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Abstract. Wireless Sensor Networks (WSNs) are distributed network systems used in a 

wide range of applications, including safety-critical systems. The latter provide 

critical services, often concerned with human life or assets. Therefore, ensuring 

the dependability requirements of Safety critical systems is of paramount 

importance. The purpose of this paper is to utilize the Hidden Markov Model 

(HMM) to elongate the service availability of WSNs by increasing the time it 

takes a node to become obsolete, via optimal load balancing. We propose an 

HMM-algorithm that, given a WSN, analyses and predicts undesirable situations, 

notably, nodes dying unexpectedly or prematurely. We apply this technique to 

improve on the Randomized coverage-based scheduling algorithm (RCS) by C. 

Lius, a scheduling-based algorithm that has served to improve the lifetime of 

WSNs. Our experiments show that our HMM technique improves the lifetime of 

the network, achieved by detecting nodes that die early and rebalancing their 

load. Our technique can also be used for diagnosis and provide maintenance 

warnings to WSN system administrators. Finally, our technique can be used to 

improve algorithms other than the RCS. 

1   Introduction 

     Thanks to their easy deployment, WSNs have been used in a wide range of 

application systems, from simple detection systems such as humidity detection [1] to 

safety critical systems such as intrusion detection systems [2][3][4][5]. Our research 

findings revealed weaknesses in the Randomised Coverage Based Scheduling (RCS) 

algorithm [6] and bridged the gap in increasing the WSN’s lifetime, service continuity, 

reliability, and availability. Through our analysis, we captured scenarios whereby some 

nodes are over-worked, while others are under-worked, hence compromising the 

availability and lifetime of the network. The reason for this is the randomized nature of 

the RCS algorithm, which makes optimal load balancing for future performance 

optimization a challenging task. For example, towards the end of the network life-cycle, 

some nodes are found to be already obsolete (“dead”), which can lead to breaking the 

WSN into different segregations. This situation can lead to data loss due to the inability 

to transmit messages across the WSN. 
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Our main objective here is to work on multi-objective optimisation, i.e., trade-offs 

between network lifetime (service availability) and network coverage & connectivity. 

Therefore, the aim is to address the problem of improving the system dependability of 

safety-critical WSNs, thus achieving their quality of service (QoS) requirements [7] 

[19]. The RCS algorithm in [6] already works towards optimising network coverage. 

In this work, we extend network lifetime optimisation by using a Hidden Markov Model 

or HMM [8] to reason about WSNs. As we recreated the RCS algorithm in our 

simulation environment, we were able to achieve two goals: (1) avoid duplicating 

efforts in designing a scheduling algorithm for WSN while RCS already exists, (2) 

improve on RCS optimisation algorithm by increasing the network’s lifetime via 

optimising the nodes’ ON states. Thus, this work acknowledges reaching a state of 

obsoleteness is an inevitable state for nodes. However, delaying reaching this state is 

useful and has arguably economic benefits. The work utilised HMM to intelligently 

extend the usability of nodes to collectively increase the service availability & 

reliability of the WSN [9].  

The authors of this paper acknowledge to the best of their ability that the literature lacks 

focus on extending the WSN lifetime while maintaining coverage and connectivity in 

a significant manner [10] [11] [12]. Related work in the literature has focused on 

extending the last remaining nodes alive, while we aim for extending the collective 

lifetime of the WSN. Consequently, another objective in this work is to guarantee 

minimum QoS levels e.g. connected coverage sensor networks, even in undesired 

situations such as example, when the WSN becomes segregated due to nodes’ 

premature death. The paper is structured as follows; Section 2 reviews related work in 

the literature, while the proposed new HMM scheduling algorithm with its 

mathematical representation is introduced in Section 3.  Section 4 covers the results and 

compares the proposed HMM algorithm to the RCS algorithm. Finally, Section 5 is the 

conclusion drawn from this work.   

2   Literature Review   

     HMM is one of the most common methods used in unsupervised learning. HMM is 

a hidden state machine in which each state has a certain transition probability to another 

state. Each transition state generates an observation state, which follows a law of 

probability associated with the current state. The observations can be discrete or 

continuous. In the case where they are discrete, each state will be associated with the 

probability of making the observation of each of the possible discrete symbols. In the 

case where they are continuous, each state will be associated with a density function 

(often a Gaussian mixing model) as depicted from the definition of [13]. There are 

several papers in the literature that use the HMM method to address multiple problems 

that are related to energy consumption in WSNs. Therefore, the use of the HMM 

method in WSNs is not new [8] [14]. What follows shed the light on some related work 

that utilizes HMM methods in WSNs. 



The use of HMM methods in WSNs was presented by [15], where a scheduling 

algorithm that utilized HMM method to observe states for a resource-constrained WSN 

is proposed.  Krishnamurthy, 2002 [15] addresses the problem of data reliability, of 

obtaining certain physical data, e.g. measurements of a certain process known as signal 

processing application. The basic principle is to utilize the HMM finite states to locate 

noisy sensor nodes in the WSN, then select these nodes to send the required data. The 

solution utilized dynamic stochastic programming which is achieved in two folds: (1) 

By finding the optimal channel allocation for various components of a measurement 

vector, for example, when a noise sensor must transmit over a time-shared 

communication channel with limited bandwidth; (2) By finding the optimal time of 

measurements of the sensor when the number of possible measurements is limited 

because of energy constraints [15]. 

Goudarzi et al., 2010 [16] propose the use of HMM method in combination with particle 

swarm optimization (PSO) to predict the energy level in WSN. The algorithm uses PSO 

to select the cluster head Nodes. The proposed method reduces the cost of clustering 

and improves the performance of the WSN. The optimization problem defined for the 

best possible energy values can be obtained by solving it with PSO to find the best 

position that is evaluated from the fitness function. To initialize the PSO all the defined 

variables are assigned random values in the search space. In each run, each particle 

generates the best individual position (associated with energy) and global best position 

to obtain the best possible solution in search space. The communication overhead is 

reduced due to the use of PSO.  However, there is always a trade-off between the cost 

of finding the energy versus the accuracy [16]. If the cost is higher the accuracy is better 

and a lower cost leads to lower accuracy. Hence, we have to work between these 

extremes. This solution introduces an overhead in the WSN as a result of the complexity 

involved in using the PSO algorithm at the expense of obtaining a good level of the 

accurate energy solution. 

Qihua et al., 2015, [17] propose a scheduling algorithm to extend the network lifetime. 

The HMM is utilized to model sensor node states in the WSN where a node can be in 

two states: 0 or asleep and 1 or active. The work in [17] bases its HMM method on two 

factors that are the energy cost and the errors of the sensor nodes reading. In addition, 

they consider the use of an actuator that takes the reading of the node's energy and sends 

that data to the central controller, which manages the entire WSN. Qihua et al.’ 

algorithm [17] seems to improve the lifetime of the WSN, however, the introduction of 

a coordinator leads to an overhead control message on the WSN.  

In summary, to our best knowledge, there are not many works that utilize HMM to 

address multi-objective optimization problems involving energy consumption, network 

lifetime, coverage, and connectivity, in the context of the WSNs scheduling approach. 

In comparison, our work  utilizes a very simple HMM algorithm to optimize the energy 

as well as the position of nodes for effective scheduling and energy management. 

Hence, our approach utilizes the HMM method to extend the network lifetime and 

introduces no communication overhead.  

 



3   Problem Formulation   

     A WSN network is composed of sensors connected through radio links in a given 

target area, where the function of the WSN is embedded in the sensors [18]. In an 

HMM, a node/sensor is modeled as a state-transition diagram, indicating the possible 

states of the node and the transitions from one state to the other. Each transition is 

assigned a probability for its occurrence. The state of the WSN is then given by the 

states of all its nodes. The possible states of a sensor vary depending on the application. 

Typical states include a Transmission state and a Receiving state. Other possible states 

include Active, Sleep, Relay, Idle, and Fail, amongst others. Different states consume 

different levels of energy.  

Here, we distinguish the ON state, when the sensor is performing some action, from 

the OFF state, where no energy is consumed. Problem: we are trying to optimize energy 

consumption in the ON state, by switching the sensor from the (ON, Tx) transmission 

state to the (ON, Rx) receiving state.      

The following are conditions to be considered for switching: 

1. The energy level (threshold energy level) of nodes 

2. The probability assignment (of transition between states), based on the 

distance of a node from the sink 

1. The initial probability assignment is proportional to the threshold 

energy levels and the distance from the sink, for send and receive 

states. 

2. We call hidden states those that lie between (ON, Tx) and (ON, Rx), 

e.g., Sleep. The probability of their occurrence is randomly derived 

from the immediate probability assigned to the parent node such that 

the sum of the distributed probabilities is equal to the probability 

assigned to the parent node.     

 

Fig. 1. Balancing Tx (Send) and Rx (Receive) states using HMM  



Figure 1 illustrates the state-transition diagram of a simple WSN, with two states, 

Send and Receive, and four hidden states (chosen for the purpose of illustration), named 

S1 to S4.  

    A sensor node initially has two states, but after using HMM a sensor node will be 

assigned four hidden states (S1, S2, S3, S4) as illustrated in Figure 1 where the greatest 

probability amongst S1, S2, S3, S4 will be assigned to the sensor node instantaneously. 

A sansor node starts its operation with an active idel state. This means, as the network 

progresses in time, e.g. nodes executing their task routine; Tx (Send) and Rx (Receive), 

the energy of each node reduces, hence probability using HMM is a good fit to keep up 

with which nodes to transmit and which nodes to receive. As time evolves, the energy 

of the sensor nodes depletes as result probability of receiving is higher than transmitting 

because the energy for transmitting is always higher.  

The following represents the pseudo code of the proposed HMM Algorithm  

1. At an instant time (t). 

2. For each (N) set of nodes starting from node 

3. Assign two states Tx and Rx states for a node 

4. Do the granularity of each states be (m) states with observations 

5. Assign the probability for transmit > receive 

6. Update transition_probability and emission_probability (w.r.t the energy 

levels) 

7. Until probability for transmit < receive 

8. Set the final probability transmit and receive to the maximum of 

Emission_probability 

9. Next node 

 

     Let N be the set of the Sensor Nodes over the area to be monitored, j is the minimum 

number of nodes, jmax the maximum number of nodes, and 𝜆 is the binding variable 

between j and jmax that represent the minimum and the maximum number of Sensor 

Nodes respectively. In our scenario, j is a none zero variable.  

 

𝑁 = {𝑗 ≥ 1 𝜆  𝑗 ≤ 𝑗𝑚𝑎𝑥} (1) 

 

Similarly, let CHs be the set of the Cluster Head Nodes that are chosen randomly 

amongst the Sensor Nodes and CHmax is the maximum number of CHs. 

 

𝐶𝐻𝑠 = {𝐶𝐻 ≥ 1 𝜆 𝐶𝐻 ≤ 𝐶𝐻𝑚𝑎𝑥} 

 

(2) 

Upon the deployment of the nodes in the network, each node is able to set up a link to 

the other nodes or to the CH accordingly. Through the above discussion, we have found 

this connectivity parameter:  

 

𝑃(𝑎, 𝑏) = {𝐼𝑓 𝒂 𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ𝑒𝑠 𝑎 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝒃 =  𝟏,
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 =  𝟎} 

(3) 

 



The a,b ∈ N, and a ≠ b, where b is either a member node or a CH in the network. If b is 

a CH, then a is a member node. The quality of links is directly related to the received 

signal strength and the distance. Suppose that c(t) denotes a stochastic process to signify 

the selected number of CHs at a specific time instant t. As the process of CHs selection 

starts from the beginning of each round, an integer scale t and discrete-time t+1 instant 

are selected at the beginning of two successive rounds. We express that r(t) is the round 

at a time instant t, and x(t) is a stochastic procedure that signifies the period of a scheme 

at a time instant t, which is x(t)=r(t)mod(1/P) (this equation guides the selection round). 

We also assume another integer 1/P, which denotes n=1/P. The state space (in this case 

the state space model represent only those nodes which are connected. Because 

connected nodes form the network, which is our point of interest.) of this model is: 

 
{0, 𝑁}  ∪ {(𝑖, 𝑥): 𝑖 ∈ [0, 𝑁], 𝑥 ∈ [1, 𝑛 − 1]} 

 

(4) 

where i and x are integers; transition state (active nodes) and observation ( the 

networked nodes) state respectively, as this process {x(t), c(t)} holds the Markov 

property. 𝑛 − 1 is number of connections link between the nodes. 

  

We use the bi-directional ( a sensor node can receive and send as well) hidden Markov 

Chain model stationary distribution and one-step transition probabilities from [14] to 

estimate the Probability Mass Function (PMF) for the nodes and CHs to switch its states 

as follows:  

 

 

𝑃(𝐶𝐻 = 𝐿) = 𝜋(0, 𝑁). [𝑃(0, 𝑁) → (1, 𝑁 − 𝐿) + 𝑓(𝑛 − 1, 𝐿) + ∑ 𝑥] 

 

 

 

(5) 

 

where π denotes the initial probability distribution, P is one step transition probability 

matrix, and f signifies a factor matrix (is the matrix which is assigned to 1 for active 

state , 0 otherwise ), ∑ 𝑥 , is included due to stochastic effect of the wsn , fxi,x∈[1, n−1], 

and i∈[0,N] are elements of the factor matrix. The sensor nodes can be switching from 

the (ON, Rx) transmission state to the (ON, Tx) receiving state from one state to another 

using previously set threshold probabilities.  

The HMM optimization method assigns random transition probabilities for switching 

into these four different states (S1, S2, S3, and S4). As the network progresses in time, 

the energy of each node reduces, and the HMM algorithm adjusts the probability of 

reaching the state. As time evolves, the probability of receiving is higher than 

transmitting and nodes that deplete their energy at a higher rate eventually enter into 

the Rx state only. Nonetheless, there will remain Tx nodes too, depending on their 

current predicted energy levels. 



4   Results and Discussion 

The main objective of this experiment is to analyse the performance of the new 

proposed HMM algorithms with the original RCS scheduling algorithm. The proposed 

solution can be applied to any scheduling solution since it alters the state of the ON 

node at a very particular point in time at a very particular event, e.g., when a node’s 

level of energy reaches a certain level.  

In the experiment of the new solution using the MATLAB simulation environment, 

we set up our experiments in a 100m2 area to be monitored. The simulation consists of 

100 stationary sensor nodes that are randomly deployed. The base station is located on 

the far-left edge of the network. All nodes are homogeneous which means they have 

the same sensing and communication capabilities. Figure 2 illustrates the simulated 

environment as explained above.  

 
 

Fig. 2. Simulation Set-up of HMM in Matlab environment 

The simulations were performed over 2000 rounds as the upper bound of our 

simulation experiment. The breaking point of our simulation experiment (when the 

simulation will completely stop) is when 95% of the sensor nodes have depleted their 

energy. In each simulation round, an event is detected and reported to the base station. 

In this experiment, we analyse and compare the performance of the original RCS 

algorithm against the improved version using the HMM process, in terms of the 

following metrics: Energy Used, WSN Lifetime, Throughput, Connectivity, Coverage, 

and Coverability.  Below are the diagrams (the output of our experiments) obtained per 

metric, in each diagram, there are two simulation factors to evaluate the achieved 

results:  

1. RCS, referred to as “scheduling_o”; 

2. RCS with HMM, referred to as “scheduling_m”. 



 All Used Energy 

Figure 3 represents the total energy used during the rounds in the WSN. This metric 

is concerned with the sum of consumed energy in the WSN during its lifetime of 

operability (simulation time for the purpose of this work). The X-axis is the number of 

simulation rounds/times, while the Y-axis represents the energy consumption unit in 

Joules. 

  

Fig .3. All Used Energy 

The performance of the curves in Figure 3 can be interpreted as a metric performance 

evaluation whereby the less the curvature with respect to Energy levels the better 

because this shows the WSN achieves the same number of rounds (Time) with less 

energy. As can be seen in Figure 3, at round 168 the energy consumed by the Original 

RCS is 7.867 Joules, but the energy consumed by our improved algorithm (using 

HMM) is 7.133 Joules. Although this seems an insignificant improvement due to the 

parameters set up in our simulation, if we tuned the energy parameter in our 

experimentations to a higher value, we would have certainly observed a significant 

improvement with our proposed HMM-assisted algorithm. Hence, the HMM-assisted 

algorithm shows better performance with respect to energy consumption, than its RCS 

peer. Furthermore, we also notice that as time progresses, energy will eventually 

deplete, then the difference in energy consumption levels between the two algorithms 

is almost non-existent. This is because there is a positive correlation between the 

granularity value (of the parameter) and the distance between the curves. 

Lifetime of Sensor Nodes 

 

Figure 4 shows the number of live sensor nodes in the WSN. The ‘Lifetime of Sensor 

Nodes’ metric refers to how long the sensor nodes will last before their energy deplete. 

The X-axis is the time referred to the number of Rounds, and the Y-axis is the energy 

of each sensor node.  

 



 

Fig. 4. Lifetime of sensor nodes 

We notice from the Y-axis that the remaining number of nodes at the end of the 

simulation run-time is 15 for both HMM and RCS. Yet, the X-axis shows with HMM 

the WSN lifetime reaches 107 rounds before the end of the simulation, but RCS lasted 

102 rounds only. Despite the small improvement made with the HMM (of 5 rounds 

only), this can be explained due to the small value allocated to the sensor parameters 

(number of nodes, energy, communication & sensing ranges, etc.). Note, assigning 

large parameter values is an unrealistic experimentation practice (Xianglin et al., 2012). 

Throughput 

Figure 5 represents the throughput utilized by HMM assisted algorithm and its RCS 

peer in the WSN. The throughput is the number of data packets sent and received in the 

network. The X-axis is the time which is in rounds, and the Y-axis is the number of 

data packets transmitted in the network.  

 

 

Fig. 5. Throughput 

We can notice the distance between the two curves of HMM and RCS algorithms. There 

are lots of packets generated in the network which indicates that a sizable number of 

packets are discarded due to collision. The excess generation of packets leads to the 

wastage of energy and hence, the resultant data transfer is low. With HMM, we 

managed to transfer fewer packets which results in better performance with respect to 

throughput. For example, the number of packets generated with HMM at the 1414th 



round is 2275957, meanwhile, with RCS, the number of generated packets is 2379214. 

Hence, RCS generated 10,000 more packets than HMM.  

 Connectivity 

Figure 6 reflects the achieved results with respect to connectivity in the WSN. 

Connectivity is the number of nodes connected at any instance in time. The X-axis is 

the time in rounds, and the Y-axis is the fraction or percentage of nodes being 

connected.  

 

 

Fig. 6. Connectivity.  

The HMM’s connectivity performance is similar to the RCS’ performance with respect 

to the fractions of the nodes that are connected. Both algorithms scored equal 

connectivity values of 99.99%, which indicates that there is almost no scope for 

improvement over the RCS as far as this metric is concerned. The fluctuations can be 

attributed to the stochastic nature of the HMM algorithm over the randomization nature 

of the RCS algorithm. 

  Coverage 

Figure 7 represents the coverage results in the WSN. The coverage metric is defined as 

the percentage of the area covered by the WSN. The X-axis is the number of rounds in 

time, and the Y-axis is the ratio of the coverage for the WSN.  

 



 
 

Fig.7. Coverage 

If we take the 65th round, for instance, the HMM performance is 0.005, while the RCS 

algorithm scores 0.05. This indicates that network coverage has been increasedtenfold 

using the HMM algorithm. 

 Coverability 

Figure 8 represents the achieved Coverability results in the WSN. The X-axis represents 

the nodes’ sectional analysis number, while the Y-axis is the coverage percentage. 

 

Fig. 8. Coverability 

The objective here is to study the network’s coverage per section of nodes. For 70 

nodes out of a total of 150 nodes, the HMM normal coverage (0.31) > RCS normal 

coverage (0.27869) and HMM scheduling coverage (0.231885) is also greater than RCS 

scheduling (0.15254). This trend follows as the number of nodes increases. It is worth 

noting that the term ‘Coverability’, while sounding synonymous with ‘Coverage’, 

actually refers to the percentage of the coverage per sensor node. Figure 8 explains the 

result of the experiment. The RCS algorithm was originally tested on the basis of 

coverability, not coverage, in C Liu’s work (Liu et al., 2006). This is understandable 

because the algorithm is not compared or evaluated with other algorithms with respect 



to (1) the coverage metric of the extra ON nodes, and (2) network lifetime 

improvement. In our HMM improved algorithm, we are concerned with improving 

network lifetime so as to contribute to the safety critical system requirements, and 

further contribute to the dependability of such systems. The Coverage metric is 

concerned with all of the network’s nodes, while the Coverability metric is concerned 

with a certain number of nodes and can be used to analyse single nodes only. Therefore, 

we choose to focus on the Coverage metric in our experimentations. 

5   Conclusion  

     In this work, we introduced a novel improvement to the RCS algorithm, by 

proposing an HMM algorithm that is based on a probability distribution, unlike the 

original RCS which is based on random scheduling. Our HMM-based algorithm has 

increased the network lifetime and also improved the coverage and connectivity. The 

transition states of the nodes are restricted to four states in our algorithm to avoid 

computational overheads. The main goal was to predetermine the receive and transmit 

states’ as defined by the algorithm of each node in the WSN in the design time. In this 

process, we adjust the probability of transition between our receive states and transmit 

states. As a result, each node knows its receive states’ as defined by the algorithm and 

operates accordingly in the runtime. In network connectivity and path optimality, this 

prediction is important considering the broadcast collision and channel errors as metrics 

for quality of service. The RCS algorithm has had several errors due to high throughput 

values, but our proposed HMM algorithm has mitigated this by the use of path 

optimality (optimization) to reduce traffic overheads. This is achieved by ensuring both 

receiving and transmitting nodes at every round of simulation time to ensure the 

network’s operability. In the future, we will be addressing the limitation of the RCS 

and the HMM algorithms using bioinspired computational and artificial intelligence 

methods. 
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