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1 Abstract

2 Outbreaks of human illness caused by enteric pathogens such as Salmonella are increasingly 

3 linked to the consumption of fruits and vegetables. Knowledge on the factors affecting 

4 Salmonella proliferation on fresh produce therefore becomes increasingly important to 

5 safeguard public health. Previous experiments showed a limited impact of pre-harvest 

6 production practices on Salmonella proliferation on tomatoes, but suggested a significant 

7 effect of harvest time. We explored the data from two previously published and one 

8 unpublished experiment using regression trees, which allowed overcoming the interpretational 

9 difficulties of classical statistical models with higher order interactions. We assessed the 

10 effect of harvest time by explicitly modeling the climatic conditions at harvest time and by 

11 performing confirmatory laboratory experiments. Across all datasets, regression trees 

12 confirmed the dominant effect of harvest time on Salmonella proliferation, with humidity-

13 related factors emerging as the most important underlying climatic factors. High relative 

14 humidity the week prior to harvest was consistently associated with lower Salmonella 

15 proliferation. A controlled lab experiment confirmed that tomatoes containing their native 

16 epimicrobiota supported significantly lower Salmonella proliferation when incubated at 

17 higher humidity prior to inoculation. The complex interactions between environmental 

18 conditions and the native microbiota of the tomato crop remain to be fully understood.

19 Keywords

20 Climate; Food safety; Human pathogens; Plant-pathogen interactions; Produce.
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22 1 Introduction

23 Non-typhoidal Salmonella enterica (NTS) is one of the leading causes of foodborne disease 

24 burden worldwide (Havelaar et al. 2015). The World Health Organization estimated that in 

25 2010, NTS caused over 150 million illnesses worldwide, resulting in nearly 120,000 deaths, 

26 mainly due to sepsis (Kirk et al. 2015). Recently, Scallan et al. (2015) confirmed that NTS 

27 was the dominant cause of foodborne disease burden in the United States, causing 1 million 

28 illnesses, 380 deaths, and 33,000 Disability-Adjusted Life Years (DALYs) per year. The 

29 majority of all NTS cases (94%) were assumed to be foodborne. While outbreaks of 

30 gastroenteritis linked to the consumption of well-known risky foods such as raw eggs and 

31 seafood have been declining, outbreaks associated with fruits and vegetables have increased 

32 (Gould et al., 2013; Kozak et al., 2013). Even though field surveys report that Salmonella and 

33 Escherichia coli are relatively uncommon in the pre-harvest crop production environment in 

34 the United States, fresh produce has been implicated in at least 130 outbreaks of 

35 gastroenteritis since 1996 (Centers for Disease Control and Prevention, 2013; Gould et al., 

36 2013; Kozak et al., 2013; Mandrell, 2009). Raw tomatoes have been associated with at least 

37 15 multi-state outbreaks of salmonellosis between 1990 and 2010, with traceback 

38 investigations suggesting that contamination occurred during production or processing 

39 (Bennett et al. 2015). 

40 Even though plants have been suggested as alternate hosts for human enteric pathogens 

41 (Brandl et al., 2013), outbreaks of gastroenteritis linked to produce have been sporadic. This 

42 suggests that to lead to an outbreak, a number of factors must converge, resulting in a “perfect 

43 storm” scenario. Factors contributing to the perfect storm scenario include the presence of 

44 sources of pathogens and their vectors; genotype, maturity and physiological status of the 

45 crop and the pathogen; native plant microbiota capable of promoting or inhibiting human 

46 pathogens; the types and level of irrigation; and the use of soil amendments (Brandl, 2006, 

47 2008; Brandl and Amundson, 2008; Franz and van Bruggen, 2008; Gu et al., 2013; Gutierrez-

48 Rodriguez et al., 2012; Mandrell, 2009; Marvasi et al., 2015, 2014a, 2013; Moyne et al., 

49 2011; Park et al., 2012; Poza-Carrion et al., 2013). How these factors interact and to what 

50 extent they contribute to the “perfect storm” is not clear. Knowledge on the factors affecting 

51 Salmonella proliferation on fresh produce therefore becomes increasingly important to 

52 safeguard public health. A better understanding of the role of the environmental conditions 

53 and production practices that affect susceptibility of fruits and vegetables to human pathogens 
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54 pre- and post-harvest may lead to the optimization of pre- and post-harvest operations to 

55 reduce the number and/or severity of the produce-associated outbreaks. 

56 The impact of various farming practices on the microbiological quality of vegetables pre- and 

57 post-harvest has been evaluated. Different factors may contribute to Salmonella proliferation 

58 on fresh produce, including environmental conditions (such as regional differences, climate), 

59 pre- and post-harvest production factors, and genotype and physiological states of the crop 

60 and the pathogen (Marine et al., 2015; Marvasi et al., 2013; Pagadala et al., 2015). Because 

61 Salmonella and pathogenic E. coli are rare in the commercial fields in the United States, 

62 studies of the effects of crop production practices often rely on naturally-occurring indicators 

63 (such as generic E. coli). The presence of E. coli on tomatoes and leafy greens in the field 

64 correlated with the time of sampling, but not with regional differences or type of farming 

65 system (conventional versus organic) (Marine et al., 2015; Pagadala et al., 2015). However, 

66 Pagadala et al. (2015) reported that more E. coli-positive samples were detected in the 

67 conventional (rather than organic) tomato fields. Because contamination can occur at any 

68 point in the production cycle, it is also important to understand whether/how pre-harvest 

69 production practices can affect susceptibility of produce to human pathogens post-harvest. 

70 Recently, field experiments were carried out to determine the effects of the irrigation regime 

71 (Marvasi et al. 2013), nitrogen and potassium fertilization (Marvasi et al. 2014a), and iron and 

72 copper supplementation on the susceptibility of tomatoes to post-harvest proliferation of 

73 Salmonella. These studies confirmed the complex multifactorial nature of Salmonella 

74 proliferation, as evidenced by significant three-way interactions between production practices, 

75 time of harvest, crop genotype and maturity, and Salmonella strain. Furthermore, they 

76 suggested that time of harvest may have a dominant effect on Salmonella proliferation. The 

77 aim of this study was therefore to further explore these datasets using Classification and 

78 Regression Trees (CART), which allow overcoming the interpretational difficulties of 

79 classical statistical models when faced with higher order interactions. Furthermore, we aimed 

80 to explain the effect of harvest time by explicitly modeling the climatic conditions at the time 

81 of harvest and by performing additional confirmatory laboratory experiments.

82 2 Materials and Methods

83 2.1 Field production conditions
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84 The set-up of the irrigation and nitrogen/potassium field studies are described in Marvasi et al. 

85 (2013) and Marvasi et al. (2014a). In brief, the irrigation field study imposed three different 

86 irrigation treatments two weeks prior to the onset of harvesting, with soil moisture targets for 

87 each treatment of 6, 10 and 12% volumetric water content. Additional experimental factors 

88 included tomato cultivar (three levels: Bonny Best, Florida-47, Solar Fire), tomato maturity at 

89 harvest (three levels: unripe, partially ripe, ripe), time of harvest (four levels: June 2011, June 

90 2012, October 2012, October/November 2012), and inoculated Salmonella strain (two levels: 

91 type strain – S. enterica sv. Typhimurium 14028, or outbreak strains – an equal mix of S. 

92 enterica svs. Javiana, Montevideo, Newport and Braenderup which were associated with 

93 tomato outbreaks of salmonellosis). The nitrogen/potassium field study imposed three 

94 different nitrogen rates (168, 224, and 280 kg/ha N) and three different potassium rates (140, 

95 210, and 280 kg/ha K) in 9 possible combinations. Additional experimental factors included 

96 tomato cultivar (two levels: Sebring, Solar Fire), tomato maturity at harvest (three levels: 

97 unripe, partially ripe, ripe), time of harvest (four levels: June 2011, June 2012, October 2012, 

98 October/November 2012), and inoculated Salmonella strain (two levels: type strain, outbreak 

99 strain). Irrigation and fertilization studies were carried out concurrently, in the same two 

100 locations (Citra in Central Florida and Live Oak, North Florida). 

101 The iron/copper pesticides field study was set up in a similar way as the preceding ones. 

102 Seeds of tomatoes (cultivar Solar Fire) were purchased from Siegers Seed Co. (Holland, MI) 

103 and Harris Co. (Rochester, NY). Transplants were produced in an environmental chamber on 

104 the University of Florida campus, and then planted in the field. Experiments were conducted 

105 in the Spring production seasons June and July both 2014 and 2015 at the Plant Science 

106 Research and Education Unit IFAS, Citra (29°24'37.84"N; 82°10'12.14"W). The soil at the 

107 Citra site is Gainesville loamy sand (hyperthermic, coated typic quartzipsamments). Planting 

108 occurred in March 2013 and 2014. Plots consisted of a single row (7.6 m long) of 20 

109 tomatoes. Generally recommended practices for Florida tomato production were used for this 

110 research, including polyethylene-mulched raised beds, soil fumigation with 50% methyl 

111 bromide: 50% chloropicrin, drip irrigation, pest control, and staking of plants (Olson et al., 

112 2012). A cover crop (15 cm tall) of rye (Secale cereale L.) was rototilled in preparation for 

113 tomato production. The plots were fertilized with nitrogen, potassium and phosphate 

114 according to Freeman et al. (2012). The soil used for this experiment tested high in P so that 

115 no P fertilizer was used. The target total season amounts of N and K were 224 kg/ha each with 

116 20% broadcast and incorporated in the bed prior to mulch application and 80% injected 
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117 through the drip irrigation system in 6 applications though the growing season. Irrigation was 

118 applied through drip-irrigation tubes, under the mulch to maintain volumetric soil water 

119 content (measured by time domain reflectometry) at 8-10% (Muñoz-Carpena, 2012). Early in 

120 the season, one irrigation event of 30 min per day was satisfactory to maintain optimal soil 

121 moisture but irrigation cycles were increased to three 30 min cycles starting 60 days after 

122 planting until the end of the season. 

123 Iron/copper treatments were replicated three times in a randomized, complete-block design. 

124 Iron was applied as Fe-lignosulfonate (4% iron oxide, Interstate Products, Inc. Sarasota, FL, 

125 USA) and copper was applied as copper diamonia diacetate (8% metallic Cu, Southern 

126 Agricultural Products, Palmetto, FL, USA). According to the manufacturers’ instructions, iron 

127 was applied at 0.17 kg Fe/ha per application and copper at 0.1 kg Cu/ha per application. 

128 Tomatoes were sprayed every two weeks, every six weeks or once 3 days prior to the harvest. 

129 The only Fe and Cu sprays received by the tomatoes were the specific treatments.

130 2.2 Tomato infections post-harvest

131 Harvested tomatoes were brought into the lab and inoculated with Salmonella through 

132 shallow wounds, typically within 2-24 h of the harvest, as previously described (Marvasi et 

133 al., 2015, 2014a). For the inocula, the type strain S. enterica Typhimurium ATCC14028 or a 

134 cocktail of strains (S. Javiana ATCC BAA-1593, S. Montevideo LJH519, S. Newport C6.3, S. 

135 Braenderup 04E01347, 04E00783, 04E01556) linked to the human outbreaks of salmonellosis 

136 were used as suggested by the Framework for Evaluation of Microbial Hazards (Harris et al., 

137 2013, 2012). Strains were individually grown overnight at 37 °C in LB broth with shaking 

138 were washed three times in phosphate-buffered saline (PBS, pH 7.0), and the strains from the 

139 outbreaks were combined into a six-strain inoculum. These inocula were further diluted in 

140 PBS and 3 µl of the suspension (containing about 100 CFU) were spotted onto three shallow 

141 wounds (~ 1 mm) in the tomato epidermis. Infected tomatoes were incubated at 22 °C for a 

142 week. After incubation, tomatoes were blended in an equal volume of PBS using a stomacher 

143 (Sevard, West Sussex, UK) (200 rotations per minute for 1 min) and 50 l of the suspensions 

144 were plated onto Xylose Lysine Deoxylate (XLD) agar (Beckton, Dickinson and Company, 

145 Franklin Lakes, NJ, USA) and incubated at 37 °C overnight. Proliferation was calculated by 

146 dividing the total CFU recovered from each tomato by the total CFU inoculated into each 

147 fruit. This allows accounting for differences in tomato sizes and for the fact that the 
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148 colonization of a tomato fruit by Salmonella is not even. The ratios were further subjected to 

149 the log10 transformation.

150 2.3 Effect of plate crowding on CFU recovery

151 We recognize that to obtain accurate counts, it is desirable to have 30-300 CFU/plate. 

152 However, when processing thousands of field samples, we invariably obtained plates with 

153 more than 300 CFU. Rather than discarding these data, we performed experiments to 

154 determine how to correct for the non-linearity of CFU counts on crowded XLD plates. Three 

155 tomatoes were inoculated with ~1,000 CFU of Salmonella Typhimurium 14028. Following 

156 incubation, tomatoes were stomached as above and each of the four ten-fold dilutions was 

157 plated onto XLD. CFUs were counted following overnight incubation at 37 oC. The correction 

158 assumed that the observed count theoretically has to be proportional to the inoculum volume, 

159 which can be represented by a power curve: . A power curve corresponds to a linear 𝑦 = 𝛼𝑥𝛽

160 log-log curve, with the power curve coefficient  corresponding to the slope of the log-log 𝛽

161 curve: . Without crowding, the slope should be equal to one. In log 𝑦 = log 𝛼 + 𝛽log 𝑥

162 presence of crowding, the slope will be lower than one, and the log(true count) can be 

163 obtained by dividing the log(observed count) by the slope. To obtain the slope factor , we 𝛽

164 fitted a linear mixed effects model to the log(observed count) versus the log(dilution), with 

165 dilution series as random effect, using the lme4 package for R 3.3.0 (Bates et al., 2015; R 

166 Core Team, 2016).

167 2.4 Data analysis

168 We used regression trees to identify the experimental factors that were best able to explain the 

169 observed variation in Salmonella proliferation, defined as the log10-transformed ratio of 

170 Salmonella cells after and before inoculation. Models were fitted to the observed cell counts 

171 and to the overcrowding-corrected cell counts. The independent variables in the models were 

172 the experimental treatments (i.e., irrigation, fertilization, pesticide), tomato ripeness, tomato 

173 cultivar, Salmonella strain, and harvest time. To explore the effects of harvest time, we fitted 

174 additional regression tree models where harvest time was replaced by the underlying climatic 

175 variables. We obtained climate data up to one week prior to each harvest from the Florida 

176 Automated Weather Network (FAWN-IFAS, http://fawn.ifas.ufl.edu/). The data from 2011 

177 were taken in Live Oak, while the data from 2012 and 2013 were taken in Citra. We selected 

178 climate variables with a biological implication and that can reliably be measured: temperature 

179 at 60 cm, solar radiation, total rainfall, relative humidity, and dew point. We calculated 
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180 average values for the preceding seven days and the preceding 24 h, which were explored in 

181 two separate regression tree models per dataset.

182 Regression trees are non-linear and non-parametric alternatives to classical statistical 

183 regression models that overcome problems of multicollinearity and higher order interactions 

184 (Speybroeck, 2012). Regression trees are part of the more general CART approach with 

185 classification trees allowing handling categorical outcomes and regression trees continuous 

186 variables. In this paper only regression trees were used as the outcome, log10 Salmonella 

187 proliferation, was a continuous variable. The construction of such trees begins with a parent 

188 node containing all observations. The regression tree algorithm then recursively iterates 

189 through all possible values of the experimental factors to find the best possible variable, as 

190 well as the best possible value of this variable, to split the parent node into two child nodes. In 

191 choosing the best splitter, the algorithm seeks to maximize the homogeneity (purity) within 

192 the two child nodes and thus the heterogeneity between both child nodes. The final result 

193 resembles an inverted tree and can be interpreted as a decision tree or classification system for 

194 the dependent variable. The tree visualizes discovered relationships and patterns in the data, 

195 but does not allow for interpretations in terms of statistical significance. However, overfitting 

196 is avoided by using a learning data set to prune the saturated tree and select the optimal tree 

197 with an appropriate fit to the learning data set.

198 Regression trees offer a way to deal with multicollinearity in an intuitively correct way. From 

199 two closely related variables, e.g., dew point and humidity, a regression tree will select only 

200 one variable as the most important (primary) splitter, but will also compute an importance 

201 measure reflecting a variable's ability to perform either as a primary splitter or as a so-called 

202 surrogate splitter. The values of all these improvements are summed over each node and 

203 totaled, and are then scaled relative to the best performing variable. Surrogate splitters closely 

204 mimic and predict the action of primary splitting variables. If one variable is not selected at 

205 several splits because it is the second most important variable each time it may not appear in 

206 the tree, but it will appear in the variable importance table, which ranks the variables based on 

207 their contribution in the construction of the tree (Liaw and Wiener 2002). 

208 The regression trees and variable importance measures were generated using the rpart and 

209 randomForest packages for R 3.3.0 (Therneau et al. 2015; Liaw and Wiener 2002; R Core 

210 Team 2016).

414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472



9

211 2.5 Effect of tomato incubation at high relative humidity on subsequent proliferation of 

212 Salmonella

213 To determine what effects relative humidity pre-harvest plays in the ability of Salmonella to 

214 multiply in tomatoes post-harvest, we carried out confirmatory laboratory experiments. 

215 Tomatoes were incubated in a humidity chambers held at either 80-85% RH (high) or at 50-

216 60% RH (ambient). Tomatoes were maintained at 22 oC. The humidity chambers were vented 

217 twice a day for 10 min to prevent accumulation of ethylene. Tomatoes were purchased from a 

218 local supplier, and were either greenhouse-grown (and sanitized post-harvest in chlorine-

219 containing solution) or un-treated. The treatment (high or ambient humidity) was imposed for 

220 a week prior to the inoculation with Salmonella. Following the humidity treatment, tomatoes 

221 were inoculated with ~100 CFU of S. enterica sv Typhimurium 14028 that were spotted onto 

222 shallow (1 mm in diameter, 1-2 mm depth) wounds made in tomato epidermis. Post-

223 inoculation with Salmonella, all tomatoes were incubated at ambient conditions (35-50% RH, 

224 22 oC) for 7 days, after which they were stomached in PBS and processed as above for the 

225 enumeration of Salmonella CFU within fruit tissues. To remove native surface microbiota, 

226 tomatoes were treated as described by Marvasi et al. (2013).

227 3 Results

228 3.1 Experiments

229 The experiment to determine how to correct for CFUs on crowded plates resulted in a mean 

230 slope  of 0.833, significantly different from 1 (P < 0.001). The results presented here are 𝛽

231 based on this correction factor, while the results based on the original Salmonella counts are 

232 available in Appendix 1.

233 Fig. 1–3 show boxplots of the Salmonella proliferation observed in the three field studies. The 

234 average log10 Salmonella proliferation was 4.2 in the irrigation dataset (n=1,353), 4.8 in the 

235 nitrogen/potassium dataset (n=2,835), and 4.1 in the iron/copper dataset (n=2,406). Time 

236 series of temperature, solar radiation, total rainfall, relative humidity, and dew point prior to 

237 each harvest event are given in Appendix 2. Across experiments, temperatures at which 

238 tomatoes were harvested ranged from 4 °C to 38 °C, with the iron/copper experiment 

239 experiencing cold shocks (i.e., sudden drops in temperature) prior to harvest. 

240 3.2 Regression trees
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241 Regression trees confirmed time of harvest was the most important factor for explaining the 

242 observed variability in Salmonella proliferation, followed by tomato ripeness (with a relative 

243 importance of 30–40% of that of harvest time), while none of the experimentally imposed 

244 variables had a visible effect  (Appendix 3). Climate variables were included in the model to 

245 explain the apparent associations between time of harvest and Salmonella proliferation. 

246 Humidity-related factors emerged as the most important factors (Fig. 4–6). In all three 

247 experiments, high relative humidity the week prior to harvest was consistently associated with 

248 less Salmonella proliferation with the breakpoint at 77-80% RH and explaining 1.3-1.9 log10 

249 units of proliferation differential. Other factors related to humidity were also found 

250 influential, but their effects were less equivocal. Rainfall was of importance in the irrigation 

251 experiment, whereas a dew point ≥ 15 °C was associated with less proliferation in the 

252 nitrogen/potassium experiment, and a dew point < 23 °C was associated with less 

253 proliferation in the iron/copper experiment. Air temperature was of importance in two out of 

254 three experiments. The results of evaluating the impact of climatic factors one day before 

255 harvest were less consistent, although humidity related variables (relative humidity, dew 

256 point) were also important in this analysis. The most important non-climatic factor was 

257 tomato ripeness, with less Salmonella proliferation observed in unripe and partially ripe 

258 tomatoes. The effect of Salmonella strain was only evident in the iron/copper dataset, with the 

259 outbreak cocktail being associated with less Salmonella proliferation. The least important 

260 factors in explaining Salmonella proliferation were tomato cultivar and the experimental 

261 treatments.

262 3.3 Effects of humidity under laboratory conditions

263 As shown in Fig. 7A, no significant effect of humidity was observed when the native surface 

264 microbial communities were removed by a post-harvest sanitation treatment. In the follow-up 

265 experiments, untreated tomatoes, containing their native epimicrobiota were incubated under 

266 the same conditions. As shown in Fig. 7B, tomatoes that were incubated at higher humidity 

267 prior to the inoculation with Salmonella supported significantly lower proliferation of the 

268 pathogen than the tomatoes that were incubated at lower relative humidity.

269 4 Discussion

270 NTS is one of the major foodborne pathogens worldwide and in the United States. 

271 Salmonella, as well as other human pathogens, are rarely but routinely isolated from crop 
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272 production environments and field produce (Bell et al., 2015; Marine et al., 2015). 

273 Nevertheless, a significant number of the outbreaks of human salmonellosis linked to the 

274 consumption of fresh produce have been linked to farms and other production facilities 

275 (Bennett et al., 2015). As fresh produce is increasingly identified as a source of outbreaks, a 

276 better understanding of the role of crop production practices that affect susceptibility of crops 

277 to human pathogens pre- and post-harvest could eventually result in a significant reduction of 

278 the number and/or severity of the produce-associated outbreaks.

279 The impact of crop production conditions on microbiological safety of produce has been 

280 evaluated using three different approaches: 1) pathogens or avirulent surrogates were 

281 inoculated onto crops to determine whether production practices can distribute the pathogens 

282 throughout the field and how pathogens persist in the field under these conditions (Islam et 

283 al., 2004a, 2004b; Moyne et al., 2011; Williams et al., 2013); 2) naturally occurring indicator 

284 organisms were tracked under various cropping systems in order to extrapolate how human 

285 pathogens might behave under these conditions (Bell et al., 2015; Marine et al., 2015); and 3) 

286 fruits were inoculated post-harvest to determine whether different production conditions 

287 impact properties of produce making it more or less conducive to proliferation of the 

288 pathogen post-harvest (Marvasi et al., 2015, 2014a, 2013). The latter type of studies was the 

289 subject of this manuscript. 

290 Our study confirms the complex interactions of factors affecting the proliferation of 

291 Salmonella on tomatoes post-harvest. We confirmed previous reports (Marvasi et al., 2014b, 

292 2013) that tomatoes that are harvested mature green or as breakers are significantly less 

293 conducive to Salmonella proliferation. Even though consumers are thought to prefer vine-ripe 

294 tomatoes, microbiological consequences of allowing tomatoes to fully mature under the field 

295 condition must be carefully weighed. Furthermore, we confirmed that, by themselves, neither 

296 nitrogen or potassium fertilization, nor irrigation levels nor foliar sprays with Cu- or Fe-

297 containing solutions had a major impact on how conducive tomatoes would be to proliferation 

298 of Salmonella if a contamination even occurred post-harvest. This has important 

299 consequences for both risk assessment and risk management. For risk assessment, our results 

300 imply that predicting consequences of field production practices on proliferation of 

301 Salmonella in the event of a post-harvest contamination of a particular crop is very difficult. 

302 Fig. 1 and 2 show that across experiments, Salmonella proliferation varies between 0.6 and 

303 9.6 log10 units. A range of roughly 3.5–6.0 log10 units could be explained by the variables 

304 included in the regression trees but their effects were not consistent across experiments. 
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305 Under the field conditions, we did not observe an effect of the tomato cultivar on post-harvest 

306 susceptibility to Salmonella. However, it should be noted that unlike other studies in which 

307 dozens of tomato genotypes were compared (Han and Micallef, 2014; Marvasi et al., 2014b), 

308 only three tomato cultivars were compared in our study. Only relative humidity had a 

309 consistent effect, explaining a proliferation differential of 1.3–1.9 log10 units. Hence, a major 

310 part of the variability remains unexplained. Furthermore, the most important variables 

311 identified by our analysis are not readily available from routine observations made while 

312 growing or harvesting tomatoes. For risk managers, specifically tomato growers, our results 

313 imply that harvesting after a period of high humidity will decrease the potential Salmonella 

314 proliferation. It is unlikely that the physical and/or chemical changes associated with humidity 

315 itself had a major impact on the properties of the fruit: imposing high or low irrigation 

316 treatment did not predispose tomatoes to Salmonella. Only severe water congestion (which is 

317 unlikely to occur at the relative humidity that tomatoes experiences in these studies) increased 

318 Salmonella proliferation in tomato pericarps (Marvasi et al., 2013). The impact of high 

319 humidity pre-harvest on the subsequent proliferation of Salmonella in tomato fruit appears to 

320 be related to the presence of the native microbiota. Indeed, our follow-up laboratory 

321 experiments demonstrated that tomatoes that were surface disinfected prior to the humidity 

322 treatment supported the same levels of Salmonella proliferation. 

323 The role of phytobacteria in both promoting and restricting proliferation of Salmonella and E. 

324 coli in and on plants has been well-documented (Brandl et al., 2013; Teplitski et al., 2011). 

325 Janisiewicz et al. (1999) provided the first evidence that a strain of Pseudomonas syringae 

326 (with previously characterized fungicidal properties) reduces proliferation of E. coli O157:H7 

327 on wounded apples by 10-1,000 fold. Subsequent studies identified a number of native 

328 bacteria capable of reducing proliferation of Salmonella and pathogenic E. coli on produce 

329 (Allard et al. 2014; Cooley et al., 2006, 2003; Fett, 2006). Under the field conditions, 

330 treatment of tomatoes with systemic and foliar Cu-containing pesticides reduced abundance of 

331 -proteobacteria, including one of its antagonists (Paenibacillus) under the field conditions, 

332 thus impacting niche dynamics (Ottesen et al., 2015). While we did not assess changes in the 

333 tomato epimicrobiota following foliar treatments with copper and iron in our study, we did 

334 not observe any impact of this treatment pre-harvest on the ability of tomatoes to support 

335 Salmonella proliferation in a post-harvest contamination model. Even though it is clear that a 

336 number of environmental conditions and even some production practices impact native 
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337 microbiota of the tomato crop, the complex multi-partite interactions of these factors are still 

338 far from being fully understood.

339 5 Conclusion

340 To overcome the limitations of classical regression models, we used regression trees to 

341 explore the factors that affect Salmonella proliferation in three distinct experimental datasets. 

342 In line with previous studies, we confirmed the effect of tomato ripeness and the limited 

343 impact of production practices (such as varying levels of N, P fertilization, irrigation levels 

344 and overhead Cu- and Fe-containing sprays). By including information on climatic conditions 

345 prior to harvest, we identified the importance of humidity prior to harvest that was associated 

346 with decreased Salmonella proliferation, and thus showed a protective effect. The independent 

347 action of relative humidity was confirmed in a controlled laboratory experiment.

348 Acknowledgments

349 We are grateful to Alex Gannon for assisting with the experiments. This research was 

350 supported by contract #021758 from the Florida Department of Agriculture under the CRIS 

351 REEPort project #FLA-SWS-005474.

352 References

353 1. Allard, S., Enurah, A., Strain, E., Millner, P., Rideout, S.L., Brown, E.W., Zheng, J., 
354 2014. In situ evaluation of Paenibacillus alvei in reducing carriage of Salmonella 
355 enterica serovar Newport on whole tomato plants. Appl. Environ. Microbiol. 80, 3842–
356 3849.

357 2. Bates, D., Maechler, M., Bolker, B., Walker, S., 2015. Fitting linear mixed-effects 
358 models using lme4. J. Stat. Softw. 67, 1–48.

359 3. Bell, R.L., Zheng, J., Burrows, E., Allard, S., Wang, C.Y., Keys, C.E., Melka, D.C., 
360 Strain, E., Luo, Y., Allard, M.W., Rideout, S., Brown, E.W., 2015. Ecological 
361 prevalence, genetic diversity, and epidemiological aspects of Salmonella isolated from 
362 tomato agricultural regions of the Virginia Eastern Shore. Front. Microbiol. 6, 415.

363 4. Bennett, S.D., Littrell, K.W., Hill, T.A., Mahovic, M., Behravesh, C.B., 2015. Multistate 
364 foodborne disease outbreaks associated with raw tomatoes, United States, 1990-2010: a 
365 recurring public health problem. Epidemiol. Infect. 143, 1352–1359.

366 5. Brandl, M.T., 2006. Fitness of human enteric pathogens on plants and implications for 
367 food safety. Annu. Rev. Phytopathol. 44, 367–392.

368 6. Brandl, M.T., 2008. Plant lesions promote the rapid multiplication of Escherichia coli 
369 O157:H7 on postharvest lettuce. Appl. Environ. Microbiol. 74, 5285–5289.

709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767



14

370 7. Brandl, M.T., Amundson, R., 2008. Leaf age as a risk factor in contamination of lettuce 
371 with Escherichia coli O157:H7 and Salmonella enterica. Appl. Environ. Microbiol. 74, 
372 2298–2306.

373 8. Brandl, M.T., Cox, C.E., Teplitski, M., 2013. Salmonella interactions with plants and 
374 their associated microbiota. Phytopathology 103, 316–325.

375 9. Centers for Disease Control and Prevention, 2013. Reports of selected Salmonella 
376 outbreak investigations. US Department of Health and Human Services, CDC, Atlanta, 
377 Georgia. http://www.cdc.gov/Salmonella/outbreaks.html (accessed 04.11.16).

378 10. Cooley, M.B., Chao, D., Mandrell, R.E., 2006. Escherichia coli O157:H7 survival and 
379 growth on lettuce is altered by the presence of epiphytic bacteria. J. Food Prot. 69, 2329–
380 2335.

381 11. Cooley, M.B., Miller, W.G., Mandrell, R.E., 2003. Colonization of Arabidopsis thaliana 
382 with Salmonella enterica and enterohemorrhagic Escherichia coli O157:H7 and 
383 competition by Enterobacter asburiae. Appl. Environ. Microbiol. 69, 4915–4926.

384 12. Fett, W.F., 2006. Inhibition of Salmonella enterica by plant-associated pseudomonads in 
385 vitro and on sprouting alfalfa seed. J. Food Prot. 69, 719–728.

386 13. Franz, E., van Bruggen, A.H., 2008. Ecology of E. coli O157:H7 and Salmonella enterica 
387 in the primary vegetable production chain. Crit. Rev. Microbiol. 34, 143–161.

388 14. Freeman, J.H., McAvoy, E.J., Boyd, N.S., Dittmar, P.J., Ozores-Hampton, M., Smith, 
389 H.A., Vallad, G.E., Webb, S.E., 2015. Chapter 17 Tomato Production, in: Dittmar, P.J., 
390 Freeman, J.H., Vallad, G.E. (Eds.), Vegetable Production Handbook of Florida, 2016-
391 2017. University of Florida Cooperative Extension Service, pp. 315–358.

392 15. Gould, L.H., Walsh, K.A., Vieira, A.R., Herman, K., Williams, I.T., Hall, A.J., Cole, D., 
393 2013. Surveillance for foodborne disease outbreaks - United States, 1998-2008. MMWR 
394 Surveill. Summ. 62, 1–34.

395 16. Gu, G., Cevallos-Cevallos, J.M., Vallad, G.E., van Bruggen, A.H., 2013. Organically 
396 managed soils reduce internal colonization of tomato plants by Salmonella enterica 
397 serovar Typhimurium. Phytopathology 103, 381–388.

398 17. Gutierrez-Rodriguez, E., Gundersen, A., Sbodio, A.O., Suslow, T.V., 2012. Variable 
399 agronomic practices, cultivar, strain source and initial contamination dose differentially 
400 affect survival of Escherichia coli on spinach. J. Appl. Microbiol. 112, 109–118.

401 18. Han, S., Micallef, S.A., 2014. Salmonella Newport and Typhimurium colonization of 
402 fruit differs from leaves in various tomato cultivars. J. Food Prot. 77, 1844–1850.

403 19. Harris, L.J., Berry, E.D., Blessington, T., Erickson, M., Jay-Russell, M., Jiang, X., 
404 Killinger, K., Michel, F.C., Millner, P., Schneider, K., Sharma, M., Suslow, T.V., Wang, 
405 L., Worobo, R.W., 2013. A framework for developing research protocols for evaluation 
406 of microbial hazards and controls during production that pertain to the application of 
407 untreated soil amendments of animal origin on land used to grow produce that may be 
408 consumed raw. J. Food Prot. 76, 1062–1084.

409 20. Harris, L.J., Bender, J., Bihn, E.A., Blessington, T., Danyluk, M.D., Delaquis, P., 
410 Goodridge, L., Ibekwe, A.M., Ilic, S., Kniel, K., Lejeune, J.T., Schaffner, D.W., Stoeckel, 
411 D., Suslow, T.V., 2012. A framework for developing research protocols for evaluateon of 
412 microbial hazards and controls during production that pertain to the quality of agricultural 
413 water contacting fresh produce that may be consumed raw. J. Food Prot. 75, 2251–2273.

768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826

http://www.cdc.gov/Salmonella/outbreaks.html


15

414 21. Havelaar, A.H., Kirk, M.D., Torgerson, P.R., Gibb, H.J., Hald, T., Lake, R.J., Praet, N., 
415 Bellinger, D.C., de Silva, N.R., Gargouri, N., Speybroeck, N., Cawthorne, A., Mathers, 
416 C., Stein, C., Angulo, F.J., Devleesschauwer, B; World Health Organization Foodborne 
417 Disease Burden Epidemiology Reference Group, 2015.World health organization global 
418 estimates and regional comparisons of the burden of foodborne disease in 2010. PLOS 
419 Med. 12, e1001923.

420 22. Islam, M., Morgan, J., Doyle, M.P., Phatak, S.C., Millner, P., Jiang, X., 2004a. Fate of 
421 Salmonella enterica serovar Typhimurium on carrots and radishes grown in fields treated 
422 with contaminated manure composts or irrigation water. Appl. Environ. Microbiol. 70, 
423 2497–2502.

424 23. Islam, M., Morgan, J., Doyle, M.P., Phatak, S.C., Millner, P., Jiang, X., 2004b. 
425 Persistence of Salmonella enterica serovar typhimurium on lettuce and parsley and in 
426 soils on which they were grown in fields treated with contaminated manure composts or 
427 irrigation water. Foodborne Pathog. Dis. 1, 27–35.

428 24. Janisiewicz, W.J., Conway, W.S., Leverentz, B., 1999. Biological control of postharvest 
429 decays of apple can prevent growth of Escherichia coli O157:H7 in apple wounds. J. 
430 Food Prot. 62, 1372–1375.

431 25. Kirk, M.D., Pires, S.M., Black, R.E., Caipo, M., Crump, J.A., Devleesschauwer, B., 
432 Döpfer, D., Fazil, A., Fischer-Walker, C.L., Hald, T., Hall, A.J., Keddy, K.H., Lake, R.J., 
433 Lanata, C.F., Torgerson, P.R., Havelaar, A.H., Angulo, F.J., 2015. World Health 
434 Organization estimates of the global and regional disease burden of 22 foodborne 
435 bacterial, protozoal, and viral diseases, 2010: a data synthesis. PLOS Med., 12, 
436 e1001921.

437 26. Kozak, G.K., MacDonald, D., Landry, L., Farber, J.M., 2013. Foodborne outbreaks in 
438 Canada linked to produce: 2001 through 2009. J. Food Prot. 76, 173–183.

439 27. Liaw, A., Wiener, M., 2002. Classification and regression by randomForest. R News 2, 
440 18–22.

441 28. Mandrell, R., 2009. Enteric human pathogens associated with fresh produce: sources, 
442 transport, and ecology, In: Fan, X., Niemira, B.A., Doona, C.J., Feeherry, F.E., Gravani, 
443 R.B. (Eds.) Microbial Safety of Fresh Produce. Blackwell Publishing and the Institute of 
444 Food Technologies, Ames, Iowa.

445 29. Marine, S.C., Pagadala, S., Wang, F., Pahl, D.M., Melendez, M.V., Kline, W.L., Oni, 
446 R.A., Walsh, C.S., Everts, K.L., Buchanan, R.L., Micallef, S.A., 2015. The growing 
447 season, but not the farming system, is a food safety risk determinant for leafy greens in 
448 the mid-Atlantic region of the United States. Appl. Environ. Microbiol. 81, 2395–2407.

449 30. Marvasi, M., George, A.S., Giurcanu, M.C., Hochmuth, G.J., Noel, J.T., Teplitski, M., 
450 2015. Effect of the irrigation regime on the susceptibility of pepper and tomato to post-
451 harvest proliferation of Salmonella enterica. Food Microbiol. 46, 139–144.

452 31. Marvasi, M., George, A.S., Giurcanu, M., Hochmuth, G.J., Noel, J.T., Gause, E., 
453 Teplitski, M., 2014a. Effects of nitrogen and potassium fertilization on the susceptibility 
454 of tomatoes to post-harvest proliferation of Salmonella enterica. Food Microbiol. 43, 20–
455 27.

456 32. Marvasi, M., Noel, J.T., George, A.S., Farias, M.A., Jenkins, K.T., Hochmuth, G., Xu, 
457 Y., Giovanonni, J.J., Teplitski, M., 2014b. Ethylene signalling affects susceptibility of 
458 tomatoes to Salmonella. Microb. Biotechnol. 7, 545–555.

827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885



16

459 33. Marvasi, M., Hochmuth, G.J., Giurcanu, M.C., George, A.S., Noel, J.T., Bartz, J., 
460 Teplitski, M., 2013. Factors that affect proliferation of Salmonella in tomatoes post-
461 harvest: the roles of seasonal effects, irrigation regime, crop and pathogen genotype. 
462 PLOS ONE 8, e80871.

463 34. Moyne, A.L., Sudarshana, M.R., Blessington, T., Koike, S.T., Cahn, M.D., Harris, L.J., 
464 2011. Fate of Escherichia coli O157:H7 in field-inoculated lettuce. Food Microbiol. 28, 
465 1417–1425.

466 35. Muñoz-Carpena, R. 2012. Field devices for monitoring soil moisture content. University 
467 of Florida Cooperative Extension Service Bull 343. http://edis.ifas.ufl.edu/ae266 
468 (accessed 04.11.16).

469 36. Olson, S.M., Dittmar, P.J., Vallad, G.E., Webb, S.E., Smith, S.A., McAvoy, E.J., Santos, 
470 B.M., Ozores-Hampton, M. 2012. Tomato production in Florida. In EDIS, Florida/IFAS, 
471 U.o., ed. (University of Florida Extension Circ HS739, University of Florida/IFAS).

472 37. Ottesen, A.R., Gorham, S., Pettengill, J.B., Rideout, S., Evans, P., Brown, E., 2015. The 
473 impact of systemic and copper pesticide applications on the phyllosphere microflora of 
474 tomatoes. J. Sci. Food Agric. 95, 1116–1125.

475 38. Pagadala, S., Marine, S.C., Micallef, S.A., Wang, F., Pahl, D.M., Melendez, M.V., Kline, 
476 W.L., Oni, R.A., Walsh, C.S., Everts, K.L., Buchanan, R.L., 2015. Assessment of region, 
477 farming system, irrigation source and sampling time as food safety risk factors for 
478 tomatoes. Int. J. Food Microbiol. 196, 98–108.

479 39. Park, S., Szonyi, B., Gautam, R., Nightingale, K., Anciso, J., Ivanek, R., 2012. Risk 
480 factors for microbial contamination in fruits and vegetables at the preharvest level: a 
481 systematic review. J. Food Prot. 75, 2055–2081.

482 40. Poza-Carrion, C., Suslow, T.V., Lindow, S.E., 2013. Resident bacteria on leaves enhance 
483 survival of immigrant cells of Salmonella enterica. Phytopathology 103.

484 41. R Core Team, 2016. R: A language and environment for statistical computing. R 
485 Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

486 42. Scallan, E., Hoekstra, R. M., Mahon, B. E., Jones, T. F., Griffin, P. M., 2015. An 
487 assessment of the human health impact of seven leading foodborne pathogens in the 
488 United States using disability adjusted life years. Epidemiol. Infect. 143, 2795–2804.

489 43. Speybroeck, N., 2012. Classification and regression trees. Int. J. Public Health 57, 243–
490 246.

491 44. Teplitski, M., Warriner, K., Bartz, J., Schneider, K.R., 2011. Untangling metabolic and 
492 communication networks: interactions of enterics with phytobacteria and their 
493 implications in produce safety. Trends Microbiol. 19, 121–127.

494 45. Therneau, T., Atkinson, B., Ripley, B., 2015. rpart: Recursive Partitioning and 
495 Regression Trees. R package version 4.1-10. https://CRAN.R-project.org/package=rpart 

496 46. Williams, T.R., Moyne, A.L., Harris, L.J., Marco, M.L., 2013. Season, irrigation, leaf 
497 age, and Escherichia coli inoculation influence the bacterial diversity in the lettuce 
498 phyllosphere. PLOS ONE 8, e68642.

886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944

http://edis.ifas.ufl.edu/ae266
https://www.R-project.org/
https://CRAN.R-project.org/package=rpart


17

499 Figure captions

500 Fig. 1. Post-harvest proliferation of Salmonella in tomatoes (cultivars Bonny Best [BB], 

501 Florida-47 [FL], and Solar Fire [SF]) grown under different irrigation treatments, i.e., D 

502 ("dry") = 6%, M ("medium") = 10% (recommended for tomato production), W ("wet") 

503 = 12% volumetric soil moisture contents imposed within two weeks of the first harvest. 

504 Four independent samplings were conducted, i.e., June 2011 (A), June 2012 (B), October 

505 2012 (C) and October/November 2012 (D). Tomatoes were classified at harvest as unripe, 

506 partially ripe or ripe. At each sampling, tomatoes were infected with Salmonella 

507 Typhimurium ATTC 14028 or a cocktail of six outbreak-related Salmonella enterica strains. 

508 Upon completion of a 1-week incubation, Salmonella cells were recovered and proliferation 

509 was calculated as the ratio of counts after and before inoculation. The boxplots combine data 

510 for infections with both types of inocula.

511 Fig. 2. Post-harvest proliferation of Salmonella in tomatoes (cultivars Sebring [SE] and 

512 Solar Fire [SF]) grown under different fertilization treatments: N1 ¼ 168, N2 ¼ 224 

513 (recommended), N3 ¼ 280 kg/ha; K1 ¼ 168, K2 ¼ 252 (recommended), K3 ¼ 336 kg/ha. 

514 Four independent samplings were conducted, i.e., June 2011 (A), June 2012 (B), October 

515 2012 (C) and October/November 2012 (D). Tomatoes were classified at harvest as unripe, 

516 partially ripe or ripe. At each sampling, tomatoes were infected with Salmonella 

517 Typhimurium 14028 or a cocktail of six outbreak-related Salmonella enterica strains. Upon 

518 completion of a 1-week incubation, Salmonella cells were recovered and Salmonella 

519 proliferation was calculated as the ratio of Salmonella cells after and before inoculation. The 

520 boxplots combine data for infections with both types of inocula.

521 Fig. 3. Post-harvest proliferation of Salmonella in tomatoes (cultivar Solar Fire) grown 

522 under different pesticide treatments, i.e., 0.17 kg/ha Fe, 0.1 kg/ha Cu, equal combination 

523 of Fe and Cu and water (control), applied once prior the harvest, every 2 or every 6 

524 weeks. Four independent samplings were conducted, i.e., July 1 2013 (A), July 8 2013 (B), 

525 June 26 2014 (C) and July 4 2014 (D). Tomatoes were classified at harvest as unripe, partially 

526 ripe or ripe. At each sampling, tomatoes were infected with Salmonella Typhimurium 14028 

527 or a cocktail of six outbreak-related Salmonella enterica strains. Upon completion of a 1-

528 week incubation, Salmonella cells were recovered and Salmonella proliferation was 
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529 calculated as the ratio of Salmonella cells after and before inoculation. The boxplots combine 

530 data for infections with both types of inocula.

531 Fig. 4. Regression tree (left) and relative variable importance (right) for log10 Salmonella 

532 proliferation in the irrigation dataset. Climatic variables are averages for the week prior to 

533 harvest (panel A) or the day before harvest (panel B). Abbreviations: cultivar = tomato 

534 cultivar; dewpoint = average dew point at 2 m (°C); irrigation = irrigation treatment {dry [D], 

535 medium [M], wet [W]}; rain = total rainfall at 2 m (cm); relhum = average relative humidity 

536 at 2 m (%); ripeness = tomato ripeness at harvest {unripe [unr], partially ripe [prt], ripe [rip]}; 

537 solar = average solar radiation at 2 m (W/m²); strain = Salmonella strain; t60 = average 

538 temperature at 60 cm (°C).

539 Fig. 5. Regression tree (left) and relative variable importance (right) for log10 Salmonella 

540 proliferation in the nitrogen/potassium dataset. Climatic variables are averages for the 

541 week prior to harvest (panel A) or the day before harvest (panel B). Abbreviations: cultivar = 

542 tomato cultivar; dewpoint = average dew point at 2 m (°C); nitrogen = nitrogen treatment; 

543 potassium = potassium treatment; rain = total rainfall at 2 m (cm); relhum = average relative 

544 humidity at 2 m (%); ripeness = tomato ripeness at harvest {unripe [unr], partially ripe [prt], 

545 ripe [rip]}; solar = average solar radiation at 2 m (W/m²); strain = Salmonella strain; t60 = 

546 average temperature at 60 cm (°C).

547 Fig. 6. Regression tree (left) and relative variable importance (right) for log10 Salmonella 

548 proliferation in the iron/copper dataset. Climatic variables are averages for the week prior 

549 to harvest (panel A) or the day before harvest (panel B). Abbreviations: c = copper treatment; 

550 dewpoint = average dew point at 2 m (°C); f = iron treatment; freq = iron/copper treatment 

551 frequency; rain = total rainfall at 2 m (cm); relhum = average relative humidity at 2 m (%); 

552 ripeness = tomato ripeness at harvest {unripe [unr], partially ripe [prt], ripe [rip]}; solar = 

553 average solar radiation at 2 m (W/m²); strain = Salmonella strain {type strain [T], outbreak 

554 cocktail [O]}; t60 = average temperature at 60 cm (°C).

555 Fig. 7. Proliferation of Salmonella enterica sv Typhimurium 14028 in tomatoes. Tomatoes 

556 were incubated for a week at either 35-50% RH or 80% RH in a humidity chamber at 22oC, 

557 were then inoculated with Salmonella Typhimurium and incubated at 35-50% RH at 22oC. 

558 Tomatoes were either stripped of the native microbiota (panel A), or had native microbial 

559 communities (panel B).
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560 Supplementary data

561 Appendix 1. Results based on the original Salmonella counts.

562 Appendix 2. Time series of temperature, dew point, relative humidity, total rainfall, and 

563 solar radiation prior to each harvest.

564 Appendix 3. Regression trees based on experimentally imposed variables and time of 

565 harvest.

1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121

















High relative humidity pre-harvest reduces post-harvest prolifera-
tion of Salmonella in tomatoes

Appendix 1: Results based on the original Salmonella counts
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Iron/copper dataset
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Nitrogen/potassium dataset
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Regression trees – climatic data
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Nitrogen/potassium dataset
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Iron/copper dataset
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High relative humidity pre-harvest reduces post-harvest prolifera-
tion of Salmonella in tomatoes

Appendix 2: Time series of temperature, dew point, relative hu-
midity, total rainfall, and solar radiation prior to each harvest
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Nitrogen/potassium dataset
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Iron/copper dataset
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High relative humidity pre-harvest reduces post-harvest prolifera-
tion of Salmonella in tomatoes

Appendix 3: Regression trees based on experimentally imposed
variables and time of harvest
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Iron/copper dataset
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1

1 Highlights

2  Salmonella proliferation on tomatoes post-harvest is influenced by harvest time

3  Humidity prior to harvest is associated with decreased Salmonella proliferation

4  The independent action of humidity was confirmed in a controlled lab experiment

5  The impact of humidity appears to be related to the presence of native microbiota




