
This article was published in an Elsevier journal. The attached copy
is furnished to the author for non-commercial research and

education use, including for instruction at the author’s institution,
sharing with colleagues and providing to institution administration.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Computers & Operations Research 35 (2008) 2049 – 2070
www.elsevier.com/locate/cor

Genetic local search for multicast routing with pre-processing by
logarithmic simulated annealing

M.S. Zahrania, M.J. Loomesb, J.A. Malcolma, A.Z.M. Dayem Ullahc,
K. Steinhöfeld, A.A. Albrechta,∗

aUniversity of Hertfordshire, School of Computer Science, Hatfield, Herts AL10 9AB, UK
bMiddlesex University, School of Computing Science, Hendon, London NW4 4BT, UK

cImperial College London, Department of Computing, 180 Queen’s Gate, London SW7 2AZ, UK
dKing’s College London, Department of Computer Science, Strand, London WC2R 2LS, UK

Available online 14 November 2006

Abstract

Over the past few years, several local search algorithms have been proposed for various problems related to multicast routing
in the off-line mode. We describe a population-based search algorithm for cost minimisation of multicast routing. The algorithm
utilises the partially mixed crossover operation (PMX) under the elitist model: for each element of the current population, the local
search is based upon the results of a landscape analysis that is executed only once in a pre-processing step; the best solution found
so far is always part of the population. The aim of the landscape analysis is to estimate the depth of the deepest local minima in the
landscape generated by the routing tasks and the objective function. The analysis employs simulated annealing with a logarithmic
cooling schedule (logarithmic simulated annealing—LSA). The local search then performs alternating sequences of descending
and ascending steps for each individual of the population, where the length of a sequence with uniform direction is controlled by
the estimated value of the maximum depth of local minima. We present results from computational experiments on three different
routing tasks, and we provide experimental evidence that our genetic local search procedure that combines LSA and PMX performs
better than algorithms using either LSA or PMX only.
� 2006 Elsevier Ltd. All rights reserved.

Keywords: Multicast routing; Genetic local search; Simulated annealing; Steiner trees; Quality of service (QoS)

1. Introduction

Multicast routing has become an important topic in combinatorial optimisation. A recent overview on multi-
cast routing and associated optimisation algorithms has been presented by Oliveira and Pardalos [1]. The focus
of this overview, as in most papers on multicast routing, are on-line algorithms [2,3]. An early summary of prob-
lems and technical solutions related to multicast communication was given by Diot et al. [4]. Great effort has
been undertaken to incorporate quality of service (QoS) into data communication networks such as ATM and IP
networks [5–11]. Many multicast applications, such as video conferencing, distance-learning, and multimedia

∗ Corresponding author. Tel.: +44 1707 284 247; fax: +44 1707 284 303.
E-mail address: A.Albrecht@herts.ac.uk (A.A. Albrecht).

0305-0548/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cor.2006.10.001



Author's personal copy

2050 M.S. Zahrani et al. / Computers & Operations Research 35 (2008) 2049 – 2070

broadcasting are QoS-sensitive in nature and thus they should benefit from the QoS improvement in the underlying
networks.

Designing multicast routing algorithms is a complex and challenging task. Among the various issues involved are
the design of optimal routes taking into consideration different cost functions, the minimisation of network load and
the avoidance of loops and traffic congestion, and the provision of basic support for reliable transmission. In the present
paper, we focus on the design of optimal routes in the off-line mode, as discussed, e.g., in the survey [9] (see Section
2 therein) and [12,13].

The problem of minimising the tree costs of single requests under the constraint that all path capacities are within a
user-specified capacity bound, i.e. the requests are executed simultaneously, is referred to as the capacity constrained
multicast routing problem (CCMRP) [1,4,14,15].

The CCMRP can be formalised as a constrained Steiner tree problem, which is known to be NP-complete [16]. We
note that in applications like video conferencing, multimedia broadcasting, and distance-learning the routing procedure
is updated only from time to time, e.g. when new customers register to use one of the services. In such cases, off-line
routing algorithms are an appropriate way to solve the routing problem. Since we are dealing with an NP-complete
problem, local search methods are a natural choice to tackle the problem; see [9,12,13].

In [17–24], algorithms utilising genetic algorithms (GA) or tabu search are presented. For an overview of search
methods, in particular, GA applied to various problem settings in multicast routing, we refer the reader to [25, cf. p.
20–21 therein]. Here, we discuss only a few of the issues raised on this topic. We note that most of the papers are
dealing with single trees, but not with routing multiple requests (trees) simultaneously.

The GA proposed in [17,18] assume that several messages all have to be transferred from several sources to mul-
tiple destinations, and this has to be executed simultaneously without any order or priority for certain messages.
The GA uses a population of chromosomes, where each chromosome is a permutation of the numbers that are
assigned to the requests. The algorithms start with a subset of k out of n requests. By using a Steiner tree algo-
rithm, the k requests are routed in the order they appear in the chromosome (partial permutation). Then, to pairs
of chromosomes the partially mixed crossover (PMX) operation and the new population (of the same fixed size)
is generated by roulette wheel selection, where a sector of a “roulette wheel” is assigned to each offspring whose
size is proportional to the fitness measure. The algorithm runs a fixed number of steps, and then k is increased
by one in order to check whether (k + 1) requests can be scheduled conflict-free. The same procedure is repeated
for (k + 1) until either k = n, or repeated attempts to schedule simultaneously k requests are unsuccessful. The
search-based methods from [17,18] are, in part, incorporated into our approach and are discussed in more detail in
Section 4.1.

The paper by Ericsson et al. [19] demonstrates a variety of routing problems that can be tackled by GA. The authors
apply GA to a routing problem where the link weights are assigned by the network operator, i.e. the problem setting
is somewhat different from ours. Then the weight setting problem seeks a set of weights that optimises network
performance. Given a set of projected demands, the weight assignment problem, with the objective of minimising
network congestion, is NP-hard. The individuals of the population are weight vectors, where the range of components
is from 1 to 216 − 1. The crossover operator acts on one elite and one non-elite parent and selects each component
of the resulting weight vector according to independently chosen random numbers from (0, 1). The evaluation of the
fitness function is rather complicated, since it involves the whole process of routing and the computation of arc loads.
The method was successfully tested on the AT&T Worldnet backbone with projected demands, and on several synthetic
networks.

Barolli et al. [20] focus on creating a robust path finding solution for mobile ad hoc networks (MANTETs). Since
the nodes are mobile, the creation of routing paths is affected by the addition and deletion of nodes, i.e. the topology of
the network may change rapidly and unexpectedly. Therefore, QoS is only guaranteed as long as a signal to the node
actually exists. The authors propose a genetic algorithm for mobile ad hoc networks (GAMAN) where the network
and, respectively, the individuals of the population are represented by trees. The GAMAN algorithm uses the single
point crossover and a mutation operation where the “tree junctions” are chosen randomly in the range from zero up
to 1/�, for � = length of individuals. The algorithm employs the elitist model, where the individual with the highest
fitness value in a population is left unchanged in the next generation. The simulation results show that the algorithm is
reasonably fast on small to medium size networks.

Yang [21] devised a tabu search algorithm for finding a single, feasible multicast tree efficiently that satisfies a
number of QoS constraints. The method is tested on randomly generated networks with 100 nodes (and on 8 × 8



Author's personal copy

M.S. Zahrani et al. / Computers & Operations Research 35 (2008) 2049–2070 2051

meshes). A similar setting (Steiner tree computation under certain constraints by tabu search) has been investigated
by Skorin-Kapov and Kos [22]. The tests on a large number of benchmark problems have shown that the tabu search
heuristic from [22] is superior in quality for medium sized problems.

Wang et al. [23] discuss the same problem as in [21,22]. The authors propose an efficient algorithm based on tabu
search for delay constrained, low cost multicast trees (TSDLMRA). To evaluate the efficiency of TSDLMRA, the
authors utilise a random link generator, which yields networks with an average node degree of 4–6. The link delay
function is defined as the propagation delay of the link. The TSDLMRA algorithm is shown to be of low time complexity,
with the ability to find multicast trees if such solutions exist.

Yang and Wen [12] apply tabu search to the problem of pre-planning delay-constrained backup paths for multicast
trees to minimise the total cost of all the backup paths. The neighbourhood structure of the search algorithm is based
upon the random selection of a single link in the current solution for backup paths. The computational experiments
were carried out on networks with 30–50 nodes.

Apart from GA and tabu search, simulated annealing-based search [26–30] has been utilised recently for multicast
routing, in particular, under QoS considerations [13,31–35]. In [31], the QoS issue is reduced to a path constraint
problem (multiple requests are not considered), where along a path from source to destination each link has to obey
a vector of weight restrictions. The constraint vector is transformed into an energy function by a max-operation over
the component-wise ratio of link weights and capacity constraints. The search for appropriate paths is then executed
by simulated annealing. The paper [32] demonstrates how different QoS requirements, like available CPU resources,
buffer resources, error rates, queuing delay and sending delay at each node as well as available bandwidth, transmission
delay and error rate at each link, can be incorporated into a single energy function for a given potential multicast routing
solution (see Section 3.2 for more details). Simulated annealing is then applied to this energy function (the experiments
are executed on small networks), where the underlying model is a homogeneous Markov chain (cf. Section 3.1). Since
the specific QoS requirements considered in [32] do not affect the general methodology, we have chosen only two QoS
parameters for the calculation of the energy function (cf. Sections 2 and 3.2). In [13] (see also [9], Section 2), an overlay
multicast network infrastructure is proposed which forms a multicast data delivery backbone. The overlay topology is
continuously adapted (off-line) with changes in the distribution of the clients as well as changes in network conditions.
The performance optimisation is executed by a simulated annealing-based algorithm defined by homogeneous Markov
chains. The paper [35] employs a QoS setup similar to [32] and investigates three different search methods to calculate
routing trees: simulated annealing, tabu search, and GA. The three methods are tested on small (14 nodes, 21 edges) and
relatively large (100 nodes, 800 edges; randomly generated) networks. The findings suggest that simulated annealing
can solve multicastrouting problems efficiently with high-quality solutions, tabu search-based algorithms show a good
time performance when the group size is large, and that GA genetic-based methods slightly outperform SA in terms of
the solution quality.

In the present paper, we introduce an new search method that combines landscape analysis with a genetic local
search procedure. The notion of landscape analysis was first mentioned in [36] and has become a major topic in
combinatorial optimisation in recent years [37–39]. Our tool for landscape analysis is logarithmic simulated annealing
(LSA) [28,29,40], i.e. in our approach we employ simulated annealing based on inhomogeneous Markov chains.
The annealing procedure allows us to estimate the depth of the deepest local minima. Recently, simulated annealing
algorithms, in particular variants based on inhomogeneous Markov chains, have been used to investigate problems
from Computational Biology [41,42]. Another motivation for choosing simulated annealing is based upon recent
advances in GA research [43], where the convergence of GA to optimum solutions has been ensured by employing
simulated annealing-based selection in a variety of ways (see Section 10 in [43] for a summary of results). Since we
focus on algorithmic aspects of multicast routing in off-line mode, we reduce the QoS requirements to bandwidth
and delay constraints (see Section 3.2). The present paper is an extension of the short conference presentation [44].
The competitiveness of LSA in relation to GA and tabu search was demonstrated in [45] for the job shop scheduling
problem, which is one of the hardest NP-complete problems.

We performed computational experiments on three instances of the OR library [46] (steinb10, steinb11, steinb18),
which were modified for multicast routing. The results provide evidence that our genetic local search heuristic performs
better than “pure” LSA.

The paper is structured as follows: in Section 2, we provide a formal definition of the multicast routing problem,
along with explanations about parameters and cost functions. In Section 3, we describe LSA pre-processing as a tool
for landscape analysis. In Section 4, we introduce our genetic local search heuristic, and in Section 5 we present the



Author's personal copy

2052 M.S. Zahrani et al. / Computers & Operations Research 35 (2008) 2049 – 2070

results from computational experiments on the modified instances no. steinb10, steinb11, and steinb18, including the
results from the landscape analysis which is performed in a pre-processing step.

2. Formal definition of multicast routing

Communication networks consist of nodes connected through links. The nodes are the originators and receivers of
information, while the links serve as the transport between nodes. Nodes can be either endpoint nodes or intermediary
nodes. Both nodes and links have a limited capacity of information flow they can handle, depending on features such
as speed of information flow and the cost of transferring the information at the required speed.

Given a graph G = (V , E) that represents a communication network with node set V and edges E, we define two
non-negative weight functions Co : E → R and Ca : E → R, where Co is the cost function and Ca is the capacity
function on E, respectively.

Each of the point-to-multipoint requests has a source node s ∈ V and a set of destination nodes D ⊆ V . We define
a multicast request R by setting

R = [vs ⇒ (v1, v2, . . . , vn); C],
where

vs = the source node of R,

D = {v1, . . . , vn} = the destination nodes,

C = the capacity required by each of the transmissions vs ⇒ vi . (1)

The multicast problem P is then defined by

P = [G; Co; Ca; R1, . . . , Rn]. (2)

Usually, multicast routing algorithms are based on the following assumptions [1,4,17,18]:: each R from P is routed
separately by a minimum Steiner tree with root vs and destination nodes D(R). The cost of the Steiner tree is the sum∑

e Co(e) of the costs of the edges in the tree, while the capacity Ca(e) on each edge on a path from vs to each vi ∈ D

obeys Ca(e)�C(R) for the capacity C of R, see (1).
The problem of multicast routing is a complex one. The naïve approach to solving the point-to-multipoint routing

problem is through the separation of the problem into several point-to-point routing problems, according to the number
of destination points. This simple method is very inefficient. The same information might flow on the same link many
times. It creates unnecessary traffic on the link, which could be avoided. Therefore, we consider the simultaneous
execution of requests, where messages from a single source are combined to form a single request.

To minimise
∑

e Co(e) for given G, vs, D, and Ca is NP-complete [16]. Numerous heuristics have been devised
to find good approximations of minimum solutions efficiently [21,22,47–52]. Since in our approach single requests
may have to be rerouted many times in order to satisfy capacity constraints, we employ the simple but efficient KMB
algorithm [48]. It has been estimated that the cost of a tree generated by the KMB algorithm averages 5% more than the
cost of a Steiner minimal tree [49]. Koch and Martin [51] obtained minimum values for a large number of benchmark
problems by using a polyhedral method. The algorithm proposed in [52] implies that each request can be routed in
polynomial time within 5

3 of the minimum cost of a Steiner tree. Of course, the KMB algorithm we are using can be
substituted by any efficient Steiner tree algorithm.

In [32,35], various QoS constraints are taken into account in order to define the objective function: every node
v ∈ V is labelled by the following parameters: available CPU resources c(v), available buffer resources b(v), queuing
delay t (v), and sending delay �(v). Furthermore, every link e = (v, u) is labelled by: available bandwidth w(e) and
transmission delay �(e). The QoS constraints are then given by

∀v(c(v)�C; b(v)�B; w(e)�W) (3)

for some constants C, B and W , where additionally the source-destination delay, calculated from t (v), �(v) and the
sum of �(e), is bounded by �. The task is to minimise a function (

∑
v h(v) + ∑

e H(e) + Q), where h and H are



Author's personal copy

M.S. Zahrani et al. / Computers & Operations Research 35 (2008) 2049–2070 2053

heuristic cost functions and Q is the weighted number of source-destination pairs that violate the delay bound; h and
H are defined by

h(v) := �1

c(v)
+ �2

b(v)
, H(e) := �3

w(e)
(4)

for some constants �1, �2 and �3. Thus, the QoS constraints are incorporated into a single additive function. Since
we are interested in algorithmic aspects, i.e. the presentation of the landscape approach and the new genetic search
procedure, we consider a simplified version of the objective function. Moreover, in contrast to, e.g., [32,35] we consider
the simultaneous routing of several requests (ranging from 9 to 20 in our experiments, see Section 5). Our cost function
Co can represent, e.g., the delay along a single link, and the capacity Ca can be related to the bandwidth. In our setting,
feasible solutions have to obey the bandwidth constraints, and adding c(v), b(v), t (v) and �(v) to the selection of
feasible solution would not change the overall approach.

Our objective function is basically chosen as in [17,18] and represents a combined measure of transmission costs
and capacity constraints: let T (R) denote the set of edges of the tree associated with the request R from configuration
S ∈ M. We first define

W(R) := C ·
∑

e∈T (R)

Co(e), (5)

where Co is from (2) and C the capacity request of R; see (1). The value of the objective function Z(S), S ∈ M, is then
simply given by

Z(S) :=
∑

R from S

W(R). (6)

3. LSA pre-processing

Simulated annealing was introduced as an optimisation tool independently in [26,27]; see also [30]. The underlying
algorithm acts within a configuration space in accordance with a specific neighbourhood structure, where the transition
steps are controlled by the objective function.

3.1. Simulated annealing in the multicast routing context

The configuration space consists of all feasible solutions for a given multicast problem P=[G; Co; Ca; R1, . . . , Rn],
i.e. the capacity conditions according to (1) are not violated. We denote the configuration space by

M = {S |S = [Ri1 , . . . , Rin ]; Ri1 , . . . , Rin are SMT-routed}. (7)

Here, SMT-routed means that each Rij from the ordered sequence S is routed by the KMB algorithm [48] that approx-
imates a Steiner minimal tree (SMT) in accordance with the capacity constraints and the given cost function.

By NS we denote the neighbourhood of S, and Z(S) denotes the value of underlying objective function; both are
specified in Section 3.2. The neighbours NS are all required to be feasible, and S itself is an element of NS .

The probability of performing a transition from S to S′ ∈ NS is defined by

Pr{S → S′} =
{

G[S, S′] · A[S, S′] if S′ 	= S;
1 − ∑

H 	=SG[S, H ] · A[S, H ] otherwise,
(8)

where G denotes the probability of generating a specific neighbour from NS , and A is the probability of accepting the
neighbour once it has been generated according to G. The generation probability is uniform and defined by

G[S, S′] :=
{ 1

|NS | if S′ ∈ NS,

0 otherwise.
(9)

The “uniform” definition assumes that all potential neighbours are tested if they are feasible or not in order to determine
NS and |NS |, which would require a large number of SMT calculations. In the actual implementation (see Section 5.1),



Author's personal copy

2054 M.S. Zahrani et al. / Computers & Operations Research 35 (2008) 2049 – 2070

a potential neighbour is chosen randomly and its feasibility is tested. If conflicts arise in simultaneous routing, a new
potential neighbour is chosen; see Section 3.2.

The acceptance probabilities A[S, S′], S′ ∈ NS , are derived from the underlying analogy to thermodynamic systems:

A[S, S′] :=
{

1 if Z(S′) − Z(S)�0,

e−(Z(S′)−Z(S))/c otherwise,
(10)

where c is a control parameter having the interpretation of a temperature in annealing procedures. The actual decision,
whether or not S′ should be accepted in case of Z(S′) > Z(S) is performed in the following way: S′ is accepted, if

e−(Z(S′)−Z(S))/c ��, (11)

where � ∈ [0, 1] is produced by a random number generator. The value � is generated in each trial where Z(S′) > Z(S).
Let aS(k) denote the probability of being in configuration S ∈ M after k steps according to (8),…,(11). The probability

aS(k) is given by

aS(k) :=
∑
H

aH (k − 1) · Pr{H → S}, (12)

where Pr{H → S} is from (8). The recursive application of (12) defines a Markov chain of probabilities aS(k), where
S ∈ M and k =1, 2, . . . . If the parameter c= c(k) in (10) is a constant c, the chain is said to be a homogeneous Markov
chain; otherwise, if c(k) is lowered at each step, the sequence of probability vectors 
a(k) is an inhomogeneous Markov
chain.

In contrast to [13,31–35], we consider inhomogeneous Markov in our search procedure. The motivation for this
choice is based upon the convergence properties of the two types of Markov chains: convergence propositions about
homogeneous Markov chains rely on an infinite number of transitions at fixed “temperatures” c. The probability
distribution approached in the limit is the Boltzmann distribution e−Z(S)/c/V , where V is a normalisation value. If
c → 0, the Boltzmann distribution tends to the distribution over optimum configurations. In practice, however, it is
infeasible to perform an infinite number of transitions at fixed temperatures. The convergence analysis of inhomogeneous
Markov chains avoids the intermediate step, and in our approach the “temperature” c(k) changes in accordance with

c(k) = �

ln(k + 2)
, k = 0, 1, . . . . (13)

The choice of c(k) is motivated by Hajek’s theorem [28] on logarithmic cooling schedules. We denote by Fmin the
set of optimum solutions. Basically, Hajek’s theorem states

Theorem 1.
Under some natural assumptions about the configuration space F and the neighbourhood Nf , the asymptotic

convergence
∑

f ∈Fmin
af (k) −→

k→∞ 1 of LSA is guaranteed if and only if � from (13) is lower bounded by the maximum
value of the minimum escape height from local minima.

Albrecht [40] proved that after (n/�)O(�) neighbourhood transitions, the probability to be in an optimum solution is
at least 1 − �, where n is an upper bound for the size of the neighbourhoods.

Unfortunately, due to the complex nature of our configuration space M, we cannot decide whether or not Theorem
1 applies. However, logarithmic simulated annealing has proved to be an efficient method in similar settings; cf. [45].
For an illustration of � for a particular local minimum A, see Fig. 1.

3.2. Neighbourhood relation

There are numerous ways to define the neighbourhood relation; in the present study, we focus on one example
only. Given S ∈ M by S = [Ri1 , . . . , Rin ], the neighbourhood NS includes S itself and is defined by the following
procedure:

Two integers a and b, where 1�a < b�n, are randomly chosen, and the order of all requests from number ia to
number ib is reversed. Thus, a new potential configuration S′ is generated (see Fig. 2).



Author's personal copy

M.S. Zahrani et al. / Computers & Operations Research 35 (2008) 2049–2070 2055

Fig. 1. � example.

3

1

4 2

7

5

3

7

2 4

1

5

Fig. 2. A neighbourhood transition example; here a = 2, b = 5.

The potential configuration S′ is validated for feasibility, i.e. we try to simultaneously schedule all the requests
from Rib upwards. If a conflict occurs, a new pair (a, b) is generated.

If S′ ∈ M, the value of the objective function Z(S) is calculated.

3.3. Initial feasible solutions

We randomly select an order (i1, i2, . . . , in) of ij ∈ [1, 2, . . . , n]. If the request Rij has been scheduled successfully
by the KMB algorithm [48], j �1, then the capacity function Ca is updated by

∀e(e ∈ E → Ca(e) := Ca(e) − C), (14)

where C = C(Rij ) is the capacity request of Rij . We then try to schedule request Rij+1 by the KMB algorithm. Before
KMB is applied, all edgesE ∈ Gwith updated values Ca(e) < C(Rij+1) are removed fromG, i.e. the underlying network
is modified in accordance with [Ri1 , . . . , Rij ]. If capacity constraints are violated, i.e. Rij+1 cannot be scheduled by
KMB, a new random order (i′1, i′2, . . . , i′n) is generated, and we start again with Ri1 . After 100 unsuccessful attempts,
the search for a feasible solution of P = [G; Co; Ca; R1, . . . , Rn] is terminated.



Author's personal copy

2056 M.S. Zahrani et al. / Computers & Operations Research 35 (2008) 2049 – 2070

3.4. Landscape analysis

Merz and Freisleben [37] present different methods of landscape analysis as part of genetic local search methods
(memetic-style algorithms). We introduce a new method that basically estimates � in (13), i.e. provides an upper bound
for the maximum escape height from local minima.

To estimate �, we first have to decide about the number of transitions T after starting with a solution S0 generated
by the procedure described in Section 3.3. Based upon previous work on LSA [45] for one of the hardest NP-complete
problems, namely job shop scheduling, we decided to choose T in the region of T ≈ 104, . . . , 2×104, which, actually,
has been confirmed as an appropriate choice by the computational experiments; see Section 5.1. The basic algorithm
is summarised in Algorithm 3.1.

For a pre-defined number of transitions T , we employ the following procedure in order to find an estimation of �:
first, the procedure tries to estimate the intermediate increase Gest of the objective function between two successive
improvements of the best value Z(S) found so far. Then, we establish a conjecture about �est that is based on Gest, and
subsequent computational experiments are executed for different settings of � in (13); see Section 5.1. To find at first
a value for Gest, we proceed as follows:

Two initial solutions S1
0 and S2

0 are generated by the procedure from Section 3.3, and Gest := |Z(S1
0) − Z(S2

0 )|
is the initial estimation, where we assume Z(S1

0) 	= Z(S2
0 ).

We set Sbest := Si
0, where Z(Si

0) is the smaller value out of {Z(S1
0), Z(S2

0 )}, i ∈ {1, 2}. The procedure from
Section 3.1 is started with Sbest and Gest in (13); an auxiliary parameter �0 := 0 is initialised.

At each step k�T , if Z(Sk) > Z(Sk−1) and Z(Sbest) + �s < Z(Sk), we update �s by �s := Z(Sk) − Z(Sbest),
0�s�k.

At each step k�T , if Z(Sk) < Z(Sk−1), Z(Sk) is compared to Z(Sbest): if Z(Sk) < Z(Sbest), then we set Sbest :=
Sk , we update Gest := max{�s , Gest}, and we initialise again �s+1 := 0.

After finishing step k = T , we set Gest := max{�s(T ), Gest}, where �s(T ) is the latest update of �.

Thus, every time the value Z(Sbest) is updated, i.e. when a potential local minimum has been reached, a new estimation
of Gest is started. If the initial value Gest := |Z(S1

0) − Z(S2
0 )| appears to be too small, the initial estimation can be

chosen in the region of c·|Z(S1
0) − Z(S2

0 )|, where c ≈ 3, . . . , 5; cf. [45].

Algorithm 3.1. The program description

1: Read all the network information; choose �.
2: Determine the initial temperature of the simulated annealing process by c(0) = �/ln(2).
3: Determine an initial feasible solution; see Section 3.3.
4: repeat
5: Begin the process of simulated annealing at temperature c(k) = �/ln(k + 2).
6: Generate a neighbourhood solution S′ from the current solution S; see Section 3.2.
7: Determine the Steiner trees using KMB Algorithm for the requests of S′.
8: if S′ is feasible then
9: Determine Z(S′); see (5) and (6);

else increment k; goto 6.
10: end if
11: Z(S′) < Z(S) then
12: the new configuration is accepted and we move to S′;

else
13: if Z(S′) > Z(S) then
14: generate uniformly � ∈ [0, 1];
15: if e−(Z(S′)−Z(S))/c(k) �� then



Author's personal copy

M.S. Zahrani et al. / Computers & Operations Research 35 (2008) 2049–2070 2057

16: S′ is accepted as the new configuration;
else increment k; goto 6.

17: end if
18: end if
19: end if
20: increment k.
21: until k = Tbound.

We exit the program and return Z(Sbest).

We recall that � itself is related to the maximum value of the minimum escape height from local minima. It
is unlikely that Gest is close to the minimum escape height, and therefore further experiments are required to es-
tablish a relationship between � and Gest. On the other hand, Gest provides some information about the struc-
ture of the underlying landscape. Thus, Gest together with different settings for � in (13) are used to find a good
estimation �est.

As we will see in Section 5.1, Gest and settings for � in (13) that resulted in the best values of the objective function
obtained by LSA on all routing tasks defined for the three networks, differ by a factor close to 10, and this relation
is relatively independent of the particular network structure G in (2), i.e. the relation is basically determined by the
functions Co and Ca in (2).

4. Genetic local search for multicast routing

GA are based on nature’s selection process and the concept of survival of the fittest [53,54]. GAs utilise ran-
dom mutation, crossover and selection procedures to create better solutions from a random starting population.
The population contains several initial solutions. Each solution is evaluated and its fitness is calculated. Then a
new generation is created from the current population by crossover and mutation, where usually the size of the
population is kept unchanged by applying the fitness function. Based on a convergence result by Rudolph [55],
the best solution found so far is always maintained in the population, i.e. we follow the so-called elitist
approach.

4.1. The partially mixed crossover (PMX) operation

Since we rely on similar notations and basically the same configuration space as in [17,18], we explain in more detail
their GA-based method. The key element of the method is the PMX operation. The algorithm starts with a randomly
chosen population. The PMX is applied to pairs of individuals: two strings are aligned and two crossing sites are picked
uniformly at random along the strings; see Fig. 3. The positions P1 and P2 define a matching section where the requests
are exchanged position by position. This operation may generate duplicate occurrences of requests. Therefore, the
following procedure is applied to the rest of the positions (outside the matching section): if R has a duplicate R′ in the
same string (like 3 in offspring-1 in position 5 and 8), then the duplicate R′ outside the matching region is substituted
by the request R′′ from the other offspring (offspring-2) that was swapped with R.

Finally, the new population of the same fixed size is then generated by roulette wheel selection, where a sector of
a “roulette wheel” is assigned to each offspring whose size is proportional to the fitness measure, and then a random
position is chosen on the wheel.

Zhu et al. [17] employ this operation in the following procedure: starting from a random initial population, where
each individual has only k < n requests from the same k-subset of n requests, the algorithm executes a fixed number
of PMX operations. Then k is increased by one in order to check whether (k + 1) requests can be scheduled conflict-
free, and the same fixed number of PMX operations is applied, until either k = n or repeated attempts to schedule
simultaneously k + x < n requests are unsuccessful. The heuristic was evaluated for a population size is 100 and 100
crossover/selection steps for each k�n = 20. The n = 20 requests were defined in a network with 61 nodes and 133
edges. Each request R has at least eight destination nodes, and the capacity C was between five and nine; see [17].
Feasible solutions were found for k�18. Since the network information is not provided in detail by Zhu et al. [17], we
are unfortunately unable to apply our approach.



Author's personal copy

2058 M.S. Zahrani et al. / Computers & Operations Research 35 (2008) 2049 – 2070

Fig. 3. Two individuals before and after the PMX from [56].

4.2. Genetic local search

Over the past few years, genetic local search has been investigated in the context of a variety of combinatorial
optimisation problems; cf. [18,37] and the literature therein. The basic idea is relatively simple: a (quasi-)deterministic
local search with continuous improvements of the objective function is executed for all individuals of a population;
if the individual runs are stuck in local minima, a crossover operation is applied in order to leave local minima.
Here, quasi-deterministic means that the “downward” steps may have a random component, i.e. the neighbours with
improved values of the objective function might be chosen randomly. In our heuristic, we employ such a “modest
random” procedure.

The parameters of our genetic local search procedure are:

(1) A multicast routing problem P as defined in Eq. (2), i.e. with n requests as defined in Eq. (1);
(2) �est as defined in Section 3.4 and estimated in Eq. (15);
(3) The population size M;
(4) The number K of maximum steps between two successive executions of the PMX operations;
(5) The number N of maximum executions of the PMX operation applied to a single element of the population.

Algorithm 4.2. The Genetic local search description

1: Read all the network information; choose �.
2: Determine an initial feasible solution; see Section 3.3.
3: repeat
4: Run M computations for a predefined number of steps K .
5: Generate a neighbourhood solution S′ from the current solution S; see Section 3.2.
6: Determine the Steiner trees using KMB Algorithm for the requests of S′.
7: if S′ is feasible then
8: D etermine Z(S′); see (5) and (6);

else goto 5.
9: end if
10: (First mode) Do only downwards steps.
11: if Z(S′) < Z(S) then



Author's personal copy

M.S. Zahrani et al. / Computers & Operations Research 35 (2008) 2049–2070 2059

12: the new configuration is accepted and we move to S′;
13: if local minimum is reached then
14: goto 23.

else goto 10.
15: end if
16: end if

end if
17: if Z(S′) > Z(S) then
18: we ignore it and try a new neighbour.
19: if NO S′ with Z(S′) < Z(S) for L tries found then
20: treat S as a local minimum. goto 23.
21: end if
22: end if
23: (Second mode) Do only upwards steps.
24: if Z (Local minimum) + � is reached then
25: switch again to the first mode. goto 10.

else goto 23.
26: end if
27: until K steps done for all M computations
28: for each pair of intermediate solutions do
29: apply partially mixed crossover (PMX);
30: end for
31 Restart again K steps with the M best solutions from PMX crossover, including elitist solution.
32: All this is repeated N times (thus, for a single strain of computations we get K ∗ N steps);
33: After N repeated K steps, we take the best solution out of the M results.

Due to the extremely large number of potential neighbours, we do need two more auxiliary parameters: if after
L = 50 unsuccessful trials no neighbour with a better value of the objective function could be found, the current
solution with objective value Z(S) is declared to be a potential local minimum, and the procedure switches from down-
ward steps to a sequence of upward steps. The upward steps are executed until either an S′ with Z(S′)�Z(S) + �est
has been reached, or after L = 50 unsuccessful trials no neighbour with a larger value of the objective function
could be found. In either of the two cases, the procedure switches back to downward steps. Thus, for each indi-
vidual a random walk through the landscape is executed, and after K steps, the walk is interrupted by an PMX
operation in order to generate a new population of the same size in the elitist model. The heuristic is described in
Algorithm 4.2.

5. Computational experiments

The algorithms described in Sections 3.4 and 4.2 have been implemented in Java. Particular attention has been
paid to the implementation of the KMB algorithm, which uses Dijkstra’s shortest path algorithm and Kruskal’s min-
imal spanning tree algorithm. The experiments were executed on a 2 GHz Pentium4 Processor with 512 MB RAM.
The population-based computations were simulated by subsequent sequential runs, which caused restrictions on the
population size.

The underlying graphs are the instances steinb10 (75 nodes, 150 edges), steinb11 (same number of nodes and
edges), and steinb18 (100 nodes, 200 edges) from the OR library [46]. Each edge was randomly assigned a cost value
Co(e) ∈ {1, 2, . . . , 10}; the capacity of edges was set by Ca(e) = 12.

5.1. Computational experiments for LSA pre-processing

For the steinb-instances, 20 requests were generated randomly. For comparison purposes, the same set of requests
was chosen for all three underlying labelled graphs (the cost labels are different). The set of requests {R1, . . . , R20}
is presented in Table 1. From the 20 requests, we derived 12 multicast routing problems Pi , with P1 defined by



Author's personal copy

2060 M.S. Zahrani et al. / Computers & Operations Research 35 (2008) 2049 – 2070

Table 1
Set of single requests for graphs steinb10-11 and steinb18 [46]

Request no. Source node Destination node(s) Capacity

1 36 7, 23, 25, 40 3
2 17 15, 30, 31, 40, 41, 46 2
3 48 36, 58 8
4 41 13, 22, 27, 35, 50 2
5 2 6, 14, 18, 23, 27, 33, 47, 49 4
6 13 28 7
7 50 5, 12, 28, 31, 44, 45 2
8 24 20, 29, 30 3
9 52 9, 13, 22, 55 2

10 53 13, 14, 28, 41, 52, 55 1
11 10 5, 20, 31, 40 3
12 66 18, 20, 22, 23 2
13 14 6, 16, 36 4
14 61 15, 20, 33, 38 6
15 55 4, 21, 41 5
16 14 9, 16, 31, 43, 44 3
17 67 23, 29 6
18 9 4, 6, 7, 30, 31, 35 2
19 69 10, 40, 54 2
20 75 33, 57 7

Table 2
Solutions and Z(Sbest) for � = G0/8 and T = 104 (steinb10)

Pi Solution for T = 104 and � = G0/8 Z(Sbest)

1 [1, 4, 6, 2, 5, 3, 7, 8, 9] 1098
2 [4, 9, 7, 2, 6, 10, 1, 8, 5, 3] 1164
3 [5, 4, 2, 10, 7, 3, 11, 6, 8, 1, 9] 1305
4 [2, 12, 1, 9, 10, 11, 5, 7, 3, 4, 6, 8] 1379
5 [2, 4, 5, 7, 3, 8, 13, 12, 6, 10, 1, 9, 11] 1535
6 [13, 10, 14, 1, 2, 7, 12, 8, 6, 5, 11, 4, 3, 9] 1825
7 [10, 7, 9, 13, 14, 5, 15, 8, 4, 3, 1, 6, 11, 2, 12] 2086
8 [8, 6, 13, 7, 2, 11, 1, 3, 10, 12, 14, 16, 15, 4, 9, 5] 2265
9 [7, 2, 4, 10, 3, 8, 13, 5, 17, 12, 9, 16, 11, 15, 6, 1, 14] 2321

10 [14, 7, 15, 1, 10, 17, 3, 4, 13, 5, 2, 9, 16, 11, 8, 6, 18, 12] 2468
11 [7, 16, 3, 18, 2, 13, 10, 6, 4, 14, 17, 9, 8, 1, 19, 12, 5, 15, 11] 2552
12 [5, 12, 20, 4, 8, 18, 3, 16, 13, 9, 7, 19, 10, 14, 6, 17, 15, 2, 11, 1] 2655

{R1, R2, . . . , R9}, and P12 defined by {R1, R2, . . . , R20}. For each Pi , we performed 12 computational experiments:
for each of the two values of T = 104, 2 × 104 the experiments were executed for six different values of � in (13),
where � := G0/c for c = 1, 2, 4, 8, 16, 20, 32, and G0 := |Z(S1

0) − Z(S2
0 )|.

Table 2 shows an example of solutions (final order of requests for each Pi) for steinb10 and T = 104, G0/8. We
note that the values of Z(Sbest) did not change for T = 3 × 104. In Table 3, we present a complete picture of runs
for steinb10 and all Pi with T = 2 × 104 and � := G0/c for c = 1, 2, 4, 8, 16, 20, 32. The results demonstrate that
the best values of the objective function are found for � values that are much smaller than the initial value derived
from the two initial solutions. It is remarkable that the value of G0/c where the value of the objective function
stabilizes in incoherent for the different problems Pi . We note that for G0/20 we obtain already the best values
for Z(Sbest).

Based on the results from Table 3, we estimated � by the procedure described in Section 3.4, i.e. � := Gest :=
max{�s(T ), Gest}, and the implementation was executed for both values of T and each Pi , i = 1, . . . , 12; cf. Table 4.
If we now compare the outcomes for G0/20 in Table 3, where we obtain the best results for Z(Sbest), and for Gest in



Author's personal copy

M.S. Zahrani et al. / Computers & Operations Research 35 (2008) 2049–2070 2061

Table 3
Zbest for T = 2 × 104 and different � settings (steinb10)

No. of Size of G0 T = 2 × 104

Pi Pi values � = G0/2 G0/4 G0/8 G0/16 G0/20 G0/32

1 9 19 1104 1098 1098 1098 1098 1098
2 10 19 1164 1164 1164 1164 1164 1164
3 11 28 1305 1305 1305 1305 1305 1305
4 12 49 1379 1379 1379 1379 1379 1379
5 13 108 1551 1535 1531 1531 1528 1528
6 14 148 1861 1817 1812 1812 1812 1812
7 15 156 2135 2131 2086 2080 2080 2080
8 16 156 2265 2251 2251 2238 2238 2238
9 17 156 2355 2321 2320 2314 2314 2314

10 18 178 2485 2485 2468 2448 2442 2442
11 19 190 2563 2557 2524 2520 2516 2516
12 20 194 2664 2636 2636 2636 2632 2632

Table 4
Zbest for Gest (steinb10)

Size of Gest Z(Sbest) values

Pi values T = 104 T = 2 × 104

9 6 1098 1098
10 6 1164 1164
11 17 1305 1305
12 30 1384 1379
13 59 1611 1551
14 68 1861 1825
15 71 2163 2135
16 143 2314 2279
17 146 2391 2355
18 157 2531 2486
19 169 2573 2567
20 171 2721 2693

Table 4, and if we take into account the relation between Gest and G0/20, we conclude that

�est ≈ Gest

10
(15)

is an appropriate choice for � in (13); cf. Table 5.
We note that for �est = Gest/10 we not always obtain the best solutions we achieved by applying LSA (cf. Tables 3,

5, 6, 8, 9, 11). But the relation demonstrates on one hand the big difference between Gest and �est, and on the other hand
it seems to be preferable for our search procedure to slightly over-estimate the value of � in (13) because it increases
the certainty that the search procedure can “escape” from local minima.

In Tables 6–11 we present the corresponding results (for P7,…, P12 only) for steinb11 and steinb18. The results
demonstrate that the estimation according to (15) is largely independent of the underlying network structure, i.e. the
results suggest that the relation between Gest and �est rather depends on the functions Co and Ca than on structural
parameters.

Thus, for a given multicast routing problem P with fixed edge capacities, as defined in (2), one can proceed as
follows: firstly, the simulated annealing-based algorithm is executed for �=G0, and Gest is estimated according to the
procedure from Section 3.4. Secondly, the calculations are repeated for � = Gest/10, i.e. the total number of runs is
reduced to two. If only LSA is used to minimise the value of the objective function, the constant c in Gest/10 can be
chosen slightly larger than in (15).



Author's personal copy

2062 M.S. Zahrani et al. / Computers & Operations Research 35 (2008) 2049 – 2070

Table 5
Zbest for �est ≈ Gest/10

Size of Z(Sbest) values

Pi T = 104 T = 2 × 104

9 1098 1098
10 1164 1164
11 1305 1305
12 1379 1379
13 1535 1531
14 1823 1812
15 2113 2084
16 2249 2242
17 2331 2319
18 2462 2451
19 2540 2521
20 2648 2636

Table 6
Zbest for T = 2 × 104 and different � settings (steinb11)

No. of Size of G0 T = 2 × 104

Pi Pi values � = G0/2 G0/4 G0/8 G0/16 G0/20 G0/32

7 15 200 2082 2022 1994 1974 1942 1942
8 16 227 2220 2177 2148 2108 2081 2081
9 17 302 2321 2290 2265 2230 2207 2207

10 18 296 2439 2412 2382 2353 2329 2329
11 19 337 2506 2457 2428 2406 2382 2382
12 20 419 2728 2702 2683 2668 2589 2589

Table 7
Zbest for Gest (steinb11)

Size of Gest Z(Sbest) values

Pi values T = 104 T = 2 × 104

15 131 2084 2042
16 176 2224 2188
17 223 2310 2303
18 170 2447 2429
19 201 2531 2482
20 258 2748 2716

Table 8
Zbest for �est ≈ Gest/10

Size of Z(Sbest) values

Pi T = 104 T = 2 × 104

15 1994 1977
16 2148 2113
17 2265 2239
18 2382 2367
19 2428 2411
20 2683 2674



Author's personal copy

M.S. Zahrani et al. / Computers & Operations Research 35 (2008) 2049–2070 2063

Table 9
Zbest for T = 2 × 104 and different � settings (steinb18)

No. of Size of G0 T = 2 × 104

Pi Pi values � = G0/2 G0/4 G0/8 G0/16 G0/20 G0/32

7 15 223 2273 2252 2236 2218 2204 2204
8 16 268 2421 2412 2396 2381 2375 2375
9 17 313 2625 2597 2582 2554 2532 2532

10 18 353 2705 2693 2679 2657 2641 2641
11 19 397 2807 2797 2765 2749 2735 2735
12 20 522 3096 3065 3018 2993 2988 2988

Table 10
Zbest for Gest (steinb18)

Size of Gest Z(Sbest) values

Pi values T = 104 T = 2 × 104

15 203 2279 2263
16 206 2423 2414
17 235 2638 2607
18 302 2724 2695
19 329 2817 2802
20 418 3112 3076

Table 11
Zbest for �est ≈ Gest/10

Size of Zbest values

Pi T = 104 T = 2 × 104

15 2245 2234
16 2407 2389
17 2586 2562
18 2686 2670
19 2791 2755
20 3048 3009

5.2. Computational experiments for genetic local search

The implementation described in Section 3.4 has been extended by the PMX crossover algorithm and modified
with respect to the quasi-deterministic local search presented in Algorithm 4.2, see Section 4.2. The multicast routing
problems are the same as in Section 5.1, i.e. we analyze 12 routing tasks defined for three networks that are based on
the instances no. steinb10, steinb11, and steinb18 from the OR library [46, cf. Table 1].

The parameters M , K , and N were chosen in such a way (L = 50 is fixed) that M · K · N is in the region of T from
our experiments with LSA; cf. Tables 4–11 in Section 5.1. Thus, the particular parameter settings were M = 7, 10,
K = 70, 80, and N = 20, 25.

In Tables 12, 14, and 16 , the numbers in bold face indicate improvements in comparison to the results obtained by
LSA, as shown in Tables 3, 6, and 9. The setting NPMX = 223 in Tables 13, 15, and 17 is motivated in Section 5.3; see
(20) and (21) (Tables 13–17).

As can be seen, the genetic local search with LSA pre-processing performs better on larger multicast routing instances
compared to applications of either LSA or PMX only, especially for a total number of operations M · K · N that is
equivalent to T = 2 × 104, where we achieved the best results for LSA. For all of the instances, LSA produces better



Author's personal copy

2064 M.S. Zahrani et al. / Computers & Operations Research 35 (2008) 2049 – 2070

Table 12
Zbest for GLS with elitist PMX (steinb10)

Size of N = 20, K = 70, N = 25, K = 80,
Pi L = 50, M = 7 L = 50, M = 10

15 2082 2080
16 2242 2236
17 2316 2314
18 2446 2442
19 2520 2516
20 2636 2626

Table 13
Zbest for PMX alone

Size of NPMX = 223
Pi M = 10

15 2227
16 2396
17 2539
18 2657
19 2755
20 2999

Table 14
Zbest for GLS with elitist PMX (steinb11)

Size of N = 20, K = 70, N = 25, K = 80,
Pi L = 50, M = 7 L = 50, M = 10

15 1952 1931
16 2087 2070
17 2206 2171
18 2317 2284
19 2338 2319
20 2583 2571

Table 15
Zbest for PMX alone

Size of NPMX = 223
Pi M = 10

15 2094
16 2249
17 2340
18 2454
19 2540
20 2652

results than the use of PMX crossover only. We note that omitting elitist solutions in GLS runs produces worse results
compared to LSA-based search.

5.3. Run-time analysis

As mentioned at the end of Section 5.1, the pre-processing step has to be executed only once for a given network
structure and sample routing tasks in order to (roughly) estimate the value of �est. Thus, the time complexity of our



Author's personal copy

M.S. Zahrani et al. / Computers & Operations Research 35 (2008) 2049–2070 2065

Table 16
Zbest for GLS with elitist PMX (steinb18)

Size of N = 20, K = 70, N = 25, K = 80,
Pi L = 50, M = 7 L = 50, M = 10

15 2216 2204
16 2379 2375
17 2523 2500
18 2646 2634
19 2736 2723
20 2967 2947

Table 17
Zbest for PMX alone

Size of NPMX = 223
Pi M = 10

15 1978
16 2105
17 2223
18 2336
19 2390
20 2602

Table 18
Solution times for LSA-runs

Pi steinb10 steinb11 steinb18

ZI ZF Time ZI ZF Time ZI ZF Time

1 1117 1098 2569 1207 1089 2863 1481 1335 2888
2 1183 1164 2650 1258 1137 2951 1496 1378 3156
3 1330 1305 3024 1343 1218 3173 1648 1486 3316
4 1428 1379 3402 1396 1275 3385 1778 1594 3525
5 1636 1528 3495 1558 1409 3527 1971 1722 3720
6 1966 1812 3557 1938 1757 3806 2326 2032 4117
7 2236 2080 3801 2235 1942 4065 2586 2204 4507
8 2392 2238 4169 2387 2081 4587 2775 2375 4659
9 2470 2314 4093 2584 2207 4836 3147 2532 5121

10 2618 2442 4389 2702 2329 4962 3299 2641 5238
11 2724 2516 5025 2784 2382 5052 3391 2735 5309
12 2836 2632 5376 3156 2589 5541 3706 2988 5797

approach is actually determined by the procedure described in Section 4.2. However, in both cases (LSA pre-processing
and genetic local search), the most time-consuming part is the execution of the KMB algorithm [48] for n simultaneous
routing requests Ri defined by the multicast routing problem P = [G; Co; Ca; R1, . . . , Rn]; see (2). For G with p

nodes and a maximum number q of destination nodes in requests Ri (e.g., q = 8 for the requests in Table 1), the time
complexity to execute the KMB algorithm is O(q ·p2) [48]. According to Section 3.2 and Fig. 2, the maximum number
of requests Ri that have to be re-routed in a single neighbourhood transition is upper bounded by n. Thus, for T Markov
chain transitions, the time complexity of the procedure described in Section 3.4 can be roughly upper bounded by

O(T · n · q · p2). (16)

In Table 18, we report the values ZI of the initial solutions, the values ZF of final solutions and the computation time
(in seconds) for the best runs by LSA as described in Section 3.4.



Author's personal copy

2066 M.S. Zahrani et al. / Computers & Operations Research 35 (2008) 2049 – 2070

Table 19
Solution times for GLS-runs

Pi steinb10 steinb11 steinb18

ZF Time ZF Time ZF Time

7 2080 7638 1931 7749 2204 7938
8 2236 8275 2070 7912 2375 8155
9 2314 8561 2171 8328 2500 8625

10 2442 8906 2284 8694 2634 9132
11 2516 9163 2319 9052 2723 9527
12 2626 9520 2571 9576 2947 9743

The time ranges from 43 min (P1 and steinb10) to 97 min (P12 and steinb18). The improvement of the objective
function ranges from 1.7% (P1 and steinb10) to almost 20% for P12 and steinb18. The latter value seems quite significant,
given the size of the problem and the time spent on the improvement.

We recall that the PMX operator requires the execution of the KMB algorithm for both offsprings of each pair from
the current population of size M; see Fig. 3. This results in an upper bound of 2 ·M · (M − 1)/2 ·O(n ·q ·p2), which is
repeated N times. Furthermore, we execute N ·K search steps of complexity O(n ·q ·p2) for each of the M individuals
of the population; see (3)–(5) in Section 4.2. Here, we simply assume L = O(1), since it is difficult to estimate how
often the L-test for local minima is executed. If we now translate the parallel execution of M threads on a PC-cluster
into sequential time, we obtain for genetic local search the upper bound

N · M · (M − 1) · O(n · q · p2) + M · N · K · O(n · q · p2), (17)

= M · N · K · O(n · q · p2) ·
(

M − 1

K
+ 1

)
, (18)

= O(M · N · K · n · q · p2), (19)

if K > M as in our choice of parameters. For M · K · N = T we have in (19) the same upper bound as in (16), but one
can expect the actual run-time to be larger compared to LSA-runs due to L= 50 and the auxiliary computations related
to the communication between the M threads (individuals of the population).

In Section 5.2, we presented Zbest for P7,…, P12 obtained by our genetic local search procedure. For M ·K ·N=2×104,
Table 19 shows the corresponding run-times (in seconds) for all three steinb-instances and the associated multicast
routing problems P7,…, P12. The run-times are for a sequential simulation of M independent runs for each individual
of the population, which allows a direct comparison to Table 18; see also (19). Since we have M independent runs, ZI
is not mentioned explicitly.

We see that in terms of sequential run-time, the amount of time increases by 68%, . . . , 80% (steinb18) in order to
obtain the better results by genetic local search. The time ranges from 127 min (P7 and steinb10) to 163 min (P12 and
steinb18). Compared to LSA-runs (see Table 18), the improvement of the objective function ranges from 0.09% (P8
and steinb10) to almost 1.4% for P12 and steinb18. If the program is executed on a PC cluster of size M , the time has
to be divided roughly by M = 10, i.e. one obtains better results in shorter time at the expense of hardware costs. In this
case, the run-time would range from about 13 min (P7 and steinb10) to 17 min (P12 and steinb18).

Finally, if PMX crossover is executed NPMX times, where each execution time is upper bounded by M · (M − 1) ·
O(n · q · p2), we obtain

NPMX · M · (M − 1) · O(n · q · p2). (20)

If we require the same order of time complexity as in (16) and (19), we have to set NPMX ·M · (M −1)=M ·N ·K =T ,
i.e. we obtain

NPMX = N · K

M − 1
= T

M · (M − 1)
. (21)



Author's personal copy

M.S. Zahrani et al. / Computers & Operations Research 35 (2008) 2049–2070 2067

Table 20
Solution times for PMX-runs

Pi steinb10 steinb11 steinb18

ZF Time ZF Time ZF Time

7 2094 7503 1978 7638 2227 7859
8 2249 8124 2105 7795 2396 7981
9 2340 8311 2223 8248 2539 8533

10 2454 8735 2336 8462 2657 9058
11 2540 9032 2390 8941 2755 9375
12 2652 9384 2602 9407 2999 9582

Table 21
The problem Psample with six requests

Request Source Destination(s) Capacity

R1 G A, C, F 5
R2 A E, F, G 4
R3 H B, D, F, G 3
R4 C E 5
R5 E A, B, F 3

Thus, for T = 2 × 104 we have NPMX ≈ 223. In Table 20, we present the run-times for NPMX := 223 with NPMX
applications of the PMX operator. Since permanently PMX crossover is applied, these are sequential runs where a
population of size M is maintained.

Compared to LSA-runs, all the solutions on P7,…, P12 as well as the run-times are worse for PMX-runs. Al-
though the order of the time complexity estimation is the same for (16) and (20) if NPMX := 223 in (21), the fact
that the run-times are worse for PMX-runs can be explained by auxiliary calculations related to the PMX opera-
tor (e.g., selection of M fittest solutions after each step), which are hidden in the constants of the time complexity
estimation.

Since the GLS-runs produce on most instances better results than LSA-runs, the PMX-runs are worse on all instances
compared to GLS (e.g. by about 1.8% on P12 for steinb18). The run-times of PMX-runs differ only marginally from
the times for GLS-runs, which confirms (20) and the setting NPMX := 223 according to (21). As mentioned above,
the run-times of sequential GLS simulations can be divided roughly by M for parallel executions of the program. The
PMX-runs could be parallelised by using M processors to handle the M · (M − 1)/2 crossover operations, but this
would involve additional communication time between the processors.

5.4. Comparison to CPLEX solutions

Recently, the CPLEX programming package [57] has been employed to solve routing-related optimisation problems;
see [58,59]. We used the publicly available version from [57] to compare CPLEX-solutions to our approach. Due to
the limitations of the publicly available version (300 variables and 300 constraints), we executed the comparison on
a small example at the limits of this version. The multicast routing tasks P7,…, P12 from Section 5.1 (e.g., P12 with
20 requests defined on a graph with 100 nodes and 200 edges) would require the definition of about 9000 to 12 000
variables plus constraints.

The example Psample = [G; Co; 11; R1, . . . , R5] is defined in Table 21, and the network information is shown in
Fig. 4. The problem Psample generates about 200 variables and close to 300 constraints as input to the CPLEX program,
i.e. it is already close to the limits of the publicly available version.

The CPLEX program as well as the LSA procedure were started with the order of requests as given in Table 21. The
CPLEX problem produced a solution of cost value 308 in a fraction of a second, while the LSA procedure arrived at
253 for the first time after T = 11 Markov chain transitions (approximately the same value in repeated runs), also in
a fraction of a second. The value 253 was returned for the order [R4, R2, R5, R3, R1] of requests. Both results were



Author's personal copy

2068 M.S. Zahrani et al. / Computers & Operations Research 35 (2008) 2049 – 2070

B C

F

G

D

A E

(4, 11)
H

(3, 11)

(2, 11)
(7, 11)

(2, 11)

(4, 11)

(4, 11)

(5, 11)

(6, 11)

(3, 11)

(6, 11)

Fig. 4. The underlying network of Psample with labels (cost, capacity = 11).

obtained on comparable hardware. Thus, due to the search-based nature and the neighbourhood relation from Fig. 2,
the LSA procedure seems to have an advantage over CPLEX on this type of “order-sensitive” problems.

The value 253 remained the best value for T = 104 Markov chain transitions, and the LSA procedure terminated
after 13.8 s (of course, for this small example, one could look-up all 120 permutations in shorter time). If we now adapt
the results and methodology from [40] (see also paragraph after Theorem 1), in particular the empirical hypothesis
from Section 4.1 in [40], we can estimate the confidence that 253 is the optimum solution: the value 253 was obtained
for � := 3.6 = Gest/10, which was chosen according to (15); the maximum size n of the neighbourhood relation for
Psample is upper bounded by 5 × 4/2 = 10, i.e. from T = 104 = (n/�)� = (10/�)3.6 we obtain � = 10/104/3.6 ≈ 0.77.
Thus, we have a confidence 1 − � of about 0.33 (33%) that 253 is the optimum solution for Psample, if the routing of
single requests is executed by the KMB algorithm.

6. Conclusion

We introduced a genetic local search heuristic that utilises logarithmic simulated annealing (LSA) in a pre-processing
step for an analysis of the landscape generated by a multicast routing problem and the associated objective function. The
genetic local search employs the partially mixed crossover (PMX) operation in-between sequences of downward and
upward search steps, where the elitist model is applied. The PMX operation seems to be particularly suited to problems
like multicast routing, since the outcome of the operation is always defined for two given parent routing orders. The
computational experiments were executed on three synthetic networks that are based on the instances steinb10, steinb11,
and steinb18 from the OR library. The results show that the random walk that is guided by a parameter obtained from
the landscape analysis together with the PMX operation provide better results on most routing instances compared to
“pure” simulated annealing-based search as well as to applications of PMX crossover only. We note that to achieve these
results the elitist approach was essential. Future research will concentrate on implementations in distributed systems,
where the size of the population can be chosen much larger than in the present study.

Acknowledgement

The author would like to thank the anonymous referees for their very careful reading of the manuscript and many
helpful suggestions that resulted in an improved presentation.

References

[1] Oliveira CAS, Pardalos PM. A survey of combinatorial optimization problems in multicast routing. Computers & Operations Research
2005;32:1953–81.



Author's personal copy

M.S. Zahrani et al. / Computers & Operations Research 35 (2008) 2049–2070 2069

[2] Wang Z, Bingxin S, Liu W. A distributed dynamic heuristic for delay-constrained least-cost multicast routing. Journal of Interconnection
Networks 2000;1(4):331–44.

[3] Novak R, Rugelj J, Kandus G. A note on distributed multicast routing in point-to-point networks. Computers & Operations Research
2001;28:1149–64.

[4] Diot C, Dabbous W, Crowcroft J. Multipoint communication: a survey of protocols, functions, and mechanisms. IEEE Journal on Selected
Areas in Communications 1997;15:277–90.

[5] Muchnik VB, Shafarenko AV. Dynamic evaluation strategy for fine-grain data-parallel computing. IEE Proceedings—Computers and Digital
Techniques 1996;143:181–8.

[6] Salama HF, Reeves DS, Viniotis Y. Evaluation of multicast routing algorithms for real-time communication on high-speed networks. IEEE
Journal on Selected Areas in Communications 1997;15:332–45.

[7] Mir-Fakhraei N. An efficient multicast approach in an ATM switching network for multimedia applications. Journal of Network and Computer
Applications 1998;21:31–9.

[8] Yeo CK, Lee BS, Er MH. A framework for multicast video streaming over IP networks. Journal of Network and Computer Applications
2003;26:273–89.

[9] Yeo CK, Lee BS, Er MH. A survey of application level multicast techniques. Computer Communications 2004;27:1547–68.
[10] Li X, Veeravalli B. Design and performance analysis of multimedia document retrieval strategies for networked video-on-reservation systems.

Computer Communications 2005;28:1910–24.
[11] Masip-Bruin X, Yannuzzi M, Domingo-Pascual J, Fonte A, Curado M, Monteiro E, Kuipers F, Van Mieghem P, Avallone S, Ventre G, Aranda-

Gutiérrez P, Hollick M, Steinmetz R, Iannone L, Salamatian K. Research challenges in QoS routing. Computer Communications 2006;29:
563–81.

[12] Yang CB, Wen UP. Applying tabu search to backup path planning for multicast networks. Computers & Operations Research 2005;32:
2875–89.

[13] Banerjee S, Kommareddy C, Kar K, Bhattacharjee B, Khulle S. OMNI: an efficient overlay multicast infrastructure for real-time applications.
Computer Networks 2006;50(6):826–41.

[14] Harrison T, Williamson C. A performance study of multicast routing algorithms for ATM networks. In: Proceedings of 21st annual IEEE
conference on local computer networks. 1996. p. 191–201.

[15] Zhang QF, Leung YW. An orthogonal genetic algorithm for multimedia multicast routing. IEEE Transactions on Evolutionary Computation
1999;3:53–62.

[16] Karp RM. Reducibility among combinatorial problems. Complexity of computer computations. New York: Plenum Press; 1972 p. 85–103.
[17] Zhu L, Wainwright RL, Schoenefeld DA. A genetic algorithm for the point to multipoint routing problem with varying number of requests. In:

Proceedings of IEEE international conference on evolutionary computation. 1998. p. 171–6.
[18] Galiasso P, Wainwright RL. A hybrid genetic algorithm for the point to multipoint routing problem with single split paths. In: Proceedings of

ACM Symposium on Applied Computing. 2001. p. 327–32.
[19] Ericsson M, Resende MGC, Pardalos PM. A genetic algorithm for the weight setting problem in OSPF routing. Journal of Combinatorial

Optimization 2002;6(3):299–333.
[20] Barolli L, Koyama A, Suganuma T, Shiratori N. GAMAN: a GA based QoS routing method for mobile Ad-Hoc networks. Journal of

Interconnection Networks 2003;4(3):251–70.
[21] Yang WL. A heuristic algorithm for the multi-constrained multicast tree. Proceedings of the sixth IFIP/IEEE international conference on

management of multimedia networks and services, Lecture Notes in Computer Science, vol. 2839, 2003. p. 78–89.
[22] Skorin-Kapov N, Kos M. The application of Steiner trees to delay constrained multicast routing: a tabu search approach. Proceedings of the

seventh international conference on telecommunications, vol. 2, 2003. p. 443–8.
[23] Wang H, Fang J, Wang H, SunYM. TSDLMRA: an efficient multicast routing algorithm based on tabu search. Journal of Network and Computer

Applications 2004;27(2):77–90.
[24] Roy A, Das SK. QM2RP: a QoS-based mobile multicast routing protocol using multiobjective genetic algorithms. Wireless Networks

2004;10(3):271–86.
[25] Kampstra P. Evolutionary computing in telecommunications. BMI paper, August 2005. Vrije Universiteit Amsterdam.
[26] Kirkpatrick S, Gelatt Jr CD, Vecchi MP. Optimization by simulated annealing. Science 1983;220:671–80.
[27] Černy V. A thermodynamical approach to the travelling salesman problem: an efficient simulation algorithm. Journal of Optimization Theory

and Applications 1985;45:41–51.
[28] Hajek B. Cooling schedules for optimal annealing. Mathematics of Operations Research 1988;13:311–29.
[29] Catoni O. Rough large deviation estimates for simulated annealing: applications to exponential schedules. Annals of Probability 1992;20:

1109–46.
[30] Aarts EHL. Local search in combinatorial optimization. New York: Wiley; 1998.
[31] Cui Y, Xu K, Wu JP, Yu ZC, Zhao YJ. Multi-constrained routing based on simulated annealing. Proceedings IEEE international conference on

communications, vol. 3, 2003. p. 1718–22.
[32] Wang XW, Cheng H, Cao J, Zheng LW, Huang M. A simulated-annealing-based QoS multicasting algorithm. In: Proceedings international

conference on communication technology. 2003. p. 469–73.
[33] Wang XL, Jiang Z. QoS multicast routing based on simulated annealing algorithm. In: Proceedings SPIE on network architectures, management,

and applications. 2004. p. 511–6.
[34] Kun Z, Heng W, Feng-Yu L. Distributed multicast routing for delay and delay variation-bounded Steiner tree using simulated annealing.

Computer Communications 2005;28:1356–70.
[35] Wang X, Cao J, Cheng H, Huang M. QoS multicast routing for multimedia group communications using intelligent computational methods.

Computer Communications 2006;29:2217–29.



Author's personal copy

2070 M.S. Zahrani et al. / Computers & Operations Research 35 (2008) 2049 – 2070

[36] Wright S. The roles of mutation, inbreeding, crossbreeding and selection in evolution. Proceedings of the sixth international congress on
genetics, vol. 1, 1932. p. 356–66.

[37] Merz P, Freisleben B. Fitness landscapes, memetic algorithms, and greedy operators for graph bipartitioning. Evolutionary Computation
2000;8(1):61–91.

[38] Reidys CM, Stadler PF. Combinatorial landscapes. SIAM Review 2002;44(1):3–54.
[39] Wales D. Energy landscapes. Cambridge: Cambridge University Press; 2003.
[40] Albrecht AA. A stopping criterion for logarithmic simulated annealing. Computing 2006;78:55–79.
[41] Ferreira FF, Fontanari JF, Stadler PF. Landscape statistics of the low-autocorrelation binary string problem. Journal of Physics A 2000;33:

8635–47.
[42] Wolfinger MT, Svrcek-Seiler WA, Flamm C, Hofacker IL, Stadler PF. Exact folding dynamics of RNA secondary structures. Journal of Physics

A 2004;37:4731–41.
[43] Schmitt LM. Theory of genetic algorithms. Theoretical Computer Science 2001;259:1–61.
[44] Zahrani MS, Loomes MJ, Malcolm JA, Albrecht AA. Genetic local search for multicast routing, Proceedings of genetic and evolutionary

computation conference (GECCO’06), 2006. p. 615–16.
[45] Steinhöfel K, Albrecht A, Wong CK. Fast parallel heuristics for the job shop scheduling problem. Computers & Operations Research

2002;29(2):151–69.
[46] Beasley JE. OR library: 〈http://people.brunel.ac.uk/∼mastjjb〉.
[47] Hakimi SL. Steiner’s problem in graphs and its implications. Networks 1971;1:113–33.
[48] Kou L, Markowsky G, Berman L. A fast algorithm for Steiner trees. Acta Informatica 1981;15:141–5.
[49] Doar M, Leslie IM. How bad is naïve multicast routing?. In: Proceedings of IEEE INFOCOM. 1993. p. 82–9.
[50] Alexander MJ, Robins G. New performance-driven FPGA routing algorithm. In: Proceedings of ACM/SIGDA design automation conference.

1995. p. 562–7.
[51] Koch T, Martin A. Solving Steiner tree problems in graphs to optimality. Networks 1998;32:207–32.
[52] Prömel HJ, Steger A. A new approximation algorithm for the Steiner tree problem with performance ratio 5/3. Journal of Algorithms 2000;36:

89–101.
[53] Goldberg DE. Genetic algorithms in search. Optimization and machine learning. New York: Addison-Wesley; 1989.
[54] Holland JH. Genetic algorithms. Scientific American 1992;267(1):66–72.
[55] Rudolph G. Convergence analysis of canonical genetic algorithms. IEEE Transactions on Neural Networks 1994;5:96–101.
[56] Baudet P, Azzaro C, Pibouleau L, Domenech S. A genetic algorithm for batch chemical plant scheduling. In: Proceedings of international

congress of chemical and process engineering. 1996. p. 25–30.
[57] CPLEX: 〈http://www.ilog.com/products/cplex/〉.
[58] Pompili D, Lopez L, Scoglio C. Multicast algorithms in service overlay networks. Proceedings of IEEE INFOCOM, 2006.
[59] Guo S, Yang O. Minimum-energy multicast in wireless ad hoc networks with adaptive antennas: MILP formulations and heuristic algorithms.

IEEE Transactions on Mobile Computing 2006;5(4):333–46.


