
Android Code Vulnerabilities Early Detection
using AI-powered ACVED Plugin

Janaka Senanayake1,2[0000−0003−2278−8671],
Harsha Kalutarage1[0000−0001−6430−9558],
Mhd Omar Al-Kadri3[0000−0002−1146−1860],
Andrei Petrovski1[0000−0002−0987−2791], and

Luca Piras4[0000−0002−7530−4119]

1 School of Computing, Robert Gordon University, Aberdeen AB10 7QB, UK
{j.senanayake,h.kalutarage,a.petrovski}@rgu.ac.uk

2 Faculty of Science, University of Kelaniya, Kelaniya, Sri Lanka
janakas@kln.ac.lk

3 School of Computing and Digital Technology, Birmingham City University,
Birmingham B5 5JU, UK
omar.alkadri@bcu.ac.uk

4 Department of Computer Science, Middlesex University, London NW4 4BT, UK
l.piras@mdx.ac.uk

Abstract. During Android application development, ensuring adequate
security is a crucial and intricate aspect. However, many applications
are released without adequate security measures due to the lack of vul-
nerability identification and code verification at the initial development
stages. To address this issue, machine learning models can be employed
to automate the process of detecting vulnerabilities in the code. How-
ever, such models are inadequate for real-time Android code vulnera-
bility mitigation. In this research, an open-source AI-powered plugin
named Android Code Vulnerabilities Early Detection (ACVED) was
developed using the LVDAndro dataset. Utilising Android source code
vulnerabilities, the dataset is categorised based on Common Weakness
Enumeration (CWE). The ACVED plugin, featuring an ensemble learn-
ing model, is implemented in the backend to accurately and efficiently
detect both source code vulnerabilities and their respective CWE cate-
gories, with a 95% accuracy rate. The model also leverages explainable AI
techniques to provide source code vulnerability prediction probabilities
for each word. When integrated with Android Studio, the ACVED plu-
gin can provide developers with the vulnerability status of their current
source code line in real-time, assisting them in mitigating vulnerabilities.
The plugin, model, and scripts can be found on GitHub, and it receives
regular updates with new training data from the LVDAndro dataset,
enabling the detection of novel vulnerabilities recently added to CWE.

Keywords: Android application security · code vulnerability · labelled
dataset · artificial intelligence · plugin



2 Senanayake et al.

1 Introduction

As of March 2023, the Google Play Store sees an average of 87,000 new Android
mobile apps released each month, and Android dominates the market with a
70.93% share [23, 24]. However, due to the lack of adherence to secure coding
practices and standards, some of these apps have source code vulnerabilities that
are attractive to hackers [26]. Therfore, the security of Android apps may always
not be guaranteed. Hence, it is important to mitigate vulnerabilities promptly.
It is worth noting that delaying bug fixing until later stages in the Software
Development Life Cycle (SDLC) is 30 times more expensive than fixing them
early on [9].

Without proper mechanisms in place, developers may not consider poten-
tial vulnerabilities of the source code. However, developers should pay attention
to this as identifying source code weaknesses at an early stage can make the
software less vulnerable. Therefore, it is essential to support Android app devel-
opers to continuously prioritise and apply security best practices. Developers find
supportive tools, frameworks, and plugins beneficial in automating the coding
process. However, there is a shortage of automated supportive tools that fol-
low security best practices and address code vulnerabilities during application
development [19].

Despite a few available tools that use conventional methods, Machine Learn-
ing (ML) methods and Deep Learning (DL) methods with static, dynamic, and
hybrid analysis to identify Android app vulnerabilities [7, 21], several limitations
such as fewer detection capabilities and low performances, exist. Additionally,
these tools cannot perform real-time detection during coding, and they can only
identify vulnerabilities by analysing either Android Application Package (APK)
files or the entire source code of an Android project.

To address such limitations, this paper makes the following contributions:

– An Artificial Intelligence (AI) based model that employs ensemble learning
techniques to detect Android source code vulnerabilities with high accuracy.
The LVDAndro dataset [20] was used to train this model.

– A plugin named ACVED, which employs the trained model and Explainable
AI (XAI) techniques in its backend. The plugin can be integrated with An-
droid Studio and can assist developers in identifying potential vulnerabilities
in the source code and recommend appropriate mitigating approaches based
on the reasoning behind the predictions.

– The plugin and model are publicly available as a GitHub Repository1 along
with source code and essential instructions for improvement to address the
latest potential vulnerabilities.

The following is the organisation of the paper: In Section 2, background and
related work are discussed, while the development process of the vulnerability
detection model is explained in Section 3. The application of the ACVED Plugin
is described in Section 4. The conclusion and future works are discussed in
Section 5.
1 https://github.com/softwaresec-labs/ACVED



AI-Powered Android Code Vulnerabilities Early Detection 3

2 Background and Related Work

In this section, the foundation for the study is established by examining several
topics and exploring related studies on source code vulnerabilities, techniques,
tools and frameworks for vulnerability scanning and analysis, datasets used for
machine learning (ML)-based vulnerability detection models, and the use of XAI
to understand predictions. Additionally, how assistive tools can support Android
developers in their work is also discussed.

2.1 Source Code Vulnerabilities

Reducing vulnerabilities in the source code is crucial for promoting secure soft-
ware development practices, as highlighted in [16, 27]. However, without proper
mechanisms, developers may overlook potential vulnerabilities. Therefore, organ-
isations and the community have identified various vulnerabilities documented in
repositories such as Common Weakness Enumeration (CWE) [3] and Common
Vulnerabilities and Exposures (CVE) [4], which are widely used. These reposito-
ries contain software and hardware-related vulnerabilities that can be identified
across many platforms, making them a valuable resource for mobile application
developers to mitigate security loopholes by identifying patterns in their source
code. If automated tool support based on CWE and CVE details were avail-
able, the Android app development process could be completed efficiently by
minimising vulnerable source code.

2.2 Application Analysis and Vulnerability Scanning

To identify source code vulnerabilities in Android apps, the first step involves
analysing and scanning the completed app or the source code. Two approaches
are available for scanning Android apps for source code vulnerabilities: 1) scan-
ning the code by reverse-engineering the developed APKs, and 2) scanning the
source code simultaneously as the code is being written [17]. Since the first ap-
proach requires a pre-built application, it cannot be applied in the early stages
of the software development life cycle (SDLC) [1]. Although the second approach
is more valuable to developers as it focuses on early detection, it is not widely
practised due to the limited availability of tools and frameworks.

To analyse applications, static, dynamic, and hybrid analysis techniques can
be employed. Static analysis methods can identify code issues without executing
the application or the source code. Two types of static analysis techniques are
available: Manifest analysis and code analysis. Manifest analysis can extract fea-
tures for analysis by identifying package names, permissions, activities, services,
intents, and providers. In contrast, code analysis can provide more insights into
the source code by analysing features such as API calls, information flow, native
code, taint tracking, clear-text analysis, and opcodes [8]. Conversely, dynamic
analysis requires a runtime environment to execute the application for scanning.
Five feature extraction methods for dynamic analysis have been identified: code



4 Senanayake et al.

instrumentation, system resources analysis, system call analysis, network traf-
fic analysis, and user interaction analysis [6]. The hybrid analysis combines the
features of both static and dynamic analysis. By performing a hybrid analysis,
a mix of static and dynamic features can be extracted [6].

2.3 Tools and Frameworks for Vulnerability Scanning

There are several tools available for vulnerability scanning of Android applica-
tions, as discussed in [19]. Some widely used free tools include Qark, MobSF,
AndroBugs, DevKnox, and JAADAS, and these can be utilised by app develop-
ers to detect source code vulnerabilities using application scanning techniques.
Additionally, tools such as Guardsquare, AppSweep, DeepSource, Copilot and
SonarQube are available, offering similar services, but they are not free to use.
Previous research has suggested the application of ML-based and non-ML-based
methods for this purpose, with a recent trend of using ML-based methods [7].
The accuracy and performance of ML models can be enhanced through dataset
improvements and parameter tuning, as seen in experiments conducted in var-
ious studies, including [5, 10, 18, 28]. These studies used ML algorithms such
as Decision Tree (DT), Naive Bayes (NB), AdaBoost (AB), ID3, C4.5, J48, K-
Star, Random Forest (RF), Gradient Boosting (GB), Extreme Gradient Boosting
(XGB), Logistic Regression (LR), Support Vector Machine (SVM), and Multi-
Layer Perception (MLP). However, none of these methods proposed a real-time
Android code vulnerability detection approach.

2.4 Datasets for ML-based Vulnerability Detection

ML-based models can be developed by training ML algorithms on properly la-
belled datasets. Several datasets have been proposed primarily related to ap-
plication vulnerabilities. For instance, Ghera [12] is an open-source benchmark
repository that captures 25 known vulnerabilities in Android apps. It also out-
lines some common characteristics of vulnerability benchmarks and repositories.
The National Vulnerability Database (NVD) [15] is another dataset used to
reference vulnerabilities. The AndroVul repository [14] contains Android secu-
rity vulnerabilities, including high-risk shell commands, security code smells,
and dangerous permission-related vulnerability details. LVDAndro [20], an An-
droid code vulnerability dataset, contains vulnerable and non-vulnerable source
code labelled with CWE categories. The proof-of-concept demonstrates that the
LVDAndro is applicable in training ML models to detect Android code vulner-
abilities.

2.5 Understanding ML-based Vulnerability Predictions with XAI

ML models often function as a black box, providing only the output predictions
and not the reasoning behind them. This lack of transparency can make it diffi-
cult for developers to identify the underlying causes of vulnerabilities and devise



AI-Powered Android Code Vulnerabilities Early Detection 5

appropriate mitigation strategies. To better understand the reasons behind these
predictions, additional effort outside of app development is often necessary [22].
XAI can help with this by generating algorithms that are both accurate and
explainable [11]. Various Python-based frameworks, such as Shapash, Dalex,
ELI5, Lime, SHAP, and EBM, can provide the probability of predictions in bi-
nary or multi-class classification models [2]. These frameworks can be selected
based on specific requirements, such as Lime’s applicability for text or image
classification-related predictions.

2.6 Tools for Assisting Android Developers

The study in [13] suggests that code issues can arise due to human errors like
a lack of focus and concentration. To address this, software developers use var-
ious strategies like self-concentration, process checklists, and integrated tools
during development. To improve efficiency, developers often rely on Integrated
Development Environments (IDEs) that assist with code writing, application
building, validation, and integration. IDEs have built-in features and plugins
that enhance the development process without altering its functionalities. An-
droid Studio, which is the official IDE for Android app development and built
on JetBrain’s IntelliJ IDEA, is an example of an IDE that supports third-party
plugins developed by external vendors [25].

The ACVED plugin is designed to address the limitations of real-time code
vulnerability detection methods by employing an accurate ensemble learning
approach. As a result, it can be integrated into Android Studio to provide tool
support for detecting vulnerabilities in real-time.

3 Development of Vulnerability Detection Model

The dataset selection process, the process of building the model and web API,
how to use XAI in conjunction with prediction probabilities, and model enhance-
ments are discussed in this section. The entire process of model development is
illustrated in Fig. 1.

3.1 Dataset Selection

The first step in developing a vulnerability detection model is to select an appro-
priate dataset. For this purpose, the LVDAndro dataset [20], which is properly
labelled based on CWE-IDs, was chosen to train the AI-based model. The LV-
DAndro dataset was created by combining the capabilities of MobSF and Qark
vulnerability scanners, leveraging the strengths of both tools. An analysis was
carried out on the LVDAndro dataset to determine its characteristics. Table
1 displays the fields that are included in the dataset. Although the processed
code, vulnerability status, and CWE-IDs are essential for detecting vulnerabili-
ties, other fields such as severity level and vulnerability category can also provide



6 Senanayake et al.

Fig. 1: Overall Model Development Process

Table 1: Fields in LVDAndro
Field Name Description

Index Auto-generated identifier
Code Original source code line
Processed code Source code line after preprocessing
Vulnerability status Vulnerable(1) or Non-vulnerable(0)
Category Category of the vulnerability
Severity Severity of the vulnerability
Type Type of the vulnerability
Pattern Pattern of the vulnerable code
Description Description of the vulnerability
CWE ID CWE-ID of the vulnerability
CWE Desc Description of the vulnerable class
CVSS Common vulnerability scoring system value
OWSAP Mobile Open web application security project for mobile apps details
OWSAP MASVS OWASP Mobile application security verification standard
Reference CWE reference URL for the vulnerability

additional predictive information. Table 2 provides statistics on the dataset, and
the CWE distribution of the LVDAndro dataset is depicted in Fig. 2.

The number of non-vulnerable source code samples generally exceeds the
number of vulnerable samples in the datasets generated from real applications.
This data imbalance issue was addressed by down-sampling the non-vulnerable
examples in the dataset. Vulnerable code examples consist of code lines for 23
CWE-IDs as shown in Fig. 2. However, for certain CWE-IDs such as CWE-79,
CWE-250, CWE-295, CWE-297, CWE-299, CWE-327, CWE-330, CWE-502,
CWE-599, CWE-649, CWE-919, CWE-926, and CWE-927, there are limited
examples of vulnerable code. To handle this, a new class named Other was
introduced and used to reassign the labels for these source code samples.



AI-Powered Android Code Vulnerabilities Early Detection 7

Table 2: Statistics of the LVDAndro Dataset

Characteristic Value

No. of Used APKs 15,021
No. of Vulnerable Code Lines 6,599,597
No. of Non-Vulnerable Code Lines 14,689,432
No. of Distinct CWE-IDs 23

Fig. 2: CWE-ID Distribution

3.2 Model Building

When constructing the model, the LVDAndro dataset was divided into 75% for
training and 25% for testing. Since the model needs to predict both the vulner-
ability status and the vulnerability category based on CWE, two classification
tasks were performed: binary and multi-class classification as a continuation of
the previous work in [18]. To create the feature vectors for these tasks, the n-
gram technique with ngram range = 1,3 and a minimum document frequency
(min df) of 100 and maximum document frequency (max df) of 40 was used to
generate two feature vectors. For the binary classification, the feature vector was
created using the processed code and vulnerability status, while for the multi-
class classification, the feature vector was created using the processed code and
CWE-ID.

To determine which classifiers perform well in both binary and CWE-based
multi-class classification, widely used learning classifiers including NB, LR, DT,
SVM, RF, GB, XGB, and MLP were analysed [19]. Then an ensemble learning
model was built using the Stacking classifier from Scikit-learn, and the previously



8 Senanayake et al.

analysed learning classifiers were used as estimators. The ensemble model was
evaluated using five-fold cross-validation, and prediction probability, decision
function, and predictions were evaluated for each estimator.

The performance of each individual classifier and the proposed ensemble
model was compared based on F1-scores and accuracies for both binary and
multi-class classification. The results of the comparison of accuracies and the
macro averages of precision, recall, and F1-score are presented in Table 3.

Table 3: Performance Comparison of Learning Models
Model Binary Classification Multi-class Classification

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

NB 91% 0.91 0.91 0.91 88% 0.86 0.89 0.87

LR 94% 0.94 0.94 0.94 94% 0.92 0.92 0.92

DT 94% 0.94 0.94 0.94 92% 0.90 0.90 0.90

SVM 89% 0.89 0.88 0.88 89% 0.88 0.87 0.88

RF 94% 0.94 0.94 0.94 93% 0.91 0.90 0.90

GB 91% 0.92 0.91 0.91 92% 0.92 0.91 0.91

XGB 94% 0.94 0.94 0.94 93% 0.92 0.92 0.92

MLP 93% 0.93 0.93 0.93 92% 0.91 0.90 0.90

Ensemble Model 95% 0.95 0.95 0.95 95% 0.94 0.93 0.93

Table 3 reveals that the proposed ensemble model achieves high accuracy,
precision, recall, and F1-score combinations in both binary and multi-class clas-
sifications. This result is likely due to the fact that the ensemble stacking clas-
sifier combines the capabilities of all the other classifiers. The trained ensemble
model has an accuracy of 95% for both binary and multi-class classification, and
F1-scores of 0.95 and 0.93 for binary and multi-class classification, respectively.
The precision, recall, and F1-score values for each CWE-ID in the multi-class
classification can be found in Table 4.

Table 4: F1-Score for each CWE-ID with Ensemble Model
CWE-ID Precision Recall F1-Score Number of Examples

CWE-89 1.00 1.00 1.00 2,036

CWE-200 0.94 0.96 0.95 5,665

CWE-276 0.97 0.98 0.97 6,382

CWE-312 0.93 0.95 0.94 7,649

CWE-532 0.98 0.99 0.99 9,254

CWE-676 1.00 1.00 1.00 2,378

CWE-749 0.65 0.90 0.76 1,898

CWE-921 0.95 0.90 0.93 1,914

CWE-925 0.99 0.99 0.99 3,392

CWE-939 0.92 0.71 0.80 2,961

Other 0.96 0.90 0.93 4,467



AI-Powered Android Code Vulnerabilities Early Detection 9

3.3 Web API

Two pickle files were saved for each trained model, one for the classifier and one
for the vectorizer. These files correspond to the trained ensemble model for both
binary and multi-class classifications. They were used as inputs to the backend
of a Flask-based web API developed using Python.

The web API receives a source code line from the user via a GET request and
checks it for vulnerabilities. The code line is processed using the same techniques
as those used in LVDAndro [20]. Specifically, the code replaces all user-defined
string values with ”user string,” except for string values containing IP addresses
and encryption algorithms (AES, SHA-1, and MD5) due to the potential for
vulnerabilities such as CWE-200 (exposure of sensitive information to unautho-
rised actors) and CWE-327 (use of a broken or risky cryptographic algorithm).
Additionally, all comments are replaced with ”//user comment.”

Upon initialisation of the web API, the pre-trained binary and multi-class
model pickle files are loaded. When a user request is received, the vectorizer
from the binary classification is used to transform the processed source code
line. The transformed code is then passed to the binary model to obtain the
vulnerability status. If the code line is predicted to be vulnerable, the code line
is transformed using the loaded multi-class classification vectorizer and then
passed to the multi-class learning model to predict the CWE-ID.

3.4 Prediction Probabilities with XAI

After predicting the vulnerability status and the CWE-ID, the processed source
code is passed to the Lime package in Python, which supports XAI, to obtain
prediction probabilities and explanations for both binary and multi-class models.
The Lime package provides the contributions of each word in the processed source
code line for both vulnerability prediction and vulnerable category prediction
probabilities. Finally, the prediction results are returned to the user in the form
of JSON responses, as shown in Fig. 3 and Fig. 4.

The Python Lime library’s show in notebook function can provide visual aids
for interpreting XAI prediction probabilities. Fig. 5 demonstrates how Lime-
based XAI predictions can highlight vulnerable source code, using the exam-
ple of a line that writes to a log file: ”Log.e(”Login Failure for username :”,
”user123”);”. This code is associated with CWE-532, which the model correctly
predicted with a 0.99 probability. Additionally, the model identified ”Log” as the
most significant contributor to the prediction with a 0.53 probability. In multi-
class classification, the prediction probability for CWE-532 was 0.99, and the
contribution of ”Log” to this was 0.96. This underscores the need for developers
to exercise caution when using log statements in production-level applications,
as attackers may exploit loopholes in the application by checking the log file.
Encryption processes can be employed to generate log files in an encrypted form
instead of plain text. Fig. 6 demonstrates how can be represented graphically if
there are no any vulnerabilities in a given code line.



10 Senanayake et al.

Fig. 3: API Responses Example for Vulnerable Code

Fig. 4: API Responses Example for Non-vulnerable Code

Fig. 5: Vulnerable Code



AI-Powered Android Code Vulnerabilities Early Detection 11

Fig. 6: Non-vulnerable Code

3.5 Continuous Model Enhancements

To keep pace with evolving threats and achieve optimal performance, the model
must continuously evolve to detect new vulnerabilities and enhance its capa-
bilities. Regular updates are essential to identify the most current source code
vulnerabilities. As a result, the back-end model can improve by receiving updates
to the LVDAndro training dataset.

If an update to the LVDAndro dataset is available, the model must undergo
training. Otherwise, the pre-trained model can be used with the ACVED plugin.
During re-training, if any classification metrics are better than those of the exist-
ing model, the new model will be employed for subsequent predictions within the
plugin. The duration of model training typically relies on the available machine
resources and the dataset size. In this case, the initial model was constructed
using a machine equipped with an Intel Core i5 processor and 16GB of memory,
taking approximately 55 minutes.

4 Application of ACVED Plugin

This section outlines how to use the ACVED plugin after integrating it with
Android Studio. Furthermore, it includes a comparison of the performance of
both the model and the plugin. The process of the ACVED plugin is illustrated
in Fig. 7.

Fig. 7: Process of ACVED Plugin



12 Senanayake et al.

4.1 Plugin Integration and Usage

The ACVED plugin, which functions as an Android Studio plugin, was created
utilising IntelliJ IDEA. This plugin is capable of receiving requests (in the form
of source code) from Android Studio and returning responses as notifications
containing results generated by the web API.

In order to use the newly developed plugin, it must first be integrated into the
Android Studio IDE. The plugin is available for download in the form of a jar file
from the ACVED GitHub repository. To install the plugin into the latest version
of Android Studio, simply follow the standard procedure for installing a third-
party plugin. For older versions of Android Studio, the version number can be
adjusted in the plugin.xml file to accommodate the appropriate version2. Once
the plugin has been successfully installed, suggestions for resolving vulnerabilities
can be retrieved as a balloon notification (see Appendix A). The ACVED plugin
provides two options to detect vulnerabilities.

– Quick Check: Scan the whole source code file to detect the presence of
vulnerable source code.

– Detailed Check: Detect if any vulnerability is associated with a particular
code line.

When conducting a quick search, the developer will receive a balloon noti-
fication indicating whether vulnerable code is present in the source file. If no
vulnerable code is found, that also will be notified. However, if no vulnerable
code is detected, a notification will be displayed that specifies the vulnerable
code lines and their corresponding CWE-IDs.

Upon conducting a detailed check, a notification will be received indicating
the vulnerability status of the source code. If the code being focused on by the
cursor is found to be vulnerable, a balloon notification will be displayed, contain-
ing a description of the vulnerability as well as a suggestion for mitigating it. The
notification will also provide the binary classification prediction for vulnerability
status, the associated CWE-ID, and the prediction probability for the CWE cat-
egory in the multi-class classification prediction. Furthermore, the contribution
of each word to the probability in both the binary and multi-class classification
approaches will be indicated. The severity of the vulnerability will determine
the type of notification (information or warning). To provide more detailed in-
formation about the vulnerability, ACVED offers suggestions for overcoming it
by referencing the CWE repository [3].

The ability to re-perform the vulnerability check allows developers to examine
how the probabilities vary when specific code lines are altered. This feature can
be particularly useful in situations where 100% mitigation is not possible. For
instance, in some cases, it may be necessary to maintain log file records for
bug-fixing purposes, even in production-level applications.

2 https://plugins.jetbrains.com/docs/intellij/android-studio-releases-list.html



AI-Powered Android Code Vulnerabilities Early Detection 13

4.2 Plugin Performance

The ACVED plugin’s accuracy and efficiency were evaluated by benchmarking
it against the MobSF and Qark scanners, which were used to construct the
LVDAndro dataset. To compare the accuracy of the detection of vulnerable code
for new data, a total of 2,216 source code lines were utilised. This set included 604
examples of vulnerable code lines obtained from the CWE repository and 1,612
lines of well-known non-vulnerable code from real-world applications. These code
lines were integrated into an Android app project, which was then scanned using
both the MobSF and Qark scanners. The same code lines were then passed to
the developed API by parsing them using the Quick Check option of the ACVED
plugin. The accuracy, precision, recall, and F1-Score of each tool were compared
and summarised in Table 5.

Table 5: Comparison of Accuracy, Precision, Recall and F1-Score of ACVED
with MobSF and Qark

Performance Metrics MobSF Qark ACVED

Accuracy 91% 89% 94%

Precision 0.92 0.92 0.94

Recall 0.95 0.93 0.97

F1-Score 0.93 0.92 0.95

Upon comparison, ACVED outperformed MobSF and Qark in predicting
vulnerabilities in unseen code samples, achieving a high accuracy rate of 94%,
along with a precision of 0.94, recall of 0.97, and F1-Score of 0.95. Additionally,
ACVED was able to significantly decrease the false negative rate, indicating its
effectiveness in reducing potential security risks associated with its predictions.
Moreover, when compared with MobSF and Qark, ACVED stands out as the
sole method capable of detecting code vulnerabilities during development.

In order to compare the efficiency of vulnerability detection methods, fifty
open-source Android projects were downloaded from GitHub and scanned them
using the ACVED plugin (integrated with Android Studio), MobSF, and Qark.
The apps were categorised based on size, with five apps per category. The av-
erage analysis times for each method were measured for each category, and the
experiments were conducted on a Windows OS environment with a Core i5 pro-
cessor and 16GB RAM. The results, as shown in Table 6, indicate that ACVED
is faster at detecting vulnerabilities, taking only 206.1s compared to MobSF’s
344.8s and Qark’s 419.9s. It is worth noting that this performance comparison
was conducted for completed applications due to existing vulnerability scanner
limitations. However, the ACVED plugin’s main strength is that it does not
require building the entire application.



14 Senanayake et al.

Table 6: Comparison of Average Time Taken to Analyse apps
App Categorise MobSF Qark ACVED

Size < 1MB 163s 123s 100s

1MB ≤ Size < 2MB 181s 129s 115s

2MB ≤ Size < 4MB 200s 165s 122s

4MB ≤ Size < 6MB 277s 235s 132s

6MB ≤ Size < 8MB 342s 372s 162s

8MB ≤ Size < 10MB 397s 497s 228s

10MB ≤ Size < 12MB 438s 543s 259s

12MB ≤ Size < 15MB 451s 654s 301s

15MB ≤ Size < 20MB 478s 729s 313s

20MB ≤ Size 521s 752s 329s

Average 344.8s 419.9s 206.1s

The usage of the ACVED plugin in the Android Studio IDE does not disrupt
the standard coding process. Developers can continue coding in their usual way.
Once a quick or detailed check has been performed, a balloon notification con-
taining vulnerability prediction results is displayed to the developer. The results
obtained from the detailed check option can be utilised to modify the code and
eliminate vulnerabilities. The detailed check option also includes a clear vulner-
ability description, allowing developers to easily comprehend it. Additionally, by
following the link provided in the notification, developers can study the vulnera-
bility in greater depth. The ACVED plugin is capable of delivering a prediction
for one code line in less than 300 milliseconds. The plugin’s performance was
evaluated in an Android Studio Chipmunk - 2021.2.1 version in a Windows OS
environment with a Core i5 processor and 16GB RAM. However, initiating the
ACVED API took between 3 to 10 seconds in the same environment before ex-
ecuting the ACVED plugin. As a result, app developers do not need to devote
any additional time or effort to obtain these real-time prediction results.

The plugin’s performance was evaluated through a survey in which 63 devel-
opers were requested to rate their satisfaction levels in various aspects including
Accuracy of Prediction, Efficiency of Prediction, Ease of Integration and Con-
figuration, Ease of Use, Usefulness of Mitigation Suggestions, Look and Feel,
and Overall Satisfaction using a 5-point Likert scale. The feedback collected was
represented visually in Fig. 8.

The survey results showed that the majority of app developers, 87%, were
highly satisfied with the accuracy and efficiency of the predictions made by the
plugin. Most developers, 89%, also found the mitigation recommendations to
be useful. However, the plugin’s usability, integration, and look and feel aspects
received lower satisfaction ratings, with only 22% being highly satisfied with us-
ability and integration, and 57% not being highly satisfied with the look and feel.
This feedback can be used to improve the plugin’s features, such as integrating
mitigation suggestions in a manner similar to how syntax errors are indicated.
Nevertheless, the overall satisfaction rate was high, with 79% of developers being
highly satisfied and 21% satisfied. The plugin has the potential for broader use
to address Android source code vulnerabilities with further development.



AI-Powered Android Code Vulnerabilities Early Detection 15

Fig. 8: Survey Results - Satisfaction of the plugin

5 Conclusion and Future Work

With numerous mobile applications available on Google Play and other An-
droid marketplaces, it is not uncommon for developers to overlook security best
practices, leaving their applications vulnerable to attacks. To bridge this gap
and assist Android app developers in mitigating source code vulnerabilities in
real-time, an AI-powered plugin called ACVED was introduced in this study.
An ensemble learning model was trained using the LVDAndro dataset and inte-
grated into the ACVED plugin, which is equipped with an API to detect source
code vulnerabilities. The model achieved 95% accuracy in both binary classifica-
tion and CWE-based multi-class classification, with F1-Scores of 0.95 and 0.93,
respectively. The ACVED plugin provides XAI-based reasons for predictions
to help developers quickly address vulnerabilities by considering the prediction
probabilities of each word in the code line. All necessary instructions and source
code for the dataset, model, API, and ACVED plugin are freely available on
GitHub. In order to improve the prediction model’s performance, it is feasible
to incorporate expert knowledge from app developers. This integration would
enable the plugin suggestions to provide regular developers with advanced se-
curity recommendations to effectively address vulnerabilities. Another potential
improvement is to fine-tune the model to identify intricate vulnerability patterns
supported with generative pre-trained transformer models. Additionally, one can
consider utilising federated learning methods, which would allow the distribu-
tion of the model to individual entities, such as app development companies, to
retrain the model while safeguarding the confidentiality of the protected code
bases. By implementing this approach, it is anticipated that the number of de-
tectable vulnerabilities of ACVED will also experience additional growth.

Acknowledgment

We thank Robert Gordon University - UK and the Accelerating Higher Educa-
tion Expansion and Development grant (AHEAD) of Sri Lanka, University of
Kelaniya - Sri Lanka for their support.



16 Senanayake et al.

A Appendix

Once the plugin has been integrated (as in Fig 9), to activate the quick check
feature, the user can navigate to Tools - Check Source Vulnerability or use the
shortcut key CTRL+ALT+E within the Android Studio. This feature provides a
rapid search for identifying vulnerabilities, notifying the developer of the specific
lines of vulnerable code and their corresponding CWE-IDs as depicted in Fig.
10 and Fig. 11.

Fig. 9: Android Studio Tools Menu after Integrating ACVED

Fig. 10: Quick Check Notifications - No Any Vulnerable Code Lines



AI-Powered Android Code Vulnerabilities Early Detection 17

Fig. 11: Quick Check Notifications - Contain Vulnerable Code Lines

Alternatively, the detailed check feature can be activated by selecting Tools
- Check Code Vulnerability or by using the shortcut key CTRL+ALT+A while
the cursor is focused on a particular code line. Fig. 12 presents an example of a
detailed check executed on a vulnerable code line where the cursor is positioned
on the statement Log.e(”Login Failure for username :”, ”user123”);.

Fig. 12: Detailed Check - Balloon Notification



18 Senanayake et al.

References

1. Albakri, A., Fatima, H., Mohammed, M., Ahmed, A., Ali, A., Ali, A., Elzein,
N.M.: Survey on reverse-engineering tools for android mobile devices. Mathemati-
cal Problems in Engineering 2022 (2022). https://doi.org/10.1155/2022/4908134

2. Bhatnagar, P.: Explainable ai (xai) — a guide to 7 packages in python to explain
your models (2021), https://towardsdatascience.com/explainable-ai-xai-a-guide-
to-7-packages in-python-to-explain-your-models-932967f0634b, accessed: 2023-02-
03

3. Corporation, M.: Common weakness enumeration (cwe) (2023),
https://cwe.mitre.org/, accessed: 2023-02-01

4. Corporation, M.: Cve details (2023), https://www.cvedetails.com/, accessed: 2023-
02-01

5. Gajrani, J., Tripathi, M., Laxmi, V., Somani, G., Zemmari, A., Gaur, M.S.: Vulvet:
Vetting of vulnerabilities in android apps to thwart exploitation. Digital Threats:
Research and Practice 1(2), 1–25 (2020). https://doi.org/10.1145/3376121

6. Garg, S., Baliyan, N.: Android security assessment: A review, taxon-
omy and research gap study. Computers & Security 100, 102087 (2021).
https://doi.org/j.cose.2020.102087

7. Ghaffarian, S.M., Shahriari, H.R.: Software vulnerability analysis and discovery
using machine-learning and data-mining techniques: A survey. ACMComput. Surv.
50(4) (aug 2017). https://doi.org/10.1145/3092566

8. Kouliaridis, V., Kambourakis, G.: A comprehensive survey on machine learn-
ing techniques for android malware detection. Information 12(5), 185 (2021).
https://doi.org/10.3390/info12050185

9. Krasner, H.: The cost of poor software quality in the us: A 2020 report. In: Proc.
Consortium Inf. Softw. QualityTM (CISQTM) (2021)

10. Mahindru, A., Singh, P.: Dynamic permissions based android malware
detection using machine learning techniques. In: Proceedings of the
10th innovations in software engineering conference. pp. 202–210 (2017).
https://doi.org/10.1145/3021460.3021485

11. McDermid, J.A., Jia, Y., Porter, Z., Habli, I.: Artificial intelligence explainabil-
ity: the technical and ethical dimensions. Philosophical Transactions of the Royal
Society A 379(2207), 20200363 (2021)

12. Mitra, J., Ranganath, V.P.: Ghera: A repository of android app vulnera-
bility benchmarks. In: Proceedings of the 13th International Conference on
Predictive Models and Data Analytics in Software Engineering. p. 43–52.
PROMISE, Association for Computing Machinery, New York, NY, USA (2017).
https://doi.org/10.1145/3127005.3127010

13. Nagaria, B., Hall, T.: How software developers mitigate their errors when devel-
oping code. IEEE Transactions on Software Engineering 48(6), 1853–1867 (2022).
https://doi.org/10.1109/TSE.2020.3040554

14. Namrud, Z., Kpodjedo, S., Talhi, C.: Androvul: a repository for android security
vulnerabilities. In: Proceedings of the 29th Annual International Conference on
Computer Science and Software Engineering. pp. 64–71. IBM Corp., USA (2019),
https://dl.acm.org/doi/abs/10.5555/3370272.3370279

15. NIST: National vulnerability database (2023), https://nvd.nist.gov/vuln, accessed:
2023-02-21

16. Rajapaksha, S., Senanayake, J., Kalutarage, H., Al-Kadri, M.O.: Ai-powered vul-
nerability detection for secure source code development. In: Innovative Security



AI-Powered Android Code Vulnerabilities Early Detection 19

Solutions for Information Technology and Communications. pp. 275–288. Springer
Nature Switzerland, Cham (2023)

17. Senanayake, J., Kalutarage, H., Al-Kadri, M.O.: Android mobile malware detection
using machine learning: A systematic review. Electronics 10(13), 1606 (2021).
https://doi.org/10.3390/electronics10131606

18. Senanayake, J., Kalutarage, H., Al-Kadri, M.O., Petrovski, A., Piras, L.:
Developing secured android applications by mitigating code vulnerabilities
with machine learning. In: Proceedings of the 2022 ACM on Asia Confer-
ence on Computer and Communications Security. p. 1255–1257. ASIA CCS
’22, Association for Computing Machinery, New York, NY, USA (2022).
https://doi.org/10.1145/3488932.3527290

19. Senanayake, J., Kalutarage, H., Al-Kadri, M.O., Petrovski, A., Piras, L.: Android
source code vulnerability detection: A systematic literature review. ACM Comput.
Surv. 55(9) (jan 2023). https://doi.org/10.1145/3556974

20. Senanayake, J., Kalutarage, H., Al-Kadri, M.O., Petrovski, A., Piras, L.: Labelled
vulnerability dataset on android source code (lvdandro) to develop ai-based code
vulnerability detection models. In: Proceedings of the 20th International Confer-
ence on Security and Cryptography - SECRYPT (2023), accepted

21. Shezan, F.H., Afroze, S.F., Iqbal, A.: Vulnerability detection in recent android
apps: An empirical study. In: 2017 International Conference on Networking,
Systems and Security (NSysS). pp. 55–63. IEEE, Dhaka, Bangladesh (2017).
https://doi.org/10.1109/NSysS.2017.7885802

22. Srivastava, G., Jhaveri, R.H., Bhattacharya, S., Pandya, S., Rajeswari, Mad-
dikunta, P.K.R., Yenduri, G., Hall, J.G., Alazab, M., Gadekallu, T.R.: Xai for
cybersecurity: State of the art, challenges, open issues and future directions (2022).
https://doi.org/10.48550/ARXIV.2206.03585

23. Statcounter: Mobile operating system market share worldwide (2023),
https://gs.statcounter.com/os-market-share/mobile/worldwide/, accessed: 2023-
04-01

24. Statista: Average number of new android app releases via
google play per month from march 2019 to march 2023 (2023),
https://www.statista.com/statistics/1020956/android-app-releases-worldwide/,
accessed: 2022-04-03

25. Tang, J., Li, R., Wang, K., Gu, X., Xu, Z.: A novel hybrid method to analyze
security vulnerabilities in android applications. Tsinghua Science and Technology
25(5), 589–603 (2020). https://doi.org/10.26599/TST.2019.9010067

26. Thomas, G., Devi, A.: A study and overview of the mobile app development in-
dustry. International Journal of Applied Engineering and Management Letters pp.
115–130 (2021). https://doi.org/10.5281/zenodo.4966320.

27. de Vicente Mohino, J., Bermejo Higuera, J., Bermejo Higuera, J.R., Si-
cilia Montalvo, J.A.: The application of a new secure software develop-
ment life cycle (s-sdlc) with agile methodologies. Electronics 8(11) (2019).
https://doi.org/10.3390/electronics8111218

28. Zhuo, L., Zhimin, G., Cen, C.: Research on android intent security detection
based on machine learning. In: 2017 4th International Conference on Infor-
mation Science and Control Engineering (ICISCE). pp. 569–574. IEEE (2017).
https://doi.org/10.1109/ICISCE.2017.124


