
Continuous User Authentication
Featuring Behavioural Biometrics

Anum Tanveer Kiyani
Faculty of Science & Technology

Middlesex University, London

A thesis submitted for the degree of

Doctor of Philosophy
A thesis submitted to Middlesex University in partial

fulfilment of the requirements for the degree

April 2021

mailto:AK1933@live.mdx.ac.uk
http://www.mdx.ac.uk/about-us/our-schools/Faculty -of-science-and-technology
http://www.mdx.ac.uk


I would like to dedicate this thesis to my loving parents, my family!



Acknowledgements

First and foremost, I am grateful to God for providing me with this
opportunity and granting me the capability to proceed successfully.
I would like to express my sincere appreciation and gratitude to the
following people for helping me complete this thesis.

I am deeply grateful to Dr. Aboubaker Lasebae, my director of studies
and supervisor, for giving me the opportunity to work under him. He
has guided me and encouraged me to carry on through these years
and has contributed to this thesis with a significant impact. Dr.
Aboubaker has been very supportive and gave me the freedom to pur-
sue various topic without objection. My gratitude for his contribution
to my future career is immeasurable.

I would also like to thank my other academic supervisor, Dr. Kamran
Ali for his invaluable insights and suggestions. Dr. Kamran Ali has
always given me a hand by spending his valuable time in exploring
different ideas and concepts. At many stages, during this research
project, I benefited from his advice, particularly so when exploring
innovative ideas. I am forever indebted for his enthusiasm, guidance
and unrelenting support throughout this process.

Middlesex University has provided me with a very stimulating envi-
ronment in what concerns the extraordinary quality of its academic
staff, and that experience will leave a mark beyond this thesis.

I extend my thanks and gratitude to my family who have always been
a significant source of support and encouragement. I would like to
dedicate this thesis to my mother Azra Zatoon. This accomplishment
would not have been possible without her. Thank you for always
supporting me and believing me. Thank you for teaching me respect,



confidence and proper etiquette. I would like to express my heartfelt
thanks and gratitude to my brothers and sisters for always listening
when I wanted to talk, for the invaluable support and concern.

Finally, to Sohaib Ali Kiani, my husband – there are no words to
express how much you have helped me during these years. Without
you, this would have been merely impossible. Thank you all for the
constant unconditional support and encouragement you have provided
me during this journey.



Abstract

A user authentication method consists of a username, password, or
any other related credential. These methods are mostly used only once
to validate the user’s identity at the start of session or sometimes
after regular interval of time which can lead to security loopholes.
However, one-time verification of user’s identity is not resilient enough
to provide adequate security all over the session. Such authentication
methods are required which can continuously verify that only genuine
user is using the system resources for entire session.

In this thesis, a true continuous user authentication system is pro-
posed and implemented using behavioural biometrics i.e., keystroke
and mouse dynamics which tends to authenticate the user on each sin-
gle action. Behavioural biometrics are used since these can passively
provide the perpetual information about the user’s behaviour when
interacting with the system. Moreover, a novel idea of continuously
establishing the identity of user without prior claim at the start of
session is also investigated in this research.

Different types of system architectures were formulated based on base-
line or traditional machine learning and deep neural network tech-
niques. Baseline methods used the statistical features based on mean
and standard deviation along with the traditional machine learning
classifiers to authenticate the user. On the other hand, recurrent
neural networks take the behavioural data input as a sequential time-
series and extract features based on raw data events using recurrent
neural networks. In particular, system frameworks are designed to
lock out the imposter user as quickly as possible along with the opti-
mal effort of avoiding the false lock out of genuine users.



This research is examined with thorough and vigorous experiments
and validated with two types of behavioural biometric modalities.
Overall, the impact of this research is twofold: i) it provides a po-
tential solution framework for a true continuous user authentication
system which re-verifies te identity of user on each action and ii) it
presents a new possibilities of establishing the user’s identity on each
action without the earlier affirm of any identity associated with the
current user of system at start of session.



Contents

Contents vi

List of Figures xi

List of Tables xiv

Acronyms xvi

1 Introduction 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Static User Authentication (SUA) . . . . . . . . . . . . . . 2
1.1.2 Continuous User Authentication (CUA) . . . . . . . . . . 2
1.1.3 Continuous User Identification (CUI) . . . . . . . . . . . . 3
1.1.4 Periodic User Authentication/Identification (PUA/I) . . . 3

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.1 Goal of this Research . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 Key Research Questions . . . . . . . . . . . . . . . . . . . 8

1.3 Research Aim and Objectives . . . . . . . . . . . . . . . . . . . . 8
1.4 Contribution of this Thesis . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Continuous User Authentication - An Overview 14
2.1 User Authentication - Background . . . . . . . . . . . . . . . . . . 14

2.1.1 Types of Authentication . . . . . . . . . . . . . . . . . . . 15
2.2 Biometric Recognition System . . . . . . . . . . . . . . . . . . . . 17

vi



CONTENTS

2.2.0.1 Types of Biometrics . . . . . . . . . . . . . . . . 17
2.2.0.2 Phases of Biometric System . . . . . . . . . . . . 18

2.2.1 Performance Measurement of a Biometric System . . . . . 21
2.3 Continuous User Authentication with Behavioural Biometrics . . 22

2.3.1 CUA using Keystroke Dynamics . . . . . . . . . . . . . . . 23
2.3.2 Traditional Statistical Distance Methods . . . . . . . . . . 25
2.3.3 Traditional and Advanced Machine Learning Methods . . . 26

2.4 Continuous user Authentication with Mouse Dynamics . . . . . . 28
2.5 Continuous user Authentication Challenges . . . . . . . . . . . . . 31
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Continuous User Authentication based on novel Robust Recur-
rent Confidence Model(R-RCM) 37
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.1.1 Dataset Split . . . . . . . . . . . . . . . . . . . . 41

3.2.2 Feature Analysis . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.3 Detector Unit . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.3.1 Classification Process . . . . . . . . . . . . . . . . 43
3.2.3.2 Robust Recurrent Confidence Model (R-RCM) . 44

3.2.4 Response Unit . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2.5 Evaluation Threat Scenarios . . . . . . . . . . . . . . . . . 50
3.2.6 Performance Measure . . . . . . . . . . . . . . . . . . . . . 51

3.2.6.1 User Categories . . . . . . . . . . . . . . . . . . . 54
3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Continuous User Authentication using Keystroke Dynamics with
Baseline/Traditional Machine Learning Techniques 57
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2 System Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.1 Dataset Analysis . . . . . . . . . . . . . . . . . . . . . . . 58
4.2.2 Feature Engineering . . . . . . . . . . . . . . . . . . . . . 61

vii



CONTENTS

4.2.3 System Architecture . . . . . . . . . . . . . . . . . . . . . 62
4.2.3.1 1st PHASE , BASELINE CLASSIFIERS . . . . . 62
4.2.3.2 2nd PHASE, Recurrent Confidence Function . . . 67

4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3.1 Across Session Split . . . . . . . . . . . . . . . . . . . . . . 73

4.3.1.1 Experimental Setting I: Dynamic Classifier Selec-
tion with global Static RCM . . . . . . . . . . . . 73

4.3.1.2 Experimental Setting II: Weighted Classifier fu-
sion with Personalized RCM . . . . . . . . . . . . 74

4.3.1.3 Analysis for setting I and setting II (Across Ses-
sion split) . . . . . . . . . . . . . . . . . . . . . . 75

4.3.2 Across Sequence Split . . . . . . . . . . . . . . . . . . . . . 76
4.3.2.1 Experimental Setting I: Dynamic Classifier Selec-

tion with global Static RCM . . . . . . . . . . . . 76
4.3.2.2 Experimental Setting II: Weighted Classifier fu-

sion with Personalized RCM . . . . . . . . . . . . 77
4.3.2.3 Analysis for setting I and setting II . . . . . . . 78

4.3.3 Analysis on Across Session and Across Sequence . . . . . . 80
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 Continuous User Authentication using Keystroke Dynamics Based
on Deep Neural Networks 83
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2 System Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2.1 Dataset Analysis . . . . . . . . . . . . . . . . . . . . . . . 85
5.2.2 Hybrid Deep Learning Model . . . . . . . . . . . . . . . . 85

5.2.2.1 Keystroke Sequence Sampling . . . . . . . . . . . 86
5.2.2.2 Architecture . . . . . . . . . . . . . . . . . . . . . 87
5.2.2.3 Recurrent Neural Network (RNN) . . . . . . . . . 87
5.2.2.4 Architecture 1: LSTM and Robust recurrent con-

fidence model (R-RCM) . . . . . . . . . . . . . . 89
5.2.2.5 Architecture 2: LSTM per Frame and LSTM per

Sequence . . . . . . . . . . . . . . . . . . . . . . 90

viii



CONTENTS

5.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 93
5.3.1 Results in terms of ANGA and ANIA . . . . . . . . . . . . 93

5.3.1.1 Aggregated Results for all three settings of Archi-
tecture 1 . . . . . . . . . . . . . . . . . . . . . . 94

5.3.1.2 Aggregated Results of Architecture 2: LSTM per
Frame and per Sequence . . . . . . . . . . . . . . 97

5.3.2 Results in terms of EER . . . . . . . . . . . . . . . . . . . 99
5.3.2.1 Comparison with Previous Research . . . . . . . 100

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6 Continuous User Identification Using End-to-End Deep Neural
Model 102
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.2 End-to-End Deep Identification Model (E2E) . . . . . . . . . . . . 103

6.2.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.2.2 Sequence Sampling . . . . . . . . . . . . . . . . . . . . . . 104
6.2.3 Gated Recurrent Unit (GRU): Model Training . . . . . . . 104

6.2.3.1 Region Labelling Approach . . . . . . . . . . . . 105
6.2.3.2 GRU Training: Loss Functions . . . . . . . . . . 108

6.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 109
6.3.1 Aggregated Results for End-to-End Model . . . . . . . . . 115
6.3.2 Results in terms of EER . . . . . . . . . . . . . . . . . . . 117
6.3.3 Comparison with Previous Research . . . . . . . . . . . . . 117

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7 Continuous User Authentication using Mouse Dynamics with
Baseline and Deep Learning Techniques 118
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.2 System Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.2.1 CUA Featuring Mouse Dynamics using Baseline Approach 120
7.2.1.1 Feature Processing, Baseline Approach . . . . . . 120
7.2.1.2 BASELINE CLASSIFIERS . . . . . . . . . . . . 124
7.2.1.3 Robust Recurrent Confidence Model(R-RCM) . . 126

ix



CONTENTS

7.2.2 Mouse Dynamics CUA using Deep learning . . . . . . . . . 127
7.2.2.1 Problem Formulation . . . . . . . . . . . . . . . . 128
7.2.2.2 Sequence Sampling . . . . . . . . . . . . . . . . . 129
7.2.2.3 Bidirectional Long Short Term Memory (BiLSTM) 129
7.2.2.4 Hybrid Bidirectional Long Short Term Memory

(LSTM R-RCM) . . . . . . . . . . . . . . . . . . 129
7.2.3 Performance Measure . . . . . . . . . . . . . . . . . . . . . 130

7.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 133
7.3.1 Aggregated Results for Baseline methods . . . . . . . . . . 136
7.3.2 Aggregated Results for Deep Neural Network methods . . 139

7.3.2.1 Results Analysis in terms of Equal Error Rate . 141
7.3.2.2 Results Analysis in terms of Normalized ANGA

and ANIA . . . . . . . . . . . . . . . . . . . . . . 142
7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8 Conclusions and Further Work 145
8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
8.2 Limitations of this Work . . . . . . . . . . . . . . . . . . . . . . . 150
8.3 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

References 154

x



List of Figures

1.1 Periodic and Continuous User Authentication . . . . . . . . . . . 6

2.1 User Authentication Process . . . . . . . . . . . . . . . . . . . . . 15
2.2 Multi Factor Authentication (MFA) . . . . . . . . . . . . . . . . . 16
2.3 Biometric Traits Segregation Yang et al. (2018) . . . . . . . . . . 18
2.4 Phases of Biometric Recognition System . . . . . . . . . . . . . . 19
2.5 Equal Error Rate (EER) Yaacob et al. (2020) . . . . . . . . . . . 21
2.6 Keystroke Dynamics Dataset Classification . . . . . . . . . . . . . 24
2.7 Keystroke Hold time and Key Digraph Latency . . . . . . . . . . 24
2.8 Mouse Events Signature of a User . . . . . . . . . . . . . . . . . . 31

3.1 General Framework of Proposed CUA System . . . . . . . . . . . 39
3.2 Robust Recurrent Confidence Model (R-RCM) . . . . . . . . . . . 46
3.3 Confidence value for genuine user tested with the genuine test data 49
3.4 Confidence value for genuine user tested with the imposter test data 49
3.5 Three Evaluation Scenarios . . . . . . . . . . . . . . . . . . . . . 52
3.6 Components of Proposed CUA System . . . . . . . . . . . . . . . 56

4.1 Keystroke Distinct Features for 4 Different Users . . . . . . . . . . 59
4.2 Structure Example of Keystroke Dataset . . . . . . . . . . . . . . 60
4.3 Keystroke Dynamics Features Representation . . . . . . . . . . . 63
4.4 The System Architecture . . . . . . . . . . . . . . . . . . . . . . . 64
4.5 Ensemble Classifier Approach . . . . . . . . . . . . . . . . . . . . 65
4.6 Support Vector Machine . . . . . . . . . . . . . . . . . . . . . . . 66

xi



LIST OF FIGURES

4.7 Two Divergent Experimental settings for Proposed 2-Phase Method-
ology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.8 Genuine user validated with its own reference set(right) and with
imposter set(left) . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.9 Genuine user validated with its own reference set(right) and with
imposter set(left) . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.10 Genuine user validated with its own reference set(right) and with
imposter set(left) . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.11 Genuine user validated with its own reference set(right) and with
imposter set(left) . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.12 ANGA & ANIA percentage for all the four experiments . . . . . 80

5.1 Unrolled Recurrent Neural Network . . . . . . . . . . . . . . . . . 88
5.2 Framework of RNN Network Layers . . . . . . . . . . . . . . . . . 90
5.3 The System Architecture 1 . . . . . . . . . . . . . . . . . . . . . . 91
5.4 The System Architecture 2 . . . . . . . . . . . . . . . . . . . . . . 91
5.5 Genuine user validated with its own reference set(right) and with

imposter set(left) . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.6 LSTM results represented in percentage . . . . . . . . . . . . . . . 95
5.7 LSTM-RCM results represented in percentage . . . . . . . . . . . 96
5.8 LSTM- Robust RCM results represented in percentage . . . . . . 97
5.9 Integrated LSTM per frame and per sequence results represented

in percentage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.10 Comparison of baseline and deep learning methods . . . . . . . . 99

6.1 Comparison of Traditional Classification Techniques and End-to-
End Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.2 Illustration of proposed regions . . . . . . . . . . . . . . . . . . . 108
6.3 Pre-processed ground truth stitched multiple user sequences . . . 110
6.4 Model Predictions from Softmax GRU . . . . . . . . . . . . . . . 111
6.5 Recurrent Predictions from GRU-Robust RCM . . . . . . . . . . . 112
6.6 Recurrent deep learning identification . . . . . . . . . . . . . . . . 112
6.7 Single User Identification and Authentication . . . . . . . . . . . 113
6.8 Recurrent Continuous Output of E2E Model . . . . . . . . . . . . 114

xii



LIST OF FIGURES

6.9 CTC Blank Region for User Identification . . . . . . . . . . . . . 115
6.10 Accuracy and CTC loss Comparison for 20, 40, 75 users . . . . . . 116

7.1 Direction of Mouse Move . . . . . . . . . . . . . . . . . . . . . . . 123
7.2 Cumulative Distribution Function (CDF) of Mouse dynamics fea-

tures for User 1 & User 2 . . . . . . . . . . . . . . . . . . . . . . . 125
7.3 Framework of Hybrid BiLSTM-R-RCM network . . . . . . . . . . 131
7.4 Genuine user validated with its own reference set(left) and with

imposter set(right) . . . . . . . . . . . . . . . . . . . . . . . . . . 133
7.5 Genuine user validated with its own reference set(left) and with

imposter set(right) . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.6 Genuine user validated with its own reference set(left) and with

imposter set(right) . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.7 Genuine user validated with its own reference set(left) and with

imposter set(right) . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.8 Simple Baseline results represented in percentage . . . . . . . . . 137
7.9 Robust Baseline results represented in percentage . . . . . . . . . 138
7.10 Integrated Hybrid Simple LSTM results represented in percentage 140
7.11 Robust LSTM results represented in percentage . . . . . . . . . . 140
7.12 ANGA & ANIA percentage for all the four experiments . . . . . . 142

xiii



List of Tables

2.1 Scholarly Works based on Traditional Distance Methods using Keystroke
Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Machine Learning Scholarly Works for CUA with Keystroke Dy-
namics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Most Important Existing Scholarly Works on Mouse Dynamics . . 29

3.1 Keystroke Dynamics Dataset Statistics . . . . . . . . . . . . . . . 40
3.2 Mouse Dynamics Dataset Statistics . . . . . . . . . . . . . . . . . 41

4.1 Structure of Reference Feature Template . . . . . . . . . . . . . . 62
4.2 Across Session Split–Experimental Setting I . . . . . . . . . . . . 74
4.3 Across Session Split–Experimental Setting II . . . . . . . . . . . . 75
4.4 Across Sequence Split–Experimental Setting I . . . . . . . . . . . 77
4.5 Across Sequence Split–Experimental Setting II . . . . . . . . . . . 78

5.1 LSTM Network Structure . . . . . . . . . . . . . . . . . . . . . . 90
5.2 Architecture 1 (setting I): Aggregated Results of LSTM only . . . 95
5.3 Architecture 1 (setting II): Aggregated Results of LSTM-RCM . . 96
5.4 Architecture 1 (setting III): Aggregated Results of LSTM-Robust

RCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.5 Architecture 2: Aggregated Results of Integrated LSTM per Frame

and per Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.6 Comparison of Baseline Session split with Deep Learning Methods 99
5.7 Results in terms of EER . . . . . . . . . . . . . . . . . . . . . . . 100
5.8 Exact Imposter actions for Keystroke Dynamics . . . . . . . . . . 100

xiv



LIST OF TABLES

6.1 GRU Network Structure . . . . . . . . . . . . . . . . . . . . . . . 105
6.2 Maximum Actions for Different Regions Approach . . . . . . . . . 108
6.3 Aggregated Results of Recurrent End-to-End Model . . . . . . . . 115
6.4 Results in terms of EER . . . . . . . . . . . . . . . . . . . . . . . 117

7.1 Mouse Dynamics Raw Data Events . . . . . . . . . . . . . . . . . 121
7.2 Mouse Dynamics Extracted Features for Baseline Approach . . . . 124
7.3 BiLSTM Network Structure . . . . . . . . . . . . . . . . . . . . . 130
7.4 Aggregated Results of Simple Baseline . . . . . . . . . . . . . . . 137
7.5 Aggregated Results of Robust Baseline . . . . . . . . . . . . . . . 138
7.6 Aggregated Results of Integrated Hybrid Simple LSTM-RCM . . 139
7.7 Aggregated Results of Integrated Hybrid Robust LSTM-RCM (R-

RCM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.8 EER Rate for Proposed Four Methods . . . . . . . . . . . . . . . 141
7.9 Exact Imposter actions for Mouse Dynamics . . . . . . . . . . . . 143

xv



Acronyms

ANN Artificial Neural Network

ANGA Average Number of Geniune Actions

ANIA Average Number of Imposter Actions

CUA Continuous User Authentication

CUI Continuous User Identification

CNN Convolutional Neural Network

CER Crossover Error Rate

CDF Cumulative Distribution Function

CTC Connectionist Temporal Classification

DCS Dynamic Classifier Selection

DD Down-Down

DU Down-Up

DT Decision Trees

EER Equal Error Rate

E2E End-to-End

ETS1 Evaluation Threat Scenario 1

xvi



ETS2 Evaluation Threat Scenario 2

ETS3 Evaluation Threat Scenario 3

FAR False Acceptance Rate

FRR False Rejection Rate

FMR False Match Rate

FNMR False Non Match Rate

FER Failure to Enroll

GRU Gated Recurrent Unit

KD Keystroke Dynamics

KDR Keystroke Dynamics Recognition

KNN K-Nearest Neighbour

LSTM Long Short Term Memory

MD Mouse Dynamics

MDR Mouse Dynamics Recognition

MFA Multi-Factor Authentication

PUA Periodic User Authentication

PUA/I Periodic User Authentication/Identification

RBF Radial Basis Function

RCM Recurrent Confidence Model

ReLU Rectified Linear Unit

RF Random Forest

R-RCM Robust Recurrent Confidence Model

xvii



RNN Recuurent Neural Network

SUA Static User Authentication

SVM Support Vector Machine

UD Up-Down

UU Up-Up

WCF Weighted Classifier Fusion

XGBoost Gradient boosting Decision trees

3FA 3 Factor Authentication

xviii



Chapter 1

Introduction

1.1 Introduction

With the advancement of technological revolution, computer systems and net-
works have become an imperative requisite in almost all aspects of human life at
substantially greater rate. For instance, computer systems are controlling com-
munication services, banking, aviation, medical, business and personal operations
along with saving the confidential and important information into its databases.
However, this escalating reliance on computer systems has divulged novel secu-
rity threats to online confidential data and information. In this regard, security
of computer systems and networks is susceptible to different attacks at the user
level, system level or network level precisely.

Network and system level attacks include denial of service, malware and man-
in-the-middle attacks while the common user level attacks are masquerade or
imposter attacks. Subsequently, in the user level attacks i.e., masquerade at-
tacks, intruders exploit the legitimate users’ rights for unauthorised access to
some confidential information. One of the main factors responsible for this kind
of attack is vulnerable authentication which fosters the likelihood of imperson-
ation by intruders as legitimate users. Hence, security of the critical cyber security
systems is mainly reliant on the authentication or identification principles Dee
et al. (2019).
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Generally, authentication refers to the aptitude of individual to substantiate
that he is the one who he claims to be. On the other hand, identification is the
the process where system establishes the identity of user without any prior claim
of identity.

1.1.1 Static User Authentication (SUA)

Traditionally, user is authenticated using password, usernames or any other re-
lated information to ensure whether the user is the one claiming to be while
accessing a system or network. Subsequently, resources of session are allocated
upon authentication and user can use session for which it has been authenticated
until logged out or for some fixed period of time Shen et al. (2017). This is re-
ferred to as Static User authentication (SUA).

Static user authentication (SUA) can be based on one, two or three factors of
authentication in which every factor increases the security of the system. One-
factor authentication refers to the knowledge that user knows such as password,
username, or PIN. Two-factor authentication incorporates the knowledge factor
with the possession or something user owns, for instance token or identity card.
And, the three-factor authentication integrates the identity element or biometrics
of the end-user as well in terms of something you are in order to contribute as an
additional security layer. Velásquez et al. (2018).

In most critical security systems, all three factors of authentication are in-
corporated to make a three-layer secure system to get access to system and the
results show lesser risk of imposter to get access to system resources by exploiting
any loophole Kiyani et al. (2020).

1.1.2 Continuous User Authentication (CUA)

The problem arises when system resources are still not considered to be secure
for the whole session of user even after the successful implementation of three
factor authentication at the start of session. For instance, if a person leaves its
system or phone unattended or forgets to log out from authenticated session of
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any critical application that contains sensitive information, then an attacker can
easily takeover as a legitimate user. For that reason, one-time validation of the
user’s identity is not strong enough for providing resilient security throughout the
user’s work session in high-risk security environments. Ultimate possible solution
to this problem can be continuous monitoring of the system or application after
the initial log-in to ensure that the legitimate user is using the system for the
entire session. This is referred to as Continuous User Authentication (CUA)
Alotaibi et al. (2019).

CUA might not substitute the SUA which is used at the start of session to get
access to system but CUA is used as an extra layer of security after the legitimate
user has got access to system resources to ensure the same user is using the system
for whole session. The main aim of CUA is to detect and lock out the imposer
user to avoid or lessen the damage caused to system resources and confidential
information for which only legitimate user has the access privilege. In this aspect,
CUA method should validate the identity of user on each action performed on
system in order to detect imposter user as soon as possible and to avoid the false
lockout of genuine user to substantially greater extend.

1.1.3 Continuous User Identification (CUI)

On the other hand, if SUA might be removed from the start of session then
system needs to identify the current user from a given set of users. In this case,
the identification of given user on each action would be referred to as Continuous
User Identification (CUI) Kochegurova and Martynova (2020).

1.1.4 Periodic User Authentication/Identification (PUA/I)

Periodic User Authentication/Identification (PUA/I) is an approach in which
system identifies the user based on fixed block of actions or after fixed period
of time. In this approach, system waits until the user performs the given fixed
number of actions or fixed time frame before the authentication or identification
techniques can be applied to verify the users identity.
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1.2 Problem Statement

The existing computer systems are mainly reliant on user authentication methods
at initial login and system resources with privileged permissions are allocated to
authorised user for the whole session without re-validating that whether the cur-
rent user is the one who has been authenticated earlier or not. More specifically,
the system resources are allocated to any user for the duration of whole session
until user logs out of system after initial login. This type of static authentication
mechanisms could be appropriate for low risk security systems, however, it can
fosters the security threats in high risk security systems where confidentiality of
data, information and system resources is the main priority.

A vulnerable authentication method escalates the risk of session hijacking and
masquerade attacks on an open session of user who forgets to log out or leave the
system unattended for shorter or longer period of time. In this case, continuous
user authentication (CUA) ought to be an imperative pre-requisite for high risk
security environments where only having static user authentication (SUA) at the
start of session is not impermeable enough to monitor that only legitimate user is
accessing the confidential information and system resources for the whole session.

A robust CUA system should meet two basic requirements. Firstly, it should
not disturb the user while it is performing any tasks on system and work passively
by gathering the behavioural information of users. This requirement rules out the
knowledge and possession based authentication methods where user needs to be
actively involved in providing the credentials i.e., password, PINS or tokens for
authentication purpose. Secondly, CUA should authenticate the user continu-
ously on every single activity that user is performing.

With the advancement of technology, more sophisticated approaches related
to physiological and behavioural human characteristics have been utilised to make
computing resources more secure which include biometrics i.e., fingerprints, face,
iris, keystroke dynamics and mouse recognition. Biometric technology has been
broadly used in physical security systems, however, the integration of biometrics
for daily usage of computer systems has been comparatively low. The main reason
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for restricted adoption of biometrics is dependence on special purpose hardware
for biometric data collection. Therefore, it can eventually make the incorporation
of biometric security more expensive than the actual cost of computer resources.
Most of the vendors are integrating these biometric data collection devices into
their products. However, still enormous devices are scarce with such incorporated
devices which has restricted the implementation of biometric technology for day
to day computer security to a greater extent.

In this regard, another interesting class of biometrics named behavioural
biometrics Alotaibi et al. (2019) have gained popularity nowadays. These be-
havioural biometrics scrutinize the user behaviour while individual is interacting
with computer systems in order to validate its identity. Moreover, most of the
behavioural biometrics i.e., keystrokes or mouse dynamics, do not require any
extra hardware to collect biometric data thereby implementation and operational
cost is less as compared to physiological biometrics which require special devices
like fingerprint scanner or iris recognition devices etc.

In order to meet the requirements of true CUA, one possible way is to use
behavioural biometrics e.g., Keystroke dynamics and Mouse dynamics which may
play an important role to validate the user’s identity throughout the session by
distinguishing one user from another. Moreover, most of behavioural biometrics
do not require users to present biometrics identification while preforming impor-
tant tasks and tends to authenticate the user on each single action.

Analysing the user behaviour for continuous authentication or identification
is a challenging task owing to the insufficient information and large intra-class
disparities of data recorded by the computer input devices. Accordingly, most of
the preceding research works had employed the analysis based on PUA so the sys-
tem records the data for fixed block size and then afterwards analyse the data to
decide if it belongs to genuine user or not. However, this approach can give room
to imposer user to perform illegitimate activities on system. On the contrary, a
true CUA method inclines to verify the identity of user after each single action.
The basic concept of periodic and continuous user authentication is illustrated in
Fig 1.1.
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Figure 1.1: Periodic and Continuous User Authentication

Since the behavioural biometrics mostly depict the regular user behaviour
while interacting with the relevant device, therefore these characteristics mostly
rely on the hardware specification of devices, background context and user’s emo-
tion or age. The scholarly works, presented in literature review in domain of CUA
using behavioural biometrics, mostly rely on statistical features based on mean
and standard deviation of those features. These approaches had considered to
maintain the static database of the relevant extracted features. However, this
approach has few shortcomings: Firstly behavioural biometrics tend to change
gradually with time or based on configuration and specification of different hard-
ware devices. Therefore, the main disadvantage of maintaining a static database
of users populated with statistical features could affect and decrease the perfor-
mance or accuracy of system over time. Secondly, behavioural data i.e., keystroke
and mouse dynamics, represents a sequential events of time-series which can con-
tain hidden information regarding the specific behaviour of user which cannot be
represented with statistical feature profiles of users as well as traditional classifi-
cation methods cannot mine these type of features to distinguish one user from
other.
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1.2.1 Goal of this Research

This work aspires to investigate new techniques for continuous user authentication
(CUA) in order to provide optimum security for the computing devices. With
this aspect, the new possibilities are analysed for continuous user authentication
or identification to overcome the drawbacks of the state of the art CUA systems.
Additionally, the probability of rejecting a legitimate user and probability of
accepting an attacker is investigated by the proposed CUA system. With this
background, the following goals have been addressed in order to build a robust
and reliable CUA/CUI system:

• Continuous: System should be able to monitor the users’ computer usage
incessantly, except the periods of deliberate pauses in keystrokes and mouse
movements and actions by the relevant user, during its authenticated session
on computer.

• Real-time: System could assess the user on each and every action per-
formed on computing device. In order to do so, it should take into account
or accumulate the confidence of user on all the previous actions as well. It
should preferably decide, based on accumulated performance, if user can
continue using the system or not.

• Unobtrusive: System should work in background without disturbing the
user while he/she is performing the daily routine tasks on computer. For
instance, user should not required to provide data or credentials after every
set time duration in order to authenticate itself. System should work on
continuous behavioural data collected from infused devices without requir-
ing any additional equipment or attentions.

• Robust: System should be able to capture the distinct features of each
user and trust the genuine user while identify the imposter with low errors.
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1.2.2 Key Research Questions

In order to propose new architectural designs for CUA / CUI, some of the key
research questions that were addressed in this thesis are:

1. Devising ways of continually verifying system users.

2. Investigating the impact of true continuous user authentication compared
to state of art periodic authentication on security.

3. Establishing the identity of user without prior claim of identity at start of
session.

4. Analysing the performance of the system using raw behavioural biometric
data as compared to statistical user profiles.

5. Assessing the impact on system performance by using Deep Neural Net-
works as compared to traditional Baseline Methods.

1.3 Research Aim and Objectives

With the huge advances in the technology, issues of system hacking and theft
of confidential information are escalating owing to the vulnerabilities in the se-
curity of the critical applications. Most of these susceptibilities are due to the
one-time validation of user’s identity by utilising the conventional user authenti-
cation practices like usage of passwords, tokens and PINs. For critical security
systems, a continuous monitoring system is needed which can authenticate user
on each action performed on system. In this aspect, the perception of employing
behavioural patterns of user as biometric credential to escalate security is being
investigated.

Alongside addressing the main issues highlighted above, the ultimate research
aim is:

“To propose and implement an efficient continuous user authenti-
cation system using behavioural biometrics”
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In order to implement efficient continuous authentication system, some of the
key research objectives which have been addressed are:

1. To critically examine the constraints and drawbacks of state of art contin-
uous authentication systems (CUA), and uncover the new possibilities for
CUA to overcome the challenges within the traditional CUA.

2. To present a true CUA employing a proposed recurrent confidence module
authenticating the user.

3. To analyse and implement the continuous user authentication using keystroke
dynamics with baseline approach and techniques.

4. To propose the deep learning techniques in contrast to baseline approach
to validate CUA with keystroke dynamics.

5. To analyse the continuous user authentication with behavioural biometrics
based on traditional statistical features versus proposed temporal features.

6. To propose a method to establish the user identity continuously without
prior claim of identity at start of session.

7. To investigate mouse Dynamics modality over CUA in order to explore
CUA in comparison to other behavioural biometrics.

8. To apply baseline approach and deep learning techniques to validate CUA
with mouse dynamics.

1.4 Contribution of this Thesis

The primary contributions made in this thesis are:

• Continuous authentication problem is not new in the research, however,
the preceding research conducted in this domain had mostly focussed on
periodic user authentication based on fixed block of actions which can give
room to imposter user to perform illicit activities. In contrast, a true con-
tinuous user authentication mechanism based on each action is proposed
and implemented in this work.
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• A true CUA system has been proposed and implemented, consisting of
robust recurrent confidence model (R-RCM). It takes into account each
keystroke or mouse activity performed by individual in order to incessantly
decide the legitimacy of user on each action. Moreover, the proposed R-
RCM model uses a novel approach of detecting and locking out of imposter
user once it crosses the alert threshold. The proposed system has been
validated with keystroke and mouse dynamics.

• A continuous user identification (CUI) is studied and novel approach based
region labelling and an idea of inserting blank label in area of low user
confidence has been introduced for the first time.

• The usability and efficiency of various baseline and deep learning architec-
tures in combination with newly proposed R-RCM model for CUA using
keystroke and mouse dynamics have been investigated. Different novel sys-
tem architectures are formulated.

• Combination of continuous user authentication and periodic user authenti-
cation is also studied for the time using deep neural networks.

• Behavioural data is utilised as a time-series and hidden behavioural features
are also extracted along with per action based features.

• The recurrent neural network (RNN) is employed which to the best of our
knowledge has not yet been studied for CUA using mouse dynamics and for
CUI.

• Performance metrics have been proposed for true CUA system in terms
of normalized portion of average genuine and imposter actions which can
enhance the usability of these experimental results in future work done in
domain of CUA/ CUI.

1.5 Thesis outline

In this thesis, the primary focus is how to validate the identity of user contin-
uously on each action performed by user throughout the session. Specifically,
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the importance of performing the continuous authentication without disturbing
the user during its session is recognised and different possibilities are explored to
avoid the false lock out of genuine user as well as fast detection of imposter user
to limit the damage caused to system resources. Additionally, novel techniques
are researched to establish the identity of user without prior claim of identity at
start of session. In this aspect, different continuous user authentication or iden-
tification schemes have been proposed and implemented based on baseline and
deep neural networks. The proposed techniques have been validated with exten-
sive experiments with different behavioural biometric modalities. The primary
contributions of this work along with thesis structure are given below:

Chapter 2, details an in-depth literature review on continuous user authenti-
cation methods. It discusses the challenges and issues while designing the system
for CUA methods, details the factors that caused unnecessary hindrance of the
previous CUA schemes. Moreover, this chapter entails the importance of be-
havioural biometrics for CUA along with the challenges, feature selection and
requirement of a true continuous user authentication system by exploiting a sin-
gle action based authentication method.

Chapter 3, The continuous user authentication is introduced based on novel
proposed Robust Recurrent Confidence Model (R-RCM) which tends to authen-
ticate the user on each action in order to make the system a true CUA method.
In this chapter, dataset based on keystroke dynamics and mouse dynamics have
been studied along with the formulation of different dataset split strategies in or-
der to investigate the effect of time intervals on behavioural data which has been
collected during different sessions. The detailed structure of proposed R-RCM is
given which can be applied to any biometric modality to achieve the true essence
of CUA system. Moreover, the alternative performance measures for CUA sys-
tems are discussed based on Average Number of Genuine Actions (ANGA) and
Average Number of Imposter Actions (ANIA) in terms of normalized mean ac-
tions which can make it easy to compare the work done in domain of CUA for
future research.
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Chapter 4, A Continuous User Authentication (CUA) using keystroke dy-
namics with proposed baseline techniques is presented. In this chapter, keystroke
dynamics are used to implement a CUA system and system architecture is de-
signed based on two phase methodology which integrates ensemble learning ap-
proach along with the new proposed Robust Recurrent Confidence Model (R-
RCM). Different experimental settings have been formulated to achieve the opti-
mal system performance.

Chapter 5, Continuous User Authentication (CUA) using keystroke dynam-
ics with deep learning techniques are presented. In this chapter, different deep
neural networks based on Long Short Term Memory (LSTM) have been trained
using keystroke dynamics data. Moreover, novel different system architectures are
proposed for a true CUA system based on deep neural networks and proposed
R-RCM model.

Chapter 6 Continuous User Identification (CUI) is investigated without the
involvement of static user authentication with usernames and passwords at start
of session. The proposed R-RCM model is integrated with deep neural network
to continuously establish the identity of user on each action. End-to-End (E2E)
deep neural model using GRU + R-RCM are investigated for the first time for
CUI problem.

Chapter 7, Continuous user authentication using Mouse Dynamics with base-
line and Deep learning techniques is tested. In this chapter, mouse dynamics bio-
metric modality is validated with our proposed baseline and deep neural network
methods. Different experiments are conducted to evaluate the system perfor-
mance. Moreover, mouse dynamics is also a less explored and emerging modality
for CUA. In this regard, the formulated deep learning models have been tested
for the first time in research for mouse dynamics using CUA.

Chapter 8, It discusses the conclusion, research findings and further work.
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Chapter 2

Continuous User Authentication -
An Overview

This chapter provides the background to the underlying concepts depicted in de-
tail in the forthcoming chapters. It aspires to highlight the key concepts of user
authentication, static and continuous user authentication, behavioural biomet-
rics along with security and privacy aspects of computing devices. Moreover, it
also gives an insight to the background of biometrics recognition systems. As a
precursor to the following chapters, this chapter tends to build the prospect for
a secure continuous authentication method by exploring the security loopholes
which can be used by imposter users to get access to system resources and it is
aimed to provide an in-depth insight into the key issues to be addressed in order
to build a robust continuous user authentication system.

2.1 User Authentication - Background

User authentication is an important factor of computer and network security to
ensue that only legitimate user has access to confidential information and critical
system resources. Formally, User authentication can be defined as:

"When the user claims who he/she is and the system accepts (or declines)
his/her claim."

14



The graphical representation of user authentication is shown in Fig 2.1 below:

Figure 2.1: User Authentication Process

Presently, authentication systems incorporate multiple factors to verify the
identity of user with associated credentials. Multi factor authentication (MFA)
systems are considered to be more secure as compared to single factor authen-
tication mechanisms since it provides more layers of security which given user
has to pass through in order to get access to system Ometov et al. (2018). The
basic concept of MFA is illustrated in Fig 2.2. Mostly, three factor authentication
(3FA) is used which includes:

• Knowledge based factor : It relates to something the user knows, such
as a password, PIN or security questions.

• Possession based factor : It relates to something the user has, such as
cards, smartphones, or identity tokens.

• Biometric based factor : It relates to something the user is, i.e., biometric
data or behaviour pattern.

2.1.1 Types of Authentication

In this thesis, three types of authentication methods are discussed including:

• Static User Authentication (SUA): The system validates the identity
of user once at the start of session i.e., login time.
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Figure 2.2: Multi Factor Authentication (MFA)

• Periodic User Authentication (PUA): The system re-validates the
identity of user after fixed block of actions or time intervals during the
user active session.

• Continuous User Authentication (CUA): The system re-validates the
identity of user at each action incessantly throughout the user active session.

The SUA methods define the process of initial identity validation at start
of session or login time by utilising one or multi factor authentication scheme.
However, these methods are still vulnerable owing to the fact that even though
a strongest initial login is applied to give access to system resources. But if the
user leaves the system unattended after the initial authentication or forgets to
logout the authorised session, then any other individual can use the system on
behalf of legitimate user and steal the important information.

On the other hand, periodic and continuous user authentication intends to
verify the identity of user after the initial login to ensure that only legitimate
user is using the system for the whole session. However, PUA validates the user’s
identity after fixed time intervals or fixed block sizes in contrast to CUA which
can authenticate user on each activity or action. The key requirement for both
PUA and CUA is that authentication process should not disturb the user while
he/she is performing important tasks on system. For instance, user should not
has to provide authentication credentials after some fixed interval to time in order
to verify that he/she is the same user who has been authentication at the login
time. This prerequisite rules out the incorporation of knowledge and possession
based authentication credentials for PUA and CUA based authentication meth-
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ods. Because for both, knowledge and possession based, authentication methods
require the user to be actively engaged in authentication process by typing the
password, PIN or by providing the token or card credentials.

On the other hand, some types of biometrics i.e., behavioural biometrics do not
require the user to be actively engaged in providing the biometric data. Therefore,
it can be used to periodically or continuously authenticate the user throughout
the active session.

2.2 Biometric Recognition System

A biometric system is a system that takes biometric data from an individual,
extracts the feature set and compares that feature set with the one that is stored in
the database. It can be called as a pattern recognition system. Biometric systems
follow two modes of operation namely identification and authentication. In the
identification phase, the person identity is established by the system by searching
the identity of the user in system database without any prior claim of identity
by user. Subsequently, authentication phase of user verifies the user identity
with the assistance of particular evidence provided such as username/password
to determine whether this evidence or credential is counterpart of this username
or not as given in registered database. Kiyani et al. (2020).

2.2.0.1 Types of Biometrics

Biometrics can be evidently divided into two categories named physiological and
behavioural methods Yang et al. (2018) as shown in Fig 2.3.

• Physiological Biometrics : Fingerprint, Facial, Iris, Retinal, and Hand
geometry recognition.

• Behavioural Biometrics : Keystroke dynamics, Mouse dynamics, signa-
ture, gait and sweat pores recognition.
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Figure 2.3: Biometric Traits Segregation Yang et al. (2018)

2.2.0.2 Phases of Biometric System

Biometric recognition system basically operates in the same manner regardless of
the type of biometric used. However, collection of sample or its storage can differ
in accordance to the nature of the biometric trait being used for authentication.
The process of conventional biometric recognition system is illustrated in Fig 2.4
and it includes the following phases:

• Sample Collection

• Feature Extraction

• Template saved in the Database

• Matching or Comparison

• Sample Collection

Biometric recognition scheme instigates with the gathering of biometric
data or sample which is meant to be used for authentication purpose. Bio-
metrics data is collected using different devices depending upon the nature
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Figure 2.4: Phases of Biometric Recognition System

of biometric characteristic. For instance, a fingerprint scanner will be used
for collection of fingerprints samples from users. On the other hand, be-
havioural biometric data can be collected using the keyboard and mouse
devices. The collection step is mandatory since in any biometric system
the user must have to register with the system so that every time for user
authentication these samples will be used as template. Moreover, collecting
several samples of a biometric characteristic from a single user and then
selecting the quality one is often considered to be a good approach Singh
et al. (2019). The rationale behind this strategy lies in the fact that poor
sample can result in false rejection owing to the slight discrepancy which
might be a consequence of different face expressions or the different pressure
of fingers on scanner at the time of authentication and registration.

• Feature Extraction

After sample collection, different techniques are applied on the sample to
extract the template. In computer systems, the whole sample is not stored
in the database instead the important features of sample are extracted in
the form of mathematical code and it is referred to be the template.

• Storage of Model pattern or template
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After template generation, it ought to be stored along with the other iden-
tifiers such as username or ID number in order to recover it in matching
phase for comparison with the reference input for user authentication. Ac-
cordingly, these templates can be saved in any of the three locations:

– Back-end Database

– Smart card

– Biometric device

Back-end database is used when large numbers of templates are required to
store, however, additional server is needed for this purpose. Subsequently,
sometimes biometric device itself is used to store the templates; in this case,
matching process can be faster as system will not have to wait longer for
the server to retrieve the stored templates. Nevertheless, this practice is
rational for small amount of data only. Often smart cards are also used to
save biometrics onto it but this stratagem can be risky in case if card get
lost. Among all these storage location, mostly backend system database is
considered to be safe.

• Matching

When user wants to authenticate himself to access particular information
or services of the application or system then biometric samples are taken
from the intended persons at that time, these are known as live biometrics.
Analogous to the registration phase, these samples are pre-processed and
features are extracted followed by query template generation. Subsequently,
this query template will be compared against the saved template or model
pattern in the database. If both templates match and system returns the
match score that is above the given threshold, then user is authenticated
that he is the one who he is claiming to be thereby granting access to the
specified services. Correspondingly, if the template will not match then au-
thentication will fail and user would not be allowed to access the particular
service.
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2.2.1 Performance Measurement of a Biometric System

Performance of the biometric system depends upon the different measures such
as:

• False Acceptance Rate (FAR): It is the probability that the access
would be given to the unauthorised user due to inaccurate classification.

• False Rejection Rate (FRR): It is the probability that the access would
be denied for the authorised user due to inaccurate classification.

• Failure to Enroll Rate (FER): It refers to the percentage of users who
could not accomplish the registration phase completely.

• Equal Error Rate (EER): EER is a metric which assesses the data clas-
sification performance for any biometric model Yaacob et al. (2020). Subse-
quently, EER is considered to be a point where False rejection rate (FRR)
and False acceptance rate (FAR) overlap each other as shown in Fig 2.5.

Figure 2.5: Equal Error Rate (EER) Yaacob et al. (2020)
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2.3 Continuous User Authentication with Behavioural

Biometrics

Behavioural biometrics are considered to be a type of biometric which depicts the
certain behavioural patterns of given user according to the biometric trait which
can be used to distinguish one user from the other. Keystroke dynamics and
Mouse dynamics are interesting types of behavioural biometrics which have re-
ceived special attention in recent years in biometric user authentication research.
The advantage of using keystroke and mouse dynamics lies in the fact that:

• There is no need of any extra hardware to capture the behavioural data
which makes it a cheaper solution to authenticate user with these biometric
traits.

• Secondly, these behavioural biometrics can be employed to continuously
monitor the legitimacy of user owing to its characteristic of passive verifica-
tion that runs in background without disturbing the user while performing
important tasks. On the other hand, physiological biometrics i.e., finger-
prints require the user to be actively engaged in verification process. But
there are few physiological biometrics i.e., facial recognition which require
less user involvement in verification process but its accuracy depends on ex-
ternal factors like angle of camera, user posture, room light etc. In contrast,
behavioural biometrics are completely transparent to perform authentica-
tion method passively.

• Moreover, it is difficult to spoof keystroke and mouse dynamics because
typing patterns on keyboard will always differ for each user from other
which makes it difficult for imposter user to perfectly emulate the way
someone types.

Hence, keystroke and mouse dynamics are considered to be important bio-
metric trait which can be utilised to distinguish one user from the other to lessen
the risks of security attacks on confidential information.
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2.3.1 CUA using Keystroke Dynamics

This section presents the speculative basis and preceding research works done in
domain of keystroke dynamics for Continuous user Authentication (CUA) leading
to the proposed system. Most of the preceding studies in the domain of keystroke
dynamics had normally focused on the static user authentication (SUA) while the
work done on continuous user authentication (CUA) is relatively far less. How-
ever, nowadays CUA is getting more prevalent owing to the security concerns of
systems and applications as more people are dependent on computers and mo-
bile devices for daily routine tasks including office work, online shopping, online
banking and much more.

The presently available keystroke dynamics datasets can be specifically cat-
egorised into two types, namely, short text and long text, as shown in Fig 4.1.
The short texts datasets are predominantly based on passwords thereby mostly
appropriate for studying the SUA. Mhenni et al. (2019). On the other hand, the
long texts datasets are further divided into two categories i.e., fixed text and free
text. In this regard, former is based on pre-defined texts where user has to mimic
the already provided tasks. On the contrary, the latter refers to the pattern in
which users are given complete independence to employ any random text of any
length without any constraints Alsultan et al. (2016).

Keystroke Dynamics Recognition (KDR) system is mostly based on two main
events associated with the user’s typing rhythm i.e., key down and key up events
where former occurs when user presses a key while latter is recorded as soon as
user releases that respective key Patel et al. (2016).Preliminary research on CUA
using keystroke dynamics was conducted in 1995 by the group of researchers
Shepherd (1995) and some notable results were presented.

These two keystroke events can be used to extract numerous different features
in order to make the unique feature set of the user. In this aspect, the most
frequently used features in the literature are single key hold time and key digraph
latency which is the duration between the given two consecutive keystrokes as
shown in Fig 2.7.

User templates are created by calculating the mean and standard deviation of
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Figure 2.6: Keystroke Dynamics Dataset Classification

Figure 2.7: Keystroke Hold time and Key Digraph Latency
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each key hold time and key digraph latency times Foresi and Samavi (2019) . On
the other hand, some research studies Bours and Barghouthi (2009) had featured
the mean and standard deviation of only those digraphs which had occurred
least number of times in order to build the inimitable feature set. Moreover, the
researchers in Di Tommaso et al. (2019) had employed the combination of key
digraph, trigraph, error corrections and words per minute features to build the
user profiles. Additionally in some studies Senathipathi and Batri (2014) feature
set had been extended to include digraphs, trigraphs and some additional allied
n-graphs. While some researchers had used the specific words which are common
in English i.e., the, an, and, to, etc., to extract the features set Curtin et al.
(2006). Moreover, in Salem and Obaidat (2019) researchers had combined the
timing features with non-timing features i.e., pressure, position, finger placement
and finger choice for tying behaviour analysis.

Once the feature set had been extracted, the next step followed is the classifi-
cation. Many classification techniques had been used for continuous authentica-
tion including traditional statistical methods, pattern recognition and even more
complex machine learning methods.

2.3.2 Traditional Statistical Distance Methods

The summary of research works performed on CUA problem with traditional
statistical distance methods is presented in Table 2.1 while the detailed results
are discussed below.

The researchers in Gunetti et al. (2005) conducted the free-text studies with
digraphs, trigraphs and n-graphs as statistical features and it was essentially
dependent on two underlying distance measures namely relative measure and
absolute measure. The former was used to calculate the degree of disorder whereas
the latter referred to the measurement of absolute distance between two keystroke
samples and achieved the good results. However, they had used the block size
of 700-900 keystrokes to form each sample probe to identify the user which gives
enough possibility to imposter for unauthorised access and achieved the FMR of
0.005% and FNMR 4.833%.

Some other research works had also implemented the relative distance and
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absolute distance including: Huang et al. (2017) with sliding window of fixed
n-graph latency features and achieved the FMR = 1% , FNMR = 11.5%. Ko-
lakowska (2011) with 600 block size, duration of 2,3,4 and 5-graph features and
reported the FMR 4.09% , FNMR 5.17%. Pinto et al. (2014) with 150 block size,
duration of digraph RP , PP for (2-4) graphs and achieved FMR 2% , FNMR 2%.
Ayotte et al. (2019) with 1000 block size, di-graph latency features and reported
the EER= 3.6 % precisely, and Ferreira and Santos (2012) with block size of 250
actions, duration of digraph latency and reported the EER = 1.4%.

The researchers in Ferrari et al. (2018) had presented an adaptive continuous
authentication scheme by building the statistical profiles of users using the single
key, UD and DU features for only selected keys and key-pairs. They had reported
the results for fixed window sizes i.e., 35, 50, 65, 80, for authentication as well as
updating the statistical profile by using Euclidean distance, Manhattan distance
and cosine similarity metrics. The optimal results achieved were FAR= 8.33 %,
FRR = 40.54% with Euclidean distance while FAR= 17.24 %, FRR = 29.72%
for Manhattan distance with window size of 50.

Other statistical methods used for classification of keystroke dynamics in lit-
erature were Euclidean distance Ferrari et al. (2018) with reported results as
FAR=8.33% and FRR=40.54%.

Moreover, researchers in Locklear et al. (2014) employed Manhattan distance
and reported the EER of 4.55-13.37% with varying time based blocks ranging
from 30 seconds to 3.5 minutes. Moreover, the researchers in Kim and Kang
(2020) used three types heterogeneous features based on time, accelerator and
coordinate to generate the feature set and Kolmogorov-Smirnov statistic had
used as classification technique. Different varying length of keystroke sets are
used to achieve the EER = 1%.

2.3.3 Traditional and Advanced Machine Learning Meth-

ods

Machine learning techniques had also been exploited in recent times for CUA
domain using KD where some of the works presented interesting results. The
summary of research works performed on CUA problem with machine learning is

26



Work Users Features Block Method Results

Gunetti et al. (2005) 40 2, 3, 4-graph latency 700-900 R- and A-distances FMR 0.005% FNMR 4.833%

Huang et al. (2017) 56 n-graph latency 1 min sliding window R- and A-distances FMR 1% FNMR 11.5%

Kolakowska (2011) 10 2, 3, 4 and 5-graph latency 600 R- and A-distances FMR 4.09% , FNMR 5.17%

Pinto et al. (2014) 10 Digraph RP, PP for 2-4graphs 150 R- and A-distances FMR 2% FNMR 2%

Ayotte et al. (2019) 103 di-graph latency 1000 R, A, Mahalanobis distances EER 3.6%

Ferreira and Santos (2012) 60 di-graph latency 250 R- and A-distances EER 1.4%

Ferrari et al. (2018) 60 di-graph latency Window size=50 Euclidean distance FAR= 8.33 %, FRR = 40.54%

Locklear et al. (2014) 489 digraph latency Time blocks of var.lengths Manhattan distance,Fisher score EER 4.55-13.37%

Kim and Kang (2020) 50 3-heterogeneous features keystroke sets Kolmogorov-Smirnov statistic EER 1%

Table 2.1: Scholarly Works based on Traditional Distance Methods using
Keystroke Dynamics

presented in Table 2.2 while the detail results are discussed below.

A constructive example of Machine learning techniques for CUA with KD was
presented in Ahmed and Traore (2013) with neural networks implementation.
They had used 500 keystroke block size with digraph features and employed the
strategy of predicting the timing of digraphs in testing which had never occurred
while training the network and achieved the FAR= 0.0152%, FRR = 4.82% and
EER = 2.13%. Another research work in Alsultan et al. (2017) had implemented
Decision trees with statistical feature profiles and used the block size of 1000
actions and reported the FMR= 1.1% and FNMR= 28%. Moreover, in Wu et al.
(2016) kernel ridge regression a truncated RBF kernel had been used with 900
words block size and trigraph latency feature profile and reported EER of 1.39%.

Subsequently, support vector machine technique had also been exploited by
researchers in Çeker and Upadhyaya (2016) with varying digraph sets for imple-
menting CUA and acheived the EER of 0.0- 2.94% with different sets of digraphs.
The researchers in Manandhar et al. (2019) had implemented an architecture
named Spy Hunter for CUA using KD which utilised two 1-class support vector
machines classifiers. They had used a single key hold time and digraph latency
to build the feature vector and block size of 6 actions are used to classify a user
after each block. The resultant FAR reported was 2.05% and FRR was 2.0%

Additionally, random forest classifier had been used in Ayotte et al. (2020)
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with block size of 200 keystroke actions and the resultant EER as reported was
7.8%.

Moreover, the researchers in Porwik et al. (2021) had implemented the com-
petitive selection ensemble classifier approach based on Random Forests (RF),
Bayes Net (BN) , decision trees , Support Vector Machine (SVM), Random Tree
(RT) and RIDOR RIpple-DOwn Rule learner (Ridor). They showed that employ-
ing an ensemble approach as compared to stand alone classifiers can improve the
accuracy of system because keystroke dynamics being a weak behavioural bio-
metric modality suffers from behavioural invariability issue. They had reported
the FAR= 0.10% and FRR = 0.22% with ensemble classifier.

Lu et al. (2020) had employed the deep neural architecture consisting of con-
volutional neural network(CNN) and Recurrent neural network (RNN) on the
free text dataset and achieved EER= 4.77%.

Work Users Features Block Method Results

Ahmed and Traore (2013) 53 Duration, digraph latency 500 Neural Network FAR 0.0152% FRR 4.82% EER 2.13%

Alsultan et al. (2017) 30 Statistical features 1000 Decision Trees FAR 1.1% FRR 28%

Wu et al. (2016) 200 Trigraph latency 900 words Kernel Ridge Regression EER 1.39%

Çeker and Upadhyaya (2016) 34 Digraph latency 14 Digraph set Support vector machine EER 0.0 - 2.94%

Manandhar et al. (2019) 20 hold time, Digraph latency 6 block actions one class Support vector machine FAR = 2.05% FRR=2%

Ayotte et al. (2020) 103 Digraph latency 200 Random forest classifier EER 7.8%

Porwik et al. (2021) 150 Digraph latency — Ensemble Classifier FAR 0.10% , FRR 0.22%

Lu et al. (2020) 75 Digraph latency sliding window CNN, RNN EER 4.77%

Table 2.2: Machine Learning Scholarly Works for CUA with Keystroke Dynamics

2.4 Continuous user Authentication with Mouse

Dynamics

This section presents the background knowledge and preceding scholarly works
in the domain of mouse dynamics leading to the proposed system. The most
significant scholarly works done in domain of mouse dynamics are listed in Table
2.3.

The preliminary research on mouse dynamics had initially been started with
the successful implementation of user verification system Syukri et al. (1998) on
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the basis of signatures drawn via mouse with the resultant identification rate of
93%. Afterwards, mouse biometric technology had been firstly introduced by re-
searchers in Gamboa and Fred (2004a) as a method of non-signature based user
verification system by utilising the general behavioural patterns of individuals
while working with mouse.

A continuous authentication approach had been presented which considered
each movement as an action and extracted features from each mouse stroke. The
feature space consisted of 63 dimensional feature vector including spatial and
temporal parameters such as angle, velocity and acceleration. However, the best
subset feature set was chosen, by employing greedy feature selection procedure,
for each user to reduce this feature space. Statistical model was used to gener-
ate the resultant authentication decisions based on mean classification scores of
sequence of mouse actions. Data was collected from 50 users working under free
environment and experiments were conducted on sequence of 1 action, 50 actions
and 200 actions which had produced an EER rate of 48.9%, 2% and 0.2% respec-
tively. The researchers in Ahmed and Traore (2005), Ahmed and Traore (2007)
had first time converted the mouse data into meaningful distinct seven feature
sets which were aggregated afterwards into 39-dimensional global feature vector.
The 3-layer artificial neural network (ANN) had been trained for behavioural
comparison of genuine and imposter users which achieved the false acceptance
rate (FAR) and false rejection rate (FRR) of 2.4649% and 2.4614% respectively.

Scholarly Work No. of Users Features Number of actions Classification Model Main Results

Gamboa and Fred Gamboa and Fred (2004a) 50 Statistical 1, 50 , 200 action Statistical model EER:48.9%, 2%, 0.2%

Pusara et al. Pusara and Brodley (2004) 11 Statistical 1000 actions Decision Tree FAR 1.75%, FRR 0.43%

Ahmed and Traore Ahmed and Traore (2007) 22 Statistical 2000 actions Artificial Neural Network EER: 2.46%

Feher et al. Feher et al. (2012) 25 Statistical 30 mouse actions Random Forest EER: 8.53%

Zheng et al. Zheng et al. (2016) 30 Statistical 20 mouse actions SVM EER: 1.3%

Hinbarji et al. Hinbarji et al. (2015) 10 Statistical 100 mouse curves Artificial Neural Network EER: 9.8%

Antal et al. Antal and Egyed-Zsigmond (2019) 10 Statistical 13 mouse actions Random forest EER: 2.6%

Mondal et al. Mondal and Bours (2017a) 53 Statistical 1 mouse action SVM, ANN ANGA= 2265 , ANIA=252

Antal et al. Antal and Fejér (2020) 10 Time-series 128 mouse events per block CNN, Transfer Learning accuracy=0.93

Table 2.3: Most Important Existing Scholarly Works on Mouse Dynamics

A re-authentication scheme had been presented Pusara and Brodley (2004)
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which converted the raw mouse data into processed data points representing the
summary of mouse events encompassing configurable window size. In this aspect,
mouse data was collected from 11 users under free working environment and
personalized model had been generated for each user by employing the decision
tree classifier to report the average FAR of 1.75% and average FRR of 0.43%.

Subsequently, new types of feature set for mouse dynamics recognition had
been assembled Feher et al. (2012) based on the hierarchy of mouse actions where
low-level features were used to construct the higher level features. Behavioural
analysis had been done by training the Random forest classifier with newly as-
sembled hierarchical features and an EER of 8.53% was achieved with window
size of 30 mouse actions.

Zheng et al. Zheng et al. (2016) employed angle based statistical features for
user authentication purposes. In this regard, data had been collected from 30
users of different ages, professions and educational background. Moreover, SVM
had been used as a classification method. The best performance reported, for a
block of 20 mouse actions, was EER rate of 1.3%.

The research work presented in Hinbarji et al. (2015) collected general be-
havioural mouse usage data from 10 users and employed mouse movement curves
as basic feature for user authentication problem. Neural network was trained as
a binary classifier for each user and undertaken 100 mouse curves i.e., approxi-
mately 5.6 min of mouse data, to obtain the EER of 9.8%.

Antal et al. Antal and Egyed-Zsigmond (2019) proposed a user re-authentication
method involving the data of 10 users. Segmentation of data had been done to
generate mouse events including mouse move, point and click, drag and drop(as
shown in Fig 2.8), followed by extraction of statistical features from each mouse
event. Random forest is employed as a classifier model and EER of 2.6% had
been achieved by using the window size of 13 mouse actions.

The researchers in Mondal and Bours (2017a) presented the work on CUA
which authenticated user on each action. The dataset involved 53 participants
and employed SVM & ANN as a classification method. The system performance
was presented in terms of average number of genuine actions (ANGA) and average
number of imposter actions (ANIA). Moreover, ANGA had been reported as 2265
actions and ANIA as 252 actions on average.
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Figure 2.8: Mouse Events Signature of a User
Antal and Egyed-Zsigmond (2019)

The work in Antal and Fejér (2020) had proposed an authentication method
based on convolutional neural network and transfer learning approach. The fea-
tures were extracted based on time series of mouse events instead of formulating
the statistical features. In this regard, Balabit public dataset was used for per-
formance evaluation. The optimal accuracy reported was 0.93.

2.5 Continuous user Authentication Challenges

The following challenges for a true CUA system have been indicated after review-
ing the state of art works:

1. Authentication using fixed blocks of action or fixed time interval

It has been observed that most of the research works in CUA domain using
keystroke or mouse dynamics had considered the block of actions ( 200,
1000, 2000 etc.) or fixed time intervals (1 min sliding window etc.) to
authenticate the user. The main disadvantage of this type of authentication
approach is that it gives room to imposter user to perform illicit activities
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on system because identity of user would not be checked for given block
size, hence this type of method can be basically called as periodic user
authentication (PUA). However, the PUA method might be insufficient
to guarantee security depending on the risks in a particular environment.
During the long pauses of un-authentication, the impact of intruder taking
the session as a substitution of legitimate user could be inauspicious and
discernible. Therefore, the PUA method is less secure and can cause the
damage to confidential information or resources of system.

In order to mitigate this issue, an authentication method is needed which
can re-verify the identity of user on each single activity or action in order
to fulfil the requisite of a true continuous user authentication method.

2. User behaviour can vary on each action

Biometric characteristics belonging to behavioural category are more likely
to alter over time as compared to physiological features. Since the be-
havioural biometrics mostly depict the regular user behaviour while inter-
acting with the relevant device, therefore these characteristics mostly rely
on the hardware specification of devices, background context and user’s
emotion or age. Depending on external factors user behaviour on each ac-
tion can change and it become difficult to validate the user’s identity on
the basis of one single action which is an important requirement of a true
CUA system. For instance, a legitimate user can deviate from its normal
behaviour on certain actions owing to the external factors i.e., distraction
or noise in background. Therefore, it can affect the performance of system.
In order to solve this issue, a true CUA system is needed which ought to
validate the identity of user on each action but it should also keep in account
the previous confidence of user’s genuineness.

In this regard, this research work proposes a recurrent confidence model
which authenticates the user on each single action but decides the legitimacy
of user in combination with previous actions’ confidence.

3. Continuous user Identity Establishment

It has been observed in literature review that most of the CUA approaches
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had integrated the static user authentication in the start of session. How-
ever, the work done on continuous identification based on establishing the
identity of user without involving SUA is relatively far less.

This research work explores the new possibilities of identifying the user with-
out prior claim of its identity or without involving SUA at the start os
session.

4. Performance metrics for a true CUA system

The PUA method, as studied in literature review, generally report the per-
formance in terms of false acceptance rate (FAR), false rejection rate (FRR)
and equal error rate (EER) Bakelman et al. (2012) for CUA biometric sys-
tems. However for true CUA, the identity of user should be checked on each
single action and performance measure should depend on how many actions
imposter or genuine user has performed before system detects it or falsely
locks it out respectively. Based on general understanding, the number of
actions executed by different users within a particular time frame substan-
tially relies on individual’s explicit behaviour patterns and this factor is
distinctive among different users. For example, a person with fast typing
speed would be able to perform more actions on system resulting in more
damage to system resources as compared to a user with slow typing speed
within any given time period.

Therefore, it has been decided to report the performance of proposed CUA
system in terms of action domain instead of considering the time complexity
of identifying the imposter users.

5. Static Feature Database

It has been noticed in literature review as listed in Table 2.1 and 2.2 that
most of the existing research works in keystroke and mouse dynamics do-
main have considered the statistical feature extraction process to generate
the feature vector for each user. Researchers have generally extracted fea-
tures based on mean and standard deviation of specific keys and key-pairs
or raw mouse events including direction, angle of curvature, distance, mouse
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click and drag timings. This type of method has achieved satisfactory re-
sults, however, it has few shortcomings. The statistical profiles contains the
mean and variance of keys and key pairs. This type of approach is better
suited for fixed text, on the contrary, for the free text where user must be
using some key-pairs which are missing from statistical profile can lead to
low accuracy.

In contrast, this research work has considered the approach of taking keystroke
dynamics data as sequential series and analysing the user behaviour serially
instead of measuring on statistical profile.

Moreover, in most preceding works, commonly used features for CUA with
keystroke dynamics are digraphs as listed in Table 2.1 and 2.2. However,
if the real continuous authentication is considered which authenticates the
user on each single action then in this case monographs have special place
since it tends to authenticate the user on each single action instead of after
two actions performed within given time frame thus leaving no room for
imposter user. But digraphs had seen to give more better results Bours and
Mondal (2015a) so the optimal approach used in this research is fusion of
monographs as well as digraphs to achieve better results.

With regards to mouse dynamics feature sets, researchers have used their
own experiments and understanding to choose the features. For instance,
some research works have considered only mouse actions, some have consid-
ered the distance between mouse curves or other basic mouse events. But
there is still raw mouse data which has been ignored that can represent the
instinct properties of each user’s mouse usage behaviour and can be helpful
to distinguish one user from other with greater accuracy.

Therefore, it has been decided to consider the behavioural keystroke and
mouse dynamics data as a set of chronological time-series for the proposed
CUA system which can also utilise all the hidden properties of data.
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6. Behavioural Biometric data contains hidden unique behavioural
patterns
Keystroke dynamics and mouse dynamics are behavioural biometric modal-
ities hence these tend to change more with time, age or background context
in comparison to physiological biometrics. Therefore, maintaining a static
database containing the mean and standard deviation of statistical features
can lead to low system performance over time. Keystroke and mouse dy-
namics data are more like a sequential series containing some hidden prop-
erties as well Tse and Hung (2020). For example, it can be general mouse
usage behaviour of a user that when he wants to open a file document on
system he always used to double click the mouse left button. On the other
hand,there can be another user who has the habit of firstly clicking the right
button of mouse to go to the option of properties and then afterwards choos-
ing the OPEN option from the dialogue box. This sort of hidden features
or combination of hidden features can be used to differentiate users from
each other. Subsequently, the traditional classification algorithms cannot
mine this kind of hidden features and these cannot be stored into statistical
feature profiles.

In this work, a method is proposed and implemented which can preserve
the necessary information about keyboard and mouse usage behaviour of
user and tends to update the features with time. The proposed approach
uses the deep learning techniques and incorporates the proposed R-RCM to
make it a true CUA system.
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2.6 Summary

In this chapter, preliminary research works done in continuous user authentica-
tion (CUA) using behavioural biometrics have been reviewed followed by finding
the gaps in current scholarly works. It can be summarise that most of the re-
search works had considered the approach of periodic user authentication based
on fixed block of actions or fixed time intervals which does not depict the true in-
sight of CUA which ought to authenticate user on each action. Moreover, feature
extraction techniques are mostly based on traditional statistical methods and re-
searcher’s own experiments which sometimes tends to omit the hidden properties
of normal user behaviour. In order to overcome these issues, a basis of a true
CUA system is presented in next chapter based on proposed robust recurrent
confidence model which can authenticate the user on each action incessantly.

36



Chapter 3

Continuous User Authentication
based on novel Robust Recurrent
Confidence Model(R-RCM)

Chapter 2 has given an overview of existing research into the domain of continuous
user authentication (CUA) based on behavioural biometrics especially keystroke
and mouse dynamics. It has highlighted the challenges and requirements which
need to be considered in order to overcome the loopholes present in the existing
CUA systems. In this chapter, a novel model is proposed and explicated which
identifies the unique features of behavioural biometric modalities and defines the
requirements of a true CUA system. Moreover, different continuous authentica-
tion scenarios are also explained. This chapter presents the baseline of this thesis
work and explains the requirements along with the main components of proposed
CUA system.

3.1 Introduction

User authentication is imperative to the security requirement in computer sys-
tems. Most of the computer systems are mainly reliant on conventional one-time
validation of user’s identity methods, for instance, passwords, usernames, finger-
prints or facial recognition. However, this approach cannot validate the user’s
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identity throughout the given session thereby fosters the security threats in high
risk security environments. In contrast, the Continuous User Authentication
(CUA) validates individuals on each action performed by them incessantly. Ex-
isting CUA systems are mostly built around the usage of behavioural biometrics
of user to validate its identity on each action. However, there are number of issues
associated with current CUA systems which limit the performance in detecting
imposter users. These limitations include:

• Applying the authentication algorithms on set/block of fixed actions hence
giving room to imposter users.

• Variability of behaviour biometric data between training and testing sam-
ples

• Variability of behaviour biometric data depending on background context.

• Classification techniques cannot mine the hidden unique features of user.

In this research, a true continuous user authentication system was investigated
and implemented after identifying the limitations of existing CUA systems. The
generic framework of proposed CUA system is shown in Fig3.1.

3.2 System Description

This section presents the architecture of proposed CUA system in more detail.
The main components of the proposed CUA system are:

• Dataset: It consists of the subjects/individual who are initiator of any
activity on target system and behavioural data collected from those subjects
while interacting with system.

• Sensor: It is the device through which training and testing behavioural
data of user is collected and translated into a signal which is readable for
an observer. In case of this proposed CUA system, these sensor devices are
keyboard and mouse through which users’ behavioural data is collected.
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Figure 3.1: General Framework of Proposed CUA System

• Feature Extraction: It is a process of extracting different distinct features
from raw dataset which can be utilised to distinguish one user from other.

• Detector Unit: It is the process of comparing the training feature profiles
with testing data and performing the data classification measurements i.e.,
traditional machine learning or advanced deep learning, to calculate the
error in order to detect imposter.

• Recurrent Confidence Unit(RCM): It is basically a component of de-
tector unit which validates the identity of user on each action.

• Response Unit: It is the process of taking appropriate response based on
calculation of detector unit in order to detect the intruders. In the proposed
CUA system, response can be of two types:

– Making the system alert regarding the risk of imposter attack

– Locking out the detected imposter from system
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• Scenario/Threat Models: It is an additional component of proposed
CUA system which scenario different threat possibilities.

• Performance Measure: System performance for the proposed CUA sys-
tem is discussed in terms of action based detection of imposter users instead
of time based detection.

Each of the component of proposed CUA system as listed above are discussed
in more detail below:

3.2.1 Dataset

Dataset mainly consists of biometric data collected from the subjects under study.
Subjects are normal users which are basically the instigators of any action on a
system. These subjects can be either authorised or unauthorised where the former
are permitted to access the system resources with their biometric data already
saved in user database while the latter are external to system having no registered
data in the system. More specifically, unauthorised users are mostly the intruders
who want to access the system resources by proliferating the security loopholes
or by masquerading the authorised user behaviour.

In this research, the keystroke and mouse dynamics dataset provided by Uni-
versity of Buffalo Sun et al. (2016) have been used. The baseline datasets are
collected from 75 subjects in 3 separate sessions. The statistics of keystroke and
mouse datasets are presented in table 3.1 and table 3.2 respectively.

Property Mean ± Std
Total Users 75
Keystrokes per User 16348± 1766
Total Keystrokes 1.2M
Up Time[t] - Down Time[t] (Hold Time,ms) 119± 18
Up Time[t] - Up Time[t− 1] (UU,ms) 501± 383
Down Time[t] - Down Time[t− 1] (DD,ms) 501± 383

Table 3.1: Keystroke Dynamics Dataset Statistics
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There are 28 days in average time interval between each of the three sessions.
The keystroke dynamics dataset is based on long-text and it is the mixture of
fixed and free style texts.

Property Mean ± Std
Total Users 75
Actions per User 27600± 7336

Total Actions 2.1M

Table 3.2: Mouse Dynamics Dataset Statistics

3.2.1.1 Dataset Split

For the analysis of CUA system, the data of a user is split into 3 parts. The
first part is used to create the template, i.e. train the classifier to build a model.
The second part of the data will be used for testing for parametric adjustments
and validation part is used for final evaluation of unseen data. The validation
data of a user is used action by action and each action will determine a change
in confidence of user being genuine or imposter.

Two types of split ranges are considered which include Across Session and
Across Sequence of given keystroke mouse sequences. However, in both types of
split ranges, the following rule is considered:

SplitRange = [SplitRange0, SplitRange1),
SplitRange0 ≥ 0, SplitRange1 ≤ 1,

hence, SplitRange0 < SplitRange1.

The two dataset split ranges used in this research are given below:

1. Across Sequence Split

• T=train, SessionId(E), SplitRange = [0.0, 0.6]

• X=test, SessionId(E), SplitRange = [0.6, 0.8]
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• V=val, SessionId(E), SplitRange = [0.8, 1.0]

2. Across Sessions Split

• T=train, SessionId(E) = [0, 1], SplitRange = [0.0, 0.7]

• X=test, SessionId(E) = [0, 1], SplitRange = [0.7, 1.0]

• V=val, SessionId(E) = [2], SplitRange = [0.0, 1.0]

The Across Sequence Split takes whole data of all the 3 sessions altogether
and then apply the partition rule for training testing and validation. This dataset
split strategy can be utilised to study generic user behaviour. On the other hand,
theAcross Sessions Split takes the user’ first two data sessions [0,1] for training
and testing purpose with the proportion of 70% and 30%. The third session [2] is
used for the validation purpose. There is an average difference of 28 days between
each session, therefore, difference between 1st and 3rd session is approximately
56 days or 2 months, hence this dataset split strategy can be utilised to study
the effect of time difference in user’ behaviour.

3.2.2 Feature Analysis

Feature extraction refers to the depiction of biometric data and different vari-
ables which can be used to distinguish one user from the other. In this regard,
feature selection is considered to be an active research area in different domains.
The main notion of feature selection technique is to extract a subset of features
which has more importance in prediction than the whole raw data. However,
opponents of feature selection techniques believe that feature selection is based
on researchers’ individual experiments and the main disadvantage could be the
ignorance of some hidden information which can only be represented with the
help of raw data. In this research work, two types of feature analysis techniques
have been used:

• Feature selection which are representative of a user’s behaviour

• Feature analysis from raw dataset
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In feature selection techniques, different statistical features have been ex-
tracted to make the user profile. On the other hand, feature analysis from raw
dataset has treated the raw data as a time series. A time-series is a sequence of
events arranged by chronological order and each new event shows some relation-
ship with previous event.

3.2.3 Detector Unit

The detector unit is composed of two components i.e., classification process and
our newly proposed confidence model for a true CUA system.

3.2.3.1 Classification Process

The first phase of detector unit basically performs classification process to get
the error rate in order to detect any intruder activity based on given behavioural
biometric data. This is a complex step and where it is performed on both training
and testing sets / registration and identification steps respectively. In this work,
two types of classification algorithms are applied to authenticate user continu-
ously.

• Traditional Machine Learning/ Baseline Techniques

• Deep Neural Networks

The first method is based on traditional machine learning algorithms which
treats the input as independent vectors and this method is referred as baseline
method throughout this work while the second technique is based on deep learning
which treats the data input as time series to extract the hidden distinct features
of user where each event is dependent on the previous event and can predict the
new event as well.

Since this research is focused on validating the user’s identity on each action
in order to propose a true CUA system, therefore classification is performed on
action-by-action basis. The classification score of each action is given as an input
to the newly proposed Robust Recurrent Confidence Model (R-RCM) which is
the second phase of detector unit and explained below in more detail.
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3.2.3.2 Robust Recurrent Confidence Model (R-RCM)

Most of the work done in CUA systems, as observed in literature review, con-
sider the sliding window approach with block of actions. In that case, system
waits until the block is filled up with specified number of actions and only then
the legitimacy of user is decided based on full block of actions. However, this
approach gives room to imposter users to do the damage to sensitive informa-
tion for the given action block size. In this regard, it was proposed to use the
robust Recurrent Confidence Model (R-RCM) which considers each and every
action of user in order to decide if a particular user is legitimate or not. However,
each action does not make this decision alone but R-RCM takes into account the
confidence generated by previous actions as well. When considering behavioural
biometrics, even genuine users can deviate from their normal behaviour owing to
the changing background context and similarly imposter users can behave exactly
as the genuine users on some of the actions. Hence, the typing behaviour of any
user is never completely stable all the time that’s why deciding the legitimacy
of user on single action leads to low accuracy. But since no two users can ever
type exactly in the same manner to each other and at some points the behaviour
of imposter will differ from the normal behaviour of genuine user noticeably and
is quite enough to differentiate between the two users in order to detect the im-
posters. To implement this strategy, the author used the concept of “recurrent
confidence in the genuineness” of the current user.

In Bours and Barghouthi (2009) researchers had used the similar approach
of trust model for CUA based on threshold function. The results of the study
showed that the trust level escalates or lessens based on the scaled Manhattan
distance between the legitimate user reference template and current typing ac-
tions. In this research work, a Robust recurrent confidence model (R-RCM) is
proposed which keeps track of previous confidence value and tends to lock out
a user from the system once it reaches the final lockout threshold. Confidence
value depends on the fused classifier score from the detector unit.

A Novel Approach of Robust Recurrent Confidence Model(R-RCM)
As stated above, CUA cannot substitute the SUA so once user log onto the
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system using the SUA credentials then confidence of user is set to 1.00, which
is the maximum value of confidence. On each action, R-RCM calculates the
confidence of user based on the classifier score of performed action. If the current
action is performed according to genuine user’s behaviour then user earns points
and confidence increases while if the performed action does not match the genuine
user then user loses points and confidence decreases. During the active time, if
the confidence of user remains higher than the given final threshold then the user
can use the system without any restraint, however if the confidence of a user goes
below the given final threshold then the user will be locked out of the system. In
this research work, two types of RCM are proposed and system performance is
assessed for both types.

• Experimental Setting I: Simple RCM

Continuous authentication is an important aspect of a computer security,
however, it might not substitute the static authentication completely and it
can be considered as an additional layer of security. Firstly user logs onto
computer system using the SUA credential e.g., username and password.
After the initial login, confidence related to genuineness of user is set to
its maximal value i.e., 1.00. Thereafter, RCM calculates the confidence of
user on each action based on the classifier score of performed action and
few other parameters. Subsequently, if action is performed in accordance
to the behavioural pattern of legitimate user then confidence increases. In
contrast, if behavioural pattern of performed action deviates from normal
user training patterns then confidence decreases. During the user’s active
session, if confidence goes lower than final threshold then user will be locked
out by the system.

• Experimental Setting II: R-RCM with Alert Threshold

In this setting, the two thresholds namely alert threshold Ti = D and lock-
out threshold Tf have been employed to make the system more secure. The
system has implemented the concept of alert threshold where if the user’s
confidence level is going down incessantly and reaches the alert threshold
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Ti then the user loses confidence points more than usual in order to lock it
out as soon as possible as shown in Fig.3.2.

Figure 3.2: Robust Recurrent Confidence Model (R-RCM)
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The recurrent confidence is determined by the classification score of the cur-
rent action performed by the user along with other 5 parameters as shown in
algorithm 1. The parameter H denotes the threshold value between lose or earn
points precisely. In this aspect, if the classification score of the current action
ŷt is greater than this threshold (H) then ∆Confi > 0, i.e., user earns points,
and vice versa. Furthermore, the parameter Z is the width of sigmoid for this
function, while the parameters M and N are the maximum value of the points
earned or lost respectively. Parameter D is alert threshold which checks if user is
losing confidence points consistently and reached the alert threshold. If this is the
case then system switches to its more hard mode of operation where it checks if
current confidence is lower than alert threshold and current action ŷt < H then it
makes the user lose more points on each action hence making it lock out quicker
so that it can only make lesser damage on system. However, it is probable that
sometimes genuine user behaves in unusual way owing to the background context
thereby reaches the alert threshold by losing confidence points. In this case, R-
RCM checks on each action if current confidence is less than alert threshold but
the ŷt > H, then it means user would earn points on this current action but still
model does not trust user completely and grants points less than expected. Since
if it would be genuine user than despite of getting less points than usual it would
gradually achieve the highest score.
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Algorithm 1 Robust-Recurrent Confidence Model
1: Initialization
2: Static Authentication, Confidence set to 1.00
3: After 1st action, probability of genuineness of user calculated by set classifiers

Phase 1 – Data Input

4: ŷt —- probability of user genuineness at given time step t
5: H —- represents the threshold value between lose point and earn point
6: Z —- the width of the sigmoid for this function
7: M —- the maximum value for points earned
8: N —- the maximum value for points lose
9: D —- Alert borderline threshold Ti

10: T —- Lockout Threshold Tf

Phase 2 – Change in confidence

begin
11: if confi ≥ D then

12: ∆Confi = min

(
−N + ( 2N

1+exp(− ŷt−H
Z )

),M

)
RecurrentConf = min(max(RecurrentConfi−1 + ∆Confi), 0), 1.00)

13: else if (confi < D) and (ŷt < H) then

14: ∆Confi = min

(
−N + ( 2N(1−H)

1+exp(− ŷt−H
Z )

),M

)
RecurrentConf = min(max(RecurrentConfi−1 + ∆Confi), 0), 1.00)

15: else if (confi < D) and (ŷt > H) then

16: ∆Confi = min

(
N + ( 3N

1+exp(− ŷt−H
Z )

),M

)
RecurrentConf = min(max(RecurrentConfi−1 + ∆Confi), 0), 1.00)

17: end if
End

The concept of R-RCM has been elaborated more in Fig.3.3 and Fig.3.4.
In Fig.3.3, when training sample of genuine user has been compared with its

own validation sample, it can be noticed that how the recurrent confidence level
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Figure 3.3: Confidence value for genuine user tested with the genuine test data

is varying on each action. Sometimes it goes down due to points lost but again it
attains its maximum value and never drops down to the final lockout threshold.

Figure 3.4: Confidence value for genuine user tested with the imposter test data

However, Fig.3.4 shows that when genuine user’s training sample is compared
against the validation data of an imposter user, then the confidence level drops
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7 times below the lockout threshold (L1, L2, L3, L4, L5, L6, L7) within 500 user
actions. But it can be discerned that alert threshold is set at 0.82 and as soon
as confidence reaches the alert threshold, system locks out the user as quickly as
possible due to the hard mode of R-RCM. For simulation purposes, it is assumed
that the users are again using the SUA to access the system after every lock out
and their maximum confidence of 1.00 is re-gained.

3.2.4 Response Unit

The response unit is considered to be the decision module of proposed system.
The output from R-RCM is treated as an input for decision module. In this
aspect, if the current confidence of user is higher than the final threshold then
user can continue using the system. However, if the current confidence is lower
than the final threshold then user is considered to be an imposter user and in
this case system takes the action by immediately locking out the user from system.

3.2.5 Evaluation Threat Scenarios

Different Evaluation threat scenarios can be designed in order to assess the system
performance. The system has trained binary classifier for each user with genuine
and imposter classes in order to distinguish an activity of genuine user against
other users. Accordingly, the data of genuine and imposter samples have been
considered in equal proportion in order to avoid the classifier biasness. In this
regard, three threat scenarios have been designed for evaluation namely internal,
external and hybrid which are explained below:

Suppose system has been given a set U of N = U users and in total each
scenario has N cases. For each scenario, firstly system needs to select:

• g – A Genuine user,

• I1 – Impostors set available for train and test,

• I2 – Impostors set available for validation.
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1. Internal Threat Scenario ETS1: Each of N users is selected as a genuine
user g.The rest of the users are assigned to I1 = I2 = U \ g as shown in
Fig.3.5. Accordingly, it is assumed that system has training samples of all
the users in the given organisation/dataset.

2. Hybrid Threat Scenario ETS2: Each of N users is selected as a genuine
user g. FirstM users that do not include g are assigned to I1. I2 = U \g\I1
as shown in Fig.3.5. It is assumed that rest of the users are added to or-
ganisation after the training process and system does not have any training
samples of these newly added users for the first M users. While the valida-
tion is done on all the users so I2 = U \ g.

3. External Threat Scenario ETS3: U is split into groups of M users. If
N mod M 6= 0, then system pads a set of users in a ring like fashion, such
that U ′ = {u0, u1, ..., uN , uN+1, uN+M−N mod M} and U mod M = 0. For
every group, each of M users is picked up consequently as a genuine user g
while the rest of users are assigned to I1. Users not present in the group are
assigned to I2 as shown in Fig.3.5. In such a case validation set of impostor
users doesn’t include any of users used during the training and testing at
all.

3.2.6 Performance Measure

The classification algorithms generally report the performance in terms of False
Acceptance Rate (FAR), False Rejection Rate (FRR) Giot et al. (2011) and Equal
Error Rate(EER) for biometric systems Bakelman et al. (2012). However, for a
true CUA the identity of user should be checked on each single action and per-
formance measure should depend on how many actions imposter or genuine user
have performed before system detects it or falsely lock it out respectively. Based
on our understanding the number of actions performed by different users within a
particular time frame considerably depends on individual’s unique behaviour pat-
terns and this factor is distinctive among different users. For instance, a person
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Figure 3.5: Three Evaluation Scenarios
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with fast typing speed would be able to execute more actions on system resulting
in more harm to system resources in comparison to a user with slow typing speed
within any given time period.

Therefore, it has been decided to report the performance of proposed CUA
system in terms of action domain instead of considering the time complexity of
identifying the imposter users. In this aspect, this research uses the performance
metrics as describe by researchers in Bours and Mondal (2015a) in form of Average
Number of Genuine Actions (ANGA) and Average Number of Imposter Actions
(ANIA). However, their results were demonstrated in the exact number of actions
which makes it difficult to compare the research work results because of different
amount of validation data in any experimental work. On the other hand, the
method used in this research to calculate the normalized average/mean portion of
genuine and imposter actions would make it easy to compare the results regardless
of amount of validation data in any future research work done for true continuous
user authentication system.

The performance measure of implemented CUA system has been evaluated
based on the following performance metrics:

• ANIA: Normalized portion of Average Number of Imposter Actions

• ANGA: Normalized portion of Average Number of Genuine Actions

• EER: Equal Error Rate

ANGA and ANIA: In general, if imposter user i, when validated against
the template of genuine user g, is locked out L times after performing respec-
tively A1,A2,......, AL actions before each lockout. Then, the normalized imposter
actions over the total sampling sequence actions AT are defined as:

ANIA =

∑
AL

L ∗ AT
, (3.1)

The ANGA are calculated in the same way where genuine user g is validated
against the template of genuine user itself and the genuine actions are calculated
which it can perform against its own reference template before false lockout.

ANGA =

∑
AL

L ∗ AT
, (3.2)
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Moreover, the total systems’ ANIA and ANGA are calculated as follows:

SystemANIA =

∑
(MeanANIA ∗ User)

TotalUsers
, (3.3)

SystemANGA =

∑
(MeanANGA ∗ User)

TotalUsers
, (3.4)

More specifically, if the ANGA and ANIA are demonstrated with exact num-
ber of genuine and imposter actions respectively instead of giving the normalized
portion of actions then it can be calculated as follows:

Exactgeniune/imposteractions = Normalizedactions ∗ Totalvalidationdata
(3.5)

Equal Error Rate (EER): EER has also been used in this research work.
EER is a metric which assesses the data classification performance for any model.
Subsequently, EER is considered to be a point where False rejection rate (FRR)
and False acceptance rate (FAR) overlap each other. In this aspect, FRR is
the probability that system wrongly classifies the genuine user as an imposter
user and denies access to system resources. Whereas, FAR is the possibility that
system incorrectly classifies the imposter user as a genuine user and gives access
to system resources. The EER is calculated by using the Eq 3.6 given below:

EER =
FRR + FAR

2
, (3.6)

3.2.6.1 User Categories

The ideal CUA system should not lock out genuine user and detect the imposter
user quickly hence ANGA should be high while ANIA should be as low as possible
respectively. However, sometimes situation can vary from ideal conditions hence
four different categories are formulated for all system users based on two rules
given below:

Let’s assume, there areM users hence there are totalM cases. Two properties
have been allotted for each of M cases as given below:
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• The 1st property indicates if ANGA = 100% or not, for given genuine user
g when tested against its own reference training sample.

• The 2nd property indicates if ANIA > 40% or not, for all the imposters i
who have been tested against this genuine user g training sample.

Based on these two rules explained above, the following four categories have
been formulated:

1. Very Good, ANGA = 100% and ANIA ≤ 40%

2. Good, ANGA < 100% and ANIA ≤ 40%

3. Bad, ANGA = 100% and ANIA > 40%

4. Ugly, ANGA < 100% and ANIA > 40%

The detailed framework containing all the components of proposed CUA sys-
tem is shown in Fig 3.6.

3.3 Summary

This chapter highlighted the concept and baseline of our proposed continuous
user authentication (CUA) system. Subsequently, all the components of pro-
posed CUA have been delineated in detail including the dataset analysis, feature
extraction, classification, and performance measure techniques. Moreover, this
chapter also presents the explanation of our proposed Robust Recurrent Confi-
dence Model (R-RCM) which tends to authenticate the user on each and every
action. Additionally, different threat scenarios are explained and designed com-
prehensively which can be employed to assess the system performance. In this
aspect, the next chapter applies the proposed CUA system framework, described
in this chapter, on keystroke dynamics and evaluates the system performance
with baseline classification techniques.
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Figure 3.6: Components of Proposed CUA System
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Chapter 4

Continuous User Authentication
using Keystroke Dynamics with
Baseline/Traditional Machine
Learning Techniques

In this chapter, a true continuous user authentication system featuring keystroke
dynamics behavioural biometric modality has been proposed and implemented
using baseline techniques. A novel method of authenticating the user on each
action has been presented which decides the legitimacy of current user based
on the confidence in the genuineness of each action. The 2-phase methodology,
consisting of ensemble learning and robust recurrent confidence model (R-RCM),
has been designed. Proposed methodology classifies each action based on the
probability score of ensemble classifier which is afterwards used, along with hy-
perparameters of R-RCM, to compute the current confidence in genuineness of
user. System decides if user can continue using the system or not based on new
confidence value and final threshold.
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4.1 Introduction

Keystroke dynamics recognition (KDR) can be referred as a behavioural biomet-
rics which comprises of evaluating the computer user’s distinct typing patterns
followed by recognition of person’s identity based on these patterns. Moreover,
most of behavioural biometrics i.e., the keystroke dynamics do not require users
to present biometric identification while preforming important routine tasks and
also tends to authenticate the user on each single key press action.

In terms of implementation, there are numerous advantages for the usage of
keystroke dynamics (KD) as a recognition method Ali et al. (2017) since these are
practical and inexpensive where no additional hardware component is required in
order to capture the KD biometrics as oppose to other biometrics which require
special hardware like fingerprints, iris and facial biometrics.
Analysing the user behaviour for continuous authentication is a challenging task
owing to the insufficient information and large intra-class disparities of data
recorded by the computer input devices. The KD based authentication system
works on the basis of keystroke timing information which is captured by keyboard
with the assistance of specifically designed software Vyazigin et al. (2019) and dif-
ferent discrete features are extracted from those captured keystroke timestamps.

4.2 System Methodology

This section presents the architecture and implementation of proposed CUA sys-
tem using keystroke dynamics and it also combines the static user authentication
(SUA) as an initial login mechanism.

4.2.1 Dataset Analysis

Keyboard usage is typically undertaken in a sequential manner key-press by key-
press. More formally, a keystroke sequence is a consecutive ordering of a set of
events (E) that occur within a specified interval of time. Each event e ∈ E has
the following properties:
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Figure 4.1: Keystroke Distinct Features for 4 Different Users

• UserId(e) – id of the user that has performed an action

• SessionId(e) – id of actions sequence that event belongs to

• DownTime(e) – a key absolute down time (milliseconds) during the action

• UpTime(e) – a key absolute up time (milliseconds) during the action

• KeyCode(e) – a key code that the user has pressed

Fig.4.1 shows the down-time, up-time, key monograph (also known as hold
time) and pressed keys features for four different users. It can be noticed that
keystroke features provide substantial distinctive patterns for each user. The
distinctive features can be generated for each action or sequence and feed to
training classifiers to build the reference templates for each user which can be
used for authentication of user upon validation.

Fig 4.2 shows an example of the keystroke dataset structure. Each row con-
tains User ID, Session ID, Key-code, Down Time when key was pressed, Up Time
when key was released, duration of a pressed key time to release time represented
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Figure 4.2: Structure Example of Keystroke Dataset

as H or hold time for single key, as well as 4 digraph latencies for the 1st key
and 2nd key represented as DD, DU,UD and UU. Moreover, it can be observed
that UD latencies can be negative value (highlighted as yellow in Fig 4.2). This
means user was still holding the 1st key after pressing the 2nd key that’s why the
timing value of UD can be computed as negative value.

For the analysis of CUA system, the data of a user is split into 3 non-
overlapping parts. The training part T is used to train the classifier to build
a model. The testing part X is used for testing the parametric adjustments and
validation part V is used for final evaluation of unseen data. The validation data
of a user is used action by action and each action will determine a change in
confidence of user being genuine or imposter.

The proposed architecture is tested with two types of dataset split strategies
i.e., Across Session Split and Across Sequence Split, as described in Chapter 3
section 3.2.1.1.
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4.2.2 Feature Engineering

Let’s say, there is an event of M + U keystrokes where U is the context length
andM is the length of keystroke event. Keystroke events are sampled with U = 1
and M = 1, an event of 1 keyboard action with monographs and digraph features.
In the experiments, the following features have been considered to generate from
the raw keystroke events.

• Key Monograph Action : It represents the key hold time of any key which
is calculated by subtracting the key up time from key down time.

• Key Digraph Action : Where the features are

1. Down − Up Time(DU) : Total time duration of first key press to
second key release.

2. Down − Down Time(DD) : The time between first key press and
second key press.

3. Up−Down Time(UD) : The time between first key release and second
key press.

4. Up − Up Time(UU) : The time between first key release and second
key release of a particular key digraph.

Table 4.1 shows how these features are used in the reference feature template
of user. The system stores the mean and standard deviation(σ) of duration of
each monograph and digraph occurring during enrolment or training phase. Also,
the key-codes along with their hit counts are stored as well where hit count refers
to the number of times each key or key digraph is pressed during enrolment or
training phase.

The graphical representation of the keystroke dynamics feature extraction
process is shown in Fig.4.3. In this study, time difference considered between
two key actions ought to be below 2000ms, since higher timing difference than
2000ms does not represent the normal typing pattern. Moreover, it has been
considered necessary to include key monographs in the analysis of true CUA
since ignoring the monographs can give room to imposter users to type the full
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Features Components of Reference Template

Monograph Key-code
Hit count
DurationMean,σ

Digraph Key-code(1), Key-code(2)
Hit count
DDMean,σ, DUMean,σ, UDMean,σ , UUMean,σ

Table 4.1: Structure of Reference Feature Template

sequence of keystrokes by pausing for 2000ms after each keypress hence leaving
no feature for system to authenticate the user successfully.

4.2.3 System Architecture

Let’s say, there are total N users. System needs to identify each user per action
based on given sequence of keyboard actions. More formally, there is:

S = {(x, y)} ⊂ RA×T × {1, . . . , N}T ,

where xt – keyboard action properties at a time t, yt ∈ {1, . . . , N} – user who
has taken the action, T – total amount of actions to classify, A – action vector
dimension. The implemented system predicts a user identity yt per time step t,
which in the simplest case equals to an indicator whether it is a genuine user
action or not.

Subsequently, this research work implements a 2-Phase system methodol-
ogy for continually authenticating the user with keystroke biometric modality,
as shown in Fig.7.3, and discussed below:

4.2.3.1 1st PHASE , BASELINE CLASSIFIERS

The proposed system uses three performance threat evaluation scenarios namely
ETS1, ETS2 and ETS3 described in chapter 3, section 3.2.5. In each scenario,
score of the classifiers, for per action, decides whether it is genuine or belongs to an
impostor user. In this regard, ensemble learning approach consisting of three clas-
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Figure 4.3: Keystroke Dynamics Features Representation

sifiers including Support Vector Machine(SVM), Artificial Neural Network(ANN)
and Gradient Boosting Decision Trees(XGBoost) has been used where an output
score is produced according to ensemble classifier rule based on input scores of
all three classifiers as shown in Fig. 4.5

The proposed system employs two types of ensemble rules including:

• Dynamic Classifier Selection (DCS)

• Weighted Classifier Fusion (WCF)

DCS Mendialdua et al. (2015) reflects the tendency to extract a single best
classifier at train-test split for each action which is the most likely to produce
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Figure 4.4: The System Architecture
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Figure 4.5: Ensemble Classifier Approach

the correct classification label for an input sample at validation split. However,
the WCF Mi et al. (2016) relates to approach where all the classifier scores goes
to the weighted fusion module and an output score is a weighted sum of input
scores of all the three classifiers as shown in Eq: 7.1.

ŷt(ct|W ) =

∑K−1
i=0 Wicti∑K−1
i=0 Wi

(4.1)

where cti – input scores, K – amount of classifiers, Wi – input score weights
and the value of these weights have been optimised with genetic algorithm Weile
and Michielssen (1997) and ŷt(ct|W ) – fused score which will be used as a raw
confidence score in the second phase for each action.

The architectures and implementation details of three classifiers used in en-
semble method are listed below:

• Support Vector Machine(SVM)

Support vector machine (SVM) is a supervised learning model Hsu et al.
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(2003) which is usually used for classification and regression problems. La-
belled sets of data are provided, during training of model, for each class
and on the basis of which it categorises the new unseen data. Moreover, it
works on the principle of creating hyperplane on high dimensional space in
order to classify the data points. Hyperplanes are considered to be optimal
decision boundaries which assist to classify data correctly into classes on
each side of hyperplane as shown in Fig.4.6. Moreover, hyperplane shape
depends on kernel which can be linear or non-linear in order to fit data cor-
rectly into distinct classes. In this framework, Scikit-learn library in python
has been used to implement SVM classifier with radial basis RBF kernel.

Figure 4.6: Support Vector Machine

• Artificial Neural Network (ANN)

Artificial Neural Network (ANN) is an arrangement of multiple Artificial
neurons which can be used for classification and regression problems Yao
(1999). In this framework, the neurons consist of a linear activation function
with a 2-layer Feed-Forward neural network. Moreover, KERAS is used for
the ANN classifier and Adam optimizer is implemented which is efficient
to optimize the cost function and also it reduced the ANN training time.
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Different regularization parameters are tested to maintain the training time
of classifier.

• XGBoost

XGBoost stands for “Extreme Gradient Boosting”, and it is more efficient
implementation that sklearn Random Forest, also XGBoost uses gradient
boosted decision trees which has more speed than traditional decision tree
algorithm Chen and Guestrin (2016). Generally, gradient boosting is a
technique which makes a traditional algorithm closer to neural networks
as it permits substantially more control over capacity. XGBoost is imple-
mented since it is fast when compared to other implementations of gradient
boosting.

4.2.3.2 2nd PHASE, Recurrent Confidence Function

In this research, a novel robust recurrent confidence Model (R-RCM), described
in Chapter 3, Section 3.2.3.2, has been proposed and implemented. The model
computes the variation in confidence for each action by employing some parame-
ters and returns the system confidence to indicate the genuineness of the current
user. The parameters can be:

• Global Static Parameters

• User Specific Parameters

In order to analyse the performance, system has been tested using both global
static parameters as well as personalising the parameter of RCM. These param-
eters are optimised by employing the genetic algorithm Weile and Michielssen
(1997) to find the optimal value for each user based on their train-test split sam-
ples.

The following discrete values are used for new samples introduction into an
epoch, or samples mutation. Logarithmic scale for Z, M , and N values has been
applied to achieve better convergence. W0, W1 and W2 of Eq.7.1 are being nor-
malized afterwards to have a weighted average. Since just sampling values within
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those boundaries does not imply that W0, W1 and W2 = 1. Cross validation
procedure is implemented, so that all of the samples are evaluated at train split.
And only a portion of the best is being preserved from the previous population.
The other samples are obtained via either crossover or mutation procedures. A
best sample per epoch is being preserved with its train and test performance.
Afterwards, a sample with the best test performance is picked up. A final result
is obtained for validation split.

• H = 0 + k ∗ 100/99, k = 0, 99

• Z = 2.0−7+k∗14/13, k = 0, 13

• M = 2.0−7+k∗14/13, k = 0, 13

• N = 2.0−7+k∗14/13, k = 0, 13

• W0 = 0 + k ∗ 100/99, k = 0, 99

• W1 = 0 + k ∗ 100/99, k = 0, 99

• W2 = 0 + k ∗ 100/99, k = 0, 99

The proposed system methodology has been validated in this work by for-
mulating two experimental settings as shown in Fig.7.3. These settings combine
the divergent approaches for the output of ensemble classifiers and parameters
of R-RCM in order to test the system from different perspectives as shown in
Fig.4.7.

Figure 4.7: Two Divergent Experimental settings for Proposed 2-Phase Method-
ology
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4.3 Results and Discussion

The programming language used throughout for this architecture is Python 3.4.
Keras interface with tensorflow is employed to execute the neural network com-
putations precisely. Scikit-learn is used to train the SVM. Moreover, XGBoost is
an enhanced distributed gradient boosting library which is employed to train ma-
chine learning algorithms for Gradient Boosting framework. The results attained
from the experiments are discussed in this section.

Here, some excerpts of experimental results are presented based on 512 action
sequence where the user has been authenticated on each action. However, in
practice validation has been done on whole of validation split data (20%) or ses-
sion [2] depending on the dataset split strategy. Aggregated results are provided
in tabular form below but here for sake of understanding only some samples of
results are shown in order to visualise the user categories.

• Good: Fig.4.8 shows an excerpt of a genuine user sample where the valida-
tion set of user was used against its own reference set on the right side of
figure while the left part shows the validation of an imposter sample against
the same genuine user sample. It can be noticed that genuine user has been
locked out for the given sequence sample, so ANGA can be calculated using
Eq. 3.2

ANGA= 320
1∗512 = 0.625 or 65% so, ANGA < 100%

Similarly, ANIA can be calculated using Eq. 3.1

ANIA= 480
8∗512 = 0.117 or 12% so, ANIA < 40%

In this example, genuine user has been locked out at least once but the
given imposter validated against this genuine user’s reference sample has
been detected before performing 40% of actions hence this genuine user falls
in good category. More precisely, the ANIA & ANGA are taken in terms of
normalized number of actions as a portion of actions in relation to a total
sequence length for this example i.e., 512 then it can be inferred that this
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imposter had performed 60 actions on average before detection for the given
genuine user.

Figure 4.8: Genuine user validated with its own reference set(right) and with
imposter set(left)

• V ery Good: Fig.4.9 shows another excerpt of validation sample which spec-
ifies that genuine user has never been locked out for the given sequence
sample making the ANGA=100% while the imposter user has been locked
out 24 times (L1-L24) in the given sequence sample hence the ANIA of this
example, according to Eq. 3.1, is 0.04 or 4.0% , so it can be concluded that
ANIA < 40%.

More specifically, if the ANIA & ANGA are taken in terms of normalized
number of actions as a portion of actions in relation to a total sequence
length 512 then it can be assumed that this imposter had performed 21
actions on average before detection for the given genuine user and it falls
in very good category.

• Bad: Similarly, Fig.4.10 shows another excerpt of validation which indicates
that genuine user has never been locked out for the given sequence sample
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Figure 4.9: Genuine user validated with its own reference set(right) and with
imposter set(left)

making the ANGA=100% while the imposter user has been locked out 2
times only(L1-L2) in the given sequence sample hence the ANIA of this
example, according to Eq. 3.1, is 0.5 or 50% , so it can be said that
ANIA > 40%. More precisely, if the ANIA & ANGA are taken in terms
of normalized number of actions then it can be assumed that this imposter
had performed 256 actions on average before detection for the given genuine
user and it falls in bad category.

• Ugly: Fig.4.11 shows the genuine user has been locked out so ANGA <

100% while the imposter user has not been detected before performing 50%
of actions, according to Eq. 3.1, on average hence ANIA > 40%.

Now, the aggregated results for all the 75 users are reported in tabular form
for the following four settings:

1. Across Session split–Experimental Setting I: Dynamic Classifier Selection
with global Static RCM

2. Across Session split–Experimental Setting II: Weighted Classifier fusion
with Personalized RCM
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Figure 4.10: Genuine user validated with its own reference set(right) and with
imposter set(left)

Figure 4.11: Genuine user validated with its own reference set(right) and with
imposter set(left)
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3. Across Sequence split–Experimental Setting I: Dynamic Classifier Selection
with global Static RCM

4. Across Session split–Experimental Setting II: Weighted Classifier fusion
with Personalized RCM

4.3.1 Across Session Split

In this setting, the dataset is divided across sessions as discussed in Chapter 3
section 3.2.1.1. Session 0 and 1 are used for training and testing purpose while
the session 2 is used for generalisation of our methodology on unseen data. For
our session split, the system is tested with both settings given below:

4.3.1.1 Experimental Setting I: Dynamic Classifier Selection with global
Static RCM

The aggregated result for all the users are reported in tabular form along with
the ANGA & ANIA. It can be observed from the Table 4.2 that:

In scenario 1, 33 participants qualify for the ‘very-good’ category, where the
mean of ANGA is 1.00 actions which represents that no genuine participant has
been locked out leaving the ANGA 100%, whereas the mean of ANIA is 0.24 which
indicates that all the imposters for these 33 genuine users has been detected before
performing 0.24% of actions. Subsequently, the 22 users fall in good category with
ANGA 0.55 and ANIA being 0.32 , 8 users fall in bad category with ANGA 1.00
(never locked out) and ANIA 0.48 and 12 users fall in bad category with ANGA
0.61 and ANIA 0.59.

In scenario 2, there are 31 users in very good category with ANIA 0.20, the
11 users fall in good category with ANGA 0.63 and ANIA being 0.18 , 15 users
fall in bad category with ANIA 0.48 and 18 users fall in bad category with ANGA
0.67 and ANIA 0.65.

In scenario 3, there are 45 users in very good category with ANIA 0.24, the
22 users fall in good category with ANGA 0.22 and ANIA being 0.20 , 4 users
fall in bad category with ANIA 0.49 and 4 users fall in bad category with ANGA
0.73 and ANIA 0.71.
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Overall, if the system is evaluated based on the number of actions performed
by imposter and genuine user before detection and false lockout respectively, then
it can be assumed that scenario 3 has performed well with the most lowest ANIA
and scenario 2 has performed well with highest ANGA for keeping the most of
genuine user logged in for the whole of testing sessions and not locked out falsely.

Category Scenario Users Normalized ANGA Normalized ANIA
Very Good 1 33 1.00 0.24
Good 1 22 0.55 0.32
Bad 1 8 1.00 0.48
Ugly 1 12 0.61 0.59
System Total 1 75 0.80 0.34
Very Good 2 31 1.00 0.20
Good 2 11 0.63 0.18
Bad 2 15 1.00 0.48
Ugly 2 18 0.67 0.65
System Total 2 75 0.86 0.36
Very Good 3 45 1.00 0.24
Good 3 22 0.22 0.20
Bad 3 4 1.00 0.49
Ugly 3 4 0.73 0.71
System Total 3 75 0.75 0.26

Table 4.2: Across Session Split–Experimental Setting I

4.3.1.2 Experimental Setting II: Weighted Classifier fusion with Per-
sonalized RCM

It can be observed from the Table 4.3 that: In scenario 1, 11 participants qualify
for the ‘very-good’ category, the mean of ANIA is 0.20 which indicates that all
the imposters for these 11 genuine users have been detected before performing
0.20% of actions. Subsequently, the 64 users fall in good category with ANGA
0.71 and ANIA being 0.35. In scenario 2, there are 26 users in very good category
with ANIA 0.23, the 45 users fall in good category with ANGA 0.81 and ANIA
being 0.31 , 4 users fall in ugly category with ANIA 0.41. In scenario 3, there are
15 users in very good category with ANIA 0.15, 52 users fall in good category

74



with ANGA 0.71 and ANIA being 0.24 , 8 users fall in ugly category with ANIA
0.42.

Overall, if the system is evaluated based on the number of actions performed
by imposter and genuine user before detection and false lockout respectively, then
it can be assumed that scenario 3 has performed well again with the most lowest
ANIA and scenario 2 worked well for keeping the most of genuine user logged in
for the whole of testing sessions and not locked out falsely.

Category Scenario Users Normalized ANGA Normalized ANIA
Very Good 1 11 1.00 0.20
Good 1 64 0.71 0.35
Bad 1 0
Ugly 1 0
System Total 1 75 0.75 0.31
Very Good 2 26 1.00 0.23
Good 2 45 0.81 0.31
Bad 2 0
Ugly 2 4 0.94 0.41
System Total 2 75 0.88 0.29
Very Good 3 15 1.00 0.15
Good 3 52 0.71 0.24
Bad 3 0
Ugly 3 8 0.69 0.42
System Total 3 75 0.77 0.24

Table 4.3: Across Session Split–Experimental Setting II

4.3.1.3 Analysis for setting I and setting II (Across Session split)

The aggregated results of DCF with static RCM parameters(setting I) are re-
ported in Table 4.2 and weighted fusion with personalised parameters optimised
with genetic algorithm(setting II) in Table 4.3.

It can be noticed that for static global RCM, there are users in all three
scenarios who are falling in bad as well as ugly categories which means there are
users for which the imposters could not be caught up even after performing more
than 40% of actions. In the worst case(scenario 3), there are users for which
imposters could not be detected even after performing 71% of actions on average.
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On the other hand, if setting II with personalised parameters is observed then
most of users are falling in either very good or good category but still there are
some portion of users falling in ugly category. In the worst case (scenario 3),
there are users for which imposters could not be detected even after performing
42% of actions on average. However, it is still lower than worst case of setting
I. Secondly, setting II has lowest system ANIA and highest ANGA as compared
to setting I in almost all scenarios. Hence, it can be assumed that setting II
has performed well in detecting the imposter users since it includes the personal
parameters of each user optimised by genetic algorithm.

4.3.2 Across Sequence Split

In this setting, dataset is divided across sequences as discussed in Chapter 3
section 3.2.1.1.

4.3.2.1 Experimental Setting I: Dynamic Classifier Selection with global
Static RCM

It can be observed from the Table 4.4 that, For scenario 1, 71 participants qualify
for the very-good category where the mean of ANGA is 1.00 actions which rep-
resents that none of genuine participant has been locked out leaving the ANGA
100%, whereas the mean of ANIA is 0.22 which indicates that all the imposters
for these 71 genuine users has been detected before performing 0.22 or 22% of
actions. Subsequently, 4 users fall in bad group where ANGA is again 100%
showing the genuine user itself is not locked out when exposed to its own vali-
dation data and mean ANIA is 0.41 which indicates that all the imposters had
been locked out only after performing 41% of actions for given validation data.
In scenario 2, there are 49 users in very good category with ANIA 0.27 (27% ac-
tions) which is quite high while 11 users fall in good group where mean of ANGA
is 0.97 (97% actions) and ANIA is 0.26 (26% actions). And, 15 users fall in bad
category with ANIA 0.42 (42% actions).
In scenario 3, it can be noticed that 49 users in very good category with mean
ANIA 0.24 (24% actions) while 15 users fall in good group where mean of ANGA
is 0.96(96% actions) and ANIA is 0.31(31% actions). 11 users fall in bad category
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with ANIA 0.44(44% actions).
Overall, the system performance has been evaluated based on the number of

actions performed by imposter before detection and average number of actions per-
formed by genuine users before false lockout then it can be assumed that scenario
1 has performed well with the most lowest ANIA and highest ANGA as well.

Category Scenario Users Normalized ANGA Normalized ANIA
Very Good 1 71 1.00 0.22
Good 1 0
Bad 1 4 1.00 0.41
Ugly 1 0
System Total 1 75) 1.0 0.23
Very Good 2 49 1.00 0.27
Good 2 11 0.97 0.26
Bad 2 15 1.00 0.42
Ugly 2 0
System Total 2 75 0.99 0.30
Very Good 3 49 1.00 0.24
Good 3 15 0.96 0.31
Bad 3 11 1.00 0.44
Ugly 3 0
System Total 3 75 0.99 0.28

Table 4.4: Across Sequence Split–Experimental Setting I

4.3.2.2 Experimental Setting II: Weighted Classifier fusion with Per-
sonalized RCM

It can be observed from Table 4.5 that: In scenario 1, 8 participants qualify
for the ‘very-good’ category, where the mean of ANGA is 1.00 actions which
represents that none of the genuine participant has been locked out leaving the
ANGA 100%, whereas the mean of ANIA is 0.05 which indicates that all the
imposters for these 8 genuine users have been detected before performing 0.05%
of actions. Subsequently, the 67 users fall in good category with ANGA and
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ANIA being 0.80 and 0.09 (9% actions) respectively.
In scenario 2, there are 4 users in very good category with ANIA 0.28 which is
quite high as compare to ANIA of scenario 1 while the 71 users fall in good group
where mean of ANGA is 0.75 and ANIA is 0.10.
In scenario 3, it can be noticed that 23 users are falling in very good category
with mean ANIA 0.15 which is better than scenario 2 while the 52 users fall in
good group where mean of ANGA is 0.72 and ANIA is 0.12 actions.

Overall, the system performance has been evaluated based on the number of
actions performed by imposter before detection then then it can be assumed that
scenario 1 has performed well with the most lowest ANIA and highest ANGA as
well. And secondly, scenario 3 worked well for keeping the most of genuine user
logged in for the whole of testing sessions and not locked out falsely even once.

Category Scenario Users Normalized ANGA Normalized ANIA
Very Good 1 8 1.00 0.05
Good 1 67 0.80 0.09
Bad 1 0
Ugly 1 0
System Total 1 75 0.82 0.09
Very Good 2 4 1.00 0.28
Good 2 71 0.75 0.10
Bad 2 0
Ugly 2 0
System Total 2 75 0.76 0.11
Very Good 3 23 1.00 0.15
Good 3 52 0.72 0.12
Bad 3 0
Ugly 3 0
System Total 3 75 0.80 0.13

Table 4.5: Across Sequence Split–Experimental Setting II

4.3.2.3 Analysis for setting I and setting II

Aggregated results of DCS with static RCM parameters (setting I) and weighted
fusion with personalized parameters optimised with genetic algorithm (setting II)
given in Table 4.4 and Table 4.5 respectively are referred here. First of all, it can
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be noticed that for static global RCM there are users in all three scenarios who
are falling in bad categories which mean there are some genuine users against
which the imposters could not be caught up even after performing more than
40% of actions. On the other hand, in setting II with personalised parameters, it
can be observed that all of users are falling in either very good or good category
where all the imposters have been caught before performing 40% of actions which
also means that none of the imposter got undetected. More precisely in setting
II, the only worst case has been observed in scenario 2, where imposters could
have performed 28% actions on average before detection. Except this case, on
average most of the imposters had been detected before performing 8% of actions
in setting II. Hence, it can be concluded that proposed setting II has performed
well in detecting the imposter users since it includes the personal parameters of
each user for R-RCM optimised by genetic algorithm as well as weighted classifier
fusion approach.

If the System ANIA are computed for scenario I in relation to the portion of
users falling in each category for both experimental settings then the system’s
ANIA can be calculated with the equation 3.3 as follows::

• Experimental Setting I

System ANIA= (0.22∗71)+(0.41∗4)
75

= 0.23 or 23%

• Experimental Setting II

System ANIA= (0.05∗8)+(0.09∗67)
75

= 0.09 or 9%

It can be noticed that the System’s ANIA for our experimental setting II has
been the lowest as compared to our setting I.
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4.3.3 Analysis on Across Session and Across Sequence

Best scenario results of both split strategies i.e., Across session (scenario 3) and
Across sequence (scenario 1) are compared as shown in Fig 4.12. It can be
observed that across sequence setting I & II has highest ANGA and lowest ANIA
as compared to across session split strategy. Moreover precisely,if sequence split
setting I and II are compared, then setting II has the lowest ANIA as compared
to setting I, hence it can be assumed that setting II has worked well in detecting
the imposter users in only performing 9% of actions. More formally, when two
CUA systems are compared then the system with lowest ANIA is considered
optimal from the perspective of security. However, if system’s ANGA is taken
into account then experimental setting I has performed well but as stated earlier,
if two CUA systems are compared then the system which detects imposter users
faster is considered the best one so in experimental setting II ANGA can be a
trade-off for such environments where confidentiality and integrity of data and
resources are main priorities.

Figure 4.12: ANGA & ANIA percentage for all the four experiments

Secondly, across sequence split strategy has overall performed well as com-
pared to across session split strategy. As discussed before, since there is an
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average gap of 28 days between the capture of each session and according to this
it means that session 2 has been recorded approximately after 56 and 28 days in
comparison to first two (0,1) sessions. Moreover, it has turned out during exper-
imentation of session split strategy that users exhibit different patterns between
sessions, and a model with high train and test performance, drops it drastically
at validation split. On the other hand, considering Sequence split strategy has
reduced a gap between training and validation data during experiments. So it
can be assumed that time gap between training and validation data have tempo-
ral effects which can affect the behaviour of user while using the keyboards. It
can be one reason of lower performance of session split as compared to sequence
split which has been researched more in detail in chapter 5 with deep learning
methods.

4.4 Summary

The true CUA system works on authenticating the user based on the typing be-
haviour which distinguishes one user from the other. The implemented system
has focussed on the dilemma of validating the user’s identity on each and every
action instead of authenticating on blocks of actions thereby lessening the risk
of imposter activity to a greater extent. A two phase system methodology has
been implemented and results are reported in terms of normalized portion of
ANGA and ANIA. Subsequently, the combination of monographs and digraphs
features have been used thereby leaving no room for imposters to do illicit activ-
ity in between the digraph features. The ensemble learning approach including
SVM, ANN and XGboost is used to increase the accuracy score of each action.
Since keystroke biometric is a weak modality and integration of multiple diverse
classifiers has escalated the confidence in classification of each action thereby in-
creasing the system performance. Moreover, the two dataset split strategies have
been tested with different experimental strategies and it has been found out the
system performance is lower in session split strategy as compared to sequence
split strategy because users exhibit different patterns between sessions, and a
model with high train and test performance, drops it drastically at validation
split. One reason could be the time difference between training and validation
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data collection sessions. To do more research on it, the deep learning methods
are applied in chapter 5 with session split strategy to compare the results with
baseline session dataset split findings.
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Chapter 5

Continuous User Authentication
using Keystroke Dynamics Based
on Deep Neural Networks

Behavioural biometrics of users tend to change depending on different factors
including time, background context, age or hardware specification. As described
in the aforementioned chapter, when the validation data of user is taken after the
gap of few months from the training data then users show different behavioural
patterns in validation data. This chapter aims to study the effect on system
performance with the implementation of deep learning classification techniques
which can treat the data as a sequential series and learns the hidden features
from raw data without depending over the statistical user profiles.

5.1 Introduction

A true continuous authentication system, based on keystroke dynamics, is pre-
sented which tends to validate the user on each action. Keystroke Dynamics
Recognition (KDR) is a behavioural biometrics method which can incessantly
authenticate the user by analysing the typing rhythm of each individual. Contin-
uously authenticating the user on each action based on behavioural information
is substantially challenging work because sometimes behavioural data collected
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by explicitly configured software Vyazigin et al. (2019) is scarce along with having
huge intra-class disparities to some extent.

Moreover, the keystroke dynamics is a behavioural biometrics hence it alters
gradually with time or based on background context more as compared to physio-
logical traits. Subsequently, sustaining the static database for any given user can
lead to lessened accuracy over time. One solution can be perpetual addition of
new keystroke samples after specific time. However, the major drawback of this
process is enormous memory consumption especially if the system is dealing with
substantially huge number of users. Moreover, traditional algorithms process the
keystroke input as a vector, however, keystroke input samples are more similar to
a sequence. Mostly, it is assumed in traditional neural networks that all inputs
are autonomous of each other.

Several traditional statistical methods had been exploited for classification
of KDR system including Euclidean distance Bours and Mondal (2015a), scaled
Manhattan distance with Mean of Horners Rules Chandranegara et al. (2020) and
Mahalanobis distance Ayotte et al. (2019). In addition, machine learning tech-
niques aiming on prediction strategies are also adopted for CUA using KD. In
this regard, K-Nearest Neighbor (KNN) classifiers Shikder et al. (2017), Decision
trees Alsultan et al. (2017), Support vector machine (SVM) Çeker and Upad-
hyaya (2016) and artificial neural networks (ANNs) Ahmed and Traore (2013)
had been applied for KD classification problems.

The major limitation of these methods is their difficulty to substantially and
appropriately tackle the non-linear discrete problem scenarios. Exceptionally,
Artificial neural networks (ANNs) are frequently considered to elucidate the non-
linear association among varied data dimensions. However, conventional neural
networks process the input as vector where all inputs are independent of each
other. In contrast, keystroke patterns are more of a chronological sequence Tse
and Hung (2020) which can contain hidden features. For instance, if a person
commits mistake while typing and correct it, then this behaviour will be saved
in keystroke sequence. This sort of information cannot be stored in statistical
profiles and the conventional classification methods also cannot mine that hidden
properties which can also uniquely distinguish one user from the other.
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Therefore, in order to make CUA system scalable and more reliable, this
research work has used recurrent neural network (RNN) which productively learns
time-series data and generates the high quality features.

5.2 System Methodology

This section presents the system methodology and architecture of proposed sys-
tem based on deep learning methods. Two types of architectures have been
proposed:

• Hybrid Deep learning and R-RCM Model

• Integrated LSTM Per Frame and Per Sequence

5.2.1 Dataset Analysis

As discussed in chapter 4, it had turned out during experiments of session split
strategy for dataset that users exhibit different patterns between sessions and
a model with high train and test performance drops it drastically at validation
split. On the other hand, sequence spilt strategy has reduced the gap between
training and validation data during experiments. It has been assumed that time
gap between training and validation data could affect the user to show different
behaviour. In this aspect, recurrent neural network has been used in this chapter
which can effectively learn the time-series data.

Dataset Split: For both proposed architectures, session spilt strategy is
used, as discussed in chapter 3 section 3.2.1.1, where session [0,1] are used for
training and testing while session [2] is used for final validation of model.

5.2.2 Hybrid Deep Learning Model

The proposed hybrid deep learning and R-RCM model utilises the recurrent neu-
ral network (RNN) Medsker and Jain (2001) to learn the hidden features of
keystroke behavioural data and it integrates the proposed robust recurrent con-
fidence model, as discussed in chapter 3 section 3.2.3.2, to make the system
continual. Different architectures with RNN have been experimented in order to
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make CUA system robust and more secure. The different stages of the proposed
model are discussed below:

5.2.2.1 Keystroke Sequence Sampling

Keystroke patterns can be assumed as a sequential series comprising of key-press
and key-down events. Formally, a keystroke sequence is a chronological organi-
sation of set of events (E) representing a time series.

Let’s suppose, there is tuple (UserId′, SessionId′, DownTime, UpT ime,KeyCode)

of keystroke events and those events are assembled to make up a sequence:

Sequence(UserId′, SessionId′) = {e|∀e ∈ E, s.t. where
UserId(e) = UserId′,

SessionId(e) = SessionId′,

DownTime(e) = DownTime,

UpT ime(e) = UpTime,

KeyCode(e) = KeyCode′,

}
Formally, the order of actions is imposed by the following sorting criterion:

ei < ej if

DownTime(ei) < DownTime(ej) or

DownTime(ei) = DownTime(ej) and

UpTime(ei) < UpTime(ej)

The proposed model portions the whole data into defined length keystroke
sequences so that RNN can learn the keystroke time-series.

The one attribute and five main features are utilised in the CUA system,
namely key-codes, monograph durations, digraph latencies i.e., DD, DU, UD and
UU. Key Code belongs to a limited set of values with a power equal to C and it
is transformed with one hot encoding. To apply a classification algorithm, input
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data has been processed to obtain numerical feature series as given follows: For
∀t = 0,M − 1, p = t− 1 , there is:

• Xt0 = KeyCodet

• Xt1 = KeyCodep

• Xt2 = (UpTimet −DownTimet)

• Xt3 = (UpTimet − UpTimep)

• Xt4 = (DownTimet −DownTimep)

• Xt5 = (UpTimet −DownTimep)

• Xt6 = (DownTimet − UpTimep)

5.2.2.2 Architecture

Lets assume, there are M subject users and system needs to classify each user
based on given action and sequence containing keyboard actions. So, formally
there is:

KS = {(a, b)} ⊂ RX×T × {1, . . . ,M}T ,

where at –represents a keyboard action at a particular time-step t, bt ∈ {1, . . . ,M}
– user who executed the current keystroke, T – total number of actions or time-
step, X – action vector dimension precisely. The proposed system predicts the
identity of user bt per time step t, and decides on each action if it belongs to
genuine user or not.

5.2.2.3 Recurrent Neural Network (RNN)

A recurrent neural network (RNN) is mostly used for the problems containing
time-series data thereby it can be employed for keystroke dynamics data owing
to its sequential nature consisting of organised timestamps for each action. Gen-
erally, RNNs contain loops which permit the perseverance of information and
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each loop permits information to pass through it onto the next loop. Each loop
receives the input information at any time step and produces the output value
which would be passed to next loop transferring the information from one step of
network to another. RNN can be considered as various replicas of same network
connected together in a sequential manner in order to transfer information to
subsequent successor as shown in Fig.5.1.

Basic RNNs are easy to understand with simple architecture as compared to
other neural network models Tse and Hung (2020). However, it is difficult to
train basic RNNs owing to its instinct problem called as exploding or vanishing
gradients which substantially hinders learning of long data sequences.

Figure 5.1: Unrolled Recurrent Neural Network

Long Short Term Memory (LSTM)

In this research work, the more refined form of RNNs known as long short-term
memory (LSTM) network has been implemented in order to tackle the problem
of diminishing gradients hence making it appropriate for effectively learning long
term dependencies. More formally, the architecture of basic RNNs have series
of simple iterating neural network units and each unit contains a single tanh
layer Xiaofeng et al. (2019). In contrast, the core approach of LSTM is that,
along with tanh layer, it contains a cell or vector known as gate which functions
as a memory. This vector stores and modifies the information on each step
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hence network can write or remove/modify the information to/from the memory
through computational steps. The LSTM model is defined in Xiaofeng et al.
(2019) as below:

ki = σ(Wkkxi + bkk +Whkhi − 1 + bhk)

di = σ(Widxi + bid+Whdhi − 1 + bhd)

gi = tanh(Wkgxi + bkg +Whghi − 1 + bhg)

oi = σ(Wkoxi + bko+Whohi − 1 + bho)

ci = dici − 1 + kigi

hi = oitanh(ci)

(5.1)

where ki, di, gi and oi are the input, forget, cell and output gates respectively, ci
is the cell state at time i, hi is the hidden state at time i, xi is the input at time
i and σ is the sigmoid activation function.

The basic LSTM model containing one layer investigates each individual part
of data sequence on each timestep. However, LSTM model which consists of two
or more layers investigates each part of sequence on first layer and aggregates the
results from each timestep to generate the final output. Afterwards, the second
layer of model receives a hidden state from first layer as an input and updates its
memory cell accordingly to generate an output for subsequent layer.

5.2.2.4 Architecture 1: LSTM and Robust recurrent confidence model
(R-RCM)

The proposed framework compares three settings in experiments:

• Setting I: Only LSTM network

• Setting II: LSTM merged with our proposed RCM (without alert threshold)

• Setting III: LSTM merged with our proposed R-RCM (with alert threshold)
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The system framework has been shown in Fig.5.2. The reference deep net-
work architecture employs one LSTM layer, three fully connected dense time-
distributed layers and final layer is the output layer predicting the probability of
given sequence action as shown in Fig.5.2. Moreover, a dropout layer is configured
between every two layers in order to lessen the menace of over fitting.

Figure 5.2: Framework of RNN Network Layers

The architecture of implemented LSTM is given table 5.1 below:

Layers Explanation
Input Layer 3-dimensional
LSTM Layer 128 hidden units
batch Normalization 128 hidden units
3-fully connected time distributed 128 units
activation (Activation) 76 units
dropout to avoid overfitting

Table 5.1: LSTM Network Structure

The raw data in the form of series of monographs and digraphs are feed
into the LSTM which generates the probability output based on each action.
In second and third approach, RCM or R-RCM function has been merged into
LSTM respectively, it receives the output from LSTM output layer and applies
hyper parameters to decide if user can continue using the system or should be
locked out based on final threshold of RCM or R-RCM.

5.2.2.5 Architecture 2: LSTM per Frame and LSTM per Sequence

The proposed architecture integrates the two classification approaches to get the
probability based on per action as well as per sequence. Let’s say, there is a
sequence of M + U keystrokes where U is the context length and M is the
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Figure 5.3: The System Architecture 1

Figure 5.4: The System Architecture 2
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length of keystroke sequence. Sequences of a defined length M + U have been
sampled to generate input features and target user ids (x,y) with T time steps in
total.

There are two setups in practice:

• U = 1 and T = M = 1, a single keyboard action with monograph and
digraph features for per frame classification.

• U = 1 and T = M = 64, a sequence of keyboard actions with monograph,
digraph and n-graph features for per sequence classification.

The system architecture has been shown in Fig.5.4. The first presented model
based on per frame classification takes the input data as each action and extracts
the action based features containing monographs and digraphs. On the other
hand, the second model based on sequence classification segregates the keystroke
data into fixed length keystroke sequences and generates the input patterns ac-
cording to the timing features of keystrokes containing monographs, digraphs and
n-graphs. The fixed length sequence used in this study are based on 64 time-steps
which contain enough hidden features for the behavioural patterns of given user.

Afterwards, the processed sequence containing the monograph, digraph or n-
graph features are fed into the LSTM network that has been effectively trained
to extract the unique behavioural patterns of user from given sequence and then
fully joined with dense layers to produce the final probability output.

The probability output for both models goes to the recurrent confidence model
which changes the confidence level according to probability output and its hyper
parameters. It must be noted that output from per frame LSTM would go into
the R-RCM on each action, while the output from per sequence would go into the
R-RCM after 64 actions. Therefore, per frame output makes the changes in user’s
confidence after each action whereas per sequence output makes the change in
confidence of user after 64 actions. In a case, when the user’s confidence becomes
low than the final threshold before the user has completed the 64 actions then
the user would be lock out of system without waiting the user to complete the
64 action window.

The core notion of integrating the sequential approach is that model can learn
the hidden behavioural features from a given sequence and generates an output
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according to the unique behavioural pattens which cannot be extracted through
per frame. Moreover, it is assumed that input keystroke sequence would never
be entirely different for given user, conversely, it would gradually alter from time
to time based on external factors. Accordingly, LSTM network is trained so that
it can learn the unique features of current input sequence while remembering the
prior input features owing to its memory cell structure.

Formally speaking, this architecture combines the continuous and periodic au-
thentication owing to classification based on per action and per sequence strategy
respectively. It combines the advantage of per action features which specifies the
user behaviour on each action with per sequence features which can depict the
unique hidden user behaviour based on general computer usage.

5.3 Results and Discussion

The performance metrics described in chapter 3 section 3.2.6 for CUA system
have been used which includes normalized portion of ANGA and ANIA and
EER. Additionally, the four categories based on ANGA and ANIA as describe in
chapter 3 section 3.2.6.1 are also used to assess the system performance.

The External Threat Scenario ETS3 (scenario 3) is used for training and
testing purpose as it represented the worst performance in detecting the imposter
users in chapter 4 with baseline techniques. (see tables 4.2 & 4.3.) The reason for
worst performance could be that all the imposters used in validation of model had
not been used for training, so all the imposters in this scenario are assumed to be
external to the organisation for final validation. This scenario is chosen to work
with deep learning methods to check if the advanced deep learning techniques
can detect the external imposters whom data samples are not included in the
training.

5.3.1 Results in terms of ANGA and ANIA

For Architecture 1, some extracts of the results based on 512 actions are shown
in Fig 5.5 where genuine user sample has been validated with its own data(right
side) and with imposter data (left side).
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Figure 5.5: Genuine user validated with its own reference set(right) and with
imposter set(left)

It illustrates the combination of LSTM and R-RCM output (setting 3), it can
be noticed on left side part that the user has been logged out of system 4 times
during 512 actions. For testing purposes, user’s confidence is set to its highest
level after each lockout assuming it has again used the SUA credentials to login
back to system. It can be noticed during the third attempt, user has crossed the
alert threshold marked by A1 in Fig.5.5. After few actions, it can be observed
that probability of actions drastically increased from LSTM output which shows
that actions are probably done by genuine user. However, the R-RCM has not
increased the confidence of user rapidly instead it granted points less than usual
because the overall confidence is still lower than alter threshold. Afterwards,
user’s probability again dropped from LSTM output and R-RCM locked out the
user as soon as possible in order to limit the damage caused by imposter attempt.

5.3.1.1 Aggregated Results for all three settings of Architecture 1

Here, the aggregated results for 75 users are presented in tabular form for all the
three settings. Table 5.2 shows the results of only LSTM model where 60% or 45
users are falling in very good category while 40% or 30 users are falling in good
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category with ANIA being 0.20 and 0.28 respectively.

Category Scenario Users Normalized ANGA Normalized ANIA
Very Good 3 0.60 (45) 1.00 0.20
Good 3 0.40 (30) 0.83 0.28
Bad 3 0
Ugly 3 0
System Total 3 1.0(75) 0.93 0.23

Table 5.2: Architecture 1 (setting I): Aggregated Results of LSTM only

Figure 5.6: LSTM results represented in percentage

On the other hand, Table 5.3 shows the results of LSTM + RCM where 54
users are falling in very good category whereas only 21 users are in good category
with ANIA 0.17 and 0.18 respectively.
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Category Scenario Users Normalized ANGA Normalized ANIA
Very Good 3 0.72 (54) 1.00 0.17
Good 3 0.28 (21) 0.90 0.18
Bad 3 0
Ugly 3 0
System Total 3 1.0(75) 0.97 0.17

Table 5.3: Architecture 1 (setting II): Aggregated Results of LSTM-RCM

Figure 5.7: LSTM-RCM results represented in percentage

Table 5.4 shows the results of LSTM + R-RCM approach which contains the
alert threshold to detect the imposter users quickly. It can be observed that
system ANIA has reduced to 0.04 with this approach and imposter users have
been detected by system more quickly.
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Category Scenario Users Normalized ANGA Normalized ANIA
Very Good 3 0.88 (66) 1.00 0.04
Good 3 0.12 (9) 0.88 0.05
Bad 3 0
Ugly 3 0
System Total 3 1.0(75) 0.98 0.04

Table 5.4: Architecture 1 (setting III): Aggregated Results of LSTM-Robust RCM

Figure 5.8: LSTM- Robust RCM results represented in percentage

5.3.1.2 Aggregated Results of Architecture 2: LSTM per Frame and
per Sequence

The collective results of Architecture 2 have been listed below in Table 5.5. It
can be observed that only 3 users have been falsely locked out of system and
imposter users have been detected by system by only performing 0.016 actions.
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Category Scenario Users Normalized ANGA Normalized ANIA
Very Good 3 0.96 (72) 1.00 0.016
Good 3 0.04 (3) 0.91 0.03
Bad 3 0
Ugly 3 0
System Total 3 1.0(75) 0.99 0.016

Table 5.5: Architecture 2: Aggregated Results of Integrated LSTM per Frame
and per Sequence

Figure 5.9: Integrated LSTM per frame and per sequence results represented in
percentage

Comparison with Baseline Methods:
Moreover, if the system total of scenario no 3 results of baseline session split

strategy given in chapter 4 table 4.3 is compared with the deep learning ap-
proaches then it can be observed in Table 5.6 that system ANGA has increased
with LSTM and LSTM-R-RCM methods as compared to baseline while system
ANIA has decreased with LSTM and LSTM-R-RCM methods as compared to
baseline technique.
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Methodology Scenario Normalized System ANGA Normalized System ANIA
Baseline(Session split) 3 0.77 0.24
Architecture 1: LSTM (Session split) 3 0.93 0.23
Architecture 1: LSTM + RCM (Session split) 3 0.97 0.17
Architecture 1: LSTM + R-RCM (Session split) 3 0.98 0.04
Architecture 2: Integrated (Session split) 3 0.99 0.016

Table 5.6: Comparison of Baseline Session split with Deep Learning Methods

Figure 5.10: Comparison of baseline and deep learning methods

Fig 5.10 illustrates the System’s ANGA and ANIA for the four proposed
methodologies and baseline method which is discussed in chapter 4 table 4.3. It
can be observed that System ANGA has substantially increased from simple base-
line method to robust deep learning Integrated LSTM R-RCM which includes the
two thresholds to authenticate user as well as includes two classification methods.
Similarly, it can be noticed that system’s ANIA has substantially decreased from
simple baseline to robust deep learning model.

5.3.2 Results in terms of EER

Equal error rate (EER) has also been calculated to evaluate the results with
previous research works. EER is a metric which assesses the data classification
performance for any model. In this work, EER has been calculated for the optimal
methodologies and the results are shown in Table below:

99



Methodology EER %
LSTM-Robust RCM 3.2%
LSTM Integrated 1.04%

Table 5.7: Results in terms of EER

5.3.2.1 Comparison with Previous Research

Overall, deep learning models have worked well in avoiding the false lockout
and quick detection of imposter thereby escalating the ANGA and lessened the
ANIA respectively. Since deep learning method does not depend on statistical
features which can change over time so it can retain the previous information.
More specifically, if the ANGA and ANIA are demonstrated with exact number
of actions instead of giving the normalized portion of actions then it can be
calculated as follows using Eq 3.5:

Exactgeniune/imposteractions =

Normalizedactions ∗ Totalvalidationdata

The exact number of imposter actions for our optimal experimental setting
i.e., robust LSTM R-RCM model and integrated LSTM, can be calculated with
the above formula.

Exact imposter actions are of this research are given in Table 5.8

Methodology Exact Imposter actions
Previous Research Bours and Mondal (2015b) 547
LSTM-Robust RCM 240
LSTM Integrated 96

Table 5.8: Exact Imposter actions for Keystroke Dynamics

It means the imposter users have been locked out of system only after perform-
ing 96 keyboard actions. Moreover, if the optimal experimental setting results i.e.,
96 imposter actions are compared with previous scholarly work, then researchers
in Bours and Mondal (2015b) had also used ANGA & ANIA as performance
metric for CUA system. The ANIA reported for their optimal settings was 547
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keyboard actions which is quite higher than the results achieved in this work.
However, their results were demonstrated in the exact number of actions which
makes it difficult to compare the work because of different amount of validation
data in any experimental work. On the other hand, the method used in this
research to calculate the normalized average portion of genuine and imposter ac-
tions will make it easy to compare the results regardless of amount of validation
data in any future research work done for true continuous user authentication
system.

Additionally, if EER of this research work is compared with previous re-
searches given in table 2.1, 2.2 then it can be observed that most of the research
works have used the block size of actions then the researchers in Kim and Kang
(2020) achieved the EER of 1% but they had utilised the varying keystroke sets
instead of single keystroke action to authenticate the user. Moreover, another
notable work presented in Lu et al. (2020) had also used the RNN for authenti-
cating the users but researchers have used the sliding window approach consisting
of sequence of block actions i.e., 50 actions and achieved the EER of 4.77%. In
contrast, the results provided in this research have used the single action and
achieved the lowest error rate (EER) of 1.04% precisely.

5.4 Summary

This chapter focuses on a true continuous authentication system, based on keystroke
dynamics, which tends to validate or identify the user on each action by using the
recurrent neural network (RNN). RNN has been used to exploit the sequential
nature of keystroke data. Different Architectures have been experimented with
RNN and the proposed Robust recurrent confidence model (R-RCM) to authen-
ticate the user on each action along with learning the hidden behavioural features
which can be represented through keystroke sequential series.
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Chapter 6

Continuous User Identification
Using End-to-End Deep Neural
Model

This chapter aims to implement a novel strategy of continuous identification
without the prior claim of user’s identity at the start of session. All the proposed
frameworks for continuous user authentication relies on static user authentication
with usernames and passwords at the start of session. In this study, a novel
method is proposed which can perform identification of the user continuously
without the need of static user authentication at start of session. In this regard,
an end-to-end deep learning model is trained which effectively learns the user
identity on each action.

6.1 Introduction

End-to-end model is a method which trains the entire model simultaneously in-
stead of discretely training its different constituents M Jomaa et al. (2020). Sub-
sequently, end-to-end model lessens the human intervention for training of model
and eradicates the requisite of separate schemes in order to integrate the multiple
models. Moreover, a major principle of end-to-end training is that the model
itself decides which features are important for the classification task and it does
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not depend upon the experiments or choice of researchers as shown in Fig6.1.

Figure 6.1: Comparison of Traditional Classification Techniques and End-to-End
Deep Learning

The loss and accuracy are the common metrics for evaluating the performance
of a classifier deep neural network. Loss is the difference between the output of the
model (the model prediction) and the expected output. Accuracy is the number
of correct predictions divided by the total number of predictions Paulsen et al.
(2020).

6.2 End-to-End Deep Identification Model (E2E)

End-to-End Deep Identification Model (E2E) is based on multi-class classifica-
tion problem which needs to identify any current user from a set pool of users.
Subsequently, one model is trained which learns to differentiate among all the
given users in dataset. In this aspect, deep learning model is used which has
been trained in end-to-end manner. The proposed recurrent confidence model
(R-RCM) is also part of this model to make the identification of user continu-
ous. The core idea is to eliminate the need of static user authentication (SUA)
in the start of session by employing the authentication credential like username
and passwords. To best of our knowledge, continuous identification without the
incorporation of SUA has been studied for the first time in this domain.
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6.2.1 Architecture

Let’s say, there is D = {(x, y)}, where xtj is j–th feature value at a time step t,
and yt is an id of user that performs an action at time step t, t = 0, T − 1.

6.2.2 Sequence Sampling

Two novel sequence sampling approaches are proposed and investigated for con-
tinuous user identification:

1. Sequences of single genuine user is fed into the model for training purpose
at one time.

2. Sub-sequences of multiple users are stitched together to make a single se-
quence and model is trained to make correct recognition between transition
of user identity from one subsequence to another.

User sequences are stitched together to train the model to learn the transition
between different user identity correctly.

Given a set of subsequences S = (S0, S1, . . . , Sr−1), it is required to alter
their DownTime and UpTime so that they would occur sequentially, and do not
exhibit anomaly patterns, otherwise model learns that in truth keyboard actions
are independent short sequences rather than a single long sequence.

6.2.3 Gated Recurrent Unit (GRU): Model Training

Recurrent Neural Network (RNN) is trained to learn the identity of user on each
action. Gated Recurrent Unit (GRU) is used as a recurrent unit this time which
is considered to be computationally more efficient than LSTM Yang et al. (2020).
Efficient performance of GRU was the reason of its selection over LSTM since
joint model E2E was trained for 75 users that is why more computationally more
compatible solution was required for the problem.

Firstly, network is trained for 10 users only where sequence samples from
different users have been stitched together. The training network was set up as
a classification problem with multiple classes, i.e., the network predicts which
user a sample belongs to. The target labels, consisting of integers from 0 to 9
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corresponds to user ids. Afterwards, model is extended by training 20 users, then
to 40 users and then successfully to 75 users.

The rectified linear unit (ReLU) is used as activation function for the hidden
layers and the Softmax function was used for the output layer. ReLU is considered
to be non-linear function which is frequently used as activation function for deep
neural networks owing to its low computational cost on GPU hardware. Softmax
is used for the activation function of the output layer during pre-training. The
architecture of reference deep learning model is given in Table 6.1:

Layers Explanation
Input Layer 3-dimensional
GRU Layer 256 hidden units
GRU Layer 256 hidden units
batch Normalization 256 hidden units
time distributed 76 units
activation (Activation) 76 units
ctc blank regions
dropout to avoid overfitting

Table 6.1: GRU Network Structure

6.2.3.1 Region Labelling Approach

It is assumed if |G(yt)| >= 1, i.e. there are multiple genuine users sequence or
genuine single user sequence, then having more actions before classifying all of
them at once increases overall accuracy. In such case, a novel approach of three
different types of regions are introduced in order to recognise the user’s identity
and these regions are defined below:

• Blank Region Blank regions are those regions where in general confidence
is always low, due to model not seeing enough samples, it is a beginning
of each user sequence stitch or when user has just started using the system
in case of single user sequence. For such regions, a previous label or blank
label crossentropy loss must be enforced, or CTC loss that learns a transition
between such. BlankRegion represents first MinDetectLength actions of
a new user that are likely to make classifier uncertain about its prediction.
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In such a case a separate class N + 1 is being introduced, its called Blank
as described in Graves et al. (2006), y′t = N + 1,∀t ∈ BlankRegion(G(yt)).

BlankRegion(G(yt)) = {

gij|∀j = 0,MinDetectLength− 1,∀i = 0, |G(yt)| − 1

} (6.1)

• LabelShort Region is the one right after a region of lower confidence, it
is where it is safe to enforce crossentropy loss given that blank region has
enough length, and it can be guaranteed that as of now user actions are
classifiable without contradictions.

LabelShortRegion(G(yt)) = {

gij|∀j = MinDetectLength,MinDetectLength+ ShortLabelLength− 1,

∀i = 0, |G(yt)| − 1

} (6.2)

• LabelLong Region is introduced mainly to account for a recurrent model,
which is unwrapped before gradient estimation, and as such having an error
at later actions per single user might have a worse gradient propagation com-
paring to earlier ones. Since at those points a main concern model should
have is to keep to a previous prediction and monitor whether keystrokes
with different dynamics are introduced, and in such a case it must collect
enough evidence before switching to another user id prediction.
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LabelLongRegion(G(yt)) = {

gij|∀j = MinDetectLength+ ShortLabelLength, |gi| − 1,

∀i = 0, |G(yt)| − 1

} (6.3)

The illustration for different regions are shown in Fig 6.2. it can also be
observed in Fig 6.2 that two user’s sequences are stitched together in ground
truth (left side) which means user 8 would start the system and user 4 would
take over after 350 actions.

In the second part of figure (right side), it can be seen that the model has been
relaxed in start and it has not been enforced to start prediction from 1st action.
So in first few actions model predict the blank class which is discussed above
which means it does not predict any user and this part has been labelled in Fig
6.2 as BLANK REGION. Subsequently, after that is the label short region where
model learns to get confident with the user identity by accumulating enough
samples and this part has been labelled in Fig 6.2 as LABEL SHORT REGION.
Afterwards, as soon as model gets confident the label long region starts and it
continues until the users is changed and this part has been labelled in Fig 6.2
as LABEL LONG REGION. Moreover, it can also be observed in Fig 6.2 that
when user has been changed after 350 actions then model has again started over
by predicting the blank class followed by label short and long regions.

Moreover, model is trained to insert maximum of 32 emptyset to mark the
blank region, it means if imposter user has started using the system then within 32
actions it can be locked out of system since if model cannot identify the user from
given set of genuine users then it will lock out the unknown user from system
after 32 emptyset. Similarly, the SHORT REGIONS contain maximum of 20
actions where the model gets confident with its prediction. However, if model
gets imposter actions after starting predicting the user identity then within next
20 action it can lock out the user. LABEL LONG REGION contains actions
until the user is changed. The summary of maximum actions for each region is
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given in Table 6.2 below:

Regions Maximum Actions
BLANK REGION 32
LABEL SHORT REGION 20
LABEL LONG REGION Until Identity of User changes

Table 6.2: Maximum Actions for Different Regions Approach

Figure 6.2: Illustration of proposed regions

6.2.3.2 GRU Training: Loss Functions

In practice, deep learning identification model is trained with sampled crossen-
tropy loss and CTC loss and experimented to increase ANGA and decrease ANIA.

Crossentropy is being sampled for LabelShortRegion, and LabelLongRegion.
On the other hand, BlankRegion uses CTC loss instead of crossentropy, and is
targeted to predict sequence ∅UserId. The ∅ is not inserted everywhere, but
condition loss to align a sequence above in start of user session only until the
model gets confident with user’s identity. It allows to learn an adaptive amount
of samples needed to give a first predict. Since just per frame accuracy is much
lower than say an aggregated one across 32 actions or less.
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6.3 Results and Discussion

For the system evaluation, results are reported with system’s ANGA, ANIA and
EER . To define these metrics for identification problem let’s assume:

If there is a classifier among N users, Genuine – a set of genuine users, I – a
set of impostor users, then the following notion of TruePositive, TrueNegative,
FalseNegative, FalsePositive are defined as:

• yt – ground truth values(True Labels/User Ids)

• ŷt – predicted user ids

• G(ŷt) = {g0, g1, . . . , gh−1} – set of continuous, disjoint, fully covering {1, . . . , T}
subsequences.

Taking these parameters in consideration, it can be defined:

1.

TruePositive(Genuine, yt, ŷt) = {

gj ∩ gi|∀i = 0, |G(yt)|,∀j = 0, |G(ŷt)|, s.t.

ygj0 ∈ Genuine and ygi0 ∈ Genuine

}

2.

FalseNegative(Genuine, yt, ŷt) = {gj∩gi|∀i = 0, |G(yt)|,∀j = 0, |G(ŷt)|, s.t.

ygj0 /∈ Genuine and ygi0 ∈ Genuine

}

3. TrueNegative(Genuine, yt, ŷt) = TruePositive(I, yt, ŷt)

4. FalsePositive(Genuine, yt, ŷt) = FalseNegative(I, yt, ŷt)

Given the above definitions:
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•

ANGA(Genuine, I, yt, ŷt) =

| ∪ TruePositive(Genuine, yt, ŷt)|/|TruePositive(Genuine, yt, ŷt)|

•

ANIA(Genuine, I, yt, ŷt) =

| ∪ FalseNegative(I, yt, ŷt)|/|FalseNegative(I, yt, ŷt)|

The following Fig 6.3, presents the pre-processed ground truth stitched mul-
tiple user sequences from user 1 and 5, which have been trained to represent the
transition between two user ids for the model.

Figure 6.3: Pre-processed ground truth stitched multiple user sequences

Fig 6.4 shows the user id per action taken as argmax from softmax layer.
Particularly in this case, the heuristic of inserting blank region is not applied and
model is forced to predict a user id from a very first action. As a result, it can be
noticed that quite often a user sequence is broken by a short sequence of incorrect
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user id, as well as in general has pretty short noisy predictions from user 2,4,7
and 9.

Figure 6.4: Model Predictions from Softmax GRU

Fig 6.5 presents a continuous user id prediction for a recurrent end-to-end
model which has been trained with sparse crossentropy loss only. It can be ob-
served that in the start model was not confident with any user id. However, model
started predicted user 1 (colour labelled as orange) correctly and the confidence of
user 1 started increasing after few actions which represents the LABEL SHORT
REGION and model gets confident with identity of user for rest of action which
is LABEL LONG REGION until the identity of user changes and next sequence
from different user has started. Again, it can be observed that after 180 actions,
model give noisy predictions until it starts identifying the user correctly (colour
labelled as brown).
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Figure 6.5: Recurrent Predictions from GRU-Robust RCM

Another similar example can be seen in Fig 7.6 where the ground truth user
sequences are from user 2 until 90 action events then onwards user 9 action
sequence is stitched. However, the argmax output start predicting from the first
action since the methodology of inserting our black region is not enforced yet and
model gives the noisy predictions from user 1, 3, 4 and 6 before it has started
predicting the correct user which is 2. Moreover, for the rest of sequence still
noisy predictions are present.

Figure 6.6: Recurrent deep learning identification

An objective for CTC loss was that, crossentropy one does not penalize these
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noisy short predicts, hence increases the imposter predictions or ANIA and lock
out the genuine user hence decreases the ANGA. Therefore, the idea of inserting
blank labels with CTC loss has been experimented.

The CTC loss and idea of inserting blank regions is implemented for multiple
user cases in such way that model is conditioned to predict a transition sequence
with just 3 labels, a previous stitch user id, emptyset and a next stitch user
id. But in practice model does not predict emptyset in the transition area, but
switches to a new user at some point. It allows model to keep a previous predict
as long as becomes confident that a user has changed and it does provide a new
predict.

A final model has been trained with sampled cross-entropy for LabelShortRe-
gion and LabelLongRegion and sampled CTC loss for BlankRegion.

The following Fig 7.4 shows the single user (user3) sequence where the CTC
has been implemented for blank region insertion in start of user identity. It can
be noticed that model is relaxed in the start to delay the predict until it becomes
confident with the user prediction. It can be observed that an extra empty class
20 has been added and model predicts the class 20 in the start which means it
inserts emptyset in extra class instead of giving noisy predictions. Afterwards
when model gets confident with the user identity it starts predicting the correct
identity of user 3 for rest of the sequence.

Figure 6.7: Single User Identification and Authentication

Moreover, if the first plot is looked closely, also shown below in Fig 6.8, then
it can be noticed that confidence value of blank class( class 20) is highest which
is illustrated with blue colour. However, once the model starts predicting the
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correct user identity for user no 3 then the confidence of blank class is dropped
and confidence score increases for user 3 which is illustrated with red colour.

Figure 6.8: Recurrent Continuous Output of E2E Model

Fig 7.7 shows another example where the CTC has been implemented for
blank region insertion in start of user identity when model is unsure of user’s
identity. It can be noticed in plot 4 that model has predicted the blank class
through argmax output and then after few actions started predicting the correct
class 15. However, the recurrent confidence plot 1 shows that as soon as the
model started predicting the class 15 (coloured brown), its confidence decreased
twice which could be owing to low probability score from softmax classification.
But eventually the confidence increased and stayed same for rest of the sequence.
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Figure 6.9: CTC Blank Region for User Identification

6.3.1 Aggregated Results for End-to-End Model

Now the aggregated result for all the users in tabular form are reported in Table
6.3.

Firstly, the model is trained for 10 users, then 20, 40 and finally extended to
75 users. The results are reported for 20, 40 and 75 users in table 6.3.

It is observed that out of total 20 users 18 are correctly identified by system
for whole validation set while 2 genuine users are falsely locked out by the system.
For 40 users, again 3 genuine users are falsely locked out by the system. For 75
users, 73 users are correctly identified by system for whole validation set while
rest of 2 users are falsely locked out by the system. It can be observed in table 6.3
that system ANGA and ANIA are optimal for 40 and 75 users and the accuracy
achieved by e2e model for 75 users is 93%.

Category Total Users Normalized ANGA Normalized ANIA Accuracy E2E Model
System Total 20 0.98 0.015 94.6%

System Total 40 0.99 0.009 90.3%

System Total 75 0.99 0.007 93%

Table 6.3: Aggregated Results of Recurrent End-to-End Model

The exact number of actions for imposter detection when calculated with Eq
3.5 are 42 actions.

115



The model is trained for 60 epoch and the following Fig 6.10 shows the com-
parison of model trained with 20 users (v42), 40 users (v43) and then 75 users
(v44) precisely. On the left side, the loss on each epoch is shown for three con-
figurations while the right figure shows the accuracy on each epoch for three
configurations. It can be observed that model performance for v42=20 users on
validation was highest i.e., 94.6% on last 10 epoch, however it was lowest in the
start. Subsequently, the optimal model performance was for v44 = 75 users con-
figuration on validation with high accuracy and low loss because of step-by-step
continuous training.

Figure 6.10: Accuracy and CTC loss Comparison for 20, 40, 75 users
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6.3.2 Results in terms of EER

Equal error rate (EER) has also been calculated to evaluate the results with
previous research works. EER is a metric which assesses the data classification
performance for any model. In this work, EER has been calculated for the optimal
methodologies and the results are shown in Table 6.4 below:

Methodology EER %
End-to End Model 1.2%

Table 6.4: Results in terms of EER

6.3.3 Comparison with Previous Research

The work done in CUI domain is relatively far less. Any research directly related
to this research could not be found, therefore, our continuous user identification
results could not be compared directly to any research. However, researchers in
Motlagh (2015) proposed a CUI system based on keystroke dynamics. But their
CUI system was supposed to work after the user was locked out by continuous
authentication system (CUA) using the same keystroke dynamics samples. Two
distance based classifiers named as euclidean and manhattan distance methods
were used. The best results achieved were accuracy rate of 60% after 50 actions
and 72% after 1000 actions to correctly identify the user which is locked out
by system. In comparison, the CUI system implemented in this research does
not depend on CUA and the accuracy rate of user identification achieved in this
research is 93% on each action which is quite higher than the previous research
results of 72% accuracy rate on 1000 actions.

6.4 Summary

This chapter investigated a novel approach of continuous user identification (CUI)
which does not require the static user authentication with the help of usernames
and passwords and tends to predict the user identity in minimal actions per-
formed on system. The methodologies given in this chapter can be applied to
any behavioural biometric modality.
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Chapter 7

Continuous User Authentication
using Mouse Dynamics with
Baseline and Deep Learning
Techniques

In this chapter, a continuous user authentication method has been proposed which
can authenticate the user on each action by distinguishing the normal behaviour
of user from abnormal actions. The proposed method uses the mouse dynamics, a
behavioural biometric modality, which depicts the mouse usage behaviour of user.
Moreover, this chapter implements the four different methodologies, based on
baseline and deep neural networks, in order to improve the system performance.
Each of the methodology incorporates the proposed recurrent confidence model
which enables the system to validate user’s identity based on each action. The
system performance has been evaluated based on normalized portion of genuine
and imposter actions where ideal system requires the former as high as possible
by avoiding the false lockout while latter ought to be as low as possible by rapidly
detecting the imposter user.
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7.1 Introduction

Mouse dynamics is an interesting type of behavioural biometrics which can be
used for user authentication purposes. Subsequently, mouse dynamics is an
emerging research technique but it is still less explored behavioural biometric
modality in terms of user authentication. Mouse dynamics recognition (MDR)
includes extraction of mouse movement features and mining them to build unique
signature profiles which can be eventually used to differentiate one user from oth-
ers Pilankar and Padiya (2016). MDR method has two main advantages: Firstly,
it does not require usage of any special hardware device to collect data hence
it is an inexpensive approach. Secondly, it can be used to continuously monitor
the identity of user based on each action, which is referred to as continuous user
authentication (CUA) Salman and Hameed (2018).

For critical security systems, a continuous monitoring system is a requisite
which can authenticate the user on each and every action performed on system.
In this chapter, a true CUA system based on mouse dynamics has been proposed
and implemented which tends to authenticate user on each mouse action by em-
ploying the proposed robust recurrent confidence model (R-RCM). The proposed
R-RCM model uses a novel approach of detecting and locking out of imposter
user once it crosses the alert threshold. Moreover, two types of system models
have been proposed based on machine learning or baseline approach and deep
learning techniques for CUA using mouse dynamics in detail. The recurrent neu-
ral network (RNN) is employed which to the best of our knowledge has not yet
been studied for CUA using mouse dynamics.

7.2 System Methodology

In this chapter, two different techniques have been implemented consisting of
baseline and deep learning methods.

The mouse dynamics dataset recorded by University of Buffalo Sun et al.
(2016) has been studied for this work. The statistical properties of dataset are
shown in chapter 3.

For proposed methods, the dataset for each user is partitioned into three
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non-overlapping sets named training set (T), testing set (X), and validation set
(V) precisely. Training and testing sets are used to build the classifier reference
model and parametric adjustments respectively whereas validation set is used on
action by action basis for final evaluation of reference models determining the
genuineness of user. The split strategy based on session spilt as discussed in
chapter 3 section 3.2.1.1 has been used where the first two sessions are used for
training while session three is used for validation.

7.2.1 CUA Featuring Mouse Dynamics using Baseline Ap-

proach

A novel baseline authentication method has been proposed which verifies the user
on each mouse action as compared to histogram based approach that deals with
accumulation of multiple activities before the accurate decision, regarding the
identity of user, can be made.

The proposed baseline approach consists of four main phases i.e., feature ex-
traction, classification, recurrent confidence model and decision module as given
below:

7.2.1.1 Feature Processing, Baseline Approach

Mouse dynamics is generally considered as a series of mouse events acquired from
input device for a specific user for the duration of his interaction with any respec-
tive graphical user interface. In order to understand mouse usage behaviour of
any user, mouse events should be identified from raw data stream. These events
are deemed to be timely system’s communication, regarding the current mouse
cursor position and mouse clicks, to specified application which is designed for col-
lecting the data. Generally, gathered data is a list of different mouse events e.g.,
mouse move, mouse button pressed and released as shown in Table 7.1. Mouse
usage is assumed to be a chronological series of mouse move or click events. More
formally, a mouse data is considered to be a time series consisting of sequential
ordering of a set of events (E) that occur within a specified interval of time. Each
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Event Description

Mouse Down (D) This event relates to the press
of left or right mouse button by user.

Mouse Up (U) This event relates to the release
of left or right mouse button by user.

Mouse Move (M) This event relates to the mouse
movement by user.

Mouse Wheel(W) This event relates to the movement of
mouse wheel, if mouse has wheel.

Table 7.1: Mouse Dynamics Raw Data Events

event e ∈ E has 1 target, 2 attributes and 3 basic features as defined below:

• UserId(e) – id of the user that has performed an action.

• SessionId(e) – id of session that event belongs to.

• TaskId(e) – id of the task that user has been assigned.

• Timestamp(e)– – an absolute time (milliseconds) when action was per-
formed.

• MouseCoordinate(e)–is expressed in pixels as a pair (x, y).

• ActionType(e)– given type of mouse action such as:

– Mouse Move

– Left Click

– Right Click

In order to make a true CUA system which tends to authenticate the user on
each mouse action, the features based on single mouse event have been extracted
to make a feature vector for each user. The mouse events are listed in Table 7.1
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and the features extracted from those events are given in Table 7.2. The features
listed in Table 7.2 are extracted from single mouse events where:

• Xi−1 = X-Coordinate of given action on starting point

• Xi = X-Coordinate of given action on ending point

• Yi−1= = Y-Coordinate of given action on starting point

• Yi= = Y-Coordinate of given action on ending point

• TimeDelay= Total duration to complete the action

The explanation of the extracted statistical mouse features Ahmed and Traore
(2007) as shown in Table 7.2 is given below:

1. Angle of mouse move: Based on the x and y actions, angle θ is calculated
which is the angle of path tangent with the relevant x and y axis.

2. Direction of movement: Direction feature is the direction of the end to
end line. To reduce the possible direction values, the 8 main directions are
used as defined by Ahmed and Traore (2007) (see Fig 7.1).

3. Shift in X-coordinate: It is the travelled distance in abscissa direction.

4. Time delay: The time interval between starting point and ending point
of mouse movements.

5. Travelled distance: The distance between two adjacent positions of mouse
click actions.

6. Curve length: It is defined as the total distance travelled in given one
sequence of mouse event.

7. Ratio of total length and total distance: It is the ratio of curve length
to distance travelled in one sequence of actions.

8. Curve Speed: It is the ratio of distance travelled between two adjacent
points to the time taken for this distance.
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Figure 7.1: Direction of Mouse Move

It can be noticed that angle of mouse move, its direction (Fig.7.1), distance
travelled, mouse curve length and speed features are extracted based on mouse
events from raw data. Mean and standard deviation (σ) of these features are used
to built a reference feature template for each user. Moreover, Fig.7.2 illustrates
the cumulative distribution function (CDF) of different features for 2 different
users. It can be observed that the investigated features are distinct for each user
hence can be utilised to differentiate one user from the other.
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CUA Feature Description
Angle of mouse
move

θi = atan (yi−yi−1)
(xi−xi−1)

Direction
Shown in Fig.7.1

Shift in X
coordinate

ShiftX = xi − xi−1

Time
delay

delayi = timestampi − timestampi−1

Distance
disti =

√
((xi − xi−1)2 + (yi − yi−1)2)

Curve
Length

Curvelengthi =
∑i

k=1 distk

Ratio of total length and
total distance

r = (Curvelengthi)
(disti)

Curve
Speed

CurveSpeedi = (disti)
(timedelayi)

Table 7.2: Mouse Dynamics Extracted Features for Baseline Approach

7.2.1.2 BASELINE CLASSIFIERS

Conventional pattern recognition system had mostly used a single classifier for
classification purposes. However, it has been identified in recent researches Liang
et al. (2014) that most samples which were incorrectly classified by some classifiers
were not the same when experimented with other discrete classifiers. Therefore,
fusing classification decisions from multiple discrete or complimentary classifiers
can escalate the classification accuracy and system robustness as compared to
having a single classifier. Moreover, mouse dynamics is considered to be a weak
biometric modality since it depends on behaviour of user which can alter with
time, background context or different hardware configurations. Hence, it is con-
sidered to use multiple classifiers approach consisting of Support Vector Machine
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Figure 7.2: Cumulative Distribution Function (CDF) of Mouse dynamics features
for User 1 & User 2
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(SVM) and Decision Trees (DT).

i. Support Vector Machine(SVM)

Support vector machine (SVM) is a supervised learning model Hsu et al.
(2003) which is usually used for classification and regression problems as explained
in Chapter 4, Section 4.2.3.1. In the mouse dynamics frameworks, LibSVM has
been used to implement SVM classifier with linear kernel.

ii. Decision Trees (DT)

Decision Trees (DTs) are known to be non-parametric supervised learning
technique used for classification. Some if-then else decision rules are inferred
from the data features and model is trained to predict target values based on
these rules Song and Ying (2015).

The proposed system uses the weighted classifier fusion(WCF) Mi et al. (2016)
classifier ensemble rule for fusing the score of both classifiers. The WCF refers
to method of sending the scores of both classifiers as an input into the weighted
fusion module which produces an output score consisting of weighted sum of input
scores of both classifiers as shown in Eq: 7.1

ŷt(ct|W ) =

∑K−1
i=0 Wicti∑K−1
i=0 Wi

, (7.1)

where cti – input scores, K – amount of classifiers, Wi – input score weights and
the value of these weights have been optimised with genetic algorithm, ŷt(ct|W )

– fused score which will be used as a raw confidence score in the second phase for
each action.

7.2.1.3 Robust Recurrent Confidence Model(R-RCM)

The preceding works presented in continuous authentication systems mostly used
fixed window based approach consisting of block of actions. Such systems pre-
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specify the number of actions in each block and authentication decision can only
be made after the block has been filled to its maximum value. Hence, the le-
gitimacy of current user can only be decided once he or she has performed the
specified number of actions i.e., 100, 500 or 1000 actions. However, this method
can provide opportunity to imposter user to perform illicit activities on system
or steal some confidential information in meantime. To overcome this issue, a
robust recurrent confidence model (R-RCM) has been proposed and explained in
Chapter 3 section 3.2.3.2 which tends to authenticate the user on each action.
In this chapter, two types of RCM are used and the performance is assessed for
both types. The two experimental settings for RCM are given below:

• Experimental Setting I: Simple RCM: RCM calculates the confidence
of user on each action based on the classifier score of performed action and
few other parameters. During the user’s active session, if confidence goes
lower than final threshold then user will be locked out by the system.

• Experimental Setting II: R-RCM with alert threshold: Two types
of thresholds have been used named as final threshold and alert threshold.
if the resultant confidence drops down the alert threshold during the user’s
activity but it is still above the final threshold, then R-RCM will work
robustly in its hard mode in order to detect the imposter user as soon as
possible. In this case, user can still continue the work because the confidence
value is still higher than final threshold.

7.2.2 Mouse Dynamics CUA using Deep learning

Biometrics can be evidently divided into two categories named physiological and
behavioural methods. In this aspect, biometric characteristics belonging to phys-
iological category are less likely to alter over time as compared to behavioural fea-
tures. Since the behavioural biometrics mostly depict the regular user behaviour
while interacting with the relevant device, therefore these characteristics mostly
rely on the hardware specification of devices, background context and user’s emo-
tion or age. Mouse dynamics, being a behavioural trait, tends to change gradually

127



with time or based on configuration of different hardware mice. Therefore, main-
taining a static database of users populated with statistical features could affect
and decrease the performance or accuracy of system over time.

Moreover, mouse dynamics data is more like a sequential series containing
some hidden properties as well. For example, it can be general mouse usage of
a user that when he wants to open a file document on system he always used to
double click the mouse left button. On the other hand, there can be another user
who has the habit of firstly clicking the right button of mouse to go to the option
of properties and then afterwards choosing the OPEN option from the dialogue
box. This sort of hidden features or combination of hidden features can be used
to differentiate users from each other.

Subsequently, the traditional classification algorithms cannot mine this kind
of hidden features and these cannot be stored into statistical feature profiles. For
that reason, the proposed system has implemented the recurrent neural network
(RNN) which tends to effectively learns and mines the chronological data in order
to build the dynamic user profiles. Furthermore, in comparison to previous re-
search works which applied the periodic authentication approach as discussed in
Chapter 2, this work adopted the real CUA system approach which authenticates
the user on each action by integrating the proposed robust recurrent confidence
model (R-RCM) with RNN.

7.2.2.1 Problem Formulation

Let’s assume, there are total U users and their identity needs to be verified on
each mouse action performed on system such as:

S = {(m,n)} ⊂ RZ×A × {1, . . . , U}A,

where mt – Mouse action properties at a time t, nt ∈ {1, . . . , U} – user who
has taken the action, A – total amount of actions to classify, Z – action vector
dimension.

128



7.2.2.2 Sequence Sampling

Given a tuple (UserId′, SessionId′, TaskId′, ) mouse events are grouped into
sequences:

Sequence(UserId′, SessionId′, TaskId′, T imestamp,

MouseCoordinate) = {e|∀e ∈ E, s.t.

UserId(e) = UserId′

and SessionId(e) = SessionId′

and TaskId(e) = TaskId′

and Timestamp(e) = Absolutetime′

and MouseCoordinate(e) = MouseCoordinate(x, y)′}

7.2.2.3 Bidirectional Long Short Term Memory (BiLSTM)

The more refined form of RNNs known as long short-term memory (LSTM) net-
work has been used in this work in order to tackle the problem of diminishing
gradients as discussed in Chapter 5 Section 5.2.2.3.

In this chapter, the more advanced type of LSTM named as bidirectional
LSTM network is experimented. A Bidirectional LSTM, or BiLSTM, is a se-
quential model which comprises of two LSTMs: one taking the input in a for-
ward direction, and the other in a backward direction hence provides additional
training of data by processing the input data twice i.e., left to right and right to
left. The previous scholarly results have shown that BiLSTM network outper-
forms the simple LSTM owing to additional training of data Siami-Namini et al.
(2019). BiLSTM model has been integrated with proposed R-RCM to formulate
a true CUA system and the system architecture has been illustrated in Fig.7.3.

7.2.2.4 Hybrid Bidirectional Long Short Term Memory (LSTM R-
RCM)

The designed LSTM network architecture includes one BiLSTM layer, two fully
connected dense layers, activation layer and output classification layer. The for-
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mulated model segregates the mouse dynamics raw data into fixed length mouse
sequences as well as single frames and produces the input sequence consisting of
mouse X coordinate, Y coordinate and timestamp for performed action.

The architecture of implemented BiLSTM is given Table 7.3 below:

Layers Explanation
Input Layer 3-dimensional
BiLSTM Layer 256 hidden units
2-fully connected dense layers 256 units
activation (Activation) 90 units
dropout to avoid over fitting

Table 7.3: BiLSTM Network Structure

It should be worth noting that the optimal approach of integrated per frame
and per sequence as presented in Chapter 5 section 5.2.2.5 is utilised in both
settings i.e., simple RCM and RCM with alert threshold. Subsequently, the pro-
cessed input, either being per frame or per sequence, is fed into the bidirectional
LSTM layers which is further processed by fully connected dense layers to pro-
duce the final classification score for given input sequence. Afterwards, the final
classification output from LSTM structure based on per frame and per sequence is
fed into our proposed R-RCM model as an input and it applies hyper-parameters
to decide if user can continue using the system or not based on final threshold as
described in Algorithm 2.

7.2.3 Performance Measure

The performance measure of implemented CUA system has been evaluated based
on ANGA, ANIA and EER as discussed in chapter 3 section 3.2.6

Moreover the four categories and evaluation threat scenario 3 (ETS3) as dis-
cussed in chapter 3 3.2.5 and section 3.2.6.1 is utilised respectively to assess the
system performance.
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Figure 7.3: Framework of Hybrid BiLSTM-R-RCM network
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Algorithm 2 Framework of Hybrid BiLSTM-R-RCM network
1: —>Inputs : Mouse Dynamics raw data for each action: (X coordinate, Y

coordinate, Timestep t) Mouse Dynamics raw data for each sequence: (X1 co-
ordinate, Y1 coordinate, Timestep t1,X2 coordinate, Y2 coordinate, Timestep
t2...., )

2: —>Outputs : Probability of user genuineness and user confidence

Phase 1 – BiLSTM Model Training

3: Initialisation
4: Split data into: Session [0,1] = 70% Training and 30% Testing data, Session

[2] = Validation
5: —> Implement BiLSTM model to training data Procedure Bilstm(train,

epoch, layers, option)
6: X ← train
7: Y ← train - X
8: [lstmodel]<—Sequential-Model([ sequenceInputLayer() bilstmLayer() fully-

ConnectedLayer() softmaxLayer classificationLayer])
9: Loss <– crossentropy, optimiser <– Adam, MaxEpochs <– 60.

10: lstmodel.compile(LOSS, optimiser)
11: lstmodel.train(train, epoch, layers, option)
12: return model

Phase 2 – Hybrid BiLSTM with R-RCM

13: Static Authentication, Confidence set to 1.00(Max)
14: Implement For loop which continues until user uses system
15: for <each action ∈ Y(V alset)> do
16: Find probability of per action and per sequence calculated by BiLSTM
17: Send probability results P to R-RCM as input
18: Apply Hyperparameters onto action and sequence probability result
19:
20: if currentconfidence ≥ AlertThreshold then
21: Calculate new confidence
22:
23: else if (currentconfidence < AlertThreshold) and (probabilityP < H)

then
24: Calculate new confidence and user loses double confidence point than

usual
25:
26: else if (currentconfidence < AlertThreshold) and

(probabilityresultP > H) then
27: calculate new confidence but only grant half of confidence point than

usual
28: end if
29: return confidence(c)
30:
31: end for
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7.3 Results and Discussion

The results attained from the experiments are discussed in this section. Firstly,
few sample results have been presented for 512 action events in order to visualise
the results for each category. Afterwards, the detailed results are given in tabular
form which have been obtained from whole validation data split as discussed in
section III.

• GOOD: A validation sample of a genuine user’s has been shown in Fig.7.4.
It shows the visualisation of two cases:

– Genuine user training sample has been validated with its own valida-
tion set (right side)

– Genuine user training sample has been validated with an imposter
user’s validation set (left side)

Figure 7.4: Genuine user validated with its own reference set(left) and with im-
poster set(right)

In both cases, it can be observed that genuine and imposter users have been
locked out of the system so the ANGA & ANIA can be calculated using the
equation 3.2 and 3.1 respectively.
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ANGA= 320
3∗512 = 0.20 or 20% so, ANGA < 100%

Similarly, ANIA can be calculated: using Eq. 3.1

ANIA= 512
33∗512 = 0.03 or 3% so, ANIA > 40%

In this case, genuine user has been falsely locked out 3 times in given action
sequence i.e., 512 mouse events, hence the normalized ANGA are less than
100%. Moreover, the imposter user has been detected before performing
40% of actions again the training sample of given genuine user, hence this
user falls in good category. At this point, it should be noted that only 1
imposter user is shown against the given genuine user in Fig.7.4 in order
to understand the user categorisation. However in practice, each genuine
user has been validated with all the imposters user and then Mean ANIA
relating to each imposter user is calculated to decide the user category for
detailed results.

• V eryGood:

Another validation sample has been shown in Fig.7.5 indicating that gen-
uine user has never been falsely locked out of system so the ANGA=100%.
However, the Fig.7.5 (left side) specifies that imposter user has been de-
tected 42 times in the given action sequence hence the ANIA, according to
Eq. 3.1, is 0.02 or 2.0% , so it can be concluded that ANIA < 40%. Hence
this user falls in Very Good category in this example.

• BAD: Fig.7.6 illustrates another validation sample which shows that gen-
uine user is not locked out even once (right side) hence ANGA = 100%
for the given action sequence. However, it indicates that imposter user has
been locked out 2 times (left side) and ANIA for this case is 0.5 or 50%
according to equation 3.1. Hence, this user falls in Bad category because
ANGA = 100% and ANIA > 40% i.e., genuine user has not been locked
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Figure 7.5: Genuine user validated with its own reference set(left) and with im-
poster set(right)

out even once but imposter user could not be caught even after performing
50% of actions on system.

Figure 7.6: Genuine user validated with its own reference set(left) and with im-
poster set(right)

• UGLY : Fig.7.7 indicates the genuine user has been locked out in a given
action sequence hence ANGA < 100%. On the other hand, the imposter
user has not been locked out even after performing 43% of actions, according
to Eq. 3.1. Therefore, ANGA < 100% and ANIA > 40%.
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Figure 7.7: Genuine user validated with its own reference set(left) and with im-
poster set(right)

7.3.1 Aggregated Results for Baseline methods

Baseline method has covered two types of experimental settings:

• Baseline with Simple RCM

• Baseline with Robust RCM (R-RCM)

The detailed collective results for simple and robust baseline are reported
below in table 7.4 and 7.5 respectively, while the graphical representation is shown
in Fig 7.8 and Fig 7.9 respectively.
It can be observed in Table table 7.4 that 56 users are falling in very good category
with mean ANGA being 100% (referred as 1 in this work) and mean ANIA are
0.16 which means all the imposters who have been tested against these 56 genuine
users are locked out of system after performing 16% of actions out of total testing
data as shown in Fig 7.8. Moreover, 7 users fall in good category with ANGA
= 0.20 (20%) which means these genuine users have been falsely locked out of
system after performing only 20% of actions on average. Furthermore, 9 and 3
users fall in bad and ugly categories with mean ANIA recorded as 42% and 41%
which indicates that imposter users against these genuine users (9 + 3 = 12) could
not be caught up by system even after performing 42% of actions. The system’s
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ANIA and ANGA are calculated by using the equation 5 and 6 respectively. The
system’s ANGA and ANIA are 0.88 and 0.20 respectively.

Category Users % Mean ANGA % Mean ANIA
Very Good 56 1 0.16
Good 7 0.20 0.15
Bad 9 1 0.42
Ugly 3 0.07 0.41
System Total 75 0.88 0.20

Table 7.4: Aggregated Results of Simple Baseline

Figure 7.8: Simple Baseline results represented in percentage

On the other hand, table 7.5 shows that 65 users fall in very-good category
with ANIA 0.07, while 8 users belong to good category with ANGA=0.41 &
ANIA=0.27, there is no user in bad category, however, 2 users fall in ugly category
with ANGA= 0.39 & ANIA=0.51. The system’s ANGA and ANIA are 0.92 and
0.10 respectively.

Overall, the results for both settings of baseline indicate that:

• System’s ANGA and ANIA have improved with the proposed robust base-
line methodology. More specifically, it can be assumed that robust baseline
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Category Users % Mean ANGA % Mean ANIA
Very Good 65 1 0.07
Good 8 0.41 0.27
Bad 0
Ugly 2 0.39 0.51
System Total 75 0.92 0.10

Table 7.5: Aggregated Results of Robust Baseline

Figure 7.9: Robust Baseline results represented in percentage

methodology with alert threshold has performed well in order to detect im-
posters users faster and in less number of action as compared to simple
baseline method.

• However, it is worth noticing that system ANGA has also improved with
few points i.e., from 0.88 to 0.92 which indicates that robust baseline has
reduced the false lock out of genuine users. But ANIA has improved more
drastically i.e., from 0.20 to 0.10 in comparison to system ANGA.

• Moreover, there are less number of users in robust baseline who fall in
bad and ugly categories (0 + 2= 2) as compared to simple baseline users
who belong to bad and ugly categories (9 + 3= 12) which shows that
simple baseline could not caught some of the users before performing 40%

138



of actions.

7.3.2 Aggregated Results for Deep Neural Network meth-

ods

Deep Neural network (LSTM) has been tested with two types of experimental
settings:

• Integrated LSTM with Simple RCM

• Integrated LSTM with Robust RCM (R-RCM)

The elaborated collective results for simple and robust deep neural networks
are reported below in table 7.6 and 7.7 respectively, while the graphical represen-
tation is shown in Fig 7.10 and Fig 7.11 respectively.
It can be noticed in Table 7.6 that 72 users are falling in very-good category with
mean ANIA 0.02 (2%) also shown in Fig 7.10, 3 users belong to good category
with ANGA = 0.62 & ANIA = 0.04 and there is no user falling into bad and ugly
category. The system’s ANGA and ANIA are 0.98 and 0.02 respectively.

Category Users % Mean ANGA % Mean ANIA
Very Good 72 1 0.02
Good 3 0.62 0.04
Bad 0
Ugly 0
System Total 75 0.98 0.02

Table 7.6: Aggregated Results of Integrated Hybrid Simple LSTM-RCM

On the other hand, Table 7.7 shows that 73 users fall in very-good category
with ANIA 0.008, while 2 users belong to good category with ANGA = 0.80
& ANIA = 0.02 and there is no user falling into bad and ugly category. The
system’s ANGA and ANIA are 0.99 and 0.008 respectively.

Overall, the results for both settings of Hybrid LSTM R-RCM indicate that:

• System’s ANGA and ANIA have improved with the proposed Integrated
Hybrid LSTM R-RCM methodology. More specifically, it can be assumed

139



Figure 7.10: Integrated Hybrid Simple LSTM results represented in percentage

Figure 7.11: Robust LSTM results represented in percentage
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Category Users % Mean ANGA % Mean ANIA
Very Good 73 1 0.008
Good 2 0.80 0.02
Bad 0
Ugly 0
System Total 75 0.99 0.008

Table 7.7: Aggregated Results of Integrated Hybrid Robust LSTM-RCM (R-
RCM)

that robust baseline methodology with alert threshold has performed well
in order to detect imposters users faster and in less number of action as
compared to simple LSTM method.

7.3.2.1 Results Analysis in terms of Equal Error Rate

Equal error rate (EER) has also been calculated to evaluate the results with pre-
vious research works by using the Eq 3.6. In this work, EER has been calculated
for all the four methodologies and the results are shown in Table 7.8 below:

Category EER
Baseline with simple RCM 9.65%
Baseline with Robust R-RCM 5.3%
Integrated Hybrid LSTM with simple RCM 2.1%
Integrated Hybrid LSTM with Robust R-RCM 1.3%

Table 7.8: EER Rate for Proposed Four Methods

It can be observed in Table 7.8 that the integrated hybrid LSTM with robust
R-RCM has achieved the lowest EER, hence this can be considered as our optimal
experimental setting. If the optimal setting results of this research are compared
with previous scholarly work given in chapter 2 table 2.3 , then researchers in
Gamboa and Fred (2004b) had achieved the EER of 0.2% with 200 mouse actions
whereas they had reported 48% EER with 1 mouse action. Since our work has
considered 1 mouse action for authentication then it can be said that our opti-
mal experimental setting has achieved lowest EER when compared with previous
research works done as given in chapter 2 Table 2.3.
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7.3.2.2 Results Analysis in terms of Normalized ANGA and ANIA

Aggregated results of Robust Baseline and integrated Hybrid LSTM R-RCM in
table 7.5 and 7.7 respectively are referred here. First of all, it can be noticed that
for robust baseline there are 3% of users who fall into ugly category, however, for
robust LSTM there are no users who belong to ugly category which means all
the imposter users have been caught by system before performing 40% of actions.
Hence, the deep learning approach has performed well in detection of imposter
users more quickly as compared to baseline method.

Figure 7.12: ANGA & ANIA percentage for all the four experiments

Fig 7.12 illustrates the System’s ANGA and ANIA for our four proposed
methodologies. it can be observed that System ANGA has substantially increased
from simple baseline method to robust deep learning LSTM R-RCM which in-
cludes the two thresholds to authenticate user. Similarly, it can be noticed that
system’s ANIA has substantially decreased from simple baseline to robust deep
learning model.

Overall, deep learning models have worked well in avoiding the false lockout
and quick detection of imposter thereby escalating the ANGA and lessened the
ANIA respectively. Since deep learning method does not depend on statistical
features which can change over time so it can retain the previous information.
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More specifically, if the ANGA and ANIA are demonstrated with exact num-
ber of actions instead of giving the normalized portion of actions then it can be
calculated by using Eq 3.5 as follows:

Exactgenuine/imposteractions =

Normalizedactions ∗ Totalvalidationdata

If the exact number of imposter actions for the optimal experimental setting
i.e., integrated robust LSTM R-RCM model are calculated then Exact imposter
actions are 72 which means the imposter users have been locked out of system
only after performing 72 mouse actions.

Moreover, if optimal experimental setting results i.e., 72 imposter actions are
compared with previous scholarly work, then researchers in Mondal and Bours
(2017b) had also used ANGA & ANIA as performance metric for CUA system.
The ANIA reported for their optimal settings was 252 mouse actions which is
quite higher than the results achieved in this work (also shown in table 7.9 ).

Methodology Exact Imposter actions
Previous Research Mondal and Bours (2017b) 252
Integrated LSTM-Robust RCM 72

Table 7.9: Exact Imposter actions for Mouse Dynamics

7.4 Summary

This chapter proposes a true continuous user authentication (CUA) method using
the mouse dynamics. Moreover, four different types of system architectures have
been formulated based on baseline and deep neural network techniques. Moreover,
both methods i.e., baseline and deep neural network, uses the proposed RCM
model with its two forms. Analysis of experimental results depicted that baseline
and deep learning method when incorporated with robust RCM have performed
well in detecting the imposter users quickly while avoiding the false lock out of
genuine users. In this aspect, the experimental results also show that deep neural
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network approach based on integrated Hybrid LSTM-RRCM has achieved the
lowest imposter actions and highest genuine actions before lock out and hence
considered to be the optimal experimental setting for this work.
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Chapter 8

Conclusions and Further Work

The preceding systems employed the analysis based on Period User Authenti-
cation (PUA) where system records the keystroke or mouse dynamics timings
for fixed number of actions or fixed block size and then afterwards analyse the
data to decide if it belongs to genuine user or not. These systems give room to
imposter user to cause damage to confidential information and system resources.
On the contrary, a true Continuous User Authentication (CUA) system inclines
to verify the identity of user after each keystroke or mouse action.

8.1 Conclusions

Computer systems and networks are essential part of almost every aspect of hu-
man life. All the businesses, banking systems, government services, medical, avia-
tion, communication, education and entertainment are mainly controlled by com-
puter systems. Each organisation is effectively using computer systems to store
important information and data including confidential financial transactions, em-
ployee records, personal and business emails and medical history. However, this
escalating dependence on computers has excavate new computer security threats
as well. Moreover, cybercrimes have also been escalated owing to the presence
of imposter users who can masquerade the legitimate user in order to get access
to system resources which can result into serious exploitation and obliteration
of personal, governmental and commercial information. In order to preclude the
imposters to steal those confidential information and files, one important factor
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is considered to be robust user authentication method.
Static user authentication (SUA) methods mainly consisting of usernames,

passwords and PINs have been predominantly used for identification purposes in
many computing systems. However, these methods are not directly connected
to the genuine user hence any other individual can exploit these credentials, on
behalf of legitimate user, to access the resources or confidential information for
fallacious activities.

Moreover, these methods cannot verify the identity of user throughout the
active session which can fosters security risks for system resources. Therefore,
continuous monitoring of authorised user session is necessary to ensure that only
legitimate user is accessing the system resources for entire session.

In this regard, the previous research in the domain of CUA had mostly fo-
cussed on strategy of periodic user authentication (PUA) which refers to the
re-verifying of user identity on fixed block of actions i.e., 200, 1000, 2000 ac-
tions or fixed time period window. These methods possess security risk and gives
chance to imposter user to cause damage to system.

Secondly, there are only few works done in domain of continuous user iden-
tification (CUI) where user’s identity is established on each action without prior
claim of any identity or without the involvement of SUA. These type of systems
are important for forensic analysis.

Therefore, this research aimed to address the above gap to design a true contin-
uous authentication and identification system which can authenticate or identify
the user on each single action or activity performed on computer system. The
ultimate goal was to investigate and implement a true CUA and CUI system
which can work passively without disturbing the user while he/she is performing
important tasks on system.

To achieve the above aim the following objectives were set:

1. Critically examined the constraints and drawbacks of existing
CUA systems

First objective was to critically examine the constraints and drawbacks of
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existing CUA systems and this research found that existing CUA systems
are employing the approach of PUA system which is user verification based
on fixed block of actions. Moreover, existing techniques mostly utilised
the static database for reference features of user particularly populated
with mean and standard deviation of different keys and key-pairs or mouse
activities. Existing systems ignored the fact that behavioural biometrics
tends to change with time, age or external factors hence maintaining the
static feature database can lessens the system performance over time.

2. Presented a true CUA based on a proposed recurrent confidence
module

The second objective was to present a true CUA employing a proposed
recurrent confidence module authenticating the user on each action. A
robust recurrent confidence model (R-RCM) is proposed and implemented
which tends to authenticate user on each and single activity by allocating
a confidence value for user genuineness. However, it does not lock out the
user on one action but it also keeps track of confidence values on previous
actions as well. R-RCM also used the novel approach of two thresholds i.e.,
alert threshold and final threshold to provide more security and reliability to
system. The perception of alert threshold is employed according to which if
confidence of user is constantly going down and eventually reaches the alert
threshold then system doubts the legitimacy of current user. In this case,
if the probability of current new action shows that it belongs to imposter
user. Then, user loses double confidence points on such actions thereby
making it locked out of system quicker than usual in order to limit the
damage caused by it. However, it is also known that sometimes genuine user
can also deviate from normal typing behaviour owing to changing external
factors and can reach the alert threshold. In this case, if probability of new
action shows that it belongs to genuine user still system does not trust user
fully and grant it confidence points less than usual.

3. Implement a true continuous user authentication using keystroke
dynamics with baseline approach
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The third objective was to analyse and implement a true continuous user
authentication using keystroke dynamics with baseline approach. In this
research, keystroke dynamics is used as a behavioural biometric modality
to continuously authenticate the user on each key press and key release
actions. Baseline or machine learning classification methods are used to
find the probability of each keystroke. Baseline classification techniques are
integrated with the proposed R-RCM model to formulate a true continuous
authentication framework. Additionally, two types of dataset split strate-
gies are designed to study the affect of time gap between different sessions of
data collection. It has found out that system performance decreases when
final validation of system would be done on data which have been collected
with few months of gap from training data. Different experimental settings
are tested to find the optimal system performance and to make the system
more secure by locking out the imposter user as quickly as possible.

4. Deep learning techniques were proposed in contrast to baseline
approach to validate CUA with keystroke dynamics.

The fourth objective was to propose the deep learning techniques in con-
trast to baseline approach to validate CUA with keystroke dynamics. Deep
learning methods are used to train the keystroke data as sequential time-
series data to learn unique hidden features which baseline methods cannot
mine properly. In this regard, different frameworks are formulated with
recurrent neural networks (RNN) which tends to learn the time series data
efficiently. LSTM is used as a recurrent unit of RNN which can add to or
remove from the previous important information about the user’s unique
features. LSTM is integrated with proposed R-RCM to make a true CUA
system. Different experimental settings are formulated with LSTM and R-
RCM to acheive the optimal system performance in comparison to preceding
works done in this domain. Moreover, the system is tested with two types
of dataset split strategies (as done in baseline method/objective. no 3). It
has found out that deep neural network method reduces the gap between
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training and final validation data owing to the usage of integrated LSTM
R-RCM methods, hence improved the system performance. In addition, an
important architecture is introduced which integrated the per action/frame
classification and per sequence classification hence it is facilitated with the
advantages of both continuous as well as periodic user authentication to im-
prove the system performance. To best of our knowledge, the combination
of periodic and continuous user authentication is studied for the first time
using deep neural network.

5. CUA based on traditional statistical features versus proposed
temporal features

The fifth objective was to analyse the continuous user authentication with
behavioural biometrics based on traditional statistical features versus pro-
posed temporal features. This research investigated both methods of popu-
lating the reference template database of user with mean and stand devia-
tion of features and treating the behavioural data as a sequential time-series
where each event has some connection with previous event. It had turned
out the experimental framework which utilised the time-series data had
shown improved system performance as compared to statistical features.

6. A method was proposed to establish the user identity continu-
ously without prior claim of identity at start of session

The sixth objective was to propose a method to establish the user’s iden-
tity continuously without prior claim of identity at start of session. In this
research, a novel approach of continuous user identification (CUI) is inves-
tigated based on RNN and R-RCM. A novel region labelling approach is
proposed to correctly identify the current user from a given pool of users.
The GRU is used as a recurrent unit along with CTC approach which is an
idea of inserting blank labels on the regions of low user confidence and CTC
has been implemented for user identification problem for the first time. The
proposed framework has achieved a good performance in identifying the user
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and also to lock out the imposter users.

7. Proposed architectures were validated with Mouse Dynamics bio-
metric modality

The seventh and eighth objective was to investigate Mouse Dynamics modal-
ity over CUA in order to explore CUA in comparison to other behavioural
biometrics. Mouse dynamics is investigated with the proposed architecture
consisting of baseline and deep learning method. For the first time, Recur-
rent neural networks (RNN) are implemented for mouse dynamics modality
to authenticate user on each action. Different proposed architectures are ap-
plied and optimal results are achieved in comparison to preceding scholarly
works done in domain of CUA using mouse dynamics.

8.2 Limitations of this Work

The CUA system has been implemented successfully with the provided dataset
by applying the novel contributed techniques and the performance of system has
escalated to a greater extent, However, the current study has few limitations
which are listed below:

• Active attack scenario: In this research work, zero effort attack scenario
is considered, however, it is also interesting to know the performance of
system under active attack scenario where an attacker tries to mimic the
genuine user’s behaviour. According to general understanding, it is quite
difficult task to continuously imitate someone’s typing or mouse usage be-
haviour successfully. Hence, the experiments for active attack scenario are
complex and need extensive effort, focus and time from the participants.
However, the experiment can be designed to further study the exact affect
of active attack on system.

• Dataset Availability

Continuous behavioural analysis of any user takes the data patterns con-
tinuously from the user. Hence, the huge amount of data is required to
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sufficiently train the system. However, the available datasets do not have
an infinite amount of data which can be used to train deep learning classi-
fiers. Moreover, the collection of data is done under controlled environment
with limited time for each session which can have an impact on normal be-
haviour of user. In order to collect data under free environment for sufficient
amount of time needs the careful handling of data under data protection
laws which can be quite complex task to perform.

• Implementation of CUA system in real environment

The CUA system continuously collect the behavioural information regard-
ing the computer usage devices of users. Hence, it is very important for
any organisation to get the consent of users regarding the passive collec-
tion of behavioural patterns before the proposed solution can be installed
on systems. However, the risks associated with the unauthorised usage of
computing resources outweighs the privacy concerns of users which can be
explained to them before the system installation. In this regard, users need
to be ensured that their data would be handled under the data protection
laws.

8.3 Further Work

There are many areas related to the understudy research topic which can be
further researched to take this work into new directions. In order to make the
proposed CUA and CUI system more robust and to overcome some of the limi-
tations, some of the following issues can be addressed:

• Combination of Periodic and Continuous User Authentication

In this research, the integration of PUA and CUA is done where per frame
and per sequence probabilities are utilised to authenticate the user. How-
ever, different architectures can be experimented to further explore this
idea of combining PUA and CUA. For instance, the probability scores of
PUA and CUA can be fused together to make the final decision instead
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of independently sending both probabilities to R-RCM to make the final
decision.

• Investigation of hardware effects on CUA

The investigation of hardware changes, for instance different keyboards with
different key layout, can be used to collect behavioural biometric data. This
behavioural data can be utilised to study the effect of hardware which is
new to the user. For example, if the keyboard of users will be changed, then
if there would be any change in performance of continuous authentication
system.

• CUA using Facial and Keystroke/Mouse Recognition

With increasing usage of computers, there is a growing concern about en-
suring the security of users’ personal information on these devices. The
research can utilise face recognition for CUA to detect the mood of user
if he/she is angry, sad, excited or normal and evaluate his/her keystroke
in accordance to their current mood in order to avoid false lockout. For
instance, if user is angry then final threshold can be keep low since in super
angry mood user will press the keys with more pressure which can result in
legitimate user false lockout.

• System adaptability according to the Application used
It is assumed that users may behave differently for different applications e.g.
the user’s behaviour will change from playing games to typing important
documents. These could be useful to adjust the lockout threshold to improve
the system performance. As an example, when a user is playing games, then
lockout threshold can be lowered.

• CUI approach can be Explored Further
The novel architecture provided for CUI can be utilised for forensic analysis
as well to detect the imposter users quickly. It is still an open research
area and the proposed architecture can be explored further to improve the
system.
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• LSTM integration with Convolutional Neural Network (CNN)
The proposed system can utilise the two powerful deep neural architectures
named as LSTM and convolutional Neural Network (CNN). The different
forms of LSTM have been used in this work, however, in future the combi-
nation of LSTM and CNN can be utilised to extract more advanced features
and to improve the system performance.

• CUA extension with touchscreen, stylus pens or voice recognition

The proposed system has utilised the keystroke and mouse dynamics to
continuously authenticate the user. However, the proposed system can be
further extended with new input methods i.e., touchscreen, swipe gestures,
stylus pens or voice recognition. The proposed architectures can be applied
to above mentioned new input biometric traits to validate the system archi-
tectures since the system is effectively trained to extract the hidden features
from raw data and to apply proposed hybrid models to any biometric trait.

• CUA using the alternative biometric trait for special users

The proposed system can be extended for special users or any user who
cannot provide the keystroke or mouse dynamics due to injury, disability
or unavailable/faulty system hardware. In this regard, the system can be
extended in such a way that if user is unable to provide the keystroke
or mouse dynamics at any given time, then alternative biometric traits for
instance facial recognition or iris recognition could be utilised to continuous
monitoring of the user’s genuineness.

In conclusion, the work presented in this thesis aimed to use enhanced tech-
nologies and architectures to continuously authenticate and identify the users
correctly thereby locking out the imposter users quickly to avoid the damage
caused to system by intruders and also to avoid the false lock out of genuine
users hence substantially escalating the genuine user’s working productivity.
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