
 

 
 

 

 
Sensors 2022, 22, 5883. https://doi.org/10.3390/s22155883 www.mdpi.com/journal/sensors 

Article 

Cyber-Threat Detection System Using a Hybrid Approach of 

Transfer Learning and Multi-Model Image Representation 

Farhan Ullah 1,*, Shamsher Ullah 1, Muhammad Rashid Naeem 2, Leonardo Mostarda 3, Seungmin Rho 4  

and Xiaochun Cheng 5 

1 School of Software, Northwestern Polytechnical University, 127 West Youyi Road, Beilin District,  

Xi’an 710072, China 
2 School of Electronic Information and Artificial Intelligence, Leshan Normal University,  

Leshan 614000, China 
3 Computer Science Department, Camerino University, 62032 Camerino, Italy 
4 Department of Industrial Security, Chung-Ang University, Seoul 06974, Korea 
5 Department of Computer Science, Middlesex University, London NW4 4BT, UK 
* Correspondence: farhankhan.cs@yahoo.com 

Abstract: Currently, Android apps are easily targeted by malicious network traffic because of their 

constant network access. These threats have the potential to steal vital information and disrupt the 

commerce, social system, and banking markets. In this paper, we present a malware detection sys-

tem based on word2vec-based transfer learning and multi-model image representation. The pro-

posed method combines the textual and texture features of network traffic to leverage the ad-

vantages of both types. Initially, the transfer learning method is used to extract trained vocab from 

network traffic. Then, the malware-to-image algorithm visualizes network bytes for visual analysis 

of data traffic. Next, the texture features are extracted from malware images using a combination of 

scale-invariant feature transforms (SIFTs) and oriented fast and rotated brief transforms (ORBs). 

Moreover, a convolutional neural network (CNN) is designed to extract deep features from a set of 

trained vocab and texture features. Finally, an ensemble model is designed to classify and detect 

malware based on the combination of textual and texture features. The proposed method is tested 

using two standard datasets, CIC-AAGM2017 and CICMalDroid 2020, which comprise a total of 

10.2K malware and 3.2K benign samples. Furthermore, an explainable AI experiment is performed 

to interpret the proposed approach. 

Keywords: malware detection; malware visualization; transfer learning; network traffic; explaina-

ble AI; cyber security 

 

1. Introduction 

We have entered the “mobile era” with the advent of sophisticated technologies and 

smartphones becoming increasingly common. Traditional cognitive platforms that power 

desktop computers are being displaced by smartphones and tablets with massive compu-

tational capability. Apps that were previously only available on high-end desktop com-

puters are now available on a variety of mobile platforms. Mobile phones have evolved 

into devices that allow users to conduct online transactions, communicate with friends, 

and play games [1]. The number of apps accessible for download on the Google Play Store 

expanded between 2009 and 2017. The Google Play Store  (https://www.statista.com/sta-

tistics/266210/number-of-available-applications-in-thegoogle-play-store (20 February 

2022)) had more than 3.5 million apps as of December 2017, an increase from slightly more 

than 1 million in July 2013. Furthermore, mobile network data are rapidly growing, and 

cloud services are hastening this process. Android has the largest market share in terms 

of mobile operating systems. The rapid expansion of Android has spawned a thriving 

Citation: Ullah, F.; Ullah, S.;  

Naeem, M.R.; Mostarda, L.; Rho, S.; 

Cheng, X. Cyber-Threat Detection 

System Using Hybrid Approach of 

Transfer Learning and Multi-Model 

Image Representation. Sensors 2022, 

22, 5883. https://doi.org/ 

10.3390/s22155883 

Academic Editor: Arshad Arshad 

Received: 14 June 2022 

Accepted: 4 August 2022 

Published: 6 August 2022 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: ©  2022 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/). 



Sensors 2022, 22, 5883 2 of 26 
 

 

developer community. Hundreds of millions of apps can be downloaded in seconds from 

various Android marketplaces. As smartphones and tablets become more popular, the 

number of mobile malware threats targeting them grows [2]. The number of ransomware 

attacks nearly doubled in 2021, as reported by the National Computing Centre (NCC) 

(https://www.nccgroup.com/uk/(accessed on 3 July 2022)) Group. For instance, the num-

ber of reported ransomware attacks increased by 92.7% between 2020 and 2021, from 1389 

to 2690. Network-based malware is becoming more sophisticated and difficult to combat. 

This means that we must now deal with everything from network-based malware to in-

ternet services that are protected by mobile devices. Furthermore, adversaries are becom-

ing increasingly capable of creating malware that can avoid traditional sandboxing [3]. It 

is critical to establish a strong network-based malware classification and detection mech-

anism. 

Mobile malware detection solutions can be classified as static, dynamic, or traffic-

based [4]. Several previous studies used a static technique to detect vulnerabilities and 

malware in Android apps. The complexity and diversity of the required codes make this 

method challenging. Many dynamic approaches attempt to change the operating system 

of the phone to monitor and recover sensitive information. These strategies are effective, 

but they necessitate a significant amount of computing power to investigate all possible 

app patterns [5]. Several malware detection algorithms focus on network traffic generated 

by Android apps. Malware can be identified by abnormal network behavior patterns. This 

type of malware detection technology is very useful because the vast majority of Android 

malware performs harmful behaviors via network activity. To perform malicious acts, 

malware must communicate with a host system via the network. These traces allow dif-

ferent types of malwares to be tracked and identified. Furthermore, compared to previous 

methods, developing a network-based malware detection system is less difficult. For in-

stance, such a method can be used at an entry point or gateway without overburdening 

the mobile device. These solutions are solely based on data generated by consumers, en-

suring that users have access to desired mobile apps. Furthermore, other than granting 

rights to the identifying service, these solutions require no user engagement [6,7]. The goal 

of network traffic-based approaches is to discover distinctive features of malware that 

may be used to classify it accurately. 

1.1. Problem Statement 

Network traffic malware may employ several malicious URL scripts to affect a target 

Android app. Text-based feature analysis can identify potentially harmful scripts in terms 

of behavioral segmentation. Figure 1 depicts the malicious activities of adware and 

riskware. Riskware can embed malicious bytes required for remote code execution. For 

instance, “application/x-javascript” is incorporated in network traffic to be executed on a 

remote device to prevent normal access. Similarly, Adware is a type of malware that hides 

on the target system and displays advertisements. Some adware also monitors internet 

activity to serve relevant advertisements. Such behavior cannot be achieved solely 

through image visualization. However, text-based analysis is associated with several is-

sues, such as code obfuscation, insertion, reordering, etc. Image-based malware classifica-

tion is widely used because it can collect all types of structural information such as 

memory, process, header, etc. As a result, visual images can be used to retrieve any type 

of dynamic or obfuscated data. However, it can alter the overall structure of network traf-

fic files, rendering it impossible to target a specific script, such as a malicious script, URL, 

etc. Furthermore, this method is completely reliant on image attributes. For instance, a 

hacker can attack a malware image, affecting overall classification performance. As a re-

sult, we combined text-based features to detect potential malicious scripts and textural 

image features to detect other dangerous behaviors, such as memory or resource utiliza-

tion. A hybrid approach can efficiently use and classify malware and benign files. 



Sensors 2022, 22, 5883 3 of 26 
 

 

 

(a) 

 

(b) 

Figure 1. Malicious behaviors of adware and riskware network traffic. (a) Adware, (b) riskware. 

1.2. Research Contributions 

In this paper, we propose a novel method for analyzing and characterizing network-

based malware. The HTTP and TCP flows are filtered from encrypted communications 

for broad analysis. Then, word2vec is utilized to capture the trained vocab features. Then, 

the network-based byte stream is converted to an image. The text-based and visual fea-

tures are combined for effective malware classification. We observed that these two sorts 

of features complement one other and that combining them can increase the detection rate 

of malware. The main contributions of the paper are as follow: 

• A malware classification and detection system is proposed using a hybrid approach 

of transfer learning and texture features. The proposed method adopts the benefits 

of both methods, i.e., textual and visual analysis. 

• An explainable AI experiment is designed to interpret and validate the proposed ap-

proach. 

The remainder of this paper is organized as follows. In Section 2, we describe the 

related work, and in Section 3, we describe the proposed method. In Section 4, we thor-

oughly discuss the experiments, and in Section 5 we present our conclusions. 

2. Related Work 

Several studies [8,9] had demonstrated how the Android platform protects infected 

target devices using a variety of security measures, including permission processes. How-

ever, individuals have to be adequately qualified with respect to security concerns to ben-

efit from admin privilege protection. These limits imposed by excessive reliance on the 

customer enable Android malware to infiltrate and proliferate via portable devices. The 

majority of such analyzers examine aspects such as permissions and potentially unwanted 

programs to determine whether an application is suspicious or not. Antivirus apps protect 

computers against malware threats. However, malicious software is always evolving and 

expanding. As a consequence, malware detection methods need improvement. Several 

malware detection systems can currently decipher malicious activity in APK files without 

executing them. 

Sanz et al. [10] developed a static approach that accurately classifies infections by 

capturing an app’s uses-permission and uses-feature details, as well as the user’s permis-

sion information for log files. The proposed method achieved 86.41% classification accu-

racy. Puerta et al. [11] used the same approach to detect malware using the Drebin dataset 



Sensors 2022, 22, 5883 4 of 26 
 

 

and achieved 96.05% accuracy. Liu et al. [12] proposed a two-phase malware detection 

method. The first phase involves analyzing the app’s Manifest.xml document, which pro-

vides requested permissions. The second phase is to preprocess the APK file using APK 

tools to obtain the smali code. The smali code may contain details about asserted permis-

sions, including API calls, which may be used to detect malicious acts. The suggested 

technique has a detection performance of 98.6%. Shanshan et al. [13] proposed an HTTP- 

and TCP-based malware detection system for abnormal network assessment. The network 

device replicates the portable app’s data flow. All information retrieval and malware iden-

tification take place on the web, utilizing the fewest resources possible. Network-based 

characteristics and neural network models are coupled to identify mobile malware with 

an accuracy of 97.89%. Aresu et al. [14] investigated HTTP-based datagrams produced by 

Android apps when they interact with distant malicious servers. It also applies a grouping 

method of producing profiles from several malware variants. These markers are then em-

ployed to determine unusual operations. Wang et al. [15] developed the TextDroid meth-

odology, which divides an HTTP content flow into special symbols and then generates n-

gram sequences to study the layout of the resulting attributes. TextDroid also collects se-

quential information to feed into a learning algorithm for malware identification. This 

text-based technique achieved a classification score of 76.99%. Shanshan et al. [16] pre-

sented data traffic as a concept for detecting mobile malware. Natural language pro-

cessing (NLP) tools are used to exploit an HTTP text file for knowledge representation. 

The next step is to detect malware by inspecting the linguistic characteristics of network 

data. The presented scheme has a classification performance of 95%. Data from TCP and 

HTTP traffic features are extracted by TrafficAV and compared to each other using a C4.5 

decision tree for accuracy comparison. However, this method does not integrate TCP and 

HTTP network traces for the machine learning model. It provides a malware detection 

rate of 98.16% based on HTTP flows [17]. Johann et al. [18] proposed a WebEye framework 

that generates feasible HTTP traffic on its own, enriches captured traffic with detailed 

information, and classifies records as malicious or benign using various classifiers, with 

an accuracy rate of 89.52%. 

Numerous studies [19,20] using deep learning to classify malware have produced 

promising results. A perceptron called the multi-layer perceptron (MLP) [21] works with 

other perceptrons stacked in multiple layers to categorize malware. A CNN [22] is pri-

marily used to deal with texture features from malware images in order to classify mal-

ware. Gradient boosting [23] uses an ensemble of weak prediction models, usually deci-

sion trees, to classify malware. A temporal convolutional network (TCN) [24] is influenced 

by convolutional architectures, which combine easiness, vector autoregression prediction, 

and enormously long memory for malware classification. A general meta-approach to ma-

chine learning called ensemble learning combines the predictions from various models to 

improve malware classification performance [25]. Chen et al. [26] proposed a CNN model 

for categorizing mobile apps that relies on HTTP logs. The use of CNN speeds up the 

selection of features, resulting in more precise traffic detection outputs. The presented 

method achieved an identification rate of 98%. David et al. [27] introduced the DeepSign 

method, which is based on deep belief networks. It is capable of producing immutable, 

concise definitions of malware activities, which can enable it to effectively differentiate 

nearly all current malware variants with an accuracy of 98.6%. Shanshan et al. [28] intro-

duced an HTTP-based malware classification method. A multi-view neural network is 

used to detect destructive behavior with varying levels of penetration. This method can 

be used to focus on certain attributes of input parameters by allocating continuous atten-

tion to features. The highest and lowest accuracy rates are 98.81% and 89.33%, respec-

tively. 

  



Sensors 2022, 22, 5883 5 of 26 
 

 

3. Proposed Method 

Figure 2 explains the architectural framework of the proposed method. Android net-

work traffic is monitored and extracts encrypted communication in the form of packet 

capture files. The network traffic in two ways, i.e., via textual or visual features. 

 

Figure 2. Cyber-threat detection system using a hybrid approach of word2vec-based transfer learn-

ing and visual representation. 

3.1. Network Trace Collection 

3.1.1. Network Data Preprocessing 

HTTP traffic is used because it is the most widely used protocol for global communi-

cation. HTTP headers contain data that can be used to detect malicious behavior. How-

ever, because mobile apps communicate via HTTP, critical information cannot be ob-

tained. To address this issue, we analyze TCP streams with HTTP traces from packet cap-

turing (PCAP) files. PCAP files are source documents generated by network communica-

tion. Such files contain network traffic information and are used to assess the underlying 

information exchange between malicious nodes. Furthermore, they make network traffic 

management and network activity detection easier. A packet parsing method that filters 

secure communication and extracts HTTP and TCP flows is developed. The packet parser 

algorithm is used to filter the PCAP file, as shown in Algorithm 1. 

Algorithm 1: Packet Parser Algorithm 

Input: Packet Capturing Files (PCAP) 

Output: TCP, HTTP as output files 

Step 1: Set P= {𝑝1, 𝑝2, …, 𝑝𝑛}s, where is P is a packets 

Step 2: 𝐹𝑖𝑙𝑡𝑒𝑟 (𝑃) = 𝑃′ 

Step 3: Compute PCAP from 𝑃′, where 𝑃′  = (𝐼𝑃, 𝑇𝐶𝑃, 𝐻𝑇𝑇𝑃, … , 𝑛) 

Step 4: Select NF from PCAP, where NF is the required network flows 

Step 5: Display/select HTTP + TCP 

HTTP traces include source IP, destination IP, port, host address, source info, bytes, 

packet length, frame length, and TTL. The source information section includes GET, 

POST, and URLs, such as “www.yahoo.com (accessed on 5 December 2021)”. TCP flows 

provide three-way handshake information, including uploaded and downloaded bytes 

and total packet numbers during different sessions. Such information can be filtered to 

capture meaningful information, preserving the actual semantics. We developed a 

Learning Process

Malicious & Benign

Host-based Network Traffic Analysis

Network Packet 
Capture

Packet Parser

Flow Events

Flows 
Selection

Encrypted 
Commuincation Filtering HTTP and TCP 

Flows

Heading

Network Traffic 
Monitoring

Trained Embedded Matrix (Dictionary)

Features
w2vec 

mapping
Trained Embedded Matrices

Visual Network Traffic Analysis

Grayscale Mapping

Byte Stream

Image Standardization
(229x229, 256x256)

Texture Features Extraction (SIFT + ORB)

Gaussian Naïve BayesDeep Features Extraction

Features extraction using CNN

250 Prominent Features 
extraction

Support Vector 
Machine

Decision Tree

Logistic Regression

Random Forest

Voting-based 
Ensemble

Malware Classification & Detection

Model Interpretation and Validation



Sensors 2022, 22, 5883 6 of 26 
 

 

semantic tokenizer that can filter such information. The main steps taken during data pre-

processing are as follow: 

• Remove consecutively identical features from input sequences to avoid duplicated 

data. 

• Short sequences may not include enough information to identify the relevant net-

work traffic and are eliminated from the dataset. 

• Because different sequence lengths confuse neural network models, unifying se-

quence length is critical for malware classification. This approach uses a preset se-

quence length (L) to balance the lengths. Sequences greater than L keep their first L 

names, but those shorter than L are unified through zero padding. 

3.1.2. Transfer Learning with Word2vec 

The neural network operates through the use of vectors. Network traffic is repre-

sented by a fixed-size vector (L), and a one-hot vector can be employed. However, its 

scope is limited by the variety of features. This method is unsuitable for learning large 

datasets. Therefore, a reduced and meaningful vector is req. Word2vec [29] satisfies these 

criteria. Our goal is to construct a dense vector for each network element that records its 

contexts in a big dataset. Geometric techniques can be used on network vectors to detect 

their logical similarities, i.e., intruders use the same web address or TCP conversation for 

the same victim. Figure 3 demonstrates word2vec with TensorFlow embedding. In our 

situation, word2vec is used to mine trained vocab features from legitimate and malignant 

apps. The embedding word model output is a matrix, K x A, where K is the embedding 

vector size, and A is the number of unique network features. The encoded-word vector 

can be trained independently for malware classification [30]. The embed vectors are 

trained with 8-dimensionally for small datasets and with 1024-dimensionally for large da-

tasets. We selected 300 dimensions for HTTP and TCP. Higher-dimensional embeddings 

require more data for finer word correlations. The trained vocab features are extracted 

from word2vec using dynamic fine tuning. Using this procedure, each feature is trans-

ferred to a large number of vectors with the same meaning. As a result, this mapping 

function allows for multiple interpretations of the same feature, which may change over 

time. Algorithm 2 shows trained feature extraction process from network flows. 

  

Figure 3. Visualization of trained features (transmission, tcp) using word2vec and TensorFlow.  

  



Sensors 2022, 22, 5883 7 of 26 
 

 

Algorithm 2: Trained Feature Mining 

Input: HTTP and TCF flows 

Output: Trained features 

Step 1: Select HTTP and TCP flows 

Step 2: Tokenize and filter HTTP and TCP flows = clean features 

Step 3: Apply fine-tune embedding 

• Dynamic word2vec = train feature 

Step 4: Extraction = train feature 

Step 5: Compute trained files = mining trained files 

Step 6: Finish 

3.2. Texture Feature Collection 

Considering that malware is frequently changed to circumvent static and dynamic 

identification, we analyzed a malware detection system based on texture properties. This 

technique detects the malware as a whole by turning the malware into an image and ob-

taining the textural features. It is not necessary to collect malware fingerprints or use re-

verse engineering tools. This strategy is effective against antidetection technologies, such 

as signature modification and dynamic feature detection evasion. We developed a mal-

ware-to-image conversion algorithm capable of retrieving images from PCAP files. The 

eight-bit vectors are retrieved from network traffic first and then processed to produce 

grayscale malware images. The image sizes are then standardized to 229 × 229 and 256 × 

256. Figure 4 depicts a collection of malware images for adware (229 × 229), banking (229 

× 229), adware (256 × 256), and SMS (256 × 256). A large PCAP size is transformed to a 

smaller image size. For instance, the PCAP is converted from megabytes to kilobytes in 

the image. As a result, it may be possible to reduce computation power. The extraction of 

texture features is illustrated in Algorithm 3. The extracted network bytes from PCAP files 

are utilized to mine texture features. These network bytes are represented as images. The 

texture features are then extracted from these images by combining SIFT and ORB de-

scriptors. SIFT identifies key points or local features within a texture. These steady char-

acteristics can be used for image comparison, object tracking, and scene recognition, 

among other applications. SIFT consistently outperforms ORB, although ORB is the fastest 

method. When the angle of rotation is 90 degrees, ORB and SIFT exhibit similar behavior 

[31]. In order to take advantage of both techniques, we combined SIFT and ORB de-

scriptors to obtain pixel values representing texture features. 

 
Adware (229 × 229) (5.9KB) 

 
Banking (229 × 229) (5.02KB) 

 
Adware (256 × 256) (8KB) 

 
SMS (256 × 256) (8KB) 

Figure 4. A chunk of malware images (229 × 229, 256 × 256) extracted from network traffic. 

Algorithm 3: Texture Feature Mining 

Input: Network traffic (Bytes) 

Output: Texture features 

Step 1: Compute B= {𝐵1, 𝐵2 , … . , 𝐵𝑛  }, where 𝐵 is for Bytes 

Step 2: Compute 𝐼, where 𝐼 is image 

Step 3: Decompose 𝐼 in 𝑆𝑆1 & 𝑆𝑆2, where 𝑆𝑆1 = 229 ×  229 and 𝑆𝑆2 = 256 ×  256 

Step 4: Apply SIFT and ORB on 𝑆𝑆1 

Step 5: Apply SIFT and ORB on 𝑆𝑆2 



Sensors 2022, 22, 5883 8 of 26 
 

 

Step 6: Generate texture features from the combination of SIFT and ORB 

Step 7: Get texture features 

Step 8: Finish 

3.3. Deep and Prominent Feature Selection Using CNN 

A CNN network is designed to mine a large number of features and extract deep and 

prominent characteristics that can lessen the load and processing power on the classifica-

tion model. To achieve this, the pretrained dictionary and visually based texture features 

are combined and fed into the CNN. Several studies [32,33] have used CNN to categorize 

malware. The CNN model performs better with a variety of information, including text, 

images, and video files. We use a one-dimensional CNN network containing convolu-

tional layers, pooling layers, dropout layers, and a fully connected layer. Convolution acts 

as a filter, repeatedly cycling through the combined features and obtaining the best feature 

representations. Each filter generates a new set of features, called a feature map. The op-

timal number of filters is determined by adjusting the hyperparameters. We used three 

convolution layers with 32, 64, and 128 filters, respectively. Max pooling reduces the size 

of the feature space, the range of features, and the computational cost. This layer also gen-

erates a feature map with the most important features from the preceding set. Further-

more, we combine the Keras batch normalization layer with the CNN network. Batch nor-

malization keeps the resultant mean close to zero and the standard deviation close to one. 

Notably, it operates differently throughout training and testing. This stabilizes the learn-

ing process and reduces the number of training epochs deep networks need. In the pro-

posed CNN network, softmax and dropout layers address overfitting. Equation (1) repre-

sents the CNN network’s output. 

ok
1 = f(ck

1 +  ∑ Con1D(Xik
l−1, ti

l−1))

Nl−1

i=1

 (1) 

where ck
1 is the parameter bias of the kth neuron in the first layer, ti

l−1 is the outcome of 

the ith neuron in layer l-1, Xik
l−1 is the kernel strength from the ith neuron in layer l-1 to 

the kth neuron in layer l, and ‘‘f ()” is the activation function. After analyzing the deep 

features, we chose the top 250 prominent features for accurate malware classification. 

3.4. Ensemble Model for Malware Classification 

The deep and prominent features are fed into the voting-based ensemble model for 

malware classification and detection. 

3.4.1. Naive Bayes (SVM) 

To perform classification tasks, the NB algorithm, commonly known as the probabil-

istic algorithm, is utilized. It is a simple algorithm that works well in a variety of circum-

stances. The Bayes theorem is utilized to construct the classifier in Equation (2). 

𝑃(𝑦|𝑋) =
𝑃(𝑋|𝑦)𝑃(𝑦)

𝑃(𝑋)
 (2) 

where y indicates the class variable, whereas X indicates the characteristics or attributes. 

Here, X is defined as (x1, x2, …, xn). Gaussian naive Bayes (GNB) conditional probability 

arises from normal distribution, as shown in Equation (3). 

𝑃(𝑥1|𝑦) =
1

𝜎𝑦√2𝜋
𝑒−(𝑥𝑖−𝜇𝑦)2

/2𝜎𝑦
2 (3) 

  



Sensors 2022, 22, 5883 9 of 26 
 

 

3.4.2. Support Vector Machine (SVM) 

SVM is a supervised learning approach for classification and regression. It classifies 

by finding the most distinct hyperplane. It locates the hyperplane by widening the dis-

tance. Using the kernel function, the kernel trick converts a non-separable job into a sep-

arable solution. It is especially useful when dealing with non-linear discrete problems. We 

used sigmoid as a kernel function. The soft margin of an SVM classifier is calculated by 

reducing an expression of the kind given in Equation (4). 

[
1

𝑛
∑ max (0,1 − 𝑦𝑖(𝑤𝑇𝑥𝑖 − 𝑏))

𝑛

𝑖=1

] + λ‖𝑤‖2 (4) 

3.4.3. Decision Tree (DT) 

Each leaf node in a decision tree represents the outcome, a branch represents a deci-

sion rule, and an internal node represents a task. The top node is the root node. It usually 

segments based on the level of an attribute. A tree is partitioned using iterative segmen-

tation. This flow design could help make better decisions. It uses loss functions to assess 

the integrity of produced nodes. We employed entropy to estimate the decision node’s 

impurity, as illustrated in Equation (5). 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ 𝑝𝑖  ×  𝑙𝑜𝑔2𝑝𝑖

𝐾

𝑖=1

 (5) 

The entropy value varies between 0 and 1. The lower the entropy, the higher the pu-

rity of the node. Using entropy as a loss function allows for division only if the new nodes 

tend to have lower entropy than the parent node. 

3.4.4. Logistic Regression (LR) 

LR accurately predicts binary outcomes (y = 0 or 1). LR is better than linear regression 

for forecasting classification. Equation (6) shows the logistic function. 

𝑓𝑥 =
1

1 + 𝑒−𝑥
 (6) 

3.4.5. Random Forest (RF) 

RF is an estimator that uses DT models to improve the detection rate and reduce 

overfitting. DTs are often trained by “bagging”, which creates a “forest” of trees. The bag-

ging technique claims that integrating many DT models will yield excellent performance. 

During training, it may handle the growth of numerous DTs and extract information, ag-

gregating the results of each DT [34]. 

3.4.6. Voting-Based Ensemble Learning 

Ensemble is a robust model created by systematically combining base technologies. 

Unlike individual models, the ensemble model is able to solve classification and regres-

sion problems. The proposed investigation employs the soft polling ensemble approach. 

To begin, we used training data to build basic GNB, SVM, DT, LR, and RF models. The 

efficiency of the base models is then validated using test data, with each model producing 

a unique classification. To obtain the final classification performance, ensemble learning 

employs the estimations of several approaches as supplementary information [35]. The 

trained and texture features are combined for malware classification, as shown in Algo-

rithm 4.  

  



Sensors 2022, 22, 5883 10 of 26 
 

 

Algorithm 4 Malware Classification 

Input: Trained and texture features 

Output: Malware classification 

Step 1: Insert 𝑇 𝑎𝑛𝑑 𝐼 

Step 2: 𝑇′ = 𝐶𝑁𝑁(𝑇) to apply the CNN technique of trained features 

Step 3: 𝐼′ = 𝐶𝑁𝑁(𝐼) to apply CNN the technique of texture features 

Step 4: Calculate deep 𝑃𝐹 as a prominent features 

Step 5: Apply voting-based ensemble learning on deep 𝑃𝐹 

Step 6: App classification as malware or benign 

Step 7: Finish 

Computational complexity is concerned with categorizing computational issues 

based on their resource utilization and relating these classes to one another. We analyzed 

the computational complexity for each algorithm presented in in Table 1. The complexity 

is based on the space required for the proposed approach. 

Table 1. Computational cost analysis. 

Algorithm 
Computational Costs 

P/T D/E/D C/S 

Algorithm 1 |P|= |𝑝1| +  |𝑝2| + ⋯ +| 𝑝𝑛| |P|= |n| |𝑃′|=|n| 

Algorithm 2 |HTTP|+|TCP| |TF| |MTF| 

Algorithm 3 |B|= |𝐵1| +  |𝐵2| + ⋯ +| 𝐵𝑛| |I|+|𝑆𝑆1| + |𝑆𝑆2| |𝑆𝑆1| +  |𝑆𝑆2| 

Algorithm 4 |T|+|I|=|n| |𝑇′| +|𝐼′|=|n| |PF| 

P/T, packets/tokenize; D/E/D, decryption/extraction/decomposed, TF, trained feature; MTF, min-

ing trained files; C/S, computes/shifting. 

4. Results and Discussions 

4.1. Dataset Preparation 

The proposed method is thoroughly examined using two datasets obtained from the 

Canadian Institute for Cybersecurity (https://www.unb.ca/cic/datasets/index.html (ac-

cessed on 6 September 2021)). The first dataset, the Canadian Institute of Cybersecurity 

Android Adware and General Malware (CICAAGM2017) dataset [36] is gathered semi-

automatically by installing Android apps on authorized mobile devices. The dataset is 

generated using 1900 apps and is separated into three classes: adware, general malware, 

and benign. The adware contains 250 malicious apps, including Airpush, Dowgin, 

kemoge, mobidash, and shuanet. The general malware consists of 150 malicious apps, in-

cluding AVpass, fakeAV, fakeflash, GGtracker, and penetho. A total of 1500 apps are in-

cluded in the benign set. Table 2 contains a detailed description of the dataset. The second 

dataset, CICMalDroid 2020 [25,37], collected over 17,341 Android samples from different 

sources, including the VirusTota l service, the Contagio security blog, AMD, and 

MalDozer between December 2017 and December 2018. The classification of Android 

apps as malware is critical for cybersecurity investigators to implement effective classifi-

cation and detection systems. As a result, this dataset contains adware, banking, riskware, 

and SMS as malware, as well as benign apps. The number of adware, banking, riskware, 

SMS, and benign apps is 1253, 2100, 2546, 3904, and 1795, respectively. A detailed descrip-

tion of each app is presented in Table 3. 

  



Sensors 2022, 22, 5883 11 of 26 
 

 

Table 2. Android Adware and General Malware Dataset (CIC-AAGM2017) (dataset 1). 

App No. of Apps Family Description 

Adware 250 

Airpush Distributes intrusive adverts to bypass security 

Dowgin Ad package that collects data 

Kemoge Takes over the user’s Android phone 

Mobidash Created to broadcast ads and illegal access 

Shuanet Takes over the user’s device 

General Malware 150 

AVpass A utility software masquerading as a clock 

FakeAV Phishing scam to obtain full-version apps 

FakeFlash Fake Flash software that redirects viewers to a fake website 

Ggtracker Employed to obtain data via SMS fraud 

Penetho Fake tool to recover WiFi passwords 

Benign 1500 Benign Clean apps (not malicious) 

Table 3. CICMalDroid 2020 dataset (dataset 2). 

App Family No. of Apps Description 

Malware 

Adware 1253 
Ads can be hidden within malware-infected 

programs 

Banking 2100 Connects directly to the user’s online payments 

Riskware 2546 
Any legitimate program can be abused to inflict 

harm 

SMS 3904 Attacks via SMS 

Benign Benign 1795 Clean apps (not malicious) 

4.2. Result Analysis and Performance Comparison 

The trained textual features are combined with visual texture features before being 

fed into the designed model. We generated texture features with 229 × 229 and 256 × 256 

and then combined them with textual features to analyze the impact. Figure 5 shows the 

training and testing curves for malware classification and detection using dataset 1. We 

utilized two standard image sizes: 229 × 229 and 256 × 256. In terms of model accuracy, 

the blue and red curves represent the training and testing data points, respectively. In 

terms of model loss, the yellow and green curves represent the training and testing points, 

respectively. (a–d) demonstrate classification and detection for 229 × 229 images, whereas 

(e–h) demonstrate classification and detection for 256 × 256 images. These curves repre-

sent the dynamic behavior of the specified model during the training phase. Using 229 × 

229 texture features, the model accuracy curves range from 40% to 98% for classification 

and 40% to 99% for detection. The model accuracy curves for 256 × 256 texture features 

result in 35% to 98.1% classification and 30%to 99.16% detection accuracy. As a result, the 

combined features with 256 × 256 texture features outperform. The model loss is inversely 

proportional to the model accuracy. Figure 6 depicts the training and testing curves for 

model accuracy and loss using dataset 2. The model accuracy curves achieve between 50% 

and 98.1% accuracy for classification and between 40% an 99.1% for detection using da-

taset 1. Similarly, the same curves provide performance accuracy ranging from 30% to 

98.11% for classification and from 40% to 99% for detection. It is clear that textual features 

with 256 × 256 work better for malware detection. 



Sensors 2022, 22, 5883 12 of 26 
 

 

  

(a) (b) 

  
(c) (d) 

  
(e) (f) 



Sensors 2022, 22, 5883 13 of 26 
 

 

 
 

(g) (h) 

Figure 5. Epoch curves for training and testing data points using different visual representations for 

dataset 1, i.e., 229 × 229, 256 × 256 (training accuracy, training loss; testing accuracy, testing loss). (a) 

229 × 229 (classification); (b) 229 × 229 (classification); (c) 229 × 229 (detection); (d) 229 × 229 (detec-

tion); (e) 256 × 256 (classification); (f) 256 × 56 (classification); (g) 256 × 256 (detection); (h) 256 × 256 

(detection). 

  
(a) (b) 

  



Sensors 2022, 22, 5883 14 of 26 
 

 

(c) (d) 

  
(e) (f) 

  

(g) (h) 

Figure 6. Epoch curves for training and testing data points using different visual representations for 

dataset 2, i.e., 229 × 229, 256 × 256. (training accuracy, training loss; testing accuracy, testing loss). 

(a) 229 × 229 (classification); (b) 229 × 229 (classification); (c) 229 × 229 (detection); (d) 229 × 229 

(detection); (e) 256 × 256 (classification); (f) 256 × 56 (classification); (g) 256 × 256 (detection); (h) 256 

× 256 (detection). 

The confusion matrices for malware detection are obtained to examine misclassifica-

tion errors for each class, such as malware and benign. Figure 7 depicts the confusion 

matrices for the individual approaches and the ensemble model, allowing for detailed 

comparison. The ensemble model outperforms RF in terms of classification. For instance, 

both approaches had 99% classification and 12% misclassification accuracy for malware 

and 90% and 10% for benign, respectively. The LR model behaves similarly to ensemble 

learning but with different results. For example, LR has a 100% classification accuracy and 

0% misclassification for malware and 91% classification and 9% misclassification for be-

nign. Figure 8 depicts the confusion matrices for malware classification using 256 × 256 

dataset 2. Ensemble and RF models outperform other methods. For instance, they provide 

classification and misclassification rates of 99% and 1%, respectively, for each class, such 

as adware, banking, riskware, and SMS. 



Sensors 2022, 22, 5883 15 of 26 
 

 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 7. Confusion matrices for malware detection using dataset 2 with 256 × 256. (a) GNB; (b) 

SVM; (c) DT; (d) LR; (e) RF; (f) ensemble. 

  

(a) (b) 



Sensors 2022, 22, 5883 16 of 26 
 

 

  

(c) (d) 

  

(e) (f) 

Figure 8. Confusion matrices for malware classification using dataset 2 with 256 × 256. (a) GNB; (b) 

SVM; (c) DT; (d) LR; (e) RF; (f) ensemble. 

Table 4 shows the precision, recall, f1-score, and accuracy measures for both datasets 

using 229 × 229. Performance matrices are provided for each approach, as well as for the 

ensemble. The ensemble model outperforms the other models in terms of malware classi-

fication and detection when utilizing dataset 1. For malware classification, the precision, 

recall, f1-score, and accuracy measures are 98%, 97, 98%, and 98.18%, respectively. The 

same performance measures achieve 99%, 99%, 99%, and 99.02% accuracy for malware 

and detection, respectively. Using dataset 2, the ensemble approach performs better for 

malware classification; however, the RF approach works better for malware detection. 

Malware categorization performance measures are 98, 98%, 98%, and 98.1%, respectively. 

Similarly, the performance measures for malware detection are 99%, 99%, 99%, and 

99.04%, respectively. Table 5 shows the performance measures for malware classification 

and detection using both 256 × 256 datasets. The proposed approach achieves the best 

classification results using both datasets with 256 × 256 dimensions. Table 6 shows the 

malware classification performance measures for each class label using dataset 1. Table 7 

shows the performance measures for each class label using dataset 2. The methods with a 

bold style demonstrate that they outperform others for the designed experiment. 

  



Sensors 2022, 22, 5883 17 of 26 
 

 

Table 4. Performance comparisons for malware classification and detection using both datasets with 

229 × 229. 

Dataset 1 (229 × 229) 

 Methods Precision (%) Recall (%) F1-Score (%) Accuracy (%) 

Classification 

GNB 86 90 86 87.21 

SVM 95 89 81 93.11 

DT 98 98 97 98.03 

LR 95 89 91 93.34 

RF 98 97 98 98.03 

Ensemble 98 97 98 98.18 

Detection 

GNB 94 91 92 92.24 

SVM 93 93 92 92.16 

DT 99 99 98 98.94 

LR 93 93 92 92.16 

RF 99 99 99 99.02 

Ensemble 99 99 99 99.02 

Dataset 2 (229 × 229) 

Classification 

GNB 98 95 96 98.02 

SVM 96 92 94 95.96 

DT 95 95 94 95.04 

LR 98 97 97 97.98 

RF 97 97 97 97.02 

Ensemble 98 98 98 98.1 

Detection 

GNB 94 93 93 93.11 

SVM 93 91 91 91.08 

DT 99 99 99 98.96 

LR 95 93 93 93.1 

RF 99 99 99 99.04 

Ensemble 95 93 93 94.16 

Table 5. Performance comparisons for malware classification and detection using both datasets with 

256 × 256. 

Dataset 1 (256 × 256) 

 Methods Precision (%) Recall (%) F1-Score (%) Accuracy (%) 

Classification 

GNB 91 84 85 84.98 

SVM 92 91 90 91.02 

DT 96 96 96 96 

LR 92 91 90 91.02 

RF 96 96 96 96 

Ensemble 96 96 96 96 

Detection 

GNB 94 94 94 94.01 

SVM 94 94 94 94.01 

DT 98 98 97 98 

LR 94 95 94 94.08 

RF 99 99 99 99 

Ensemble 94 95 94 94.11 

Dataset 2 (256 × 256) 

Classification 
GNB 93 90 91 91.14 

SVM 97 98 97 97.21 



Sensors 2022, 22, 5883 18 of 26 
 

 

DT 96 96 96 96.1 

LR 98 98 97 97.99 

RF 97 97 97 97 

Ensemble 98 98 99 98.11 

Detection 

GNB 93 90 91 90.84 

SVM 93 91 91 91.46 

DT 99 99 99 99 

LR 94 91 92 91.36 

RF 99 99 99 99 

Ensemble 99 99 99 99 

Table 6. Per-class performance comparisons for malware classification using dataset 1 with 256x256. 

Class Method Precision (%) Recall (%) F1-Score (%) 

Adware 

GNB 88 100 94 

SVM 88 100 94 

DT 97 98 98 

LR 88 100 94 

RF 97 100 99 

Ensemble 88 100 94 

Gen: Mal 

GNB 100 88 93 

SVM 100 88 93 

DT 98 97 98 

LR 100 88 93 

RF 100 98 99 

Ensemble 100 88 93 

Table 7. Per-class performance comparisons for malware classification using dataset 2 with 256x256. 

Class Method Precision (%) Recall (%) F1-Score (%) 

Adware 

GNB 73 100 85 

SVM 100 87 93 

DT 98 99 99 

LR 1 88 93 

RF 99 99 99 

Ensemble 98 99 99 

Banking 

GNB 100 92 96 

SVM 100 92 96 

DT 99 98 98 

LR 1 92 96 

RF 99 99 99 

Ensemble 100 99 99 

Riskware 

GNB 100 86 93 

SVM 99 86 92 

DT 99 99 99 

LR 1 86 93 

RF 99 99 99 

Ensemble 100 99 99 

SMS 

GNB 100 83 91 

SVM 74 100 85 

DT 99 99 99 



Sensors 2022, 22, 5883 19 of 26 
 

 

LR 74 1 85 

RF 99 99 99 

Ensemble 98 99 99 

Table 8 depicts the analysis of the optimum features used to determine the best fea-

ture selection. The proposed method is tested with a variety of feature counts, such as 100, 

150, 200, 250, etc., corresponding to classification accuracy. Dataset 1 is used to examine 

feature selection with various feature counts. The NB, SVM, DT, LR, RF, and ensemble 

models provide the highest classification accuracy for 250 features. The classification ac-

curacy increases from 100 to 200 features but decreases after 250. With 400 classification 

features, classification accuracy increases slightly but then decreases. According to this 

analysis, 250 is the optimal number of features for the proposed approach. 

Table 8. Optimum feature analysis. 

Dataset 1 (229 × 229) 

Method 
Features 

100 150 200 250 300 350 400 450 500 

NB 90.61 91.53 92.14 92.24 91.22 90.52 90.66 89.71 89.62 

SVM 91.18 91.74 91.36 92.16 91.49 91.92 91.82 90.28 89.12 

DT 95.84 96.51 97.36 98.94 97.44 96.62 97.88 95.72 95.14 

LR 91.56 91.92 91.98 92.16 92.14 91.94 92.1 90.82 90.24 

RF 97.24 97.54 98.82 99.02 98.13 97.76 96.71 96.19 95.96 

Ensemble 96.88 97.76 98.96 99.02 98.52 97.48 96.98 96.71 96.28 

Generally, classification models produce different results after each execution. To 

evaluate performance, the datasets are randomly divided into train and test models. As a 

result, each execution produces unique results for each classification model. We used the 

same random seed on all classification models with 10 executions to test the scalability 

and reliability of the proposed ensemble model. Table 9 shows the classification model 

performance using the same random seeds. On 8 of 10 random seeds, the ensemble model 

outperforms other classification models, demonstrating that the ensemble model config-

uration is more reliable than a single classification model. At execution times 2 and 10, the 

RF slightly outperforms other models relative to the ensemble. Surprisingly, the average 

performance of 10 executions demonstrates that the ensemble model is more scalable and 

reliable than the random forest, and it is adopted as the best solution for malware detec-

tion and classification. Furthermore, the ensemble model has an accuracy range of 98.98% 

to 99.02%, whereas the RF has an accuracy range of 98.86% to 99.02%. 

Table 9. Average performance comparison with multiple executions. 

Dataset 1 (229 × 229) 

Method 
Execution Times 

1 2 3 4 5 6 7 8 9 10 Average 

NB 92.14 92.24 92.2 91.99 92.22 92.18 92.24 92.22 92.24 91.98 92.16 

SVM 92.12 92.16 92.16 91.99 92.11 91.98 91.92 92.16 92.12 92.14 92.09 

DT 98.88 98.94 98.9 98.94 98.44 98.92 98.89 98.72 98.94 98.92 98.85 

LR 92.16 92.16 92.14 92.04 92.1 91.99 91.96 92.16 92.13 92.16 92.1 

RF 98.97 99.02 98.96 99.02 99.01 98.74 98.91 98.86 99.00 99.02 98.95 

Ensemble 98.99 99.00 98.99 99.02 99.02 99.00 99.00 98.98 99.02 99.00 99.01 

 

  



Sensors 2022, 22, 5883 20 of 26 
 

 

Table 10 compares the proposed approach to previously published studies. These 

studies mostly made use of network traffic to classify Android malware. Aresu et al. [14], 

showed how analysis of mobile botnets’ HTTP traffic can be utilized to classify them into 

families. To do so, it analyzes HTTP traffic data to create malware clusters. This method 

also extracts signatures that can be used to detect new clustered malware with an accuracy 

of 98.66%. Li et al. [20] presented the Droid Classifier, which automatically builds multiple 

models over a set of annotated malware apps. Each model is built using common identi-

fiers collected from network traffic. Adaptive threshold settings are designed to represent 

diverse virus traits with an accuracy of 94.66%. Shanshan et al. [38] proposed identifying 

infected files by their URLs. Multi-view neural networks provide depth and breadth of 

information when analyzing malware, in addition to creating and distributing soft atten-

tion-weighting elements for use with specific data. The accuracy of URL-based malware 

classification is 95.74%. Shyong et al. [39] combined static authorization with dynamic 

network monitoring to classify Android apps. During the dynamic evaluation step, mali-

cious network traces are used to obtain various attributes, and Random Forest is then used 

to identify malware samples. The average Android malware performance is 98.86%. 

Shanshan et al. [28] presented a method to detect Android malware using URLs. Multi-

view neural networks are used to construct malware detection models that focus on fea-

ture depth. The weights of the features are dispersed to work on certain inputs. The sug-

gested approach has an accuracy of 98%. Our technique outperforms this method, with a 

99% malware detection accuracy. 

Table 10. Comparison with previously published works. 

Work Year Method Dataset Accuracy (%) 

Aresu et al. [14] 2015 Signature-based clustering Drebin and VirusTotal 96.66 

Li et al. [40] 2016 Droid classifier VirusTotal 94.66 

Shanshan et al. [38] 2018 Skip gram with neural network Malicious URLs (Emulator) 95.74 

Shanshan et al. [13] 2019 C4.5 decision tree Drebin and VirusTotal 97.89 

Shyong et al. [39] 2020 Random forest Drebin 98.86 

Shanshan et al. [28] 2020 Multi-view neural network VirusShare 98.81 

Our approach … 
Hybrid features with ensemble 

learning 

CIC-AAGM2017 and CICMalDroid 

2020 
99 

The proposed method is thoroughly compared to existing methods using the same 

datasets. Table 11 shows a performance comparison with state-of-art methods using the 

same datasets with different strategies. Texture, text, or a combination of both can be used 

to classify malware. Furthermore, some researchers used a CNN model to classify mal-

ware images without using descriptors to select special features. Alani et al. [21] intro-

duced AdStop, a machine-learning-based method that identifies malware in data traffic. 

The proposed method classified malware using textual features from the CIC-AAGM2017 

dataset and a multi-layer perceptron with an accuracy of 98.02%. Acharya et al. [22] pro-

posed a framework that extracts clusters using latent Dirichlet allocation and hierarchical 

clustering techniques. They used a CNN model, which has a precision of 98.3%, to classify 

malware without relying on any special features. In [22,24,41,42] CNN and TCN models 

were used to classify malware with texture features. The proposed deep learning models 

directly collect the malware images for classification without selecting the special features 

using descriptors. In [21,23,25] multi-layer perceptron (MLP), gradient boosting, and en-

semble methods were used to classify malware with textual features. To classify malware, 

we propose a method that combines textual and texture features from both datasets. When 

compared to state-of-the-art methods, the proposed approach outperforms, with a classi-

fication accuracy of 99%.  

  



Sensors 2022, 22, 5883 21 of 26 
 

 

Table 11. Performance comparison with state-of-the-art methods using the same datasets. 

Work Dataset Strategy Method Accuracy (%) 

Alani et al. [21] CIC-AAGM2017 Textual MLP (DNN) 98.02 

Acharya et al. [22] CIC-AAGM2017 Texture CNN 98.3 

Hadiprakoso et al. [23] CICMalDroid 2020 Textual Gradient Boosting 96.35 

Mohammad et al. [41] CICMalDroid 2020 Texture CNN 96.4 

Zhang et al. [24] CICMalDroid 2020 Texture TCN 95.44 

Mahdavifar et al. [25] CICMalDroid 2020 Textual Ensemble 97.84 

Peng et al. [42] CICMalDroid 2020 Texture CNN 98.6 

Our approach 
CIC-AAGM2017 & 

CICMalDroid 2020 
Hybrid Hybrid features with ensemble learning 99 

4.3. Model Interpretation and Validation Using Explainable AI and t-SNE 

To interpret and validate the proposed approach, we extracted a chunk of the most 

important features from the embedded matrix. Figure 9 depicts the importance of the fea-

tures among the 30 features. The feature “F24” is the most effective, indicating that it 

makes the most contribution to malware classification detection. However, the “F29” fea-

ture is the least effective and may perform the worst for the proposed strategy. The “F17” 

feature is the next most effective feature. Thus, we can readily determine which features 

are the most and least important. To explain the impact of each feature on the model out-

put, we used the Local Interpretable Model-agnostic Explanation (LIME) and SHapley 

Additive exPlanations (SHAP) libraries [43]. Figure 10 illustrates the proportionate con-

tribution of features to from the average of samples with a base value of 0 (malware) to 

the output value of 1 (benign). The values for this sample are indicated by numbers at the 

bottom of the figure. In our case, the base value is 0.22. The red values are those that are 

moving underneath the base value, whereas the blue values are those that are moving 

above the base value. The base value is a threshold, and values less than the base value 

can contribute to the malware class. Values that are greater than the base value can con-

tribute to the benign class. This allows us to evaluate the contribution of each feature to a 

specific class. Figure 11 depicts the effect of combined features on model output. The red 

color represents a higher contribution of each feature, whereas the green color represents 

smaller contributions. The combined effect of the “F24” feature is significant, whereas that 

of F15 is the smallest. This allows us to easily describe the impact of each feature on a 

certain class, such as malware or benign. This experiment evaluates the effectiveness of 

each feature, providing a clear picture of how each attribute affects the model output. 



Sensors 2022, 22, 5883 22 of 26 
 

 

 

Figure 9. Most significant features. 

 

Figure 10. Contribution of features to a certain class based on a threshold value. 

 

Figure 11. Combined effect of features on model output. 



Sensors 2022, 22, 5883 23 of 26 
 

 

The purpose of the t-distributed stochastic neighbor embedding (t-SNE) visualiza-

tion method is to identify whether features possess high or sparse knowledge. Further-

more, the t-SNE method is intended to evaluate the efficiency of the suggested approach. 

Maaten et al. [44] proposed the t-SNE method to visualize high-dimensional data. Figure 

12 shows the attentive ratio of semantic and syntactic feature local and global scores for 

various perplexity values. Using the R programming language, we designed two t-SNE 

visual studies. In the first experiment, we attempted to determine how much perplexity 

is required to distinguish between the benign and malicious classes. The best Android 

malware clusters are distinguished by the highest perplexity scores in the second experi-

ment. For instance, (a, c) have the lowest perplexity values, whereas (b, d) have the highest 

values. t-SNE makes use of iterations to distinguish between different types of samples. 

We utilized 400 iterations for each perplexity factor to display the distinct malware and 

benign groupings. The dataset density has a significant impact on the overall classification 

results. Because more qualitative data are presented for training, a higher density usually 

improves accuracy. To improve classification outcomes, the t-SNE visual clusters are bet-

ter segregated using optimal perplexity settings. A dataset can be divided into sections 

using an acceptable perplexity value and classified using important hyperparameters. 

This method is used to demonstrate the efficacy of the presented strategy because seman-

tic aspects can be extracted and classified as malware or benign to improve classification 

performance. 

  

(a) (b) 

  

(c) (d) 

Figure 12. t-SNE visualization for fused features using minimum (30 and 35) and optimal (50 and 

70) perplexity values. (a) Perplexity, 30; (b) perplexity, 50; (c) perplexity, 35; (d) perplexity, 70. 

5. Conclusions 

Mobile apps are susceptible to malicious network activity because of their frequent 

remote access. Such threats could gather crucial information while adversely affecting 

commerce, social order, and financial institutions. The malware detection system used in 

this study takes advantage of the combined influence of textual and textural features, com-

bining the strengths of text and visual elements. We proposed an algorithm for a packet 



Sensors 2022, 22, 5883 24 of 26 
 

 

parser that is used to collect HTTP and TCP streams from the encrypted communications 

generated by malicious traffic. It is possible to recover training vocab features from de-

coded information using word2vec embeddings. A method for transforming malware im-

ages is then developed to examine the byte stream with visual features. We used two 

standard image sizes (229 × 229) and (256 × 256) to test the proposed approach on features 

of varying size. The texture features from malware images are combined with trained vo-

cab to classify and detect malware. We designed a voting-based ensemble model for ac-

curate malware classification and detection. The classification and detection rates for da-

taset 1 with an image size of 229 × 229 are 98.18% and 99.02%, respectively. The classifica-

tion and detection rates for dataset 2 using a 229 × 229 image size are 98.1% and 99.04%, 

respectively. Similarly, for a 256 × 256 image size with dataset 1, these values are 96% and 

99%, respectively. For dataset 2, these values are 98.11% and 99%, respectively. The first 

dataset with an image size of 229 × 229 provides better classification results than the sec-

ond dataset with an image size 256 × 256. The proposed approach outperforms the state-

of-the-art methods using the same datasets, as shown in Tables 9 and 11. 

In the future, we plan to extract the trained vocab from other pretrained models, such 

as FastText and BERT. Then, the trained features can be combined with texture features 

to classify malware. Moreover, the proposed method can be tested with different types of 

ensembles, such as bagging and stacking. 

Author Contributions: F.U. proposed the study, performed simulations, and wrote the manuscript. 

S.U. wrote the algorithms. M.R.N. made writing suggestions. L.M., S.R. and X.C. reviewed and an-

alyzed the proposed research. All authors have read and agreed to the published version of the 

manuscript. 

Funding:  This research received no external funding 

Institutional Review Board Statement: Not applicable 

Informed Consent Statement: Not applicable 

Data Availability Statement: The data that support the findings of this study are openly available 

in the Canadian Institute for Cybersecurity—Android Adware and General Malware Dataset (CIC-

AAGM2017) and CICMalDroid 2020 at https://www.unb.ca/cic/datasets/android-adware.html (ac-

cessed on 6 September 2021) and https://www.unb.ca/cic/datasets/maldroid-2020.html (accessed on 

6 September 2021), respectively. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Arshad, S.; Shah, M.A.; Khan, A.; Ahmed, M. Android malware detection & protection: A survey. Int. J. Adv. Comput. Sci. Appl. 

2016, 7, 463–475. 

2. Felt, A.P.; Finifter, M.; Chin, E.; Hanna, S.; Wagner, D. A survey of mobile malware in the wild. In Proceedings of the 1st ACM 

Workshop on Security and Privacy in Smartphones and Mobile Devices, Chicago, IL, USA, 17 October 2011; pp. 3–14. 

3. Berman, D.S.; Buczak, A.L.; Chavis, J.S.; Corbett, C.L. A survey of deep learning methods for cyber security. Information 2019, 

10, 122. 

4. Faruki, P.; Bharmal, A.; Laxmi, V.; Ganmoor, V.; Gaur, M.S.; Conti, M.; Rajarajan, M. Android security: A survey of issues, 

malware penetration, and defenses. IEEE Commun. Surv. Tutor. 2014, 17, 998–1022. 

5. Egele, M.; Scholte, T.; Kirda, E.; Kruegel, C. A survey on automated dynamic malware-analysis techniques and tools. ACM 

Comput. Surv. (CSUR) 2008, 44, 1–42. 

6. Yang, L.; Han, Z.; Huang, Z.; Ma, J. A remotely keyed file encryption scheme under mobile cloud computing. J. Netw. Comput. 

Appl. 2018, 106, 90–99. 

7. Ullah, F.; Naeem, M.R.; Mostarda, L.; Shah, S.A. Clone detection in 5G-enabled social IoT system using graph semantics and 

deep learning model. Int. J. Mach. Learn. Cybern. 2021, 12, 3115–3127. 

8. Talha, K.A.; Alper, D.I.; Aydin, C. APK Auditor: Permission-based Android malware detection system. Digit. Investig. 2015, 13, 

1–14. 

9. Wang, W.; Wang, X.; Feng, D.; Liu, J.; Han, Z.; Zhang, X. Exploring permission-induced risk in android applications for 

malicious application detection. IEEE Trans. Inf. Forensics Secur. 2014, 9, 1869–1882. 



Sensors 2022, 22, 5883 25 of 26 
 

 

10. Sanz, B.; Santos, I.; Laorden, C.; Ugarte-Pedrero, X.; Bringas, P.G.; Á lvarez, G. Puma: Permission usage to detect malware in 

android. In International Joint Conference CISIS’12-ICEUTE 12-SOCO 12 Special Sessions; Springer: Berlin/Heidelberg, Germany, 

2013; pp. 289–298. 

11. de la Puerta, J.G.; Sanz, B.; Grueiro, I.S.; Bringas, P.G. The evolution of permission as feature for Android malware detection. In 

Proceedings of the Computational Intelligence in Security for Information Systems Conference, Burgos, Spain, 15–17 June 2015; 

pp. 389–400. 

12. Liu, X.; Liu, J. A two-layered permission-based android malware detection scheme. In Proceedings of the 2014 2nd IEEE 

International Conference on Mobile Cloud Computing, Services, and Engineering, Oxford, UK, 8–11 April 2014; pp. 142–148. 

13. Wang, S.; Chen, Z.; Yan, Q.; Yang, B.; Peng, L.; Jia, Z. A mobile malware detection method using behavior features in network 

traffic. J. Netw. Comput. Appl. 2019, 133, 15–25. 

14. Aresu, M.; Ariu, D.; Ahmadi, M.; Maiorca, D.; Giacinto, G. Clustering android malware families by http traffic. In Proceedings 

of the 2015 10th International Conference on Malicious and Unwanted Software (MALWARE), Fajardo, PR, USA, 20–22 October 

2015; pp. 128–135. 

15. Wang, S., et al. TextDroid: Semantics-based detection of mobile malware using network flows. in 2017 IEEE Conference on 

Computer Communications Workshops (INFOCOM WKSHPS). 2017. pp. 18-23, IEEE. 

16. Wang, S.; Yan, Q.; Chen, Z.; Yang, B.; Zhao, C.; Conti, M. Detecting android malware leveraging text semantics of network 

flows. IEEE Trans. Inf. Forensics Secur. 2017, 13, 1096–1109. 

17. Wang, S.; Chen, Z.; Zhang, L.; Yan, Q.; Yang, B.; Peng, L.; Jia, Z. Trafficav: An effective and explainable detection of mobile 

malware behavior using network traffic. In Proceedings of the 2016 IEEE/ACM 24th International Symposium on Quality of 

Service (IWQoS), Beijing, China, 20–21 June 2016; pp. 1–6. 

18. Vierthaler, J.; Kruszelnicki, R.; Schütte, J. Webeye-automated collection of malicious http traffic. arXiv 2018, arXiv:1802.06012. 

19. Aniceto, R.C.; Holanda, M.; Castanho, C.; Da Silva, D. Source Code Plagiarism Detection in an Educational Context: A Literature 

Mapping. In Proceedings of the 2021 IEEE Frontiers in Education Conference (FIE), Lincoln, NE, USA, 13–16 October 2021; pp. 

1–9. 

20. Ullah, F.; Naeem, M.R.; Bajahzar, A.S.; Al-Turjman, F. IoT-based Cloud Service for Secured Android Markets using PDG-based 

Deep Learning Classification. ACM Trans. Internet Technol. (TOIT) 2021, 22, 1–17. 

21. Alani, M.M.; Awad, A.I. AdStop: Efficient flow-based mobile adware detection using machine learning. Comput. Secur. 2022, 

117, 102718. 

22. Acharya, S.; Rawat, U.; Bhatnagar, R. A Low Computational Cost Method for Mobile Malware Detection Using Transfer 

Learning and Familial Classification Using Topic Modelling. Appl. Comput. Intell. Soft Comput. 2022, 2022, 4119500. 

23. Hadiprakoso, R.B.; Kabetta, H.; Buana, I.K.S. Hybrid-based malware analysis for effective and efficiency android malware 

detection. In Proceedings of the 2020 International Conference on Informatics, Multimedia, Cyber and Information System 

(ICIMCIS), Jakarta, Indonesia, 19–20 November 2020; pp. 8–12. 

24. Zhang, W.; Luktarhan, N.; Ding, C.; Lu, B. Android malware detection using tcn with bytecode image. Symmetry 2021, 13, 1107. 

25. Mahdavifar, S.; Kadir, A.F.A.; Fatemi, R.; Alhadidi, D.; Ghorbani, A.A. Dynamic android malware category classification using 

semi-supervised deep learning. In Proceedings of the 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, 

Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science 

and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), Calgary, AB, Canada, 17–22 August 2020; pp. 515–522. 

26. Chen, Z.; Yu, B.; Zhang, Y.; Zhang, J.; Xu, J. Automatic mobile application traffic identification by convolutional neural networks. 

In Proceedings of the 2016 IEEE Trustcom/BigDataSE/ISPA, Tianjin, China, 23–26 August 2016; pp. 301–307. 

27. David, O.E.; Netanyahu, N.S. Deepsign: Deep learning for automatic malware signature generation and classification. In 

Proceedings of the 2015 International Joint Conference on Neural Networks (IJCNN), Killarney, Ireland, 12–17 July 2015; pp. 1–

8. 

28. Wang, S.; Chen, Z.; Yan, Q.; Ji, K.; Peng, L.; Yang, B.; Conti, M. Deep and broad URL feature mining for android malware 

detection. Inf. Sci. 2020, 513, 600–613. 

29. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed representations of words and phrases and their 

compositionality. Adv. Neural Inf. Processing Syst. 2013, 26. https://doi.org/10.48550/arXiv.1301.3781. 

30. Qiao, Y.; Zhang, W.; Du, X.; Guizani, M. Malware Classification Based on Multilayer Perception and Word2Vec for IoT Security. 

ACM Trans. Internet Technol. (TOIT) 2021, 22, 1–22. 

31. Tareen, S.A.K.; Saleem, Z. A comparative analysis of sift, surf, kaze, akaze, orb, and brisk. In Proceedings of the 2018 

International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), Sukkur, Pakistan, 3–4 March 

2018; pp. 1–10. 

32. Lee, W.Y.; Saxe, J.; Harang, R. SeqDroid: Obfuscated Android malware detection using stacked convolutional and recurrent 

neural networks. In Deep Learning Applications for Cyber Security; Springer: Berlin/Heidelberg, Germany, 2019; pp. 197–210. 

33. Vasan, D.; Alazab, M.; Wassan, S.; Safaei, B.; Zheng, Q. Image-Based malware classification using ensemble of CNN 

architectures (IMCEC). Comput. Secur. 2020, 92, 101748. 

34. Khalilia, M.; Chakraborty, S.; Popescu, M. Predicting disease risks from highly imbalanced data using random forest. BMC Med. 

Inform. Decis. Mak. 2011, 11, 51. 

35. Sagi, O.; Rokach, L. Ensemble learning: A survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2018, 8, e1249. 



Sensors 2022, 22, 5883 26 of 26 
 

 

36. Lashkari, A.H.; Kadir, A.F.A.; Gonzalez, H.; Mbah, K.F.; Ghorbani, A.A. Towards a network-based framework for android 

malware detection and characterization. In Proceedings of the 2017 15th Annual Conference on Privacy, Security and Trust 

(PST), Calgary, AB, Canada, 28–30 August 2017; pp. 233–23309. 

37. Mahdavifar, S.; Alhadidi, D.; Ghorbani, A. Effective and Efficient Hybrid Android Malware Classification Using Pseudo-Label 

Stacked Auto-Encoder. J. Netw. Syst. Manag. 2022, 30, 22. 

38. Wang, S.; Chen, Z.; Yan, Q.; Ji, K.; Wang, L.; Yang, B.; Conti, M. Deep and broad learning based detection of android malware 

via network traffic. In Proceedings of the 2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS), Banff, 

AB, Canada, 4–6 June 2018; pp. 1–6. 

39. Shyong, Y.-C.; Jeng, T.-H.; Chen, Y.-M. Combining static permissions and dynamic packet analysis to improve android malware 

detection. In Proceedings of the 2020 2nd International Conference on Computer Communication and the Internet (ICCCI), 

Nagoya, Japan, 26–29 June 2020; pp. 75–81. 

40. Li, Z.; Sun, L.; Yan, Q.; Srisa-an, W.; Chen, Z. Droidclassifier: Efficient adaptive mining of application-layer header for classifying 

android malware. In Proceedings of the International Conference on Security and Privacy in Communication Systems, Guang-

zhou, China, 10–12 October 2016; pp. 597–616. 

41. Al-Fawa’reh, M.; Saif, A.; Jafar, M.T.; Elhassan, A. Malware detection by eating a whole APK. In Proceedings of the 2020 15th 

International Conference for Internet Technology and Secured Transactions (ICITST), London, UK, 8–10 December 2020; pp. 1–

7. 

42. Peng, T.; Hu, B.; Liu, J.; Huang, J.; Zhang, Z.; He, R.; Hu, X. A Lightweight Multi-Source Fast Android Malware Detection Model. 

Appl. Sci. 2022, 12, 5394. 

43. Mathews, S.M. Explainable artificial intelligence applications in NLP, biomedical, and malware classification: A literature 

review. In Proceedings of the Intelligent Computing-Proceedings of the Computing Conference, London, UK, 16–17 July 2019; 

pp. 1269–1292. 

44. Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9. 2579-2605. 

  

 

 

 


