expression on the state transition machine. Given a candidate filmstrip
we could test whether the candidate is correct by checking whether or not it is con-
tained in the set.

167. test()

168. let n = Eval::Operational::Number.new(Seq{10})

169. add = Eval::Operational::Add.new(Seq{n,n})

170. n' = Eval::Filmstrips::Number.new(Seq{10})

171. add' = Eval::Filmstrips::Add.new(Seq{n',n'})

172. add'' = Eval::Filmstrips::Add.new(Seq{n',add'})

173. in Eval::Operational::eval(add).toString().println() []

Lines 167 - 173 define a test for the Eval package. Line 173 prints the integer 20 on
the standard output.

174. n'.calculations().toString().println() []

Line 174 prints the following to the standard output:
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

Filmstrips
Set{<Filmstrip (<Stack >,<Stack 10>),(<Stack 10>,<Stack >)>}

175. add'.calculations().toString().println() []

Line 175 prints the following to the standard output:

Set{<Filmstrip (<Stack >,<Stack 10+10>),
(<Stack >,<Stack 10,10,+>),
(<Stack 10>,<Stack 10,+>),
(<Stack 10,10>,<Stack +>),
(<Stack 20>,<Stack >)>,

<Filmstrip (<Stack >,<Stack 10+10>),
(<Stack >,<Stack 10,10,+>),
(<Stack 10>,<Stack 10,+>),
(<Stack 10,10>,<Stack +>),
(<Stack 20>,<Stack >)>}

176. add''.calculations().toString().println()

177. end

178. end

179. end

Line 176 prints the following to the standard output:

Set{<Filmstrip (<Stack >,<Stack 10+10+10>),
(<Stack >,<Stack 10,10+10,+>),
(<Stack 10>,<Stack 10+10,+>),
(<Stack 10>,<Stack 10,10,+,+>),
(<Stack 10,10>,<Stack 10,+,+>),
(<Stack 10,10,10>,<Stack +,+>),
(<Stack 20,10>,<Stack +>),
(<Stack 30>,<Stack >)>,

<Filmstrip (<Stack >,<Stack 10+10+10>),
(<Stack >,<Stack 10,10+10,+>),
(<Stack 10>,<Stack 10+10,+>),
(<Stack 10>,<Stack 10,10,+,+>),
(<Stack 10,10>,<Stack 10,+,+>),
(<Stack 10,10,10>,<Stack +,+>),
(<Stack 20,10>,<Stack +>),
(<Stack 30>,<Stack >)>,

<Filmstrip (<Stack >,<Stack 10+10+10>),
(<Stack >,<Stack 10+10,10,+>),
(<Stack >,<Stack 10,10,+,10,+>),
Great Events of the Twentieth Century113

A Programmer’s Guide to MMT 113

Packages

114

114
(<Stack 10>,<Stack 10,+,10,+>),
(<Stack 10,10>,<Stack +,10,+>)
(<Stack 20>,<Stack 10,+>),
(<Stack 10,20>,<Stack +>),
(<Stack 30>,<Stack >)>,

<Filmstrip (<Stack >,<Stack 10+10+10>),
(<Stack >,<Stack 10+10,10,+>),
(<Stack >,<Stack 10,10,+,10,+>),
(<Stack 10>,<Stack 10,+,10,+>),
(<Stack 10,10>,<Stack +,10,+>),
(<Stack 20>,<Stack 10,+>),
(<Stack 10,20>,<Stack +>),
(<Stack 30>,<Stack >)>}

Calculations

The linear filmstrips used in the previous section describe how a state transition
machine performs a given expression. This raised problems regarding the order in
which sub-expressions were performed. Sometimes it may be more appropriate to
be abstract with respect to the ordering of sub-expression evaluation. This section
shows how expression evaluation can be expressed as calculations and how candi-
date calculations can be checked against expressions.

A calculation is a graph. The nodes of the graph represent data values (in this case
integers) and the edges of the graph represent operations that are performed on data
values (in this case addition). An edge has many source nodes; each source node is
a required input for the operation. An edge has many target nodes; each target node
is data produced by the operation (in this example we only require one target node).

Calculations are general structures that can be used to encode a wide range of lan-
guage execution. In this example the language is the package Exps defined in the
previous section:

1. open Stacks;

2. open Structure;

3. package Calculations

4. package Exps

5. // as defined in the section named Filmstrips

6. end
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

Calculations
Calculations are defined by the package Calcs:

7. package Calcs

8. class Node

9. data : Integer;

10. init(s:Seq(Instance)):Object

11. self.data := (s->at(0)) []

12. self

13. end

14. toString():String

15. "<Node " + self.data + ">"

16. end

17. equals(other:Calcs::Node):Boolean

18. other.data = self.data

19. end

20. end

A calculation contains nodes that represent data (lines 8 - 20).

21. class Edge

22. label : String;

23. sources : Set(Calcs::Node);

24. targets : Set(Calcs::Node);

25. init(s:Seq(Instance)):Object

26. self.label := (s->at(0)) []

27. self

28. end

29. toString():String

30. "(" + self.sources->collect(s |

31. s.toString())->asSequence.separateWith(",") + ") -" + self.label + "->(" +

32. self.targets->collect(s |

33. s.toString())->asSequence.separateWith(",") + ")"

34. end

35. addSource(n:Calcs::Node)

36. self.sources := (self.sources->including(n))

37. end

38. addTarget(n:Calcs::Node)

39. self.targets := (self.targets->including(n))

40. end
Great Events of the Twentieth Century115

A Programmer’s Guide to MMT 115

Packages

116

116
A calculation contains edges that represent operations. Each edge has a set of
source nodes (line 23) and a set of target nodes (line 24). The methods addSource
and addTarget (lines 35 - 40) allow source and target nodes to be added to an edge.

41. equals(other:Calcs::Edge):Boolean

42. self.label = other.label and

43. self.subSources(other) and other.subSources(self) and

44. self.subTargets(other) and other.subTargets(self)

45. end

46. subSources(other:Calcs::Edge):Boolean

47. self.sources->forAll(n1 | other.sources->exists(n2 | n1.equals(n2)))

48. end

49. subTargets(other:Calcs::Edge):Boolean

50. self.targets->forAll(n1 | other.targets->exists(n2 | n1.equals(n2)))

51. end

52. end

Lines 41 - 52 define that two edges are equal when they have the same source and
target nodes.

53. class Calc

54. nodes : Set(Calcs::Node);

55. edges : Set(Calcs::Edge);

56. toString():String

57. "<Calc " + self.nodes.toString() + "," + self.edges.toString() + ">"

58. end

59. init(s:Seq(Instance)):Object

60. if s->size = 2

61. then let nodes = s->at(0)

62. edges = s->at(1)

63. in self.nodes := nodes []

64. self.edges := edges []

65. self

66. end

67. else self

68. endif

69. end

70. addNode(n:Calcs::Node)

71. self.nodes := (self.nodes->including(n))
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

Calculations
72. end

73. addEdge(e:Calcs::Edge)

74. self.edges := (self.edges->including(e))

75. end

Lines 53 - 75 introduce the class Calc. A calculation consists of sets of nodes and
edges. A calculation may be constructed by supplying its node and edge sets (lines
59 - 69); these will default to Set{} if none are supplied. New nodes and edges are
added to a calculation using the methods addNode and addEdge (lines 70 - 75).

76. add(other:Calcs::Calc):Calcs::Calc

77. let c = Calcs::Calc.new(Seq{})

78. in c.nodes := (self.nodes->union(other.nodes)) []

79. c.edges := (self.edges->union(other.edges)) []

80. c

81. end

82. end

Two calculations are merged by adding them together (lines 76 - 82). The result is a
new calculation consisting of the union of the edge and node sets from the compo-
nent calculations.

83. equals(other:Calcs::Calc):Boolean

84. self.subCalc(other) and

85. other.subCalc(self)

86. end

87. subCalc(other:Calcs::Calc):Boolean

88. self.nodes->forAll(n1 | other.nodes->exists(n2 | n1.equals(n2))) and

89. self.edges->forAll(e1 | other.edges->exists(e2 | e1.equals(e2)))

90. end

Lines 83 - 90 define when one calculation is equal to another. Equality is defined in
terms of a sub-calc relation (lines 87 - 90) that is satisfied when the nodes and edge
sets are subsets.

91. outputFringe():Set(Calcs::Node)

92. self.nodes->select(node |

93. not self.edges->exists(edge | edge.sources->includes(node)))

94. end
Great Events of the Twentieth Century117

A Programmer’s Guide to MMT 117

Packages

118

118
The output fringe of a calculation (lines 91 - 94) is the set of nodes representing the
data values produced by the calculation. The output fringe is important when deter-
mining the value(s) produced by a calculation and when merging calculations
together.

95. resultNode():Calculations::Calcs::Node

96. let outputs = self.outputFringe()

97. in if outputs->size = 1

98. then outputs.selectElement()

99. else state.error("Calc::resultNode: more than one output " +

100. outputs.toString())

101. endif

102. end

103. end

104. result():Integer

105. self.resultNode().data

106. end

Lines 95 - 106 define methods that assume a calculation has a single output (for the
purposes of this example all calculations will have a single output). The result node
(lines 95 - 103) is the node that is not the source of any edge. The result of a calcu-
lation (lines 104 - 106) is the data in the result node.

107. subCalcs():Set(Calcs::Calc)

108. let nodeSets = self.nodes.power()

109. edgeSets = self.edges.power()

110. in nodeSets->iterate(nodes S = Set{} |

111. edgeSets->iterate(edges S = S |

112. let calc = Calcs::Calc.new(Seq{nodes,edges})

113. in if calc.wellFormed()

114. then S->including(calc)

115. else S

116. endif

117. end))

118. end

119. end

A calculation has a set of well-formed sub-calculations (lines 107 - 119). A sub-
calculation is formed by taking a sub-set of the nodes and edges. The sub-calcula-
tion is well formed when all the nodes are the source or target of some edge and all
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

Calculations
the sources and targets of edges are also in the calculation. Sub-calculations are
formed by combining the elements of the power sets of the nodes and edges (lines
108 -112). The resulting calculations are then filtered using a well formedness
check (line 113).

120. wellFormed():Boolean

121. if self.outputFringe()->size = 1

122. then

123. if self.nodes->forAll(node |

124. self.edges->exists(edge |

125. edge.sources->includes(node) or

126. edge.targets->includes(node)))

127. then

128. self.edges->forAll(edge |

129. edge.sources->forAll(node | self.nodes->includes(node)) and

130. edge.targets->forAll(node | self.nodes->includes(node)))

131. else false

132. endif

133. else false

134. endif

135. end

136. end

137. end

The well formedness check (lines 120 - 137) checks that the calculation produces a
single output, that all nodes are connected to at least one edge and all edges are

connected to legal nodes2. The check is tailored to the example: in general a well
formed calculation ma have more than one output.

Given a representation for expressions Exps, and a representation for calculations
Calcs, the package Map is used to define how an expression is transformed into a
calculation and how a calculation is checked against an expresion:

138. package Mapping

139. extends Calculations::Exps

2. The method uses if then else endif when and would be simpler. The reason for this is
that MMT and is not short-circuit: both sub-expressions re evaluated. The conditional
expressions are used to implement a short-circuit and.
Great Events of the Twentieth Century119

A Programmer’s Guide to MMT 119

Packages

120

120
The package Mapping extends Exps in order to extend each type of expression
with a calculation generation method (calc) and a calculation checking method
(check).

140. class Number

141. check(c:Calculations::Calcs::Calc):Boolean

142. c.equals(self.calc())

143. end

144. calc():Calculations::Calcs::Calc

145. let c = Calculations::Calcs::Calc.new(Seq{})

146. n = Calculations::Calcs::Node.new(Seq{self.value})

147. e = Calculations::Calcs::Edge.new(Seq{self.value.toString()})

148. in e.addTarget(n) []

149. c.addNode(n) []

150. c.addEdge(e) []

151. c

152. end

153. end

154. end

Class Number defines a method check (lines 141 - 143) that checks a candidate cal-
culation to see if it represents a record of performing a constant expression. The
method calc (lines 144 - 153) constructs a constant calculation.

155. class Add

156. calc():Calculations::Calcs::Calc

157. let c1 = self.left.calc()

158. c2 = self.right.calc()

159. in self.addResult(c1,c2)

160. end

161. end

The class Add defines a method calc (lines 156 - 161) that constructs an addition
calculation by combining the calculations for the left and right sub-expressions.
The combination uses the auxiliary method addResults that adds an extra edge rep-
resenting the addition operation and an extra node representing the sum:

162. addResult(c1:Calculations::Calcs::Calc,

163. c2:Calculations::Calcs::Calc):Calculations::Calcs::Calc

164. let result = Calculations::Calcs::Node.new(Seq{
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

Calculations
165. c1.result() + c2.result()})

166. edge = Calculations::Calcs::Edge.new(Seq{

167. c1.result().toString() + "+" + c2.result().toString()})

168. calc = c1 + c2

169. in calc.addNode(result) []

170. edge.addSource(c1.resultNode()) []

171. edge.addSource(c2.resultNode()) []

172. edge.addTarget(result) []

173. calc.addEdge(edge) []

174. calc

175. end

176. end

The method addResult (lines 162 - 176) merges two calculations (c1 and c2) into a
single calculation that describes the addition of two sub-expressions. The two cal-
culations are merged using ‘+’ in line 168; the resulting calculation is extended
with an edge and a node. The edge (lines 166 and 167) represents the ‘+’ operation
and the node (lines 164 and 165) represents the result. Lines 169 - 173 add the node
and edge into the calculation ‘calc’.

177. check(c:Calculations::Calcs::Calc):Boolean

178. c.subCalcs()->exists(c1 |

179. if self.left.check(c1)

180. then c.subCalcs()->exists(c2 |

181. if self.right.check(c2)

182. then c.equals(self.addResult(c1,c2))

183. else false

184. endif)

185. else false

186. endif)

187. end

188. end

A calculation is checked against an addition expression using ‘check’ defines on
lines 177 - 187). We could have defined check as c.equals(self.calc()). However,
the given definition provides an example of generate and test. Using this technique
we generate all the possible sub-calculations of the candidate ‘c’ and check them
against the left and right sub-expressions of the add expression. If each sub-calcu-
lation (‘c1’ and ‘c2’) matches the appropriate sub-expression and if the result of
adding the extra node and edge to ‘c1 + c2’ is ‘c’ then the check is satisfied.
Great Events of the Twentieth Century121

A Programmer’s Guide to MMT 121

Packages

122

122
The following is a simple testing method that can be used with the calculations:

189. test()

190. let n = Calculations::Mapping::Number.new(Seq{10})

191. add = Calculations::Mapping::Add.new(Seq{n,n})

192. in add.check(add.calc())

193. end

194. end

195.end

The result of Calculations::test() is true thereby giving us confidence that the
implementation of Add::calc is correct.
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

CHAPTER 7 Snapshots
• Definitions.

• Sub-snapshots.
Great Events of the Twentieth Century123

A Programmer’s Guide to MMT 123

Snapshots

124

124
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

CHAPTER 8 Relations
• Definitions of simple relations.

• Using relations as mappings.

• Using relations in both directions.

• Inheritance and relations.

• Relational combinators.
Great Events of the Twentieth Century125

A Programmer’s Guide to MMT 125

Relations

126

126
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

CHAPTER 9 Templates
Object-oriented systems provide modularity, polymorphism and reuse through
class-based inheritance. In addition to classes, MMT provides package-based inher-
itance that allows systems to be constructed from groups of components.

Inheritance allows definitions to be reused systematically between groups of related
components. Usually, a sub-class (or package) is intended to be partially or wholly
conformant with its super-classes; in this case inheritance is used to construct sub-
types. Viewing an instance of a sub-class as an instance of a super-class in this way
is an example of sub-type polymorphism.

Often an application has features which can exploit a different type of polymor-
phism. Consider a pair of classes that define the structure and behaviour of
sequences of integers and sequences of booleans. It is not true that an instance of
one class can be supplied when an instance of the second class is expected. There-
fore the relationship between these classes cannot be explained using sub-typing.
However the structure, operations and properties of the two classes clearly have
things in common: for example taking the head of a sequence of integers involves
the same activities as taking the head of a sequence of booleans; the ‘length’ prop-
erty of both sequences is defined in exactly the same way.

The type of polymorphism that relates the classes described above is often referred
to as parametric polymorphism. Definitions relating to classes or packages related
Great Events of the Twentieth Century127

A Programmer’s Guide to MMT 127

Templates

128

128
in this way are parameterised with respect to one or more elements. In MMT such a
parameteric definition is called a template. A template is transformed into a con-
crete definition by supplying values for the parameters. In MMT this is referred to
as stamping out the template. Unlike inheritance, the definitions resulting from
stamping out a template are not related to the definitions in the template.

For example, the definitions relating to lists of things can be defined as a template
that is parameteric with respect to the type of elements in the list. The concrete def-
initions for lists of integers and lists of booleans are then constructed by stamping
out the template twice: the first time supplying Integer and the second time supply-
ing Boolean.

Templates (parameteric polymorphism) and inheritance (sub-type polymorphism)
can be used together to provide a highly expressive system description language. A
typical pattern of system definition uses templates to stamp out general properties
of systems as collections of packages and then uses package inheritance to com-
bine the resulting partial descriptions to produce a single system component.

This chapter provides examples of templates.

Quote - Unquote

The language MML contains a number of constructs that either use or introduce
names. For example class definitions introduce a new name that refers to a class.
For example a slot reference expression uses the name of a slot.

Many components of MML expressions are sub-expressions that denote a value.
When a name occurs as a sub-expression its value is found by looking the name up
in the the current context. Names may also occur as components of MML expres-
sions where the name is not intended for evaluation. Such names are referred to as
quoted. For example, the name x is quoted in o.x, but is unquoted in x + 1. For
example the name X is quoted in class X end but is unquoted in class Y extends X
end.

By default, the following occurrence of names are quoted: package names, class
names, method definition names, message names in method calls, slot names in
slot reference expressions, constraint names in invariant clauses, names in attribute
definitions, types, names in name space lookup expressions.
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

Containership
Sometimes we do not want a name to be quoted - we want the name to be com-
puted at run-time. MML provides unquoting brackets that can be placed around
expressions that compute names (strings) that would otherwise be quoted. The
unquoting brackets are << and >>. The following package provides a somewhat
artificial example of each type of unquoting:

1. package <<“Example” + “Package”>>

2. class <<“Example” + “Class”>>

3. <<“Example” + “Attribute”>> : <<DataTypes::Integer>>;
4. <<“ExampleMethod”>>(x:Integer):Set(<<DataTypes::Integer>>)

5. Set{x}

6. end

7. m(x:Integer):Set(Integer)

8. self.<<“Example” + “Method”>>(self.<<“ExampleAttribute”>>)

9. end

10. inv

11. <<“Example” + “Constraint”>>

12. self.<<“Example” + “Attribute”>> > 10

13. fail: “Example constraint failed”

14. end

15. end

16. end

In general the expressions surrounded by unquoting brackets are not simple string
concatenation. The expressions may perform arbitrary calculations in order to pro-
duce strings that are then used as names.

Unquoting brackets are particularly useful in conjunction with templates. A tem-
plate definition is parameterised with respect to a number of values. The template
produces a number of definitions whose names can be functions of the template
parameters.

Containership

One of the simplest examples of template definitions is containership. The relation
between a container and the contained elements cannot easily be expressed using
inheritance. For example, Java has a number of different types of container includ-
ing hashtables and vectors. Java abuses its inheritance-based type system by requir-
Great Events of the Twentieth Century129

A Programmer’s Guide to MMT 129

Templates

130

130
ing clients of containers to cast the values extracted from a container from Object
to the appropriate contained element type.

Containership is essentially a definition parameterised with respect to the container
and the contained element types. It can be defined as a template as follows:

1. package Contains(Container:String,Contained:String)

2. class <<Container>>

3. <<Contained + "s">> : Set(Contains::<<Contained>>);

4. <<"contains" + Contained>>(x:Contains::<<Contained>>):Boolean

5. self.<<Contained + "s">>->includes(x)

6. end

7. <<"add" + Contained>>(x:Contains::<<Contained>>)

8. self.<<Contained + "s">> := (self.<<Contained + "s">>->including(x))

9. end

10. <<"remove" + Contained>>(x:Contains::<<Contained>>)

11. self.<<Contained + "s">> := (self.<<Contained + "s">>->excluding(x))

12. end

13. end

14. class <<Contained>> end

15. end

Line 1 introduces a package template. A package template is defined in the same
way as a package except that the name of the package is followed by a parameter
list. The result of performing a package template is an object that can be used as a
function: it is applied to a sequence of arguments to return a package. A package
template may be applied any number of times; a new package is produced each
time it is applied.

Line 1 shows that the Contains package is parameterised with respect to two
strings: the name of the container class and the name of the contained elements.
Lines 2 - 13 define a class. The name of the class is given by the value of the
parameter supplied to the template. Normally a class name is quoted, but unquoting
brackets are used to allow the name to be evaluated in the context of the body of
the template.

Lien 3 defines an attribute of the container class. The name of the attribute is com-
puted by concatenating the name of the contained element type with ‘s’. The type
of the attribute is a set of elements. The type in an attribute definition is given by a
type expression; in this case it is a set type expression. The element type in a set
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

Containership
type expression is a type expression: it must denote a type. In this case the type is
the class (note not the class name which is the value of the variable Contained) rep-
resenting the contained element type.

Lines 4 - 6 define a method for testing whether a container contains a particular
element. Lines 7 - 9 define a method that is used to add a new element to a con-
tainer. Lines 10 - 12 define a method that is used to remove an element from a con-
tainer.

Finally line 13 defines a class named Contained. Although this class contains no
definitions, it is necessary to allow the container attribute and method to refer to it
as a type on lines 3, 4, 7 and 10.

Once the containership template has been defined, it can be used to produce pack-
ages by stamping it out. A template is stamped out by applying it to argument val-
ues. The following is a simple example where a library is defined to be a container
of books and CDs:

16. package LibraryExample

17. extends

18. Contains("Library","Book"),

19. Contains("Library","CD")

20. class Book

21. name : String;

22. end

23. class CD

24. name : String;

25. end

26. end

The package LibraryExample inherits from two packages resulting from stamping
out the container template twice. In the first case (line 18) the container is a class
named Library and the contained element is a class named Book. In the second
case (line 19) the container is again Library and the contained element is is a class
called CD.

The package LibraryExample also defines classes named Book and CD. By the
definition of package specialisation, all definitions for Book and CD are merged
together to produce the contents of LibraryExample, therefore the package defini-
tion given on lines 16 - 26 is equivalent to the following:
Great Events of the Twentieth Century131

A Programmer’s Guide to MMT 131

Templates

132

132
27. package LibraryExample

28. class Library

29. Books : Set(LibraryExample::Book);

30. CDs : Set(LibraryExample::CD);

31. containsBook(x:LibraryExample::Book):Boolean

32. self.Books->includes(x)

33. end

34. addBook(x:LibraryExample::Book)

35. self.Books := (self.Books->including(x))

36. end

37. removeBook(x:LibraryExample::Book)

38. self.Books := (self.Books->excluding(x))

39. end

40. containsCD(c:LibraryExample::CD):Boolean

41. self.CDs->includes(c)

42. end

43. addCD(x:LibraryExample::CD)

44. self.CDs := (self.CDs->including(x))

45. end

46. removeCD(x:LibraryExample::CD)

47. self.CDs := (self.CDs->excluding(x))

48. end

49. end

50. class Book

51. name : String;

52. end

53. class CD

54. name : String;

55. end

56. end

Indexed Containership

Templates can be layered on top of templates. Given a library of templates, the lay-
ering mechanism allows a wide variety of packages to be constructed simply by
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

Indexed Containership
supplying argument values to a layered template. This section gives a simple exam-
ple of template layering.

Consider the library example of the previous section. Both books and cds are
examples of contained elements that can be indexed by their names. It would be
useful to add a lookup feature to a library to support simple searches.

A lookup feature based on the name of an element is a generic relationship between
a named contained element and a container of indexed elements. Such a relation-
ships may occur between the same type of container and several different types of
indexed elements. Therefore, this abstract property lends itself to being represented
in terms of templates as follows:

1. package Named(Element:String)

2. class <<Element>

3. name : String;

4. init(s:Seq(Instance)):Object

5. self.name := (s->at(0)) []

6. self

7. end

8. toString():String

9. "<" + self.of.name + " " + self.name + ">"

10. end

11. end

12. end

Lines 1 - 12 define a template for the naming property of a contained element.
Templates are not essential to represent this property: inheritance would do just as
well; however it is encoded as a template for expository purposes.

13. package IndexedContains(Container:String,Contained:String)

14. extends

15. Contains(Container,Contained),

16. Named(Contained)

17. class <<Container>>

18. <<"binds" + Contained>>(name:String):Boolean

19. self.<<Contained + "s">>->exists(x | x.name = name)

20. end

21. <<"find" + Contained>>(name:String):IndexedContains::<<Contained>>

22. if self.<<"binds" + Contained>>(name)
Great Events of the Twentieth Century133

A Programmer’s Guide to MMT 133

Templates

134

134
23. then self.<<Contained + "s">>->select(x | x.name = name).selectElement()

24. else state.error(<<Container>> + "::find" + <<Contained>> +

25. ": no element named " + name)

26. endif

27. end

28. end

29. end

Lines 13 - 29 define a template called IndexedContains that is layered on the tem-
plates Contains and Named. The meaning of layering is as follows: given the name
of a container and contained elements (line 13), the resulting package is a speciali-
sation of the packages created by supplying the names to the Contains template
(line 15) and the Named template (line 16).

In addition to inheriting all of the containership and naming definitions, a package
resulting from stamping out IndexedContains extends the container with two meth-
ods. The method defined on lines 17 - 20 can be used as a predicate to determine
whether the container binds a given name in a given binding category of container-
ship. The method defined on lines 21 - 27 indexes a contained element of a given
category given its name.

The following package shows how a library can be constructed as an indexed con-
tainer of books and cds. The package also defines a simple test method for a
library:

30. package LibraryExample

31. extends

32. IndexedContains("Library","Book"),

33. IndexedContains("Library","CD")

34. test()

35. let b = LibraryExample::Book.new(Seq{"book1"})

36. c = LibraryExample::CD.new(Seq{"cd1"})

37. l = LibraryExample::Library.new(Seq{})

38. in l.addBook(b) []

39. l.addCD(c) []

40. l.findCD("cd1").toString().println()

41. end

42. end

43. end
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

Indexed Containership
Great Events of the Twentieth Century135

A Programmer’s Guide to MMT 135

Templates

136

136
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

CHAPTER 10 Graphical User
Interfaces
• Classes in Gui.pkg.

• Examples of use.

• MMT tools developed using Gui classes.
Great Events of the Twentieth Century137

A Programmer’s Guide to MMT 137

Graphical User Interfaces

138

138
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

CHAPTER 11 Diagrams
• How to get at diagrams.

• Exporting diagrams.

• How to define new types of diagram.

• How diagrams work.
Great Events of the Twentieth Century139

A Programmer’s Guide to MMT 139

Diagrams

140

140
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

CHAPTER 12 Meta-programming in
MMT
MMT is a reflexive development environment. Many aspects of MMT are defined
in MML and therefore can be inspected, extended or redefined using the techniques
described in the rest of this book. The ability to be reflexive is an important factor in
achieving a coherent suite of interoperable tools for developing software. A homo-
geneous meta-level can define and co-ordinate a wide variety of heterogenous tools,
each of which is tailored to a specific aspect of an application development.

MMT aims to provide an environment within which aspect specific languages and
tools can be efficiently produced and co-ordinated. The MML language consists of
a suite of packages all defined in MML. These can be extended to produce an
MML-like language that exhibits new features. In addition they may be instantiated

to define a completely new language1. In all cases the basic MMT tools (written in
MML) will understand the underlying representation and can interpret the new def-
initions. Of course, a completely new representation language will probably be best
served by its own tool set; these too can be defined using MML.

This chapter provides an overview of meta-programming in MMT.

1. At the time of writing MMT has no mechanism for defining, parsing and therefore
processing the concrete syntax of a non-MML-like language. Therefore such a language
must be defined and used at the post-syntactic processing level, i.e. using abstract syntax
trees. There are currently plans to define a parsing library in MML.
Great Events of the Twentieth Century141

A Programmer’s Guide to MMT 141

Meta-programming in MMT

142

142
Metaclasses

Metapackages

Classifiers and Data Types

Every MMT value has a classifier. You can reach the classifier of any value by ref-
erencing the special slot named ‘of’. The classifiers of objects are instance of Class
or one of its sub-classes. The classifier of all other types of value are instance of the
class Classifier or one of its sub-classes.

There are three ways in which classification occurs in MMT:

1. Given a value v and a classifier c, c.checkInstance(v) return a set of strings. If
the set is empty then v is classified by c. Otherwise the set contains disganostic
strings describing why v is not classified by c. By default, Classifier::checkIn-
stance runs all of the constraints defined by c in super-class to sub-class order
until it reaches a constraint that fails. Classifiers may choose to redefine this
method.

2. Given a value v and a classifier c, v.isKindOf(c) returns true when v is an
instance of c or one of its super-classes. Instance::isKindOf does not run any
ofthe constraints defined by c.

3. Given a value v, v.check() is defined as v.of.checkInstance(v).

The method Classifier::checkInstance provides a way of defining the semantics of
classification via constraints. MML has a number of pre-defined constraints includ-
ing:

• Object::allSlotsHaveDifferentNames that checks all the slots of an object have
distinct names.

• Object::SlotsAllTypeCorrect that checks the slot values of an object are
instances of the types of the corresponding attributes of its classifier. Note that
the values are checked against attributes types using isKindOf and therefore
will not recursively invoke checkInstance. This design decision has been taken
to avoid infinite regress.
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

Classifiers and Data Types
• Object::HasSlotsForAllAtts that checks an object has slots corresponding to all
the attributes of its classifier.

• Class::allDifferentAttNames that checks for distinct attribute names in a class.

• Class::EmptyParents that checks a class and ensures that it has at least one par-
ent (except for the distinguished class Instance).

• Classifier::NoCircularInheritance that checks a classifier to ensure that it does
not inherit from itself.

• Classifier::ConstraintsHaveDifferentNames that checks consraints to ensure
thay have distinct names.

You may add new constraints by defining sub-classes of the appropriate system
class (see the chapter on meta-programming for details on extending meta-classes).

When defining classes new constraints are added to the invaviant clause of the
class definition or by using Classifier::addConstraint. Classifiers of other types of
values (such as sets and integer ranges) are defined as sub-types of
DataTypes::DataType.

The rest of this section describes how new data types can be defined. It includes
examples of classifier definitions and of parameteric classes.

Constants

Some languages permit the developer to define constants. By default MML does
not have constants, however they can be defined as a new data type. This section
describes how constants are defined as a sub-class of DataType and then can be
used and checked as a type in attribute definitions.

The class DataType defines a method (actually inherited from Classifier) called
checkInstance. A constant data type will check an instance by comparing the candi-
date against the single constant value. Each constant data type is different; there-
fore to implement constant data type a new meta-class is defined called
ConstantType:

1. class ConstantType extends DataTypes::DataType

2. constant : Instance;

3. toString():String

4. "Const(" + self.constant.toString() + ")"

5. end
Great Events of the Twentieth Century143

A Programmer’s Guide to MMT 143

Meta-programming in MMT

144

144
6. default():Instance

7. self.constant

8. end

9. checkInstance(x:Instance):Set(String)

10. if x = self.constant

11. then Set{}

12. else Set{x.toString() + "<>" + self.constant.toString()}

13. endif

14. end

15. end

ConstantType is a sub-class of DataType and is therefore a meta-class. An instance
of ConstantType is a classifier of values. Each instance has a different constant
value; therefore ConstantType defines an attribute named ‘constant’ (line 2) that is
the default value of an instance (lines 6 - 8).

A ConstantType instance checks a candidate value using the method checkInstance
(lines 9 - 14). The method simply compares the candidate against the constant
value and returns an appropriate diagnostic.

A particular type is defined as a classifier that is an instance of ConstantType. Sup-
pose that this is done on a constant-by-constant basis, the data type for the constant
10 is as follows:

16. classifier TheConstant10 metaclass ConstantType extends Instance

17. constant = 10;

18. end

Line 16 defines TheConstant10 as a classifier (the classifier definition has the
same structure as a class definition except that the resulting object may not define
attributes). TheConstant10 is an instance of ConstantType and a sub-class of
Instance. Since it is an instance of ConstantType, it has a slot named ‘constant’ that
is defined to have the value 10 (line 17).

TheConstant10 may nw be used as a classifier:

TheConstant10.checkInstance(10) produces Set{}

TheConstant10.checkInstance(11) produces Set{11<>10}

TheConstant10 may now be used as a data type in class definitions:
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

Classifiers and Data Types
19. class MiniBus

20. passengers : Integer;

21. maxPassengers : TheConstant10;

22. inv

23. CheckPassengerNumber

24. self.passengers <= self.maxPassengers

25. fail: “Too Full!”

26. end

27. end

Instantiating ConstantType on a constant by constant basis is not particularly use-
ful. It is much more convenient to define a classifier template that stamps out the
instance each time it is used:

28. classifier Const(c:Instance) metaclass ConstantType extends Instance

29. constant = c;

30. end

In this case the constant value c is passed in as an argument. The definition of Min-
iBus becomes:

31. class MiniBus

32. passengers : Integer;

33. maxPassengers : Const(10);

34. inv

35. CheckPassengerNumber

36. self.passengers <= self.maxPassengers

37. fail: “Too Full!”

38. end

39. end

Enumerated Types

An enumerated type is a collection of values; the type classifies any value in the
collection. By default MML does not have enumerated types; however, they can be
added by defining a meta-class called EnumeratedType and then instanting it for
each new enumerated type. The class EnumeratedType is defined as follows:

1. class EnumeratedType extends DataTypes::DataType

2. elements : Set(Instance);

3. toString():String
Great Events of the Twentieth Century145

A Programmer’s Guide to MMT 145

Meta-programming in MMT

146

146
4. "enum{" + self.elements->collect(e |

5. e.toString())->asSequence.separateWith(",") + "}"

6. end

7. checkInstance(x:Instance):Set(String)

8. if self.elements->includes(x)

9. then Set{}

10. else Set{x.toString() +

11. " is not an element of the enumeration " +

12. self.elements.toString()}

13. endif

14. end

15. default():Instance

16. self.elements.selectElement()

17. end

18. end

An enumerated type has a set of values called ‘elements’ (line 2) and checks a can-
didate instance for inclusion in the set (lines 7 - 14). The default value for any
attribute declared to have an enumerated type is an element selected at random
(lines 15 - 17).

An enumerated type is created using a classifier template that is defined as follows:

19. classifier Enum(S:Set(Instance)) metaclass EnumeratedType extends Instance

20. elements = S;

21. end

The template Enum is used to create a new type by applying it to a set of values:

Enum(Set{“male”,”female”}).checkInstance(“male”) produces Set{}

Enum(Set{“male”,”female”}).checkInstance(10) produces

Set{10 is not an element of the enumeration Set{female,male}}

Enumeration types can be used in attribute definitions:

22. class Person

23. sex : Enum(“male”,”female”)

24. end
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

Classifiers and Data Types
Tuples

A tuple is a sequence of elements, each element in the tuple may be of a different-
type. A tuple type is a sequence of element types, a value classified by the tuple
type is a sequence of values, each value is classified by the appropriate element
type. This section shows how tuple types can be defined in terms of a meta-class
named TupleType and a classifier template. Tuples of length 2 are called pairs, a
template classifier is defined for constructing pair types.

1. class TupleType extends DataTypes::DataType

2. types : Seq(Classifier);

3. toString():String

4. "(" + self.types->collect(t | t.toString())->asSequence.separateWith(",") + ")"

5. end

6. checkInstance(x:Instance):Set(String)

7. if x.isKindOf(SeqOfInstance)

8. then if x->size = self.types->size

9. then

10. let pairs = self.types.zip(x)

11. in pairs->iterate(p S = Set{} |

12. let type = p->at(0)

13. value = p->at(1)

14. checked = type.checkInstance(value)

15. in if checked->isEmpty

16. then S

17. else S->including("value " + value.toString() +

18. " is not of type " + type.toString())

19. endif

20. end)

21. end

22. else Set{x.toString() + " does not match tuple type " + self.types.toString()}

23. endif

24. else Set{"tuple type " + self.types.toString() + " expects a sequence"}

25. endif

26. end

27. default():Instance

28. self.types->collect(type | type.default())->asSequence

29. end

30. end
Great Events of the Twentieth Century147

A Programmer’s Guide to MMT 147

Meta-programming in MMT

148

148
The class TupleType is defined on lines 1 - 30. The method checkInstance is
defined to check the candidate is a sequence of the appropriate length and then to
check each element of the sequence in turn against the element types of the tuple
type.

31. classifier Tuple(ts:Seq(Classifier)) metaclass TupleType extends Instance
32. types = ts;
33. end
34.

35. classifier Pair(type1:Classifier,type2:Classifier) metaclass TupleType
36. extends Instance
37. types = Seq{type1,type2};
38. end

Lines 31 - 33 define a classifier template for tuple types. Lines 35 - 38 define a
classifier template for pair types.

Pair(Integer,Boolean).checkInstance(Seq{false,true}) produces

Set{value false is not of type <Integer>}

Pair(Integer,Boolean).checkInstance(Seq{1,2,3}) produces

Set{Seq{1,2,3} does not match tuple type Seq{<Integer>,<Boolean>}}

Pair(Integer,Boolean).checkInstance(1) produces

Set{tuple type Seq{<Integer>,<Boolean>} expects a sequence}

Ranges

An inclusive numeric range is a pair of integers consisting of a lower bound and an
upper bound. An integer is classifier by the range if it falls between the bounds or is
equal to either bound. This section shows how range types are defined by a sub-
class of DataType and a classifier template.

1. class RangeType extends DataTypes::DataType

2. lower:Integer;

3. upper:Integer;

4. toString():String

5. "[" + self.lower + "," + self.upper + "]"

6. end

7. checkInstance(x:Instance):Set(String)

8. if x.isKindOf(Integer)
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

Classifiers and Data Types
9. then

10. if self.lower <= x and x <= self.upper

11. then Set{}

12. else Set{x + " should be in the range [" + self.lower + "," + self.upper + "]"}

13. endif

14. else Set{"range types expect an integer value"}

15. endif

16. end

17. default():Instance

18. self.lower

19. end

20. end

Lines 1 - 20 define RangeType. The checkInstance method expects an integer that
falls between the lower and upper ranges.

21. classifier Range(l:Integer,u:Integer) metaclass RangeType extends Instance

22. lower = l;

23. upper = u;

24. end

Lines 21 - 24 define a classifier template for generating range types.

Range(10,20).checkInstance(15) produces Set{}

Range(10,20).checkInstance(25) produces Set{25 should be in the range [10,20]}
Great Events of the Twentieth Century149

A Programmer’s Guide to MMT 149

Meta-programming in MMT

150

150
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

CHAPTER 13 The MML Grammar
This chapter defines the MML grammar. The language definition is given in EBNF
using the following conventions:

• Grammar rule phrases may be grouped into a compound phrase using (and).

• Grammar rule phrases followed by * mean 0 or more repetitions.

• Grammar rule phrases enclosed in [and] are optional.

• Terminal names start with a lower case latter.

• Non-terminal names start with an upprt case letter.

The following non-terminals are assumed:

• Lparen is a left parenthesis.

• Rparen is a right parenthesis.

• Lcurl is a left curly brace.

• Rcurl is a right curly brace.

• Lsquare is a left square brace.

• Rsquare is a right square brace.

• Name is a Java identifier.

• Char is a Java character.
Great Events of the Twentieth Century151

A Programmer’s Guide to MMT 151

The MML Grammar

152

152
• Bar is a vertical bar.

• String is a Java string.

• Integer is a Java integer.

1.AddExp ::= MulExp (AddOp MulExp)*

2.AddOp ::= + | -

3.Apply ::= Primary [Args]

4.Args ::= Lparen [Exp (, Exp)*] Rparen

5.Attribute ::= (Name | ComputedName) : Exp [= Exp]

6.BoolOp ::= and | or | xor | implies

7.Boolean ::= true | false

8.BooleanExp ::= RelationalExp (BoolOp RelationalExp)*

9.Class ::=

10. class ClassName [FunArgs] [Meta] [Supers]

11. [String]

12. [ClassBody]

13. [Invariant]

14. end

15.ClassBody ::= ClassBodyEntry (; ClassBodyEntry)*

16.ClassBodyEntry ::= Slot | Attribute | Method

17.ClassName ::= Name | ComputedName

18.Collection ::= -> CollectionName

19. [Lparen [Name [Name = Exp] Bar] Exp (, Exp)* Rparen]

20.CollectionName ::=

21. append | asSequence | asSet | at | collect | exists | first | forAll |

22. includes | including | intersection | isEmpty | iterate | last | prepend |

23. reject | select | size | subSequence | symmetricDifference | union

24.ComputedName ::= << Exp >>

25.Cond ::= cond ([Exp then Exp (; Exp then Exp)*] | else Exp) end

26.Exp ::= BooleanExp (Lsquare Rsquare BooleanExp)*

27.FieldRef ::= . (Name | ComputedName) [Args | := Apply]

28.Fun ::= fun FunSig Exp end

29.FunArgs ::= Lparen [Name : Exp (, Name : Exp)*] Rparen

30.FunSig ::= FunArgs [: Exp]

31.If ::= if Exp then Exp [else Exp] endif

32.Imports ::= import Exp (, Exp)*
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

33.Invariant ::= inv InvariantEntry (; InvariantEntry)*

34.InvariantEntry ::= (Name | ComputedName | String) Exp fail: Exp

35.Let ::= (let | letrec) Name [FunArgs] = Exp in Exp end

36.Literal ::= Integer | String | Char | Boolean

37.Meta ::= metaclass Exp

38.Method ::= (Name | ComputedName) FunSig Exp

39.MulExp ::= UnaryExp (MulOp UnaryExp)*

40.MulOp ::= * | /

41.Obj ::= object Name : Exp [Slot (; Slot)*] end | @Exp [Slot (; Slot)*] end

42.Open ::= open Exp in Exp end

43.Package ::=

44. package (Name | ComputedName) [FunArgs] [Meta] [Supers] [Imports]

45. [String]

46. [PackageBody]

47. [Invariant]

48. end

49.PackageBody ::= PackageBodyEntry (; PackageBodyEntry)*

50.PackageBodyEntry ::= Package | Class | Association | Method

51.Primary ::=

52. Name | ComputedName | Literal | Set | Seq | If | Cond | Obj | Class |

53. Package | Snapshot | Let | Fun | Open | Lparen Exp Rparen

54.Ref ::= Apply (FieldRef | Collection)*

55.RelOp ::= < | > | <= | >= | <> | =

56.RelationalExp ::= AddExp RelOp AddExp

57.Seq ::= ‘Seq’ Lcurl [Exp (, Exp)*] Rcurl

58.Set ::= ‘Set’ Lcurl [Exp (, Exp)*] Rcurl

59.Slot ::= Name [(Name)] = Exp

60.Supers ::= extends Exp (, Exp)*

61.UnaryExp ::= Ref | - Ref | not Ref
Great Events of the Twentieth Century153

A Programmer’s Guide to MMT 153

The MML Grammar

154

154
Great Events of the Twentieth Century

A Programmer’s Guide to MMT

	A Programmers Guide to MMT
	CHAPTER 1 Introduction
	CHAPTER 2 A Simple Example
	CHAPTER 3 Data Values
	Integers
	Booleans
	Strings
	A Calculator for Integer Expressions
	Collections
	Sets
	Sequences
	Functions
	A Tree Manipulation Package
	Free Variables
	Instances
	Objects
	DataBase Queries
	State and Debugging

	CHAPTER 4 Name Spaces
	CHAPTER 5 Classes
	Introduction
	Class Definitions
	Instantiation

	Invariants
	The Structure and Behaviour of Classes
	The Classifier Interface
	Methods
	Constraints
	The Class Interface
	Attributes

	State Transition Machines
	Inheritance and Method Combination
	RunAll

	CHAPTER 6 Packages
	The Package Definition
	Animals
	The Package Interface
	A Robot Command Language
	Filmstrips
	Calculations

	CHAPTER 7 Snapshots
	CHAPTER 8 Relations
	CHAPTER 9 Templates
	Quote - Unquote
	Containership
	Indexed Containership

	CHAPTER 10 Graphical User Interfaces
	CHAPTER 11 Diagrams
	CHAPTER 12 Meta-programming in MMT
	Metaclasses
	Metapackages
	Classifiers and Data Types
	Constants
	Enumerated Types
	Tuples
	Ranges

	CHAPTER 13 The MML Grammar

