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Abstract

Mobile services allow services to be migrated or replicated closer to users as they move
around. This is now regarded as a viable mechanism to provide good Quality of Service to
users in highly mobile environments such as vehicular networks. The vehicular environment
is rapidly becoming a significant part of the internet and this presents various challenges
that must be addressed; this is due to continuous handovers as mobile devices change their
point of attachment to these networks resulting in a loss of service. Therefore, this explains
the need to build a framework for intelligent service migration. This thesis addresses these
issues.

It starts by discussing the requirements for intelligent service migration. Then it investi-
gates a low latency Quality of Service Aware Framework as well as an experimental transport
protocol that would be favoured by vehicular networks.

Furthermore, two analytical models are developed using the Zero-Server Markov Chain
technique which is a way of analysing scenarios when the server is not continuously available
to serve. Using the Zero-Server Markov Chain, the first analytical model looks at lost service
due to continuous handovers and the communication dynamics of vehicular networks, while
the second model analyses how service migration affects service delivery in these networks.
Formulas are developed to yield the average number of packets in the system, the response
time, the probability of blocking and a new parameter called the probability of lost service.
These formulas are then applied to the Middlesex VANET Testbed to look at reactive and
proactive service migration. These techniques are then incorporated into a new Service
Management Framework to provide sustainable Quality of Service and Quality of Experience
to mobile users in vehicular networks. This thesis also shows that this new approach is
better than current approaches as it addresses key issues in intelligent service migration in
such environments, and hence can play a significant part in the development of Intelligent
Transport Systems for Smart Cities.
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Chapter 1

Introduction

1.1 Motivation

In recent times, vehicles can become aware of the dynamic behaviour of other vehicles
without relying on the driver’s faculties. This technology is achieved when all vehicles
are interconnected in a Vehicular Ad hoc Network (VANET). Furthermore, people have
wondered about how to better understand and implement service migration in such a network
due to an exponential increase in vehicular population. Few attempts have been made by
researchers to identify this problem, but none of them got very far because it is a complex
problem and hence it is difficult to solve in a single attempt. As a result, I examine an
alternative path in this thesis by breaking down the topic into key subsystems including low
latency and QoS frameworks, analytical models for handover as well as service migration
and finally the development of a Service Management Framework.

1.2 Background

There is an increasing amount of vehicle and traffic congestion globally, which can be
addressed by the development of an Intelligent Transport System (ITS) [87]. VANET
technology is considered as one of the principal elements of ITS. It consists of a high-speed
network and high mobility vehicles equipped with sensors and a communication capability
device. It makes each of the neighbouring vehicles into a wide range wireless network,
by enabling vehicular connectivity and content sharing. Unlike other mobile networks,
VANETs can be categorized in terms of highly variable network topologies, specific speed
patterns, communication conditions etc. Emerging technologies such as 802.11p and Fifth-
generation mobile communication standards (5G) will give rise to the ubiquitous deployment
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of vehicular networks. VANET is an example of such a system. These networks work by
using Road Side Units (RSUs), Access Points (APs) or Base Stations (BSs) on the roadside
infrastructure and Onboard Units (OBUs) in the vehicles or on cyclists and pedestrians.
Meanwhile, VANET has a limited capacity to disseminate critical road safety information
over such a large area, and thus some major integration issues occur when implemented
in real life. These major challenges are (1) network disconnection problems (2) network
coverage (3) high bandwidth (4) mobility management (5) broadcast storm problems (6) data
dissemination technique, and (7) Service Migration. For this research we mainly focus on
Intelligent Service Migration in the VANET system because the need to provide a sustainable
Quality of Service (QoS) is vital in this environment.

The existing centralized structure of the cloud-based architecture [48] has made a gener-
ally large geographical separation between the mobile users and the cloud infrastructure. In
this scenario, end-to-end communication between the mobile user and cloud infrastructure
can involve a lot of network hops, thereby introducing high network latency. Additionally,
the network bandwidth of the cloud may also depreciate because the cloud infrastructure is
accessed on a many-to-one basis. A new type of approach to resolve the above problems
would be to install computing infrastructures towards the edge of the network, which can be
used to enable mobile services. These services can therefore be migrated to different Edge
Clouds as users move around, hence maintaining a high QoS for mobile users. In this context,
Multi-access Edge Computing (MEC) [66, 85] is an emerging and significant technology
that is being used to address some of the challenges in Mobile Cloud Computing (MCC). It
provides services at the edge of the core internet that can reduce latency, improve efficiency,
and ensure better service delivery.

Furthermore, MEC is an existing and capable approach to access large data locally and
evade extensive latency, especially in vehicular networks as the Mobile Node (MN) moves at
a high speed and hence, requires low latency. Once vehicular users request services through
a core network from edge networks far from the cloud, it may cause extensive latency. MEC
was established to overcome these disadvantages of traditional cloud computing [78, 65]. A
lot of research has motivated Vehicular Edge Computing (VEC). Most of the recent research
focused on the VEC architecture design but failed to investigate mobility and how it can
affect service migration in a highly mobile environment. Moreover, the migration of the
cloud services close to the MNs helps to address the problem of high latency by moving
the service closer to the MNs. However, in the conventional MCC [86], the cloud services
are called up via the internet connection whereas, in the case of the MEC, the computing
resources are located in the proximity of the MNs. On the other hand, the MEC provides only
limited computational and storage resources with respect to centralised cloud computing.
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Therefore, the MEC can offer significantly lower latency and jitter when compared to the
traditional MCC, and also provides an environment for service migration to take place.

Service migration [93] in a mobile environment refers to the migration of services
from the original location to the destination for a better load balancing in the system. In a
dynamic large-scale mobile environment such as a vehicular system, service migration is
a more satisfactory service deployment method. By implementing an appropriate service
migration scheme, the system can maintain better QoS. In this research, two categories of
service migration, reactive and proactive service migration will be investigated. Reactive
migration migrate services at a fixed time while proactive migration is variably based on a
given situation. This gives rise to the consideration of intelligent service migration, thereby
enabling efficient service delivery with the help of better analytical models and an architecture
that dynamically supports it. The intelligent migration of services to edge systems such as
RSUs, APs and BSs, will result in the ability to maintain a high QoS to users as they move
around.

Authors in [75] proposed a new system for efficient live migration for applications using
an intelligent system capable of load balancing and self-automation by executing a secure
live migration. The system went through performance analysis to prove its efficiency and
was compared with the previous standard systems.

Wang et al. [90] used a two-layer cellular network that had mobility-aware mobile equip-
ment’s that would improve the efficiency of task processing by using a MEC environment.
A forward joint task offloading, and computation allocation schemes based on mobility-
aware migration was developed to lower the migration probability and maximize the total
revenue. This resulted in a mixed-integer non-linear programming problem; therefore, a
Reinforcement Learning Based algorithm was derived to solve this problem. They obtained
the maximum total revenue of mobile equipment’s availably.

It is well known that issues with the likes of data leakage happen with virtual machine
migration on the cloud computing platforms. The paper in [83] showed a simulating result
that secured virtual machine migration method to assure the integrity and improve security
performance at the point of virtual machine migration. It also demonstrates how it decreased
total migration time and downtime and increases the online migration efficiency of their
virtual machines.

Authors in [84] proposed a statistical method for estimating total migration time. This
enabled them to determine the optimal size of the server monitoring window.

The change of VM’s from one environment to another makes them prone to attacks.
Also, there is a higher risk of a network channel been prone to a high-level security breach
when initiating a live service migration. Authors in [61] showed how these channels can be
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protected using Internet Protocol Security (IPsec) tunnelling. It was enhanced using IPsec
and onion routing algorithm.

Putra et al. [63] conducted a live migration based on cloud computing to increase load
balancing. Based on their analysis it was concluded that in a normal migration the larger data
on disk is migrated, the more time it takes for migration, live migration requires less time
than normal migration and live migration can easily balance server loads without obstructing
running guest in VM.

Authors in [3] proposed an energy-efficient VM migration was based on a time-constrained
file transfer technique. The research showed how it increases the sleeping time of mobile
nodes by delaying crossing requests.

The survey analysis of live migration overhead in a cloud computing environment was
done by authors in [19]. They discussed the energy cost that comes with live migration.
Furthermore, it showed how different research methods for estimating this cost were based
on different parameters. The authors concluded that the network bandwidth is the main factor
causing the energy cost of migration to be high.

There are lots of research efforts that have looked into migrating services from the core
cloud to the edge of the network, but the focus of this research is to explore intelligent
service migration at the edge of the network between Edge Clouds in order to provide
better QoS in highly mobile environments such as vehicular networks. In this context, it
investigates not just the service migration in a system but also the communication dynamics.
A real experimental vehicular network testbed is introduced. Results collected from the real
experimental testbed are used to better understand the impact of service migration within a
VANET environment.

Therefore, to attain an intelligent service migration in a system, we will need to develop
a low latency environment, have the ability to measure the QoS at various locations in the
network, develop analytical modelling suitable for MEC environments, investigate service
migration mechanisms, and define a service orchestration framework. This research will help
us to understand the parameters needed to migrate services from the core to edge and from
edge to edge in a highly mobile environment. In addition, service migration protocols can be
developed based on relevant parameters.

1.3 Key Research Questions

Targeting the challenges of providing an intelligent service migration discussed above, this
research attempts to answer the following question: Can we develop a system to help us
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decide the best place to run a service at any place in time, given the mobility of a user in a
highly mobile environment? This can be broken down into the following questions:

• When is the best time to migrate the service?

• Where should the service be migrated?

• How should the service be migrated?

• How do we develop an optimised model for service migration?

• How do we apply this to a VANET system?

In the above questions, we identify the two key factors that need to be addressed. Firstly,
we define user mobility as the movement of the mobile user, and how their location, velocity
and acceleration change over time while accessing a service. Secondly, the distance between
the user and the mobile node is considered as the key parameter by which we can improve QoS
and reduce network traffic. This is due to mobile users moving randomly and hence makes it
impossible to guarantee QoS in any wireless networks used by mobile users. Therefore, the
best approach is to identify and reduce this to its bare minimum by considering the effects of
the key elements, such as latency and bandwidth, on the QoS.

1.4 Original Contributions

The key contributions of this thesis are as follows:

• The proposal of a new Application Framework which would facilitate intelligent
service migration.

• It explains the Zero-Server Markov Chain concept and shows how this can be used to
develop an analytical model for vehicular networks.

• Generalised equations for the Markov steady state probabilities are obtained using
two key parameters: The Resource Hold Time and the handover time. The results
were obtained in terms of the average number of requests in the system, response time,
blocking probability and probability of lost service.

• It looks at the Service Hold Time and the Service Migration Time and then devises
equations for intelligent service migration based on these parameters. It first considers
reactive service migration and then goes on to consider proactive service migration.
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• This developed model and the equations are applied to the Middlesex VANET Testbed
which is a real connected vehicle testbed located in West London.

• These results are integrated into a newly developed Service Management Framework
to provide sustainable QoS for mobile users in vehicular networks.

1.5 Thesis outline

The following is an outline of the final thesis:

• Chapter 2: The literature review presents a critical analysis of the existing solutions
and approaches produced by researchers and scientists.

• Chapter 3: Details the methods and approaches used for directing this research.

• Chapter 4: Investigates a low latency QoS aware environment by analysing frameworks
and detailing the use of an experimental low latency transport protocol. The transport
protocol underwent performance testing and yielded interesting results.

• Chapter 5: This details the Handover process in a vehicular network by developing an
analytical model, using Markov Chain analysis. This chapter generated results based
on its analysis from the VANET testbed.

• Chapter 6: The development of analytical model for intelligent service migration
coupled with extensive results are displayed.

• Chapter 7: It investigates the design of an Intelligent Service Management Framework
for vehicular network and its implementation in the C programming language.

• Chapter 8: This concludes the thesis with a summary of the thesis and directions for
future work, in order to ensure continual improvement in the current and related field
of study.
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Chapter 2

Technical Background and Related Work

2.1 Brief Introduction

This chapter is broken down into two parts. The first part is focused on the technical
background which introduces us to a number of technologies that are designed to achieve
seamless communication. Secondly, it details the related work of researchers who investigated
MEC, computational offloading decisions, and Service Migration. Then it explores the
requirements and solution approach for intelligent service migration.

2.2 Technical Background

2.2.1 Y-Comm Reference Framework

Y-Comm [57] is a framework designed for the future, while keeping in mind the diversity of
mobile wireless infrastructure which works in an ever-increasing heterogeneous environment.
The architecture of the internet will receive a significant change when heterogeneous networks
are deployed, such as faster internet speeds using optical cables that reach gigabyte per second
data speed and the deployment of new wireless technologies. The framework consists of
two parts, the Core Framework and the Peripheral Framework both of which join at the
two bottom layers forming a Y-shape hence the name. Y-Comm’s investigation of proactive
handover and mobility prediction are essential parts of the investigation presented in this
research. The Y-Comm framework is presented in Figure 2.1 and its constituent layers are
explained below.

• The Core Framework displays the functionality essential in the core network to support
the Peripheral Framework.
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Fig. 2.1 Y-Comm Reference Framework

• The Peripheral Framework handles functions and operations on the MN and on periph-
eral wireless networks.

Peripheral Framework

The first two layers for both frameworks are comparable in functionality. The Hardware
Platform Layer is used to classify all relevant wireless technologies such as modulation
techniques and Media Access Control (MAC) while the Network Abstraction Layer offers
a common interface to control and manage different wireless technologies. The Handover
Management Layer acquires the resources from the Configuration Layer then executes vertical
handover. The Mobility Management Layer chooses when and why handover would occur.
The End Transport Layer provides the functionalities of Transport layers and Network Layers
of the Transmission Control Protocol/Internet Protocol (TCP/IP) module in the IP Suite of
protocols. The QoS Layer supports two mechanisms for handling QoS, the Downward QoS,
where an application specifies its required QoS to the system, and Upward QoS, where the
application tries to adapt to the changing QoS. Finally, the Application Environments Layer
specifies a set of functions, routines and objects to build applications that make use of the
framework.

The Core Framework

The Configuration Layer is in control for dealing with key infrastructure such as switches,
routers and mobile network infrastructure, while the Network Management Layer controls
the networking operations in the core and gathers information on peripheral networks such
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that it can inform the Mobility Management Layer on mobile nodes about wireless networks
at their various locations. The Core Transport System helps to move data through the core
network whereas the Network QoS Layer is concerned with QoS issues within the core
network especially the interface between the peripheral networks and core network. Finally,
Service Platform Layer permits services to be installed on various networks simultaneously.

2.2.2 Multi-access Edge Computing

Multi-access Edge Computing [81] is a network architectural concept that enables cloud
computing capabilities and an IT service environment at the edge of the core network. This
allows us to place peripheral devices such as routers, switches, computers etc., at the edge
of the network. This environment is designed to reduce the latency and helps to provide
mechanisms to supply services efficiently. This addresses the research question of where a
service can be migrated because it introduces the environment for service migration to take
place.

2.2.3 Vehicular Ad hoc Networks

VANETs [87] are created by applying the principles of Mobile Ad hoc Networks (MANETs) [30]
to the domain of vehicles. VANETs were first mentioned and introduced in 2001 under
"car-to-car ad hoc mobile communication and networking" applications, where networks can
be formed and information can be relayed among cars. It was shown that vehicle-to-vehicle
and vehicle-to-roadside communications architectures will co-exist in VANETs to provide
road safety, navigation, and other roadside services. VANETs are a key part of the ITS
framework. Sometimes, VANETs are referred to as Intelligent Transportation Networks.
Figure 2.2 shows a graphical representation of a VANET network scenario with mobile cars.

The main reason why we are looking into VANET is that it is an example of a highly
mobile environment and hence it will be investigated for this research. This helps us to
address the research question of where to migrate services. Some examples of VANET
applications are Electronic Brake Lights, Platooning, Traffic Information Systems, Road
Transportation Emergency Services and On-The-Road Services. VANETs can use any
wireless networking technology; the most prominent are short range radio technologies like
Wireless Local Area Network (WLAN). In addition, cellular technologies such as Long Term
Evolution (LTE) and 5G can be used for VANETs.
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Fig. 2.2 VANET network scenario

2.2.4 Container Technology

In this section, we talk about the service migration technology that exists, starting from the
older to the latest systems. The container technology as discussed below helps to address the
research question on how we will be able to migrate service across the network and they are:

Virtual Machine

This is an emulation of a computer system. Virtual machines [24] are based on computer
architectures and provide the functionality of a physical computer. They involve specialized
hardware and software.

There are two types of virtual machines:

• System virtual machines: These provide substitutes for a real machine. They provide
the functionality needed to execute entire operating systems. A hypervisor uses native
execution to share and manage hardware, allowing for multiple environments which
are isolated from one another, but still exist on the same physical machine.

• Process virtual machines: They are designed to execute computer programs in a
platform-independent environment. It is designed to run applications in the same way
regardless of the platform.
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Docker

This is a computer program that performs operating-system-level virtualization, also known
as "containerization" [60]. It was first released in 2013 and developed by Docker, Inc [18].
Docker is used to run software packages called "containers". In a typical example, one
container runs a web server and web application, while a second container runs a database
server that is used by the web application. Docker containers are isolated from each other
and bundle their own tools, libraries and configuration files; they can communicate with each
other through well-defined channels. All containers are run by a single operating system
kernel and are thus more lightweight than virtual machines. Containers are created from
"images" that specify their precise contents. Images are often created by combining and
modifying standard images downloaded from repositories.

Kernel-based Virtual Machine (KVM)

In cloud computing virtualization techniques, which are typical representatives of the cloud
that have developed rapidly, mobile users can use the virtualized product with no detailed
specification know how. Presently, operating systems can coexist on the same machine with
the help of virtual machines. Software manufactories like Redhat, Cisco, VMware, Microsoft,
are developing their own hypervisors such as KVM [97]. KVM is a full virtualization solution
that is easily customized by cloud providers. It has been incorporated within Linux Operating
system such as CentOS, Fedora, and Ubuntu as a component. This makes KVM often use
Linux Operating System (OS)-based resources for virtualization tasks in the cloud. Such
characteristics make KVM a popular hypervisor.

Linux Container Hypervisor (LXD)

LXD [64] is an open source container management extension for Linux Containers (LXC).
LXD both improves upon existing LXC features and also provides new features and function-
ality to build and manage Linux containers. It employs a REST API that communicates with
LXC through the liblxc library. LXD also supplies a system daemon that applications can use
to access LXC and has a template distribution system to allow faster container creation and
operation. Some important features of LXD are a powerful command-line interface (CLI),
high scalability, improved security, improved control over computing resources, network and
storage management, and live migration of running containers between hosts.
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Unikernels

They [41] are developed by executing high-level languages directly into specialised machine
images which run directly on a bare metal hypervisor. The minimal set of libraries required
to run an application on specific hardware is selected from a modular stack. It eliminates the
overhead introduced by traditional operating systems. This provides many benefits compared
to a traditional Operating System, including improved security, smaller footprints, more
optimisation and faster boot times.

2.3 Related Work

2.3.1 Literature Review on Multi-access Edge computing

With regard to delay-constrained offloading for Multi-access Edge Computing (MEC) in
cloud-enabled vehicular networks, the authors in [95] proposed a vehicular offloading frame-
work in a cloud-based MEC environment. They were able to investigate the computation
offloading mechanism. The latency and the resource limitations of MEC servers were taken
into consideration which enabled the proposal of a computation, resource allocation and a
contract-based offloading scheme. The scheme was intended to exploit the utility of the MEC
service provider to satisfy the offloading requirements of the task. Given the significance of
increased research in combining networking with MEC to support the development of 5G, the
authors in [67] investigated the conceivable outcomes of engaging coordinated fibre-wireless
(Fi-Wi) to get networks to offer MEC abilities. More predominantly, imagined plan situations
of MEC over Fi-Wi networks for typical Radio Access Network (RAN) advancements were
explored, representing both network architecture and enhanced resource management.

Moreover, authors of [94] showed the architectural description of the MEC platform
along with the key functionalities. They agreed that the RAN is enhanced by the computation
and storage capacity provided using MEC. The primary benefit of MEC is to allow significant
latency reduction to applications and services as well as reduced bandwidth consumption.
The enhancement of RAN technology with the MEC’s capability facilitates the use of its
edge server cloud resources to provide context-aware services to nearby mobile users in
addition to conducting the user traffic forwarding. Kikuchi et al. [37] proposed a MEC-based
VM migration scheme whereby a VM migration is conducted to reduce congestion at the
edge of the network. They solved two QoS problems which were the congestion in a wireless
access network and congestion in computing resources on an edge based on the network TCP
throughput by considering different network scenarios that increase it.
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A recent survey on architecture and computation offloading in MEC [47], explained that
the current research being carried out regarding the MEC is basically around how to guarantee
service continuity in highly dynamic scenarios. They clearly state that this part is lacking in
terms of previous research and is one of the key hindrances to the use of the MEC concept
in real world scenarios. Furthermore, they argued that recent validated research will not be
accepted due to their simplistic scenarios, simulations or analytical evaluations but instead
real tests and trials are further required in realistic scenarios. Recently, the ability to use low
cost devices that have agreed virtualised services appear to be a better alternative to support
computational requirements at the edge of a network. Lertsinsrubtavee et al. [44] introduced
PiCasso, which is a lightweight service orchestration at the edge of a network. They further
analysed and discussed their benchmarking results which enable them to identify important
parameters that PiCasso would need to play a key role in future network architectures.

2.3.2 Computation Offloading Decision

MEC emerges as a promising model to improve the quality of computational experience for
mobile devices. Liu et al [45] adopted a Markov decision approach to handling the execution
of a task scheduling policy used for MEC systems by integrating different periods in the task
execution process and the channel fading process. Based on their analysis of the average
delay and the average power consumption at the mobile device, they developed an efficient
one-dimensional search algorithm to find the optimal task scheduling policy.

Furthermore, Mao et al [49] investigated MEC systems with Energy Harvesting mo-
bile devices. They developed a dynamic computation offloading policy, called the Lya-
punov optimization-based dynamic computation offloading (LODCO) algorithm. It is a
low-complex online algorithm and requires little prior knowhow. Their study provides a
sustainable approach to design future MEC systems with renewable energy-powered devices.

Researchers in [34] considered an upgrade of 4G architecture, by placing cloud computing
resources at the edge of the network. They investigated Joint radio resource allocation and
offloading strategies to leverage this new feature, by implementing policies designed to
minimize the average power consumed by the user equipment while satisfying predefined
delay constraints.

Labidi et al [42] proposed to jointly optimize the radio resource scheduling and offloading
to minimize the average energy consumed by the mobile terminal by processing its application
under average delay constraints. Both deterministic and randomized offline policies based on
dynamic programming were studied.

Authors in [43] addressed computation offloading difficulty from mobile users to their
serving small cell base stations by jointly optimizing the radio resource scheduling and
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computation offloading in order to minimize the average energy consumed by all the users’
terminals to process their mobile applications under average delay constraints allowed by
these applications. They investigated the problem of offline and online dynamic programming
approaches and devised a deterministic solution to find the optimal scheduling offloading.

The exploitation of cloud computing capabilities can be enhanced by allocating radio and
computational resources jointly. Barbarossa et al [6] proposed a method to jointly optimize
the transmission power, the number of bits per symbol and the Central Processing Unit (CPU)
cycles assigned to each application in order to minimize the power consumption on the
mobile side. They considered the case of a set of mobile handsets served by a single cloud
and showed that the optimization leads to a one-to-one relationship between the transmit
power and the percentage of CPU cycles assigned to each user. Finally, they proposed a
computation scheduling technique, verified the stability of the computational queues, and
showed how these queues are affected by the degrees of freedom of the channels between
mobile handsets and server.

Authors in [70] explored the computation offloading problem in a multi-cell mobile
edge-computing scenario, where they used a dense deployment of radio access points to
facilitate proximity of high bandwidth access to computational resources and also increased
the intercell interference. They formulated the resource optimization problem as the joint
optimization of radio and computational resources, which was aimed at minimizing mobile
users’ energy consumption, under latency and power budget constraints.

Sardellitti at al [69] considered the use of a single cloud and proposed an optimization
approach to merge the computational and communication resources in a multi-cell multiple-
input and multiple-output (MIMO) Femto-cloud network in order to reduce the overall
transmitting energy of all the mobile users asking for computation offloading to a common
cloud server, by using advanced optimization strategies.

Authors in [96] investigated the MEC offloading mechanisms in 5G heterogeneous
networks. In order to improve the energy efficiency of the offloading system, they minimized
the energy consumption of the computation task implementation as well as its communication
process. The authors proposed an energy-efficient computation offloading (EECO) scheme,
which jointly optimizes the computation offloading decisions and the radio resource allocation
strategies to minimize the system energy cost under the delay constraints. Furthermore, they
conducted a simulation study that clearly shows the energy efficiency enhancement.

Authors in [13] proposed a game theory approach for the computation offloading decision
making among multiple mobile device users for mobile-edge cloud computing scenario.
They were able to formulate the problem as a multi-user computation offloading game and
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showed that the game always reaches a Nash equilibrium. They also designed a distributed
computation offloading algorithm that can achieve a Nash equilibrium.

Chen et al [11] recommended an efficient offloading decision algorithm by semi-definite
relaxation and a novel randomization mapping method. Their simulation results showed
that the proposed algorithm gave a close optimal performance with only a small number of
randomized iterations, and adding computing access points to the traditional separation of
mobile devices and remote cloud servers can drastically improve mobile cloud computing
performance.

Authors in [10] considered a mobile cloud computing system that consists of multiple
users, a remote cloud server, and a single computing access point (CAP). The CAP takes into
account the receiving of tasks from the mobile user and offloading them to the cloud. In order
to optimise offloading decisions, they proposed an efficient solution by using a semi-definite
relaxation and a novel randomization mapping method.

Furthermore, authors in [9] considered the offloading of mobile computing based on
a heterogeneous network. They proposed an energy-optimal offloading algorithm of mo-
bile computing to achieve the maximum saving energy of the mobile terminal under the
requirement of the given application execution time.

As an increasing number of mobile users now run complex applications, more energy and
computing power are required. Authors in [17] presented a fine-granularity offloading policy,
focused on reducing the energy depletion while satisfying a strict delay constraint. They
achieved this by using a practical application consisting of a set of tasks and modelled it as a
generic graph topology. Then, they formulated the energy-efficient task offloading problem as
a mathematically constrained programming. Furthermore, to solve low computing resource
issues, the use of Binary Particle Swarm Optimizers (BPSO) [32] algorithms was adopted.

In [98] authors targeted the reduction of terminal energy consumption, and studied the
joint optimization of radio and computational resources for multiple users in mobile cloud
computing and recommended a heuristic strategy, based on the latency constraint and the
application type of each mobile terminal, for resource allocation of low computational
complexity.

2.3.3 Service Migration

Xu et al. [91] presented a highly efficient live migration system called the Sledge, which
ensures component integrity by combining both management context and images during the
runtime migration of Docker containers. The authors ran some experiments and proved that,
when compared with the state-of-the-art, their efficient live migration the system reduces
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the overall system time by 70% downtime, 57% of total migration time, and 55% of image
migration time.

Authors in [27] presented a locality live migration model by considering available
bandwidth, the distance, and the cost between containers. They conducted experiments on a
cluster and showed extensive simulations that revealed its validity in improving the utilisation
of resources.

Authors in this paper [14] developed an intelligent service migration algorithm model
surrounding machine learning algorithms. The algorithm takes into consideration the dynam-
ics of battery level and bandwidth of the mobile device. They performed a simulation which
showed that the performance of the proposed service migration algorithm was better when
compared with the greedy algorithm and the dynamic programming algorithm.

Authors in [92] studied the network congestion that is caused by MN movement in a
mobile edge environment. A VM migration system is anticipated by migrating the VM to
the edge with less congestion. If latency caused by accessing more edge networks is smaller
than when migration has not occurred, the TCP throughput is increased to improve the QoS
through migration.

Due to an increasing demand of data, authors in [99] proposed a solution to this problem
by distributing data traffic to multiple device nodes for distributed processing by using the
approach of data migration. They took into consideration of the bandwidth constraints,
load balance, migration costs, and other factors. They designed a two-level model of multi-
intelligent data migration strategy based on SDN to solve the problem of data migration.

In [79], the authors proposed a Compressed Sensing Routing control-method with Intel-
ligent Migration-mechanism based on Sensing Cloud-computing. It starts by determining
the speed and position of the target node through compressed sensing theory. Reduction of
network load is achieved by a routing tree. A centre of fog nodes is established to obtain data
in route effectively and optimize the data aggregation routing process. Therefore, making
the energy cost of the whole network balanced. Finally, their simulation experiments show
that method and other algorithms have improved the average data aggregation rate by 8.19%,
and the average network coverage has increased by 12.65%. this signified that the proposed
algorithm works.

Tan et al. [82] presented a method on the live migration of VM in edge clouds which
was based on hybrid memory. They optimized the pre-copy algorithm for a hybrid memory
structure by setting up a transmission queue, then migrated the cold data to the Persistent
Memory area of the destination iteratively and finally transfer the hot data to a Dynamic
Random Access Memory area. By doing so it greatly reduced the amount of data transmitted
in the migration process and optimized the data placement in the hybrid memory of the desti-
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nation server. They tested several workloads that simulated real edge computing scenarios,
their result showed an improvement in the migration performance.

To reduce the impact of user equipment mobility on computational results feedback of
the MEC server, authors in [22] used a resource allocation strategy based on VM migration to
maximize the system energy efficiency. User equipment can harvest radio frequency energy
from multiple frequency bands as they move. Considering the mobility of the user equipment
they used VM migration method to transfer computational tasks. The sub-optimal solution
was achieved by introducing the genetic algorithm method.

2.4 Research Gap

The dynamics of the wireless environment makes the provisioning of guaranteed QoS a
significant challenge especially within highly mobile environments like VANET. The major
difference with my research as compared to other works is that they have not been able
to take into account the network resources and mobility of a mobile user for performing a
service migration in a VANET network scenario and that is the key area this research aims to
address.

2.5 Intelligent Service Migration

Intelligent service migration can be defined as a system that takes into account low latency,
QoS feedback mechanisms, analytical models, service migration, and orchestration frame-
works to decide the best where, when, and how should a service be migrated such that an
optimum QoS can be maintained in a MN throughout the system. It takes into account the
communication dynamics. The next section describes the requires for intelligent service
migration in details.

2.6 Requirements for Intelligent Service Migration

2.6.1 Low Latency

The author in [71] proposed a new service delivery framework, centred on the convergence
of Mobile Cloud Computing and future networks for the purpose of improving service
delivery in a mobile environment, but his framework lacked analytical modelling and hence
intelligence. The author’s work strongly advocated the need for low latency to support mobile
environments.
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Fig. 2.3 Structure of a Heterogeneous Edge Network Environment

2.6.2 Quality of Service

This section presents the work of Aiash et al. [2] and his work describes the need for QoS
model in the mobile environment. It is an example of a heterogenous edge environment
which comprises different domains where each domain is dominated by a different network
technology. This is important because the edge environment is supported in this thesis.
Figure 2.3 shows a more detailed view of the network topology. The Core End-Point
represents an Administrative domain (Ad-domain), connected to one or more domains.
Although each domain is technology-dependent, cooperation between domains is possible
and is managed by Core-End Point.

Similar to [57], for scalable support of Security, QoS and handover in heterogeneous
networks, different operating entities exist in the network such as Domain QoS Broker
(DQoSB), Core QoS Broker (CQoSB) and A3C servers. These entities collaborate and
function on both network and service management levels:

• A. Core A3C (CA3C): The top level A3C server resides in the administrative domain
and is responsible for service level management. It holds users’ Service Level Agree-
ments (SLAs) that contain the subscribed services along with the associated QoS and
Network Level Agreements (NLA) which contain the networks and Operators that the
user can access with the corresponding QoS. The NLA is passed to the CQoSB for
network level management.

• B. Core QoS Broker (CQoSB): It plays a major role in managing inter-Administrative
domains functions as well as negotiating QoS parameters with other CQoSBs in the
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case of cross administrative domain connection. CQoSB initially extracts users’ NLA
from the CA3C.

• C. Domain A3C (DA3C): The DA3C is responsible for handling users’ service aspects.
Initially, it extracts users’ profile information from the CA3C and uses this information
for authorizing the users’ requests to access services.

• D. Domain QoS Broker (DQoSB): It gets user profile information from the CQoSB
and manages the resources of the attached peripheral networks with respect to users’
preferences and network availability, it also makes per-flow admission control decisions.
In order to support handover, DQoSB uses a Network Intelligent Interface Selection
(NIIS) module for load balancing and handover initiation between peripheral networks.
There is an obvious resemblance between the QoSB and the Visitor Location Register
(VLR) of the mobile cellular systems.

• E. Access Router (AR): This is the link between the domain and the peripheral
networks; it enforces the DQoSB’s admission control decision.

• F. Mobile Terminal (MT): The MT user’s device is used to access the network and
request a service. To comply with the heterogeneity of 4G systems, the MT should be
able to get the subscribed service using the best available access network. Therefore,
for the integration of Handover and QoS, the MT contains a mobility decision module
called Intelligent Interface Selection (IIS) and a QoS module called QoS Client (QoSC).

Optionally, some service providers, not shown in Figure 2.3 such as Video On- Demand
providers, might reside in the Core-End Point or the Administrative domain; these
providers have agreements with the network providers to guarantee the required QoS.

In conclusion, the network topology viewed in this section helps us to have a better
understanding of the strategic key point in implementing a more diverse network scenario
that would accommodate mobile users in a heavily populated area.

2.6.3 Analytical Modelling

Yonal Kirsal et al. [39] proposed a broad and flexible service delivery framework for Cloud
based mobile media environments. As such, an analytical model was established as part of
the framework to provide Quality of Experience for mobile users and analyse the overall
performance of each network. In this setup, mobile users are able to choose between networks
and request a handover to a closer network or request service to be migrated closer to the
mobile user. The two scenarios analysed depicted the effect of increasing the network slice
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provided to the user. Generally, the results were good and showed that the approach is
advantageous for the provision of sustained QoS for mobile users by real networks.

With the inefficiency of traditional models of service delivery and lack of scalability to
cover mobile users’ future needs, the proposed Cloud-based service delivery framework is
a stepping stone towards ensuring better solutions to the efficient management of network
resources and provision of high QoS for mobile users. The proposed model has the benefit of
supporting various kinds of services and applications. It can also help to decrease network
congestion on a global scale for frequently accessed websites or large multimedia content.
This ensures increased bandwidth especially in streaming scenarios with high-definition
media trend. More so, where there is an increased demand for service in the area, migrating
the entire service closer to a geographical region will be an excellent import as the type of
service usually has interactive content that cannot be cached regionally.

Referring to analytical models for service migration, the authors’ paper does not consider
the handover process in detail. It does analyse the use of handover in an instantaneous way
but in reality, handover does not work that way. In order to perform an intelligent service
migration you still need to analyse the communication dynamics.

2.6.4 Service Migration Mechanisms

This section briefly discuses the service migration mechanisms at present in a mobile envi-
ronment.

Kubernetes Model

This an open-source container orchestration system [59] for automating deployment, scaling
and management of containerized applications. It was originally designed by Google and is
now maintained by the Cloud Native Computing Foundation. It aims to provide a "platform
for automating deployment, scaling, and operations of application containers across clusters
of hosts [59]. It works with a range of container tools such as Docker. Though Kubernetes is
useful and is widely used in industry, it suffers from lack of QoS support, the use of simple
heuristics and no detailed analytical modelling.

Service Management Framework for Mobile Services

It is pivotal to advance a novel service architecture that permits services to be organised,
derived or moved to support mobile users. In order to achieve this, the system allows for
algorithms that integrate the organisation of traffic and the QoS requests of the flow. As
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Fig. 2.4 Service-Oriented Framework for Mobile Services

illustrated in Figure 2.4, this novel framework which has six layers was proposed by Sardis
et al. [71], and they include:

• The Service Management Layer: The function of this layer is to identify the tasks of
the service, catalogue the service in a service registry and obtain an exclusive service
Identification (ID). In essence, it controls the provided service as it determines the
minimum assets required by cloud and networking infrastructures in order to run the
service, including network QoS and storage needs as well as computing resources.

• The Service Subscription Layer: This layer allows clients to subscribe to services
as it takes care of the actions needed by universal clients to access the service. Further-
more, it allocates for a new subscriber an exclusive client ID, a given SLA as well as
determines accounting and payment tools.

• The Service Delivery Layer: The layer grants a given client access to the service. It
does this by mapping the SLA to a given QoS and then certifies that the designated
server and attendant networks can match the needed QoS. The service also accepts
notifications and prompts regarding handovers and either duplicates or moves the
service closer to the user based on received notifications.

• The Service Migration Layer: Migration or movement is usually undertaken at the
command of the Service Delivery Layer. Here, this layer is in charge of duplicating
or moving services to various cloud platforms to encourage good QoE for the mobile
user.

• The Service Connection Layer: This layer handles the ongoing connection between
a client and the service and feeds back alterations in network and transport parameters,



24 Technical Background and Related Work

the likelihood of changes in the QoS or interruption or suspension to the Service
Delivery Layer.

• The Network Abstraction Layer: Subject to the network architecture and addressing,
this layer oversees the function of getting a service to interface with varied kinds of
networks as it maps to IP networking via TCP/IP. The ability to do this is split between
the QoS and Transport Layers in Core and Peripheral Frameworks in more progressive
systems like Y-Comm.

Service Migration Survey

Authors in [12] compared the characteristics of Unikernel and Container technologies to show
which edge computing scenarios are suitable for migration, then summarized lightweight
virtualization technologies in edge computing. Based on their survey results, they explained
the lightweight virtualization technologies that fit with specific application scenarios. Based
on all their findings and results gotten from the most recent work till date, there has not been
enough research effort to develop the best intelligent service migration mechanisms.

2.6.5 Solution for Intelligent Service Migration

The above shows the conventional ways that authors have modelled their environment and we
know these do not fully meet the Intelligent Service Migration standard for communication
due to lack of two or more from the lists below:

• Low Latency: This describes a computer network that is enhanced to process a very
high volume of data communications with low delay. The lack of low latency in terms
of communication simply means that by the time you migrate the service, the MN
may have already left due to mobility. Chapter 4 describes an experimental transport
protocol called the Simple Light-weight Transport protocol (SLTP) [20] that was used
in the research to achieve low latency in communication networks.

• QoS Feedback Mechanisms: It helps in the evaluation transmission of the QoS
technology that manages data traffic to reduce packet loss, latency, bandwidth and
jitter on a network. It basically answers the question of how you know when to move
the model in the first instance. Also, SLTP provides good QoS feedback mechanisms,
for which results in chapter 4 showed its capabilities.

• Analytical Models: These are mathematical models used to define changes in a system
that can be stated as mathematical analytical equations relative to previous states. To
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Table 2.1 Communication Models Analysis

Model Low QoS Feedback Analytical Service Orchestration
Latency Mechanisms Model Migration Framework

Aiash NO YES NO NO NO
Sardis YES NO YES NO YES

Kubernetes NO NO NO YES YES
Yonal NO NO YES NO YES

Our Research YES YES YES YES YES

make an intelligent service migration, we must understand how the communication
dynamics affects services delivery especially in the case of handover and loss of service.
In Chapter 5, we develop an analytical model that deals with service delivery, handover
and the loss of service in vehicular networks. This kind of model is a new idea, with
which we were able to get some interesting results.

• Service Migration Mechanisms: Service Migration is the ability for a system to
move services from one system to another. Chapter 6 buttresses the point that there
are certain circumstances that warrants a service to be migrated before a particular
standard time. We develop a service migration model and include some results for our
claim.

• Orchestration Framework: An Orchestration Framework helps to automate, manage
coordination of computer systems, applications, and services. A Service Management
Framework is developed in Chapter 7 to support and manage complex tasks thereby
making service delivery easier.

In conclusion, the list above needs to be satisfied in order for systems to provide an in-
telligent service migration. Table 2.1 shows what the recent communication models have
accomplished and what they lack to enable intelligent service migration in highly mobile
environments such as vehicular networks.

2.7 Chapter Summary

This Chapter revealed the technical background which comprises the Y-Comm Reference
Framework that supports heterogeneous networking, MEC which describes a mobile edge
environment, VANET which houses vehicular networks and discussed the use of different
container technologies. Furthermore, it looked at what other research concerning MEC
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computing, computational offloading decisions for intelligent service migration and then
displayed the research gap in this field. Lastly, it reviewed and compared the current commu-
nication models and gave a solution approach to achieve an intelligent service migration in
vehicular networks.



Chapter 3

Research Methodology

3.1 Brief introduction

This research mainly concentrates on three specific methods to address the issues highlighted
in this thesis. Firstly, we will look at analytical modelling whereby an analytical model
is developed to capture the key parameters and to create estimated solutions. The second
method is to use a testbed that will enable us to perform experiments which will be used
to increase our understanding of the problem. And lastly, to explore the use of a Network
Memory Server (NMS) in a FUSE file system as a service to show how service migration
can be adopted.

3.2 Analytical Modelling

Analytical modelling is a mathematical procedure used for explaining, exploring, and making
forecasts about complex processes. In order to construct such a model, an extensive process
is undertaken where several parameters affecting the system must be considered accurately
in order to achieve a reliable model. In this study, an analytical model has been proposed
for vehicular networks using the Zero-Server Markov Chain technique to study the system
performance as seen by the mobile user. It introduces a new analytical parameter called
probability of lost service.

Furthermore, the queueing analysis was conducted to showcase the benefits of using
a proactive service migration and the application of the analytical model developed to the
queueing system is explored. The operations involved in such proactive service migration
queue management are described in detail and how the relevant parameters are calculated is
discussed.
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3.2.1 Exponential Distribution

The exponential distribution [4] is a commonly used distribution to describe continuous
random variables. It is frequently used to model the lifetimes of different products and times
between random events known as interarrival times, such as arrivals of clients in a queueing
system or arrivals of goods orders. This type of distribution has one rate parameter.

The major use of the exponential distribution is to model the times between events that
occur randomly. It also describes the probability for the times between the events combined
with the probabilities for the number of events occurring in each period, known as the Poisson
distribution. A Poisson process [4] is used to mathematically describe these events. In this
research, the number of requests arriving into the system is modelled using a Poisson process.

3.2.2 Queuing Theory

Queueing theory [33] helps to ease the stress of the most unfriendly experiences of life,
which is waiting. At the beginning of the 20th century, Erlang was the first to examine
congestion problems. His work inspired engineers and mathematicians to deal with queueing
complications with the help of probabilistic methods. Queueing theory grew into a field of
applied probability; its results have been used in telecommunications, operations research,
traffic engineering, computer science, and reliability theory, etc.

The structure of service and service discipline reveal the number of servers and capacity,
i.e., the maximum number of jobs or customers in the system including the ones that are
presently being served. The service discipline regulates how the next customer is selected for
service. The most generally used service disciplines are Last In First Out (LIFO) in which
who comes later leaves earlier, Random Service (RS) where the customer is selected randomly,
and First In First Out (FIFO) where who comes prior leaves earlier, etc. The interarrival and
service times of jobs are usually independent random variables. The objective of analytical
models which is based on queueing theory is to acquire the performance measures of the
system which are probabilistic. The properties such as distribution function, density function,
variance and mean [33] of the following random variables: number of customers in the
system, waiting time of a customer, idle time of the server, the response time of a customer,
utilization of the servers, busy time of a server, number of waiting customers, the average
number of people in the system and the blocking probability are explored using the queueing
theory. The result severely depends on the assumptions concerning the distribution of service
discipline, service times, number of servers, capacity and interarrival times.
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Kendall‘s Notation

A notation founded by Kendall [8] to describe a queueing system is displayed below:

(3.1)

where

• A:distribution function of the inter-arrival times

• B:distribution function of the service times

• m:number of servers

• K:capacity of the system, the maximum number of customers in the system including
the one being serviced,

• n:population size, number of sources of customers,

• D:service discipline.

Queuing theory can be explored by measuring, modelling, and analysing the service
times arrival times, and wait times of queuing systems.

Markov Chain Model

A Markov chain [33] is a mathematical model that was named after A. A. Markov, which
is a mathematical system that hops from one state to another. A system process is called
continuous or discrete state dependent on the values its state can receive. When the number
of likely values are countable or finite (e.g. discrete values such as 0,1,2,. . . ,N), the system
is called discrete state. The system process waiting time can take any value on a queue,
therefore this is defined as the continuous state process.

If the future states of a system process are independent of the past and changes only
on the present, the process is called a Markov process. Its property makes a process easier
to analyse since there is no need to remember the complete past trajectory. Therefore, a
discrete-state Markov process is called a Markov chain.

Markov Chain analysis will be used to develop the analytical models in this thesis.



30 Research Methodology

3.3 Experimental Testbed

The distribution of Connected and Autonomous Vehicles (CAVs) will change the environ-
ment we live in. In general, Connected Vehicles permit us to build an ITS by enabling
strong connectivity among vehicles and the transport infrastructure. This is referred to as
Cooperative-ITS (C- ITS). The deployment of C-ITS will result in better traffic and road
management, fewer accidents, shorter journey times, better collision avoidance mechanisms
and increased efficiency to manage major disasters.

For better understanding nowadays, the building of new technology is a necessity; the use
of testbeds and applications will give us a better understanding of this new era. Middlesex
University and the Department for Transport (DfT) have built a Connected Vehicle Testbed
that uses ITS-G5 (VANET) technology.

This section provides the details of the real experimental VANET testbed. The Connected
Vehicle Testbed was built by Middlesex University and the DfT using ITS-G5 technology.
The testbed was built on the Hendon Campus in London and alongside the surrounding roads
and then extends to the A41 (Watford Way) behind the campus. Four RSUs which were
deployed in the MDX buildings were backhauled directly to the university’s gigabit ethernet
network and the three RSUs deployed along the A41 were backhauled using LTE with a
secure Virtual Private Network (VPN) tunnel service provided by Mobius Network as shown
in Figure 3.1. They are now fully operational and trials have been held to fully understand
the technology and concerns around its wide-scale deployment as well as communication
dynamics to attain seamless communication for this environment.

3.3.1 Designing and Implementation of VANET Testbed

In this section, the process of the testbed deployment at Middlesex University (MDX) is
shown. In compliance with the IEEE 802.11p (WAVE) standard specifications and the
required maximum output power, 200mW or +23dBm was used [74]. The testbed consisted
of seven RSUs, with three testbeds by the A41 road behind the university and four on
the MDX buildings. The channel employed to send transmissions was CH172, while the
operating frequency of the RSUs was 5.9 GHz. Both the RSUs and OBUs were produced
by Lear Corp. The below Figure 3.2 illustrates the respective GPS coordinates and location
names.
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Fig. 3.1 MDX VANET Testbed Network Diagram

Fig. 3.2 RSU Location Information

3.3.2 MDX Deployment

It was expedient to reduce the distance between the RSU and the router components in
the university network, hence, the best location for the RSU at Middlesex University had
to be discovered. As illustrated in Figure 3.3, this enables the direct backhauling of data
to the central MDX VANET Server positioned in the basement of the Sheppard library
from the RSU employing the university network. To study the mobility of vehicles and
pedestrians using Vehicle-to-Pedestrian (V2P) applications, four RSUs were installed at
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different locations at MDX - Williams building, Hatchcroft building, Grove building and
Sheppard building - to accommodate areas across the MDX campus.

Fig. 3.3 Network Diagram

3.3.3 A41 Deployment

The deployment had to be achieved in collaboration with Transport for London (TfL)
with three RSUs mounted on lamp-posts along the A41 (Watford Way) A41. These were
positioned to considerably expand the coverage of the Middlesex testbed. An LTE router was
used as the data accepted by the RSU was backhauled as a result of inadequate communication
network systems on the lamp-post. Furthermore, Figure 3.3 also shows that a VPN tunnel
service made available by Mobius Networks through Vodafone was used owing to security
constraints on the MDX network.

3.3.4 Application Description

There are various forms of communications used to convey different information within the
OBUs and RSUs such as Basic Safety Messages (BSMs), Cooperative Awareness Messages
(CAMs), Intersection Collision Alerts (ICAs), Road Side Alerts (RSAs), and Probe Vehicle
Data (PVD).

The BSM message, which pertains to safety applications, was the first communication to
be analysed. In this thesis, BSMs are broadcast at 10 Hz to the RSU from the OBU and have
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a minimum length of 41 bytes. BSMs comprise data relating to movement, location, and the
overall state of the vehicle which is illustrated in Figure 3.4 [68]. However, only the Message
ID and 3D Position – Longitude, Latitude and Elevation constraints of the BSM message
were used as other fields such as acceleration set and steering wheel angle had to be collated
from the vehicle using sensors and other mechanical devices before being joined to the BSM
packet and broadcast. However, this complete setup was not within the scope of this thesis.

Fig. 3.4 Packet forwarding from RSU to Server

To get readings from the OBU to the VANET Server, different applications were used.
The RSU obtained packets using Wave Short Message Protocol (WSMP) Receiver (Rx)
application while the WSMP Transceiver (Tx) was used by the OBU to transmit the BSM
packets. As illustrated in Figure 3.4, using the WSMP Forward application via an IPv6
address of the server, the obtained packets by the RSU were trasmitted to the server. The
MDX VANET Server received the packets while saving the data with added information such
as timestamp and the RSU’s IP address. This is achieved using a WSMP Server application.

Two different files were used to save the received data: Live.kml and Database.csv. The
live.kml comprised the current or immediate locations of each OBU through the packets
received from the OBU and stored in the Apache Web Server space for direct access. Also,
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the live tracking of the OBUs was realised using Google Earth and the live.kml file network
link. A MySQL database was used to back up the Database.csv file daily for analysis. The
other file, Database.csv comprises a great anount of available information in the packets like
the GPS coordinates within the time stamp of the packet, OBUs MAC address, the received
signal strength indicator (RSSI) range of the received packet and IP address of the RSU by
which the packet has been transmitted.

3.3.5 MDX and A41 Coverage Map Result

Figure 3.5 illustrates how the unique GPS coordinates in the packets are sent by the OBUs
and received by the MDX VANET Server. On 17th May 2017, the coverage was mapped
from the trial data for a moving car within the MDX campus as shown on Figure 3.5. The
individual coverage ranges attained by the RSUs located along the A41 road and RSUs
located on each MDX building are shown in the coverage map using various coloured dots.
The Hendon Campus and surrounding roads were covered by the first four (1-4) RSUs - the
area covered was about 0.7 miles/1.1 km. The other (5-7) RSUs covered the A41 as the
coverage was from the between the entrance of the Great Northern Way (above the brown
line) to Hendon Central Tube Station (underneath the blue line) – with a distance of 2 miles/
3.2 kms. As such, the total coverage of the testbed was approximately 2.7 miles/ 4.31 kms.
The MDX testbed was fascinating, allowing for an inclusive investigation and examination
of signal propagation for RSUs installed by the road, on buildings – MDX campus - and
lamppost as it includes motorway and urban roads. It was observed that there is a significant
positive increase in coverage for the RSUs with elevated installations and clear Line-of-Sight
(LoS) for the projected roads [26]. Due to the elevation of the RSU deployment, the coverage
was more enhanced than projected.

3.3.6 The Relationship Between Analytical Model and Testbed

In this work we are not trying to validate the analytical model, instead we will be using the
analytical model to study the communication dynamics and the service migration in highly
mobile environments such as vehicular networks.

3.4 The File system

File systems [28] play a crucial part in every operating system. It is a place where users keep
their files. The organization of the file system also plays an important role in helping the user
find files. There are many file systems that have been developed by different programmers.
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Fig. 3.5 Full Coverage and Overlapping Map for A41, Watford Way, Hendon, London
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Fig. 3.6 How FUSE works

Every different file system has its own advantages and disadvantages. It is vital for a user to
select the most suitable file system. Having a suitable and appropriate file system enables the
computer system to operate at a higher efficiency. Additionally, a file system allows the user
to attach special attributes to the file such as the owner of the file, the permissions over the
file. The most common file system that is used by end users is NTFS which is short for New
Technology File System. Choosing the correct file system is important in order to maximise
the computer systems’ performance. Some file systems have special features, some offer
better reliability and robustness and some provide quicker read and write speeds. Some file
systems are part of the operating system and therefore execute in kernel space. User-space
file systems are different because they execute in user space along with the application. This
provides better flexibility as the kernel is complicated.

3.4.1 Filesystem in Userspace (FUSE)

The FUSE [28] is a software interface that provides a bridge between user space and kernel
space. This allows the file system to be placed in the user space and hence outside of the
kernel.

According to Layton et al, the illustration in Figure 3.6 describes a file system named
hello is compiled and being executed. When hello is executed, the FUSE mounts the “test”
file system in the directory “/tmp/fuse”. Here, the user can store his/her data using the hello
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file system. All the data will be stored in the user space directory “/tmp/fuse”. Then the user
executes an “ls –l”. This commands go through the glibc to the VFS in the kernel. The VFS
then goes to the FUSE module. The FUSE module will contact the hello file system through
the glibc and libfuse (which is the FUSE library in user space) and asks for the result of the
command. The result will then be returned back to the FUSE module and passed through
VFS and finally to the “ls –l” command.

3.4.2 Network Memory Server

The Network Memory Server (NMS) [29] is an example of a simple, stateless service; it
stores blocks of data from clients in its memory (RAM). Clients can create, read, write and
delete blocks of data. The NMS was primarily designed as a storage platform for mobile
users. In order to provide support for mobility, the NMS is divided into two parts: The
Mobile Memory Cache (MMC) and the Persistent Storage Server (PSS). The MMC initially
runs on the same network as the mobile client. If a client moves to another network then the
MMC is migrated in order to achieve better performance. The PSS offers permanent data
backup for the MMC and there is a level of redundancy implemented so that an MMC can
be backed up in multiple instances of the PSS. This is achieved by a multicast call to all the
associated PSS. The Network Memory Service is an example of a mobile service used in this
research.

3.4.3 Mobility of the NMS

Mobility is an important part of the NMS, the clients will need to be able to access its content
from anywhere and at any time regardless of the physical location. Mapp et al. [57] clarify
the problem and provide some solutions in providing mobility for a storage server and its
clients. Researchers have found that the Context Transfer Protocol (CXTP) will enhance the
mobility of the NMS [23], for which the illustration in Figure 3.6 describes NMS architecture.

In this research, we will use the NMS to provide network backing storage for the FUSE
file system on the MN. We will use SLTP as the protocol to facilitate the movement of
the NMS between RSUs. Hence, we will build a platform in order to migrate the NMS
using container technologies. The NMS is a service that has already been researched and
implemented.
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Fig. 3.7 Network memory architecture for memory server

3.5 Chapter Summary

This chapter has successfully shown the three major methodologies used in this research i.e.
analytical modelling, a constructed testbed used to conduct our experiments, and the use of
NMS in a file system as a service to show how we could intelligently migrate services across
the network in the VANET testbed. This is important to prove the application and validity of
the proposed intelligence service migration in a real-time scenario for vehicular networks.



Chapter 4

Investigating a Low Latency QoS Aware
Environment

4.1 Brief Introduction

This chapter will explore the implementation framework of the Y-Comm Architecture, then it
discuss a new application framework based to the implementation framework which consists
of five layers. Finally, it will detail a new experimental transport protocol which provides
low latency and QoS and thus is suitable for vehicular networks.

4.2 Y-Comm Implementation Framework

Mapp et al. [53] designed a set of collaborative mechanisms as an Implementation Framework
for Y-Comm shown in Figure 4.1.

The Peripheral Implementation Model consists of:

• IEEE 802.21 mechanism: This layer makes use of the IEEE 802.21 mechanisms to
control the various wireless interfaces.

• Proactive Handover: This does proactive handovers using Network Dwell Time
(NDT) and Time Before Vertical Handover (TBVH).

• Mobility Management: It is based on GPS readings and parameters as well as triggers
from network interfaces.

• SLTP: This is a new transport protocol between the Mobile Node and the Base
Stations.
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Fig. 4.1 The New Implementation Model for Y-Comm

• IntServ: It helps the mobile node to specify its QoS requirements on a per-flow basis.

• The Application environment: It uses an enhanced IntServ specification to specify
its QoS requirements on different connections.

While the Core Implementation Model consists of:

• Base Station Controllers running 802.21: This permits the Access Routers and Base
Station to be managed using an enhanced IEEE 802.21 protocol.

• OpenFlow: It is used for reconfiguring the access network routers based on the
mobility of the user.

• Software Defined Networking (SDN) and Network Functional Virtualization (NFV):
This is used to implement the mechanisms and services for the Network Management
Layer.

• IPSec, IPv6: The TCP/IP Suite is maintained but IPSec [15] is used to ensure that
secure tunnels can be set up between Core-End Points.

• Hybrid QoS: The integration IntServ and DiffServ mechanisms is done at this layer.

• Service Platform Layer: It executes a Mobile Services platform where servers can
be moved closer to mobile users.
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Fig. 4.2 New Framework for Building Future Applications

4.3 The New Application Framework

Figure 4.2 shows the new Application Framework, it draws its inspiration from the Y-Comm
implementation framework. This consists of five layers which are detailed below:

4.3.1 CRAN SDRAN

The proposed system will evolve with the development of new mobile technologies as shown
in Figure 4.3. This evolution will allow the smooth management of local heterogeneous
networks by the Heterogeneous Cloud Radio Access Network (H-CRAN) and the Cooperative
Radio Resource Manager (CRRM). H-CRAN will be used to access and control individual
networks while CRRM will be used to optimize the overall radio access environment.
CRRM will also support OpenFlow and hence the upper layers of the architecture can
remain unchanged. The use of NFV and SDN at the Core-End Point will also facilitate
the softwarisation of radio technologies as proposed in 5G with the deployment of Cloud-
RAN [89] at the Core-End Point.

4.3.2 OpenFlow Data Switches

As shown in Figure 4.3 the SDN controller controls access to both the H-CRAN and Open-
Flow Ethernet data switches. The controller interfaces to the upper layers using NETCONF
interface using the YANG data model [7].
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Fig. 4.3 The Operational Structure of a Core-End Point

4.3.3 Network Management Control Protocol SDN Controller

The Network Management Control Protocol (NMCP) is used to allow the high-level network
management functions and services discussed above to control and manage networking
infrastructure. NMCP can be implemented by directly translating it into OpenFlow com-
mands or by using a number of emerging Northbound APIs. NMCP also supports various
communication entities such as endpoints (IPv addresses), links, a path (one or more links),
and data flow.

Connections in NMCP work by specifying links between endpoints and core network
elements such as Core Endpoints as shown in Figure 4.4. Each link involved in the connection
is specified using a TUPLE which specifies endpoints on the link as well as a forward
connection label (fcl). An fcl is needed to forward any packet along a link and is treated as
a capability and hence cannot be tampered with. The fcl specifies which addresses should
be used to communicate over a link. Once the links between the end points are specified, it
is possible to create a path using the TUPLEs specified. The data flow between endpoints
represents the data being exchanged and is specified as a flow along a specified path. Once
this is done the connection can be activated and the two end points can send data with each
other.

The improvement of NMCP over IP is that it is not bound by a specific address format.
The system decides which network technology can be used on each link, and this arrangement
is able to readily adjust to changes in the network topology. In addition, by making data-flows
first class objects we also need not associate them with any network technology; that allows
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Fig. 4.4 Connection setup using NMCP

us to implement things such as vertical handover because we can easily specify that a flow
can be changed to go on a different path. Finally, the fcl can be used to specify a given
quality of service required by applications using a given connection. This means that it is
easy to find out if the QoS on the network is being broken.

4.3.4 Low latency protocol

New networks such as VANET networks require low latency and high bandwidth. In addition,
new features can be used to fine tune transport protocols to application requirements. These
includes:

• Running Efficiently in User Space: Since the transport protocol should be under the
direct control of the application, it must run efficiently in user-space. Though running
protocols in the kernel has advantages such a lower latency and guaranteed CPU cycles
as kernel code normally executes at a higher priority than user space, running transport
protocols in the kernel results in a huge amount of cross talk for all applications. So
this means that a reliable fast video stream could be affected by activities from other
applications. Secondly, because of the development and proliferation of multiprocessor
architectures, which are now common even on PCs, it now very hard to argue that
there is not enough CPU cycles in user-space to run transport protocols efficiently.
Running in user-space will eliminate transport crosstalk and allow applications to be
able to directly tune protocol parameters without the need for obscure socket system
calls. Support for user space protocol processing is being actively pursued by several
companies including TCP Offload and the Data Processing Data Kit (DPDK) [77]
initiatives.
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• Selective retransmission by default: Protocols such as TCP use the go-back-n mech-
anism which can result in many packets being retransmitted even though they have
already been received at the other endpoint. So it is necessary that future protocols
implement Selective Retransmission by default.

• Variable Reliability: Applications should be able to apply different reliability char-
acteristics to different connections using the same protocol. So a transport protocol
should be able to provide the entire spectrum: from totally reliable to totally unreliable
connections. Therefore, support for forward error correction is allowed.

• Support for Forward Error Correction (FEC) functionality: Most transport proto-
cols provide checksumming and retransmission of packets to assure reliability. How-
ever, for applications that require low latency, retransmissions are seldom beneficial.
In this situation, FEC techniques are used to ensure reliable reception. So streaming
network audio could use FEC rather than just dropping corrupted packets.

• The ability to tune specific aspects of the protocol: This becomes very relevant for
certain operations. So one parameter that should be changeable is the window size of
a given transport protocol. This may be due to buffering issues but it could be used
to support other communication events such as handover [77]. So when a handover
to another network begins, the protocol closes its window preventing other packets
from being sent until the handover takes place where its window size can be re-opened.
Other parameters can be indicated are the maximum message size, etc.

• Support of priority for different end-to-end data flows: This has become a key
issue as different types of data flows are being transported and so there might be times
when you want to send packets on certain connections with different priorities.

• Up calls from the transport protocol into the application: Most transport systems
use PUSH-PULL mechanisms developed by the traditional socket layer libraries where
senders transmit or PUSH data towards the client while receivers retrieve or PULL the
data from the underlying socket for the connection. However, in many cases, a server
may wish to simply provide an upcall on the receipt of a service request message from
the client.

• Providing alternative for flow control: In current transport protocols, applications
have no say how flow control is done. TCP uses a sliding window based on conges-
tion and receive window parameters as well as slow start and congestion avoidance
algorithms. These mechanisms have proven to be effective but at times have been too
conservative.
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4.4 Simple Lightweight Transport Protocol (SLTP)

SLTP is an example of a low latency lightweight protocol that has been designed to support
the new QoS-Aware framework. This motivation for designing SLTP came form the need to
support research into services using Cloud based environments [56] as well as to provide low
latency and tuneable support for Vehicular and Haptic Networks.

The SLTP Header

Figure 4.5 shows the Diagram of the SLTP while Table 4.1 shows the length of the individual
fields.

Fig. 4.5 The Structure of SLTP Header (Total Size is 20 bytes)

SLTP Packet Types

SLTP supports a number of packet types as shown in Table 4.2.

SLTP Flags

SLTP FLAGS comprises a field containing 8 bits. Their functions are detailed in Table 4.3.
In SLTP, when a connection is started, each side measures the bandwidth and burstiness

of the connection through a modified packet-pair approach in which two packets of a given
size are sent back-to-back and the round-trip times of each packet is measured as well as
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Table 4.1 The fields of SLTP and their functions

FIELD BITS FUNCTION
DEST_ID 16 Connection_Id at the remote end
SRC_ID 16 Connection_Id at the local end

PK_TYPE 4 Type of packet
PRI 2 Priority of the packet
CN 2 Congestion Notification Indication

FLAGS 8 Indicates actions needed to process the packet
CHKSUM 16 Uses the TCP Checksum

TOTAL_LEN 16 Total length of the packet
PBLOCK 8 Current block or fragment
TBLOCK 8 Total number of blocks in the message

MESS_SEQ_NO 16 Sequence number of the last message sent
MESS_ACC_NO 16 Sequence number of the last message received

SYNC_NO 12 Random number to prevent replay attacks
WINDOW_SIZE 20 The Receive Window Size

Table 4.2 Packet types and their functions

PACKET_TYPE FUNCTION

START First packet transmitted on a connection
REJECT Signals that the connection request has been rejected

DATA Data packet
ACK Acknowledgement (ACK) packet

NACK Used for selective retrnsmission
END Used to close a connection
FIN Final packet sent

ECHO Used to measure RTT
ECHO_1 First back-to-back packet
ECHO_2 Second back-to-back packet
STATUS Used to maintain flow control

IDLE Sent when there is no data to send
CWIN Used to change the window size

the time-difference, d, between the packet replies as shown in Figure 4.6. In SLTP, ECHO 1
and ECHO 2 packet types are used to perform this test. The diagram shows how bandwidth
is measured in SLTP, here two packets are sent from source to destination. Here, t1 and t2
are the times when the packet has started being sent from the source and t3 and t3 are the
times when the ECHO 1 and ECHO 2 are received back at the source after being echoed by
the destination. The Round Trip Time (RTT) is defined as the time in which a packet sent,
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Table 4.3 Flags and their functions

BIT NAME FUNCTION

0 W_VAL Window-Size is valid
1 ST_CKS Checksum this packet
2 ST_RTR Retransmission is permitted
3 ST_RET Indicates a retransmitted packet
4 REMOTE_RESET Connection reset by the other side
5 REPLY_REQ A reply is requested
6 REPLY Reply to a previous request
7 EOM Last message was correctly received

receive, and acknowledged. RTT is given as (t3- t1) or (t4-t2) and therefore the bandwidth
will be given as S/(RTT/2) where S is defined as the size of the packet. From Figure 4.6, d is
the time difference between the two replies received by the source i.e., t3 and t4 for packet A
and B respectively. SLTP uses packets to measure the burst on a connection, where the burst
is the maximum amount of data you can send in one transmission to keep the pipe or channel
at maximum bandwidth capacity to keep the connection fully engaged at a full rate. At that
value, the maximum bandwidth for the connection is achieved, i.e., the pipe is full. Hence
sending data beyond the burst value will cause packets to be dropped. Furthermore, we work
out the maximum burst for a connection by saying that if the packets get separated by d, then
the maximum number of packets you can burst is (RTT/d). Therefore with this formula, we
calculate our burst size to be (S*RTT/d), where, S is the size of the packet. And so we set the
maximum unacknowledged packets to the calculated burst size. When this value is reached,
the sender should stop sending and wait for an acknowledgement because sending more data
will likely result in packet loss.

Pkt B

Source

Pkt A

Pkt B

Destination

Pkt A

Pkt A Pkt B

d

RTT

t1t2

t4t3

Fig. 4.6 SLTP Bandwidth and Burst Size Calculation
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Preliminary Result on SLTP

In order to fully analyse the effect of SLTP, we obtained a set of results that looked at the cost
of communication between a client and a server. This is directly dependent on the transport
protocol being used. Results were obtained when the client and server are connected via an
Ethernet Switch and when they are connected via a router.

Since SLTP runs over User Datagram Protocol (UDP), the size of a single SLTP packet
can be up to (64KBs - 8 bytes (the size of the UDP)). However, for testing we wanted to
ensure that SLTP packets could fit into a whole number of Ethernet packets which can carry
a payload of 1500 bytes. For larger UDP packets we took into account IP fragmentation over
Ethernet. So we varied this parameter as follows:

• SP 0 represents (1500 - (IP header size (20) + UDP header size (8) + SLTP Header
Size (20))) = 1452 bytes

• SP 4 represents (SP 0 + (4 * (1500 - 20)) = 7372 bytes or 7.2 KBs

• SP 8 represents (SP 0 + (8 * (1500 - 20)) = 13292 bytes or 12.98 KBs

Finally, for these tests we used a window size of 144 KBs;

Results for Traditional Networking Environment

We performed our benchmarks by using two PCs equipped with the following hardware:

• Processor: Intel(R) Core(TM) i5-3770 CPU (4 cores).

• RAM: Both PC with 16GB DDR3

• Storage: Both PC with 320GB HDD

• Network: 1 Gigabit Ethernet Cable

• OS Type: Fedora 25 64-bit

• Router: CISCO 1941 Series

• Switch: NETGEAR Gigabit desktop switch GS108

Figure 4.7 shows the results when the connection is going through an Ethernet Switch
and Figure 4.8 shows the results when the connection is going through a router with the client
and server on two different networks of the router. These results show that SLTP generally
performed better than standard TCP. These results at least indicate that modern systems
now have enough resources in terms of CPU, memory and networking to allow user-space
protocols to run efficiently.
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Fig. 4.7 PC to PC (Switch) - Network Time: TCP vs SLTP with SLTP packet sizes

Fig. 4.8 PC to PC (Router) - Network Time: TCP vs SLTP with SLTP packet sizes

VANET Server and RSU

In this section, we present the results for RSU to VANET communications. We performed
our benchmarks by using the following hardware specifications as shown in Table 4.4. It
can be clearly seen that the resources on the RSU are quite constricted compared with the
VANET server or a modern PC.

The result in Figure 4.9 show that in this organisation, less CPU cycles as well as memory
are available on the RSU and hence, the performance of SLTP is not much greater than the
standard TCP.
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Table 4.4 Hardware Specifications

Specifications VANET Server RSU

Processor Intel (R) Xeon (R) CPU E5-2683 v4 MIPS 24Kc V7.4 (1 core)
RAM 32GB 64 MB SDRAM (512 Mbits)

Storage 500GB 16 MB Flash
Network 1 Gigabit Ethernet 1 Gigabit Ethernet
OS Type Debian 3.16.43(64 Bit) Debian 2.6.32.27 (32 Bit)
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Fig. 4.9 RSU to VANET Server - Network Time: SLTP vs TCP

RSU to RSU Link Performance

The results for RSU to RSU are given in Figure 4.10. These results show that with two
RSUs, it has very limited resources at user level and hence, TCP in the kernel slightly
outperforms SLTP as more resources are available in the kernel when running on smaller
systems, compared to running in user space.

RSU to RSU Link Performance Under Different Load Conditions

Since, SLTP runs in user space, it is important to understand how its performance is affected
by different load characteristics of the system. In order to explore this, a flexible hog program
was used to remove idle CPU cycles at user level from the system. Hence, we were able to
obtain readings with the system being under various loads, including 25%, 50%, 75% and
100%.
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Fig. 4.10 RSU to RSU - Network Time on Load = 0%: SLTP vs TCP

The bandwidth results under different loads as shown in Figure 4.11 reveal that there
are only significant differences for small packet sizes. However, after around 2KBs the
bandwidth available falls to around 2.5MB/s. This is important for applications needing large
packet transfers sizes such as multimedia applications.
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Fig. 4.11 RSU to RSU - Bandwidth on Load: SLTP

The latency results as measured by SLTP using different packet sizes under different
loads are shown in Figure 4.12. It shows that the latency increases with increasing load
especially after 50KBs.
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Fig. 4.12 RSU to RSU - Latency on Load: SLTP

The burst results as shown in Figure 4.13 clearly show that the system is affected by high
loads especially for small packets. After around 10KBs the burst size is severely reduced.
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Fig. 4.13 RSU to RSU - Burst on Load: SLTP

Finally, Figure 4.14 shows the time taken to transfer for different buffer sizes under
different loads and it clearly shows as the load increases SLTP underperforms TCP as less
cycles are available in user space. However, this effect is only significant at very high loads.
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4.5 Chapter Summary

The implementation framework of the Y-Comm architecture gave a better understanding of
the discovery of the New Application Framework. This Application Framework provided
a low latency, QoS-aware environment that would enable intelligent service migration.
Furthermore, a comprehensive analysis of SLTP was shown, performance tests were carried
out to show its validity. The results reveal by SLTP were compared with the standard TCP.
Also, they both went through a stress test with different loads on the RSUs network and
VANET server in the Middlesex University. The results showed SLTP had better performance
but also in order to do intelligent service migration, a detailed analytic model which looks at
the communication dynamics of vehicular networks must first be developed. Therefore, the
next chapter focuses on that.





Chapter 5

Modelling Handovers in Vehicular
Networks for Intelligent Service
Migration

5.1 Brief Introduction

In order for a system to implement intelligent service migration it must understand the
communication dynamics especially in the case of handover, because if the MN moves away
from a communication region without implementing a handover, service handover would
be void. This chapter looks at Y-Comm’s classical approach to handover. This chapter will
introduce the parameters derived from analysing the vehicular environment. Lastly, it will
develop an analytical model for handover in vehicular networks.

5.2 Classification of Handover

Y-Comm has developed a very sophisticated classification of handover which is shown
in Figure 5.1. Imperative handovers take place due to technical reasons alone, thereby
allowing the mobile node to change its network attachment because it has been determined
by technical analysis that handover must shortly occur. This could be based on parameters
such as the QoS, signal strength, and coverage offered by the new network. These handovers
are imperative because there could be a serious loss of connection or loss of performance if
they are not executed. By contrast, alternative handovers [54] arise due to reasons other than
technical issues. Hence there is no serious loss of connection or loss of performance if an
alternative handover does not occur. Alternative handovers therefore may be performed due
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to a preference for a given network based on incentives or price. The user preferences based
on promotions or features as well as contextual issues might also affect handover. Finally,
there could be other network services that are being offered by other networks. This research
concentrates on imperative handovers.

Imperative handovers are divided into two types. The first is known as reactive handover.
This reacts to the changes in low-level wireless interfaces as to the availability or non-
availability of specific networks. Reactive handovers are subdivided into unanticipated and
anticipated handovers [62]. Anticipated handovers are soft handovers that illustrate the
situation where there are alternative base-stations to which the mobile node may be able
to handover. In unanticipated handover, the mobile is heading out of range of the current
attachment and there is no other base-station to which to handover. These handovers are
therefore instances of hard handovers.

The next type of imperative handover is called proactive handover. These handovers use
soft handover techniques. Proactive handovers attempt to know the condition of the networks
at a certain geographical location before the MN reaches that point. It allows the MN to
decide when the best time to handover. Proactive handover policies allow mobiles nodes to
calculate the Time Before Vertical Handover (TBVH) which will allow the mobile node to
minimize packet loss, jitters and latency experienced for the MN during handovers. This,
therefore, represents a mechanism that could be used to support seamless handover as it
allows the system and applications more time to deal with handover issues. Currently, there
are two types of proactive handovers are being developed. Firstly, is the knowledge-based
which attempts to know by measuring beforehand the signal strengths of available wireless
networks over a given geographical location. This might involve the act of physically driving
around and taking these measurements [16]. The second proactive policy is based on a
mathematical model which calculates the point when vertical handover [76] should occur
and the time it takes a MN to reach that point, based on its velocity and direction.

5.2.1 Proactive Handovers in Y-Comm

As stated by the Y-Comm Framework, in order to perform proactive handover using a
mathematical model approach, it is best to know the topology of local networks and how the
Network Management Layer in the Core Framework manages this information. Then, the MN
polls this layer to obtain information about all nearby wireless network QoS characteristics
and topologies as shown in Figure 5.2. This information derived will be used by the Mobility
Management Layer along with the speed and direction of the MN to determine where and
when handover should occur. The Mobility Management Layer estimates the time before
handover and NDT and this information is transferred to the Handover Management Layer
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Fig. 5.1 Vertical Handover Classification

which instantly requests resources to start a handover, though resources are reserved early,
handover will be started only when the time before handover elapses.

Furthermore, when the decision to execute handover is taken by the Mobility Manage-
ment Layer, the new QoS, IP address, the time before handover, and estimated NDT is
communicated to the upper layers. These layers are expected to take the necessary steps to
avoid any slow adaptation, packet loss or latency, For example, the End System Transport
Layer may signal an impending change in the QoS on current transport connections and
therefore, the packets can be buffered ahead of the handover.

5.2.2 Proactive Handovers in Heterogeneous Environments

Authors in [51] presented a paper that looks at a set of mechanisms that helped to build a
comprehensive framework that would support proactive handover in heterogeneous networks.
They began by developing a mathematical framework and tools to guarantee its accuracy
utilizing contextual information and location were examined. It demonstrated how using an
ontology for proactive handover provides an implementation path for future systems and how
these mechanisms can be incorporated into the Y-Comm architecture.

By using a location-based technique, it was possible to demonstrate that the NDT as
well as the TBVH can be accurately estimated. These techniques are dependent on accu-
rately estimating the handover radius, whereby the handover techniques used was mostly
relevant in outdoor environments which had no irregular coverage spaces.Therefore, this
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Fig. 5.2 The Proactive Handover

paper demonstrates how to calculate TBVH and NDT for any geographical location. This
information is key to this research.

5.3 The use of Markov-based Model

5.3.1 Vishnu’s model

The author in [88] worked on a detailed analysis of queueing models for a proactive system
using Markov-based model whereby the users are able to request resources before they
reached the target network. These network resource allocation issues were explored in the
author’s thesis. These models have generated TBVH and NDT, which were then used to
great effect in the author’s proactive approach. It was shown that if the parameters are
acknowledged then it is possible to ensure that each user in the system will be served
effectively by at least one of the available networks. This work demonstrated the need to do
a vertical handover to another network, if a user is about to experience a full contention in
the target network. The results showed that the proposed approach outperforms the classical
resource allocation model. This helped to understand the application of proposed approach
in a highly mobile real network such as VANET.

In order to look at providing QoS in resource allocation in vehicular networks, it was
necessary to break down NDT to be the Resource Hold Time (RHT) and the handover time
(h). The approach also looked at how much service the mobile user actually acquires. The
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Markov-based model and the author’s model both looked at the network performance but did
not obtain the performance as seen by individual users and applications. The key issue is
the lack of handover analysis in the models that were used. This issue is addressed in this
chapter.

5.4 The use of Markov-based Frameworks

Markov-based models have been used to study various aspects of networking in particular
network performance and performability. In [38], the author looked at performability and
optimal analysis for repairmen in large-scale networks. The authors in [5] looked at a Markov-
based system to analyse the Handover Process. Furthermore in [1], the authors looked at a
2-dimensional Markov Chain to analyse the performance of Multi-Path Transmission Control
Protocol (MPTCP) in heterogeneous networks. Though these efforts are important, they
were focused on the network level. However, in this chapter we are looking at the effect of
handover on the ability to provide services to mobile users. Finally, in his PhD [73], Sardis
looked at a service migration model for heterogeneous networking but did not incorporate
the handover process in his model. This work addresses this issue by the introduction of a
Zero-Server Markov Chain.

5.4.1 The Zero-Server Markov Chain

It is essential to model the two periods, RHT and h, to develop an analytical model for
vehicular networks to investigate the QoS problems facing mobile users as previously
discussed. The system probabilities can achieve a steady state through the Markov Chains
which employ the concept of arrival and service rates. Nonetheless, while an ordinary
Markov chain can be employed to analyse the period, another type of Markov Chain is
needed to analyse the handover period owing to the lack of service during handover. Hence,
a Zero-Server Markov Chain which accepts solely arrivals can be used as illustrated in
Figure 5.3.

A Zero-Server Markov Chain (ZSMC) is naturally unsteady because after an extended
period, the length of the queue goes to infinity. To regularise the stability, a ZSMC is
combined with a Service-Based Markov Chain (SBMC) to serve customers/packets giving
room to exit the system.

In order to fully understand this technique, we will look at a cyclic queuing system in
which the server is serving a distributed number of queues as shown in Figure 5.4. When the
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Fig. 5.3 A Zero-Server Markov Chain

server arrives at the queue, it serves exhaustively until there is no one left in the queue before
it moves to the other queues.

Fig. 5.4 A Cyclic Service System

As such, it is paramount to leave the ZSMC with an exit velocity µv. For instance,
explored in [55] and illustrated in Figure 5.5 is an example of the model of exhaustive cyclic
service.

Fig. 5.5 Markov Chain showing Exhaustive Cyclic Service

The Markov Chain 1, denoted by K,1, shows what happens when the server is at the
queue. The server employs an exhaustive service discipline and hence only leaves the queue
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when the queue is empty. This is shown by the transition from P(1,1) to P(0,0). The system
returns to Markov Chain 0, denoted by K,0, which represents when the server is not at the
queue. When the server arrives at the queue again there is a transition back to Markov Chain
1 with rate µv. This represents the vacation rate which is the inverse of the vacation time Tv,
the period when the server is not at the queue. Using this analysis it was possible to show
that the average number of people in the system, which in the original work is denoted as
LEH , is given as:

LEH = λTv +
ρ

1−ρ
(5.1)

This result clearly agrees with normal queuing analysis because when the server is always
at the queue, Tv is zero, and hence the average number of the people is given as:

LEH =
ρ

1−ρ
(5.2)

This is the same formula for the average number of outstanding requests in M/M/1
analysis [80] and this shows that the Zero Markov approach yields the correct results for
cyclic systems as well as normal M/M/1 models. Furthermore, when compared to a discrete
simulation of a real system using Exhaustive Cyclic Service, the results from this approach
were very accurate for operational loads [55]. The difference between the theoretical results
and the simulation at higher utilisations was due to the fact that the estimation of Tv in cyclic
systems with exhaustive service gets difficult for very high loads. These results show that this
technique can also be used to look at the effect of handover on service delivery in Vehicular
Edge Clouds. However, what is needed is an SBMC that can be used to represent how service
is delivered in vehicular networks.

5.5 Analysis of Vehicular Environment

With wireless networking, the network coverage area is a region with an irregular shape
where signals from a given Point of Attachment (PoA) i.e., Access Point or Base Station can
be detected by an MN. The signals from the PoA are unreliable at the boundary and beyond
the coverage area signals from the PoA cannot be detected. For seamless communication,
the handover should be finished before the coverage boundary is reached.The list of terms
used is shown in Table 5.1.
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Table 5.1 Understanding Symbols used in Vehicular Networks

Symbol Description Meaning

RH Handover Radius When handover should be completed
RE Exit Radius When the handover process should start
TEH Handover Time Handover starts at RE and is done by RH

v Velocity Average velocity of the mobile node

Therefore, two circles were presented by the handover radius (RH) and exit radius (RE)
were defined in [52] to ensure a smooth handover. The work states that the handover
must begin at the exit radius and should be completed before reaching the handover radius
boundary as shown in Figure 5.6.
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Fig. 5.6 Network Coverage

The exit radius will therefore be dependent on the velocity, ν , of the MN. If we represent
the time taken to execute a handover by TEH , then:

TEH ≤ (RH −RE)

ν
(5.3)

Hence, the exit radius can be given as shown in Equation (5.4)

RE ≤ RH − (ν ∗TEH) (5.4)

So, the faster an MN moves the smaller the RE at which handover must begin. Given that
we know the time is taken to execute a handover, the velocity of the MN and handover radius,
then we can calculate the exit radius which is dependent on the handover radius. A good
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estimation of the handover radius is required for the proposed approach which is dependent
on the propagation models being used. The time taken to effect a handover was shown to
be dependent on various factors such as Detection Time (tdet), Configuration Time (tcon),
Registration Time (treg) and Adaptation Time (tad p) as discussed in [52].

Since reactive handovers respond to network conditions all four times must be added
together because the MN knows nothing beforehand about the characteristics of the various
networks. For proactive handover techniques, there is no detection time since the MN
would know where all the local networks are located. This is particularly valid for vehicular
networks as the route is fixed and therefore, the location of the next (target) network is likely
to be known. Configuration time is also negligible since the MN will know the IP address of
the target network. Registration Time is still valid. In addition, for proactive networks, the
need for the transport protocol to adapt can be signalled before or during handover and not
after the handovers occur. Therefore, it means that the adaptation time can be done in parallel
with the registration time. So, for proactive handover, the time for handover is given by:

TEH = MAX(treg, tad p) (5.5)

The previous work on proactive handover in [50] showed that the above-mentioned
coverage parameters can be segmented into communication ranges and presented an in-depth
analysis of such segmentation and their importance in order to achieve a seamless handover
in vehicular networks as shown in Figure 5.7. This segmentation can be put into effective
use for achieving proactive handover, resource allocation, and service migration in highly
mobile environments.
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Fig. 5.7 Communication Range Segmentation
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Figure 5.7 shows a more advanced scenario in which three consecutive overlapping
wireless networks are segmented based on various key time variables which can be used to
enhance handover and resource allocation. An example of such a scenario has been developed
in London using the Middlesex (MDX) VANET testbed where three RSUs were deployed
in an overlapping fashion on the A41 road Middlesex University to study and test vehicular
communication.

5.6 Developing an Analytical Model for Vehicular Networks

In order to develop an analytical model, we use a simplified diagram of a vehicular network
as shown in Figure 5.8. This consists ot three adjacent RSUs with overlapping coverage in
order to provide seamless communication. The coverage area is therefore modelled using two
parameters, N, the RHT and the handover time, h. RHT is the amount of time in the coverage
area of the RSU when the vehicle has access to the communication channel. However, as
the vehicle approaches the next RSU, it begins to handover to gain access to communication
channel of the next RSU and so releases the channel of the current RSU. Therefore, services
can only be delivered during the RHT and no services can be accessed during the handover
period.

Fig. 5.8 Analytical Model

5.6.1 The Analysis

The model for the vehicular network is shown in Figure 5.9. The arrival rate of requests by
the application is given by λ while the service rate is given by µ . The ZSMC is given as
Chain 0 and is represented by states Pn,0. The Markov Service Chain, denoted Chain 1, is
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Table 5.2 Understanding the Symbols for the Analysis

Symbol Description Meaning

λ Arrival rate of requests The rate at which requests are made
µ Service Rate The rate at which requests are served

Pn,0 State probability in Chain 0 System in ZSMC
Pn,1 State probability in Chain 1 System in SBMC
v1 Transition rate from Chain 1 to Chain 0 Moving from SBMC to ZSMC
v2 Transition rate from Chain 0 to Chain 1 Moving from ZSMC to SBMC

Fig. 5.9 Markov Chain for Vehicular Networks

given by Pn,1. The transitions between the two Markov Chains are represented by rates v1

and v2 respectively. A list of terms used in this analysis is given in Table 5.2.
Looking at State (0,0) our first equations is:

(λ + v2)P0,0 = v1P0,1 (5.6)

Hence:

P0,1 = ((λ + v2)/v1)P0,0 (5.7)

Looking at State (0,1),

v2P0,0 +µ1P1,1 = (λ + v1)P0,1 (5.8)

Substituting for P0,1 and simplifying:

P1,1 = (λ/µ)(P0,1 +P0,0) (5.9)
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Looking at State (1,0)

λP0,0 + v1P1,1 = (λ + v2)P1,0 (5.10)

Substituting for P1,1 and simplifying:

P1,0 = (λ/(µ(λ + v2)))((µ + v1)P0,0 + v1P0,1) (5.11)

Looking at State (1,1)

λP0,1 + v2P1.0 +µP2,1 = (λ + v1 +µ)P1,1 (5.12)

Substituting for P1,1 and simplifying:

P2,1 = (λ/µ)(P1,1 +P+1,0) (5.13)

Looking at State (2,0)

λP1,0 + v1P2,1 = (λ + v2)P2,0 (5.14)

Again by substitution and rearranging we get:

P2,0 = (λ/µ(λ + v2))((µ + v1)P1,0 + v1P1,1) (5.15)

Therefore based on these results the general equations of the model are given by:

Pn,0 = (λ/(µ(λ + v2)))((µ + v1)Pn−1,0 + v1Pn−1,1) (5.16)

Pn,1 = (λ/µ)(Pn−1,1 +Pn−1,0) (5.17)
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5.6.2 Handling a system with capacity K

For a system with a limited capacity, K, Equation 5.17 is valid, but for PK,0, Equation 5.16
must be modified as there is no forward rate (i.e. λPK,0). Hence, we get:

PK,0 = (λ/(µv2))((µ + v1)PK−1,0 + v1PK−1,1) (5.18)

5.6.3 Parameters from this model

From this analytical model, it is possible to calculate the average number of requests.
According to basic Queuing Theory [40], this is given by:

Navg =
∞

∑
n=1

nPn (5.19)

for a finite system,

Navg =
K

∑
n=1

nPn (5.20)

However, in this model we must consider both Markov chains, hence

Navg =
∞

∑
n=1

nPn,0 +
∞

∑
n=1

nPn,1 (5.21)

For a system with limited capacity, K; this is give as:

Navg =
K

∑
n=1

nPn,0 +
K

∑
n=1

nPn,1 (5.22)

Hence we can use the above equation to calculate Navg. Thus, by using Little’s Law, the
response time of the system, given by T , can be calculated as shown by the equation for
Little’s law in Equation 5.23.

Navg = λT (5.23)
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For a system with limited capacity, K, the blocking probability PB is given by:

PB = PK,0 +PK,1 (5.24)

5.6.4 New Parameter: Probability of lost service

Because we can now calculate the steady state probabilities even when the server is not at
the queue, in the context of vehicular networks, it is possible to calculate the probability
of lost service due to handover. Lost service is defined as the situation when there are
customers/packets in the queue waiting to be served but the server is not at the queue. Hence
this given by:

Plostservice =
∞

∑
n=1

Pn,0 (5.25)

or for a system with limited capacity, K,

Plostservice =
K

∑
n=1

Pn,0 (5.26)

5.6.5 The Middlesex Testbed Summary

In order to understand how the analysis could be applied to a real system, the VANET testbed
deployed at Middlesex University was used. The experimental setup is shown in chapter 3 in
Figure 3.5. It consists of 7 RSUs with three RSUs: 5, 6 and 7, located along the A41 which
runs behind the Hendon Campus.

The Middlesex testbed uses IEEE 802.11p (DSRC WAVE) American Standard which
enables WSMP messages to be sent between the RSU and the OBU. This includes Basic
Safety Messages (BSMs) that contain the GPS co-ordinates, the speed and direction of the
vehicles. These messages are sent by the OBUs in the vehicles to the RSUs and are then
forwarded by the RSUs to a VANET Server located on the Hendon Campus at Middlesex
University. BSMs are transmitted at a rate of 10 Hz and so these messages enable vehicles to
be tracked very accurately. The testbed uses a hybrid backhaul scheme in which the RSUs on
the Hendon Campus are backhauled using the University’s Gigabit Ethernet Network. This
is shown in Figure 5.10. An LTE backhaul system was used to backhaul the data from the
RSUs on the A41, to the same VANET server.
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Fig. 5.10 Backhaul for Hendon Campus RSUs

Hence using this setup, it is possible to accurately measure the Network Dwell Distance
(NDD) or coverage area of each RSU. We then divide NDD by the speed of the vehicle, v, to
get the effective time that the mobile node will be in the coverage of the RSU which is equal
to N +h where N is the RHT and h is the handover time.

N +h = NDD/v (5.27)

N = NDD/v−h (5.28)

According to a detailed analysis of vehicular networks in [15], [51], h is set to 4 seconds.
Thus we can determine N, the RHT for each RSU. Two speeds are considered, 30 mph and
50 mph. The results are shown in Table 6.1.

5.6.6 Video Service Scenario

To explore the application of these formulas, a video service scenario is examined. The
video server serves videos to mobile users by the aid of a PULL mechanism for which the
application on the mobile device receives 25 frames per second from the server. The server
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Table 5.3 Communication Coverage Segmentation Distance and Time (h = 4s).

RSU No. NDD 30 Mph 50 Mph
N N

RSU 1 300 m 18.37 s 9.42 s
RSU 2 456 m 30.00 s 16.40 s
RSU 3 517 m 34.55 s 19.13 s
RSU 4 248 m 14.49 s 7.09 s
RSU 5 974 m 68.63 s 39.57 s
RSU 6 1390 m 99.64 s 58.19 s
RSU 7 1140 m 81.00 s 47.00 s

utilises 5G network slicing and is therefore able to serve video frames at 50 frames per
second, in this set-up, λ = 25 and µ = 50. Also, v1 = 1/N where N is the RHT for the
diverse RSUs as illustrated in Table 6.1, finally v2 = 1/h where h is the handover time. In
line with complete analysis of vehicular networks in [15], [51], h is put at 4 seconds so
v2 = 0.25.

The Parameters to be Evaluated

It is commonly known that in mobile and vehicular systems, the resources on the mobile
node are less than the resources on main servers and therefore there is a need to ensure that
resources, such as memory, are efficiently used on mobile devices. Hence, it is important to
see how well the system works when different numbers of video frame buffers are provided
for the video connection. Thus, the results are shown for different values of K, the capacity
of the system. This algorithm will allow us to find out the average number of outstanding
requests in the system and the average response time for each service request for different
values of K. In addition, it also will enable us to obtain the probability of blocking, PB as
well as the probability of lost service given by PLS. These results were obtained for each
RSU in the Middlesex VANET testbed.

5.6.7 Generation of Results

A C program was written to generate the results for this model. However it is necessary
to check that the C program itself is accurate; so it was decided to do some calculations
manually and compare them with the results of the program. We therefore used the data for
RSU2 to generate results for PLS. As shown in Table 5.4, the difference is extremely small
which indicates that the program used to generate the results is accurate.



5.6 Developing an Analytical Model for Vehicular Networks 71

Table 5.4 Accuracy of Results for PLS for RSU2 at 30 mph

K Manual Program Results Difference %

1 0.11687135 0.1168698211 0.0013082
2 0.11698219 0.11698219 0.0008774
3 0.117027060883 0.1170260340 0.0008775

5.6.8 Results from Standard Analysis

In an attempt to fully comprehend the work, results will be presented from a standard
queueing analysis by looking at a scenario with the absence of handover within a fixed
network, which allows the server to consistently be at the queue. By employing a simple
M/M/1 analysis with infinite buffering, the equation is:

Navg = ρ/(1−ρ) (5.29)

Tresp = 1/(µ −λ ) (5.30)

where ρ = λ/µ; hence Navg = 0.5/0.5 = 1
and Tresp = 1/(50−25) = 0.04 seconds

Limited Capacity

A system with limited capacity, K will be looked at here.
For these systems:

Navg = ρ/(1−ρ)− ((K +1)ρK+1/(1−ρ
K+1) (5.31)

Response times will be found using Little’s Law in Equation 5.23. The results for the
same scenario will be presented here with different values of K. The Average Number of
Requests in the system will be presented as Navg and the corresponding Response Time, Tresp

with the probability of Blocking PB. Table 5.5 illustrates the results, for which, a queueing
system with K = 25 practically performs similar to a M/M/1 system.



72 Modelling Handovers in Vehicular Networks for Intelligent Service Migration

Table 5.5 No Handover with Limited Capacity

K Navg Tresp PB

5 0.905 0.0362 0.0159
10 0.995 0.0398 0.000489
15 1.000 0.040 0.0000153
20 1.000 0.040 0.000005
25 1.000 0.040 0.000000
30 1.000 0.040 0.000000
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Fig. 5.11 Navg vs K at 30 mph

Results from Testbed

Here, the results from the testbed will be used to estimate the parameters such as the average
number of requests, the Response time, the Probability of Blocking PB and the Probability of
Lost Service, PLS for each RSU for systems capacities from K = 5 to K = 50.

Figure 5.11 shows the Navg for each RSU. Basically the more time, the vehicle can spend
in the Markov Chain 1, the service chain, the more requests will be served and hence the
smaller the value of Navg. Since we said that the rate out of the service chain is the inverse of
N, the RHT, the greater the value of N, the smaller the value of v1 and hence the greater the
level of service. Thus since the RSUs on the A41, RSU5, RSU6, RSU7 have the largest values
of N, they have the lowest values of Navg In contrast, RSU4 and RSU1 have the smallest
values of N and so have largest values of Navg. The same reasoning explains Figure 5.12
which shows the Blocking Probability PB as K increases. Both graphs, however, also show
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Fig. 5.12 PB vs K at 30 mph

that compared to the no handover case, handovers to the different RSUs significantly affect
the performance of the system due to services becoming unavailable during handovers. The
ability to quantify this lost service is therefore very important.

Figure 5.13 shows the values of the probability of lost service denoted by PLS for each
RSU. The figure appears to show that for each RSU, PLS is the same and is thus independent
of the value of K. This is a very interesting result.

To explore this further, we now calculate the values of PLS for 2 RSUs: the most effective
RSU, RSU6, and the least effective RSU, RSU4.

Table 5.6 shows how PLS varies with the system capacity K for RSU4 and RSU6 for ρ

at 0.5 and speed at 30 mph. The difference between the least and maximum values of each
RSU is quite small. For RSU4, that difference is 0.596% and for RSU6, it is 0.007%.

Table 5.7 shows how PLS varies with utilisation ρ for RSU4 and RSU6 for K = 100 and
speed at 30 mph. Again, the difference between the least and maximum values of each RSU
is quite small. For RSU4 , that difference is 0.8984% and for RSU6, it is 0.1646%.

These results show that PLS only marginally changes when there are changes in system
capacity K and utilisation ρ . This also means that if we are able to calculate PLS for the
simplest setup then we know that the maximum values will be very close to the results for
the simple values which is a significant contribution..

Figure 5.14 compares PLS with different values of K for both 30 mph and 50 mph. The
results show that there are higher values of PLS for 50 mph compared to values at 30 mph
both for RSU4 and RSU6. As shown in Table 6.1, for the same speeds, the Resource Hold
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Table 5.6 Detailed Look at PLS in % and System Capacity K

K RSU4 RSU6

1 21.4906 3.8340
2 21.5112 3.8376
3 21.5195 3.8391
4 21.5234 3.8397
5 21.5254 3.8401

10 21.5284 3.8404
20 21.5309 3.8405
30 21.5331 3.8405
50 21.5369 3.8406

100 21.5435 3.8408
200 21.5502 3.8410

Table 5.7 Detailed Look at PLS in % and Utilisation ρ

ρ RSU4 RSU6

0.1 20.7343 3.6948
0.2 21.2375 3.7849
0.3 21.4081 3.8158
0.4 21.4930 3.8314
0.5 21.5435 3.8408
0.6 21.5767 3.8471
0.7 21.6000 3.8516
0.8 21.6168 3.8550
0.9 21.6283 3.8576

0.94 21.6312 3.8584
0.98 21.6327 3.8591
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time of RSU4 is much less that RSU6, so RSU4 will leave the Service Chain much quicker
than RSU6 as so experience a greater loss of service.

For different speeds, the rate out of the service chain, Markov Chain 1, increases for the
50 mph scenario because the RHT for 50 mph is less than the RHT for 30 mph for both RSUs.
Hence the transition rates out of the Service Chain is much greater at 50 mph than at 30 mph
for both RSUs, thus PLS values are greater for 50 mph compared to 30 mph. This difference
in the rates at the different speeds are much larger for RSU4 (1/7.09−1/14.49 = 0.07411)
compared with the differences for RSU6 (1/58.19−1/99.64 = 0.00715) hence there will
be a greater difference between the values for the different speeds for RSU4 compared to
RSU6 as shown in Figure 5.14.
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5.7 Chapter Summary

This chapter presented the Y-Comm classical approach and showed the analysis of the effect
of handover on service delivery in a vehicle network. This was done using the ZSMC
technique. The analytical model allowed a new parameter call the probability of lost service,
PLS, to be obtained. The analytical model was developed and then applied to the MDX
VANET testbed. An investigation of the results showed that PLS was marginally dependent
on the system capacity (K) and utilisation ρ . PLS appears to be only significantly dependent
on the rates of transition between the ZSMC and the SBMC. The method of approach used in
this chapter will also be used to develop our model for service migration in the next chapter.



Chapter 6

Analytical Model for Service Migration
in Vehicular Network

6.1 Brief Introduction

The chapter begins by deriving the equations for reactive and proactive service migration.
It then looks at how service migration mechanisms that support service migration can be
analysed in terms of reactive and proactive service migration in a similar way that the reactive
and proactive handover was analysed in the previous chapter. Finally, the ZSMC technique is
applied to analyse proactive and reactive service migration using different mechanisms in
vehicular networks.

6.2 Reactive Service Migration

The analytical model for reactive service migration is shown in Figure 6.1. This figure shows
that there are two key issues, the communications parameters and the service migration
parameters. The communication parameters are given by the N and h. We now need to
consider the service migration model. We first define the service migration time (SMT ) as
the time it takes to migrate the service from one RSU to another RSU. The service is not
available during SMT. We also define the Service Hold Time (SHT ) as the period in the RSU
that the service is available to mobile users.

However, we need to link these parameters. This is given by:
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Fig. 6.1 Analytical Model to explore Reactive Service Migration

SHT +SMT ≤ N +h (6.1)

SHT ≤ (N +h)−SMT (6.2)

SHT ≥ 0 (6.3)

Hence if we know SMT , N and h then we can calculate SHT . In addition, SHT ≥ 0. This
is because if this is not case, then service migration to the next network cannot occur because
by the time the migration is completed the MN would have already left the upcoming network.
This is the key equation for reactive service migration in highly mobile environments such as
vehicular networks.

6.3 Proactive Service Migration

In addition to reactive service migration where service migration begins when at the same
time that handover occurs, we will consider starting handover X seconds before reactive
service migration should begin. This is called proactive service migration. This is shown in
Figure 6.2.

In this diagram X is the proactive time; hence, the service begins to migrate X seconds
before handover occurs. It is assumed therefore that the Mobile Node still has access to the
service for the X seconds.

This therefore means that the breakof service due to service migration goes from SMT to
SMT −X hence our equations now become:
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Fig. 6.2 Proactive Service Migration

SHT +(SMT −X)≤ N +h (6.4)

SHT ≤ (N +h)− (SMT −X) (6.5)

SHT ≥ 0 (6.6)

Xmin = N +h−SMT (6.7)

Xmin ≥ 0 (6.8)

The last two equations are obtained because the minimum value of SHT is zero. Hence
we can work out what is the minimum value of X .

We can also work out the maximum value of X using the following equations:

X ≤ N (6.9)

(SMT −X)≥ h (6.10)

The first equation takes into account that in order to begin a service migration proactively,
the mobile node should have access to the channel in the current network. So, we are
saying that X should be less than or equal to the RHT in the current network. However, the
second equation tells us that because handover will come into play which will affect service
migration so having values of X such that (SMT −X)< h would not be of benefit. Hence
we can say that the maximum value of X is the minimum of these two values.



80 Analytical Model for Service Migration in Vehicular Network

Xmax = min(X ≤ N,(SMT −X)≥ h) (6.11)

Hence we can now summarise all the equations about proactive migration time X, which
are given below:

Xmin ≥ 0 (6.12)

Xmin = N +h−SMT (6.13)

Xmax = min(X ≤ N,(SMT −X ≥ h)) (6.14)

Xmax ≥ Xmin (6.15)

6.4 Service Migration as a Mechanism

Under the Y-Comm architecture, due to the mobility of the user, the heterogeneity of the edge
device while considering dynamics of the network resources such as the computing resources,
QoS, security, and the network bandwidth, we should offer the service in accordance with
the personalized demands of the user. The computational power is particularly large, so the
computing resources are required to be more flexible when deploying services on the edge.
Therefore, different migration mechanisms such as KVM, LXD, Docker, and Unikernels will
be explored for a better understanding of service migration.

The next section starts by showing the preliminary results gotten at the early stage of this
research from a mobile node moving at two different velocities i.e., 30 Mph and 50 Mph
going through RSUs within a VANET environment using different applications as a service.

6.5 Application-Focused Service Migration

Table 6.1 shows the NDT, denoted by ℵ, and N for two different velocities i.e., 30 Mph and
50 Mph for all the RSUs. We know from [52] that the handover execution time i.e., } is 4s
and therefore, the N is:

N= ℵ−} (6.16)
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Table 6.1 Communication Coverage Segmentation Distance and Time (}= 4s).

RSU No. NDD 30 Mph 50 Mph
ℵ N ℵ N

RSU 1 300 m 22.37 s 18.37 13.42 s 9.42 s
RSU 2 456 m 34.00 s 30.00 s 20.40 s 16.40 s
RSU 3 517 m 38.55 s 34.55 s 23.13 s 19.13 s
RSU 4 248 m 18.49 s 14.49 s 11.09 s 7.09 s
RSU 5 974 m 72.63 s 68.63 s 43.57 s 39.57 s
RSU 6 1390 m 103.64 s 99.64 s 62.19 s 58.19 s
RSU 7 1140 m 85.00 s 81.00 s 51.00 s 47.00 s

6.5.1 Live Service Migration Use Case Scenario Results

We are using the Middlesex VANET tested as already discussed in Chapter 5. The authors
in [48] detail a layered framework for migrating active service applications which are
condensed in virtual machines and containers. Containers are developing technology and
they consume less storage space compared to VMs, therefore, will be appropriate for service
migration. In order to reduce service downtime and overall migration time, they categorised
the instances in layers. The first is a base layer which includes the guest OS, kernel, and
so on, but with no applications installed. Secondly, the application layer which contains
different services such as the game server, face detection and so on. And lastly, the third
layer that contains instances. For this experiment a 2-layer approach refers to the use of the
base layer and the instance layer. While a 3-layer approach makes use of all three layers.
Under the given framework, the migration performance in terms of SMT for both VM and
Containers were examined in a controlled test-bed environment. They have considered five
different applications for migration; No Application, Game Server, RAM Simulation, Video
Streaming, and Face Detection. The results on the performance of two i.e., 2-layer and
3-layer approaches for different application with container technology as shown in Table 6.2
have been used in this work for the evaluation of our model.

Given the measurement results for service migration as listed in Table 6.2, we consider
two use-cases for two different velocity i.e., 30Mph and 50Mph:

• Reactive Approach where the service migration starts once the MN reaches the next
RSUs coverage region.

• Proactive Approach where the service migration starts before the MN reaches the next
RSUs coverage region at point X called as the proactive service migration time.
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Table 6.2 Migration results for two-layer and three layer configurations

Services SMT / Data Transferred
2 Layer 3 Layer

No Application 6.5 s /1.4 MB 11.0 s/ 1.9 MB
Game Server 7.3 s /2.2 MB 10.9 s/ 2.7 MB

RAM Simulation 20.2 s /97.1 MB 27.2 s/ 97.6 MB
Video Streaming 27.5 s /180.2 MB 37.3 s/ 184.6 MB
Face Detection 52.0 s /363.1 MB 70.1 s/ 365.0 MB

The graphs presented in Figure. 6.3 and 6.4 show the ratio for reactive and proactive
service migration derived from Equation 6.3 and 6.15 respectively for different application
services presented in Table 6.2.

We can look at the equation 6.1 as follows:

N +h ≥ SHT +SMT (6.17)

Since SHT must be greater than 0, it means that the ratio:
Hence if SHT is zero:

N +h ≥ SMT (6.18)

Thus, for reactive handover, this represents the maximum value of SMT. If SMT is greater
than this value the service migration cannot occur because by the time the migration occurs
the mobile user would have left the targeted network. We can also express this as a fraction
by dividing both sides by SMT.

For reactive service migration where we start the service migration at the same time as
the communication handover,

(N +h)/SMT > 1 (6.19)

For a service to be successfully migrated using reactive service migration, the ratio must
be above 1.

For proactive service migration, where service migration starts X seconds before the
communication handover
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(N +h)/(SMT −X)> 1 (6.20)

In case 1, we can observe that the service migration in a mobile environment is successful
for both No application, and Game server with 2-layer and 3-layer approach for both 30Mph
and 50Mph as shown in Figure 6.3. This is due to the fact that size of the service are small
compared to others. RAM Simulation service cannot be successfully migrated for 3-layer
approach at 50Mph, this is due to the high speed and rest of the cases for RAM Simulation
service can be successfully migrated. The other two services i.e, Video streaming and Face
detection cannot be migrated using reactive service migration.
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Fig. 6.3 Service Migration for Reactive Handover

In case 2, Figure 6.4 shows the results of proactive approach i.e, service is migrated at
the proactive service migration time, X. This is not a constant value and it changes according
to the type of the service. We consider the values of X (in seconds) for No Application
and Game server as 5s, RAM simulation and video streaming to be 15s and then finally
face detection as 45s. The results show that the No Application, Game server, and RAM
Simulation are successfully migrated for all cases. Video streaming, and Face detection are
almost nearing the threshold 1 for 3-layer approach at 50Mph and all other cases can be
successfully migrated. This shows the need for a proactive service migration approach in a
highly mobile edge environment. In addition, proactive service migration time, X has to be
explored in the future to develop efficient algorithms for such service migration. Here, the
SMT was measured in a controlled environment and only one mechanism was considered.
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However, in order to have intelligent service migration we need to get accurate values of
SMT for different mechanisms.
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Fig. 6.4 Service Migration for Proactive Handover

6.6 Developing a Prototype Environment for the New Frame-
work

6.6.1 NMS and FUSE as a Service

Using this approach, we will now consider a Network Memory Server (NMS) that manages
blocks of memory on behalf of its clients. The NMS creates, reads, writes and deletes blocks
of memory using a simple socket interface. We have incorporated the NMS as a back-end
to the FUSE file system which is a user-space file system commonly employed in Linux
environment as shown in Figure 6.5. The diagram in Figure 6.6 depicts how the NMS and
FUSE services are used in a Vehicular Network. FUSE runs on the MN and communicates
with the NMS server running in the local network. As the MN moves within the vehicular
network the NMS is migrated to a nearby RSU.

6.7 Investigating Different Migration Mechanisms for NMS

It is necessary to look at how the NMS will be migrated using different migration techniques.
Four state-of-the-art migration techniques, such as KVM, LXD, Docker and Unikernels were
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Fig. 6.5 FUSE and NMS integration

Fig. 6.6 NMS migration scenario within VANET

deployed in order to test their performance. A logical diagram of the network implementation
is shown in Figure 6.7. Two physical interfaces and one virtual bridge are attached to the
host computer: wireless adapter (wlp0s1), Ethernet adapter (enp0s1), and one virtual bridge
is created as part of the VM virtual network (br0). Two virtual Ethernet adapters are created
per VM to represent the connections from the VM to the host computer in the form of veth
interfaces. Two interfaces are required, since one of them will be used for service traffic
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Table 6.3 Linux host used for live migration without shared storage

Linux-host (HWs) Features

Device Dell Inspiron 5559
CPU Intel Core i5 6200U 2.4 GHz (4 cores)
RAM 16 GB RAM DDR3

Storage 256 SSD drive 1TB HDD drive
Host OS Archlinux (Kernel version 5.2 )
Network Realtek 1Gbps Ethernet, Intel802.11ac wireless adapter

(enp0s8) and the second one (enp0s3) for management traffic. These veth interfaces are
connected to the enp0s8 and enp0s3 interfaces inside the VM guest operating system.

Fig. 6.7 Logical Implementation Diagram

LXD live migration is dependent on the Checkpoint/Restore in user-space (CRIU) library,
since CRIU must be aware of the particularities of the process to checkpoint and the way
it utilizes the underlying resources. Thus, checkpoint creation has several restrictions. A
manual compilation of the CRIU is required to guarantee a successful migration. In addition,
even when using the latest compiled version available, live migration is not possible in all
cases. In particular, any guest OS that uses systemd as the method to manage user processes
fails to checkpoint due to systemd’s use of shared filesystem mounts that interfere with the
CRIU checkpoint process. Non-systemd distributions, such as Devuan or Alpine are available
and can be migrated using this library.

6.7.1 KVM

Migration of the VM was done using the CLI with qemu+ssh. However, the virtual hard disk
(vHDD) needs to be migrated in advance.



6.7 Investigating Different Migration Mechanisms for NMS 87

6.7.2 LXD

Migration over LXD [46] is done using CRIU and an embedded functionality called LXC
move. A preshared SSH key is required between two hosts to attempt migration. Then the
container information and snapshots are migrated as a delta of the original image. If the
migration is successful, the container is deleted from the source and started on the target
server.

At the time of initiating the migration, the local LXD daemon checks for the existence of
the declared container. A token is created by the local LXD daemon and sent to the remote
target daemon, with the source URL and the local certificate identifying LXD local daemon.
Then, the remote LXD daemon connects to the local daemon via a control websocket, using
the provided token and the transfer mechanism is then negotiated depending on the backend
storage being used.

6.7.3 Docker

Docker migration is not defined as a feature in Docker documentation. A checkpoint and
restore capability using CRIU and runc is available under experimental conditions. This
capability is not production-ready and it is evaluated for comparison purposes with other
technologies. A checkpoint of the present state of the container is done in this scenario,
which requires the container to be stopped in advance. Docker migration scripts were created
using Bash scripting language to provide migration capabilities based on the work in [58].

6.7.4 Unikernels

A Unikernel was compiled as part of this research to evaluate the performance of live migra-
tion of Unikernel images over KVM. In order to compile a Unikernel, a target application
needs to be defined, for this purpose, a simple NMS was used. OSv was successfully used
to compile a Unikernel with the NMS. The migration algorithm for Unikernel images is
identical to KVM images, since the result of the Unikernel compilation process is a Quick
Emulator copy-on-write (QCOW2) KVM disk image. A VM with similar vCPU and vRAM
was created using the QCOW2 image compiled.

6.7.5 Migration Results

The specification for the VM being used to house the NMS is given in Table 6.4. The four
service migration methods were evaluated in terms of NMS migration time and the results
are listed in Table 6.5.
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Table 6.4 VM Specifications

Name ID HDD RAM vCPU Network OS
VM 122 32 GB 2 GB 2 1Gbps Ubuntu 18.04

Table 6.5 Service Migration Results

Migration Mechanism NMS Migration Time

Unikernel KVM 11.99 s
LXD CRIU 24.73 s

Docker Container 73.00 s
KVM 824.00 s

In order to understand the impact of the service migration time within a dynamic high
mobility network environment, the VANET testbed deployed at Middlesex University was
used. It consists of 7 RSUs with three RSUs: 5, 6 and 7, located along the A41 which runs
behind the Hendon Campus. Using OBUs in vehicles, it was possible to measure the different
coverage parameters at 30 mph and at 50 mph. This is shown in Table 6.1.

Using the results from Tables 6.5 and 6.1, we can evaluate the performance of the four
service migration methods under two scenarios: reactive and proactive service migration of
NMS within a real dynamic VANET environment.

6.8 Using the ZSMC to Look at Service Migration

Service migration will cause a loss of service. In order for us to analyse this further. We can
use the same Markov Chain model as shown in Figure 5.9 on page 61. Hence, in order to
study the service migration, then v1 the outward rate from Markov Chain 1 to Markov Chain
0 is the inverse of the Service Hold Time, given by v1 = 1/SHT where SHT is the Service
Hold Time in the current network. The inward rate from Markov Chain 0 to Markov Chain 1,
v2 = 1/SMT .

6.8.1 Results to be evaluated

Given the setup of the Middlesex testbed, it was decided to evaluate valid transitions that
would occur on the testbed. Those transitions were divided into 2 parts. The first set was
transition between the Hendon-based RSUs (RSU1, RSU2, RSU3, RSU4). The second set
was between the RSUs on the A41 (RSU5, RSU6, RSU7). The system capacity K is set to
100, the arrival rate λ is set to 25 and the service rate µ is 50.
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Table 6.6 Average Number of Requests for Reactive Service Migration for 30 MPH

Transition Unikernels LXD Docker KVM
RSU1 to RSU2 54.1623 NP1 NP2 NP2
RSU2 to RSU3 35.6863 73.3825 NP2 NP2
RSU3 to RSU4 31.5495 NP2 NP2 NP2
RSU5 to RSU6 17.1508 34.6469 NP1 NP2
RSU6 to RSU7 12.3054 24.5609 70.7721 NP2

Table 6.7 Average Number of Requests for Reactive Service Migration for 50 MPH

Transition Unikernels LXD Docker KVM
RSU1 to RSU2 92.8323 NP2 NP2 NP2
RSU2 to RSU3 59.4877 NP2 NP2 NP2
RSU3 to RSU4 NP2 NP2 NP2 NP2
RSU5 to RSU6 27.9998 57.2495 NP2 NP2
RSU6 to RSU7 19.8738 40.3166 NP2 NP2

The program developed for analysing handover was therefore modified to evaluate service
migration for the different migration mechanisms for each of the transitions given above.
The results obtained were the average number of requests, the Response time, the Probability
of Blocking PB and the Probability of lost service, PLS for each transfer mechanism from one
RSU to another RSU. NP1 is the condition where it is not possible to migrate from the first
network because the Service Hold Time in that network is less than zero. Hence it is not
possible to migrate to that first network in the first place. NP2 is the condition where it is
not possible to migrate to the second network because the Service Hold Time in that second
network is less than zero.

6.8.2 Reactive Service Migration Results

The main equation for reactive migration is given by Equation 6.3. For a number of mech-
anisms, we first need to find out if reactive service migration is possible according to this
equation. In the tables below, Table 6.6 and Table 6.7 show the average number of requests
for 30mph and 50 mph, while Table 6.8 and Table 6.9 show the Blocking Probability, while
Table 6.10 and Table 6.11 show the Probability of Lost Service.

6.8.3 Evaluation of the results

These results are very mixed. Unikernels showed that it was the fastest migration mechanism.
LXD also showed good results for most transitions. Docker showed mixed results and was
unsuitable for RSUs with relatively small coverage ranges while KVM could not be used for
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Table 6.8 Blocking Probability % for Reactive Service Migration for 30 MPH

Transition Unikernels LXD Docker KVM
RSU1 to RSU2 40.7124 NP1 NP2 NP2
RSU2 to RSU3 26.1052 68.8911 NP2 NP2
RSU3 to RSU4 22.9275 NP2 NP2 NP2
RSU5 to RSU6 12.0263 29.2422 NP1 NP2
RSU6 to RSU7 8.4009 20.4439 66.9771 NP2

Table 6.9 Blocking Probability % for Reactive Service Migration for 50 MPH

Transition Unikernels LXD Docker KVM
RSU1 to RSU2 79.6230 NP2 NP2 NP2
RSU2 to RSU3 45.1153 NP2 NP2 NP2
RSU3 to RSU4 NP2 NP2 NP2 NP2
RSU5 to RSU6 20.2193 49.1825 NP2 NP2
RSU6 to RSU7 14.0727 34.2081 NP2 NP2

Table 6.10 Probability of Lost Service % for Reactive Service Migration for 30 MPH

Transition Unikernels LXD Docker KVM
RSU1 to RSU2 53.5342 NP1 NP2 NP2
RSU2 to RSU3 35.2143 72.6958 NP2 NP2
RSU3 to RSU4 31.0569 NP2 NP2 NP2
RSU5 to RSU6 16.4823 34.0240 NP1 NP2
RSU6 to RSU7 11.5503 23.8431 70.4191 NP2

Table 6.11 Probability of Lost Service % for Reactive Service Migration for 50 MPH

Transition Unikernels LXD Docker KVM
RSU1 to RSU2 89.3312 NP2 NP2 NP2
RSU2 to RSU3 57.7092 NP2 NP2 NP2
RSU3 to RSU4 NP2 NP2 NP2 NP2
RSU5 to RSU6 27.4778 56.7216 NP2 NP2
RSU6 to RSU7 19.2496 39.7363 NP2 NP2
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reactive migration mechanisms. The main reason for the long delay in KVM migration is
because KVM attempts to migrate the whole Virtual Hard Disk (vHDD) rather than just the
amount of disk and memory being used.

6.9 Proactive Service Migration

For proactive migration, the results are shown below.
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The results for the average number of packets in the system for each transition are shown
Figures 15-19. What is interesting is that for the transfers on the Hendon Campus, (RSU1
to RSU4) only Unikernel and LXD-CRIU are able to do the migration for all transitions.
Docker and KVM are unable to do service migration for any of these transition. However, for
the RSUs on the A41, Docker was able to do all the transitions. This is because the Service
Hold Time is larger in these RSUs compared to the Hendon RSUs. This enables the Docker
Service Migration time which is 73 seconds to be handled by the proactive time X in the
RSUs.

6.9.1 Results for the Probability of Blocking

The results for the blocking probability for each transition are shown in Figures 20-24.
Again the graphs are very linear. For the RSUs on the Hendon Campus only Unikernels and
LXD-CRIU showed a good set of results. Docker and KVM did not have any readings due
to their large migration times. For the transitions on the A41, Docker was able to generate
results.
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6.9.2 Results for Lost Service
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Again these results show that by using proactive service, there is a very linear relationship
between the Proactive Time (X) and the Probability of Lost Service. This means that it
should be possible to use Proactive Service migration to do intelligent service migration.

For 50mph, the effect due to service migration is more severe as the rate of leaving the
Service Based Markov Chain is greatly increased due to a much smaller Service Hold Time.
This is clearly reflected in the results in terms of higher average number of packets, greater
Blocking Probability and greater Probability of Lost Service for 50mph.

Proactive Service Migration will also have a greater effect on the 50mph results as showed
by the steeper curves for the 50mph results compared to the 30mph results. However, at
50mph the possible values of X, the proactive service migration time, also decreases and so
the range of X will also be mimimised.
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Table 6.12 Minimum and Maximum Values of X for Unikernels

Transition Code Xmin30 Xmin50 Xmax30 Xmax50

RSU1 to RSU2 Y 0 0 7.99 7.99
RSU2 to RSU3 Y 0 0 7.99 7.99
RSU3 to RSU4 Y 0 1.0 7.99 7.99
RSU5 to RSU6 Y 0 0 7.99 7.99
RSU6 to RSU7 Y 0 0 7.99 7.99

Table 6.13 Minimum and Maximum Values of X for LXD-CRIU

Transition Code Xmin30 Xmin50 Xmax30 Xmax50

RSU1 to RSU2 Y 2.5 NP1 18.37 NP1
RSU2 to RSU3 Y 0 6.0 20.73 16.39
RSU3 to RSU4 Y 6.25 14.0 20.73 19.1
RSU5 to RSU6 Y 0 0 20.73 20.73
RSU6 to RSU7 Y 0 0 20.73 20.73

6.9.3 Looking at Minimum and Maximum Values for Proactive Ser-
vice

In order to explore this further the following tables are shown for the maximum and minimum
values of X for each mechanism and for each transition. This is shown in Table 6.12 for
Unikernels, Table 6.13 for LXD-CRIU, Table 6.14 for Docker and Table 6.15 for KVM.

In the KVM case all the minimum required proactive service migration time Xmin is
always greater the maximum possible value of X given as Xmax. Thus, we have the condition
known as NP3 and service migration cannot be performed using this mechanism.

As previously noted, for the Hendon-Based RSUs, Docker is also adversely affected, but
does much better with the A41 RSUs. However Xmin increases and the Xmax decreases for
50mph compared to 30mph.

LXD-CRIU could generally be used in most cases. However, the transition from RSU1 to
RSU2 for 50mph could not be done because the time in the first network is too small (9.42s)

Table 6.14 Minimum and Maximum Values of X for Docker

Transition Code Xmin30 Xmin50 Xmax30 Xmax50

RSU1 to RSU2 NP3 39.00 52.6 18.37 9.42
RSU2 to RSU3 NP3 34.45 49.87 30.00 16.4
RSU3 to RSU4 NP3 54.51 61.91 34.55 19.13
RSU5 to RSU6 Y 5 30.0 68.299 39.57
RSU6 to RSU7 Y 0 22.5 69.0 58.18
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Table 6.15 Minimum and Maximum Values of X for KVM

Transition Code Xmin30 Xmin50 Xmax30 Xmax50

RSU1 to RSU2 NP3 790 803.6 18.37 9.42
RSU2 to RSU3 NP3 785.45 800.87 30.00 16.4
RSU3 to RSU4 NP3 805.51 812.91 34.55 19.13
RSU5 to RSU6 NP3 720.36 761.81 68.63 39.57
RSU6 to RSU7 NP3 739 773 99.64 58.19

compared to the service migration time (24.73) and hence SHT < 0, and thus error code,
NP1 was returned.

The Unikernel mechanism showed the best results mainly because of its speed. It worked
quite well in all circumstances except for the RSU3 to RSU4 transition for 50mph because
of a reduced RHT for RSU4 at 50 mph (7.09s) which resulted a slight increase in Xmin. Thus
going forward we believe it is imperative to look at using the Unikernel system for service
migration in vehicular networks.

6.10 Chapter Summary

This chapter explored a detailed view of service migration and showed how it can be managed
using the analytical modelling. Both reactive and proactive service migration were studied
and a comprehensive set of results were produced. It revealed that Unikernels were great:
LXC-CRIU was generally OK, Docker gave mixed results while KVM cannot be used for
practical service migration. This work will be incorporated into a new Service Management
Framework in the next chapter to provide mobile users with a sustained QoS in vehicular
networks.



Chapter 7

Developing a Practical Intelligent Service
Management System

7.1 Brief Introduction

This Chapter starts by revealing a flow diagram based on the work of the previous Chapters
of this thesis of how intelligent service migration could be implemented. It then discusses
Sardis’s framework as a Reference Model and then examines an implementation model for
Intelligent Service Migration as well as key routines and structures needed to implement a
Service Management Framework. A Simple prototype of the system is then developed and
evaluated.

7.2 Flow Chart for Intelligent Service Migartion

Based on our previous analysis in chapter 5 and chapter 6, Figure 7.1 reveals the flow diagram
that would be needed to implement intelligent service migration in a vehicular network.

As previous discussed, the MN polls the core network about the network topology and will
receive information about the target RSU including its NDT, Time to Handover, and services
that can be migrated via the 802.11p or 5G network using different migration mechanisms.
When this information gets to the MN, it transfers them to the Service data unit along with
the car’s velocity, Application QoS and its bandwidth and latency information derived from
SLTP. When this data is received by the Service data unit it selects the best transfer technique,
either through Unikernel or LXD-CRIU. This is transferred to the migration execution unit.
Service migration decisions are then executed for a proactive handover, reactive handover,
etc.
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If we can do a Proactive service migration, then the system checks if the Reactive service
migration is also possible. This is true if Xmin is 0. If yes, the system checks if the QoS
for the service in the current network is better than the QoS for service in the next network.
If yes, it informs the Service Management Framework (SMF) to begin Service Migration
(SM) at the same time as the communication handover is done by the lower layers, which
will allow the MN to stay as long as possible in the current network to experience the better
QoS. If not, then SMF is told to start SM at Xmax in order to leave the current network early
and hence experience the better QoS in the next network.

If it is not possible to do Reactive service migration, but the QoS on the current network
is still better than the QoS in the next network, then the system will tell the SMF to start SM
at Xmin, else start at Xmax.

Finally, if neither Proactive nor Reactive service migration can be done to the next RSU,
the SMF is told to migrate the service via a VANET Server back to an Edge Cloud System
which can be accessed by the MN through the next RSU. Hence service can be maintained
though service migration to the next RSU cannot occur.

7.2.1 Service-Oriented Framework for Mobile Services

The work done by Sardis [72] showed that in order to migrate a service, it is necessary to
compare the time taken to migrate the service with the amount of time the user will be in that
specific region. This is a compelling framework that can be used to allow services to migrate
in a MEC environment. Although Sardis used a simple queuing model to represent the user’s
mobility in mobile networks, his framework can be considered as a reference framework that
can be used as a starting point to look at practical service frameworks for vehicular networks.

7.3 New Service Management Framework

Figure 7.2 shows the old environment where the server had to manage replications of itself
on different systems, below it reveals the new environment where this is managed by the
SMF.

The main challenge that needs to be addressed in order to build a viable service manage-
ment framework for vehicular networks is the need to guarantee seamless communication in
such environments [25], since the performance of any service architecture must depend on
the performance of the underlying communication dynamics [21].

The new proposed implementation framework is based on the service framework devel-
oped by Sardis and has four layers. The first layer is called an Application Layer that runs
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Fig. 7.1 Flow Chart for Intelligent Service Migartion

on the MN and invokes the service through the Service Management Layer (SManL) giving
the service name, Service id and required QoS. The SManL administrates the service and is
also responsible for Service Subscription and Service Delivery. The Service Migration Layer
(SML) migrates the service as requested by SManL. It uses a secure Resource Allocation
Security Protocol (RASP) [35] to ensure that the transfer is securely done. RASP in turn,
will use standard migration mechanisms such as Docker, KVM, LXD and Unikernels to do
the actual migration. SML informs SManL when the migration is completed. The Service
Connection Layer (SCL) monitors the connection between the mobile node and the server
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Fig. 7.2 Structure of the New Service Management Framework

and the reports to the SManL when the mobile node is no longer contactable due to handover
to another network. The overall structure is shown in Figure 7.3.

Fig. 7.3 Service Migration Prototype
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Table 7.1 General Notations

Notations Name

AL Application Layer

SManL Service Management Layer

SML Service Migration Layer

SCL Service Connection Layer

S1, S2. . . Sn Server

QoS(Req) Quality of Service (Required)

MC Mobile Client

7.3.1 Protocols for Intelligent Service Migration in a Network Scenario
for a Vehicular Environment

Interaction between Servers and the Service Management Framework

• Step 1: All servers must register with the SManL using the steps below.

• Step 2: The Cloud Management system which is responsible for running a number
of services calls SManL to register a service with the following parameters: [ Server
name, Server version, Resource requirements (CPU, Memory, Network, Storage),
Restriction list, Security level, QoS, Location Restrictions, Maximum Replicas, Actual
binary of the service, and Container Images.]

• Step 3: SManL allocates a new service structure and Service ID and adds the new
service structure to the list of services it supports.

• Step 4: SManL tells the Cloud Management System that the service has been registered.
It returns the Service ID and the Service Capability for the new service.

Interaction between MC and Service Management Framework

• Step 1: All MCs must be connected to the SManL by using SCL, via a special port to
talk to the SManL.

• Step 2: Application Layer (AL) requests a service from SManL: AL Sends the
following information to SManL [Node ID, Service name, Service version, QoS
Requirements, Location, and Network Interfaces.] Then SManL takes the service
name and service version from the AL’s request, then scans through a list of services



106 Developing a Practical Intelligent Service Management System

Fig. 7.4 Interaction between MC and Service Management Framework

already stored in its database, if there is a valid service for the AL request then it will
return the Service Structure for that service which contains a list of servers that is
currently running that particular service.

• Step 3: SManL to SCL: SManL sends the following MC information to SCL [Node
ID, Service name, QoS Requirements, Service ID, Location, and Node IP address.]
The SCL has a list of nodes that it is already pinging in order to keep track of different
network IDs and services.

[Case 1:] If the SCL is already pinging MC, it goes to Step 4.

[Case 2:] If SCL is not pinging MC, it starts pinging it. If pinging is successful,
SCL adds the Node ID and IP address to its database and go to Step 4

[Case 3:] If SCL cannot ping MC, it informs the SManL it cannot connect.

• Step 4: SCL to SManL: The SCL sends a connection successful message to the SManL.
The SManL updates its lists of MCs using that service and moves on to Step 5.

• Step 5: SManL to MC: The SManL sends [Node ID, Service name, Service ID,
Location, QoS Requirements and Server IP address] to the MC. MC communicates
with the servers [S1, S2... Sn] using the network interface which it received from
SManL and goes to Step 6.

• Step 6: SCL to MC: The SCL pings the MC to monitor its presence within the network.

[Case 1:] An internal loop is created (pinging between SCL and MC), this contin-
ues to run in a loop.

[Case 2:] If ping fails or MC moves away from the network region go to Step 7,
else go back to the inner loop in case 1.

[Case 3:] If the MC finishes with the service, the AL on MC sends a message to
SManL to close down the services (Socket to server is closed). Then SManL talks to
SCL to stop pinging and exit.
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• Step 7: SCL to SManL: The SCL informs the SManL that the pinging failed given
following information [Node ID, IP address] SManL finds the MC’s location and finds
a new server given the direction and location of MC.

[Case 1:] If the chosen location already has a server on the SManL database, it
updates the database with the new server for the client and moves to Step 9.

[Case 2:] Else, we need to migrate the service to a chosen server location and
move on to Step 8.

• Step 8: SManL to SML: SManL informs SML to migrate the services to new server
location by using a RASP protocol then heads on to Step 9.

• Step 9: SML to SManL: The SML informs SManL that the service migration has been
completed. Since all MCs are required to contact SManL after handover or when in
new network, it moves to Step 10.

• Step 10: MC to SManL: The MC will inform the SManL of the services that is still
running on the MC and hence the process is repeated from Step 2 in the new network.

7.3.2 C Code results

Fig. 7.5 Simple Prototype in C language

Figure 7.5 shows a simple prototype which was written in the C language, the source
code can be found in the appendix of this thesis. We wrote routines to register a service with
the SMF and to request a service.

The three separate programs (a basic SManL, Register Service and Request Service)
showed how we got a basic SMF to work. Results were obtained when all 3 programs are run
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on the same machine. The machine is a Core i7 processor running a 3,5.3 Linux Operating
system.

When registering a Network Memory Server service with the SMF we get the following
results:

• Registering an NMS Service: User Time spent in total: 0.168s and System Time
taken: 0.028s

• Requesting an NMS Service: User Time spent in total: 0.180s and System Time
taken: 0.032s

7.4 Chapter Summary

This chapter explored the development of a new service management framework for vehicular
environments. Then it revealed the functions for intelligent service migration in VANET.
Lastly, a basic prototype was developed using the C programming language and preliminary
performance results were obtained.



Chapter 8

Conclusions and Future work

In this chapter, a summary of the accomplished work is offered and the major contributions
to knowledge are highlighted. This is followed by conclusions derived from the work done
so far and proposed future work for the research is offered.

8.1 Contribution of the Thesis

The contributions of this thesis can be summarised as follows:
Chapter 1- In this thesis, we began by motivating the need for intelligent service migra-

tion in a highly mobile environments such as vehicular networks. It showed the key research
questions that needed to be addressed in the thesis as well as its research benefits with key
contributions. Furthermore, it showed the list of papers published to validate the researchers
claims.

Chapter 2- This chapter was broken down into two parts. The first part focused on
the technical background which introduced us to a number of technologies starting with
the Y-Comm Reference Framework which was developed for future communication, then
Multi-access edge computing that helped in providing the network architecture needed for
VANET and a list of migration technologies that were useful for this research progression.
The second part displayed the related work section which represented an intensive analysis
of different research efforts, that investigated MEC, computational offloading decisions and
existing migration models as well as a solution approach to developing intelligent service
migration.

Chapter 3- This chapter mainly concentrated on three specific methods to address the
key methodology used in the thesis. Firstly, this chapter introduced analytical modelling, by
discussing how the analytical model is developed and showed its key parameters to create an
estimated solution. Secondly, it detailed the construction of a testbed that will enable us to
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perform experiments. Lastly, the use of NMS in a file system known as FUSE as a service to
show how we could intelligently migrate services across the network in the VANET testbed.

Chapter 4- In this chapter, it revealed the implementation framework of Y-Comm which
led to the design of SLTP which is a new experimental transport protocol. Furthermore, a
comprehensive analysis of SLTP was revealed, performance tests were carried out to show
its validity. SLTP was compared with the standard TCP. They both went through a stress test
with different loads on the VANET RSUs located the Middlesex University, results showed
SLTP had better performance.

Chapter 5- The analysis of the effect of handover on service delivery in a vehicular
network was displayed in this chapter. It was achieved by the application of the Zero
Service Markov chain technique. This analytical model allowed for the development of a
new parameter called the Probability of Lost Service. This model was applied in the MDX
VANET testbed and interesting results were obtained.

Chapter 6- This chapter developed a model for service migration. The system used
different migration techniques, such as KVM, Docker, LXD and Unikernels to migrate a
network memory server. Both reactive and proactive service migration were investigated,
and a comprehensive set of results was produced. They showed that presently, Unikernels is
the best service migration mechanism for vehicular networks.

Chapter 7- This chapter revealed a flow diagram of how to integrate intelligent service
migration. A newly developed service management framework for vehicular networking
was created. New functions and routines were developed to implement a framework for
intelligent service migration. An intelligent service migration prototype was implemented
and evaluated. The C programming language was used to code the protocols and results
were achieved to prove its validity. This new approach appeared to be much better than the
current approaches because it addressed the key issues in intelligent service migration in
highly mobile environments.

8.2 Contribution to Knowledge

This thesis presents and explores intelligent service migration in a highly mobile network
such as VANET as a means of improving the QoS and managing network traffic. The
proposed mechanisms for intelligent service migration framework consider user and service
requirements and characteristics and combine them with network conditions and user mobility
to determine the best way to migrate a service. The uniqueness of the presented framework
lies in the convergence of MEC technology, user mobility and future networks.
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8.3 Conclusion

This thesis presented an analysis of the effect of handover on service delivery in a vehicular
network. It was attained by applying the ZSMC technique. This analytical model allowed for
the development of a new parameter called the Probability of Lost Service(PLS). This model
was applied in the MDX VANET testbed. An investigation of the results showed that PLS

was slightly dependent on the system capacity (K) and utilisation ρ . PLS appears to be only
significantly dependent on the rates of transition between the ZSMC and the SBMC.

This method of approach helped to develop our model for service migration, we used
different migration techniques, such as KVM, Docker, LXD and Unikernels to migrate a
network memory server. Reactive and proactive service migration were investigated, and
a comprehensive set of results was produced. It showed that Unikernels is the best service
migration mechanism for vehicular networks.

Furthermore, a flow diagram of how to integrate intelligent service migration was devel-
oped as well as a service management framework for the vehicular environment was created.
Innovative functions and routines were developed to implement a framework for intelligent
service migration. An intelligent service migration prototype was implemented and evaluated
using simple C programs, results were achieved to prove its validity. This new approach
presented in this thesis appeared to be much better than the current approaches because it
addressed the key issues in intelligent service migration in a vehicular network.

8.4 Future Work

This thesis highlights a few areas that are subject to future research. This section proposes
future work and work currently in progress in the fields of Security and machine learning.

8.4.1 Security

Even though the security of service migration in vehicular network falls outside the scope of
this thesis and is currently being explored by researchers [36], there are several other aspects
of the proposed system that present potential security weaknesses. The main security concern
is that of ensuring that performance data for an individual MN and service are exchanged in
a way that prevents impersonation or altering. Creating and securing a telecommunication
channel between the client device and the service is a necessity for preventing malicious
users from inputting false data into the system causing false migrations. There are several
different attacks that can be used against the system involving false prevention or triggering
of a migration, altering with the destination of the migration by giving false user location and



112 Conclusions and Future work

overloading a MEC by a synchronised attack that forces services to migrate to it. To prevent
such attacks there are three proposed guidelines for future research.

Firstly, the security mechanisms on the MEC should prevent any services from migrating
in or out until they first establish an agreement between the source and destination MEC. This
would be covered in the proposed service delivery framework as part of the migration layer
which receives information from the Service Management layer to confirm which services
can move depending on their requirements and the capabilities of the target destination.
Secondly, the mechanisms that handle this data on the MN and MEC side should be validated
to avoid malicious programmers from tampering with the data at the point where it is gathered
and processed. Then the final requirement is to secure the communication channel between
the device and the service so that man-in-the-middle attacks cannot be used to disrupt the
performance data.

8.4.2 Machine Learning

This is a method of data analysis that helps to automate analytical model building. It is
a branch of artificial intelligence [99] [79] that is based on the concept of systems being
able to learn from data, identify certain patterns and make choices with minimum human
interference. Live service migration based on Machine learning can be applied in this
area. Statistical, probabilistic, and learning based regression models are a new dimension
to enhance live migration. The Migration System should be able to automatically adjust its
behaviour depending on the workload patterns displayed by the applications. To address
this problem, future research on intelligent service migration should apply machine learning
algorithms to the estimation of future CPU utilization.

Lastly, the development of an Internet Service Platform using Software-Defined Vehicular
Networking [31] techniques, would greatly enhance the development and deployment of
servers and services for the Future Internet. This would combine Y-Comm, the work of Frank
Sardis, SLTP, the analytical models as well as machine learning and artificial intelligence to
enable intelligent service management on a global scale.



References

[1] Abd-Elrahman, E. and Said, A. (2019). Two dimensional markov chain approximation
for mptcp over hetnets: Performance evaluation. In 15th International Wireless Computing
and Mobile Computing Conference (IWCMC).

[2] Aiash, M., Mapp, G., Lasebea, A., and Augusto, M. (2012). A qos framework for
heterogeneous network. In 2012 Third Asian Himalayas International Conference on
Internet, pages 1–6.

[3] Badraa, T. and Kinoshita, K. (2018). An energy efficient non-live virtual machine
migration. In 2018 IEEE 7th International Conference on Cloud Networking (CloudNet),
pages 1–3.

[4] Balakrishnan, K. (2019). Exponential Distribution: Theory, Methods and Applications.
CRC Press.

[5] Balouch, S. F. and Ahmad, M. (2019). A markov-based framework for handover process
in heterogeneous cellular networks. In 2nd International Conference on Computing,
Mathematics and Engineering Techniques (iCoMET).

[6] Barbarossa, S., Sardellitti, S., and Lorenzo, P. D. (2013). Joint allocation of computation
and communication resources in multiuser mobile cloud computing. In 2013 IEEE 14th
Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pages
26–30.

[7] Bjorklund, M. (2010). RFC 6020: YANG - A Data Modeling Language for the Network
Configuration Protocol (NETCONF). IETF.

[8] Bolch, G., Greiner, S., de Meer, H., and Trivedi, K. (2006). Queueing Networks
and Markov Chains: Modeling and Performance Evaluation with Computer Science
Applications. Wiley.

[9] Cao, S., Tao, X., Hou, Y., and Cui, Q. (2015). An energy-optimal offloading algorithm
of mobile computing based on hetnets. In 2015 International Conference on Connected
Vehicles and Expo (ICCVE), pages 254–258.

[10] Chen, M., Dong, M., and Liang, B. (2016a). Joint offloading decision and resource
allocation for mobile cloud with computing access point. In 2016 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 3516–3520.



114 References

[11] Chen, M., Liang, B., and Dong, M. (2015). A semidefinite relaxation approach to
mobile cloud offloading with computing access point. In 2015 IEEE 16th International
Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pages
186–190.

[12] Chen, S. and Zhou, M. (2021). Evolving container to unikernel for edge computing
and applications in process industry. Processes, 9(2):1–19.

[13] Chen, X., Jiao, L., Li, W., and Fu, X. (2016b). Efficient multi-user computation
offloading for mobile-edge cloud computing. IEEE/ACM Transactions on Networking,
24(5):2795–2808.

[14] Cheng, Y. and Li, X. (2020). A compute-intensive service migration strategy based
on deep reinforcement learning algorithm. In 2020 IEEE 4th Information Technology,
Networking, Electronic and Automation Control Conference (ITNEC), volume 1, pages
1385–1388.

[15] Cottingham, D. (2009). Vehicular wireless communication. PhD thesis, Computer
Laboratory, University of Cambridge.

[16] Cottingham, D. N., Wassell, I. J., and Harle, R. K. (2007). Performance of IEEE
802.11a in vehicular contexts. In Proceedings of the 65th IEEE Vehicular Technology
Conference, VTC Spring 2007, 22-25 April 2007, Dublin, Ireland, pages 854–858. IEEE.

[17] Deng, M., Tian, H., and Fan, B. (2016). Fine-granularity based application offloading
policy in cloud-enhanced small cell networks. In 2016 IEEE International Conference on
Communications Workshops (ICC), pages 638–643.

[18] Docker (2021). Docker company. https://www.docker.com/company.

[19] Elbay, S. K., Hegazy, I., and El-Horabty, E. M. (2017). Analyzing live migration
energy overhead in cloud computing: A survey. In 2017 Eighth International Conference
on Intelligent Computing and Information Systems (ICICIS), pages 356–359.

[20] Ezenwigbo, A., Paranthaman, V. V., Trestian, R., Mapp, G., and Sardis, F. (2018).
Exploring a new transport protocol for vehicular networks. In 2018 Fifth International
Conference on Internet of Things: Systems, Management and Security, pages 287–294.

[21] Ezenwigbo, O. A., Paranthaman, V. V., Mapp, G., and Trestian, R. (2019). Exploring
intelligent service migration in vehicular networks. In Gao, H., Yin, Y., Yang, X., and
Miao, H., editors, Testbeds and Research Infrastructures for the Development of Networks
and Communities, pages 41–61, Cham. Springer International Publishing.

[22] Fang, P., Zhao, Y., Liu, Z., Gao, J., and Chen, Z. (2020). Resource allocation strategy
for mec system based on vm migration and rf energy harvesting. In 2020 IEEE 91st
Vehicular Technology Conference (VTC2020-Spring), pages 1–6.

[23] Farahbakhsh, R. (2009). Smooth handover by synchronizing context transfer protocol
and fast mobile ipv6. In 2009 IEEE International Conference on Internet Multimedia
Services Architecture and Applications (IMSAA), pages 1–5.

https://www.docker.com/company


References 115

[24] Gao, J. and Tang, G. (2013). Virtual machine placement strategy research. In 2013
International Conference on Cyber-Enabled Distributed Computing and Knowledge
Discovery, pages 294–297.

[25] Ghosh, A., Paranthaman, V. V., Mapp, G., and Gemikonakli, O. (2014). Exploring
efficient seamless handover in VANET systems using network dwell time. EURASIP
Journal on Wireless Communications and Networking, 2014(1).

[26] Gozalvez, J., Sepulcre, M., and Bauza, R. (2012). Ieee 802.11p vehicle to infrastructure
communications in urban environments. IEEE Communications Magazine, 50(5):176–
183.

[27] Han, Z., Zhang, Y., and Wang, R. (2018). A locality live migration strategy based
on docker containers. In 2018 IEEE 4th International Conference on Big Data Security
on Cloud (BigDataSecurity), IEEE International Conference on High Performance and
Smart Computing, (HPSC) and IEEE International Conference on Intelligent Data and
Security (IDS), pages 51–54.

[28] He, X., Long, Y., and Zheng, L. (2016). A transparent file encryption scheme based on
fuse. In 2016 12th International Conference on Computational Intelligence and Security
(CIS), pages 642–645.

[29] Hendrawan, Rachmana, N., and Iskandar (2016). Network management system (nms)
using local collector mediation devices. In 2016 10th International Conference on
Telecommunication Systems Services and Applications (TSSA), pages 1–4.

[30] Hussain, R., Son, J., Eun, H., Kim, S., and Oh, H. (2012). Rethinking vehicular
communications: Merging vanet with cloud computing. In 4th IEEE International
Conference on Cloud Computing Technology and Science Proceedings, pages 606–609.

[31] Isaia, P. and Guan, L. (2016). Performance benchmarking of sdn experimental platforms.
In 2016 IEEE NetSoft Conference and Workshops (NetSoft), pages 116–120.

[32] J. Kennedy, R. C. E. (1997). A discrete binary version of the particle swarm algorithm.
In Systems, Man, and Cybernetics, volume 5, pages 4104–4108. IEEE International.

[33] Jain, R. (2015). Art of Computer Systems Performance Analysis: Techniques For
Experimental Design Measurements Simulation and Modeling. Wiley.

[34] Kamoun, M., Labidi, W., and Sarkiss, M. (2015). Joint resource allocation and offload-
ing strategies in cloud enabled cellular networks. In 2015 IEEE International Conference
on Communications (ICC), pages 5529–5534.

[35] Karthick, G., Mapp, G., Kammueller, F., and Aiash, M. (2018). Formalization and
analysis of a resource allocation security protocol for secure service migration. In 2018
IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC
Companion), pages 207–212.

[36] Karthick, G., Mapp, G., Kammüller, F., and Aiash, M. (2017). Exploring a security
protocol for secure service migration in commercial cloud environments.



116 References

[37] Kikuchi, J., Wu, C., Ji, Y., and Murase, T. (2017). Mobile edge computing based vm
migration for qos improvement. In 2017 IEEE 6th Global Conference on Consumer
Electronics (GCCE), pages 1–5.

[38] Kirsal, Y. (2017). Performability evaluation and optimization analysis of repairmen
for large-scale networks. In 25th Signal Processing and Communications Applications
Conference (SIU).

[39] Kirsal, Y., Mapp, G., and Sardis, F. (2019). Using advanced handover and localization
techniques for maintaining quality-of-service of mobile users in heterogeneous cloud-
based environment. J. Netw. Syst. Manag., 27(4):972–997.

[40] Kleinrock, L. (1975). Queueing Systems, Volume 1: Theory. Wiley Interscience.

[41] Kurek, T. (2019). Unikernel network functions: A journey beyond the containers. IEEE
Communications Magazine, 57(12):15–19.

[42] Labidi, W., Sarkiss, M., and Kamoun, M. (2015a). Energy-optimal resource scheduling
and computation offloading in small cell networks. In 2015 22nd International Conference
on Telecommunications (ICT), pages 313–318.

[43] Labidi, W., Sarkiss, M., and Kamoun, M. (2015b). Joint multi-user resource scheduling
and computation offloading in small cell networks. In 2015 IEEE 11th International Con-
ference on Wireless and Mobile Computing, Networking and Communications (WiMob),
pages 794–801.

[44] Lertsinsrubtavee, A., Ali, A., Molina-Jimenez, C., Sathiaseelan, A., and Crowcroft, J.
(2017). Picasso: A lightweight edge computing platform. In 2017 IEEE 6th International
Conference on Cloud Networking (CloudNet), pages 1–7.

[45] Liu, J., Mao, Y., Zhang, J., and Letaief, K. B. (2016). Delay-optimal computation task
scheduling for mobile-edge computing systems. In 2016 IEEE International Symposium
on Information Theory (ISIT), pages 1451–1455.

[46] Ma, J., Kim, H., and Kim, Y. (2016). The virtualization and performance comparison
with lxc-lxd in arm64bit server. In 2016 6th International Conference on IT Convergence
and Security (ICITCS), pages 1–4.

[47] Mach, P. and Becvar, Z. (2017). Mobile edge computing: A survey on architecture and
computation offloading. IEEE Communications Surveys Tutorials, 19(3):1628–1656.

[48] Machen, A., Wang, S., Leung, K. K., Ko, B. J., and Salonidis, T. (2018). Live service
migration in mobile edge clouds. IEEE Wireless Communications, 25(1):140–147.

[49] Mao, Y., Zhang, J., and Letaief, K. B. (2016). Dynamic computation offloading for
mobile-edge computing with energy harvesting devices. IEEE Journal on Selected Areas
in Communications, 34(12):3590–3605.

[50] Mapp, G., Gosh, A., Paranthaman, V. V., Iniovosa, V. O., Loo, J., and Vinel, A. (2016a).
Exploring seamless connectivity and proactive handover techniques in vanet systems. In
Intelligent Transportation Systems, pages 195–220. Springer.



References 117

[51] Mapp, G., Katsriku, F., Aiash, M., Chinnam, N., Lopes, R., Moreira, E., Vanni, R. P.,
and Augusto, M. (2012a). Exploiting Location and Contextual Information to Develop
a Comprehensive Framework for Proactive Handover in Hetegeneous Environments.
Journal of Computer Networks and Communications.

[52] Mapp, G., Katsriku, F., N., M. A., Chinnam, Lopes, R., Moreira, E., Vanni, R. M. P.,
and Augusto, M. (2012b). Exploiting location and contextual information to develop a
comprehensive framework for proactive handover in heterogeneous environments. Journal
of Computer Networks and Communications, 2012(Article ID 748163):1–17.

[53] Mapp, G., Sardis, F., and Crowcroft, J. (2016b). Developing an implementation
framework for the future internet using the y-comm architecture, sdn and nfv. In 2016
IEEE NetSoft Conference and Workshops (NetSoft), pages 43–47.

[54] Mapp, G., Shaikh, F., Aiash, M., Vanni, R. P., Augusto, M., and Moreira, E. (2009).
Exploring efficient imperative handover mechanisms for heterogeneous wireless networks.
In 2009 International Conference on Network-Based Information Systems, pages 286–291.

[55] Mapp, G., Thakker, D., and Gemikonakli, O. (2010). Exploring a new markov chain
model for multiqueue systems. In Computer Modelling and Simulation (UKSim), 2010
12th International Conference, pages 592–597.

[56] Mapp, G., Thakker, D., and Silcott, D. (2007a). The Design of a Storage Architecture
for Mobile Heterogeneous Devices. ICNS2007, 0:41.

[57] Mapp, G. E., Shaikh, F., Cottingham, D., Crowcroft, J., and Baliosian, J. (2007b).
Y-comm: a global architecture for heterogeneous networking. In Proceedings of the 3rd
international conference on Wireless internet, page 22. ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering).

[58] Marathe, N., Gandhi, A., and Shah, J. M. (2019). Docker swarm and kubernetes
in cloud computing environment. In 2019 3rd International Conference on Trends in
Electronics and Informatics (ICOEI), pages 179–184.

[59] Medel, V., Rana, O., Bañares, J. ., and Arronategui, U. (2016). Modelling perfor-
mance amp; resource management in kubernetes. In 2016 IEEE/ACM 9th International
Conference on Utility and Cloud Computing (UCC), pages 257–262.

[60] N, P. E., Mulerickal, F. J. P., Paul, B., and Sastri, Y. (2015). Evaluation of docker
containers based on hardware utilization. In 2015 International Conference on Control
Communication Computing India (ICCC), pages 697–700.

[61] Narayanan, G. G. and Saravanaguru, R. K. (2018). Securing vm migration through
ipsec tunneling and onion routing algorithm. In 2018 Second International Conference on
Intelligent Computing and Control Systems (ICICCS), pages 364–370.

[62] Patanapongpibul, L., Mapp, G., and Hopper, A. (2006). An end-system approach
to mobility management for 4g networks and its application to thin-client computing.
SIGMOBILE Mob. Comput. Commun. Rev., 10(3):13–33.



118 References

[63] Putra, J. P., Nugroho, S. M. S., and Pratomo, I. (2017). Live migration based on
cloud computing to increase load balancing. In 2017 International Seminar on Intelligent
Technology and Its Applications (ISITIA), pages 286–290.

[64] Ramirez, J., Ezenwigbo, O. A., Karthick, G., Trestian, R., and Mapp, G. (2020). A
new service management framework for vehicular networks. In 2020 23rd Conference on
Innovation in Clouds, Internet and Networks and Workshops (ICIN), pages 162–164.

[65] Ren, J., Guo, H., Xu, C., and Zhang, Y. (2017). Serving at the edge: A scalable iot
architecture based on transparent computing. IEEE Network, 31(5):96–105.

[66] Rimal, B. P., Van, D. P., and Maier, M. (2017a). Mobile edge computing empowered
fiber-wireless access networks in the 5g era. IEEE Communications Magazine, 55(2):192–
200.

[67] Rimal, B. P., Van, D. P., and Maier, M. (2017b). Mobile edge computing empowered
fiber-wireless access networks in the 5g era. IEEE Communications Magazine, 55(2):192–
200.

[68] SAEInternational (2010). Dsrc implementation guide - a guide to users of sae
j2735message sets over dsrc.

[69] Sardellitti, S., Scutari, G., and Barbarossa, S. (2014). Distributed joint optimization
of radio and computational resources for mobile cloud computing. In 2014 IEEE 3rd
International Conference on Cloud Networking (CloudNet), pages 211–216.

[70] Sardellitti, S., Scutari, G., and Barbarossa, S. (2015). Joint optimization of radio and
computational resources for multicell mobile-edge computing. IEEE Transactions on
Signal and Information Processing over Networks, 1(2):89–103.

[71] Sardis, F. (2014a). Exploring Traffic and QoS Management Mechanisms to Support
Mobile Cloud Computing using Service Localisation in Heterogeneous Environments.
PhD thesis.

[72] Sardis, F. (2014b). Exploring Traffic and QoS Management mechanisms to support
mobile cloud computing using service localization in heterogeneous environments. School
of Science and Technology, Middlesex University. PhD Thesis.

[73] Sardis, F. (2015). Exploring traffic and QoS management mechanisms to support mobile
cloud computing using service localisation in heterogeneous environments. PhD thesis,
Middlesex University.

[74] Sassi, A., Charfi, F., Kamoun, L., Elhillali, Y., and Rivenq, A. (2015). Experimental
measurement for vehicular communication evaluation using obu arada system. In 2015
International Wireless Communications and Mobile Computing Conference (IWCMC),
pages 1358–1364.

[75] Sengole Merlin, S., Arunkumar, N. M., and Angela, M. A. (2018). Automated intel-
ligent systems for secure live migration. In 2018 Second International Conference on
Inventive Communication and Computational Technologies (ICICCT), pages 1360–1371.



References 119

[76] Shaikh, F., Lasebae, A., and Mapp, G. (2008). Proactive policy management for
heterogeneous networks. In 2008 3rd International Conference on Information and
Communication Technologies: From Theory to Applications, pages 1–6.

[77] SlideShare (2015). Understanding DPDK.

[78] Sun, X. and Ansari, N. (2016). Edgeiot: Mobile edge computing for the internet of
things. IEEE Communications Magazine, 54(12):22–29.

[79] Sun, Z., Liu, J., Li, Z., Wang, T., Wang, Z., Jia, F., and Lai, C. (2020). Csr-im:
Compressed sensing routing-control- method with intelligent migration-mechanism based
on sensing cloud-computing. IEEE Access, 8:28437–28449.

[80] Sztrik, J. (2012, 2021). Basic Queueing Theory. Sztrik online.

[81] Taleb, T., Samdanis, K., Mada, B., Flinck, H., Dutta, S., and Sabella, D. (2017).
On multi-access edge computing: A survey of the emerging 5g network edge cloud
architecture and orchestration. IEEE Communications Surveys Tutorials, 19(3):1657–
1681.

[82] Tan, D., Liu, F., Xiao, N., and Xie, Y. (2019). Optimizing virtual machine live migration
in distributed edge servers based on hybrid memory. In 2019 International Conference on
High Performance Big Data and Intelligent Systems (HPBD IS), pages 29–34.

[83] Tang, L. (2018). Dynamic migration optimization algorithm for virtual machine under
trusted computing environment. In 2018 International Conference on Virtual Reality and
Intelligent Systems (ICVRIS), pages 48–52.

[84] Toutov, A. V., Vorozhtsov, A. S., and Toutova, N. V. (2018). Estimation of total
migration time of virtual machines in cloud data centers. In 2018 IEEE International
Conference "Quality Management, Transport and Information Security, Information
Technologies" (IT QM IS), pages 389–393.

[85] Tran, T. X., Hajisami, A., Pandey, P., and Pompili, D. (2017). Collaborative mobile
edge computing in 5g networks: New paradigms, scenarios, and challenges. IEEE
Communications Magazine, 55(4):54–61.

[86] u. R. Khan, A., Othman, M., Madani, S. A., and Khan, S. U. (2014). A survey of
mobile cloud computing application models. IEEE Communications Surveys Tutorials,
16(1):393–413.

[87] Ullah, A., Yao, X., Shaheen, S., and Ning, H. (2020). Advances in position based
routing towards its enabled fog-oriented vanet–a survey. IEEE Transactions on Intelligent
Transportation Systems, 21(2):828–840.

[88] Vardhan, P. V. (2018). Exploiting User Contention toOptimize Proactive ResourceAllo-
cation in Future Networks. PhD thesis, Middlesex University.

[89] Wan, T. and Ashwood, P. (2015). A performance study of CPRI over Ethernet.
IEEE1904, 3.



120 References

[90] Wang, D., Tian, X., Cui, H., and Liu, Z. (2020). Reinforcement learning-based joint task
offloading and migration schemes optimization in mobility-aware mec network. China
Communications, 17(8):31–44.

[91] Xu, B., Wu, S., Xiao, J., Jin, H., Zhang, Y., Shi, G., Lin, T., Rao, J., Yi, L., and Jiang, J.
(2020). Sledge: Towards efficient live migration of docker containers. In 2020 IEEE 13th
International Conference on Cloud Computing (CLOUD), pages 321–328.

[92] Yang, B., Li, J., and Li, Y. (2019). Research on qos-oriented virtual machine migration
strategy in mobile edge computing. In 2019 12th International Conference on Intelligent
Computation Technology and Automation (ICICTA), pages 227–231.

[93] Yingchi, M., Ziyang, X., Longbao, W., and Jiulong, W. (2015). An optimal web services
migration framework in the cloud computing. In 2015 8th International Conference on
Intelligent Computation Technology and Automation (ICICTA), pages 153–156.

[94] Yu, Y. (2016). Mobile edge computing towards 5g: Vision, recent progress, and open
challenges. China Communications, 13(Supplement2):89–99.

[95] Zhang, K., Mao, Y., Leng, S., Vinel, A., and Zhang, Y. (2016a). Delay constrained
offloading for mobile edge computing in cloud-enabled vehicular networks. In 2016
8th International Workshop on Resilient Networks Design and Modeling (RNDM), pages
288–294.

[96] Zhang, K., Mao, Y., Leng, S., Zhao, Q., Li, L., Peng, X., Pan, L., Maharjan, S.,
and Zhang, Y. (2016b). Energy-efficient offloading for mobile edge computing in 5g
heterogeneous networks. IEEE Access, 4:5896–5907.

[97] Zhang, S., Wang, L., and Han, X. (2014). A kvm virtual machine memory forensics
method based on vmcs. In 2014 Tenth International Conference on Computational
Intelligence and Security, pages 657–661.

[98] Zhao, Y., Zhou, S., Zhao, T., and Niu, Z. (2015). Energy-efficient task offloading
for multiuser mobile cloud computing. In 2015 IEEE/CIC International Conference on
Communications in China (ICCC), pages 1–5.

[99] Zou, H., Li, M., Li, Z., and Gao, J. (2018). Design of multi-intelligent data migration
strategy based on sdn secondary mode. In 2018 International Conference on Artificial
Intelligence and Big Data (ICAIBD), pages 76–81.



Appendix A

The Server Migration Results

A.1 Reactive Handover Results for 30MPH

Where:
K = 100 ; lambda = 25; mu = 50
N = Resource Hold Time for different RSUs
For 30 mph and 50 mph

RSU No. 30 Mph 50 Mph
N N

RSU 1 18.37 s 9.42 s
RSU 2 30.00 s 16.40 s
RSU 3 34.55 s 19.13 s
RSU 4 14.49 s 7.09 s
RSU 5 68.63 s 39.57 s
RSU 6 99.64 s 58.19 s
RSU 7 81.00 s 47.00 s

Migration Results

Technology Time

Uni-kernel 11.99
LXD CRIU 24.73

Docker 73.00
KVM 824.00

Result Codes
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Table A.1 Uni-kernel Reactive for 30 MPH

Uni-kernel Av. no of requests Av. Resp. Time BP LS
RSU1->RSU2 54.1623 2.1665 40.7124 53.5342
RSU2->RSU3 35.6863 1.4275 26.1052 35.2143
RSU3->RSU4 31.5495 1.2620 22.9275 31.0569
RSU5->RSU6 17.1508 0.6860 12.0263 16.4823
RSU6->RSU7 12.3054 0.4922 8.4009 11.5503

Table A.2 LXD-CRIU Reactive for 30 MPH

LXD-CRIU Av. no of requests Av. Resp. Time BP LS
RSU1->RSU2 NP1
RSU2->RSU3 73.3825 2.9353 63.8911 72.6958
RSU3->RSU4 NP2
RSU5->RSU6 34.6469 1.3859 29.2422 34.0240
RSU6->RSU7 24.5609 0.9824 20.4439 23.8431

• NP1 : Service migration cannot occur because you cannot migrate anything from the
first network because SHT < 0 in the first network

• NP2: Service migration cannot occur because you cannot migrate anything to the
second network because SHT < 0 on the second network

Table A.3 Docker Reactive for 30 MPH

Docker Av. no of requests Av. Resp. Time BP LS
RSU1->RSU2 NP2
RSU2->RSU3 NP2
RSU3->RSU4 NP2
RSU5->RSU6 NP1
RSU6->RSU7 70.7721 2.8309 66.9771 70.4191
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Table A.4 KVM Reactive for 30 MPH

KVM Av. no of requests Av. Resp. Time BP LS
RSU1->RSU2 NP2
RSU2->RSU3 NP2
RSU3->RSU4 NP2
RSU5->RSU6 NP2
RSU6->RSU7 NP2

A.2 Proactive Handover Results for 30MPH

Where:
K = 100 ; lambda = 25; mu = 50
N = Resource Hold Time for different RSUs
For 30 mph and 50 mph

RSU No. 30 Mph 50 Mph
N N

RSU 1 18.37 s 9.42 s
RSU 2 30.00 s 16.40 s
RSU 3 34.55 s 19.13 s
RSU 4 14.49 s 7.09 s
RSU 5 68.63 s 39.57 s
RSU 6 99.64 s 58.19 s
RSU 7 81.00 s 47.00 s

Migration Results

Technology Time

Uni-kernel 11.99
LXD CRIU 24.73

Docker 73.00
KVM 824.00

A.2.1 Result Codes

• NP1: Service migration cannot occur because you cannot migrate anything from the
first network because SHT < 0 in the first network
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Table A.5 Uni-kernel Service Migration Time = 11.99 Xmin = 0 Xmax = 7.99

Uni-kernel X Av. no of requests Av. Resp. Time BP LS
RSU1->RSU2 0 54.1623 2.1665 40.7124 53.5342
RSU1->RSU2 1 49.6052 1.9842 36.2207 49.0618
RSU1->RSU2 2 45.0473 1.8019 31.7901 44.5897
RSU1->RSU2 3 40.4837 1.6193 27.4237 40.1177
RSU1->RSU2 4 35.9097 1.4369 23.1307 35.6460
RSU1->RSU2 5 31.3185 1.2527 18.9272 31.1742
RSU1->RSU2 6 26.7025 1.0681 14.8412 26.7027
RSU1->RSU2 7 22.0500 0.8820 10.9198 22.2310
RSU1->RSU2 7.5 19.7057 0.7882 9.0447 19.9951
RSU1->RSU2 7.99 17.3938 0.6958 7.2814 17.8040

Table A.6 LXD-CRIU Service Migration Time = 24.73, Resource Hold Time RSU1 = 18.37,
Resource Hold Time RSU2 = 30.0

LXD-CRIU X Av. no of requests Av. Resp. Time BP LS
RSU1->RSU2 1 NP1
RSU1->RSU2 2 NP1
RSU1->RSU2 2.5 99.9348 3.9974 98.7483 99.2742
RSU1->RSU2 3 98.9611 3.9584 94.2897 97.1387
RSU1->RSU2 4 98.8462 3.7938 86.1511 92.6588
RSU1->RSU2 6 85.2868 3.4115 73.5462 83.6948
RSU1->RSU2 9 71.2783 2.8511 58.1437 70.2649
RSU1->RSU2 12 57.5364 2.3015 44.0761 56.8439
RSU1->RSU2 15 43.8614 1.7545 30.6483 43.4269
RSU1->RSU2 18 30.1211 1.2048 17.8520 30.0116
RSU1->RSU2 18.37 28.4141 1.1366 16.3370 28.3572

• NP2: Service migration cannot occur because you cannot migrate anything to the
second network because SHT < 0 on the second network

• NP3: Xmax < Xmin This maximum value of X is less that the minimum required
value
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Table A.7 Docker Service Migration Time = 73.00, Resource Hold Time RSU1 18.37,
Resource Hold Time RSU2 30.00

Docker X Av. no of requests Av. Resp. Time BP LS
RSU1->RSU2 0 NP3
RSU1->RSU2 1 NP3
RSU1->RSU2 2 NP3
RSU1->RSU2 3 NP3
RSU1->RSU2 4 NP3
RSU1->RSU2 6 NP3
RSU1->RSU2 9 NP3
RSU1->RSU2 12 NP3
RSU1->RSU2 15 NP3
RSU1->RSU2 18 NP3
RSU1->RSU2 18.37 NP3

Table A.8 KVM Service Migration Time = 824.00, Resource Hold Time RSU1 18.37,
Resource Hold Time RSU2 30.00, Xmin = 790.0, Xmax = 18.37

KVM X Av. no of requests Av. Resp. Time BP LS
RSU1->RSU2 0 NP3
RSU1->RSU2 1 NP3
RSU1->RSU2 2 NP3
RSU1->RSU2 3 NP3
RSU1->RSU2 4 NP3
RSU1->RSU2 6 NP3
RSU1->RSU2 9 NP3
RSU1->RSU2 12 NP3
RSU1->RSU2 15 NP3
RSU1->RSU2 18 NP3
RSU1->RSU2 18.37 NP3

Table A.9 RSU2 -> RSU3 Unikernel, Service Migration Time = 11.99, Resource Hold
Time RSU1 30.00, Resource Hold Time RSU2 34.55

Unikernel X Av. no of requests Av. Resp. Time BP LS
RSU2->RSU3 0 35.6863 1.4275 26.1052 35.2143
RSU2->RSU3 1 32.7217 1,3089 23.2513 32.2729
RSU2->RSU3 2 29.7510 1,1900 20.4219 29.3312
RSU2->RSU3 3 26.7730 1,0709 17.6233 26.3896
RSU2->RSU3 4 23.7851 0.9514 14.8643 23.4481
RSU2->RSU3 5 20.7837 0.8313 12.1579 20.5065
RSU2->RSU3 6 17.7647 0.7106 9.5246 17.5650
RSU2->RSU3 7 14.7212 0.5888 6.9971 14.6234
RSU2->RSU3 7.5 13.1878 0.5275 5.7892 13.1525
RSU2->RSU3 7.99 11.6761 0.4670 4.6543 11.7111
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Table A.10 RSU2 -> RSU3 LXD-CRIU, Service Migration Time = 24.73, Resource Hold
Time RSU1 30.00, Resource Hold Time RSU2 34.55, Xmin = 0, Xmax = 20.73

LXD-CRIU X Av. no of requests Av. Resp. Time BP LS
RSU2->RSU3 0 73.3825 2.9353 63.8911 72.6958
RSU2->RSU3 2 67.4387 2.6975 57.7659 66.8103
RSU2->RSU3 4 61.5160 2.4606 51.7366 60.9258
RSU2->RSU3 6 55.6047 2.2242 45.7761 55.0416
RSU2->RSU3 9 46.7454 1.8698 36.9405 46.2162
RSU2->RSU3 12 37.8776 1.5151 28.2307 .3912
RSU2->RSU3 15 28.9778 1.1591 19.6910 28.5663
RSU2->RSU3 18 20.0001 0.8000 11.4652 19.7417
RSU2->RSU3 20.0 13.9249 0.5570 6.3644 13.8586
RSU2->RSU3 20.73 11.6761 0.4670 4.6543 11.7112

Table A.11 RSU2 -> RSU3 Docker, Service Migration Time = 73.00, Resource Hold Time
RSU1 30.00, Resource Hold Time RSU2 34.55, Xmin = 34.45, Xmax = 30.00

Docker X Av. no of requests Av. Resp. Time BP LS
RSU2->RSU3 0 NP3
RSU2->RSU3 2 NP3
RSU2->RSU3 4 NP3
RSU2->RSU3 6 NP3
RSU2->RSU3 9 NP3
RSU2->RSU3 12 NP3
RSU2->RSU3 15 NP3
RSU2->RSU3 18 NP3
RSU2->RSU3 20.0 NP3
RSU2->RSU3 20.73 NP3

Table A.12 RSU2 -> RSU3 KVM, Service Migration Time = 824.00, Resource Hold Time
RSU1 30.00, Resource Hold Time RSU2 34.55, Xmin = 785.45, Xmax = 30.00

KVM X Av. no of requests Av. Resp. Time BP LS
RSU2->RSU3 0 NP3
RSU2->RSU3 2 NP3
RSU2->RSU3 4 NP3
RSU2->RSU3 6 NP3
RSU2->RSU3 9 NP3
RSU2->RSU3 12 NP3
RSU2->RSU3 15 NP3
RSU2->RSU3 18 NP3
RSU2->RSU3 20.0 NP3
RSU2->RSU3 20.73 NP3
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Table A.13 RSU3 -> RSU4, Unikernel Service Migration Time = 11.99, Resource Hold
Time RSU1 34.55, Resource Hold Time RSU2 14.49, Xmin = 0, Xmax = 7.99

Uni-kernel X Av. no of requests Av. Resp. Time BP LS
RSU3->RSU4 0 31.5495 1.2620 22.9275 31.0569
RSU3->RSU4 1 28.9380 1.1575 20.4208 28.4627
RSU3->RSU4 2 26.3210 1.0528 17.9350 25.8683
RSU3->RSU4 3 23.6972 0.9479 15.4757 23.2739
RSU3->RSU4 4 21.0645 0.8426 13.0510 20.6797
RSU3->RSU4 5 18.4200 0.7368 10.6724 18.0854
RSU3->RSU4 6 15.7598 0.6304 8.3582 15.4912
RSU3->RSU4 7 13.0781 0.5231 6.1374 12.8968
RSU3->RSU4 7.5 11.7272 0.4691 5.0765 11.5996
RSU3->RSU4 7.99 10.3954 0.4158 4.0799 10.3284

Table A.14 RSU3 -> RSU4, LXD-CRIU, Service Migration Time = 24.73, Resource Hold
Time RSU1 34.55, Resource Hold Time RSU2 14.49, Xmin = 6.24, Xmax = 20.7

LXD-CRIU X Av. no of requests Av. Resp. Time BP LS
RSU3->RSU4 6.25 48.4314 1.9373 39.5182 47.8942
RSU3->RSU4 7.00 46.4837 1.8593 37.5798 45.9485
RSU3->RSU4 9.00 41.2870 1.6515 32.4341 40.7597
RSU3->RSU4 12.00 33.4793 1.3392 24.7937 32.9767
RSU3->RSU4 15.00 25.6395 1.0256 17.2927 25.1937
RSU3->RSU4 18.0 17.7300 0.7092 10.0635 17.4108
RSU3->RSU4 20 12.3766 0.4951 5.5808 12.2227
RSU3->RSU4 20.5 11.0215 0.4409 4.5417 10.9251
RSU3->RSU4 20.73 10.3954 0.4158 4.0780 10.3284

Table A.15 RSU3 -> RSU4, Docker, Service Migration Time = 73.00, Resource Hold Time
RSU3 34.55,Resource Hold Time RSU4 14.49 Xmin = 54.51, Xmax = 34.549999

Docker X Av. no of requests Av. Resp. Time BP LS
RSU3->RSU4 NP3
RSU3->RSU4 NP3
RSU3->RSU4. NP3
RSU3->RSU4 NP3
RSU3->RSU4 NP3
RSU3->RSU4 NP3
RSU3->RSU4 NP3
RSU3->RSU4 NP3
RSU3->RSU4 NP3
RSU3->RSU4 NP3
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Table A.16 RSU3 -> RSU4, KVM, Service Migration Time = 824.00, Resource Hold Time
RSU1 34.55, Resource Hold Time RSU2 14.49 Xmin = 805.51, Xmax = 34.549999

KVM X Av. no of requests Av. Resp. Time BP LS
RSU3->RSU4 NP3
RSU3->RSU4 NP3
RSU3->RSU4. NP3
RSU3->RSU4 NP3
RSU3->RSU4 NP3
RSU3->RSU4 NP3
RSU3->RSU4 NP3
RSU3->RSU4 NP3
RSU3->RSU4 NP3
RSU3->RSU4 NP3

Table A.17 RSU5->RSU6 Unikernel, Service Migration Time = 11.99, Resource Hold
Time RSU5 = 68.63, Resource Hold Time RSU6 = 99.64, Xmin = 0, Xmax = 7.99

Uni-kernel X Av. no of requests Av. Resp. Time BP LS
RSU5->RSU6 0 17.1501 0.6860 12.0263 16.4823
RSU5->RSU6 1 15.7675 0.6307 10.7080 15.1055
RSU5->RSU6 2 14.3819 0.5753 9.4004 13.7286
RSU5->RSU6 3 12.9924 0.5197 8.1067 12.3517
RSU5->RSU6 4 11.5893 0.4640 6.8315 10.9749
RSU5->RSU6 5 10.1980 0.4080 5.5810 9.5980
RSU5->RSU6 6 8.7894 0.3516 4.3651 8.2211
RSU5->RSU6 7 7.3699 0.2948 3.1997 6.8442
RSU5->RSU6 7.5 6.6550 0.2662 2.6436 6.1557
RSU5->RSU6 7.99 5.9506 0.2380 2.1218 5.4810

Table A.18 RSU5->RSU6 LXD-CRIU, Service Migration Time = 24.73, Resource Hold
Time RSU5 68.63, Resource Hold Time RSU6 99.64, Xmin = 0, Xmax = 20.73

LXD-CRIU X Av. no of requests Av. Resp. Time BP LS
RSU5->RSU6 0 34.6469 1.3859 29.2422 34.0240
RSU5->RSU6 2 31.9074 1.2763 26.5122 31.2700
RSU5->RSU6 4 29.1665 1.1667 23.7888 28.5162
RSU5->RSU6 6 26.4235 1.0569 21.0735 25.7625
RSU5->RSU6 9 22.3031 0.8921 17.0214 21.6319
RSU5->RSU6 12 18.1716 0.7269 13.0076 17.5012
RSU5->RSU6 15 14.021 0.5608 9.0625 13.3706
RSU5->RSU6 18 9.8350 0.3934 5.2624 9.2430
RSU5->RSU6 20 6.9987 0.2799 2.9079 6.4862
RSU5->RSU6 20.5 6.2818 0.2513 2.3635 5.7978
RSU5->RSU6 20.73 5.9506 0.2380 2.1283 5.4811
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Table A.19 RSU5->RSU6 Docker, Service Migration Time = 73.00, Resource Hold Time
RSU5 68.63, Resource Hold Time RSU6 99.64, Xmin = 0.00, Xmax = 68.29997

Docker X Av. no of requests Av. Resp. Time BP LS
RSU5->RSU6 0 NP1
RSU5->RSU6 5 94.1356 3.7654 90.0643 93.6131
RSU5->RSU6 10 87.1125 3.4845 82.4261 86.7224
RSU5->RSU6 15 80.2056 3.2082 75.2651 79.8355
RSU5->RSU6 25 66.4858 2.6594 61.2852 66.0646
RSU5->RSU6 35 52.8027 2.1121 47.4595 52.2952
RSU5->RSU6 45 39.1228 1.5649 33.7161 38.5262
RSU5->RSU6 55 25.4217 1.0169 20.0850 24.7575
RSU5->RSU6 60 18.5441 0.7418 13.3667 17.8730
RSU5->RSU6 65 11.6123 0.4645 6.8441 10.9886
RSU5->RSU6 68.299 6.9572 0.2783 2.8757 6.4462

Table A.20 RSU5->RSU6 KVM, Service Migration Time = 824.00, Resource Hold Time
RSU5 68.63, Resource Hold Time RSU6 99.64, Xmin = 720.36, Xmax = 68.629997

KVM X Av. no of requests Av. Resp. Time BP LS
RSU5->RSU6 NP3
RSU5->RSU6 NP3
RSU5->RSU6. NP3
RSU5->RSU6 NP3
RSU5->RSU6 NP3
RSU5->RSU6 NP3
RSU5->RSU6 NP3
RSU5->RSU6 NP3
RSU5->RSU6 NP3
RSU5->RSU6 NP3

Table A.21 RSU6->RSU7 Unikernel, Service Migration Time = 11.99, Resource Hold
Time RSU6 = 99.64, Resource Hold Time RSU7 = 81.00, Xmin = 0, Xmax = 7.99

Uni-kernel X Av. no of requests Av. Resp. Time BP LS
RSU6->RSU7 0 12.3054 0.4922 8.4010 11.5503
RSU6->RSU7 1 11.3369 0.4535 7.4787 10.5855
RSU6->RSU7 2 10.3662 0.4146 6.5641 9.6206
RSU6->RSU7 3 9.3930 0.3757 5.6594 8.6557
RSU6->RSU7 4 8.4165 0.3367 4.7677 7.6908
RSU6->RSU7 5 7.4356 0.2974 3.8934 6.7259
RSU6->RSU7 6 6.4491 0.2579 3.0438 5.7610
RSU6->RSU7 7 5.4550 0.2182 2.2300 4.7961
RSU6->RSU7 7.5 4.9544 0.1982 1.8414 4.3137
RSU6->RSU7 7.99 4.4613 0.1785 1.4773 3.8409
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Table A.22 RSU6->RSU7 LXD-CRIU, Service Migration Time = 24.73, Resource Hold
Time RSU6 99.64, Resource Hold Time RSU7 81.00, Xmin = 0, Xmax = 20.73

LXD-CRIU X Av. no of requests Av. Resp. Time BP LS
RSU6->RSU7 0 24.5609 0.9824 20.4439 23.8432
RSU6->RSU7 2 22.6423 0.9057 18.5345 21.9133
RSU6->RSU7 4 20.7225 0.8290 16.6300 19.9838
RSU6->RSU7 6 18.8011 0.7520 14.7300 18.0536
RSU6->RSU7 9 15.9151 0.6366 11.8954 15.1591
RSU6->RSU7 12 13.0210 0.5208 9.0874 12.2644
RSU6->RSU7 15 10.1134 0.4045 6.3278 9.3696
RSU6->RSU7 18 7.1797 0.2872 3.6698 6.4750
RSU6->RSU7 20 5.1950 0.2078 2.0259 4.5452
RSU6->RSU7 20.5 4.6930 0.1877 1.6459 4.0628
RSU6->RSU7 20.73 4.4613 0.1785 1.4773 3.8409

Table A.23 RSU6->RSU7 Docker, Service Migration Time = 73.0, Resource Hold Time
RSU5 99.64, Resource Hold Time RSU6 81.00, Xmin = 0, Xmax = 69.00

Docker X Av. no of requests Av. Resp. Time BP LS
RSU6->RSU7 0 70.7721 2.8309 66.9771 70.4191
RSU6->RSU7 5 65.9839 2.6394 62.1289 65.5944
RSU6->RSU7 10 61.1973 2.4479 57.2889 60.7696
RSU6->RSU7 15 56.4124 2.2565 52.4557 55.9453
RSU6->RSU7 25 46.8429 1.8737 42.8038 46.2959
RSU6->RSU7 35 37.2726 1.4909 33.1731 36.6472
RSU6->RSU7 45 27.6954 1.1078 23.5721 26.9982
RSU6->RSU7 55 18.0995 0.7240 14.0386 17.3494
RSU6->RSU7 60 13.2819 0.5313 9.03396 12.5248
RSU6->RSU7 65 8.4262 0.3370 4.7765 7.70044
RSU6->RSU7 69 4.4613 0.1785 1.4773 3.84089

Table A.24 RSU6->RSU7 KVM, Service Migration Time = 824.00, Resource Hold Time
RSU5 99.64, Resource Hold Time RSU6 81.00, Xmin = 739.0 Xmax = 99.639999

KVM X Av. no of requests Av. Resp. Time BP LS
RSU6->RSU7 NP3
RSU6->RSU7 NP3
RSU6->RSU7. NP3
RSU6->RSU7 NP3
RSU6->RSU7 NP3
RSU6->RSU7 NP3
RSU6->RSU7 NP3
RSU6->RSU7 NP3
RSU6->RSU7 NP3
RSU6->RSU7 NP3
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A.3 Reactive Handover Results for 50MPH

Where:
K = 100 ; lambda = 25; mu = 50
N = Resource Hold Time for different RSUs
For 30 mph and 50 mph

RSU No. 30 Mph 50 Mph
N N

RSU 1 18.37 s 9.42 s
RSU 2 30.00 s 16.40 s
RSU 3 34.55 s 19.13 s
RSU 4 14.49 s 7.09 s
RSU 5 68.63 s 39.57 s
RSU 6 99.64 s 58.19 s
RSU 7 81.00 s 47.00 s

Migration Results

Technology Time

Uni-kernel 11.99
LXD CRIU 24.73

Docker 73.00
KVM 824.00

Result Codes

• NP1 : Service migration cannot occur because you cannot migrate anything from the
first network because SHT < 0 in the first network

• NP2: Service migration cannot occur because you cannot migrate anything to the
second network because SHT < 0 on the second network
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Table A.25 Uni-kernel Reactive for 50 MPH

Uni-kernel Av. no of requests Av. Resp. Time BP LS
RSU1->RSU2 92.8323 3.7133 79.6230 89.3312
RSU2->RSU3 59.4877 2.3795 45.1153 58.7092
RSU3->RSU4 NP2
RSU5->RSU6 27.9998 1.1200 20.2193 27.4778
RSU6->RSU7 19.8738 0.7950 14.0727 19.2496

Table A.26 LXD-CRIU Reactive for 50 MPH

LXD-CRIU Av. no of requests Av. Resp. Time BP LS
RSU1->RSU2 NP2
RSU2->RSU3 NP2
RSU3->RSU4 NP2
RSU5->RSU6 57.2495 2.2900 49.1825 56.7216
RSU6->RSU7 40.3166 1.6127 34.2081 39.7363

Table A.27 Docker Reactive for 50 MPH

Docker Av. no of requests Av. Resp. Time BP LS
RSU1->RSU2 NP2
RSU2->RSU3 NP2
RSU3->RSU4 NP2
RSU5->RSU6 NP2
RSU6->RSU7 NP2

Table A.28 KVM Reactive for 50 MPH

KVM Av. no of requests Av. Resp. Time BP LS
RSU1->RSU2 NP2
RSU2->RSU3 NP2
RSU3->RSU4 NP2
RSU5->RSU6 NP2
RSU6->RSU7 NP2
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Where:
K = 100 ; lambda = 25; mu = 50
N = Resource Hold Time for different RSUs
For 30 mph and 50 mph

RSU No. 30 Mph 50 Mph
N N

RSU 1 18.37 s 9.42 s
RSU 2 30.00 s 16.40 s
RSU 3 34.55 s 19.13 s
RSU 4 14.49 s 7.09 s
RSU 5 68.63 s 39.57 s
RSU 6 99.64 s 58.19 s
RSU 7 81.00 s 47.00 s

Migration Results

Technology Time

Uni-kernel 11.99
LXD CRIU 24.73

Docker 73.00
KVM 824.00

A.4.1 Result Codes

• NP1: Service migration cannot occur because you cannot migrate anything from the
first network because SHT < 0 in the first network

• NP2: Service migration cannot occur because you cannot migrate anything to the
second network because SHT < 0 on the second network

• NP3: Xmax < Xmin This maximum value of X is less that the minimum required
value
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Table A.29 RSU1->RSU2 Unikernel, Service Migration Time = 11.99, Resource Hold
Time RSU 1 9.42, Resource Hold Time RSU2 16.40, Xmin = 0, Xmax = 7.99

Uni-kernel X Av. no of requests Av. Resp. Time BP LS
RSU1->RSU2 0 92.8323 3.7133 79.6230 89.3312
RSU1->RSU2 1 84.7357 3.3894 68.2152 81.8564
RSU1->RSU2 2 76.5878 3.0635 58.4985 74.3853
RSU1->RSU2 3 68.5519 2.7421 49.7294 66.9188
RSU1->RSU2 4 60.6029 2.4241 41.5513 59.4556
RSU1->RSU2 5 52.7001 2.1080 33.8012 51.9948
RSU1->RSU2 6 44.8063 1.7923 26.4205 44.5356
RSU1->RSU2 7 36.8846 1.4754 19.4250 37.0773
RSU1->RSU2 7.5 32.9009 1.3160 16.0984 33.3483
RSU1->RSU2 7.99 28.9753 1.1590 12.9760 29.6940

Table A.30 RSU1->RSU2 LXD-CRIU, Service Migration Time = 24.73, Resource Hold
Time RSU1 9.42, Resource Hold Time RSU2 16.40, Xmin = 4.33, Xmax = 9.42

LXD-CRIU X Av. no of requests Av. Resp. Time BP LS
RSU1->RSU2 NP1
RSU1->RSU2 NP1
RSU1->RSU2 NP1
RSU1->RSU2 NP1
RSU1->RSU2 NP1
RSU1->RSU2 NP1
RSU1->RSU2 NP1
RSU1->RSU2 NP1

Table A.31 RSU1->RSU2 Docker Service Migration Time = 73.00, Resource Hold Time
RSU1 9.42, Resource Hold Time RSU2 16.40, Xmin = 52.6, Xmax = 9.42

Docker X Av. no of requests Av. Resp. Time BP LS
RSU1->RSU2 0 NP3
RSU1->RSU2 1 NP3
RSU1->RSU2 2 NP3
RSU1->RSU2 3 NP3
RSU1->RSU2 4 NP3
RSU1->RSU2 6 NP3
RSU1->RSU2 9 NP3
RSU1->RSU2 12 NP3
RSU1->RSU2 15 NP3
RSU1->RSU2 18 NP3
RSU1->RSU2 18.37 NP3
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Table A.32 RSU1->RSU2 KVM Service Migration Time = 824.00, Resource Hold Time
RSU1 9.42, Resource Hold Time RSU2 16.40, Xmin = 803.6, Xmax = 9.42

KVM X Av. no of requests Av. Resp. Time BP LS
RSU1->RSU2 0 NP3
RSU1->RSU2 1 NP3
RSU1->RSU2 2 NP3
RSU1->RSU2 3 NP3
RSU1->RSU2 4 NP3
RSU1->RSU2 6 NP3
RSU1->RSU2 9 NP3
RSU1->RSU2 12 NP3
RSU1->RSU2 15 NP3
RSU1->RSU2 18 NP3
RSU1->RSU2 18.37 NP3

Table A.33 RSU2->RSU3 Unikernel Service Migration Time = 11.99, RSU2 16.40, RSU3
19.13, Xmin = 0, Xmax = 7.99

Uni-kernel X Av. no of requests Av. Resp. Time BP LS
RSU2->RSU3 0 59.4877 2.3795 45.1153 58.7092
RSU2->RSU3 1 54.4608 2.1784 40.0981 53.8041
RSU2->RSU3 2 49.4388 1.9776 35.1681 48.8994
RSU2->RSU3 3 44.4153 1.7766 30.3229 43.9950
RSU2->RSU3 4 39.3836 1.5753 25.5684 39.0910
RSU2->RSU3 5 34.3355 1.3734 20.9192 34.1870
RSU2->RSU3 6 29.2619 1.1705 16.4041 29.2833
RSU2->RSU3 7 24.1492 0.9660 12.0730 24.3795
RSU2->RSU3 7.5 21.5732 0.8629 10.0023 21.9276
RSU3->RSU3 7.99 19.0328 0.76131 8.05480 19.5247

Table A.34 RSU2->RSU3 LXD-CRIU Service Migration Time = 24.73, RSU2 16.40,
RSU3 19.13, Xmin = 1.60, Xmax = 16.4

LXD-CRIU X Av. no of requests Av. Resp. Time BP LS
RSU2->RSU3 2.0 NP1
RSU2->RSU3 4.0 NP1
RSU2->RSU3 6.0 94.1721 3.7669 84.5833 91.8022
RSU2->RSU3 8.0 83.6588 3.3464 70.8672 81.9726
RSU2->RSU3 10.0 73.3509 2.9340 59.4401 72.1531
RSU2->RSU3 12.0 63.2150 2.5286 48.8901 62.3394
RSU2->RSU3 14.0 53.1549 2.1262 38.8082 52.5288
RSU2->RSU3 15.0 48.1330 1.9253 33.9000 47.6241
RSU2->RSU3 16.0 43.1081 1.7243 29.0776 42.7199
RSU2->RSU3 16.39 41.1462 1.6458 27.2216 40.8075
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Table A.35 RSU2->RSU3 Docker Service Migration Time = 73.00, RSU2 16.40, RSU3
19.13, Xmin = 49.87, Xmax = 16.4

Docker X Av. no of requests Av. Resp. Time BP LS
RSU2->RSU3 0 NP3
RSU2->RSU3 1 NP3
RSU2->RSU3 2 NP3
RSU2->RSU3 3 NP3
RSU2->RSU3 4 NP3
RSU2->RSU3 6 NP3
RSU2->RSU3 9 NP3
RSU2->RSU3 12 NP3
RSU2->RSU3 15 NP3
RSU2->RSU3 18 NP3
RSU2->RSU3 18.37 NP3

Table A.36 RSU2->RSU3 KVM Service Migration Time = 824.00, RSU2 16.40, RSU3
19.13, Xmin = 800.87, Xmax = 16.4

KVM X Av. no of requests Av. Resp. Time BP LS
RSU2->RSU3 0 NP3
RSU2->RSU3 1 NP3
RSU2->RSU3 2 NP3
RSU2->RSU3 3 NP3
RSU2->RSU3 4 NP3
RSU2->RSU3 6 NP3
RSU2->RSU3 9 NP3
RSU2->RSU3 12 NP3
RSU2->RSU3 15 NP3
RSU2->RSU3 18 NP3
RSU2->RSU3 18.37 NP3

Table A.37 RSU3->RSU4 Unikernel Service Migration Time = 11.99, RSU3 19.13, RSU4
7.09, Xmin = 0.9, Xmax = 7.99

Uni-kernel X Av. no of requests Av. Resp. Time BP LS
RSU3->RSU4 1 47.9640 1.9186 34.9284 47.4485
RSU3->RSU4 2 43.5617 1.7425 30.6612 43.1235
RSU3->RSU4 3 39.1530 1.5661 26.4529 38.7986
RSU3->RSU4 4 34.7334 1.3893 22.3133 34.4740
RSU3->RSU4 5 30.2968 1.2119 18.2586 30.1493
RSU3->RSU4 6 25.8356 1.0334 14.3163 25.8247
RSU3->RSU4 7 21.3390 0.8536 10.5324 21.5000
RSU3->RSU4 7.5 19.0732 0.7629 8.7231 19.3377
RSU3->RSU4 7.99 16.8389 0.6736 7.0217 17.2186
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Table A.38 RSU3->RSU4 LXD-CRIU Service Migration Time = 24.73, RSU3 19.13,
RSU4 7.09, Xmin = 13.64, Xmax = 19.13

LXD-CRIU X Av. no of requests Av. Resp. Time BP LS
RSU3->RSU4 14.0 46.8199 1.8728 33.8137 46.3241
RSU3->RSU4 15.0 42.4161 1.6966 29.5610 41.1999
RSU3->RSU4 16.0 38.0051 1.5202 25.3694 37.6741
RSU3->RSU4 17.0 33.5818 1.3433 21.2500 33.3495
RSU3->RSU4 18.0 29.1395 1.1656 17.2212 29.0248
RSU3->RSU4 19.0 24.6703 0.9868 13.3147 24.7002
RSU3->RSU4 19.1 24.2215 0.9689 12.9326 24.2678

Table A.39 RSU3->RSU4 Docker Service Migration Time = 73.00, RSU3 19.13, RSU4
7.09, Xmin = 61.91, Xmax = 19.13

Docker X Av. no of requests Av. Resp. Time BP LS
RSU3->RSU4 0 NP3
RSU3->RSU4 1 NP3
RSU3->RSU4 2 NP3
RSU3->RSU4 3 NP3
RSU3->RSU4 4 NP3
RSU3->RSU4 6 NP3
RSU3->RSU4 9 NP3
RSU3->RSU4 12 NP3
RSU3->RSU4 15 NP3
RSU3->RSU4 18 NP3
RSU3->RSU4 18.37 NP3

Table A.40 RSU3->RSU4 KVM Service Migration Time = 824.00, RSU3 19.13, RSU4
7.09, Xmin = 812.91, Xmax = 19.13

KVM X Av. no of requests Av. Resp. Time BP LS
RSU3->RSU4 0 NP3
RSU3->RSU4 1 NP3
RSU3->RSU4 2 NP3
RSU3->RSU4 3 NP3
RSU3->RSU4 4 NP3
RSU3->RSU4 6 NP3
RSU3->RSU4 9 NP3
RSU3->RSU4 12 NP3
RSU3->RSU4 15 NP3
RSU3->RSU4 18 NP3
RSU3->RSU4 18.37 NP3
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Table A.41 RSU5->RSU6 Unikernel Service Migration Time = 11.99, RSU5 39.57, RSU6
58.19, Xmin = 0.00, Xmax = 7.99

Uni-kernel X Av. no of requests Av. Resp. Time BP LS
RSU5->RSU6 0 28.0000 1.1200 20.2193 27.4778
RSU5->RSU6 1 25.6912 1.0276 18.0079 25.1825
RSU5->RSU6 2 23.3777 0.9351 15.8147 22.8872
RSU5->RSU6 3 21.0579 0.8423 13.6446 20.5918
RSU5->RSU6 4 18.7302 0.7492 11.5050 18.2965
RSU5->RSU6 5 16.3920 0.6557 9.4061 16.0011
RSU5->RSU6 6 14.0400 0.5616 7.3643 13.7058
RSU5->RSU6 7 11.6691 0.4668 5.4055 11.4104
RSU5->RSU6 7.5 10.4748 0.4190 4.4699 10.2627
RSU5->RSU6 7.99 9.2976 0.3719 3.5912 9.1380

Table A.42 RSU5->RSU6 LXD-CRIU Service Migration Time = 24.73, RSU5 39.57,
RSU6 58.19, Xmin = 0.000, Xmax = 20.73

LXD-CRIU X Av. no of requests Av. Resp. Time BP LS
RSU5->RSU6 0.00 57.2498 2.2900 49.1825 56.7216
RSU5->RSU6 2.0 52.6633 2.1065 44.5703 52.1304
RSU5->RSU6 4.0 48.0777 1.9231 39.9793 47.5393
RSU5->RSU6 6.0 43.4915 1.7397 35.4100 42.9485
RSU5->RSU6 9.0 36.6063 1.4643 28.6016 36.0625
RSU5->RSU6 12.0 29.7052 1.1882 21.8654 29.1763
RSU5->RSU6 15.0 22.7751 0.9110 15.2480 22.2903
RSU5->RSU6 18.0 15.7820 0.6313 8.8869 15.4043
RSU5->RSU6 20.00 11.0490 0.4420 4.9146 10.8136
RSU5->RSU6 20.73 9.2976 0.3719 3.5912 9.1380

Table A.43 RSU5->RSU6 Docker Service Migration Time = 73.00, RSU5 39.57, RSU6
58.19, Xmin = 10.81, Xmax = 39.57

Docker X Av. no of requests Av. Resp. Time BP LS
RSU5->RSU6 11 NP1
RSU5->RSU6 14 NP1
RSU5->RSU6 18 NP1
RSU5->RSU6 21 NP1
RSU5->RSU6 24 NP1
RSU5->RSU6 27 NP1
RSU5->RSU6 30 99.5756 3.9830 97.3861 98.6917
RSU5->RSU6 32 95.1553 3.8062 89.5907 94.0906
RSU5->RSU6 34 90.3199 3.6128 83.6653 89.4909
RSU5->RSU6 36 85.5837 3.4233 78.4036 84.8948
RSU5->RSU6 38 80.9101 3.2364 73.4200 80.3008
RSU5->RSU6 39.57 77.2671 3.0907 69.6108 76.6953
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Table A.44 RSU5->RSU6 KVM Service Migration Time = 824.00, RSU5 39.57, RSU6
58.19, Xmin = 761.810, Xmax = 39.57

KVM X Av. no of requests Av. Resp. Time BP LS
RSU5->RSU6 0 NP3
RSU5->RSU6 1 NP3
RSU5->RSU6 2 NP3
RSU5->RSU6 3 NP3
RSU5->RSU6 4 NP3
RSU5->RSU6 6 NP3
RSU5->RSU6 9 NP3
RSU5->RSU6 12 NP3
RSU5->RSU6 15 NP3
RSU5->RSU6 18 NP3
RSU5->RSU6 18.37 NP3

Table A.45 RSU6->RSU7 Unikernel Service Migration Time = 11.99, RSU6 58.19, RSU7
47.00, Xmin = 0.00, Xmax = 7.99

Uni-kernel X Av. no of requests Av. Resp. Time BP LS
RSU6->RSU7 0 19.8738 0.7950 14.0727 19.249
RSU6->RSU7 1 18.2586 0.7303 12.5311 17.6416
RSU6->RSU7 2 16.6399 0.6656 11.0020 16.0336
RSU6->RSU7 3 15.0168 0.6007 9.4892 14.4256
RSU6->RSU7 4 13.3881 0.5355 7.9978 12.8175
RSU6->RSU7 5 11.7520 0.4701 6.5351 11.2095
RSU6->RSU7 6 10.1064 0.4043 5.1127 9.6014
RSU6->RSU7 7 8.4479 0.3379 3.7490 7.9933
RSU6->RSU7 7.5 7.6126 0.3045 3.0981 7.1893
RSU6->RSU7 7.99 6.7895 0.2716 2.4873 6.4014

Table A.46 RSU6->RSU7 LXD-CRIU Service Migration Time = 24.73, RSU6 58.19, RSU7
47.00, Xmin = 0.000, Xmax = 20.73

LXD-CRIU X Av. no of requests Av. Resp. Time BP LS
RSU6->RSU7 0.00 40.3166 1.6127 34.2081 39.7363
RSU6->RSU7 2.0 37.1155 1.4846 31.0140 36.5200
RSU6->RSU7 4.0 33.9128 1.3565 27.8282 33.3039
RSU6->RSU7 6.0 30.7078 1.2283 24.6523 30.0878
RSU6->RSU7 9.0 25.8939 1.0358 19.9136 25.2637
RSU6->RSU7 12.0 21.0673 0.8427 15.2201 20.4396
RSU6->RSU7 15.0 16.2183 0.6487 10.6069 15.6154
RSU6->RSU7 18.0 11.3252 0.4530 6.1608 10.7914
RSU6->RSU7 20.00 8.0141 0.3206 3.4074 7.5753
RSU6->RSU7 20.73 6.7895 0.2716 2.4873 6.4014
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Table A.47 RSU6->RSU7 Docker Service Migration Time = 73.00, RSU6 58.19, RSU7
47.00, Xmin = 22.00, Xmax = 58.19

Docker X Av. no of requests Av. Resp. Time BP LS
RSU6->RSU7 22.5 81.6048 3.2642 76.0250 81.180
RSU6->RSU7 27.0 74.3627 2.9745 68.5783 73.9413
RSU6->RSU7 32.0 66.3453 2.6538 60.4181 65.8999
RSU6->RSU7 37.0 58.3427 2.3337 52.3199 57.8591
RSU6->RSU7 42.0 50.3457 2.0138 44.2623 49.8187
RSU6->RSU7 47.0 42.3484 1.6939 36.2397 41.7784
RSU6->RSU7 52.0 34.3452 1.3738 28.2577 33.7380
RSU6->RSU7 57.0 26.3275 1.0531 20.3385 25.6978
RSU6->RSU7 58.18 24.4315 0.9773 18.4840 23.8004

Table A.48 RSU6->RSU7 KVM Service Migration Time = 824.00, RSU6 58.19, RSU7
47.00, Xmin = 773.00, Xmax = 58.19

KVM X Av. no of requests Av. Resp. Time BP LS
RSU6->RSU7 0 NP3
RSU6->RSU7 1 NP3
RSU6->RSU7 2 NP3
RSU6->RSU7 3 NP3
RSU6->RSU7 4 NP3
RSU6->RSU7 6 NP3
RSU6->RSU7 9 NP3
RSU6->RSU7 12 NP3
RSU6->RSU7 15 NP3
RSU6->RSU7 18 NP3
RSU6->RSU7 18.37 NP3
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A.4.2 Prototype for Service Management Framework in C Language

We successfully made a basic prototype of the Service Management Framework. It is written
in C and the key structures and routines are shown below:

1 / * S e r v e r f rame work s t r u c t u r e * /
2

3

4 / * S e r v e r f rame work s t r u c t u r e * /
5

6 / * commands t o t h e s e r v i c e * /
7 # d e f i n e REGISTER_SERVICE 1
8 # d e f i n e REQUEST_SERVICE 2
9 # d e f i n e MIGRATE_SERVICE 3 / * NI − NOT IMPLEMENTED * /

10 # d e f i n e DEREGISTER_SERVICE 4
11

12 s t r u c t r e s o u r c e s _ r e q u i r e d {
13 u n s i g n e d i n t CPU; / * Number o f Cores , Clock Speed * /
14 u n s i g n e d i n t memory ; / / MBs of Memory
15 u n s i g n e d i n t ne twork ; / / Mbps r e q u i r e m e n t )
16 u n s i g n e d i n t s t o r a g e ; / / ( G i g a b i t s Requ i remen t )
17 } ;
18

19 s t r u c t qos {
20 i n t l a t e n c y ; / * i n m i c r o s e c o n d s * /
21 i n t bandwid th ; / * Mbps * /
22 i n t j i t t e r ; / * i n m i c r o s e c o n d s * /
23 i n t r e l i a b i l i t y ; / * Out o f 100 where 100 i s t o t a l r e l i a b i l i t y * /
24 } ;
25

26

27 s t r u c t r e s t r i c t i o n _ l i s t {
28 i n t s e c u r i t y _ l e v e l ; / / ( minimum S e c u r i t y l e v e l )
29 s t r u c t qos qos_min ; / / ( minimum )
30 i n t r e s t r i c t _ a r r a y _ c o u n t ;
31 i n t l o c a t i o n [ 1 0 ] ; / / ( r e s t r i c t e d Networks )
32 i n t m a x i m u m _ r e p l i c a t i o n ; / / ( how much r e p l i c a c o u n t )
33 } ;
34

35 s t r u c t c l i e n t {
36 u n s i g n e d i n t c l i e n t _ i d ; / / ( i d e n t i f i e s c l i e n t s t o t h e s e r v i c e )
37 u n s i g n e d i n t node_ id ;
38 u n s i g n e d i n t l o c a t i o n _ i d ; / / ( IP a d d r e s s )
39 s t r u c t c l i e n t * n e x t ;
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40 s t r u c t c l i e n t * p rev ;
41

42 } ;
43

44 s t r u c t c l i e n t _ l i s t {
45

46 s t r u c t c l i e n t * head ;
47 s t r u c t c l i e n t * t a i l ;
48 i n t c o u n t ;
49 } ;
50

51 s t r u c t s e r v e r {
52 c h a r e x e c u t a b l e [ 1 0 0 ] ; / / f i l e name where t h e b i n a r y i s t o be found
53 u n s i g n e d i n t s e r v e r _ i d ;
54 u n s i g n e d i n t s e r v e r _ l o c a t i o n ; / / ( IP a d d r e s s )
55 u n s i g n e d s h o r t s e r v e r _ p o r t ;
56 u n s i g n e d c h a r s e r v e r _ v e r s i o n ;
57 u n s i g n e d c h a r s e r v e r _ s t a t u s ; / / ( runn ing , i n i t i a t e d , e x e c u t a b l e )
58 u n s i g n e d s h o r t maximum_server_ load ;
59 u n s i g n e d s h o r t c u r r e n t _ l o a d ;
60 u n s i g n e d s h o r t m a x i m u m _ c l i e n t _ o n _ s e r v e r ;
61 s t r u c t c l i e n t _ l i s t s e r v e r _ c l i e n t ;
62 s t r u c t s e r v e r * n e x t ;
63 s t r u c t s e r v e r * p rev ;
64

65 / / d e f i n e as a s e r v i c e { u n s i g n e d s h o r t
l i s t _ o f _ c u r r e n t _ r u n n i n g _ s e r v e r s ; }

66 } ;
67 s t r u c t s e r v e r _ l i s t {
68

69 s t r u c t s e r v e r * head ;
70 s t r u c t s e r v e r * t a i l ;
71 i n t c o u n t ;
72 } ;
73

74

75

76

77

78 s t r u c t n e t w o r k _ r e q u i r e m e n t {
79 u n s i g n e d c h a r t y p e s _ o f _ h a n d o v e r _ s u p p o r t ; / / ( P r o a c t i v e o r R e a c t i v e )
80 u n s i g n e d c h a r s i g n a l l i n g _ f r o m _ n e t w o r k _ l a y e r ; / / ( L2 T r i g g e r )
81 u n s i g n e d c h a r l i s t _ o f _ n e t w o r k _ i n t e r f a c e s ; / / ( e . g . H e t e r o g e n e o u s )
82 u n s i g n e d c h a r l i s t _ o f _ t r a n s p o r t _ p r o t o c o l ; / / ( e . g . TCP , UDP, and SLTP )
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83 } ;
84

85 s t r u c t r e s t r i c t i o n s _ m a x {
86 / * u n s i g n e d s h o r t M i n i m u m _ S e c u r i t y _ l e v e l ;
87 u n s i g n e d s h o r t L o c a t i o n _ R e s t r i c t i o n s ; * /
88 u n s i g n e d s h o r t max_CPU ;
89 u n s i g n e d s h o r t max_memory ;
90 u n s i g n e d s h o r t max_s to r age ;
91 } ;
92

93 s t r u c t r ecovery_mechan i sm {
94 u n s i g n e d s h o r t shutdown ;
95 u n s i g n e d s h o r t r e s t a r t ;
96 } ;
97

98 s t r u c t s e r v i c e _ m i n {
99 u n s i g n e d i n t s e r v e r _ i d ;

100 u n s i g n e d i n t i p _ a d d r e s s ;
101 } ;
102

103 s t r u c t s e r v i c e {
104 c h a r a r c h i v e _ e x e c u t a b l e [ 1 0 0 ] ;
105 c h a r s e r v i c e _ n a m e [ 1 0 0 ] ;
106 u n s i g n e d c h a r a r c h i v e _ e x e c u t a b l e _ l e n ;
107 u n s i g n e d c h a r s e r v i c e _ n a m e _ l e n ;
108 u n s i g n e d i n t s e r v i c e _ i d ;
109 u n s i g n e d i n t s e r v i c e _ v e r s i o n ; / * i f i t s "0" − i t i s a l a t e s t v e r s i o n !

* /
110 u n s i g n e d i n t maximum_number_servers ; / * 1 * /
111 u n s i g n e d i n t c u r r e n t _ n u m b e r _ s e r v e r s ; / * 0 * /
112 s t r u c t s e r v e r _ l i s t s e r v i c e _ s e r v e r _ l i s t ; / * NULL* /
113 s t r u c t r e s o u r c e s _ r e q u i r e d s e r v i c e _ r e s o u r c e s _ r e q u i r e d ;
114 s t r u c t qos s e r v i c e _ q o s ;
115 s t r u c t r e s t r i c t i o n _ l i s t s e r v i c e _ r e s t r i c t i o n _ l i s t ;
116 s t r u c t n e t w o r k _ r e q u i r e m e n t s e r v i c e _ n e t w o r k _ r e q u i r m e n t s ;
117 s t r u c t r e s t r i c t i o n s _ m a x s e r v i c e _ r e s t r i c t i o n s _ m a x ;
118 s t r u c t r ecovery_mechan i sm s e r v i c e _ r e c o v e r y _ m e c h a n i s m ;
119 s t r u c t s e r v i c e * n e x t ;
120 s t r u c t s e r v i c e * p rev ;
121 } ;
122

123 s t r u c t s e r v i c e _ l i s t {
124

125 s t r u c t s e r v i c e * head ;
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126 s t r u c t s e r v i c e * t a i l ;
127 i n t c o u n t ;
128 } ;
129

130

131 s t r u c t se rv ice_managemen t_ f ramework {
132 i n t smf_name_len ;
133 c h a r smf_name [ 1 0 0 ] ;
134 u n s i g n e d i n t s t a t u s ; / / s t a t u s 0 = down , 1= s t a r t i n g , 2 = up , 3 =

c l o s i n g , 4 = c l o s e d
135 s t r u c t s e r v i c e _ l i s t l i s t _ m a n a g e d _ s e r v i c e s ;
136 i n t n u m b e r _ o f _ r e q u e s t ;
137 u n s i g n e d i n t po r t_number ;
138 } ;
139

140 s t r u c t se rv i ce_managemen t_message {
141

142 i n t command ;
143 i n t r e s u l t ;
144 s t r u c t s e r v i c e serv_mec ; / * mechanism * /
145

146

147 } ;
148

149

150

Listing A.1 Header File for Service Management Framework
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1

2 # i n c l u d e < s t d i o . h>
3 # i n c l u d e < s t d l i b . h>
4 # i n c l u d e < u n i s t d . h>
5 # i n c l u d e < s t r i n g . h>
6 # i n c l u d e < l i n u x / t y p e s . h>
7 # i n c l u d e <asm / t y p e s . h>
8 # i n c l u d e < l i n u x / s o c k e t . h>
9 # i n c l u d e <asm / s o c k e t . h>

10 # i n c l u d e < n e t i n e t / i n . h>
11 # i n c l u d e < a r p a / i n e t . h>
12 # i n c l u d e " s e r v e r _ f r a m e w o r k . h "
13

14 # d e f i n e SERVER_PORT 1070
15 s t r u c t se rv i ce_managemen t_message smm;
16 c h a r * s = " / u s r / b i n / f u x f s _ s e r v e r " ;
17 c h a r * sn = " ne twork_memory_server " ;
18

19 / * change t h e program t o c o n n e c t t o any d e v i c e * /
20

21 i n t main ( a rgc , a rgv )
22 i n t a r g c ;
23 c h a r ** a rgv ;
24

25 {
26 i n t n ;
27 i n t s o c k s e n d _ f d ;
28 s t r u c t s o c k a d d r _ i n msock , c sock ;
29 i n t l e n = s i z e o f ( s t r u c t s o c k a d d r _ i n ) ;
30 i n t c o u n t = 0 ;
31 c h a r cbu f [ 1 0 0 ] ;
32

33 b z e r o ( ( c h a r * )&csock , s i z e o f ( s t r u c t s o c k a d d r _ i n ) ) ;
34 b z e r o ( ( c h a r * )&msock , s i z e o f ( s t r u c t s o c k a d d r _ i n ) ) ;
35

36 msock . s i n _ f a m i l y = AF_INET ;
37 msock . s i n _ a d d r . s _ a d d r = 0 ;
38 msock . s i n _ p o r t = 0 ;
39

40 i f ( ( s o c k s e n d _ f d = s o c k e t ( AF_INET , SOCK_STREAM, 0) ) < 0 )
41 {
42 p r i n t f ( "%s : u n a b l e t o g e t a s o c k e t \ n " , a rgv [ 0 ] ) ;
43 e x i t ( −1) ;
44 }
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45

46 i f ( ( b ind ( socksend_fd , ( s t r u c t s o c k a d d r * )&msock , l e n ) ) < 0)
47 {
48 p r i n t f ( "%s : u n a b l e t o b ind t o a l o c a l s o c k e t \ n " , a rgv [ 0 ] ) ;
49 e x i t ( −1) ;
50 }
51

52 / * c o n v e r t t h e f i r s t a rgument t o some th ing I can use * /
53

54 csock . s i n _ f a m i l y = AF_INET ;
55 / * csock . s i n _ a d d r . s _ a d d r = 0 ; / * c o n n e c t i n g t o l o c a l machine * /
56 csock . s i n _ a d d r . s _ a d d r = i n e t _ a d d r ( a rgv [ 1 ] ) ;
57 csock . s i n _ p o r t = h t o n s (SERVER_PORT) ;
58

59 i f ( ( c o n n e c t ( socksend_fd , ( s t r u c t s o c k a d d r * )&csock , s i z e o f ( s t r u c t
s o c k a d d r _ i n ) ) ) < 0 )

60 {
61 p r i n t f ( "%s : u n a b l e t o c o n n e c t t o s e r v e r \ n " , a rgv [ 0 ] ) ;
62 e x i t ( −1) ;
63 }
64 p r i n t f ( " c o n n e c t e d t o t h e s e r v e r \ n " ) ;
65 b z e r o ( ( c h a r * )&smm, s i z e o f ( s t r u c t se rv i ce_managemen t_message ) ) ;
66 smm . command = REGISTER_SERVICE ;
67 smm . r e s u l t = −1;
68 s t r c p y (smm . serv_mec . a r c h i v e _ e x e c u t a b l e , s ) ;
69 smm . serv_mec . a r c h i v e _ e x e c u t a b l e _ l e n = s t r l e n ( s ) ;
70 s t r c p y (smm . serv_mec . se rv i ce_name , sn ) ;
71 smm . serv_mec . s e r v i c e _ n a m e _ l e n = s t r l e n ( sn ) ;
72 smm . serv_mec . s e r v i c e _ v e r s i o n = 0 ;
73 smm . serv_mec . maximum_number_servers = 1 ;
74 smm . serv_mec . c u r r e n t _ n u m b e r _ s e r v e r s = 0 ;
75 smm . serv_mec . s e r v i c e _ s e r v e r _ l i s t . c o u n t =0;
76 smm . serv_mec . s e r v i c e _ r e s o u r c e s _ r e q u i r e d . CPU = 1 ; / * Assum programs

does n o t use t h r e a d s * /
77 smm . serv_mec . s e r v i c e _ r e s o u r c e s _ r e q u i r e d . memory = 400 ; / * Megabytes (

u s i n g p h y s i c a l memory ) * /
78 smm . serv_mec . s e r v i c e _ r e s o u r c e s _ r e q u i r e d . ne twork = 100 ; / * Mbps * /
79 smm . serv_mec . s e r v i c e _ r e s o u r c e s _ r e q u i r e d . s t o r a g e = 10 ; / * G i g a b y t e s * /
80 smm . serv_mec . s e r v i c e _ q o s . l a t e n c y = 100000; / * 100 m i l l i s e c o n d s o f

l a t e n c y * /
81 smm . serv_mec . s e r v i c e _ q o s . bandwid th = 100 ; / * Mbps * /
82 smm . serv_mec . s e r v i c e _ q o s . j i t t e r = 100000 ; / * 100 m i l l i s e c o n d s o f

J i t t e r * /
83 smm . serv_mec . s e r v i c e _ q o s . r e l i a b i l i t y = 100 ; / * T o t a l l y r e l i a b l e * /
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84 send ( socksend_fd , ( c h a r * )&smm, s i z e o f ( s t r u c t
se rv i ce_managemen t_message ) , 0 ) ;

85

86 n = r e c v ( socksend_fd , ( c h a r * )&smm, s i z e o f ( s t r u c t
se rv i ce_managemen t_message ) , 0 ) ;

87

88 i f ( n > 0)
89 {
90 p r i n t f ( " R e s u l t r e t u r n e d : %d \ n " , smm . r e s u l t ) ;
91 p r i n t f ( " S e r v i c e R e g i s t e r e d : S e r v i c e _ i d %d \ n " , smm . serv_mec .

s e r v i c e _ i d ) ;
92 }
93 e l s e
94 {
95 p r i n t f ( " Unable r e c i v e from S e r v i c e Management framework " ) ;
96 }
97

98 c l o s e ( s o c k s e n d _ f d ) ;
99 e x i t ( 0 ) ;

100 }
101

102

103

Listing A.2 C file for Register Service
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1 # i n c l u d e < s t d i o . h>
2 # i n c l u d e < s t d l i b . h>
3 # i n c l u d e < u n i s t d . h>
4 # i n c l u d e < s t r i n g . h>
5 # i n c l u d e < l i n u x / t y p e s . h>
6 # i n c l u d e <asm / t y p e s . h>
7 # i n c l u d e < l i n u x / s o c k e t . h>
8 # i n c l u d e <asm / s o c k e t . h>
9 # i n c l u d e < n e t i n e t / i n . h>

10 # i n c l u d e < a r p a / i n e t . h>
11 # i n c l u d e " s e r v e r _ f r a m e w o r k . h "
12

13 # d e f i n e SERVER_PORT 1070
14 s t r u c t se rv i ce_managemen t_message smm;
15 c h a r * s = " / u s r / b i n / f u x f s _ s e r v e r " ;
16 c h a r * sn = " ne twork_memory_server " ;
17

18 / * change t h e program t o c o n n e c t t o any d e v i c e * /
19

20 i n t main ( a rgc , a rgv )
21 i n t a r g c ;
22 c h a r ** a rgv ;
23

24 {
25 i n t n ;
26 i n t s o c k s e n d _ f d ;
27 s t r u c t s o c k a d d r _ i n msock , c sock ;
28 i n t l e n = s i z e o f ( s t r u c t s o c k a d d r _ i n ) ;
29 i n t c o u n t = 0 ;
30 c h a r cbu f [ 1 0 0 ] ;
31

32 b z e r o ( ( c h a r * )&csock , s i z e o f ( s t r u c t s o c k a d d r _ i n ) ) ;
33 b z e r o ( ( c h a r * )&msock , s i z e o f ( s t r u c t s o c k a d d r _ i n ) ) ;
34

35 msock . s i n _ f a m i l y = AF_INET ;
36 msock . s i n _ a d d r . s _ a d d r = 0 ;
37 msock . s i n _ p o r t = 0 ;
38

39 i f ( ( s o c k s e n d _ f d = s o c k e t ( AF_INET , SOCK_STREAM, 0) ) < 0 )
40 {
41 p r i n t f ( "%s : u n a b l e t o g e t a s o c k e t \ n " , a rgv [ 0 ] ) ;
42 e x i t ( −1) ;
43 }
44
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45 i f ( ( b ind ( socksend_fd , ( s t r u c t s o c k a d d r * )&msock , l e n ) ) < 0)
46 {
47 p r i n t f ( "%s : u n a b l e t o b ind t o a l o c a l s o c k e t \ n " , a rgv [ 0 ] ) ;
48 e x i t ( −1) ;
49 }
50

51 / * c o n v e r t t h e f i r s t a rgument t o some th ing I can use * /
52

53 csock . s i n _ f a m i l y = AF_INET ;
54 / * csock . s i n _ a d d r . s _ a d d r = 0 ; / * c o n n e c t i n g t o l o c a l machine * /
55 csock . s i n _ a d d r . s _ a d d r = i n e t _ a d d r ( a rgv [ 1 ] ) ;
56 csock . s i n _ p o r t = h t o n s (SERVER_PORT) ;
57

58 i f ( ( c o n n e c t ( socksend_fd , ( s t r u c t s o c k a d d r * )&csock , s i z e o f ( s t r u c t
s o c k a d d r _ i n ) ) ) < 0 )

59 {
60 p r i n t f ( "%s : u n a b l e t o c o n n e c t t o s e r v e r \ n " , a rgv [ 0 ] ) ;
61 e x i t ( −1) ;
62 }
63 p r i n t f ( " c o n n e c t e d t o t h e s e r v e r \ n " ) ;
64 b z e r o ( ( c h a r * )&smm, s i z e o f ( s t r u c t se rv i ce_managemen t_message ) ) ;
65 smm . command = REQUEST_SERVICE ;
66 smm . r e s u l t = −1;
67

68 / / s t r c p y (smm . serv_mec . a r c h i v e _ e x e c u t a b l e , s ) ;
69 / / smm . serv_mec . a r c h i v e _ e x e c u t a b l e _ l e n = s t r l e n ( s ) ;
70 s t r c p y (smm . serv_mec . se rv i ce_name , sn ) ;
71 smm . serv_mec . s e r v i c e _ n a m e _ l e n = s t r l e n ( sn ) ;
72 smm . serv_mec . s e r v i c e _ v e r s i o n = 0 ;
73

74 send ( socksend_fd , ( c h a r * )&smm, s i z e o f ( s t r u c t
se rv i ce_managemen t_message ) , 0 ) ;

75

76 n = r e c v ( socksend_fd , ( c h a r * )&smm, s i z e o f ( s t r u c t
se rv i ce_managemen t_message ) , 0 ) ;

77

78 i f ( n > 0)
79 {
80 p r i n t f ( " R e s u l t r e t u r n e d : %d \ n " , smm . r e s u l t ) ;
81 p r i n t f ( " S e r v i c e R e g i s t e r e d : S e r v i c e _ i d %d \ n " , smm . serv_mec .

s e r v i c e _ i d ) ;
82 }
83 e l s e
84 {
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85 p r i n t f ( " Unable r e c i v e from S e r v i c e Management framework " ) ;
86 }
87

88 c l o s e ( s o c k s e n d _ f d ) ;
89 e x i t ( 0 ) ;
90 }
91

Listing A.3 C file for Reqeust Service


	Table of contents
	List of figures
	List of tables
	Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Background
	1.3 Key Research Questions
	1.4 Original Contributions
	1.5 Thesis outline
	1.6 List of Papers

	2 Technical Background and Related Work
	2.1 Brief Introduction
	2.2 Technical Background
	2.2.1 Y-Comm Reference Framework
	2.2.2 Multi-access Edge Computing
	2.2.3 Vehicular Ad hoc Networks 
	2.2.4 Container Technology

	2.3 Related Work
	2.3.1 Literature Review on Multi-access Edge computing 
	2.3.2 Computation Offloading Decision
	2.3.3 Service Migration

	2.4 Research Gap
	2.5 Intelligent Service Migration
	2.6 Requirements for Intelligent Service Migration
	2.6.1 Low Latency
	2.6.2 Quality of Service
	2.6.3 Analytical Modelling
	2.6.4 Service Migration Mechanisms
	2.6.5 Solution for Intelligent Service Migration

	2.7 Chapter Summary

	3 Research Methodology
	3.1 Brief introduction
	3.2 Analytical Modelling 
	3.2.1 Exponential Distribution 
	3.2.2 Queuing Theory

	3.3 Experimental Testbed
	3.3.1 Designing and Implementation of VANET Testbed
	3.3.2 MDX Deployment
	3.3.3 A41 Deployment
	3.3.4 Application Description
	3.3.5 MDX and A41 Coverage Map Result
	3.3.6 The Relationship Between Analytical Model and Testbed

	3.4 The File system
	3.4.1 Filesystem in Userspace (FUSE)
	3.4.2 Network Memory Server
	3.4.3 Mobility of the NMS

	3.5 Chapter Summary

	4 Investigating a Low Latency QoS Aware Environment 
	4.1 Brief Introduction
	4.2 Y-Comm Implementation Framework
	4.3 The New Application Framework 
	4.3.1 CRAN SDRAN
	4.3.2 OpenFlow Data Switches
	4.3.3 Network Management Control Protocol SDN Controller
	4.3.4 Low latency protocol

	4.4 Simple Lightweight Transport Protocol (SLTP)
	4.5 Chapter Summary

	5 Modelling Handovers in Vehicular Networks for Intelligent Service Migration
	5.1 Brief Introduction
	5.2 Classification of Handover
	5.2.1 Proactive Handovers in Y-Comm
	5.2.2 Proactive Handovers in Heterogeneous Environments

	5.3 The use of Markov-based Model
	5.3.1 Vishnu's model

	5.4 The use of Markov-based Frameworks
	5.4.1 The Zero-Server Markov Chain

	5.5 Analysis of Vehicular Environment
	5.6 Developing an Analytical Model for Vehicular Networks
	5.6.1 The Analysis
	5.6.2 Handling a system with capacity K
	5.6.3  Parameters from this model
	5.6.4 New Parameter: Probability of lost service
	5.6.5 The Middlesex Testbed Summary
	5.6.6 Video Service Scenario
	5.6.7 Generation of Results
	5.6.8  Results from Standard Analysis

	5.7 Chapter Summary

	6 Analytical Model for Service Migration in Vehicular Network
	6.1 Brief Introduction
	6.2 Reactive Service Migration
	6.3 Proactive Service Migration
	6.4 Service Migration as a Mechanism
	6.5 Application-Focused Service Migration
	6.5.1 Live Service Migration Use Case Scenario Results

	6.6 Developing a Prototype Environment for the New Framework
	6.6.1 NMS and FUSE as a Service

	6.7 Investigating Different Migration Mechanisms for NMS
	6.7.1 KVM
	6.7.2 LXD
	6.7.3 Docker
	6.7.4 Unikernels
	6.7.5 Migration Results

	6.8 Using the ZSMC to Look at Service Migration
	6.8.1 Results to be evaluated
	6.8.2 Reactive Service Migration Results
	6.8.3 Evaluation of the results 

	6.9 Proactive Service Migration
	6.9.1 Results for the Probability of Blocking
	6.9.2 Results for Lost Service
	6.9.3 Looking at Minimum and Maximum Values for Proactive Service

	6.10 Chapter Summary

	7 Developing a Practical Intelligent Service Management System
	7.1 Brief Introduction
	7.2 Flow Chart for Intelligent Service Migartion
	7.2.1 Service-Oriented Framework for Mobile Services

	7.3 New Service Management Framework
	7.3.1 Protocols for Intelligent Service Migration in a Network Scenario for a Vehicular Environment
	7.3.2 C Code results

	7.4 Chapter Summary

	8 Conclusions and Future work
	8.1 Contribution of the Thesis
	8.2 Contribution to Knowledge
	8.3 Conclusion
	8.4 Future Work
	8.4.1 Security
	8.4.2 Machine Learning


	References
	Appendix A The Server Migration Results
	A.1 Reactive Handover Results for 30MPH
	A.2 Proactive Handover Results for 30MPH
	A.2.1 Result Codes

	A.3 Reactive Handover Results for 50MPH
	A.4 Proactive Handover Results for 50MPH
	A.4.1 Result Codes
	A.4.2 Prototype for Service Management Framework in C Language



