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Abstract 

This paper evaluates the investment efficiency of the new energy industry in China and investigates 

factors that explain variations in investment efficiency across firms and over time. Applying a 

four-stage semi-parametric DEA analysis framework to a sample of listed new energy firms over the 

period 2012-2015, we find that the overall investment efficiency of the new energy industry is 

relatively low, with an average total technical efficiency of 44%, pure technical efficiency of 48%, 

and scale efficiency of 90%. We also find that new energy firms’ investment efficiency is affected by 

both macroeconomic conditions and firm-specific characteristics. Our results are robust and have 

significant implications for policy makers and firm managers.  

 

Keywords: New energy industry; semi-parametric DEA analysis; investment efficiency; China 
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1. Introduction 

China is the world’s largest energy consumer, consuming one fifth of global energy. Thus, it 

will play a pivotal role in the global transition to a new era of sustainable energy. Because China relies 

on energy imports for more than 60% of its total energy supply, there have been growing concerns 

about the country’s energy security and about the environmental impact of its reliance on fossil fuels. 

In response to these concerns, China has accelerated its development and utilization of new renewable 

energy sources, such as solar, wind, nuclear and biomass. The market has been expanding – with 

significant economic benefits – and China has become a global leader in renewable energy. The 

country has the world’s largest capacity of both wind and hydroelectric power, owns the vast majority 

of solar heating and biogas facilities in the world, and has successfully developed a solar photovoltaic 

industry that now operates globally. In 2013, newly installed renewable energy capacity in China 

exceeded that of Europe and the rest of the Asia Pacific region (IRENA, 2014). China’s renewable 

energy sector continues to grow rapidly: a new record for global investment in renewable energy was 

set in 2015, when the funds committed to renewable energy (excluding large hydro-electric projects) 

increased by 5% to USD285.9 billion. According to Bloomberg (2016), investments in renewable 

energy declined by 8% in developed economies but increased by 19% in developing countries. The 

increased investment by developing countries is largely driven by China, where investment increased 

by 17% to USD102.9 billion, accounting for 36% of the world’s total investment in renewable energy. 

Against the background of this flourishing and promising development, maintaining this momentum 

and advancing future development is of strategic importance for policy makers and also has significant 
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implications for new energy firms. Improving investment efficiency is the key to the success of a 

globally viable new energy industry in the long run; that challenge is the focus of this paper.  

Domestic and international scholars have examined investment efficiency in different 

industries using different approaches. A common approach is the use of a multiple regression model. 

Richardson (2006) divides net investment into two parts. The first part is expected investment, which 

is determined by the expected growth of the firm as influenced by corporate structure, financial 

constraints and other factors. The second part is unexpected investment, that is, the difference 

between actual investments and ideal investments, i.e., investment model residuals, which are used to 

measure investment efficiency. Employing the same method, Qinglu et al. (2012) investigate the 

investment efficiency of private enterprises from the perspective of monetary policy. Zhao (2013) 

studies investment efficiency from the perspective of corporations’ social capital and investment 

opportunities using a multivariate regression method, while Huihui et al. (2012) focus on 

environmental uncertainty and the investment efficiency of state-owned equity while taking into 

account financing constraints. The conceptualization of expected and unexpected investments is a 

commonly employed approach in the literature on investment efficiency. This approach relies on a 

multiple regression model to estimate expected (optimal) investment levels and treats under/over 

investment as inefficient investment. We employ an alternative approach – a semi-parametric 

four-stage DEA analysis – which we have embedded with frequently employed methods in 

efficiency studies, namely DEA and SFA. This approach enables us to obtain more accurate 

measures of economic efficiency and to perform a more fruitful analysis. See section 2 for a detailed 

discussion.   
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Data envelopment analysis (DEA) is a widely used method in efficiency studies, and scholars 

have applied it to various aspects of the new energy industry, such as technology, research and 

development (R&D), scale, and financing. For instance, Wang et al. (2014 b) examine energy 

efficiency and energy saving potential in China. Comparing equity financing efficiency among 

China’s seven strategic emerging industries, Zhai (2012) finds that both the market and investors are 

attentive to the low-carbon clean technology sector, which leads to increased financial support for 

these industries. DEA has also been widely applied to other topics, such as environmental challenges 

and efficient allocation (Kim and Kim, 2012; Voltes-Dorta, et al., 2013; Sueyoshi and Goto, 2014 a; 

Ederer, 2015; Houshyar et al., 2012; Huang et al., 2014; Li and Lin, 2015; Mousavi-Avval et al., 

2011 a; Valadkhani, et al., 2016; Vlontzos et al., 2014; Wang et al., 2014a; Sueyoshi and Goto, 2014 

b; Yang and Pollitt, 2009; Mousavi-Avval et al., 2011b; Song et al., 2013; Nassiri and Singh, 2009).  

More recently, researchers have employed DEA to analyze investment efficiency in different 

industries/sectors, such as the information technology industry (Shafer and Byrd, 2000), investment 

funds (Guo et al., 2012), R&D investment (Zhong et al., 2011), and the culture industry (Zeng et al., 

2016). The traditional DEA model always treats the production system as a “black box,” without 

considering any intermediate processes. Ignoring intermediate outputs yields biased efficiency scores, 

which make subsequent analyses (i.e., sources of inefficiency) unreliable. To address the issue, Färe 

and Grosskopf (1996) propose a network DEA in a two-stage setting that decomposes the 

manufacturing process and treats the output of a previous stage as an input in the second stage. 

Halkos et al. (2016) apply this method to create a composite sustainability efficiency index based on 

a panel of 20 countries for the period 1990–2011, and they decompose the index into production 
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efficiency and eco-efficiency indicators. Their results suggest the existence of inequalities among 

countries between the two stages and that a country’s higher production efficiency does not 

necessarily ensure high eco-efficiency performance, highlighting the importance of taking 

intermediate outputs into account.  

However, the production process is also influenced by environmental factors and pure 

random noise. While some two-stage DEA models attempt to incorporate environmental factors, 

virtually all such models are deterministic and ignore the effect of statistical noise. Fried et al. (2002) 

propose a semi-parametric three-stage DEA approach with particular attention to input and output 

slacks. In the first stage, DEA is used to obtain initial efficiency measures and slacks. In the second 

stage, stochastic frontier analysis (SFA) is used to decompose slacks into three parts attributable to 

environmental factors, managerial inefficiencies, and statistical noise, respectively. In the third stage, 

input and output are adjusted by eliminating the impacts of environmental factors and statistical 

noise, and DEA is used to re-calculate efficiency based on adjusted input and output variables. The 

semi-parametric nature of this three-stage DEA approach has gained popularity and has been applied 

in many areas. Li and Lin (2016) adopt this approach to eliminate the effects of environmental 

influences and statistical noise on output slacks when measuring the effects of government policy on 

the green productivity growth of China’s manufacturing sector during the 11th Five-Year Period 

(2006–2010). Huang et al. (2012) measure the technical efficiency of the high-tech industry in 

Beijing over the period 1995–2009 using a combined three-stage DEA and SFA model. Employing 

the same model, Bai and Song (2008) evaluate the technical efficiency of the thermal power industry 

in 30 Chinese provinces in 2004 and find that the efficiency level of thermal power in many 
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provinces is influenced by environmental factors, such as economic development and resource 

endowment. Wang and Zhang (2009) conduct an analysis of the efficiency of the cultural industry in 

31 provinces in China. 

Perhaps due to rising concerns over climate change and energy security, the Chinese 

government has invested considerable resources in promoting the development of the new energy 

industry. This gives rise to a number of research questions: how efficient are these investments? 

What factors explain the differences in investment efficiency? These issues are important for policy 

but are under-researched in the literature, and this study aims to fill this gap. The new energy industry 

is a complex industry involving both innovations and government policies, and firm performance is 

likely to be influenced by a variety of factors. We employ a three-stage DEA approach (Fried et al., 

2002) to derive the investment efficiency of listed new energy firms in China over the period 

2011-2015 and examine the performance impact of environmental factors. Then, we add a fourth 

stage of analysis to model investment efficiency scores against a set of firm-specific variables. As 

such, this extended semi-parametric four-stage DEA framework allows us to (1) evaluate firms’ 

investment efficiencies more accurately by eliminating the effect of environmental factors and 

random noise; (2) identify macro-level factors that characterize the environment in which new 

energy firms operate; and (3) investigate micro-level firm-specific factors that explain differences in 

investment efficiency across firms and over time.  

The remainder of this paper is organized as follows. The four-stage DEA approach is 

elaborated in Section 2. Section 3 defines the variables and describes the data. Section 4 discusses 

the empirical results, and section 5 concludes.  
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2. Research methodology: The four-stage DEA model 

We implement a four-stage analysis framework by extending Fried et al.’s (2002) three-stage 

DEA model. In the first stage, the DEA model is applied to outputs and inputs to obtain initial 

performance measures of each decision-making unit (DMU). In the second stage, the focus is on the 

input and output slacks of the DMUs instead of on conventional radial efficiency scores. Using 

stochastic frontier analysis (SFA), each slack variable is decomposed into three parts that are 

attributable to environmental factors, managerial inefficiency, and statistical noise. In the third stage, 

inputs and outputs are adjusted by removing the effects of environmental factors and the statistical 

noise uncovered in the second stage. Based on adjusted inputs and outputs, the DEA model is used to 

re-evaluate producer performance and obtain more accurate efficiency measures of DMUs. In the 

fourth stage, estimated efficiency scores from the third stage are regressed against a set of firm level 

variables to examine how the investment efficiency of DMUs varies with firm-specific 

characteristics. 

 

2.1. Stage 1: The CCR and BCC DEA models 

The DEA model can be simplified as in Figure 1. 

 

 

Figure 1. DEA computing model 

Input data: multiple 

data available 

DMU conversion 

process 

Output data: multiple 

data available 
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The basic DEA model is the CCR model (Charnes et al., 1978), which addresses a technology 

set comprising n observed DMUs, where {DMUj: j=1, 2, …, n}. m indicates types of input indices ijx  

( i =1, 2, …,m) and s types of output indices rjy  (r = 1, 2, …, s). Input indices reflect input variables, 

whereas output indices reflect achievement through the production process. 

This model indicates that increasing the proportion of inputs can expand the scale of outputs. 

We can obtain the following linear programming model with an efficient frontier of constant returns to 

scale in equation (1) (Charnes et al., 1978). 

1

, 1,2,
n

ij j i

j

x ix 


 …, m 

(1) 

1

, 1,2,
n

rj j r

j

ry y


 …, s   

where m and s represent the number of input indices and the number of output indices.  

We employ the BCC
 
model developed by Banker et al. (1984) to measure efficiency. This 

model is based on the original CCR model but assumes variable returns to scale. Adding the convexity 

limit 
1

1j

n

j



  to the CCR model (constant returns to scale), it evolves into the BCC

 
model 

(variable returns to scale). The output-oriented variable returns to scale of the DEA model are shown 

in equation (2):  

max ,  

subject to, 




 
n
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ijoiijj xsx

1

    i=1,2,…, m; 




 
n
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1
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



n

j
j

1

1       

0j    j=1,2,…,n.                                                         (2) 

where 1 , 2 , …， n  andφare decision variables, ijox  and rjoy  represent the i
th

 input and the r
th

 

output of the j
th

 DMU, respectively. is  is input slacks and rs  output slacks.  

Input slacks represent further reduction in input while achieving the same level of output, and 

likewise, output slacks represent a further increase in output without increasing input. If φ*=1 and 

0**  

ri ss  , the DMU is on the frontier, and current output levels cannot be expanded 

proportionally; if φ*<1, the DMU is dominated by the frontier, and we can obtain an efficiency score 

for DMUj. The optimal solutions to the envelopment problem in (2) provide initial performance 

evaluations for each producer, including the optimal values of 1  and the nonnegative input 

slacks is  and output slacks rs , as in equation (3): 




 
n

j
ijjioi xxs

1

            i=1,2,…, m; 




 
n

j
rorjfr yys

1

*           r=1,2,…,s;                                   (3) 

We can obtain pure technical efficiency (PTE) from the BCC
 
model and total technical 

efficiency (TTE) from the CCR model, which allow us to calculate the scale efficiency (SE) as 

SE=TTE/PTE. In the BCC
 
model, when φ*=1 and is = rs =0, the DMU is DEA-available, and the 

DMUj0 has the highest technology efficiency. If φ*＜1, actual output can increase in proportion to φ*; 

is ≠0 indicates that inputs are excessively high at the same output level, and rs ≠0 correspondingly 

indicates that outputs are excessively low at the same input level. We should also consider the 

operating scale of firms while focusing on the performance evaluation indices. If 
1

1j

n

j



 , firms 
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should scale back production; if 
1

1j

n

j



 , they should increase production; and if 

1
1j

n

j



 , 

then the scale profits are constant (Banker et al., 1984; Quanling, 1998). 

 

2.2. Stage 2: Stochastic frontier analysis (SFA) to decompose input and output slacks  

In this stage, the parametric SFA approach is employed to model the total slacks of each 

input and output and to identify the impact of environmental factors, statistical noise and managerial 

inefficiency. SFA was independently developed by Aigner et al. (1977) and Meeusen and van den 

Broeck (1977). SFA specifies a function form, and the composite error term consists of random error 

( iv ) and inefficiency ( iu ), which are assumed to be distributed independently of each other and of zi. 

The theoretical idea underlying SFA is that no economic agent can exceed the ideal best practice 

“frontier,” and deviations from this frontier represent individual firms’ inefficiencies. The composite 

error term is separated into inefficiencies and the classical idiosyncratic disturbance terms, based on 

different distributional assumptions.  

SFA has become a popular tool for efficiency analysis, and a fruitful stream of research has 

developed many reformulations and extensions of the original SFA models, including cross-sectional 

or panel data models, production or cost frontiers, time-invariant or time-varying inefficiency models, 

and one-step or two-step models. In this study, we specify a time-varying decay model (Battese and 

Coelli, 1992) to regress each input slack variable against four explanatory variables that characterize 

the environment in which new energy firms operate. The second-stage SFA model (one for each slack) 

takes a general form as in equation (4), which can be estimated using the maximum likelihood 

estimator.  
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where snit is a slack variable of the n
th

 input variable of the i
th

 MDU at time t obtained from the first 

phase, and n=1, 2, 3, and 4; );( n

i

n zf  are deterministic feasible slack frontiers to investigate the 

impact of environmental factors on slacks; the composite error is separated by assuming that the vnit ~

),0( 2
vnN   capture statistical noise and that 0nitu  ( ),(~ 2

un

n

ni Nu 
) reflect managerial 

inefficiency. β
n
 μn 2

un 2

un  are parameters to be estimated in each regression. 

All parameters may vary across the N slack regressions, that is, the impact of environmental 

variables, statistical noise and managerial inefficiency may differ across different inputs. The 

composite error terms in equation (4) are decomposed into statistical noise and managerial 

inefficiencies using the approach of Jondrow et al. (1982).  

 

2.3 Stage 3: The DEA model using adjusted inputs and outputs 

Based on results from the stage 2 SFA regressions, producers’ inputs are adjusted upward for 

those who have had advantages with respect to operating environments or simply good luck. In 

particular, the adjustment is constructed as in equation (5): 

A

nix = nix +[ max i { iz ˆ n }- iz ˆ n ]+[ maxi { ˆ
niv }- ˆ

niv ], n=1, 2, …, N; i=1, 2, …, I          (5) 

where nix  and 
A

nix  are observed and adjusted input values.  

The first part in parentheses on the right-hand side puts all DMUs in the same operating 

environment (the least favorable environment observed in the sample), and the second bracket puts 

all DMUs in the same unluckiest situation. These adjustments vary across producers and across 

inputs.  
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Applying the stage 1 DEA model in equation (2) to adjusted inputs (
A

nix ), we obtain improved 

DEA-based measures of investment efficiency that have eliminated the effects of the operating 

environment and statistical noise. 

 

2.4. Stage 4: Firm-level determinants of investment efficiency 

In stage 2, we considered the impact of environmental factors on firms’ investment efficiency 

at the industrial level via their influences on input slacks. In stage 4, our main goal is to identify 

firm-specific factors that affect investment efficiency. The findings from stage 2 are more relevant for 

policy makers, while the findings from this stage are of particular importance for firm managers 

seeking to improve firm investment efficiency. As the efficiency measure is a bounded variable 

between 0 and 1, the Tobit model is commonly applied (Çelen, 2013; McDonald, 2009; Merkert and 

Hensher, 2011; Scheraga, 2004; Selim and Bursalioglu, 2013). However, Simar and Wilson (2007) 

provide evidence suggesting that results from the Tobit regression are catastrophic, while truncated 

regression estimates the model more accurately. The truncated regression model is shown in equation 

(6).  

   jtjtjt XEfficiency   10                            (6) 

 Where Xjt is a set of firm-specific variables, and βs and ε are parameters to be estimated. 
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3. Variable definition and data 

3.1 Input and output variables for the DEA model in stages 1 and 3 

During empirical implementation, defining inputs and outputs is the key to evaluating firms’ 

investment efficiency. Drawing on the literature and taking into account the nature of the new energy 

industry, we define a single output as total gross income, considering the primary objective of listed 

firms is to maximize shareholders’ value. We define four inputs – fixed assets, assets under 

construction, inventories, and expenses for research and development (R&D) – covering both capital 

and non-capital investment activities. The DEA method requires isotonicity between input-output 

variables, that is, output does not decrease with increased input. We perform a correlation analysis for 

the input-output using the “Kendall tau” rank method. The analysis indicates a positive correlation 

between our chosen input-output variables.   

 

3.2 Environmental variables for the SFA analysis in stage 2 

Simar and Wilson (2007) indicate that environmental variables should satisfy separate 

hypotheses. Environmental factors can influence investment efficiency in the new energy industry, 

while they are beyond the subjective control of individual firms. Macroeconomic conditions affect all 

industries, and the new energy industry is no exception. We employ the regional GDP growth rate – 

GDPR – to proxy macroeconomic conditions. A more open macroeconomic environment is likely to 

provide exposure to more advanced technology, more management experience and a larger market, 

which may accelerate the development of the new energy industry. Such openness promotes external 

competition for China’s new energy industry and simultaneously strengthens more efficient resource 
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allocation. We employ a widely used openness measure and define Open as the ratio of total imports 

and exports to GDP, which reflects the degree of regional participation in globalization and in opening 

up to the world. The demand condition is expected to have a significant impact on firms’ investment 

efficiency. Continuous increases in power consumption stimulate the development of the new energy 

industry, especially under the pressure of a shortage of conventional energy sources. To capture this 

effect, we define Powerg as the growth index of energy consumption. Innovation and technology are 

both crucial to the new energy industry. We define Tech as the ratio of R&D expenditure to GDP to 

measure the provincial technology level and examine its impact on investment efficiency.  

 

3.3 Firm-specific variables for analysis in stage 4 

The variations in investment efficiency across firms can also be attributed to firm-specific 

characteristics; we focus on firms’ ownership structure, profitability and capital structure. The 

relationship between performance and ownership has been well documented in corporate finance 

literature under the principal-agent framework. We explore the ownership effect from two dimensions 

– ownership concentration and the nature of controlling owners. Ownership concentration is defined 

as the sum of the shareholdings of the 10 largest shareholders. Agency theory predicts a positive 

performance effect of ownership concentration based on the monitoring effect. Firms with a 

concentrated ownership structure and controlling shareholders have strong incentives to monitor 

management, and they possess real power to discipline underperforming managers and/or influence 

management decisions (Shleifer and Vishny, 1986). This helps to mitigate agency problems and 

improve performance (Jensen and Meckling, 1976). On the other hand, ownership concentration may 
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have a negative performance effect due to the exploration effect and increased horizontal agency costs 

among shareholders. The ability of large shareholders to extract private benefits from minority 

shareholders (La Porta et al., 1999) induces conflicts of interest between controlling shareholders and 

minority shareholders and increases agency costs (Bebchuk and Weisbach, 2010; Young et al., 2008). 

Hence, the overall impact of ownership concentration is an empirical issue. The nature of firms’ 

controlling owners also has a significant impact on firm performance. We classify firms by owner type 

into three mutually exclusive and collectively exhaustive groups: state-owned firms, domestic 

privately owned firms, and foreign-owned firms, proxied by three dummy variables – State, Private, 

and Foreign, respectively. As agency problems are more profound under state ownership, we expect 

state-owned firms to underperform private firms and foreign firms. Basic earnings per share – EPS – is 

used to examine the impact of firms’ profitability on investment efficiency, as we expect more 

profitable firms to also engage in more efficient investment activities. LT Debt, defined as the ratio of 

firms’ long-term debt to total asset ratio, is employed to investigate how new energy firms’ investment 

efficiency varies with their financing structure. Literature is inconclusive regarding the impact of firm 

leverage on performance. The agency cost theory (Jensen and Meckling, 1976) indicates that managers 

have incentives to take excessive risks and that high debt ratios may act as a disciplinary device to 

reduce managerial cash flow waste (Jensen, 1986) and improve performance. However, facing the risk 

of default or a “debt overhang” problem, firms may underinvest (Myers, 1977), leading to low 

performance.  
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3.4 Sample construction, data sources and descriptive statistics 

We collect data from multiple sources and cross-check to reduce measurement errors. 

Environmental data are collected from the China Statistical Yearbook (2011-2015) published by the 

National Bureau of Statistics of China. Firm level data are collected from the CSMAR database, 

which provides comprehensive data for China’s listed firms from 1999 onward. Our sample consists 

of listed firms that are included in the computation of the CNI New Energy Index or the CSI CN 

Mainland New Energy Index. Our sample is a balanced dataset over a five-year period from 2011 to 

2015, consisting of 74 listed firms from 16 provinces with 370 observations. The 16 provinces 

include Anhui, Beijing, Chongqing, Fujian, Guangdong, Hebei, Henan, Hubei, Jiangsu, Jiangxi, 

Liaoning, Shandong, Shanghai, Sichuan, Xinjiang, and Zhejiang. All variables are deflated by GDP 

deflator to the 2011 constant price level. After calculating growth variables (i.e., the growth index of 

the power consumption rate), Table 1 provides summary statistics for the sample over the period 

2012-2015.  

 

Table 1. Sample statistics (2012-2015) 

Variables No. Obs Mean Std. Dev. Min Max 

Output and inputs 

Total income 296 910.51  4058.01  3.31  38825.84  

Fixed asset 296 2879.38  5044.12  5.39  34045.70  

Construction 296 836.48  1972.83  0.10  14464.81  

Inventories 296 1836.18  4314.64  65.58  33963.32  

R&D 296 87.15  349.86  0.00  2706.43  

Environmental variables 

GDPR(GDP growth rate) 296 8.63  1.34  3.00  13.60  

Open 296 60.72  40.11  8.95  143.47  

Powerg (power consumption growth) 296 1.05  0.06  0.96  1.37  

Technology 296 1.60  0.51  0.36  2.15  

Firm-specific variables 

Ownership concentration 264 60.66  15.58  21.97  94.67  
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State 296 0.27  0.44  0  1  

Private 296 0.66  0.47  0  1  

Foreign 296 0.07  0.25  0  1  

EPS 296 0.41  0.38  0.01  2.70  

LT Debt 296 4.07  6.27  0.00  31.03  

Note: (1) Input and output variables are in million RMB. (2) Environmental variables: openness is the total import 

and export as % of GDP; technological level is the R&D expenditure as % of GDP 

 

4. Empirical analysis 

4.1. First-stage DEA analysis: Investment efficiency of the new energy industry 

DEA models have two broad variations – input-oriented and output-oriented models. The 

input-oriented DEA model aims to determine how much input use could contract and still achieve the 

same output level. As in any industry, investments in the new energy industry are for the long term, 

and the majority of investment inputs are fixed factors of production and cannot be reduced in the short 

term. Hence, the input-oriented DEA approach is less relevant. In contrast, the output-oriented DEA 

model aims to determine a firm’s output potential if the given level of input is utilized efficiently. 

Output-oriented models are similar to the parametric stochastic production frontier approach, as they 

are “...very much in the spirit of neo-classical production functions defined as the maximum 

achievable output given input quantities” (Färe et al., 1994, p. 95). In addition, for industries with 

growing and promising markets, such as the new energy industry, the main concern is to maximize 

outputs and improve capacity utilization. As such, this paper adopts the output-oriented model.   

When calculating firm efficiency, all input and output variables are mean normalized – 

dividing each variable by its mean to ensure minimal imbalance in the dataset. As the DEA model 

does not allow negative inputs and outputs, we dropped firms with negative outputs. Our final 

sample is a balanced sample, which ensures our results are not significantly affected by imbalances 
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and outliers and allows us to explore the main trend in the new energy industry in China. Using 

STATA (user developed program), we obtain investment efficiency scores and slacks for each input 

and output. Table 2 reports the statistics of input and output slacks. The mean output slack is 0, and 

only a small number of DMUs (less than 30) have output slacks that are insufficient for reliable SFA 

estimation in stage 2. We conduct no further analysis of output slacks. On the other hand, the 

substantial magnitude of mean input slacks for each input variable points to a potential way to 

identify the sources of inefficiencies, which will be explored in section 4.2. 

 

Table 2. Input and output slacks of new energy firms in China (2012-2015) 

 Mean Std. Dev. Min Max 

Total income 0.00  0.00  0.00  0.00  

Fixed asset 0.20  0.53  0.00  3.49  

Construction 0.15  0.71  0.00  8.20  

Inventories 0.34  1.45  0.00  11.19  

R&D 0.42  1.16  0.00  8.26  

 

Table 3 reports the stage 1 investment efficiency scores of the new energy industry in China 

over the period 2012-2015. The mean total technical efficiency (TTE) under constant returns to scale 

is 43%, and pure technical efficiency (PTE) under variable returns to scale is 47%, yielding an 

average scale efficiency (SE) of 92%. As we construct best practice frontiers by year, calculated 

efficiency scores – strictly speaking – are not comparable across years. Nevertheless, the comparison 

reveals whether firms, on average, are closer to or farther away from the best practice frontier each 

year. The results suggest that the investment efficiency level of the new energy industry is relatively 

stable during 2012-2014, with TTE and PTE of approximately 50% and SE of approximately 95%. 

In 2015, the distance between firms and the best practice frontier is enlarged, with TTE halved and 
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PTE reduced by more than one-third. As we have a balanced sample, it is unlikely that firms 

suddenly become inefficient. We argue that the reason for this change is the substantial increase in 

inputs in 2015. Investments in construction and R&D expenditure increased by 36% and 29%, 

respectively, and the corresponding figures during 2012-2014 (average) are 1.4% and 20%. This was 

likely motivated by supportive government policies. The State Council announced “Opinions on 

Further Deepening the Reform of the Electric Power System” in March 2015, and subsequently, the 

National Development and Reform Commission and the National Energy Bureau announced more 

detailed policies. Increases in inputs, especially in construction and R&D expenditure, lowered 

investment efficiency in 2015 while offering great potential for future improvements. We observe 

that the majority of our observations are either on the constant returns to scale part (159 obs) or the 

increasing returns to scale part (120 obs) of the frontier, and only 17 observations show diminishing 

returns to scale. The results are consistent with the nature of the new energy industry, which faces a 

growing and promising market. The evidence supports the increases in investment inputs that will 

lead to increases in output in the same or a higher range. In terms of ownership type, state-owned 

firms are the least efficient, while foreign-owned firms are the most efficient, regardless of efficiency 

measures. These initial results suggest a significant ownership effect, which will be explored in 

section 4.4.   



Table 3.  Investment efficiency of the new energy industry in China (2012-2015) 

  Total technical efficiency  Pure technical efficiency Scale efficiency 

  Stage 1 Stage 3 Stage 1 Stage 3 Stage 1 Stage 3 

By year 2012-2015 0.43  0.44  0.47  0.48  0.92  0.90  

 2012 0.48  0.48  0.50  0.51  0.95  0.95  

 2013 0.48  0.52  0.51  0.54  0.96  0.97  

 2014 0.51  0.51  0.55  0.55  0.94  0.94  

 2015 0.24  0.23  0.31  0.30  0.83  0.75  

By ownership State  0.37  0.38  0.46  0.47  0.84  0.84  

 

Private  0.44  0.44  0.46  0.47  0.94  0.92  

 

Foreign  0.56  0.56  0.59  0.59  0.96  0.94  

By region Municipality 0.47  0.50  0.58  0.60  0.87  0.86  

 Beijing 0.34  0.34  0.35  0.36  0.92  0.92  

 Shanghai 0.55  0.59  0.68  0.73  0.85  0.85  

 Chongqing 0.51  0.51  0.71  0.71  0.77  0.77  

 Eastern 0.41  0.42  0.44  0.45  0.92  0.91  

 Fujian 0.54  0.54  0.62  0.62  0.90  0.90  

 Guangdong 0.41  0.42  0.45  0.45  0.90  0.89  

 Hebei 0.25  0.27  0.31  0.33  0.77  0.81  

 Jiangsu 0.43  0.43  0.45  0.45  0.96  0.94  

 Liaoning 0.18  0.17  0.18  0.18  1.00  0.93  

 Shandong 0.48  0.47  0.52  0.52  0.91  0.86  

 Zhejiang 0.44  0.44  0.46  0.48  0.96  0.92  

 Central 0.42  0.42  0.45  0.45  0.94  0.92  

  Anhui 0.44  0.43  0.47  0.46  0.92  0.92  

 Henan 0.47  0.47  0.49  0.50  0.92  0.92  

 Hubei 0.48  0.47  0.51  0.51  0.95  0.88  

 Jiangxi 0.22  0.23  0.23  0.24  0.97  0.96  

 Western 0.50  0.47  0.52  0.50  0.94  0.89  

 Sichuan 0.12  0.12  0.12  0.12  0.92  0.92  

 Xinjiang 0.62  0.58  0.65  0.62  0.95  0.88  

Wilcoxon sign rank test 

 

Z-statistics 8.56***   -6.83***   0.46   

Note: “***” signifies the 1% significance level. 

 

 

To inspect regional variations in the investment efficiencies of the new energy industry in 

China, we follow the government’s approach and group provinces into four groups, namely 

municipalities and the eastern, central, and western regions. As shown in Table 3, variations in 
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investment efficiency (both TTE and PTE) across the four regions are not substantial. The average 

TTE ranges from a high of 50% in the western region to a low of 41% in the eastern region, and PTE 

ranges from a high of 58% in the municipalities to a low of 44%, again in the eastern region. The 

municipalities have the lowest SE, and there is no material difference in SE across the other regions. It 

is worth noting that although Hebei province leads China in developing solar power, the eastern region 

has the lowest investment efficiency scores, which raises concerns about the sustainability of the new 

energy industry in the eastern region. On the other hand, investment efficiency varies significantly 

across provinces within each region. New energy firms in the western region have the highest volatility 

in TTE and PTE, while their peers in the municipalities and the central region have the lowest volatility. 

Xinjiang and Chongqing provinces have the highest TTE and PTE, respectively. 

The new energy industry in China has promising potential for future development, but the 

overall investment efficiency level is still low (below 50%). Significant variations across provinces 

indicate great potential for inefficient firms to catch up by benchmarking best practice firms, thereby 

improving the investment efficiency of industry. Since China’s reform and opening up, the central 

government has implemented preferential development policies, such as eastern regional priority 

development, western development, and revitalization of the old northeast industrial base. These 

policies divert resources (e.g., financial and human capital) to those preferred regions and heavily 

promote regional economic development, leaving provinces in the central and western regions lagging 

behind in market operation and resource allocation (Yang and Zhu, 2007). This unbalanced regional 

development creates different environments, which in turn have significant implications for the 

investment efficiency of the new energy industry. Hence, it is important to understand how 
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environmental factors affect firm investment efficiency and to use this knowledge to provide 

information to policy makers.    

 

4.2. Second-stage SFA analysis: Impact of environmental factors on investment efficiency 

In this stage, each of the input slacks are regressed against four environmental variables using 

the time-varying decay model (Battese and Coelli, 1992), and the results are reported in Table 4. The 

parameter gamma (
2 2 2/ ( )u u v     ), the share of technical inefficiency in the total square variance, 

is close to 1 and is significant in all regressions, indicating that the variation in technical inefficiencies 

is significant and that the role of random factors is relatively small. Likelihood ratio (LR) test statistics 

corresponding to the SFA model are significant for all input slacks, rejecting the null hypothesis of 

alternative ordinary least squares (OLS) regression analysis. The overall results suggest that the SFA 

model is appropriate to analyze the impact of environmental factors on investment efficiency.  

 

Table 4. The impact of environmental factors on investment efficiency in the new energy industry 

in China 

 
Input slacks 

  Fixed assets Construction Inventories R&D 

 (1) (2) (3) (4) 

GDPR -0.169** -0.071** -0.1031 -0.122 

Open  -0.010 -0.003* -0.018 -0.032 

Powerg (power consumption growth)  -2.777*** -0.507 -5.81*** -0.731 

Tech (technology level) 1.927** 0.204* 1.623 5.46* 

Control for year/firm fixed effect  Y Y Y Y 

gamma 0.82 0.98 0.99 0.99 

Log likelihood -51.52 -139.45 -104.48 -166.26 

LR one-tailed test 11.34*** 59.8*** 65.62*** 21.6*** 

Number of observations 186 182 123 135 

Number of firms 72 68 60 65 

Note: GDPR: GDP growth rate, *** p<0.01, ** p<0.05, * p<0.10 
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The sign of the coefficients on each environmental factor are consistent for all input slack 

models but vary in their magnitudes and statistical significance levels. Environmental factors have 

significant impacts on investment efficiency in the new energy industry, and the selected 

environmental variables are appropriate.  

The negative coefficient on GDPR indicates that a favorable macroeconomic environment (e.g., 

an increase in provincial GDP growth) reduces waste in investment inputs or decreases negative 

outcomes. The effect is significant for long-term investments, namely fixed assets and construction. 

When the regional/provincial economy grows, demands for energy increase, which provides the new 

energy industry with opportunities to expand. Firms tend to increase their long-term investments to 

boost future output potential. Moreover, during economic booms, firms are more likely to obtain 

financial resources to support their expansionary development strategy. Meanwhile, firms also have 

strong incentives to reduce inefficiencies, i.e., through better utilization of existing capacity, which 

brings immediate increases in output to meet market demand.  The coefficient on GDPR is 

insignificant in columns (3)-(4), suggesting an insignificant impact on reducing the wastes of 

investment in inventories and R&D activities. 

China’s opening-up policy for economic development has significant implications for the new 

energy industry. A more open environment facilitates knowledge transfer and promotes technological 

progress, i.e., via imported machinery embedded with advanced technology. A growing export sector 

increases demand for low-cost clean energy, which in turn stimulates the development of the new 

energy industry. Economic opening-up intensifies competition in the industry, putting great pressure 
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on domestic firms to improve their investment efficiency. Economic opening up also helps people 

develop comprehensive operational experience and managerial skills, which encourages scientific and 

efficient use of fixed assets and working capital, and also reduces waste. Hence, we expect openness to 

reduce input slacks and improve investment efficiency. However, our empirical evidence is weak. The 

coefficient on Open is negative and significant (at the 10% significance level) only in the slack model 

of construction. One possible reason for the insignificant impact of openness on investment efficiency 

is the deterioration of the export sector following the 2008 global financial crisis. The stagnant growth 

and debt crisis in Europe have not been resolved, the Greek sovereign debt crisis continues, and Italy 

has been faced with a sovereign credit downgrade. In Asia, Japan – which is China’s main 

procurement customer – is facing yen appreciation. The slump in production and consumption, 

combined with a fiscal deterioration, is difficult to reverse in the short-term. The deteriorating world 

economic environment affects China’s new energy industry with both direct shocks (e.g., the 

photovoltaics export market) and indirect shocks (e.g., slow growth in energy demand). This induces 

investment waste (i.e., under-utilization of capacity), cancelling out the potential positive impact of the 

industry’s growth.      

The coefficient on Powerg is negative and significant (at the 1% significance level) for slacks 

of fixed assets and inventories. Higher growth in power consumption (strong demand for energy) 

reduces input waste and improves overall investment efficiency, consistent with expectations. The 

impacts are economically significant, especially for inventories. Higher growth in power consumption 

improves the capacity utilization of fixed assets and speeds up inventory turnover, leading to higher 
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investment efficiency. However, growth in power consumption has no significant impact on wastes in 

construction and R&D activities.  

The level of science and technology (proxied by the ratio of R&D expenditure to GDP) has a 

negative impact on investment efficiency for all investment inputs, except for inventories. This can be 

explained by the fact that the new energy industry in China has not applied advanced technology 

widely and effectively. China’s better-developed and well-invested sectors are solar, hydro, and wind, 

which are primarily dependent on natural resources and have low technical requirements. An 

environment characterized by a high level of technology may encourage the new energy industry to 

invest in technological improvements, which are not necessarily required by the industry’s current 

stage of development. This induces redundant long-term investment in fixed assets, construction, and 

R&D activities and leads to investment inefficiencies. The insignificant impact on inventories supports 

our explanation, as it is less important for technological improvement compared with long-term 

investments.     

 

4.3. Third-stage DEA analysis: Investment efficiency based on adjusted input variables  

In this stage, based on results from the SFA estimation in the second stage, all input variables 

are adjusted by means of equation (5).  This adjustment increases the input to DMUs in a suitable 

environment and decreases the input to poor environmental DMUs, thereby eliminating the impacts of 

environmental factors and random noise. Using adjusted inputs, we re-evaluate the DEA model as 

shown in Equation (2) to derive more accurate investment efficiency measures, and the results are 

reported in Table 3. We obtain a third-stage TTE of 44%, a PTE of 48%, and an SE of 90%. After 
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accounting for the impact of environmental factors and random noise, TTE and PTE increase by 1 

percentage point, while SE decreases by 2 percentage points compared with the results of the 

first-stage DEA analysis. In other words, TTE and PTE are underestimated when the influences of 

environmental factors and random noise are ignored.  

We perform the Wilcoxon matched-pairs signed-ranks test to examine the equality of matched 

pairs of DEA efficiency scores from the first- and third-stage DEA analyses. As shown at the bottom of 

Table 3, the Z-statistics for TTE and PTE are above the critical value at the 1% significance level, but 

the Z-statistic for SE is insignificant. This evidence confirms that the differences in the outcomes of 

the first- and third-stage DEA analysis are significant and that environmental factors, namely 

macroeconomic conditions, openness, power consumption and technology level, have substantial 

influences on the investment efficiency of the new energy industry. These results also justify our 

choice of the three-stage DEA model to evaluate investment efficiency.  

As shown in Table 3, the variations in TTE (0.12 -0.59) and SE (0.77-0.96) across provinces 

become slightly smaller, while PTE (0.12-0.73) becomes more dispersed compared with 

corresponding figures from the first stage DEA analysis (TTE between 0.12-0.62, SE between 

0.77-1.00, and PTE between 0.12-0.71). Stage 1 and stage 3 consistently identify the same 

least-efficient provinces, but different best performers are identified. Sichuan province has the lowest 

TTE and PTE, and Chongqing has the lowest SE. The new energy industry in Shanghai is at the 

forefront in terms of TTE and PTE, while new energy firms in Jiangxi operate at the optimal scale but 

with relatively low TTE and PTE.   
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In the third-stage DEA analysis, 141 firms appear to operate at constant returns to scale, 142 

at increasing returns to scale, and 13 at decreasing returns to scale. The corresponding figures from 

the first stage are 159, 120 and 17, respectively. Implications are two-fold. First, roughly half of 

firms in the sample operate at constant returns to scale and the other half operate at increasing returns 

to scale, indicating great potentials for future development of the new energy industry in China. 

Second, in the third stage, the number of firms operating at constant or decreasing returns to scale 

becomes smaller, while more firms are identified as operating at increasing returns to scale. The 

results indicate the importance of taking into account the environmental effects, which provide more 

accurate estimates of firm investment performance. 

Table 5 reports the average inputs and outputs at different operational scales. Over the sample 

period 2012-2015, only 13 firms operate at decreasing returns scale. On average these firms’ total 

income are 5 times that of firms operating at constant return to scale, while employing a comparable 

level of fixed assets (5.6 times), slightly less investment in construction (4 times), but significantly 

more working capital in inventory (7.3 times) and R&D investment (30 times). For these firms, 

working capital and investment in R&D are the main source of diseconomies of scale and improving 

working capital turnover and R&D efficiency can help firms move towards the optimal operating 

scale. Firms operating at increasing returns to scale earn total income that is less than one-third of 

that of firms operating at constant returns scale, while employing a similar level of all types of inputs 

except for much higher R&D investment (10 times). These firms have great potential to significantly 

increase total income without significant increases in inputs. Management attention should focus on 

the better utilization of existing capacity in terms of fixed assets, capital investment in construction, 
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working capital, and improving the efficiency of R&D investment. Table 5 also shows variations in 

mean inputs and output over years, suggesting the dynamic nature of firms operations over time and 

great potential for firms to improve production efficiency. It is worth noting that firms operating at 

constant returns to scale consistently have a lower level of investment in R&D. In general firms 

operating at diseconomies of scale over-invest in R&D and improving the efficiency of R&D 

investment is crucial for firms operation at increasing returns to scale, while firms at decreasing 

returns to scale need to make efforts on avoiding waste in R&D investment.  

 

Table 5. New energy industry in China: Mean inputs and output at different operational scales  

    No. Obs Total income Fixed asset Construction Inventories R&D 

2012-2015 CRS 141 1071  2168  683  1566  13  

 IRS 142 332  2734  821  1228  140  

  DRS 13 5490  12228  2725  11455  397  

2012 CRS 45 962  1621  725  1311  17  

 IRS 24 171  2383  783  1193  139  

 DRS 5 1364  8262  1523  5550  240  

2013 CRS 41 1083  2532  724  1622  5  

 IRS 32 337  2685  811  1135  183  

 DRS 1 3985  12288  1076  19571  63  

2014 CRS 31 1843  3495  987  2517  22  

 IRS 41 303  2520  597  1029  143  

 DRS 2 2460  6075  544  11788  45  

2015 CRS 24 259  859  142  718  9  

 IRS 45 440  3152  1051  1495  107  

 DRS 5 11127  18644  5130  15604  761  

Note: Results are from the third stage with all inputs adjusted for the effects of environmental factors.  

 

4.4. Fourth-stage truncated regression analysis: firm-specific impact on investment efficiency 

In this section, we investigate how firms’ investment efficiencies vary with firm-specific 

characteristics. Firms’ investment efficiency scores (TTE and PTE) obtained from the third stage are 
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regressed against firms’ ownership concentration, the nature of their owners, profitability, and 

leverage. As efficiency scores are bounded between 0 and 1, OLS will produce biased estimates. As 

suggested by Simar and Wilson (2007), we employ truncated regression, and the results are reported in 

Table 6. GDP growth is included to control for the effects of omitted time-varying factors, and it has a 

positive and significant impact on TTE but not on PTE. Moreover, we also control for firm and year 

fixed effects. In our robustness tests (not reported to save space), we use alternative definitions of 

relevant variables, such as profitability and ownership concentration, and the results are qualitatively 

consistent.  

 

Table 6. Firm-specific impacts on investment efficiency in China’s new energy industry (2012-15) 

Explanatory variables Total technical efficiency   Pure technical efficiency  

Ownership concentration 0.005** -0.003 

Private  0.26** 0.180** 

Foreign 0.258** 0.315*** 

EPS (Earnings per share) 0.466*** 0.601*** 

LTDebt (Long-term debt ratio) -0.018*** -0.017*** 

GDP 0.061* 0.004 

Constant -0.72** 0.367 

sigma 0.191*** 0.378*** 

Firm/year fixed effect Y Y 

Observations 264 264 

Note: State ownership is omitted as the default group. *** p<0.01, ** p<0.05, * p<0.10 

 

The coefficient on ownership concentration (measured by the sum of the 10 largest 

shareholders’ holdings) is positive for TTE, suggesting that firms with highly concentrated ownership 

structures are more efficient; this evidence supports the agency theory. The impact is significant on 

TTE but insignificant on PTE, and the magnitude is economically small.  
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The coefficient on Private is positive and significant for both TTE and PTE, that is, privately 

owned firms are more efficient than state-owned firms. The impact is economically stronger on TTE 

than on PTE. On average, private firms are more efficient than state-owned firms in terms of TTE and 

PTE by 26 and 18 percentage points, respectively. Foreign-owned firms only account for 7% of our 

sample, while evidence suggests they are significantly more efficient than state-owned firms, 

especially in terms of PTE. The results are consistent with the literature that generally reports 

underperformance associated with state ownership. Hence, we can conclude that private and foreign 

ownership with better corporate governance mechanisms, as expected, better resolves agency 

problems, and the efficiency gains are substantial in China’s new energy industry.  

Firms’ profitability, proxied by EPS, is found to have a positive and significant impact on the 

investment efficiency of the new energy industry. An increase in firms’ EPS by one standard deviation 

will increase TTE and PTE by 17 (0.38*0.46) and 22 (0.38*0.6) percentage points, respectively. These 

results are consistent with the literature. For instance, a recent study by Margaritis and Psillaki (2010) 

uses DEA to measure the efficiency of a sample of French manufacturing firms and finds a positive 

and significant effect of profitability on efficiency for all industries. Regression results show a 

negative and significant impact of firms’ long-term debt on investment efficiency (both TTE and PTE), 

and evidence supports Myers’ (1977) argument of “debt overhang”. A decrease in firms’ long-term 

debt to total asset ratio by one standard deviation will increase TTE and PTE by approximately 11 

(6.27*0.018 or 0.017) percentage points.    
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5. Conclusions 

This paper evaluates the investment efficiency of the new energy industry in China and 

investigates factors that explain variations in investment efficiency across firms and over time. 

Applying a four-stage semi-parametric DEA analysis framework to a balanced sample of 74 listed 

new energy firms over the period 2012–2015, our main findings are as follows. First, the average 

total technical efficiency is 44%, pure technical efficiency is 48%, and scale efficiency is 90%, after 

controlling for the effects of the macroeconomic environment and random noise. Second, the 

investment efficiency of the new energy industry in China is influenced by both national and global 

macroeconomic factors via their impact on input slacks. Favorable regional economic growth and 

rapid growth in power consumption reduces wastes in investment input and improves investment 

efficiency, while a higher regional technological level tends to induce blind long-term investment 

and lead to inefficiencies. We fail to observe the expected significant positive impact of openness on 

investment efficiency, perhaps due to the unfavorable economic conditions of most advanced 

countries after the 2008 global financial crisis and resulting declines in exports. Third, about half of 

sample firms operate at constant returns to scale and the other half operate at increasing returns to 

scale with only 13 firms operating at decreasing returns to scale. Fourth, firm-specific characteristics 

have significant impacts on investment efficiency. Highly concentrated firms are more efficient, 

while state-owned firms underperform their (domestic and foreign) private counterparts. More 

profitable firms tend to invest more wisely with higher efficiency, while firms with higher long-term 

debts are less efficient. These results are robust to different model specifications and variable 

definitions.  
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Our results have important implications for policy makers and firm mangers. The overall 

investment efficiency of the new energy industry is relatively low. If this industry is to become 

globally viable, it is important for policy makers and firms to identify sources of inefficiencies and 

formulate appropriate policies and strategies to improve investment efficiency. We find that 

investment efficiency varies significantly across firms, a variation that nevertheless offers inefficient 

firms the opportunity to catch up by benchmarking industry best practices. Our analysis suggests a 

set of firm-specific factors that have significant impacts on investment efficiency, and these factors 

are more likely to be under managers’ control. Moreover, for firms operating at decreasing returns to 

scale, managers should focus on reducing the level of working capital and/or improving working 

capital turnover, and improving the efficiency of R&D investment. For firms operating at increasing 

returns to scale, in addition to improving the efficiency of R&D investment, management attention 

should be paid to the better utilization of existing capacity. Hence, our findings provide firm 

managers with useful information on how to improve efficiency by influencing firm-level 

characteristics, i.e., adjusting long-term debt level. Our analysis also finds that the macroeconomic 

environment has strong influences on investment efficiency, which points to a way for policy makers 

to improve investment efficiency. When formulating macroeconomic policy, the investment 

efficiency of the new energy industry should be taken into account.  
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