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Abstract: Public health is now in danger because of the current monkeypox outbreak, which has
spread rapidly to more than 40 countries outside of Africa. The growing monkeypox epidemic has
been classified as a “public health emergency of international concern” (PHEIC) by the World Health
Organization (WHO). Infection outcomes, risk factors, clinical presentation, and transmission are all
poorly understood. Computer- and machine-learning-assisted prediction and forecasting will be useful
for controlling its spread. The objective of this research is to use the historical data of all reported human
monkey pox cases to predict the transmission rate of the disease. This paper proposed stacking ensemble
learning and machine learning techniques to forecast the rate of transmission of monkeypox. In this
work, adaptive boosting regression (Adaboost), gradient boosting regression (GBOOST), random forest
regression (RFR), ordinary least square regression (OLS), least absolute shrinkage selection operator
regression (LASSO), and ridge regression (RIDGE) were applied for time series forecasting of monkeypox
transmission. Performance metrics considered in this study are root mean square (RMSE), mean absolute
error (MAE), and mean square error (MSE), which were used to evaluate the performance of the machine
learning and the proposed Stacking Ensemble Learning (SEL) technique. Additionally, the monkey pox
dataset was used as test data for this investigation. Experimental results revealed that SEL outperformed
other machine learning approaches considered in this work with an RMSE of 33.1075; a MSE of 1096.1068;
and a MAE of 22.4214. This is an indication that SEL is a better predictor than all the other models
used in this study. It is hoped that this research will help government officials understand the threat of
monkey pox and take the necessary mitigation actions.

Keywords: monkeypox; machine learning; time series; forecasting; stacking ensemble learning

1. Introduction

Public health, peace, and safety are being threatened by a number of diseases all
over the world today. Over the past three (3) years, infectious diseases like COVID-19
(SARS-CoV-2) have spread throughout the world [1]. Different diseases are transmitted in
different ways. For instance, SARS-CoV-2 is typically spread by contact with bodily fluids
and human touch, among other things [2]. Millions of individuals have died as a result of
SARS-CoV-2 around the world [3,4]. HIV can be passed from one person to another through
sexual contact, the use of unsterilized, contaminated needles, and blood transfusions,
among other methods [5]. Tuberculosis can spread from person to person when an infected
person coughs into the air and an uninfected person breathes in the contaminated air [6–8].
Ebola Virus Disease (EVD) is an infectious disease that is transmitted or spread at alarming
rates through body fluid contact and human body contact, among others [9–11]. Malaria
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is another disease that can be transmitted by vectors such as Anopheles mosquitoes, by
sucking human blood infected with Plasmodium falciparum [12,13].

Vaccine candidates have been developed to deal with the spread of the COVID-19
virus, and some of the outcomes of the vaccination effort have been impressive [14,15].
Computational health applications and software have been developed and applied to sup-
port the diagnosis and self-management of HIV disease and reduce the transmission of the
disease [16,17]. Docking-based molecular simulation has been applied towards simulating
possible drug targets to combat the transmission of Ebola virus disease (EVD) [18]. In
another study, informatics tools such as the open data kit and the innovation hub were
used to reduce the spread of an Ebola pandemic [19]. Bioinformatics approaches have
been used to control Ebola virus disease (EVD) transmission [20]. Biological methods such
as polymerase chain reaction (PCR) have been applied toward the diagnosis of malaria.
This strategy can be employed as a viable tool for minimizing malaria transmission [21].
Other methods, such as computational informatics approaches, have been implemented
for the correct dosage prescription of anti-malaria drugs [22], reducing the transmission of
the disease. Recently, vaccine development approaches have been used to reduce malaria
transmissions [23]. Magagula and colleagues [24] have modeled clinical immunity on
malaria infection to reduce the transmission of the disease [24]. Malaria transmission has
been controlled using modeling and simulation approaches [25–28].

Computational frameworks have also been developed to reduce the transmission of
different diseases [29–31]. One of the methods other scientists have utilized for controlling
and reducing the transmission of diseases is the development of health-related informa-
tion systems [32–35]. Different medical and computational approaches have been applied
towards combating hereditary diseases [36,37]. Biological and bioinformatics methods
have been applied to control and reduce the transmission rates of tuberculosis [38–42].
Mathematical modeling techniques have been utilized and applied to control other types
of diseases to reduce their transmissions [43–47]. Phylogenomics, mathematical model-
ing, and bioinformatics methods have been applied towards controlling the monkeypox
virus [48–51]. However, recently, the monkeypox (MPX) virus was identified and listed as
a disease of global emergency and international concern by the World Health Organization
(WHO) [52]. Computational approaches such as machine learning can be used to forecast
time-series transmission of the monkeypox virus to improve preparedness and reduce the
transmission of the disease.

The monkeypox (MPX) virus was discovered in orangutans in a zoo in Indonesia
in 1949 by Rijk Gispen [53]. It was not until about a decade later, in 1958, that it was
recognized as a member of the poxvirus family, and Magnus et al. [54,55] reported their
findings in 1959. The monkeypox virus is a double-stranded DNA virus that belongs to
the orthopoxvirus taxonomy, which also includes human variola (VAR), cowpox (CPV),
and vaccinia (VAC) viruses. The monkeypox virus is a zoonotic infection, which means
it can be transmitted from one animal to another. Monkeypox virus has been detected in
rodents, Gambian poached rats, dormice, and non-human primates, but further research is
needed to determine the true natural repository (s). The monkeypox virus is divided into
two genomic lineages: Central African (Congo Basin) and West African. The Congo Basin
clade is expected to become a hotspot and cause more serious infections [56,57].

Whenever a person comes into indirect or direct contact with infected animals’ or
humans’ secretions, injured substances, or polluted materials, the monkeypox virus can
easily be transmitted. Transmission from animal to human can happen via bites, scratches,
or cooking of animal parts. The monkeypox virus is assumed to be transmitted among
people mostly through respiratory secretions during prolonged face-to-face interaction,
although it can also be spread sexually through sex with an infectious individual’s bodily
fluids [58,59]. The virus can enter the body through cuts or wounds (even if they are not
apparent), the respiratory tract, or the mucous membranes of the eyes, nose, and mouth.
Whereas the MPX virus was first detected in monkeys, animals including squirrels and
striped grass mice are thought to represent the virus’s initial reservoir [60,61]. The virus’s
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propagation to infected humans was first documented in the Democratic Republic of the
Congo in 1970 [56,61,62]. It produces a pathogenic infection in humans [63] with clinical
manifestations comparable to smallpox. Repeated epidemics in human populations have
been recorded primarily in the Congo Basin since the first transmission [61].

The virus, meanwhile, expanded beyond Africa, where an increase in incidence is
thought to be linked to the termination of the smallpox immunization campaign [64,65].
Since natural and foreseeably modified variants [66] of MPX are apparently being studied in
biowarfare programs [67,68], countries like the United States (US) have already been amass-
ing smallpox vaccines as a safety measure against biological terrorism and biowar [69,70]
and as an antiretroviral therapy that is said to be resistant to various varieties of previously
discovered smallpox [71].

In view of the current COVID-19 pandemic and its repercussions, the current epidemic
of MPX has now spread to 19 countries across five continents (by May 2022) [72] and has
therefore become a new center of interest. An epidemic is characterized by a rapid spike in
the transmission of a disease when the number of cases surpasses the estimated number for
the place or period [72]. As a result, it is critical to respond rapidly to new diseases so that
therapeutic and non-therapeutic countermeasures can be implemented promptly. Cases
have been reported in individuals in western and central African countries ever since the
revelation of the monkeypox virus in 1958: Cameroon, the Central African Republic, Côte
d’Ivoire, the Democratic Republic of the Congo, Gabon, Liberia, Nigeria, the Republic of
the Congo, and Sierra Leone, with many people infected in the Democratic Republic of the
Congo. The majority of monkeypox cases in people beyond Africa have been connected
to overseas travel or contact with exotic animals, with cases reported in the United States,
Israel, Singapore, and the United Kingdom [73]. Most new occurrences of monkeypox in
Sweden, Italy, Belgium, the United States, and Canada have not been related to travel to
endemic areas in West and Central Africa, implying that local transmission occurs within
societies. Monkeypox incidents have been reported in the UK, Spain, and Portugal among
males who have sex with men, although not exclusively [73]. As of 31 May, 321 cases had
been confirmed from 17 EU/EEA member countries, although there had been no fatalities.
The majority of cases present with lacerations in the region of the sexual organ, implying
that spread occurred most likely through direct physical contact during sexual intercourse.
Cases have been recorded in a number of countries that appear to be linked to occurrences
in Spain (Madrid and the Canary Islands) and Belgium (Antwerp). Several countries, on
the other hand, record instances with little or no established pathogenic connection to
travel, contact with other patients or animals, or participation in particular activities. There
have been 557 confirmed cases worldwide (including the EU and EEA) [74].

The symptoms of monkeypox infection are less severe than those of smallpox, although
they are identical. The fact that monkeypox causes enlarged lymph nodes (lymphadenopa-
thy) but smallpox does not is a massive distinction. Inflammation can occur in many
different places on the body, particularly in the neck and armpits, and it can be restricted.
Monkeypox has a 7–14-day gestation period (from infection to development of symp-
toms), although it can be as short as 521 days. Fever, headache, muscle pain, tiredness,
stiffness, and shivering are all early indications and symptoms, in addition to swollen
lymph nodes [75]. Within 1 to 3 days (occasionally more) following the onset of fever, a
rash appears on the body, probably beginning on the face and expanding to other areas
of the body. Prior to coming off, the infections advance through the phases of red bumps,
enlarged pores, blisters, abscesses, and eventually open sores. Biomedical predictions are
commonly inaccurate, and their inaccuracy is frequently overlooked [76]. Because the
number of incidents to be analyzed cannot be approximated by a single person, forecasting
the future of outbreaks and epidemics is difficult [77]. Irrespective of the flaws involved in
medical forecasting, it is nonetheless vital to give a summary of the situation to the public.
This will enable extensive preparation for future problems to be undertaken.

Monkeypox research has been published in recent years, but it lacked exact mea-
surements because most of the studies were country-specific rather than performance
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comparisons using machine learning techniques in some locations. When it comes to
monkeypox data, they also lacked the time variable. Much of the research is based on
linear knowledge, whereas such problems are not linear in nature [77]. Observational
study models, which can only be initiated based on hypotheses, have been examined in
some investigations. The bulk of monkeypox research does not take advantage of artificial
intelligence or machine learning techniques. This is despite their benefits in diagnosing
and preventing the disease.

This paper seeks to apply different machine learning algorithms to forecast the trans-
mission rate of the monkeypox endemic. Machine learning has proven over time to be a
very effective and robust algorithm that can handle large volumes of data effectively. It can
therefore be employed to prudently forecast the spread of the monkeypox pandemic. In
specific terms, the main contributions of this work include:

i. A survey of machine learning algorithms that can be used for the prediction and
control of monkeypox was presented.

ii. The study determined the best predictive model for confirmed monkey pox cases in
various continents around the world that have become monkey pox hotspots.

iii. A forecasting model for monkeypox outbreaks in countries around the world, focus-
ing on Africa, Europe, and the Americas, was developed using different machine
learning models. The models include adaptive boosting regression, gradient boosting
regression, random forest regression, the least absolute shrinkage selection operator,
ridge regression, ordinary least squares regression, and proposed stacking ensemble
learning methods for predicting monkeypox transmission rate.

iv. An evaluation of the performance of the proposed stacking ensemble machine learning
technique for monkeypox transmission time series forecasting was done.

The rest of the paper is organized as follows: The review of the related together with
the summary of contributions table is presented in Section 1. Section 2 is the materials and
methods. Section 3 discussed the machine learning models that were used for forecasting.
The simulation and statistical results of the experiment analysis were presented in Section 4.
The conclusion of the paper is in Section 4.

Related Works

Much work has been done in monkeypox detection and diagnosis, as shown in Table 1.
Hughes et al. [78] carried out research to see if coinfections are common and to define the
clinical characteristics of these infections. The MPX/VZV coinfections were investigated using
clinical, epidemiological, and analytical outcomes. The findings suggest that diseases with
both MPX and VZV may modify the extent of infection. The ability to detect coinfections
is enhanced by collecting numerous lesion samples. As the program progresses, it will be
critical to have these methods in place to track changes in the particulate matter of situations
in which many pathogenic strains simultaneously infect a victim over time. In that same time
span, nevertheless, the percentage of coinfection cases has been steady. Many factors may
contribute to the lack of spatial or temporal connections between coinfections. The number of
reported cases examined may fluctuate because of community engagement operations and
climatic conditions like the rainy season. While the monitoring police are gone from their
positions, there could be a delay in the reporting of suspected cases, followed by an upsurge
in cases after personnel come back for inspections. Any links between case categorization and
season or location was not reported in the work. These relatively brief gaps in examinations
may lessen as greater monitoring keeps going, leading to a more thorough study. One of the
drawbacks of the work is the risk of cross-contamination between different samples from the
same case. Another limitation of the study is that artificial intelligence techniques such as
machine learning, with all their benefits, are not taken advantage of.

Lash et al. [79] explored the implications of georeferencing attempts on modeling
monkeypox case data distribution and propagation risk. They evaluated the amount
of time and effort put into transforming explanations of sickness prevalence sites into
quantitative matrix dimensions (latitude and longitude). The researchers created three
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datasets from the same original monkeypox ailment occurrence data, each with a different
standard of treatment and commitment: the first based on an interactive website; the
second enhancing the first by referencing supplementary maps and digital guidebooks;
and the third strengthened even more by consulting legacy monitoring records that give
excellent extra details of each case. They created environmental habitat models and made
predictions of monkeypox propagation risk based on each of the three incidence data sets
to demonstrate the ramifications of these apparently minor enhancements in data quality.
Subject to the type of georeferencing approach utilized, they discovered macrogeographic
variances in environmental niche predictions. In the Africa region and along the periphery
of the Congo Basin, less careful georeferencing indicated significantly smaller areas as
having potential for monkeypox transmission. These findings have consequences for
mapping operations, as each increased degree of georeferencing precision necessitates a
significant increase in time investment. The limitation of the study is that it is only limited
to the Congo Basin. Additionally, the performance of the proposed technique is poor
because of the high error rate.

Nolen et al. [80] investigated the prolonged human-to-human transmission during a
monkeypox epidemic in the Democratic Republic of the Congo. The population attack rate
(the percentage of people who live with an infected person and develop MPXV symptoms)
was 50%. Nine families within this health zone experienced multiple transmission incidents,
totaling more than six transmission episodes. An average of 8 days (between 4 and 14 days)
passed during incubation. The increasing incidence and spread seen in this study highlight
the need for monkeypox surveillance and early detection. The study has some flaws that
need to be pointed out. First, in 48% of the cases, PCR verified the presence of the MPXV
virus; the other cases were discovered through the symptoms of the victims. Because
patients were checked after their symptoms had subsided, an accurate diagnosis was not
always possible. Confirmation of MPXV infection in many patients was not achievable
during the pandemic because of a lack of local resources for obtaining samples. The lack
of specimen collection in the current monitoring program has been discovered as a defect.
Second, it is difficult to determine the incubation time for many patients. This is because
they were unable to identify a specific cause of the illness or the date of infection.

Liu et al. [81] applied deep learning as an alternative diagnosis of skin disorders. A
deep learning system (DLS) is utilized to provide a diagnostic evaluation of skin problems
in clinical situations. The DLS differentiates between 26 of the most prevalent skin disorders,
which account for around 80% of all skin issues seen in the healthcare system. The initial
14,021 cases from a tele dermatology practice that served 17 clinical sites were used for
creation, and the final 3756 cases were used for validation. These de-identified cases
were used for both the development and assessment of the DLS. The findings show that
the DLS has the capacity to boost health providers’ (GPs’) capacity to effectively detect
skin problems without additional specialty training by proposing disparity diagnoses that
may not have been considered. The work’s limitation is that even if the performance
was satisfactory, more could have been done. Additionally, the proposed system was not
evaluated against any existing deep learning systems. Finally, monkeypox is not one of the
skin diseases that the suggested system is designed to identify.

Tom and Anebo [82] created a neuro-fuzzy-based model for detecting monkeypox
virus variants in other pox families. The authors considered 18 symptoms linked to
monkeypox, as reported by the medical professionals interviewed, as well as symptoms
from the Nigeria Centre for Disease Control and other publications about monkeypox
diagnosis. However, only three symptoms were chosen for the simulation when the model
was put into practice. The proposed system has the drawback of not being able to employ
the 18 inputs that are theoretically analyzed during analysis. Additionally, the study’s
dataset was kept secret. The system’s performance is also mediocre. Moreover, not all the
monkeypox symptoms are present in the input set.

Bunge et al. [83] performed a comprehensive analysis of the peer-reviewed and un-
published literature on the evolution of monkeypox epidemiology, focusing particularly
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on the quantity of verified, suspected, and/or potential cases, age at presentation, death,
and regional distribution. For data extraction, they found 48 peer-reviewed articles and
18 pieces of gray literature. Since the 1970s, there have been more instances of human
monkeypox, with the DRC experiencing the largest rise. The analysis reveals an increase in
instances of monkeypox, particularly in the DRC, where it is extremely endemic; a spread
to other nations; and a rising median age from young children to young adults. These
findings could be explained by the rise in human-to-human transmission following the
end of smallpox immunization, which offered some cross-protection against monkeypox.
The emergence of outbreaks outside of Africa emphasizes the disease’s global significance.
Increased surveillance and case detection are crucial for comprehending the epidemiology
of this resurgent disease, which is changing continuously. The study was limited in that it
was not possible to conduct a thorough investigation of the percentage of instances that
were transmitted from person to person. Additionally, because data quantity and quality
differed by jurisdiction, the writers did not give a clear view of the number of reported,
suspected, and/or possible cases.

Table 1. Summary of Related Works.

Author and Year Technique Contributions Research Gap

Hughes et al. [78]. Define the clinical characteristics of
MPX/VZV.

MPX/VZV coinfections were
investigated using clinical,
epidemiological, and analytical
outcomes.

Lack of spatial or temporal connections
between coinfections. Risk of cross
contamination between different samples
from the same case.

Lash et al. [79].
Georeferencing attempt on modeling
monkeypox case data distribution and
propagation risk.

Discovered macrogeographic
variances in environmental niche
predictions.

Study is limited to Congo Basin.
Additionally, the performance of the
proposed technique is poor because of
high error rate.

Nolen et al. [80].
Human-to-human transmission
during a monkeypox using
laboratory analysis.

In 48% of the cases, PCR verified
the presence of the MPXV virus.

Lack of specimen collection in the current
monitoring program. Inability to
determine the incubation time for many
sufferers since they failed to properly
identify a specific cause of the illness or a
date of infection.

Liu et al. [81]. Deep learning for diagnosis of
skin disorders.

DLS distinguishes between 26 of
the most common skin disorders,
which account for around 80% of
all skin issues seen in healthcare
system.

Proposed system was not evaluated
against existing deep learning systems.
Additionally, monkeypox is not one of the
skin diseases that the proposed system is
designed to identify

Tom and Anebo [82] Neuro-fussy based model for
diagnosis of monkeypox virus.

Was able to differentiate
Monkeypox from other pox
families Authors took into
account 18 symptoms linked to it.

The system only use 3 out of the 18
monkeypox symptoms as inputs.
Additionally, the dataset used was kept a
secret. The system’s performance is also
mediocre.

Bunge et al. [83].

Analysis of the peer-reviewed and
unpublished literature on the
evolution of the monkeypox
epidemiology

Proposed increased surveillance
and case detection are crucial for
comprehending the epidemiology
of this resurgent disease, which is
changing continuously.

Inability to conduct a thorough
investigation of the percentage of
instances that were transmitted from
person to person. Additionally, data
quantity and quality differed by
jurisdiction, No information on the
number of reported, suspected, and/or
possible cases.

The motivation for using stacking ensemble learning for this work is that machine
learning models have historically been constructed with the presumption that a model will
operate effectively if the training and test data are derived from the same feature space and
distribution. However, if there is any alteration in the feature space or the distribution of
data changes, then there will be a need to create a new model. It is costly to build a new
model from scratch each time, as well as gather fresh training data each time. Stacking
ensemble learning allows easy retrieval of the enormous volumes of training data with
less time and effort. The motivation behind using “stacked” ensemble learning is that the
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algorithm has the capacity to intelligently use knowledge acquired earlier for a different
task or area to tackle new problems more quickly or effectively.

2. Materials and Methods
2.1. Adaptive Boosting Regression (Adaboost)

The boosting technique known as the AdaBoost algorithm, sometimes known as
adaptive boosting, is used as an ensemble method in machine learning. The weights are
redistributed to each instance, with higher weights being given to instances that were mis-
takenly classified, hence the name “adaptive boosting.” For supervised learning, boosting
is used to lower bias and variance. It operates under the premise that learners improve
incrementally. The meta-estimator adaptive boosting regression [84] starts by fitting a
regressor to the initial dataset. It then fits additional copies of the regressor onto the same
dataset. The only exception is that the weights of the instances are changed in accordance
with the error of the most recent prediction. Consider a dataset S = (x1, y1), . . . , (xn, yn)
that is derived from a time series. The dataset is composed of n pairs of observations, and
each observation is given a weight wi. The likelihood that an observation will be included
in the training set at iteration k is then determined for each observation i based on the
weight it is given. The weighted sum of the probabilities is then used to get the average
loss (lk) for the model k over all the observations i. The average loss (lk) and probability pk

mathematical formulae are as shown in Equations (1)–(3):

pk =
wi

∑ wi
(1)

lk =
n

∑
i=1

lk pk (2)

wk+1
i = wk

i βk(1− lk) (3)

where pk is the probability at iteration k, average loss at iteration k, wk+1
i is the updated

weight at iteration i, wk
i is the prior weight and βk is the model loss.

2.2. Gradient Boosting Regression (GBOOST)

Gradient boosting is a machine learning method that is used, among other things, for
regression and classification problems. It provides a prediction model in the form of an
ensemble of weak, decision-tree-like prediction models [85]. Gradient boosting repeatedly
selects a function that points in the opposite direction of the gradient to maximize a cost
function across the function space. Decision trees are frequently used as weak predictors for
gradient boosting. Weakly learned models are ones with low variance and regularization,
a large bias toward the training dataset, and outputs that are just marginally better than
random guesses. An additive model, weak learners, and a loss function are the three main
components of boosting techniques. Gradient boosting machines work by using gradients to
spot the weaknesses in poor models. This is done by using an iterative strategy where the
goal is to eventually merge base learners to reduce prediction errors, whereby decision trees
are joined using an additive model; and the loss function is reduced using gradient descent.
The definition of the gradient boosting tree (g) is presented in Equations (4) and (5):

g =
n

∑
i=1

fixt (4)

argmin ∑
t

L(yt, g) + fn+1 xt (5)

where g is the gradient boosting tree, L() is the loss function and fn+1xt is the new decision tree.
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2.3. Random Forest Regression (RFR)

Random forest regression is a well-known decision tree approach [86] that creates
numerous decision trees from an input dataset. The technique splits the dataset randomly
into various sub-parts before creating several decision trees for each sub-part. The an-
ticipated output of each decision tree is then combined to create a forecast that is more
reliable and accurate. The output value of each input or subset in random forest regression
is the mean of the values predicted by several decision trees. An n-tree bootstrap sample
is generated from the real input dataset in random forest regression [87]. Expanding an
unpruned regression tree from the various bootstrap samples is the next step. However, by
averaging the predictions of the decision trees, a new data value is calculated. The error
rate may be predicted using average out-of-bag predictions based on the training data.

2.4. Ordinary Least Square Regression (OLS)

Ordinal least squares regression is a well-liked technique for finding the coefficients of
linear regression equations that describe the relationship between one or more individual
quantitative variables and a dependent variable [88]. The errors of the smallest squares are
represented by those of the least squares. OLS has two alternatives: maximum likelihood and
the expanded technique of the moment’s estimator. The OLS equation is depicted in (6).

Y = βo + ∑
j=1

β jxj + ε (6)

where Y is the dependent variable, β, is the intercept of the model, xj corresponds to the
jth explanatory variable of the model and ε is the random error.

2.5. Least Absolute Shrinkage Selection Operator Regression (LASSO)

A linear regression analysis technique that lowers both the total absolute values of
regression coefficients and the sum of squared errors is called the Least Absolute Shrinkage
Selection Operation [89]. The following objective function is minimized to get the regression
coefficient as shown in Equations (7) and (8).

lasso =

(
n

∑
i=1

yi − βo −
p

∑
j=1

β jxij

)2

+ γ
p

∑
j=1

∣∣β j
∣∣ (7)

p

∑
j=1

∣∣β j
∣∣ ≤ γ (8)

where β j is the regression coefficient operating on the standardized covariate j, βo is the
intercept and γ is a penalty term which controls the value of shrinkage.

2.6. Ridge Regression (RIDGE)

Ridge regression is a technique for determining the coefficients of multiple-regression
models in situations where the autonomous variables are very interrelated. Data from
multiple regression that exhibits multicollinearity can be analyzed using the Ridge Regres-
sion method [90]. Although least squares estimates are unbiased when multicollinearity
occurs, their enormous variances make it possible that they are far from the true value.
Ridge regression lowers the standard errors by introducing some bias into the regression
estimates. Overall, it is hoped that this will result in more accurate estimations.

Consider a regression Equation (9):

Y = X−1β + ε (9)
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Regression coefficients of ordinary least square is depicted by (10):

β̂ =
(

X−1X
)−1

X′Y (10)

The variance covariance matrix of the estimate is represented by (11):

V
(

β̂
)
= σ2R−1 (11)

From the above, we find that Equation (12):

V
(

β̂ j
)
= rij =

1
1− R2 (12)

The amount of bias in this estimator is given by Equation (13):

E
(

β̃− β
)
=
[
X′X + kI

)−1X′X− I]β (13)

The covariance matrix is given by Equation (14):

V
(

β̃
)
=
(
X′X + kI

)−1X′X
(
X′X + kI

)
(14)

where Y is the dependent variable, X represents the independent variables, β is the regres-
sion coefficients to be estimated, and ε represents the errors are residuals.

2.7. Proposed Model
2.7.1. Stacking Ensemble Learning (SEL)

Ensemble learning is a very powerful machine learning technique [91–93] that uses the
combined output of two or more models or weak learners to address a specific computa-
tional intelligence issue. The main goal of ensemble learning is to boost model performance
in areas like classification and prediction. A machine learning model called an ensemble
model integrates the forecasts from two or more models.

Stacking is an ensemble learning technique that aggregates several machine learning
algorithms through meta-learning. The algorithms at the base level are trained using a
comprehensive training dataset; afterwards, a meta model is trained on the final results of
the total base level model as features. Bagging, boosting, and stacking are the three most
used ensemble learning techniques in machine learning. Significant differences between
comparable models can be averaged using bagging to reduce discrepancies. Boosting
constructs numerous sequential models to reduce the bias, while minimizing variation.
Stacking is an augmentation of the voting classifier or voting regressor by an upper level
(amalgamation level) that learns from the superior combination of the distinctive outputs.
A different classifier or regressor is located at the top of the stack. Stacking is exceptionally
beneficial when the outputs of different algorithms are likely not to be the same, and this is
practically always the situation with regression. Stacking algorithms have the capacity to
extend over a number of layers. This makes them very strenuous to train. The stacking
approach is distinct. Stacking is used to investigate the space of many models for the same
problem. According to the concept, it is possible to approach a learning problem using
several kinds of models that can only learn a portion of the problem space. It will build
multiple distinct learners and use them to create a transitional prediction, one for each
learned model. Subsequently, a new model that gains knowledge from earlier predictions
for a similar goal is added.

The ultimate model (meta model) is referred to as being stacked on top of all the
others, hence the appellation. As a result, the general performance is enhanced. The
stacking technique usually produces a model that performs better than any of the individual
transitional models.
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To forecast monkeypox transmission rate, this study used stacked ensemble learning
(SEL) models. Stacking is a well-known ensemble modeling approach in machine learning.
It entails merging several weak learners in parallel such that, by combining them with meta
learners, we may anticipate better future predictions [94]. This ensemble strategy works
by combining the predictions of numerous weak learners and meta learners to produce a
superior output prediction model. Stacking is a technique in which an algorithm takes the
outputs of sub-models as input and attempts to learn how to optimally combine the input
predictions to get a superior output prediction. The model is called “stacking” since it is
placed on top of the others.

Architecture of Stacking

The stacking model architecture is designed to include six base learner models: adap-
tive boosting regression (Adaboost), gradient boosting regression (GBOOST), random
forest regression, ordinary least square regression (OLS), least absolute shrinkage selection
operator regression (LASSO), and ridge regression (RIDGE), as well as a random forest
meta-model that combines the predictions of the base models. The level 0 models are the
base models, while the level 1 model is the meta-model. As a result, the stacking ensemble
approach consists of original (training) data, primary level models, primary level predic-
tion, secondary level models, and final prediction. The fundamental stacking architecture
is as follows:

• Original data: The dataset is divided into training data and test data.
• Base models: Level-0 models include adaptive boosting regression (Adaboost), gra-

dient boosting regression (GBOOST), random forest regression (RFR), ordinary least
square regression (OLS), least absolute shrinkage selection operator regression (LASSO),
and ridge regression (RIDGE). These models employ training data to provide assem-
bled predictions (level 0).

• Level-0 Predictions: Each base model produces various level-0 predictions when it is
activated on a set of training data.

• Meta Model: To aggregate the predictions of the base models as effectively as possible,
the stacking model’s architecture consists of a single meta-model that uses random
forest regression. An alternate name for the meta-model is the level-1 model.

• Level-1 Prediction: The meta-model learns how to combine the predictions of the base
models in the best way possible and is trained on the various predictions made by
individual base models. For instance, data that was not used to train the base models
is fed to the meta-model, predictions are made, and these predictions, along with the
expected outputs, provide the input and output pairs of the training dataset that was
used to fit the meta-model. See Figure 1 (The architecture of the proposed system).

The proposed system makes use of stacking ensemble learning (SEL) techniques for
time series forecasting. Experiments were conducted using COVID-19 datasets [95] as
the training sets, while as the test sets for each of the datasets, we employed the monkey
pox dataset. The extracted features that are used for the prediction are confirmed_cases,
suspected_cases, hospitalized, travel_history_yes and travel_history_no. COVID-19 was
employed as the training set, while monkey pox was used as the test set. Six models were
used in the architecture of the proposed stacking ensemble learning system. The primary
goal of this research is to predict monkey pox transmission rates on different continents
around the world using stacking ensemble machine learning. This is achieved by stacking
the six models (adaptive boosting regression, gradient boosting regression, random forest
regression, regularized regression (the least absolute shrinkage selection operator, ridge
regression), and ordinary least squares stacking ensemble learning methods).
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2.7.2. Dataset Description

For both training and testing, a diverse range of datasets were used. A total of
1836 COVID-19 datasets [96] were used in this study, with a sample size of 1836. Because
COVID-19 is an epidemic that has spread globally, our study used it as a training set. The
severe acute respiratory syndrome coronavirus (SARS-CoV-2) virus is the source of the
COVID-19 pandemic, a coronavirus infection that has spread globally. COVID-19 has
caused a sharp decline in the price of the stock market. Financial markets throughout the
world responded negatively and behaved in a way that had not been seen prior to the
2019 economic crunch because of the worldwide spread of the COVID-19 virus [97]. The
test dataset is the monkey pox outbreak dataset.

The theory holds that after pre-training, machine learning algorithms will have already
discovered a solution that is close to being optimal. This works well if the solution spaces
in the two domains are comparable. However, by locating a different (i.e., better) optimum
in the solution space, this method may be able to reveal intricate correlations that exist
between the two datasets. Machine learning algorithms were used on the COVID-19 and
monkey pox datasets to evaluate the performance of the proposed stacking ensemble
learning methodologies. The same experimental design and dataset are used for the
comparisons. The collected data, comprising the COVID-19 and monkey pox datasets, is
used for the experiments in this paper. Additionally, the monkey pox dataset was used
as test data for this paper [98]. The COVID-19 dataset used for training our models was
collected between 22 January 2020, and 7 August 2022, while the monkey pox dataset used
for testing the models was collected between 6 May 2022, and 24 June 2022.

2.7.3. Experimental Configurations

The experimental configuration and parameter tuning for the work are depicted in
Table 2. Training a model involves choosing suitable values for each weight and bias from
labeled samples. Tuning parameters is one of the most important steps in the training
of machine learning models. The parameters used to control the COVID-19 dataset for
training and the monkey pox dataset for testing the models are all represented in Table 2
and are used to fine-tune the model’s performance.
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Table 2. Experimental configuration and parameters tuning of Adaboost, GBOOST, RF, OLS, LASSO,
RIDGE and SEL.

All Models Were Trained Using Scikit Learn
Package Machine Learning Model Hyperparameter Values

Adaboost

n_estimators 50

learning_rate 0.2

Loss Exponential

RFR
n_estimators 400

Random_state 0

OLS Alpha 0.1

LASSO Alpha 0.1

GBOOST

n_estimators 400

max_depth 5

Loss Squared_error

min_samples_split 2

learning_rate = 0.1 0.1

RIDGE Alpha 0.1

SEL n_estimators 400

Random_state 0

2.7.4. Performance Metrics

By computing the root mean square error, mean square error, and mean absolute
error from the predictions, all techniques are ultimately assessed on the same test set. The
following are the root mean square error (RMSE), mean square error (MSE), and mean
absolute error (MAE). The RMSE, MSE and MAE are represented in Equations (15)–(17):

RMSE =

√
∑n

i=1(o− f )2

n
(15)

MSE =
∑n

i=1(o− f )2

n
(16)

MAE =
1
n ∑n

i=1|o− f | (17)

where n is the number of observations, o is the observed values and f is forecasted values.

3. Results and Discussion

The section presents the results and discusses the major findings from our experiments.
Experiments were performed using the Jupiter notebook (Python 3.9 version) programming
environment. The Python programming language was used for training and testing all the
models used in this work. The Python libraries used in this paper are Numpy, Matplotlib,
Sklearn, Pandas, Math, Seaborn, Scipy, and Time.

The COVID-19 dataset was used for training the machine learning models, while the
monkey pox dataset was used for testing the models. Experimental results of the original
COVID-19 dataset that was used for training our model is already reported in our previous
work [99]. The reason for using the COVID-19 dataset for training is that it is also an
epidemic, just like monkey pox. COVID-19 has a large dataset, which the machine learning
algorithms can easily learn from. However, the dataset for monkey pox is not so big, and is
therefore more suitable for testing the trained models. The virus that causes monkey pox is
a newly discovered infectious illness that affects people and is typically spread by rodents.
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Although it can spread to other individuals, an epidemic cannot be readily sustained by
person-to-person transmission alone. The clinical appearance is less severe but similar to
that of smallpox in the past. Although smallpox was eliminated from the world in 1980,
monkey pox still periodically arises in areas of Central and West Africa that are close to
tropical rainforests. Monkey pox epidemics have historically had a 1–10% case fatality
rate, but with the right care, many patients will recover. Health professionals in charge of
monkey pox prevention and control are the target audience for this research, which gives a
general introduction to the disease.

This paper considered the different continents that have experienced outbreaks of
monkey pox. Figure 2 displays hospitalized cases of monkey pox in Africa, Asia, Europe,
North America, South America, and Oceania. Africa and North America had the lowest
number of people that were hospitalized (0.0%), while Oceania came in second with 2.6%.
The European continent has the highest number of people hospitalized with cases of
monkey pox, at 89.7%. Figure 3 shows the confirmed cases of monkey pox, with North
America having the lowest with 0.2%, followed by Oceania with 0.3%, while the European
continent has the highest number of confirmed cases with 97.6%. Figure 4 shows the
suspected cases of monkey pox, with Africa, Asia, North America, and Oceania having the
lowest with 1.6%. The European continent has the highest, with 75.8%. Figure 5 is the pie
chart of the suspected travel history of monkey pox patients. Europe has the highest rate
with 72.2%, followed by South America with 12.7%. The African continent had the lowest
percentage, at 0.8%. Figure 6 is the pie chart of suspected cases of monkey pox with no
travel history. The result showed that Europe is leading with 87.9%, while Asia, Oceania,
and North America are the lowest with 1.5%. Figure 7 is the time series of monkey pox
from 6 May 2022 to 24 June 2022. It displays the downtrend of the monkey pox, which was
followed by the horizontal trend and the downtrend. This shows that there is a gradual
reduction in monkey pox transmission in Europe.
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In this study, the computation times of the six machine learning algorithms were
analyzed. The time lapses adopted in this paper for each machine learning algorithm start
at the beginning and end of each machine learning algorithm used in this research. The
time lapse was obtained by subtracting the start time from the end time of the machine
learning model. Figure 8 displays the training time for all the machine learning. The
results show that ordinary least square has the least computational training time, followed
by LASSO and RIDGE. This implies that ensemble machine learning algorithms, such as
adaptive boost (Adaboost), gradient boost (GBOOST), and random forest, have a higher
computational time than regularized regression algorithms, such as LASSO and RIDGE.
Figures 9–14 is the time series of all the machine learning compared in this paper, which
consists of actual monkey pox and predicted monkey pox transmission rates.
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The COVID-19 dataset was used for training the models since COVID-19 was also
declared an epidemic by the WHO in 2020, while the test dataset remained monkey pox,
which was also declared an epidemic by the WHO in 2022. Three performance metrics were
adopted in this paper, which were RMSE, MSE, and MAE. Figure 15 shows the actual and
predicted monkey pox transmission rate obtained from the Stacking Ensemble Learning
(SEL) model proposed in this paper. Table 3 displays the statistical results of all the machine
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learning methods considered in this paper. SEL performed excellently with a RMSE of
33.1075, followed by Adaboost with 100.7981 when considering the RMSE.
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Table 3. Performance Metrics of Machine Learning and Proposed Stacking Ensemble Learning (SEL).

Algorithm RMSE MSE MAE

Adaboost 100.7981 10,160.2726 68.5727

GBOOST 115.8856 13,429.4795 75.7660

Random Forest 111.1798 12,360.9503 73.9469

OLS 108.4988 11,772.0099 74.2072

LASSO 124.5257 15,506.6696 82.3904

RIDGE 113.4759 12,876.7957 70.2174

SEL 33.1075 1096.1068 22.4214

4. Conclusions

This research presents a novel technique that uses stacking ensemble learning for
monkey-pox time series forecasting. The COVID-19 and monkey-pox datasets were used
for training and testing the proposed method, respectively. Experiment results show that
the proposed stacking ensemble learning outperformed other machine learning techniques
considered in the paper. In addition, the three proposed training strategies—OLS, LASSO,
and RIDGE—achieved the lowest computational training time. Despite only being tested
with two source datasets, the proposed method can also be used to train more datasets.
According to experiment findings, compared to other continents, Europe has the highest
rate of monkey pox, and, unless necessary measures are taken, there is a probability that
the pandemic will spread faster. The stacking ensemble learning method was adopted
for this paper because it saves us the trouble of having to train several machine learning
models from scratch to fulfill similar tasks, therefore saving time and resources. SEL also
serves as a cost-cutting measure in areas of machine learning that need a lot of resources,



Appl. Sci. 2022, 12, 12128 21 of 25

such as image classification or natural language processing. Moreover, it is very useful in
compensating for a shortage of labeled training data maintained by an organization, as pre-
trained models are used. Stacking ensemble learning makes use of minimal computational
resources and helps attain enhanced results using a smaller dataset. Furthermore, stacking
ensemble learning models attains optimal performance quickly compared to conventional
ML models. The reason for this is that the models leverage knowledge from base models
and meta models.

Our findings from experimental results indicated that Europe has the highest monkey
pox transmission rate with 72.2%, followed by South America with 12.7%. The continent of
Africa now has the lowest transmission rate at 0.8%. Based on the time series prediction
of the monkey pox dataset used for this study, the transmission rate will decrease. This
indicates that monkey pox transmission is steadily declining in Europe and other parts of
the world. In the future, deep neural network algorithms such as deep belief networks,
convolutional neural networks, generative adversarial networks, and autoencoders will be
applied to detecting and diagnosing monkey pox infections using image datasets.
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