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Abstract 7 

The role of a strength and conditioning coach (SCC) has evolved over the last 10 years to 8 

accommodate the large influx of data now available. As such, today’s SCC must extend their 9 

skill set to include data analysis, understanding the validity and utility of p values, effect sizes, 10 

confidence intervals, and terms such as the smallest worthwhile change, and minimal 11 

difference. The aim of part one of this two-part review is to define and discuss the utility of 12 

null hypothesis significance testing (NHST), p values, and error rates. In part two, we introduce 13 

effect sizes, measures of variability, and confidence intervals, culminating in recommendations 14 

as to which may be the most viable options within the context of performance-based sport, and 15 

thus potential methods to report group-based changes. 16 

 17 

 18 

Introduction 19 

The role of a strength and conditioning coach (SCC) has evolved over the last 10 years, perhaps 20 

to the point where the term strength and conditioning scientist may be just as apt. In principle, 21 

this is because SCC’s are likely to spend as much time behind a computer analysing the streams 22 

of data they have just collected, as they are coaching athletes in the gym. While acknowledging 23 

that evidence-based practice has always been at the root of this role, perhaps today’s shift is 24 

due to some of the following: (a) the need to demonstrate an objective approach to appease 25 

various stakeholders, (b) an increase in academic scientific-based degrees in this discipline of 26 

sport science, and (c) perhaps most causative, an influx of performance-based (affordable) 27 

software and hardware that provide vast quantities of performance variables. These advances 28 

mean that today’s SCC must extend their skill set to include data analysis. While the evolution 29 

of this role, of course, requires the development of many other skill sets (Stewart, Comfort, & 30 

Turner, 2017), this paper focuses on analysing data, and in particular, assessing group changes 31 

(differences) in performance in applied settings. This appears to be an area of interest at the 32 

moment given the confusion in the best method to do this, from the implementation of p-values 33 

(Greenland, et al., 2016; Wasserstein & Lazar, 2016), to reporting effect sizes (Cohen 1988, 34 



1992), confidence intervals (Cumming G. , 2014; Cumming & Finch, 2001), and the utility of 35 

analyses incorporating concepts such as the smallest worthwhile change (Hopkins, 2004) and 36 

minimal difference (Weir, 2005).  37 

 38 

The aim of this two-part review therefore, is to discuss each of these in turn and provide 39 

recommendations to the reader as to which may be most viable within the context of 40 

performance-based sport, and thus potential methods to report group-based changes over time. 41 

Furthermore, such an analysis will also assist practitioners in critiquing relevant research 42 

findings when considering adoption of new strategies to practice. Here, in part one, we first 43 

define and discuss the utility of null hypothesis significance testing (NHST), p values, and error 44 

rates, given that NHST is the most commonly taught approach to testing research questions 45 

with statistical models, and thus the most well-known and used within the literature 46 

(Wasserstein & Lazar, 2016); in essence, this will serve as the platform from which we can 47 

develop our statistical approach to analyse our data. In part two then, through a series of worked 48 

examples, we will introduce effect sizes, measures of variability, and confidence intervals, 49 

culminating in recommendations as to which may be the most viable options for the applied 50 

analysis of data relating to group-based changes in strength and conditioning. 51 

 52 

Null Hypothesis Significance Testing 53 

We should also start by recognising the work of Sir Ronald Fisher, who is considered a pioneer 54 

of statistics and devised the p value that we will shortly explain; Fisher also coined the term 55 

“statistically significant” (Fisher, 1925). Actually, the term “significant” is now recognised as 56 

a poor choice of word and is consequently considered as one of the seven most misused words 57 

in science (Ghose, 2013). What Fisher actually meant, was along the lines of statistically 58 

interesting and requires further scrutiny (Wasserstein R. , 2019). However, its meaning was 59 

taken literally and is one of many reasons around the confusion of what a p value is, why 60 

statisticians have repeatedly asked us to refrain from using the phrase “statistically significant” 61 

(Wasserstein, Schirm, & Lazar, 2019; Amrhein, Greenland, & McShane, 2019; Lakens, et al., 62 

2018), and why one journal even felt they had to ban it from use (Traimow & and Marks, 63 

2015). 64 

 65 

In actuality, the p value (and the NHST framework that commonly relies on it) can be a useful 66 

tool, if we appreciate its true meaning and utility (Greenland, 2019), with it offering a first line 67 

of defence against us being fooled by random error and any confirmation bias we may have 68 



towards a theory (Lakens, 2019). In understanding the p value, we should first note that NHST 69 

is part of frequentist statistics, which means that it is concerned with the interpretation of 70 

probability, and specifically, long run probability; that is, what the likely results of a study 71 

would be, if repeated over and over again (Greenland, et al., 2016; Wasserstein & Lazar, 2016). 72 

So, when you appreciate the frequentist statistical framework, you can note that the results of 73 

any single study, only tell you what would happen if it were infinitely repeated (Greenland, et 74 

al., 2016) and do not actually relate to your single use study. As such, p values can never be 75 

regarded as evidence of the error or effect in your study (Greenland, et al., 2016). An additional 76 

misconception occurs when we don’t appreciate the name and literal meaning of the test we 77 

are conducting, i.e., NHST. An NHST does exactly that, it typically investigates a test statistic 78 

obtained from a parameterized model against a null model, which centres on there being no 79 

effect or difference noted in your data, i.e., the result will be zero (however, via chance and 80 

random variation, we more than likely observe variability around zero). By way of example, if 81 

we introduce a new exercise to an intervention group (to check it works) and compare it to a 82 

control group, we are not actually testing the hypothesis that this new exercise will improve 83 

performance (which is referred to as the alternate hypothesis), but rather, that there is no 84 

difference between the groups (i.e., the null). This can be a confusing concept to grasp, because 85 

really, what we want to know, is if our alternate hypothesis (does our new exercise intervention 86 

work) is true or false. But as applied sport scientists, using NHST, we must appreciate that this 87 

is not the question that we are answering. Instead, we are testing the probability of our data, 88 

given our (null) hypothesis, which is written as P(D|H0). We are not testing our (alternate) 89 

hypothesis, given our data, written as P(H1|D). For the latter, we would need to use Bayesian 90 

statistics, but in any case, these are not the same thing and this explains why when reading 91 

around this issue, you may see P(D|H) ≠ P(H|D). We should also point out that NHST need not 92 

always be about null hypothesis (zero effect or difference) testing, and that hypotheses centring 93 

on equivalence, non-inferiority, and superiority, can also be tested. For example, Lakens (2017) 94 

provides examples where equivalence testing may be more advantageous, especially in 95 

scenarios where researchers want to argue for the absence of an effect that is large enough to 96 

be worthwhile to examine, and where researchers should also consider the effect size under the 97 

alternative hypothesis (we discuss this concept more in part two). Equivalence testing is beyond 98 

the scope of this text, so we recommend readers to the work of Lakens (2017); we suspect that 99 

in a large number of sports performance based research, this may be more appropriate than null 100 

hypothesis testing. 101 

 102 



If we continue with the example of comparing the difference between two independent groups 103 

against a null model, we would then choose the t-test as our statistical model, ensuring we have 104 

met the model’s underlying assumptions, such as independent groups, normal distribution of 105 

the means, and characteristically similar samples for example. By ensuring we have met these 106 

assumptions, we can act as if the only thing that differs between groups is our training 107 

intervention (Lakens, 2019) – all the while acknowledging that our data will always contain 108 

random error and thus noise, which we can never fully identify, control or exclude. Neyman 109 

and Pearson (1933) suggest the term act as a way forward with NHST, given it does not imply 110 

we truly believe the results directly relate to our single study, which in any case, did not 111 

investigate P(H1|D). We then run our test and generate our test statistic, which in this case is 112 

the t-statistic. The t-statistic we get, coupled with the sample size, is used to generate a p value, 113 

which informs us of the probability of obtaining our result (or more extreme), assuming the 114 

null hypothesis (and all the statistical model’s assumptions) is true. Remember, that if the null 115 

hypothesis is true, the difference between groups would be around zero (assuming that was the 116 

threshold you decided on), and in this instance, all p values are equally likely (Caldwell & 117 

Cheuvront, 2019).  118 

 119 

Now, if you get a low p value, you can then say that your data (not your alternate hypothesis, 120 

as you did not test this) is not compatible with the statistical model (and all its underlying 121 

assumptions) and thus is interesting and requires further scrutiny. The next question that 122 

logically arises then, is how low does the p value need to be, to spark your interest and for you 123 

to be satisfied that you are not merely measuring noise? Well, in answering this, let’s first 124 

explain what the p value actually tells us. Say you obtained a p value of 0.03, this would mean 125 

that if the null hypothesis were true (and all the assumptions made by the underlying model), 126 

the probability of obtaining such a result (or more extreme) is 3%. This is now a good point to 127 

also introduce the term alpha (α), which describes the error rate you settled on prior to 128 

undertaking the research. By convention, we use an α level of 0.05, which implies that we 129 

accept the probability that we will get a false-positive (which is called a Type I error) in 5% of 130 

future studies, when using the same model and similar samples. This now brings us full circle 131 

back to statistical significance. In our example, we got a p value of 0.03, which is less than our 132 

pre-defined (conventional) α of 0.05. Given this, we historically conclude we have 133 

“statistically significant” results. Furthermore, when our p value is less than our accepted 5% 134 

error rate, if we choose to act as if there is in an effect when there really is not, in the long run, 135 



you won’t be wrong more than 5 % of the time. To note again, if the null is true, all p values 136 

are equally likely. 137 

 138 

The drive to steer researchers away from using “statistically significant” is because it creates a 139 

dichotomy of evidence (McShane & Gal, 2017), whereby values on one side are important and 140 

meaningful (i.e., statistically significant) and values on the other side are unimportant and 141 

unhelpful (i.e., statistically non-significant). For example, if one strength training intervention 142 

results in p = 0.049, while another p = 0.051, we tend to deem the former as being an effective 143 

intervention and we would probably plan on implementing it with future athletes. The latter 144 

however (p = 0.051), would be deemed as non-statistically significant and thus ineffective, and 145 

we would therefore not plan to use it any longer. This thinking is of course incorrect and a 146 

consequence of categorical thinking. Rather, it has been argued that the p value should be 147 

treated and reported as a continuous quantity between 0 and 1, e.g., p = 0.06 (Greenland, et al., 148 

2016), with us acknowledging that it does not tell us which assumption is incorrect; it could be 149 

the null or any of the model’s underlying assumptions. Equally, any noted “effect” is subject 150 

to the statistical power of a test, which is discussed later in this paper. Such dichotomous 151 

thinking also drives publication bias (Franco, Malhotra, & Simonovits, 2014) and the “file 152 

drawer effect” (Rosenthal, 1979), whereby in some cases, we only get to read of studies that 153 

were statistically significant; this in turn can motivate p-hacking (the practice of flexibly 154 

analysing data until the p value passes the “significance threshold”). Collectively, these 155 

negative consequences have amongst other suggestions including total abandonment of NHST, 156 

resulted in calls for the alpha level to be lowered to p = 0.005 (Benjamin, et al., 2018). It is 157 

suggested that this change in critical threshold would help to reduce the number of published 158 

false-positives and the generation of weak evidence. 159 

 160 

The appropriate use of p values  161 

Firstly, the p value is a continuous probability and should be reported as such. While we act as 162 

though we have met all the model’s underlying assumptions, this is actually very challenging 163 

and explains why, when coupled with the random variation that occurs in all data, we have 164 

profound study replication issues (Cumming G. , 2014; Caldwell & Cheuvront, 2019). For 165 

example, even if the exact same study was repeated with similar samples, it would generate 166 

different p values most of the time (Cumming G. , 2014; Amrhein, Greenland, & McShane, 167 

2019). As such, it is difficult to profess that the difference between p = 0.049 and p = 0.051 is 168 

anything other than random variation, as opposed to a discrepancy residing only with 169 



incompatibility of the data with the null. Instead then, we should simply say that assuming the 170 

null hypothesis were true (and all the assumptions made by the underlying model), the 171 

probability of obtaining such a result (or more extreme) is 5.1%. Now given that in sport 172 

science, unlike medicine perhaps, the consequence of making a Type 1 error (i.e., a false-173 

positive) will unlikely be fatal or lead to any health complications, let alone lead to injury, it is 174 

probably okay to increase the a priori α level. Such thinking is in line with Lakens et al., 175 

(2018), who state that the α level should be adjusted based on the context at hand and on the 176 

cost of false-negatives (Type II errors): a higher α would be used by those for whom false-177 

positives are relatively inconsequential, and lower α would be used by those for whom false-178 

positives could be disastrous. In sport, we argue that in some cases, an α level as high as 0.1 179 

(i.e., a 10% error rate) could be justified. For example, in performance sport, success is based 180 

on the smallest of margins (a statement that every Olympic Games final proves testament to) 181 

and professional athletes are often butting up against their genetic ceiling. As such, it is more 182 

important to reduce false-negatives and thus potential opportunities that may stimulate positive 183 

adaptations.  184 

 185 

Irrespective of the α level, no decision should be made solely on the strength of a p value 186 

(Wasserstein & Lazar, 2016), given its indirect link to the alternate hypothesis, which is based 187 

on many assumptions that cannot be individually accounted for. Therefore, we need to move 188 

away from lazy dichotomous thinking (Gardner & Altman, 1986), and accept the uncertainty 189 

of our data and embrace its variation (Wasserstein, Schirm, & Lazar, 2019). One way to do this 190 

is to use confidence intervals, as well as acknowledging that one single study can never be 191 

taken as conclusive evidence of a new theory, irrespective of how low a p value is. With respect 192 

to the latter, this is why meta-analyses are so important to any field of study. That said, when 193 

considering the aforementioned publication bias, it is also interesting to consider if results 194 

derived from meta-analysis are in fact over inflated effect sizes, given that with far less 195 

frequency do we read about an intervention that does not work. Finally, we need to identify the 196 

magnitude of the effect, which NHST does not do. For example, rather than inferring an effect 197 

occurred, it would be far more useful to actually quantify the magnitude of the effect, such that 198 

coaches who are looking to adopt this new exercise can base decisions also on whether changes 199 

were small, moderate or large. However, we should again be cautious about applying critical 200 

thresholds to our data and perhaps consider the smallest effect size of interest (SESOI), which 201 

we could calculate if we appreciate the variability in our data or a particular target we are 202 



aiming toward. Effect sizes, including the SESOI, as well as confidence intervals, are discussed 203 

in part 2 of this 2-part review.  204 

 205 

Statistical Power 206 

The final element to address as part of NHST, is statistical power, which is defined as the 207 

ability of a test to detect an effect when one exists. Statistical power should thus be considered 208 

by researchers and applied practitioners before they undertake any experiment. This is because 209 

studies that are woefully underpowered can be a waste of resources as well as time for all those 210 

involved (Caldwell & Cheuvront, 2019). For example, Caldwell and Cheuvront (2019) 211 

illustrated the results of a data simulation test, involving 100,000 repetitions, to demonstrate 212 

the distribution of p-values when the null hypothesis was false (i.e., there was an effect). When 213 

they ran the simulation with 80% statistical power, 80,000 simulations (80%) correctly 214 

identified a “statistically significant” effect, meaning that in 20,000 simulations (20%), a type 215 

II error (false-negative) occurred. They then repeated the simulations, but this time with 50% 216 

power, and unsurprisingly, 50,000 simulations (50%) correctly identified a “statistically 217 

significant” effect and the remaining 50,000 simulations (50%) missed it, generating a type II 218 

error. The natural conclusion to be reached here is, are studies worth doing (even from an 219 

ethical perspective) when the chance of finding an effect, if one exists, is 50-50? Probably not 220 

given you increase the risk of making erroneous conclusions if your decisions are based solely 221 

on p-values. So, let’s now look at how we determine statistical power but first noting that again, 222 

as with p-values and confidence intervals, this probability is defined over repetitions of the 223 

same study design and so is a frequency probability (Greenland, et al., 2016). 224 

 225 

Statistical power can be calculated using a host of statistical software, some are free such as 226 

G* Power, whereby you need only enter your pre-determined α level, sample size, and the 227 

SESOI. Given the requirement of these data, statistical power is considered a conditional 228 

probability (Caldwell & Cheuvront, 2019). For example, using G*Power for the calculation of 229 

statistical power, if we wanted to compare two independent groups (to see who could jump 230 

highest for example), and we used the conventional α of 0.05 and the conventional power of 231 

80%, as well as aiming to detect an effect size (or magnitude of difference between groups) of 232 

half a standard deviation, we would need 64 participants per group. Increasing the α to 0.1, 233 

reduces the number of participants to 51 per group. It is not hard to appreciate therefore, that 234 

many studies undertaken in sport are likely underpowered and some true effects are missed. 235 



This understanding should serve to justify the need for additional analysis such as effect sizes 236 

and confidence intervals to make inferences of whether an effect or difference was observed 237 

or not.  238 

 239 

Conclusion 240 

The roles and responsibilities of today’s SCC means they must extend their skill set to include 241 

data analysis. NHST, along with its derived p value, can be a useful tool for this, if we 242 

appreciate its true meaning and utility, with it offering a first line of defence against us being 243 

fooled by random error and any confirmation bias we may have towards a theory. Importantly, 244 

we must note that NHST is part of the frequentist framework of statistics and thus refers to 245 

long run probability, with results from any single study used to infer what would happen if the 246 

study was repeated over and over again under identical conditions with different but identically 247 

distributed samples. Also, we must appreciate that our ability to find an effect, when one exists, 248 

is affected by statistical power – if this is too low, the utility of NHST is questionable when the 249 

expected effect (or difference between groups) is hypothesised to be small. Finally, if we do 250 

choose to use thresholds to limit the error within which we are happy to operate, we should 251 

choose an alpha level that represents the context at hand and the risks associated with Type I 252 

and II errors. Either way, we must recognise that the p value is a continuous variable, and thus 253 

should be reported as such. Therefore, practitioners using p values should conclude with a 254 

statement along the following lines (in this example let’s say we got p = 0.083): Assuming the 255 

null hypothesis were true and all the assumptions made by the underlying model, the 256 

probability of obtaining such a result or more extreme, is 8.3%. Furthermore, given our alpha 257 

level of 0.1, if we choose to act as if there is in an effect when in fact there is not, in the long 258 

run, we won’t be wrong more than 10 % of the time. 259 

 260 

Winter et al., (2014) nicely summarise the essence of NHST via Karl Popper’s principle of 261 

falsifiability, that is, before something can be accepted the opposite has to be shown to be 262 

untenable. So, in closing, it is prudent to again reinforce that we are analysing the probability 263 

of our data, given our (null) hypothesis, which is written as P(D|H0). In performance-based 264 

sport, however, we may determine that NHST isn’t necessary or appropriate, going straight to 265 

methods that determine the practical significance of our data using effect sizes, and embrace 266 

the uncertainty of our data through confidence intervals. Through a series of worked examples, 267 

these will be explored in Part 2.   268 
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