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ABSTRACT 

This thesis uses primary and secondary sources to study advances in 
complex number theory during the 17th and 18th Centuries. Some space 
is also given to the early 19th Century. Six questions concerning 
their rules of operation, usage, symbolism, nature, representation 
and attitudes to them are posed in the Introduction. The main part 
of the thesis quotes from the works of Descartes, Newton, Wallis, 
Saunderson, Maclaurin, d'Alembert, Euler, Waring, Frend, Hutton, 
Arbogast, de Missery, Argand, Cauchy, Hamilton, de Morgan, $ylvester 
and o~hers, mainly in chronological order, with comment and discussion. 
More attention has been given tp algebraists, the originators of most 
advances in complex numbers, than to writers in trigonometry, calculus 
and analysis, who tended to be users of them. The last chapter sum
marises the most imoortant points and considers the extent to which 
the six questions have been resolved. The most important developments 
during the period are identified as follows 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

(vi) 
(vii) 

the advance in status of complex numbers from 'useless' to 
'useful' 
their interpretation by Wallis, Argand and Gauss in arith
metic, geometric and algebraic ways 
the discovery that they are essential for understanding 
polynomials and logarithmic, exponential and trigonometric 
functions 
the extension of trigonometry, calculus and analysis Lnto 
the complex number field 
the discovery that complex numbers are closed under exponent
iation, and so under all algebraic operations 
partial reform of nomenclature and s.ymbolism 
the eventual extension of complex number theory to n dimen
sions 

In spite of the advances listed above, it is noted that there was a 
continued lack of confidence in complex numbers and avoidance of them 
by some mathematicians, particularly in England. 
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Introduction 

The history of the number ~stem does not neatly follow the 

modern set diagram for the complex number field, in order of discovery, 

acceptance or definition. Natural numbers were discovered first, pro

bably soon after language started, but defining axioms for them appeared 

last (Peano's axioms, 1889). Positive fractions and irrationals were 

next in common use, and the difference between them first noticed by the 

pythagoreans about 600 B.C. Fractions could not be defined until 

naturals were defined but a working definition was possible which des

cribed them as the ratio of two naturals. Irrationals were described 

by the Greeks in terms of what they were not, that is they were not 

commensurable with the naturals. In this is the germ of the 19th Century 

idea that all reals except naturals and those dependent on them for 

their definition (integers and rationals), are irrationals. The nature 

of transcendentals as different from algebraic irrationals was dis

covered in the 18th Century, but an acceptable definition for irrationals 

was not given until the 1870's, by Dedekind and others. Negative and 

complex numbers were accepted reluctantly from Renaissance times onwards. 

Negative integers can be defined by extending the naturals to zero and 

beyond, and modifying Peano's axioms. Imaginary numbers can be defined 

once the reals are complete, and complex numbers when both real and 

imaginary numbers are defined. A clear picture of the way in which 

reals are distributed on the number line depends also on insight into 

transfinite numbers. The Greeks left a legacy of evasion of the infinite, 

both in number and magnitude, and some mathematicians (Gauss, Cauchy) 

denied that an infinite set could exist, while others ignored the~whole 

difficult topic. Cantor was able to give a definition of an infinite 

class during the 1870's and was able to use his ideas to describe the 

distribution of integers, rationals and irrationals on the real number 
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line. A similar set of imaginaries with similar properties could be 

represented on a perpendicular axis in the manner discovered by Wessel 

and Argand, to define the complex plane. Except for the irrationals, 

all the number categories depended on definition of the naturals. It 

can be said that with Peano's axioms of 1889, the number system was 

fully described, and could be represented on a complex plane with 

defined properties. The picture of the comnlex number field as nested 

sets could be given at about the same time as the definitions. However 

number subsets were being widely used long before these definitions and 

descriptions were given, which shows not only a great pioneering spirit 

among mathematicians, but great confidence in the structure of mathe

matics and its procedures. 

This work covers two hundred years of development in complex 

number theor,y and traces an important advance in their standing. At 

the end of this period the subsets of the complex number field were 

known of and the way was clear for 19th Centur,y mathematicians to 

clarify and simplify the situation by providing defining axioms and a 

general description of the number system. 
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This investigation was undertaken with the objective of 

tracing developments in the use, theory and status of complex 

numbers during the 17th and 18th Centuries. 

This period in the history of complex numbers is an important 

one as it saw great advances in their status and place in mathematics. 

The rules for addition, subtraction, multiplication and division of 

complex numbers and the behaviour of conjugates were known before the 

end of the 16th Century, but they were only being used in the solution 

of equations. By the beginning of the 19th Century they were being 

integrated into calculus, trigonometry and the theory of logarithmic 

and exponential functions, and were known to be closed under exponent

iation. It is remarkable that, despite the great progress made during 

this period, there was a widespread lack of confidence, not only in 

complex numbers but in negatives also. 

The aspects of complex numbers that will be considered can 

be summarised as follows : 

(i) the emergence of ,rules of operation 

(ii) ways in which they were used, both in the solution of 

problems and as part of the fabric of mathematics 

(iii) J-1 as a symbol and interactions with other symbols 

such as D, the differential operator 

(iv) the nature of v-1, both in a metaphysical sense (what 

kind of entity is it, does it actually exist ?), and in 

a mathematical sense (is it algebraic, geometric, 

arithmetic ?) 

(v) the search for a physical model or geometrical re

presentation 

(vi) their perceived status and attitudes to these numbers 
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After Bombelli's Algebra (1512), little was added to the rules 

for the arithmetic of complex numbers until Euler gave a value for 

( ) ";-1 vI-1 in 1146, and the work of d'Alembert, Euler, Lagrange and 

others in proving that (a + v!-1b)g + 1-1h is a complex number of the 

form p + vI-1q, so the complex number field is closed under algebraic 

operations. As discoveries were made about more advanced concepts 

such as the logarithms of negative numbers and complex series, the 

rules of behaviour of complex numbers evolved on the basis of con

sistency with the reals. Complex numbers were being used with much 

success to solve problems, particularly theoretical mathematical ones, 

and this emphasised the need to clarify the status of complex numbers. 

Euler gave thought to the nature of complex numbers, and although it 

did not prevent him from making major breakthroughs on such problems 

as the logarithms of negative numbers, he felt his own lack of insight. 

In the search for models and representations the most successful 

mathematician during this period was Wallis, who devised both a prim

itive form of the Argand diagram. and a definition of 1-1 in terms of 

mean proportionals. Th~ attitudes of mathematicians can be found not 

only in what they wrote, but in what they did not write. It is poss

ible to divide mathematicians into those who gave complex numbers 

some kind of coverage, and those who sometimes or always ignored them. 

In the case of Charles Hutton, it has been possible to infer that his 

omission of the topic from an otherwise comprehensive text-book was due 

to his encountering some misleading information in Euler's Algebra. 

The lack of a visual representation for 1-1 had a profound influence 

on attitudes to it, and comnlex numbers were not widely accented until 

after the invention of the Argand diagram. 

It is clear that acceptance of complex numbers percolate~ only 

slowly through the mathematical world. A mass of comment has been 

collected, expressing bewilderment and exasperation with entities ~hat 

lent themselves to useful mathematical development, but whose nature 

was obscure. The formalist view had not been described at this time, 

and mathematicians found the situation so intolerable that some tried 

to ignore complex numbers, and others when giving proofs involving 

them, gave alternative proofs often much longe~. 
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The period has been divided into sections chronologically. The 

first chapter summarises the situation with regard to irrational, 

negative and complex numbers at the beginning of the 11th Century. 

Negatives have been included because understanding the'se is es

sential to understanding complex numbers. Irrationals have been 

included not only because they are a part of the number s.ystem, but because 

attitudes to them passed through similar stages to attitudes to 

negative and complex numbers. It may be said that the difficulties 

with complex numbers constituted the third crisis of confidence to 

occur in the development of the number ~stem. Fractions (rationals) 

have not been dealt with as acceptance of these has not caused similar 

difficulties to mathematicians. 

Chapter II covers the period from the beginning of the 17th 

Century to the work of John Wallis. Primary sources used include 

work by Descartes, Newton and Wallis. 

Chapter III continues from the time of Wallis to that of 

Leonhard Euler. Primary sources include work by Saunderson, d'Alem

bert, Maclaurin and Euler. 

Chapter IV covers the period from Euler to the beginning of 

the 19th Century, ending with the Wessel/Argand diagram. The main 

primary sources are works by Waring, Frend, Hutton, Lagrange, Laplace, 

Arbogast, de Missery and Argand. 

Chapter V describes the position in the early 19th Century. It 

refers to work by Cauchy, Hamilton and de MOrgan. 

The summary includes a consideration of the extent to which the 

original points have been answered ~ Some suggestions for further 

research have been put forward in Appendix II. 

I have sometimes referred to V-1 as 'i' and used the term 

'complex number', although these terms were not in widespread use before 

the 19th Century. I have also used such terms as Dolynomial, field, 

operation etc in their modern sense. 
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Sources used for this investigation include text-books, 

histories, biographies, encyclopaedias, dictionaries, periodicals and 

correspondences. Where works were not originally published in English, 

English translations have been used when available, and treated as 

primary sources. A question which must be considered concerns the 

extent to which the primary sources can be exnected to shed light on 

the topic under investigation. Text-books covering complex numbers 

generally contain rules of orocedure, making it fairly easy to deal 

with the first point, although this area has already been well covered. 

However, where text-books are the only source of information, the 

author's opinions about complex numbers are not often clear, such a 

book would not reveal any unusual views held by the author. Where the 

topic has been omitted, possible reasons may have to be guessed at. 

Encyclopaedias and dictionaries have proved useful in revealing atti

tudes to complex numbers. 

The search for attitudes to complex numbers has focussed at

tention on algebraic works. It was found that users of complex numbers 

in calculus, analysis, trigonometry etc remained- just that; tending to 

accept them in a formalist way and incorporating them into many branches 

of mathematics as entities conforming to known rules. It was the 

algebraists who were concerned with their nature and status and who 

provided the most interesting insights into the difficulties as they 

saw them. For this reason, in this investigation, more attention has 

been paid to writings on algebra than to those on analysis etc. 

I should like to acknowledge my indebtedness to Mathematical 

Thought from Ancient to MOdern Times (1912) by Morris Kline, which 

was used as a starting point and principal secondary source. Where 

sources are not cited, this book has been relied upon for information. 
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Chapter I 

Negative, irrational and complex numbers before the early 11th Century 

The four basic rules for the arithmetic of complex numbers and 

the additive and multiplicative properties of conjugates were available 

by 1600. The Algebra of Raphael Bombelli (published 1512, MS earlier) 

gave these rules correctly. 

The most serious difficulty hindering understanding of complex 

numbers at this time, and for long after, was that negative numbers 

were not yet accepted nor fully understood. Cardano referred to them 

as 'ficticious', Chuquet and Stifel as 'absurd' and even Descartes as 

'false'. Vieta totally ignored negatives in his algebra book, the 

Arithmetica Speciosa of 1590. Girard gave negatives equal treatment 

with positives and Bombelli gave definitions of them although he was 

more adventurous with imaginaries than with negatives. Harriot experimented 

with different rules for '- times +', and '- times -', and explored an 

unorthodox algebra arising from taking as axiomatic that '- times - gives 

-', with the help of a special symbol to denote the product ,_ times +' (1) 

The difficulty arose from the fact that the first printed version of 

Bombelli's Algebra had some vital and misleading inaccuracies, although the 

MS version was correct. These errors were rectified later, but mean

while the statement '- times - gives -' caused confusion to both Harriot 

and Cardano. However Harriot did not accept negatives as roots although 

he used negative roots in equations, and sometimes even a negative 
- . 

quantity alone on one side of an equation. Stevin, by using negative 

coefficients in equations, gave a single method for the solution of 

quadratics using algebraic methods to prove his solution correct, but 

gave only real roots. Descartes changed his attitude to negatives when 

he discovered that negative roots may be increased by any desired 

amount and become positive, by simple real manipulations of the unknown. 

(1) Tanner, "The Ordered Regiment of the Minus Sign", Annals of Sc., 

31(1980),121-58, (p.134) 
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However this nrocedure was not known in the 16th Century, and if it had 

been, might only have increased suspicion of complex roots (as it did 

for Descartes), as these roots are not susceptible to same treatment. 

In the Arithmetica Integra of 1544, Vieta accepts irrationals 

only reluctantly and on the grounds that the results obtained from 

using them are valid. This argument has frequently been used by math

ematicians to justify acceptance of number categories, particularly 

complex numbers. Vieta takes the view that irrationals, like infinity, 

are not true numbers as they are not exactly expressible as decimals. 

Later, Pascal, Barrow and Newton were to accept irrationals as geometric 

magnitudes, justifiable by the Eudoxan theory of magnitudes. 

Attitudes to complex numbers in the 16th Century were even less 

confident. Cardano refers to 'mental tortures' and calls a complex 

solution 'as refined as it is useless'. Bombelli, although giving the 

four rules correctly and appearing to manipulate complex numbers con

fidently (especially conjugates), nevertheless refers to them as 

'useless' and 'sophistic'. This was not an unusual view, their usefulness 

was only recognised later. Bombelli was the first to show that 

Cardano's method for the roots of a cubic gave a real root in the 

irreducible case, where the root is a complicated complex expression. , 
Bombelli used geometrical methods for his proof; Vieta and Girard later 

used trigonometry. This did not remove the paradox that a complicated 

expression involving the cube roots of complex numbers should reduce to 

a real number. It was shown that it did in fact do so, but this still 

seemed paradoxical. This demonstration was not the powerful argument 

for generating confidence in negative and complex numbers that it 

should have been. Bombelli also solved certain quartics, showing 

courage in manipulating symbols whose meanings may not be easy to inter

pret. Cardano was able to manipulate comnlex numbers to some ext~?t, 

but had little confidence in them. Harriot said that every quadratic 

'if possible' has two real roots, 'but in case the Equation be impqss

ible, those two roots are not Real but only Imaginary,(1). Harriot 

did not give any complex roots, to him 'imaginary' meant 'non-existent'. 

(1) Wallis, Algebra, p.132 

14 



Girard stated without proof that every polynomial of degree n has n 

roots, implying acceptance of negative and complex quantities as roots 

to be counted together with positive real ones and taking repeated roots 

as separate. Counting these together shows that he thought of them as 

the same kind of entity, but he would not necessarily have had any 

very sophisticated ideas about only counting together homogeneous 

quantities. Magnitudes, areas and volumes had been added in equations 

since Greek times, at least. Girard's views do not seem to have had 

much impact on mathematical thinking. 

The fears and misunderstandings prevalent in the 16th Century 

about negative and complex numbers can be attributed only partly 

to the fact that the second were being forced upon the attention before 

the first had been assimilated. They must be traced back, at least in 

part, to the traditional practice of proving real number algebraic 

results by geometric Euclidean methods. It was not until the 19th 

Century that a partially successful structure was devised to give 

algebra a rigour comparable with that attributed to geometry. 1be 

Greek legacy was not only a wealth of ideas for rediscovery, but the 

restriction of an algebra based on geometric magnitudes requiring 
, 

geometric proofs, rather than on numbers. Because of the difficulty of 

geometric representation, this severely hampered understanding of 

negative and complex numbers, and so of full understanding of the 

number system. A further serious difficulty was the. proliferation of 

algebraic notations. Many of these involved abbreviations of Latin 

words which had not been well-considered, and the number of variations 

indicates their unsatisfactoriness. This problem was not resolved 
/ ~ 

until the pUblication in 1637 by Descartes of La Geometrie. ~ then 

printing had been developing for about two hundred years and th~ lucid 

notation of Descartes, only partly his own, was taken up and little 

altered from that time. A further obstacle was a lingering tenden~y to 

secrecy about new mathematical discoveries persisting from Medieval 

times. This practice was dying out by the end of the 16th Century, but 

the founding of learned societies and journals for free exchange of 

information did not take place until the second half of the 17th Century. 
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Finally, the names 'imaginary' and 'impossible' in use at 

this time inevitably give the impression that the writers thought of 

them as actually imaginary or impossible, that is non-existent. Un

fortunately the names reinforced this impression for readers at the 

time, in a vicious circle that would have been very difficult to break 

out of. If the nomenclature had been thought unsuitable then more 

suitable neutral names would have been devised for them. Once such 

names become attached to number categories, it is difficult to see 

how they could have been thought of in any new, constructive or ab

stract way. In the case of complex numbers, these would have been 

taken as formal solutions to equations which could have been useful in 

certain ways, but not as actual answers to problems with any sort of 

existence. Even the name 'complex' is not a very great improvement, 

it perpetuates the notion that the number system encompasses some very 

abstruse ideas. This point is only important if the naturals, say, 

are thought to have some ideal Platonistic existence somewhere. It 

is only if this view of numbers is taken that it is important whether 

complex numbers, say, have that kind of existence. All numbers must 

participate in the same kind of existence if they are to be the same 
\ 

kind of entity. To many mathematicians the existence or otherwise of 

numbers depended on whether they were geometrically constructable. 

This is one of the reasons why the Argand diagram later became important, 

but this was not to come for another two centuries. 

The general picture at the beginning of the 17th Century was one 

in which irrationals were barely acceptable, negatives were very reluc

tantly accepted and only because thought useful, but complex numbers, if 

they had any existence at all, were considered strange and useless. 
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Chapter II 

The early 11th Century to the Algebra (1685) of John Wallis 

This period saw understanding of negative and complex numbers 

progress to a point where John Wallis, in his Treatise of Algebra of 

1685, was able to give a diagrammatic representation of a complex 

number, an explanation of V(-1) in terms of mean proportionals and 

attempt a concrete interpretation by means of problems which gave 

rise to complex answers. But this point was not attained easily, nor 

did these achievements of Wallis have the impact that might have been 

hoped for. 

Among discussions during this period about negative numbers 

was the paradox of Arnauld which questioned the equality -1 : +1 = 
+1 : -1; since -1 is less than +1 how can a smaller quantity to a 

greater be equal to a greater t'o a smaller? No satisfactory answer 

to this question was produced, -1 cannot be equal to +1 and the 

paradox is not removed by taking -1 to be greater than +1. Moreover 

Wallis, in his Arithmetica Infinitorum (1655) suggests that negatives 

must be greater than infinity. Here Wallis argued that since a/O with 

positive a is infinite then when the denominator is negative, alb with 

negative b must be greater than infinity. Considering the following 

sequences: A =. . 1 1 1 L 1 L 1... 
2 1 ·5 ·25 0 --25 -·5 

and B = • . ·5 1 2 4 oC -4 -2 • • 

we have the denominators in sequence A progressively decreasing from 

positive through zero to negative, and the corresponding values in 

sequence B progressively increasing from positive through infinity to 

become negative. This was Wallis's argument that negatives must be 

greater than infinity. However Wallis seems to have overlooked the 

fact that the the first premise, that the denominators in sequence 

A are decreasing, assumes that negative numbers are less than 7ero. 
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So, by this argument, the oremise that negatives are less than zero 

leads to the conqlusion that they are greater than infinity. Wallis 

does not mention this serious paradox, he may not have considered 

it a paradox or possibly may not have noticed it. Wallis simply 

concludes that negative numbers are greater than infinity rather 

than that the assumption that they are less than zero leads to the 

conclusion that they are greater than infinity. This must be a 

paradox if not a contradiction. Paradoxes of this kind arise from 

_ the nature of the discontinuity at 1/0 and the difficulties of recon-

ciling the order and ratio relations, and reinforced the doubts about 

negative numbers which continued to hinder the/acceptance of complex 

numbers. 

Descartes considers quadratic equations with irrational 

coefficients (see below), and Wallis, in Chapter XLVII of his Algebra (1) 

uses the method of separation of rational and irrational parts when 

evaluating a supposed root of a polynomial. This parallels the 

separation of real and imaginary parts by later mathematicians such 

as Euler. In Chapter LXVI Wallis takes the method of finding the square 

root of a positive quantity by mean proportionals and extends it to 
(2) Th t . .. the square roots of negative quantities • a 1S, once aga1n, a 

method in use for finding an irrational quantity was being used to gain 

insight into complex quantities (see below). 

References to complex numbers during this period refer mainly 

to their part in the solution of the cubic, the modification of quad

ratics by real number operations, the numbers of roots in equations 

and the nature of 'impossible' quantities. 

Ren~ Descartes 1597-1650 

/" ./ 
Descartes published La Geometrie in 1637. In it is described 

the method for modifying the roots of a quadratic by addition or 

multiplication without evaluating them. He points out the unsatis

factory fact that the manipulations described can make negative roots 

positive but cannot eliminate complex roots. He uses real manipulations 

(1) Wallis, pp.177-79 
(2) Wallis, p.266 
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of the unknown, overlooking the fact that only complex manipulations 

can eliminate complex roots. Bearing in mind that the complex roots 

of a quadratic equation with integral coefficients must be conjugates, 

the procedune is to add or subtract the appropriate imaginary quantity 

in such a way as to remove it. Since x2_ 2ax + a2+ b2= 0 has complex roots 

01... and (!> where 01... = a + ib and (3 = a - ib, we must form the equation 

with roots ~ - ib and p + ib. This means that, not only must we know 

the exact imaginary quantity to add and subtract, but the addition and 

subtraction must be done so that 0( - f3 = 2ib and not -2ib. Using 

. -ozp = a2 
+ b2 and 0{ + (3 = 2a, this leads to x2 - 2ax + a2 

= 0 which is 

the equation required, having two equal real roots. This is equivalent 

to eliminating from the equation the quantity which prevents it from 

being a perfect square. Descartes might not have considered this a 

valid expedient, even with the explanation above. The fact that nega

tive roots can be eliminated from a quadratic equation by real operations 

on the unknown, but complex ones cannot, hadtbedual effect (for 

Descartes and for others) of raising confidence in negatives but reducing 

confidence in complex numbers. 

Descartes first gives the the number of roots of a polynomial 

as the 'number of dimensions of the unknown quantity' in Book I11(1). 

He then observes that the degree of an equation can be reduced by 

division by x - 0<.. where 0<.. is a known root. His next point is the 

50-called 'Rule of Signs' for the numbers of positive and negative roots 

but without any proof or explanation (p. 373) : 

'We can determine also the number of true and false roots that 
any equation can have, as follows; An equation can have as many 
true roots as it contains changes of sign, from + to - or from 
_ to + ; and as many false roots as the number of times two + 
or two - signs are found in succession. ' 

He then comes to the method of modifying the roots, using as a first 

example the polynomial whose roots are 2, 3, 4 and -5. He points out 

that it is not necessary to know the roots and gives further examples 

in which these are not known. The rule given for modification of roots 

would apply equally to real or complex manipulations, although rescartes 

(1) Descartes, Geometry- (1954), p. 372 
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is evidently thinking of real ones (n. 373) : 

'It is also easy to transform an equation so that all the roots 
that were false shall become true roots, and all those that 
were true shall become false. This is done by changing the 
signs of the second, fourth, sixth, and all even terms, 
leaving unchanged the signs of the first, third, fifth, and 
other odd terms. Thus, if instead of 

+x4_ 4x3- 19x2+ 106x - 120 = 0 we write +x4+ 4x3_ 19x2_ 106x - 120 = 0 
we get an equation having one true root, 5, and three false 
roots, 2, 3, and 4. 

If the roots of an equation are unknown and it be desired to 
increase or diminish each of these roots by some known number, 
we must substitute for the unknown quantity throughout the 
equation, another quantity greater or less by the given number. ' 

Descartes also notes (p. 315) that by a suitable choice of number to 

add to the unknown, a root may be made equal to zero. He next gives two 

reasons why he sees these manoeuvres as-important. Firstly it is possible 

to eliminat~ the second term of an equation; an important step when 

solving a cubic by Cardano's method, although Descartes does not mention 

this point here. Secondly negative roots can be eliminated by being 

rendered positive, though the benefit of this is not clear when, for 

instance, a solution to a particular problem is sought (p. 376) : 

'Now this method of transforming the roots of an equation without 
determining their values yields two results which will prove use
ful: First we can always remove the second term of an equation 
by diminishing its true roots by the known quantity of the 
second term divided by the number of dimensions of the first 
term, if these two terms have opposite signs, or, if they have 
like signs, by increasing the roots by the same quantity.' 

After two illustrative examples (p. 377), he continues: 

'Second by increasing the roots by a quantity greater than any 
of the false roots we make all the roots true. When this is 
done, there will be no two consecutive + or - terms; and 
further, the known quantity of the third term will be greater 
than the square of half that of the second term. This can be 
done even when the false roots are unknown, since approximate 
values can always be obtained for them and the roots can then 
be increased by a quantity as large or larger than is required. ' 

Next, equations with irrational coefficients are dealt with, a problem 

seldom dealt with by mathematicians. A method for rationalising them 

by multiplication or division by successive powers of a suitable 

quantity is given, which can also be used to make any coefficient take 
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a particular value. This is not the simplest way of achieving the latter. 

Descartes next comes to comolex roots, and mentions here that 

the manipulations described cannot render complex roots real. The 

imnlication is that the manipulations are all real (p. 380) : 

'Neither the true nor the false roots are always real· sometimes 
they are imaginary; that is while we can always conceive of as 
many roots for each equation as I have already assigned yet 
there is not always a definite quantity corresponding t~ each 
root so conceived of. Thus, while we may conceive of the 

equation x3_ 6x
2

+ 13x - 10 = 0 as having three roots, yet there 
is only one real root, 2, while the other two, however we may 
increase, diminish, or multiply them in accordance with the 
rules just laid down, always remain imaginary. ' 

Later, where Descartes is writing about quartics, there is an 

early example of separating a problem impossible of solution, from its 

algebraic equation with complex roots (P. 386) 

'Now these two equations have no roots either true or false, 
whence we know that the four roots of the original equation are 
imaginary; and that the problem whose solution depends on this 
equation is nlane [constructable using compass and straight 
edge only] , but that its construction is impossible, because 
the given quanti ties cannot be united [combined in the same 
problem] • ' 

There are two further references to a connection between impossible 

constructions and complex roots (PP. 393,406), however he also says 

(p. 401) : 
'I have not yet stated my grounds for daring to declare a thing 
possible or impossible' 

So, although impossible constructions are associated with complex roots, 

Descartes is not saying that these are the only sources of such roots. 

later mathematicia.ns have found this association useful. 

Descartes' view of complex roots is indicated where they are 

described as 'merely imaginary' (p. 400), and we know that he did not 

necessarily regard negatives as suitable to be the roots of quadratics 

from the earlier omission of a negative root (p. 302). The second re

mark quoted above (p. 386), states that an equation whose roots are neither 

positive nor negative has no roots, although the quartic they were derived 

from is said to have roots that are imaginary. Therefore 'imaginary' 

is here another word for non-existent. 
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Descartes' rule of signs says that the number of changes between 

+ and - in an equation gives the number of positive roots, and the num

ber of repeats of + or - gives the number of negative roots. Where the 

roots are real, this rule is entirely satisfactory, but where they are 

complex it continues to give numbers of 'positive' and 'negative' 

roots, without distinguishing between real and complex ones. Consider

ing equations with positive real roots a and b : 

Changes Repeats Roots 
. 2 - (x-a) (x-b) = x -(a+b)x + ab = 0 2 0 both positive 

2 

~} 
(x-a )(x+b) = x - (a-b)x - ab = 

2 1 1 one positive, one negative 
(x+a) (x-b) = x + (a-b )x - ab = 

2 (x+a )(x+b) = x +(a+b)x + ab = 0 0 2 both negative 

Considering equations with complex roots 

(x- (-1 +i) ) (x:" (-1-i» 2 
0 0 2 both ;::: x i2xi2 = negative ? 

{x- ( 1 +i ) ) (x- (1-i ) ) 2 0 2 0 both positive = x -2xi2 = ? 

(for clarity I have given specific examples in the complex cases) 

An attempt to construct a quadratic equation with complex roots, one 

'positive' and one 'negative', taking hand k positive, gives the choices: 

either x2 + hx - -k = 0, or x2_ hx - k = O. In each case there is one 

change of sign so, by the rule of signs, one root positive and one 

negative, and there is no other way of arranging the coefficients to 

obtain this result. However, in each case, the discriminant is positive 

so neither equation can have complex roots. It is clear that where an 

equation has roots of opposite sign, they cannot be comnlex. Inspection 

shows that the Descartes rule, applied to an equation with complex roots 

gives correctly the sign of the real part of the root. But the real 

parts must be equal so a quadratic with complex roots cannot have just 

one change of sign. The rule operates independently of the imaginary 

part of the roots giving the sign of the real part when there are no 

other factors. However, as Newton noticed later, the introduction of 

further factors (and so roots) can change the sign given to existing 

complex roots by the rule. Unfortunately this does not always hapnen so 

this interesting property cannot be used to detect complex roots. 
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Descartes gives no proof of his rule of signs for real roots and 

does not explore how it operates when the roots are complex. 

Although Descartes considers irrational coefficients and accepts 

negative ones readily, he does not consider complex ones. It seems 

that the acceptability of different number categories varies partly 

with their context. He only considers irrational coefficients on one 

occasion, but many mathematicians never mention them at all. 

A remark on page 400 shows that Descartes was familiar with the 

association between the cube of a quantity and the volume of a cube, al-

~though, in this case, it is the root of a cubic that is being described 

as the side of a given cube. Two solutions to a problem are given, in 

the first a geometrical construction is used and the answer given in 

terms of arc and chord lengths of a circle, in the second Cardano's 

method is applied to the aupropriate cubic equation and the answer given 

as the sum of two cube roots. Descartes uses the square root sign 

where appropriate in the Geometry., but his remark about the cube root 

shows that he may have thought of the square root as the side of a 

square of given area. If this is so, it is difficult to see how Descartes 

could have acquired any ve~ advanced ideas about complex numbers. He had 

eventually followed Girard in stating cautiously that an equation of 

degree n could have n roots, but gave no proof. Although this seems to 

mean that he was counting complex roots together with real ones, Des

cartes never fully accepted complex numbers as numbers and had doubts 

about negatives. 
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Sir Isaac Newton 1642-1727 

Newton's interest in algebra seems to have started when, 

in about 1670, he came across Algebra Ofte Stel-konst by Gerhard Kinck

huysen, which members of the Royal SoCiety were having translated from 

Dutch into Latin for publication in England (1 ). Newton revised the 

book and produced a commentary, but it never reached pUblication. Wallis 

also sent him an early draft of his Algebra for comment(2), and the 

published version of 1685 includes a number of Newton's ideas. - --Newton is known to have read works by Descartes (La Geometrie), 

Wallis (Arithmetica Infinitorum), Heurat, de Witte, Budde, Vieta, 

Oughtred (the Clavis ), Huyghens, Fermat, Gregory and Barrow (Euclid's 
/' ,/' 

Elements, EUclid's Data). Of these, La Geometrie had the greatest in-

fluence on Newton in the area of algebra, and Euclid's work in that of 

proof. 

In Observations on KinCkhuysen(3) Newton gives a method for 
( 

obtaining the cube root of a complex quantity and uses it to evaluate 

the roots in the irreducible case of the cubic. In a letter of 1677, 

in reply to a query from Leibniz, Newton says (erroneously) (4) : 

fA possible root is always expressed by a possible series, an 
impossible one always by an impossible' 

~ 'possible series' Newton means one that is convergent, an 'impossible 

series' is divergent. Be associates a real root with a convergent 

series and a complex root with a divergent series, linking the im

possibility of the root with the infinite nature of the sum of the series. 

No proof is given. Although Newton is content to manipulate complex 

numbers and describe some of their properties, he does not discuss their 

nature; the example given shows that he had some original ideas on this 

point, not necessarily well founded. 

(1 ) Whiteside, Mathematical PaEers of Isaac Newton, II, p. 280 

(2 ) Whiteside, II, p. xiii 

(3 ) "Jhi teside, II, pp. 377-95 

(4 ) Whiteside, IV, p. 541 
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A rule for determining the number of complex roots in an equation 

was given by Newton in lectures given at Cambridge from 1613 to 1683(1). 

The method, known as 'Newton's Rule', applies to polynomials of the form 

f(x) = 0, and is considerably more complicated than Descartes' rule. 
Th ti' itt . th f n n-1 n-2 e equa on 1S wr en 1n e orm x + a

1
x + a

2
x +... = o. 

n-r Above the term in x is written the fraction n-r. r , and call
r+1 n-r+1 

ing this 'b " if b • a 2 > a • a 1 r r r· r+1 r- then underneath is written a 

'+' sign, otherwise a '-' sign is written. Then the number of changes of 

sign in this row gives the number of complex roots. Newton gave no 

proof of this rule, which was not verified until 1865 by Sylvester(2). 

The development of Newton's thinking on this problem is seen in his 

t'lAevt/\..MS'L,f'-I'rl' ". of ~Uu:A.!-ldVi.S '(f,,-rr;;--~.-Vt l'ttL 1665-6, in which he sa!s(3): 

'Thus the signes of this l!9.: x 3 - pxx + 3ppx - q3 = 0 shew it to 
have three true [positive] roots, wherefore if it bee mult-
i 'Olied by x + 2a = 0 the resulting equation . 

+6p3 
x4+ px3+ ppxx - q3_ 2pq3= 0 (4) should have three true roots and 
a false [negative] one, but the signes shew it to have three 
fa~se and one true. I co~clude therefore that the two roots 
wC in ye one case appeare true, and ~n the other false are 
neithe~, but imaginary; and that of yother two roots, one is 
true yother false. ' 

Newton is taking p and q to be positive reals and finds that the intro

duction of another root -2p has, in this case, changed the signs of 

two of the roots in the cubic. These roots he takes to be complex, as this 

could not have happened had all the roots been real. After remarking that 

finding the number of complex roots by such a rule could be more labor

ious than solving the equation, he gives these instructions(3) : 

(1 ) 

'Over ye terms of ye Equation set a series of fractions each 
having ye dimensions of the terme under it for its numerator, 
& the number denominating ye term first, second, third etc for 
its denominator. Then in every three terms observe whither the 

Mills, "The Controversy between Colin Maclaurin and George 
Crunpbell over Complex Roots", Arch. Rist. Ex. Sc., 28(1983), 
149-64 
See Appendix I, p.(1) 

Whiteside, I, p.520 -1..-1 ) ~ Lb 

Correctly: (x + 2p)(x3_ px2+ 3p2x _ q3) = x4+ px3+ p
2
x

2
+ 

(6p3_ q3)x _ 2pq' 
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SQuare of the middle term multiplied by the fraction above be . n e . 
greater equal I or lesse ~ y factus of the termes before & 
after it multiplied by y fraction over ye terme before it. 
If greater write ye sign + underneath; if equall or lesse 
write the sign - under=neath ye middle terme: and lastly set 
+ under ye first terme of ye equation. Then observe how many 
changes there are from + to - & conclude that there are soe 
many paires of imaginary roots. Unlesse all ye roots bee 
equall. ' 

That this rule gives only a lower bound for the number of complex roots 

. was known to Newton, as is indicated in the last sentence where he 
says(1) 

'Sometimes th~he may bee impossible roots not by this means 
discovered, w if you suspect, augment or diminish ye roots 
of the Equation a little, not soe much as to make them all 
affirmative or all negative, or at most not much more. & try 
the rule again. t And if there bee any impossible roots twill 
rarely happen y they shall not bee discovered at two or three 
such tryalls. Nor can there bee an Equation whose impossible 
roots may not bee thus discovered. ' 

So a few 'tryalls' with a modified equation are necessary and, of course, 

the modifications must be real ones. Newton does not actually say that 

increases or decreases in the unknown are to be real, but would certain

ly have said so if this were not the intention; it is not possible to 

say whether a complex adjustment has augmented or diminished a number. 

A more important point is that Newton does not say how we are to know 

when sufficient trials have been made to find all the complex roots. 

The method must have been considered useful in spite of this defect, and 

as Newton says, it is unlikely that the number of complex roots could 

not be discovered quite quickly, particularly with equations of low degree. 

In a lecture given in 1681, Newton returns to the problem of 

finding the number of complex roots in an equation without solving it(2). 

He says that it is possible to find whether the complex roots are 

among the positive or the negative roots by examining the signs that 

have been written over the terms in the method for finding the total 

(1) Whiteside, I, p.526 

(2) Whi teside, V, p.351 
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number of complex roots. Then the number of 'nositive' complex roots 

(that is with reai part positive), is given by the number of changes 

in consecutive signs, and the number of 'negative' ones by the number 

of repeats •. There is no proof of this very satisfactory discovery, but 

a number of examples is given. 

An interesting graphical idea is described in c,,- ~M../J<!",,--1(J y c..'1A... ~ 

(no~~ of ~~ations, written in the late 1670's(1). In this 

Newton says that complex roots may be represented by 'folds' in curves. 

~These are described as dips towards the horizontal axis which are not 

sufficient for the curve to intersect the axis. He must have been con

sidering the question of representation of complex numbers graphically 

in the Cartesian plane, itself a fairly new idea. This representation 

does not seem to have proved useful. Newton did not take the step of 

moving into a third dimension. 

Newton's main contribution to complex number theory was his rule 

for the number of complex roots in an equation. His descrintion of the 

properties of the discriminant of a quadratic (not discussed here) gave 

a useful method for testing whether real roots would be found. Neither 

the association of complex roots with divergent series nor the graph

ical representation were fruitful. Newton was probably as disturbed as 

rescartes to find that real operations on the unknown did not eliminate 

complex roots from an equation. In a letter to Collins of 1670(2) he 

says : 

••• equations, to what terms soever they are reduced,their 
real roots never become imaginary nor their imaginary roots 
real, though indeed their true roots may become false and 
false ones true. ' 

Newton was one of many mathematicians who regarded complex answers to 

algebraic equations as of use in demonstrating that a problem was un

solvable. He wrote in Universal Arithmetick(3) : 

'But it is just that the Roots of Equations should be often 
impossible, lest they should exhibit the cases of Problems 
that are impossible, as if they were possible. I 

(1) Whiteside, V, p.35 

(2) Rigaud, Correspondences, II, p. 307 

(3) Newton, Universal Arithmetick (1728) , p.193 
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Newton regarded complex numbers as useful, although he made 

little use of them himself·and they never became central to any of his 

main interests. Newton was a practical man and does not appear to 

have speculated about the nature of complex numbers. His weight on 

the side of acceptance of them as useful entities worthy of note, may 

perhaps be regarded as his most positive contribution to their ad

vancing status. 
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John Wallis 1616 - 1103 

John Wallis was educated at Cambridge, but spent most of his life 

as Savilian professor of geometry at Oxford. He was familiar with 

Greek mathematics, lectured on the books of Euclid, Archimedes and 

Apollonius, and gave a solution to a well-known locus problem posed 

by Pappus. Wallis's book on algebra, A Treatise of Algebra both 

Historical and Practical, was published in 1685, but had been 

drafted much earlier, an early version having been sent to Newton for 

his comments. 

The book starts with a substantial section acknowledging work done 

in algebra by the 'Grecians', the Arabs and European mathematicians. 

He lists both names and book titles and we may assume that he had at 

least a good working knowledge of these works and had probably read 

many, if not most of them. Greeks mentioned include Euclid, Pappus, 

Archimedes, Apollonius, Diophantus and ptolemy and acknowledgement is 

made of the translation and republishing of their work by Xylander, 

Bachet and Fermat. Although men~ioning the Arabs, he does not name 

any but passes on to Regiomontanus, Stevin, Briggs and Napier. Next 

is a list of algebraic works by Pacioli, Pisanus, Scipio, Cardano, 

Tartaglia, Bombelli, Ramus, Clavius, Recorde, Vieta ($pecious Arithmetick), 

Oughtred and Harriot but rescartes is not included. He summarises 

works of Oughtred and Harriot, Cavilieri's indivisibles, his own 

Arithmetica Infinitorum and the method of exhaustion which is its 

justification, and the work on negative and fractional indices of 

Newton. There is a strong historical sense of the way in which Wallis 

is building on the ideas of others. 

Wallis championed the English mathematician Harriot, and it was 

a recurrent ctt,'~ Vl-I. of his that Descartes took many of his innovative 

ideas from Harriot without acknowledgement. In Chapter XXXI of the 

II
" (1 ) Algebra , Wa ~s says : 

'He [Harriot J takes in also the Negative or Privative Roots 
which by some are neglected. Wherein he is followed by Des 
Cartes save that what Harriot calls (very properly) Privative 
Roots, Des Cartes (I know not for what reason) is pleased to 
call False Roots.' 

(1) Wallis, Algebra, p.128 
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This despite the fact that Harriot did not usually accept negative roots 

whereas Descartes was able to do so. Wallis would admit only Lescartes' 

rule of signs as his sole innovation. Collins, in his correspondence 

with Wallis, tried to reconcile him to the originality of Descartes. It 

has been said that this blind spot of Wallis was because of an over

partiality for English mathematicians; however, in his Algebra, 

Wallis acknowledges many previous algebraists, rather few of whom were 

English and several of whom were French. Wallis's animosity may have 

been more personal. Apart from this one defect, Wallis can be seen as a 

bold and original thinker with a wide knowledge of the mathematical 

scene and with a strong historical sense of the development of mathematics 

and the main threads of mathematical thought. 

Writing about some work of Harriot on the number of real roots 

in a polynomial, Wallis says in Chapter XL(1) : 

'And having shewed it as to the Affirmative Roots, it may by 
like Methods, be shewed as to the Negative also: For (as was 
before shewed) by changing all the signs, those Negatives, will 
become Affirmatives, and the Affirmatives Negatives. So that 
what shall now be the Number and value of the Affirmatives, were 
before of the Negatives. \ Whereby it will appear how many in 
all be Real; and how many but Imaginary.' 

Assuming that by 'real' and 'imaginary' Wallis means real and complex 

(and not positive and negative), he seems to be under the impression 

that taking the total number of roots and subtracting the positive and 

negative ones, gives the number of complex roots. He was aware of Des

cartes rule of signs, but seems not to know of Newton's rule for numbers 

of complex roots. 

Before coming to the three contributions to complex number 

theory by Wallis which I consider to be of most importance, I should 

like to deal with some aspects of his thinking as shown in the Algebra. 

An interesting insight into his thinking about operations is given in 

Chapter I by his categorisation of them. He classifies addition, 

multiplication and 'constitution of powers' as syn~hetic operations or 

compositions; and subduction (subtraction), division and extraction of 

roots as analytic operations or resolutions. The distinction is that 

synthetic operations can always be performed but analytic ones are 

only sometimes possible, the former involving a building up and the 

(1) Wallis, p.152 
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latter a breaking down. The three classified as analytic are those 

which lead to the introduction into the number system of, respectively, 

negative, fractional and complex numbers and this idea can readily be 

incorporated into a modern description of the complex number field. The 

analytic operations had long caused difficulties to mathematicians be

cause the natural numbers are only closed under the synthetic operations. 

~allis's point that synthetic operations only can always be performed 

shows that, to him, number still meant natural number. 

Wallis's view of powers higher than three shows that Greek 

influence on him was strong. Although algebra can be applied to any

thing capable of proportion, he says later that there can be no power 

higher than three. From Chapter XXII (p.90) 

' ••• algebra extends itself as far as Ration or Proportion may 
re~ch and therefore may be applied to anything that is capable 
of proportion. Line, surface, solid, time, weight, strength, 
number or whatever else may be esteemed to have Magnitude (as 
Euclide calls it), or Quantity (as we now use to speak).' 

Referring to 'plano-plane' quantities, he says in Ch~pter XXX (p.126) 
\ 

'That is a Monster in Nature and less possible than a Chimaera 
or Centaure. For Length, Breadth and Thickness take up the 
whole of Space. Nor can we imagine how there should be a 
Fourth local Dimension beyond these Three. But if we consider 
a number • • .' 

So there is no meaning to a fourth length dimension but if only numbers 

are being considered, there is no difficulty. However he does not 

restrict the quantities listed in Chap XXII to one dimension. Time, weight, 

surface etc raised to the second or third power would be just as much 

of a 'Chimaera' as length raised to the fourth power (more so), and 

there can be no meaning attached to a mixed sum of these quantities. 

Wallis was well aware of the importance of notation and discusses 

it in some detail in the Algebra. He saw the proliferation of notations 

as a great han~icap to algebraic development. For instance, he says 

next, (pp.91-2), that a fifth power of A could be written Aqc, AcAq, AqqA 

or AAAAA, where q indicates 'quadrato' and c 'cubo'. He says that qc 

would mean a fifth power to Diophantus, Vieta and Oughtred, but a sixth 

power to the Arabs, Pacioli, Stifel, Bombelli, Tartaglia, Cardano and 

Clavius. Wallis advocates the use of aaaa or a4 instead of Aqq etc for 
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a fourth power, and makes use of fractional and negative indices. He' 

uses Descartes' index notation in spite of his strong antipathy to 

rescartes, but he did not justify the use of these, which was left to 

Newton. vJallis used V-1 for the square root of minus one rather 

than (_1)t , and did not advocate the use of any single symbol for 

this. 

Wallis had a high opinion of the Clavis of Oughtred, but 

considered it worth mentioning on several occasions in the Algebra 

that Oughtred omitted negative and complex roots. Wallis's own view 

of these seems to have been similar to that of Descartes in as far as 

he describes them both as 'impossible', that is to say, next to non

existent. Wallis, like Newton, sees their claim to consideration in 

their admitted usefulness. In Chapter LXVI about negative squares 

and their imaginary sides, he says-(pp. 264-65) : 

'These Imaginary quantities (as they are commonly called) 
arising from the Supposed Root of a Negative Square, (when 
they happen,) are reputed to imply that the Case proposed is 
Impossible. 

And so indeed it is, a~ to the first and strict notion of what 
is proposed. For it is not possible, that any Number (Negative 
or Affirmative) Multiplied into itself, can produce (for in
stance). -4. Since that Like Signs (whether + or -) will, 
produce + ; and therefore not -4. 

But it is also Impossible, that any Quantity (although not a 
Supposed Square) can be Negative. Since that it is not possible 
that any Magnitude can be less than Nothing, or any Number 
Fewer than None. 

Yet is not that Supposition (of Negative Cuantities) either 
unuseful or Absurd : when it is rightly understood. ' 

Some imaginative and useful examples are then given, using, for in

stance, a man advancing and retreating for negative distances, and the 

sea advancing and retre~n~o_!~~tive areas. 

Wallis rediscovered Cardano's method for the roots of a cubic 
"'-

and says in Chapters XXVIII and XXXVII (p.121, p.142) : 

'I did before suspect that in superior equations, there might 
be more than two roots' 
' ••• how many Roots (Real or Imaginary,) every Equation contains 
(viz. so many as are the Dimensions of the Highest Term:)' 
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This was one of the first clear statements of the fundamental theorem of 

algebra, which was becoming more widely "recognised. The methods for'" 

dealing with the irreducible case either by geometry or trigonometry 

were fairly widely known by this time, and Wallis says in Chapter XLVIII(1) 

'these equations which have been reputed desparate, are as 
truly solved as the others' 

The desparation was caused by the fact that, where the roots are all real, 

two of them are given by an expression containing the cube roots of 
be-

complex numbers. In this remark Wallis seems toAtaking a very positive 

_attitude to complex numbers where they arise in an intermediate step. 

The correspondence between Wallis, Collins, Gregory and Newton took 

place from about 1613 to 1615 during the period when Wallis was drafting 

his Algebra. Among the topics covered were the solution of polynomials 

and the nature of roots, notations and meanings of complex roots, all of 

which were included in the Algebra. In a letter to Collins of 1613 

about Cardano's rule, Wallis describes the imaginary parts as 'extinguished' 

by addition. The fact that these awkward quantities can be described as 

extinguished relieves the mathematician of the obligation to define them. 

In the same letter he says that atl cubics are susceptible to Cardano's 
rule as(2) : 

' ••• the impossibility of~he square roots of negative quantities] 
hinders it not, unless where the binomial cube will not admit of 
an extraction of its root ' 

The second part of this remark seems to contradict the first as the rule 

always produces an answer, and by admitting complex numbers the roots 

can always be extracted. Although Wallis may have been thinking of the 

difficulties if irrationals are involved, he seems to be exhibiting a 

very ambivalent attitude to complex numbers; they produce impossibilities 

at the same time as being entirely acceptable. This appears to be a 

lapse of logic although it is not entirely clear what is meant by 

'binomial cube'. 

It was in another letter to Collins of 1613(3) that Wallis first 

gave one of his most important contributions to complex number theory. 

This is that the square root of a negative quantity (impossible as both 

of these are) can be regarded arithmetically as a mean proportional be

tween a positive and a negative. He is still thinking in terms of 

(1 ) \oJa11is, AIBebra, 0.181 

(? ) Rigaud, Corres"'ondences , II, ~.559 

("') ) Rieaud , II, n.576 
33 



length and areas and says : 

• • • a"negative plane may as well be admitted in algebra as 
a negative length, both being in nature equally impossible • • • 
and if we suppose such a negative square, we may as well sup
pose it to have a side, not indeed an affirmative or negative 
length, but a supposed mean proportional bet~een a negative and 
positive thus designable v-n or rather v-n, that is v(+n x -n) 
a mean proportional between +n and -no ' 

In the same letter he introduces rather diffidently the use of 2 13 for 

vl12 etc which he found most useful. In the Algebra Wallis seems to 

be thinking of the symbol 'vi' almost as an operator, in the sense 

that did not become widespread until the 19th Century. In Chapter 

LXVI he writes of \/"-1 -(p.266) 

••• ~ implies a mean proportional between a Positive and a 
Negative Quantity. For as Jbc signifies a Mean Proportional 
between +b and +0; or between -b and -c; • • • • So doth v-bc 
signify a Mean Proportional between +b and -c or between -b 
and +0; either of which being Multiplied, makes -bc. And this 
as to Algebraick consideration; is the true notion of such 
Imaginary Root, J-bc'. 

Wallis later gives the example ~2 as a mean proportional between 1 and 

2. The use of mean proportionals was well accepted, being firmly 

founded in Euclid's Elements, and its introduction into complex 

number theory should have nroduced a considerable increase in their 

acceptability. 

Wallis's second important contribution was his suggestion that 

an imaginary number can be 'found' not on the real number line, but 

'above' it. He first uses a triangle problem to establish that square 

roots may be taken as either positive or negative. 

He considers the ambiguous case in 

which it 

triangle 

included 

is required to solve a 

given two sides and the 

( f ' )(1) altitude see 19ure • 

a, band h are known and c is ob

tained from two applications of 
----------- c -------->~ 

(1) Wallis, Algebra, p.266 (adapted) 
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A 

P,ythagoras'theorem: c = v(a2_ h2 ) + v(b2_ h2 ). However, taking 

the second square root as negative gives a solution which is equally 

valid. He then gives the following example (see figure taken from 

p.267) : P 

- --- -. '- ---
C 

With AP = 20, PB.= 12 and PC = 15, Wallis says that AC = J175 and 
\ 

CB = v(144-225) = V-81. The diagram cannot be drawn with B on AC 

as required, but it is possible if B is placed above the line as in 

the diagram. The description is not that of Argand; Wallis is thinking 

in Euclidean terms and not in terms of Cartesian coordinates or rotations. 

However he clearly describes an arrangement in which negatives and 

positives lie on a line, and an imaginary is placed off the line. He 

says in Chapter LXVII (p.267-68) : 

'Yet are there Two Points designed (out of that Line, but) in 
the same Plain; to either of which; if we draw the Lines AB, 
BP, we have a Triangle; ••• as were required: •••• 
The greatest difference is this; That in 'the first Case" the 
Points B, B, lying in the Line AC, the Lines AB, AB, are the 
same with their Ground-Lines, but riot so in this last case, where 
BB are so raised above (1(3 (the respective Points in their 
Ground-Lines, over which they stand,) as to make the case feasible; •. 
So that, whereas in case of Negative Roots, we are to say, The 
Point B cannot be found, so as is supposed in AC forward, but 
Backward from A it may in the same Line : we must here say, in 
case of a Negative Square, the Point B cannot be found so as was 
supposed, in the Line AC; but Above that Line it may in the same 
Plain. ' 
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Wallis goes on to indicate that he sees this kind of representation as 

one for complex ~oots; it is only as roots of equations that he would 

have encountered such numbers. There is no question of any general 

concept of a number plane or full number status for complex numbers. 
(1 ) 

He says : 

'What has been already said of I-bc in Algebra, (as a Mean 
Proportional between a Positive and a Negative Quantity:) 
may be thus Exemplified in Geometry • • • .' 

'This I have the more largely insisted on, because the Notion 
(I think) is new; and this, the plainest Declaration that at 
present I can think of, to explicate what we commonly call the 
Imaginary Roots of Quadratick Equations. For such are these. ' 

Wallis is trying to give a geometrical interpretation to complex numbers 

which will parallel the arithmetical mean prooortional one. 

Wallis goes even further. Several mathematicians had said that 

complex numbers are useful to indicate an unsolvable problem, both Wallis 

and Newton held this view. Collins had written to Wallis in an undated 

letter, that complex roots should be given as well as positive and 

negati ve ones (2) : 

I ••• their use being to shew how much the data must be mended 
to make the roots possible, and give points or bounds in 
delineations, shewing how much a curve must pass beneath or 
beyond a given right line, by aid whereof the roots are found' 

Collins attributes the idea to 'Dr Pell'. Wallis tries to pursue this 

idea a little further by showing how the degree of impossibility might 

be quantified. He says of the distance fB (see diagram on previous 

page) (3) : 

'This Construction shows that Case (so understood) to be Im
possible; but how it may be qualified, so as to become possible. I 

So the distance ~ B can be used to discover how the problem must be ad

justed to make it solvable. He says in Chapter LXVII~of complex roots(4): 

(1 ) Wallis , Algebra , p.268 

(2 ) Rigaud , Correspondences II , p.481 

(3 ) Wallis, Algebra , p.269 

(4 ) Wallis , p.272 



• • • which beside declaring the case in Rigour to be impossible, 
shew the measure of the impossibility; which if removed, the 
case will become possible. And they direct to such succedaneous 
operations in lieu of what is nroposed, as may afford useful 
discoveries of somewhat which at the first Pronosal was not 
thought of.' 

Wallis is not able to give a quantitative relationship between the com

plexness of the roots and the impossibility of the problem in any part

icular case. He passes on the interesting idea of Pell and hints that 

even more useful discoveries may be made. 

Wallis's third achievement is closely linked with the second. He 

gives a picture of the nature of complex numbers by producing a set of 

problems (mostly geometrical), that are impossible of solution. When 

treated algebraically they lead to complex roots. A rationalisation is 

given in each case, usually in terms of a geometrical adjustment in the 

problem. The effect is to show how geometrical alterations can render 

the answer to a problem possible or impossible. This is the closest 

Wallis comes to a concrete interpretation for a comolex quantity. In 

one problem an attempt is made to find the third side of a right-angled 
, 

triangle having misunderstood which is the right angle, in another a 

construction which only apnlies to a point in a line is used for a point 

not in the line. All these lead to the necessity to construct complex 

lengths. Wallis says in Chapter LXVIII (0.272) 

'The solution amounts to this: that the case proposed, as to 
the rigour of it, is impossible: But with such mitigations, 
it may be thus, and thus constructed.' 

Among others, he lists the following faults which may need correction, 

some of which are equivalent to each other (pp.272-73) : 

Use of 1. points not on the line proposed 

2. tangent and secant instead of sine and cosine 

3. a point above instead of in the line proposed 

4. an inclined instead of a horizontal plane 

5. an elliose instead of a circle 

6. a hyperbola instead of a circle 

7. incorrect signs 
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In the chapters on the relationship between geometric oroblems and 

algebra, Wallis refers to the problems rather than the solutions as 'im

possible'. In the preface and elsewhere, he refers to the 'Imaginary 

Roots of Impossible Equations,(1). Unfortunately he is not consistent 

in his nomenclature, sometimes referring to complex numbers as 'im

possible' and sometimes as 'imaginary'. There is an adverse side to 

the proposition that complex roots correspond to imoossible problems. 

It emphasises the impossibility of giving an actual solution in these 

cases and so adds weight to the suitability of the word 'impossible' 

to describe the numerical answers. 

The new arithmetical and geometrical interpretations of complex 

numbers put forward by Wallis represent a valuable contribution to 

their study, and show his skill in tackling an obscure and difficult 

concept. His ideas, well founded in Greek methods, should have enabled 

mathematicians to take up and use complex numbers with increased con

fidence. However, although Wallis's work was widely read, the next 

hundred years saw little change in their acceptability. 

(1) Wallis, P.[v] , Preface 
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Chapter III 

The Algebra (1685) of John Wallis to the Algebra (1769) of Leonhard Euler 

The period from the Algebra of Wallis tQ the Algebra of 

Euler saw great strides made in the results obtained from manipulating 

complex numbers, but no increase in insight into their nature. As the 

,_insights of Wallis do not appear to have had an influence on later 

mathematicians, it may be said that progress in this direction was 

retrograde. Leibniz said in 1702 that complex numbers are fa fine and 

wonderful refuge of the divine spirit - almost an amphibian between 

being and non-being', and Euler, in more prosaic terms, gave his reasons 

for considering them impossible (see below). But by Euler's time, 

connections had been made between complex numbers and logarithmic, 

trigonometric and exponential functions. Cotes had the result 

i~ = In(cos~ + isin~) in 1714, and de Moivre's theorem was essentially known 

to him by 1722. Implicit in Cotes' result is the relationship 
in e + 1 = 0, actually due to Euler, which can be regarded as the croWD-

ing achievement of the 18th Century, connecting as it does five funda

mentally important natural, imaginary and transcendental quantities 

(one newly discovered), and the two operations addition and multiplication 

by means of the equality relation. These connections all became explicit 

after the discovery of the inverse relationship between exponential and 

logarithmic functions (published by William Jones in 1742) (1). By 1743 
is -is is -is Euler had the formulae cos s = e + e and sin s = e - e and in 

1749 he t,ul'{)r~ d.N.... ~cJ ~ 
2 2i 

QV\.- /-1....z Uf/.A-.h'--b-V-l.!~j between Leibniz and Jean Bernoulli 

about the logarithms of negative and complex quantities (2). In 1747 

d'Alembert gave the first demonstration that all algebraic operations 

on complex numbers, including raising to powers, gave complex numbers of 

the form a + ib and not a hierarchy of new number species, as had 

been feared (see below). 

(1) Kline, p.258 

(2) Kline, p.409 
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An important history of mathematics produced in France during 
,/ ;' 

this period was Histoire des Mathematigues by Etienne Montucla, pub-

lished in 1758. It is detailed and scholarly and was widely known. 

Montucla does not dwell long on complex numbers, but gives the pro

perties of conjugates in connection with those of the roots of quad

ratic equations. He uses the word 'imaginaire' to mean 'imaginary,(1). 

There is no description of their general properties, no estimate of 

their usefulness and no discussion of their nature. 

Nicholas Saunderson 1682-1739, Abraham de Moivre 1667-1754 

A mathematician working in England in the early 18th Century was 

N~cholas Saunderson. He lost his sight as a baby and later learned 

mathematics from hearing the works of Euclid, Archimedes and Diophantus 

read to him in Greek. He went to Cambridge and in 1711 followed Newton 

as Lucasian professor, later becoming, like Newton, a Fellow of the 

Royal Society. Saunderson's text-book The Elements of Algebra in ten 

books , was published in 1740, in two volumes. In it are covered 

such topics as the arithmetic of negatives, square roots of fractions, 

quadratic equations, indices, Newton's binomial theorem, logarithms, 

surds and the theory of equations. His method of obtaining the rules 

for multiplication of negatives with positives or negatives uses 

arithmetic progressions to get the correct results. All sections 

include many worked examples with detailed explanations. Complex 

numbers are dealt with a number of times, and are referred to as 'im

possible'. It is clear that Saunderson does not think of them as num

bers on a par with reals and that he thought of them not only in algebraic, 

but apparently also in near spatial terms, which is quite unexpected. 

Saunderson devised a system as an aid to the blind which he called 

(1) Montucla, Histoire , p.80 
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'palpable arithmetic', in which he used a pin-board to represent 

certain arithmetical ideas. Apparently he did not extend this to 

cover complex quantities. 

Saunderson's view of complex numbers was that they are impossible 

in the non-existent sense, but can be treated mathematically. He 
says in the Algebra (1): 

• • • -16 is no square number, since there is no root either 
affirmative or negative, which multiplied into itself will 
produce -16' 

. - and later (p.184) : 

! /(-2) is not only an inexpressible quantity but also an im
possible one; and consequently ••• the'two values of x in this 
equation [x2 _ 4x + 6 = 0 l 2+ 1(-2) and 2- V (-2) will both be 

~ impossible. 
N.B. Though the roots of this last equation be impossible in 
their own natures, yet they may be abstractly demonstrated to 
be. just.. • • by making s = ..; (-2) and consequently ss = -2. ' 

On the same page, Saunderson describes complex roots in terms of a 

limit. Roots pass between real and complex via a limiting value where 

they are equal (p.184) : 

••• it appears that one root of a quadratic can never be 
impossible alone, but that they must either be both possible 
or both impossible: for ••• the impossibility of the roots 
flows from the impossibility of the quantity s or of the 
square root of ss when it is negative ••• the two unequal 
roots of a quadratic equation grow nearer and nearer to a state 
of equality as they grow nearer and nearer to a state of im
possibility but do not come to be equal till they cease to be 
real, or at least, till they come to the limit between 
possibility and impossibility.' 

He is thinking in dynamical, almost visual terms, and there are 

interesting implications for graphical representation in his remarks 

about the roots verging together. This kind of thinking was not usual 

at the time, although it is reminiscent of Newton's idea for graphical 

representation of complex roots (see above). Saunderson shows a very 

clear understanding of the behaviour of the roots of a quadratic. 

That Saunderson's clarity of thought extends beyond the second 

degree is shown in some later remarks. He does not quite give the 

fundamental theorem of algebra in the terms of Gauss, and there is no 

proof, but he comes near to this later when he writes (p.679) : 

(1) Saunderson, Algebra, p.83 
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• • • in every equation the number of impossible roots is always 
even because the roots of a quadratic equation must always be 
both poss1ble or both impossble • • • but if the index of the 
highest term of an equation be an odd number, it must have at 
least one root possible. ' 

Again Saunderson gives no proof of these observations, but they illus

trate how advanced were many of his ideas. 

Appended to Saunderson's book is a letter from Abraham de 

Moivre in answer to a query from Saunderson about the cube root of a 

_complex number. He uses a primitive version of what is now known as 

'de Moivre's theorem' in which an expression involving trigonometric 

functions is substituted for the quantity whose root is required. Saunder

son has expressed himself as dissatisfied with Wallis's method, based on 

Cardano's method, which de MOivre describes as merely a trial. De 

Moivre finds the cube root by cubing an assumed root and equating real 

and imaginary parts of this with those of the original. There is no 

diagram, but the equation is expressed in terms of the sine and cosine 

of an angle. The cube root can be found by dividing the angle by three. 

de Moivre says(1) : 

' ••• if the original equation had been such as to have its 
roots irrational, his trial would never have succeeded.· But 
farther I shall prove, that the extracting the cube root •• ,. 
is of the same degree of difficulty as that of extracting the 
root of the original equation ••• and that both require the 
trisection of an angle for a perfect solution.' 

There follows an explanation with examples, running to about three pages. 

(1) Saunderson, p. 745 
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Colin Maclaurin 1698-1146 

The able Scottish mathematician Colin Maclaurin, who spent 

most of his working life as Professor of Mathematics at Edinburgh 

University, took up some of Newton's ideas, in particular the determin

ation of the number of roots of a polynomial. In a letter to Stirling 

of 1728 he stated that if a polynomial of degree n has at least one 

"- pair of complex roots, then so has the quadratic obtained from its 

(n-2)th derivative. ~1) This led to a plagiarism controversy with George 

Campbell who was also working on the number of complex roots of a poly

nomial. Campbell had noticed that if a polynomial has only real roots, 

then so will its derivatives, but he did not then infer Maclaurin's 

result about the number of complex roots. Maclaurin showed that Newton's 

rule is not reliable in the sense that it does not infallibly detect 

complex roots, although Newton himself knew this. It gives only a 

lower bound for these roots. He considered the polynomial 

x5_ 1Ox4 + 3Ox3- 44x2
+ 32x - 9 = Q which has complex roots, which Maclaurin 

says are not detected by Newton's rule. However, applying Maclaurin's 

differentiation method, the complex roots are still not found as with 

f (x) = x5 - 1 Ox 4 + 30x3 - 44x2 
+ 32x - 9, f' I , (x) = 6Ox2 - 240x + 180 and 

f"'(x) = 0 has two real roots. This method also only gives a lower 

bound for the number of complex roots. The polynomial actually has 

three real roots, two between 0 and 1 and one between 6 and 7, and two 

complex ones. 

Maclaurin's A Treatise of Algebra in Three Parts, an algebra 

text-book, was published posthumously in 1748, although he had intended 

to publish it many years earlier. It was assembled from his notes, 

with direct quotations from ~claurin's writings given in double 

quotation marks. It is mainly concerned with the roots and general 

properties of polynomials and the inter-relation between algebra and 

geometry. His explanation of what is meant by an 'imaginary' quantity 

(1) Hills, "The Controversy ••• ", Arch. Hist. Ex. Sc., 28(1983), 

149-64 
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is given and complex quantities used freely where appropriate. 

There is no discussion of a philosophical nature about v-1 or complex 

numbers, but his views can be inferred even though M..aclaurin did not 

write the book himself. 

Maclaurin thinks of imaginary quantities as non-existent, he 

says that quadratics sometimes cannot be solved, but does not dis

tinguish between a problem and its algebraic solution. From the 

Algebra, Part I, Chapter 13(1) : 

'Since the squares of 
that "The square root 
cannot be assigned." 
equations that cannot 

all quantities are positive, it is plain 
of a negative quantity is imaginary, and 
Therefore there are some quadratic 
have any solution. ' 

The word 'impossible' is not used here but does occur later in the book. 

He gives a rather free definition of rationals and irrationals 

using commensurability, defining them relative to an unspecified start

ing quantity. From Chapter 14 (n.95) : 

••• if anyone quantity be called rational, all others that 
have any common measure ¥ith it, are also called rational: But 
those that have no common measure with it, are called irrational 
quantities. ' 

It may be said that what is being defined is relative rationality and 

relative irrationality. Maclaurin shows that the square roots of 

naturals (with the exception of 1, 4, 9 ..• ) are incommensurable with 

naturals, and gives the method for rationalising denominators of the 

form J5 - J~. 

In a supplement to Chapter 14, Maclaurin shows how to find al-

gebraically the cube root of a quantity of the fonn a + b \1'-1, which 

arises in Cardano's method, and also obtains the cube roots of 1. How

ever, he does not consider this the best way and reiterates Saunderson's 

view that de MOivre's trigonometric method is to be preferred. De 

Moivre's theorem must indeed have seemed an elegant way of overcoming 

the difficulty. Maclaurin says (p.127) : 

(1) Maclaurin, Algebra (1748), Part I , p.87 

44 



'But for a general and elegant solution, recourse must be had 
to Mr. de Moivre's Apoendix to Dr. Saunderson's Algebra ••• 
what has-been explained above may serve, for the present, to 
give the Learner some notion of the composition and resolution 
of those cubes; that he need no~ hereHfter be surprised to 
meet with expressions of real quantities which involve imag
inar.y roots. ' 

Maclaurin points out the fact that the resolution of the irreducible 

case shows that real quantities may be exPressed using imaginar,y 

elements. The implication of accepting this is to raise the accept-
- ability of complex numbers. 

Maclaurin takes a bro.ad view of polynomials, considering in Part 

II, those with either coefficients or powers that are fractional or 

irrational. The numbers of positive and negative roots of a polynomial 

are discussed, and the limits of their values. The rule given for 

the number ~f complex roots is the same as Newton's. No proof is 

attempted, reliance being placed on careful instructions and many 

examples. From Part II Chapter 11 (1) : 

'The number of impossible roots in an equation may, for most part, 
be found by this 

RULE 
"Write down a series of fractions whose denominators are the 
numbers in this progression 1, 2, 3, 4, 5 etc continued to the 
number which expresses the dimension of the equation. Divide 
ever,y fraction in the series by that which precedes it, and 
place the quotients in order over the middle terms of the 
equation. And if the square of any term multiplied into the 
fraction that stands over it gives a product greater than the 
rectangle of the two adjacent terms, write under the term the 
sign +, but if the product is not greater than the rectangle, 
write -; and the signs under the extreme terms being +, there 
will be as many imaginar.y roots as there are changes of the 
signs from + to -, and from - to 3+· 2 2 

Thus the given equation being x + px + 3p x - q = 0, I divide 
the second fraction of the series ~ g, 1 by the first; and the 
third by the second, and place 1 2 3 the quotients 1 and 1 
over the middle terms in this manner, 1 1 3 3 

~ ~ 
x3+ px2+ 3p2x - q = 0 • 
+ + + 

Then because the square of the second te~ wu1tip1ied into t~e4 
fraction that stands over it, that is !.p x is less than 3p x 
the rectangle under the first and th!~ terms4 ~ olace under the 
second term the sign - : but as !.90 x (= 3p x ) the square of 
the third term multiplied into its fraction is g~eater than 
nothing, and consequently much greater than -pqx the negative 

(1) Maclaurin, II , pp. 275-79 
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oroduct of the adjoining terms, I write + likewise under x3 and 
-q the first and last terms; and finding in the signs thus marked 
two changes, one from + to -, and the other from - to +, I 
conclude the e~uatio~ has two impossible roots. In like manner 
the equation x - 4x - 4x - 6 = 0 has two impossible roots; 

1 1 

3 32 3 
x - 4x - 4x -
+ + 

6=Oa~ 
+ 2 

8 
th~ same number x4 * _ 

+ + 

the equation x4 
4 3 
9 8 

6x~- 3x 
+ 

2 = 0 
+ 

2 * - 6x - 3x - 2 = 0 

" , • • • 

--There follow examples, some with terms missing, up to the seventh power. 

Next, by comparison of the signs of the coefficients with those written 

below, the method given by Newton, Maclaurin shows how to determine 

whether the complex roots are among the positive or negative ones. He 

does not mention the difficulty observed by Newton, that the introduction 

of certain factors changes the signs of complex roots. 
- (1 ) 

Maclaurin concludes this section : 

'''This always holds good unless, which sometimes may happen, 
that there are more impossible roots in the equation than are 
discoverable by the Rule." This rule hath been investigated by 
several eminent Mathematicians in various ways; and others, 
similar to it, invented and published ••• ' 

He is aware of the fact that this procedure is not entirely rigorous. 

Maclaurin reiterates some of the ideas of Wallis about the relation

ship between geometrical problems and their algebraic solutions. He 

makes the point that there are problems whose solution cannot be illus~ 

trated geometrically for which algebraic solutions of a sort can be 

given. From Part III Chapter 1 (2) : 

'In Algebra, the root of an equation, when it is an impossible 
quantity, has its expression; but in Geometry, it has none. In 
Algebra you obtain a general solution, and there is an express
ion, in all cases, of the thing required; only, within certain 
bounds, that expression represents an imaginary quantity, or 
rather, "is the symbol of an operation which, in that case, can
not be performed;" and serves only to show the genesis of the 
quantity, and the limits within which it is possible. 

In the geometrical resolution of a question, the thing re
quired is exhibited only in those cases when the question admits 
of a real solution; and beyond those limits, no solution ap
pears. ' 

(1) Maclaurin, II , p.279 

(2) Maclaurin, III , p.299 
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This is followed by a number of examples similar to those given by 

Wallis in his Algebra. For instance, it is possible to calculate 

a value for the distance from the centre of a circle to its inter

sections with a straight line, but a drawing can only be made when 

this distance is less than the radius. Thus, in spite of the en

trenched position of geometry, algebra is more powerful. 

It is not possible to infer from this book alone, without Mac

laurin's own notes, his usage of the words 'impossible' and 'imaginary'. 

In the book no distinction is made between their applications to 

problems or to numbers, but in the quotations from his actual writings 

both words are used to refer to solutions of equations. The importance 

of Cardano's method for acceptance of complex numbers comes out clearly 

in the book, and also the impetus from the algebra of polynomials 

towards a closer understanding of the number system. In the section on 

the links between algebra and geometry complex numbers are treated as 

quantities obeying certain rules and no observations made about their 

nature, although this would be the natural place for them. 

It is noticeable, particularly where he gives his 'Rule', that , 
Maclaurin takes a narrow view of unspecified numbers. Although at 

various points he considers irrational and fractional coefficients and 

powers, undoubtedly his coefficients 'p' and 'q' are positive, and 

possibly also naturals. He does not assume the freedom to assign to 

p and q any number value. An irrational coefficient, for instance, is 

specified if intended. Unfortunately this restriction weakens Maclaurin'S 

demonstration of the rule's validity. He does not consider complex 

numbers as coeffiCients or powers. He is one of many mathematicians 

who have been obliged to widen their view of numbers that can be roots, 

without allowing this wider view to percolate to numbers in certain 

other situations. 
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Jean d'Alembert 1717-1783 

D'Alembert was a mathematician working in France during this 

period. He- was interested in developing mathematical techniques that 

could be applied to particular problems, and was able to make an import

ant contribution to complex number theory. He became science editor , 
to the Encyclopedie under the principal editorShip of Denis Diderot, 

"- and contributed a number of articles. Although he was familiar with 

current ideas about complex numbers, he made only brief reference to them 

in this work(1). His prize-winnin~ essay R~flexions sur la cause g~n~rale 
des Vents was published in 1747 and in it d'Alembert gave the first 

demonstration that a complex number raised to a complex power produced 

another complex number. His main difficulty was to determine a value 

for J-1 /-1; the method used was to consider variations in the real 

and imaginary parts of a complex function. The following is taken 
from Article 79 (2) : 

(1 ) 

(2 ) 

. ./ /' 'Car il est certain qu'urle quant1te, algebrique quelconque, 

compos~e de tant d'imaginaires qu'on voudra, peut toujours se 
./" /' ./ /' "-reduire a A+BJ-1, A & B etant des quantites reelles; d'ou il 

./ /' /' ./ 
s'ensuit, que si la quantite proposee doit etre reelle, on aura 

B = O. 
./ ../ 

Pour demonstrer cette verite, il faut remarquer, 
"-

10. Que a+b /-1 = A+Bv'-1, nuisque a = gA-hB; b= Ah+gB; d'ou 

g+hJ-1 l'on tire A = bh+ag; et B = bg-ah. 
hh+gg hh+gg 

20 • Que [a + b v'-U g+h ';-1 = A + B V-1. Car faisant varier 
./ 

A & B, aussi-bien que a & b, et prenant les differentielles 

IDgarithmiques, on a (g + h) /-1*x da + db 1-1 = dA + dB -1-1 ; 
" a + b J-1 A + B J-1 c'est-a-dire 

AdA+BdB+(AdB-BdA) V-1 = gada+gbdb-ahdb+bhda + 
AA + BB aa + bb 

-h radb-bda 
:-, g V-aa+bb 

donc AA + BB = [aa + bb~ x c 

(hada-+hbdb+gadb-gbda) v
aa + bb 

Diderot and d'Alembert , Encyclop~die VIII, p.560 
,,, 4 dtAlembert, Reflexions sur la cause generale des Vents, p.1 1 

* Correctly: (g + h /-1 ) 
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etfdB - BdA = 
AA + BB 

Orfdb'- bda , 
aa + bb 

h log ../ [ aa+bb] 

etfAdB - BdA 
AA + BB 

+ gjdb-bda • 
aa+bb 

sont des expressions des 

angles dont les tangentes sont b et B : donc B et A sont les 
a A 

sinus et cosinus d'un angle dont Ie rayon est 

[ 
~db-bda~ 

J aa + bb g x c - aa+bb J, et dont la valeur est 

h log'; [aa+ bbJ + g (?db - ~a • . J -aa + 

3
0

• II est ~vident, que a+b "/-1+ (g+h ../-1) = A + B ../-1 ; et 

que (a + b../-1) x (g + h../-1) = A + B../-1 • 

40
• Par Ie moyen de ces trois propositions, il sera facile de 
/ ' / / reduire toujours a la forme A + B../-1, une quantite composee de 

tant et de telles fortes d'imaginaires q'on voudra. Car en 

allant de la droite vers /' la gauche, on sera evanouir l'une 
'\. apres 

./ ,/ 
l'autre toutes les quantites imaginaires, excepte une 

"" "'-seule : la quantite propQsee se reduire donc a A + B~-1; et 
A / " si elle doit etre une quantite reelle, B sera necessairement 

= o. ' 

D'Alembert dismisses the sum, difference and product of two 

complex numbers in his third point and deals briefly with the quotient 

in point one. In point two he considers raising a complex number to a 

complex power. The method is to assume the result he is seeking, that 

it is of the form A + B/-1, and show that this assumption leads to no 

contradiction. The first step is to apply logarithmic differentiation. 

The use of the letters a, b, A and B as variables makes his work diffi

cult to follow, and he uses differentials throughout. He treats ../-1 as 

a constant; for instance, in d (b /-1), written db j-1, ../-1 is removed 

in the next step as a factor. After differentiation, he separates real 

and imaginary parts to obtain two differential equations which are 

solved by standard methods using an integrating factor. He shows that 

A and B are the sine and cosine of the same angle, so there is no incon

sistency in the original assumption. other mathematicians, notably Euler, 

later supplied more rigorous uroofs. 
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1-1 A value for J-1 may be determined more easily using the 

relationship eie = cos e + isin e, with e nut equal to 11/2, say. 

This gives ei11/ 2 = i, the ith power of which gives ii = e-11/.2, 
approximately 0·208 • • • , a real number. The general result 

(a + ib)g + ih = A + iB can readily be obtained using de Moivre's 

theorem and the relationships cos 6 = (ei6+ e-ie )/2 and sin 9 = (ei6_ e-i6 )/2i. 

These relationships were known by the time of d'Alembert. Cotes had 

given the equivalent of i9 = ln(cos 9 + isin e) in 1714 and Euler knew 

'- that cos e = (ei9+ e-i6 )/2 by 1140. In 1743 he published this discovery 

with the corresponding result for sin e, and later rediscovered Cotes' 

result(1). 

D'Alembert later, in connection with his work of 1752 on fluids, 

took the first steps in complex function theory. He found that 

(now known as the Cauchy-Riemann equations), ~=~ and ~=-~ 
~x cy e>y ~ define two functions p and q, such that 

dq = Mdx + Ndy and dn = Ndx - Mdy. qdx and pdy are exact differentials 

1 f t
o (2) 

with p and q the real and imaginary parts of a comp ex unc 10n • 

Euler later developed this method to evaluate real integrals using 

complex functions. The details of complex function theory are outside 

the scope of this thesis. 

(1) Kline, p.409 

(2 ) Kline, pp. 626-27 
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Leonhard Euler 1101-1183 

The Swiss mathematician Leonhard Euler, a stUdent under Jean Bernoulli 

at Basle University, spent m~~ of his working life as professor in the 

Academy of Sciences of St Petersburg, with a period of twenty-five years 

at the Academy of Sciences of Berlin. From about 1766 he became in

creasingly, and then totally, blind. Through his pupil, secretary and 

friend Nicolaus Fuss (1755-1826), he was able to continue his prodigious 
mathematical output. 

Euler had real difficulties with the nature of complex numbers; 

he was quite open about his strong feeling that he was failing to grasp 

or understand their essential nature. He was well able to manipUlate 

them according to certain rules of behaviour, but his intellectual bewild

erment about them is clearly expressed in his Algebra. He is trying to 

get a clear'picture of what he is discussing and is not content with the 

formalist view that ~-1 is an entity which obeys a given set of rules. 

This difficulty seems to have been or much more importance to Euler than 

to other mathematicians such as ~allis, who also made important discov

eries about complex numbers. I have not found an instance of Wallis 

expressing anxiety over the nature of complex numbers, either in his 

Algebra or his correspondence. I have also not been able to find that 

Euler was aware of Wallis' ideas about mean proportionals or his dia

grammatic representation for complex numbers. It is difficult to believe 

that he was unaware of this material as Wallis' book was published in 

1685 in English, and in 1693 in Latin; Euler could read both English and 

Latin. If Euler had been aware of it, we must conjecture that he would 

have mentioned it at the point where he discusses the nature of complex 
, 

numbers in his own book. Elsewhere Euler mentions some of Wallis's 

ideas relating to infinite series, so must have been familiar with 

Arithmetica Infinitorum. 

Euler had, at one time, views on negative numbers similar to 

those of Wallis. He discussed the behaviour of certain functions and 

their expansions in series. (1) Expanding (1 - x)-1 by the binomial 

(1) Euler, Opera Omnia, Ser.I, Vol.XIV, p.591; Vol.X, pp.78-81 
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theorem gives 1 +x + x2 + x3 + • • • and by putting 

x = -1 he obtained != 1 - 1 + 1 - 1 + • • • (a) 
with x = -2, != 1 - 2 + 22_ 23+ • • • (b) 
and with x = 2, -1 = 1 + 2 + 4 + 8 + • • • (c) 
From (1 )-2 c() 1 + 2 + 3 + 4 + + x , = • • , with x = -1. (d) • 
Comparing the last two, Enler argued that (c) must be greater than (d) 

on the basis of a term by term comparison. Therefore -1 is greater than 

infinity. It might as easily be argued that (c) lacks terms that are 

Dresent in (d) and so -1 is less than infinity. It is difficult to see 

how Euler could have accepted the result (c), especially when he later 

obtained the result -1 = 1 + 1 + 2 + 3 + • • • • Euler did not realise 

the importance of convergence, although he was aware of the concept, and 

obtained many baffling results. He regarded infinity as a limiting 

value between positives and negatives, similar to zero. As with Wallis, 

the discontinuity was being dealt with inadequately and divergence 

ignored. 

In Chapter V of his Algebra Euler covers series derived from 

fractions with more care. He still does not mention convergence, but 

pays close attention to the remainder after summing the first few terms 

of a series. In most cases these series are geometric progressions of 

increasing terms and the remainders are found by application of the 

formula, which is only acceptable when the terms are decreasing. Because 

of the way this is done, these results seem to confirm the strange results 

above. For instance, taking -1 = 1 + 2 + 4 + 8 + 16 + 32 + 64, the 

remainder is 128/(1-2) or -1?8. This gives a total of 121 - 128, which 

is -1. Euler does not seem to have subscribed to Newton's mistaken idea 

which associated divergent series with complex sums, but his unusual 

view of negatives did not provide a sound foundation for a study of 

complex numbers. 

Euler'S Elements of Algebra (1169) was written after he became 

blind, with the help of a tailor's unnamed young apprentice, who was com

pletely ignorant of mathematics but who had been recommended by Bern

oulli (1). It was written as a beginner's text-book and the student 

(1) Euler, Algebra (1840), p.xix (Memoir by Francis Horner); 

Hutton, Dictionary (1196), I, p.451 
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learned algebra as he went along; this ensured that the treatment was 

clear and easy for a novice to follow. Attached are the "Critical and 

Historical notes of M. Nicholas Bernoulli to which are added the 

additions of M. de la Grange ff
• After its original appearance in Russia, 

a German edition was published in 1110 and English translations in 

1191 and 1840. It was very popular and was renrinted and reissued a 

great many times(1). It is noteworthy that although complex numbers are 

frequently mentioned, and the remarks about the nature of J-1 much the 

most contentious part of the book, the "Additions" contain only a 

passing reference to the topic. Furthermore, neither Bernoulli nor 

Lagrange seem to have noticed the errors in Euler's text (see below), 

and these remained uncorrected in the 1840 English edition. 

Euler tried to give a definition of complex numbers by starting 

with a global concept of number, then eliminating all those number cat

egories whieh do not have their properties. If complex numbers are 

numbers, then whatever remains must constitute a definition, or at 

least a description, of them. Unfortunately, his initial concept of 

what constitutes a number was too narrow, only encompassing reals on a 

one-dimensional model, so that after the elimination process nothing 

remained. This is given as a reason for calling the numbers 'imaginary' 

and 'impossible'. This elimination process could have brought Euler 

close to a working definition of complex numbers if his starting premises 

had been wider, in this sense he came close to a useful definition. Euler 

says in paras 141 to 144 of the Algebra (2) : 

' ••• the root in question must belong to an entirely distinct 
species of number; since it cannot be ranked either among the 
positive or among negative numbers • 
• • • positive numbers are all greater than nothing, or nothing, 
and ••• negative numbers are all less than nothing or nothing; so 
that whatever exceeds nothing, is expressed by positive numbers, 
and whatever is less than nothing, is expressed by negative 
numbers. The square roots of negative numbers, therefore, are 
neither greater nor less than nothing. We cannot say however 
that they are nothing; for nothing multiplied by nothing pro
duces nothing, and consequently does not give a negative number • 
• • • we cannot rank the square root of a negative number amongst 
possible numbers, and we must therefore say that it is an imposs
ible quantity. In this manner we are led to the idea of numbers 

(1) It is shortly to be reissued (1985) 

(2) Euler, Algebra (1191), p.64 
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which from their nature are impossible. Those numbers are usually 
called imaginary quantities, because they exist merely in the 
imagination. ' 

Complex numbers have been excluded completely from the number ~stem, 

and are 'merely' imaginary, or non-existent. 

Euler then says that as we can imagine these numbers and describe 

their behaviour, we can make use of them. From para 145 (p.66) : 

' ••• nothing prevents us from making use of these imaginary 
numbers, and employing them in calculation. ' 

He expands on this point in para 151, where he stresses their usefulness 

in showing that a problem is impossible (p.68) 

'It remains for us to remove any doubt which may be entertained 
concerning the utility of the numbers of which we have been 
speaking; for those numbers being impossible it would not be 
surp~ising if they were thought entirely useless, and the object 
only of unfounded speculation. This however would be a mistake. 
The calculation of imaginary quantities is of the greatest import
ance: questions frequently arise, of which we cannot immediately 
say, whether they include anything real and possible or not. Now, 
when the solution of such a question leads to imaginary numbers, 
we are certain that what is required is impossible.' 

Much later, in para 700, the same point is reiterated, when a problem is 

attempted which leads to a quadratic equation with complex roots. Euler's 

next point is to show how the discriminant of a quadratic can be used to 

test for complex roots, so that the roots do not actually have to be 

determined. 

It is in this section that Euler mentions irrational roots. He 

says that these can be found approximately but that complex ones cannot. 

He does not consider roots that are both comnlex and irrational. 

In para 703 Euler makes a firm statement that quadratic equations 

have two roots, having mentioned in para 700 that the roots may be 

imaginary or impossible, and no value may De ~ssignable to the unknown. 

He is thinking of impossible numbers as proper numbers, to be counted 

among roots together with reals, in spite of his feeling that they are 

non-existent. He does not give a general statement about the number of 

roots in a polynomial, but does give some examples of cubics. He solves 

the cubic x3_ 8 = 0, obtaining as roots 2, and -1~/(-3) and verifies 

that these, when cubed give 8. 
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Puler says in para 703 (pp. 391, 393, 396) : 

'It is true that these values are imaginary or impossible; but 
yet they deserve attention • • • every cube root has three diff
erent values; but that only one is real, or possible, the two 
others being imoossible. This is the more remarkable, since 
every square root has two values, and since • • • a biquadratic 
has four different values, that a fifth root has five values 
and so on. In ordinary calculations, indeed, we employ only 
the first of those values because the other two are imaginary 
•• • there is no doubt but that such an equation [the general 
cUbic] has three roots after it has been seen • • • that this is 
true with regard to pure equations [of the type xn_ a~= OJ of 
the same degree. ' 

These extracts show the state of Euler's thinking about complex 

numbers. The algebra of polynomials forced the conclusion that they are 

numbers, but he could find no logical place for them in the number 

~stem as he saw it. The,y cannot be approximated as can irrationals, 

and are founded upon negatives about which he was also somewhat confused. 

The claim for notice of this 'new species' lay in its admitted usefulness 

in allowing the mathematical treatment of problems that have no oossible 

solution. None of Wallis's ideas are mentioned; had he known of it, he 

would surely have found the diagram helpful. He does not seem to have 

been thinking visually and may have thought a diagram neither possible 

nor desirable. He does not observe a narrow restriction of complex 

numbers to unsolvable problems; elsewhere he uses them freely in far more 

sophisticated ways, for the logarithms of negative numbers, for instance. 

His lack of confidence about their nature fortunately did not hinder him 

from making numerous extremely important discoveries about their be

havioui particularly their interactions with many branches of mathematics. 

Euler's ideas about the nature of complex numbers show no advance 

beyond those of Wallis, on the contrary. In Euler's time it would be 

assumed, without the recognition that it was an assumption, that complex 

numbers can be ordered and described as positive or negative, as can 

reals. Some inkling of the fact that this is not so can be seen in the 

working of Descartes' rule of signs. The roots are distinguished as 

positive or negative with resoect to the real oart only and not with 

respect to the whole, and the rule can give contradictory information 

in the presence of different factors. Euler was familiar with the two

valued square root function via (a positive), where the two values are 

different and easily distinguishable. He would then have assumed that 
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V-1 was of the same kind. However, because of the automorphism 

i~-i in the complex number field, there is no relation which will 

distinguish betw~en them. A distinction between i and -i can only be 

made if the restriction that it is the same i in each case is imposed. 

To Euler i would have had only one value, although it could have been 

positive or negative, and in the discussion of the errors in his 

Algebra, this is the assumption that has been made. 

These errors had far-reaching consequences, particularly in 

England, and constitute a most important aspect of Euler's Algebra. 

"_ It has been suggested that, as Euler was totally blind when the book 

was written, it may be that the mistakes were not his own, but those of 

his secretary or of his publisher. However this is not likely as the 

same error is repeated several times in different guises, and the 

erroneous idea carefully described. Slips are rarely found in Euler's 

work, but this error is particularly difficult to detect and he could 

not have done any proof-reading. It is most difficult to be sure that 

they do not originate with the 'apprentice', this depends on the extent 

to which Euler kept tight personal control over what was written in his 

name. The name of the apprentic~ was not given but it was evidently 

not Fuss (also recommended by Bernoulli) who did not arrive in st. 

Petersburg, where the book was written, until 1173(1). In view of the 

consistency with which the errors occur, I think that it is likely that 

they are Euler's own. They were not corrected and caused much wavering 

of confidence in complex numbers among later mathematicians, some of 

whom were under the impression that the arithmetic of complex numbers 

was either ambiguous or not yet agreed upon. The accuracy of Euler 

does not seem to have been questioned. 

Euler says in paras 148 and 149 of the Algebra (p.67) : 

'Moreover as ~a multiplied by Vb makes Jab, we shall have 
.J6 for the val.ue of '/(-2) multiplied by v'(-3) and -./4 or 

2 for the product of ./ (-1) by J (-4) • ~Te see, therefore, 
that two imaginary numbers, multiplied together, produce a 
real, or possible one • 
• • • it is evident ••• that '/(+3) divided by '/(-3) will 
give -'/(-1) and that 1 divided by '/(-1) gives /i1. or /(-1).' 

-1 

Wi th- the proviso mentioned above, J (-2) x vi (-3) should be - J6 , 
V(-1) x -'/(-4)is-2, v(+3);' J(-3)is-J(-1) and ji1. iS -v'(-1). 

-1 

(1) poggendorff, I, pp.821-23, (p.821) 
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In every case of mUltiplication and division Euler's text 

makes the same a£sumption. This is that ja x jb = ~(a x b) and 

ja ~ Jb = ~(a : b) in every case. These assumptions are true in • • 
every case except the one where a and b are both negative in multinli

cation. Subject to the proviso described above, the result should be 

iVa times i~b giving -jab, and not +jab. "\\1hen dividing, it is 

possible to obtain the correct result because the errors elirrunate 

each other. Taking Euler's examnle, /(-4): j(-1) = ?i ~ i = 2 

1-4 . . . . ' 
also -1 = 2 so hlS answer lS correct. 1,-;P know that Fuler was ob-

taining his answers by the spcond method as this is how it is described 

when he finds 1 ~ J(-1). 

Present-day usage is that the symbol J indicates the nositive 

square root so Fuler' s J6 means today + ";6, id thout ambiguity. Pis 

use of = ..; in paras 700 and 703 shows that his nractice was the same 

in these cases, although each has a nreceeding number. Whatever Euler's 

usage, it is not possible to omit the ,_, in -J if the negative value 

is meant, there seems to be no alternative to attributing the error 

to Euler himself. 

Some of the ideas current at this time first apneared in the 

correspondences between Euler, Goldbach, Daniel Bernoulli and Nicholas 

Bernoulli (1). Goldbach and Euler corresnonded on number theory in 1742. 

Functions having j-1 as an index such as (2P j-1 + 2-P )-1 )/ 2 and 

series for exnressions involving trigonometric functions were also 

discussed. Comnlex roots of quartics are mentionerl several times and, 

in 1752, functions involving /-1 which generate reals, such as the 

sine and cosine. Daniel Bernoulli wrote to Goldbach in 1730, and to 

Fuler in 1745, about integration by substitutions using J-1, but 

where the functions being integrated and the integrals ~Tere both real (2). 

In 1731 Daniel'Bernoulli and Euler corresponded on the complex formula 

for the area of a circle sector obtained by integration. In 1742 

Euler was in correspondence with Nicholas Bernoulli and Goldbach on 

complex expressions for trigonometric functions such as, for sin B, 

(1) FUss, Correspondance, I, pp. 112, 113, 124-26, 133, 170, 201 

(2) FUss, II, rp. 376, 5q 1 

(<;) russ, II, pr. 683, 687 
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'sinus arcus B = (n _n-1 )/2/-1 '; and series for trigonometric functions. 

Nicholas Bernoulli discussed the roots of the quartic x4_ 4x3+ 2x2+ 4x + 4 

in 1742 and 1743, giving the four complex roots 1 -t )2 j:H (1). 

Some of these ideas were included in the Algebra. There is nothing 

in these correspondences about the nature of complex numbers, they are 

treated only as entities with rules of behaviour that are being explored. 

In 1749 Euler published his resolution of the controversy be

tween J~an Bernoulli and Leibniz about the logarithms of negative and 

imaginary numbers (2). Bernoulli, supported by d'Alembert, held that 

log(-x) = log (x), whereas Leibniz, with whom Euler agreed, gave argu

ments showing that this could not be so. Bernoulli advanced several 

fallacious arguments to show that log(-x) = log(x), that is that 10g(-1) 

= 0, one of which was that they must be equal as their differentials 

are equal. D'Alembert subscribed to the same error and de Missery 

corrected him with some forcefulness (see below). Leibniz objected 
"!~I~o~~ 

that differentiation~onlY applied to positives and Euler pointed out 

that it would be disastrous if differentiation were not universal. 

Euler's argument was that the equality of the differentials meant only 

that the functions differed by a constant and not that they were equal. 
, 

As log(-x) T log(x), log(-1) ~ 0, and Euler went on to show that 

log ( J-1) =1= 0 using a result 

By integrating dx/(1+ x2 ) in 
-1 

J-110g (J-1 - x) = tan x, 
2 (J-1 + x) 

discovered in 1702 by Bernoulli himself. 

two ways, Bernoulli had shown that 

from which log "'-1 = II /-,. So log) "-1 ) 
2 -1 

is the ratio of a quarter of the circumference of a circle to its radius 

and logV-1 cannot be zero. One of Leibniz' arguments in favour of an 

imaginary value for log(-1) being imaginary depended upon the series 

log(1 + x) = x - x2/2 + x3/3 - x4/4 + ••• with x = -2, and EUler 

counters this with some examples showing that arguments depending on 

the properties of divergent series are unreliable. Although Euler does 

not support Leibniz' arguments, he agrees with his conclusion. Euler 

(1) Fuss, II, pp. 691, 702 

(2) Kline, p.409; 
Euler, Qeera O1lnia, Ser.I, Vol.XVII, 'pp.195-232; (not seen); 

Tahta, Imaginary Logarithms, pp.4-18 
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produced proofs that all logarithms are multi-valued, which removed 

the apparent contradictions. His first (unpublished) proof used Cotes' 

formula which can be seen to be periodic. 

In his work on logarithms Fuler manipulates \/-1 confidently, 

according to its rules of beha.viour. He used comnlex functions in 

other ways such as the evaluation of real integrals by separation of 

real and imaginary parts. He improved d'Alembert's demonstration that 

complex numbers are closed under exponentiation, and called this the 

,_ fundamental theorem of complex numbers. Euler was able to advance 

complex number theory in many directions although it can be seen in 

his Algebra that he was fundamentally unsure about their nature. 
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Chapter IV 

The Algebra (1769) of John Hallis to the Argand diagram (1806) 

During this period the links between trigonometric, logarithmic 

and exponential functions were further explored and consolidated. 

Analysis gathered momentum, and problems in pure mathematics, physics 

and mechanics were being solved by means of the calculus with marked 

success. Complex function theory was being developed, Gauss gave 

proofs of the fundamental theorem of algebra and Wessel and Argand 

prorluced their diagrammatic representations for complex numbers. Math

ematicians such as de Missery were confidently demonstrating the useful

ness of complex numbers, while in England doubt and confusion about these 

and about negatives are discernible in the writings of Frend, Hutton 

and Playfair. It is easy to justify the claim that continental 

mathematicians were forging ahead more rapidly than British ones, particu

larly as far as complex numbers are concerned. 

A French mathematical history written during this period was 

the General History of Mathematics of Charles (John) Bossut, which was 

published in French in 1802 and in English translation in 1803. It is a 

wordy account, almost totally devoid of mathematical symbolism. Bossut, 

who had the same teacher as Montucla and was also a pupil of d'ft~embert, 

writes broadly on astronomy, optics, accoustics etc and their mathematical 

treatment, but with Ii ttle detail. He mentions (1 ) the irreducible case 

of the cubic as having been paradoxical until Bombelli resolved the 

problem geometrically and compares Bombelli's demonstration with Plato's 

mean proportional method for the duplication of the cube. 

parts of conjugates are described as destroying each other. 

metic and algebra, Bossut says in Chapter 1(2) : 

The imaginary 

Of arith-

' ••• they are fundamentally one and the same science. Arith
metic operates immediately on numbers, and algebra operates in 
a similar manner on magnitudes in general. I 

(1) Bossut, History, p.208 

(2) Bossut, p.206 
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'-

As there is virtually no mathematical ~bolism in the book, it is 

difficult to tell whether Bossut is adhering to the Greek idea of the 

unknown as a magnitude, to the extent of excluding powers higher than 

three from algebra. Although he says that arithmetic and algebra are 

fundamentally the same, that is th~ have the same rules, he seems to 

be making the distinction that algebra does not apply to number. If 

this is not just an accident of expression or translation, this is a 

primitive attitude to find in a book of this date. 

Bossut's attitude to complex numbers is similar to that of 

~Dntucla. Neither writer gave them much space in their histories, 

and neither makes any philosophical observations about their nature 

or their place in mathematics. The information given is elementary, 

more recent developments are ignored. 
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Edward Waring 1736-1798 

Edward Waring was a mathematician working in England during 

this period. He became sixth Lucasian professor of mathematics at 

Cambridge while still in his twenties; and wrote a number of works 

on algebra. His work seems old-fashioned partly because, although 

written in the second half of the 18th Century, it was in Latin. 

- Waring followed the ideas, notation and methods of Newton at a time 

when continental mathematicians were making great progress in the 

calculus along lines started by Leibniz. Lagrange, Euler and d'Alembert 

thought highly of him, but Hutton described some of his work as 

'abstruse,(1). Waring's writings have been considered to be poorly 

presented, confused, difficult to follow and full of typographical 

errors. He was a shy and modest man of high integrity, but lacked 

orderliness of thought. He suffered from severe myoPia(1). 

Waring's Meditationes Algebraicae was published in 1710. This 

is a detailed text-book of algebra at a non-trivial level, containing 

a number of interesting innovations. After some standard material 

about complex roots of a quadratic, the number of roots in a polynomial 

and Descartes' rule of signs, Waring gives the rule that if substit

ution of two values in a polynomial give positive and negative totals, 

then between them must lie a value giving zero (a root). In Chapter 

I he gives a method for finding greatest and least roots of a poly

nomial using multiplication by the terms of a series, which he says 

operates whether the roots are real or complex. In Chapter II he uses 

his series method to find the limiting numbers of positive, negative and 

complex roots, the limiting values between these roots and new equations 

with these limiting values as roots, from which Newton's and other rules 

can be deduced. Waring finds the number of complex roots in a poly

nomial by multiplying it by another having only real roots, and finds 

whether complex roots are positive or negative by multiplying the 

polynomial by x + a and x - a. This a development of the property 

noted by Newton, that multiplication by another factor can change the 

(1) Hutton, Dictiona~ (1815), II, p.584 
("Waring, Edward") 
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signs of complex roots. He gives a general rule for finding the 

number of complex roots using successive quadruples of terms instead cf 
successive triples, as in Newton.' rule. v;aring then shows how to find 

the number of complex roots in an equation whose roots bear an al

gebraic relation to those of a given equation. such as where they are the 

squares or the squares of differences etc. He also deals with the 

number of complex roots in an equation in two or more unknowns. In 

the last two cases, Waring claims to obtain the exact number of roots, 

and not a limiting value for the number. He solves a cubic using de 

- ~nivre's theorem and says that Cardano's method involves three cubics, 

that is a resolution of nine dimensions. He shows how to rationalise 

irrational unknowns in an equation and considers one with imaginary 

coefficients. He multinlies together two quadratics with some imag

inary coefficients to obtain a quartic with real coefficients and 

refactoris~s this into quadratics with real coefficients. This is to 

demonstrate that every algebraic equation with real coefficients can 

be factorised into quadratic and linear factors with real coefficients. 

Waring then gives an iterative method for improving approximations 

for roots, whether real or complex. If the approximate root is a + b v-1, 

substi tute x = a + a' + (b + b' ) J-1, and reject higher powers of a' 

and b'. Equating real and imaginary parts gives values for a' and b'. 

Waring considers only the algebra of polynomials in this book. 

He does not use geometrical methods, but demonstrates the power of 

the arithmetic series approach. He gives no discussion about the 

nature of complex numbers, but uses them to great effect. He gives no 

graphical representations of any sort. His use of words is confusing, 

both 'irrationalibus' and 'impossibilibus' are used to mean imaginary. 

This Algebra represents a real advance in the algebra of polynomials 

and it is unfortunate that it was not easier to read. 

In the Meditationes Analyticae of 1773, Waring covers Newtonian 

fluxions, giving some rules for differentiation and a number of inte

grals. Some of the examples include complex numbers, for instance he 

gives the integral of 2a
2i2 as the complex quantity ~;a2l0g x + v-a: • 

a + x x - v-a 
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He makes use of complex numbers several times, referring to them as 

'imaginaria quantitas', but gives no discussion of their nature or 

his views of them. 

Waring's most imoortant contributions to mathematics were in 

number theory in which he made several useful conjectures and deductions, 

and in the treatment of sequences, as he was one of the first mathe

maticians to recognise that the convergence of these needs consideration 

when manipulating or summing them. He uses series with polynomials to 

_ great effect. He took a broader view of coefficients and unknowns in 

polynomials than many mathematicians and his use of complex numbers 

shows that he was able to accept them as numbers. He does not deal 

with problems in his Algebra, but builds up the subject as a dis

cipline in itself, which did not require 'usefulness' as a justifi

cation. This represents a much more advanced view of algebra, and of 

complex numbers, than was exhibited by many mathematicians of his 

time. 
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William Frend 1151-1841, " Baron Francis Maseres 

William Frend, whose daughter Sophia Elizabeth married Augustus 

de MOrgan, was outspoken in condemnation of the use of negatives in algebra. 

Frend's reading of the Bible had led him to believe that he had been 

hoodwinked by the Church into an acceptance of the Trinity, and this 

discovery led him to question other beliefs, particularly in mathema-

'-tics(1). He came to think of algebra containing negatives as an art 

rather than a science, and advocated the elimination of negatives from 

algebra in order to restore to it the status of a science. Similar 

views were expressed in similar language by de Morgan, and the two 

must have discussed these matters. The line taken by Frend was that 

there was n~ proper definition of negatives, however this argument 

cannot be regarded as carrying any weight as no part of the number 

system had been defined at the time. 

Frend's algebra text-book Principles of Algebra was published in 

1196 and he sets out his philosophy of numbers in the preface. His 

views are very decided, '-' means a subtraction and can only be applied 

when the result would_,not be negative. His extraordinary aim was to 

write an algebra of non-negative numbers. Frend uses the word 'im

possible' for complex and imaginary numbers, but of course, under his 

system they can never arise. From the preface (2) : 

' ••• to attempt to take La number] away from a number less 
than itself is ridiculous. 
Now when a person cannot explain the principles of a science 
without reference to metaphor, the probability is, that he has 
never thought accurately upon the subject. 
• • • algebraists, who talk of a number less than nothing, of 
multiplying a negative number into a negative number and thus 
producing a positive number, of a number being imaginary • • • 
they talk of two roots to every equation of the second order, 
and the learner is to try which will succeed in a given equation: 
they talk of solving an equation, which requires two impossible 
roots to make it solvible: they can find out some impossible 
numbers, which, being multiplied together, produce unity. This 
is all jargon, at which common sense recoils; but from its 
having been once adopted, like many other figments, it finds 

(1) Pycior, Historia Mathematica, -9('982),393 
(2) Frend, Algebra, preface, P.x 
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the most strenuous supporters among those who love to take 
things uuon trust, and hate the labour of serious thought. 
(£omplex ~nswers are attributable to] either an error in the 
mode of reasoning, or to false premisses. ' 

The 'metaphors' comolained of are those of book-debts, receding tides 

etc in Maclaurin's Algebra, described above. These remarks are 

quite uncompromising, at least three centuries of progress in the number 

~stem are rejected and the writing of an algebra book under the re

strictions described seems a considerable achievement. 

Frend gives methods for solving simple equations, but his determin

ation to eliminate negative numbers leads to cumbersomeness and much 

multiplicity of methods. Negatives do not arise either in equations or 

as roots, and they are also avoided in the calculations. 

Frend takes the cubic x3_ qx + r = 0, and shows how to solve it 

by letting x = a + b with 3ab = q. This gives a3+ b3+ r = 0 leading to 

a
6

+ q3/27 +ra3= 0, a quadratic in a3• The solution is 

x = vYi-2.- ~ -r + yr _ ~2 _ ~ 
4 27? 2 4 27 

(1) • Frend says • 

'1. Let the equation be x3+ 27x - 28 = 0, in which x is equal 
to one, and consequently a and b must each be less than one, 
and 3ab cannot be equal to 27. Hence it is evident that this 
method cannot be applied to a vast variety of equations, in 
which the unknown number is incapable of being divided into 
two parts, so that three times their product should be equal 
to q. 
2. After having made the supposition that 3ab = q, an equation 

is formed a3+ b3+ r = O. Now this is absurd; for three numbers 
added together cannot be equal to nothing. 
3. From absurd premisses, an absurd conclusion is most likely 
to fOllo~and this is seen in the expression b = 
31 2 3 \I -!:, - 2. !:, - ~, an expression which has no meaning.' 

2 4 27 

The three numbers in para 2 cannot sum to zero because none can be neg

tive; in para 3, if r and the square root in b are both positive, then 

the quantity whose cube root is required and the root itself are both 

negative, and so inadmissable. 

(1) Frend, p • 211 
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"
Frend's Algebra has a comprehensive appendix by Baron Francis 

Maseres, who also contributed to Hutton's Dictionary. " Maseres was 
considered for the sixth Iucasian professorship of mathematics at 

Cambridge in competition with Waring, but was not successful (1). 

" Maseres takes every case of the cubic, giving for each a solution 

which does not introduce negatives, with an example. This circumvents 

Frend's difficulties with the cubic. For the irreducible case Maseres 

recommends the Newton-Raphson method, in which an anproximate root is 

- required as a first estimate and improved iteratively (2). Considering 

bx - x
3 = c , using a small increment in x, he shows that 

c :< 2b v'b and if c = 2b Vb or £.£. = ~ , the equation will have one 
~ 3 13 3::73 4 21 

root vib , if c is less then there will be two roots ~ and n , where 
V3 f 

0( < yO and Vb < 13 < v'b • 
V3 73( 

He takes a first estimate close to one 

of these limits and uses the Newton-Raphson method to improve it, giving 

a great many examples. In Part II of the book, Frend describes the rule 

of double false position for finding roots. In this method the first 

estimate does not need to be so close to the root. 

The book is necessarily long and tedious, it goes against the 

usual trend in mathematics towards generalisation and simplification 

of procedures. No rigorous demonstration of the behaviour of negatives 

under, for instance, multiplication was available at the time and one 

must have a certain sympathy for Frend's attitude. He has been des

cribed as eccentric, but there is a sense in which he was right. Frend 

has overlooked the fact that no rigorous demonstrations had been given 

for positives either, if negatives need rigour so do all numbers. The 

methods used to avoid negatives are ingenious if lengthy, but the 

elimination of these neatly solves the problem of how to deal with 

imaginaries. Frend lived for many years after the publication of the 

Algebra ; I have not been able to establish whether he ever changed 

his views about negatives in algebra. 

(1) Hutton (1815), II, p. 584 
(2) Frend, p. 292 
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Charles Hutton 1131-1823, John Playfair 1748-1819 

The far-reaching consequences of the 'errors' in Euler's 

Algebra referred to above are well exemplified in some of the writings 

of Charles Hutton. Hutton was a competent mathematician who rose from 

humble beginnings as the self-educated son of a Northumberland colliery 

worker, to become Professor of Mathematics at the Royal Military Academy 

Woolwich, a position which he won in open competition. On retirement 

from this post, he was awarded a pension of £500 p.a. by the Board of 

Ordnance, an indication of how highly his services had been valued. In 

1198 he published A course of Mathematics composed and more especially 

designed for the use of the gentleman cadets , in two volumes. Each 

volume consists of three parts. Volume I has sections entitled 'Arith

metic', 'Logarithms and Algebra' and 'Geometry'; volume II has sections 

entitled 'Trigonometry', 'Conics' and 'Mechanics'. There is a substan

tial treatment of the Newtonian 'Doctrine of Fluxions' in the mechanics 

section, in which the language and notation are those of Newton. This 
\ 

is an excellent, comprehensive and easily-followed exposition of the 

mathematics then available , and at a suitable level for military cadets. 

The arithmetic section gives computational methods for nth roots, but 

there is no mention of the even roots of negative numbers, either at 

any point in the text, or in the introduction. If there were no other 

evidence, we should have to speculate about this omission. Hutton 

could not have been unaware of the existence of complex numbers and 

the level of the work, and its breadth, were such that a treatment of 

complex quantities would have made a very satisfactory completion to 

the picture given of mathematics. But the aim of the book was neither 

to give a picture of mathematics nor a comnrehensive mathematical ed

ucation, but to equip cadets with an adequate knowledge of mathematics 

for military needs. It might be supposed that Hutton had considered this 

point and decided that a knowledge of complex numbers was unlikely 

to be useful to an army officer. 
However in 1806 a third volume was produced by Hutton and 'Dr 

Gregory', also of the Royal Military Academy. The new chapters are to 

be interposed between those in Volumes I and II. Chanter VIII is 
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entitled 'On the nature and solution of equations in general', and 

covers methods of solving quadratics and cubics including trigonometrical 

methods, with acknowledgement of Cardano and Euler. From article 5 (1) 

'It sometimes happens that an equation contains imaginary roots 
• • • This class of roots always enters an equation by pairs: 
because they may be considered as containing, in their expression 
at least, one ~ radical before a negative quantity, and 
because an ~ radical is necessarily preceded by the double sign 
+ .' 

There follow remarks about numbers of roots, conjugates, determination 

of roots etc. There is no mention of uncertainties in the arithmetic 

of complex numbers, and nothing about their nature. The word 'real' 

is used in the modern sense. There is no indication as to which parts 

of Volume III were written by Hutton and which by Gregory, but in 

view of Hutton's doubts about complex numbers as revealed in his Diction

ary , this -chapter was nrobably contributed by Gregory. 

A somewhat unfortunate post-script to this book appears in 

Daniel Dowling's Key to Hutton's Course of Mathematics of 1818. The 

Key consists of solutions to problems in the Course and Dowling's 
\ 

only observations concern the frequency with which his answers differ 

from those of Hutton. 

Hutton's Mathematical and Philosophical Dictionary of 1796 gives 

a clear picture of his views on negative and complex numbers, and on 

mathematics generally. The format of the Dictionary is two columns 

to a page, which is of approximately A4 size. Some of the entries are 

as follows, more general entries being given for comparison : 

Complex 
Impossible 
Negative 
Root 
Imaginary 
Equation 
Algebra 

Zero 
Integers 
Irrational 
Limit 
Variable 
Euclid 
Geometrical, Geometry 

No entry 
' ••• same as Imaginary ••• which see' 
1! columns 
3 columns 
3! columns 
11 columns 
68 columns 

No entry 
4 lines 
' ••• see surds' 
! column 
! column 
1 column 
4,3 columns 

(1) Hutton, Course of Mathematics, III, p. 175 
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Surd 3-i columns 
Number 4 columns 
Triangle 5 columns 
Trigonometry 14 columns 

Hutton's difficulties started with negative numbers; he shared 

Frend's scepticism about these to some extent. He says under 'Negative' 

'The use of the negative sign in algebra; is attended with 
several consequences that at first sight are admitted with some 
difficulty and has sometimes given occasion to notions that 

(1 ) 

seem to have no real foundation. ••• The theorems that are some
times briefly discover,ed -by the use of this symbol maybe demon
strated without it by the inverse operation, or some other way; 
and though such symbols are of some use in the computations in 
the method of fluxions etc. its evidence cannot be said to 
depend upon any arts of this kind. ' 

The fact that results can be proved another way does not give Hutton 

confidence in the reliability of negatives any more than than it gave 

other mathematicians confidence in complex numbers. 

Under 'Root' Hutton describes square, cube roots etc. as mean 

proportionals between one and the given number. In a subsection on 

'Real and imaginary roots' he describes how 'imaginary or impossible' 

roots arise as the even roots of negative quantities. 

It is in the entry under 'Imaginary' that Hutton gives what 

must have been the true reason for omitting complex numbers from the 

Course. Here he lays out the various versions of complex arithmetic 

of which he knows. It does not seem to have occurred to him that any 

of the mathematicians mentioned might have made a slip. Perhaps his 

doubts about negatives prepared him to expect ambiguities in complex 

number arithmetic. Under 'Imaginary' (pp.625-26) : 

'The arithmetic of these imaginary quantities has not yet been 
generally agreed upon; viz as to the operations of multipli
cation, division and involution; some authors give results with 
+ , others on the contrary with the negative sign -. Thus 
Euler in his Algebra • • • makes the product of two impossibles 
when they are unequal to be possible and real as 1(-2) x /(-3) 
= /6 and V (-1) x V (-4) = ./4 or 2. But how can the equality 
or inequality of the factors cause any difference to the signs 
of the products? If /(-2) x v'(-3) be = ./(+6) how can 
v(-3) x J(-3) .... be -3? ••• Also in division he makes 
v(-4).!. v'(-1) to be = v(+4) or 2 and y(+3) ~ J(-3) = J(-1) 
also th~t 1 or J(+1) -:- v(-1) = j.±1 = J(-1) consequently 
multiplying the quotient root -1 J (-1) by the 
divisor J(-1), must give the dividend J(+1) and yet by 
squaring he makes the square of v(-1) or the product 
J (-1) x J (-1) = -1. 

But Emerson makes the product of imaginaries to be imaginary; 
and for this reason, that "otherwise a real nroduct would be 

(1) Hutton, Dictionary (1196), II, p. 141 
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raised from impossible factors which is absurd. Thus 
J(-a.) x ,j(-b) = '/(-ab) and v'(-a) x '/(-b) = -v'(-ab) etc. 

also J(..;.a) x J(-a) = -a and ,j(-a) x - J(-a) = + a etc." 
And thus most of the writers on this part of Algebra, are 

pretty equally divided, some taking the product of impossibles 
real, and others imaginary. 
• • • Mr Playfair. • • makes the product of J (-1) by V (-1 ) 
or the square of ,j(-1) to be -1; and ye~ in another place he 
makes the product of J(-1) and \1'(1 - z ) to be V(-1 + z2). (1) 
Mr Playfair concludes "that Imaginary expressions are never of 
use in investigations, but when the subject is a property 
common to the measures both of ratios and of angles; but they 
never lead to any consequence which might not be drawn from 
the affinity between those measures and that they are indeed no 
more than a particular method of tracing that affinity. • •• 
the arithmetic of impossible quantities will always remain an 
useful instrument in the discovery of truth and may be of 
service when a more rigid analysis can hardly be applied. • •• 
M. Bernoulli has found, for example, that if r be the'radius 
of a circle, the circumference is = 4105,j(-1 )r • Considered 
as ~ quadrature of the circle, (-1) 
this imaginary theorem is wholly insignificant, and would de~ 
servedly pass for an abuse of calculation; at the same time 
learn from it, that if in any equation the quantity 10,/(-1) 
should occur, it may be made to disappear, by (-1 ) 
the substitution of a circular arch. •• The same is to be 
observed of the rules whfch have been invented for the trans
formation and reduction of impossible quantities; they fac
ilitate the operations of this imaginary arithmetic; and thereby 
lead to the knowledge of the most beautiful and extensive 
analogy which the doctrine of quantity has yet exhibited •••• 
The real and Imaginary roots of equations may be found from 
the method of fluxions applied to the doctrine of maxima and 
minima • • • but when the equation is above three dimensions, 
the computation is very laborious. ' 

The last remark refers to Newton's rule for the number of complex roots 

in an equation. 

Summarising the methods Hutton has collected for multiplying 

imaginaries and including Bombelli's version, he has (in modern notation) : 

J(-a) x J(-b) = -y1(ab) 

= ,j(ab) and vIC-a) x V(-a) = -a 

= J(-ab) and -v(-ab) 

Bombelli 

Euler 

Emerson 

The product J(-a) x J(-b) has been given as real and positive, real and 

negative, imaginary and positive and imaginary and negative by various 

writers known to Hutton. He clearly considers that these versions show 

that the algebra of complex numbers 'has not yet been generally agreed 

(1) Playfair, Works III, p. 8 
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upon'. This seems to imply that he thinks that the problem may be 

resolved by agreement rather than rigorous mathematical processes and , 
has an optional quality_ It is difficult to believe that this was 

really his view, this impression m~ simply be the result of an un

fortunate choice of words. It is necessary to decide on the convention 

in which J-2 = i ../2 and ../-3 = i -/3 involves the same i, but this is 

the only optional element. Once chosen, the pattern of the algebra of 

yI-1 is fixed. The automorphism in question would mean little to 

Hutton who would be thinking in terms of a single fixed valu~ for 

J-1. The quoted remark by Emerson shows that he at least was unaware 

of the property of conjugates, that their product is real, a fact 

well-known from at least t~e time of Bombelli. Hutton's quotation of 

this remark shows that he too was open to doubt on this point. Emerson 

was evdently not a reliable algebraist and it is unfortunate that Hut

ton should take his opinion seriously enough_~o quote in the Dictiona~. 

The quoted remark of Playfair that Bernoulli's result is 

'wholly insignificant', is 

relation to the quadrature 

ations as, implicit in it, 

also unfortunate, although he does say in 
\ 

of the circle. It shows Playfair's limit-
ill is the relation e + 1 = 0, obtainable if 

the inverse nature of the exponential and logarithmic functions is 

understood. 

John Playfair, whose main interest was geology, was Professor 

of Natural Philosophy at the University of Edinburgh(1)-and he expresses 

somewhat philosophical views of negative and complex numbers. He sees 

the fact that algebra can deal with quantities that cannot be repre

sented in geometry as a weakness rather than a strength in algebra. 

He finds it a paradox that results obtained using such algebra are 

borne out by geometry, so it is not as useless as it ought to be. He 

is undecided whether algebra is an art or a science. He says symbols 

cannot form part of a science nor manipUlation of them part of an art. 

He finally finds algebra acceptable for the usual reason, that it is 
. f Imp . bl Qu t . t . (2 ) • useful. Playfair says, in On The Arithmet1c 0 OSS1 e an 1 1es . 

(1) Playfair, Works, title page 

(2) Playfair, pp. 1-R 
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'The paradoxes which have been introduced into algebra and 
remain unknown in geometry, point out a very remarkabl~ diff
erence i~ the nature of those sciences. The HrQPositions of 
geometry have never given rise to controvers.y\1 J, nor needed the 
support of metaphysical discussion. In algebra • • • the doctrine 
of negative quantities and its consequences have often perplexed 
the analyst ••• the geometer is never permitted to reason 
about the relations of things which do not exist or cannot be 
exhibited. In algebra again every magnitude bei~g denoted by an 
artificial symbol, to which it has no resemblance ••• the ana
lyst continues to reason about the characters after nothing is 
left which they can possibly express: if then, in the end, the 
conclusions which hold only of the characters be transferred to 
the quantities themselves, obscurity and paradox must of nec
essity ensue. • •• they have been made the subjects of 
arithmetical operations ~ •• and, what may seem strange, just 
conclusions have in that way been deduced •••• the arithmetic 
of mere characters can have no place in a science. • •• Is 
investigation an art so mechanical, that it may be conducted by 
certain manual operations? Or is truth so easily discovered, 
that intelligence is not necessary to give success to our re
searches l' (Trans.,Roy.Soc.,Iondon 1779) 

To Playfair, algebra must represent the arithmetic of real positive 

numbers to be valid. He cannot accept the move towards symbolism that 

has begun to take place. To himlcomplex and negative numbers are baffling 

because non-existent but he does not consider the existence or otherwise 

of, for instance, the naturals. The acceptable number categories are 

those that are geometrically constructable, and no doubt Playfair 

would use this property in demonstrating their existence. 

Hutton's position is more advanced and open-minded than that of 

Playfair. Hutton's Dictionary shows the beginning of the transition in 

the use of the word 'impossible' from numbers to problems. At some 

points numbers are referred to as 'imaginary' and problems as 'imposs

ible', but these usages are not yet fixed and there is still a certain 

amount of interchange. 
Perhaps the most important factor in the inability of some math-

ematicians to resolve the confusion about complex numbers was the fact 

that a symbol for /-1 was not yet in general use, although 'i' had 

been used by Euler from the mid-18th Century. By writing v(-a) x v(-b) 

as i va x i Jb , it is easier to see that the result should be ii va vb 

or - vab. The associative and commutative laws would have been used 

intuitively. 

(1) Ooen to question (DW) 
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Waring had made useful contributions in algebra but, because of 

their obscurity, these insights did not become widely known. The 

picture emerging in Britain at the end of the 18th Century is one of 

serious confusion in the minds of some mathematicians about complex 

numbers. It was most unfortunate that the reliable summary given by 

Bombelli was overtaken by errors made by Euler, usually also entirely 

reliable. This left the way clear for others to express opinions. 

Hutton does not say anywhere that writers he quotes may have been mis

taken. We might not expect Euler to have been wrong, such was his 

reputation, but with hindsight we would want to examine closely any 

unsubstantiated remarks made by Emerson. Having identified a dilemma, 

Hutton does not seem able to make a decision between the supposed 

alternatives. His hint that it might be a matter of choice can easily 

be seen as lack of confidence in the structure of algebra. Euler's 

Algebra was widely read both on the Continent and in England, but it 

does not seem to have caused the problems in Europe that it did in 

England. It may be that on the Continent the errors were recognised 

as simple slips, or possibly, were just not noticed. 
. \ 
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Joseph-Louis Lagrange 1136-1813, Pierre-Simon Laplace 1149-1821 

Lagrange and Laplace both gave lectures at the short-lived ,. 
Ecole Normale in Paris during 1195. The lectures in the mathematics 

faculty were of a high standard and provide a useful guide to the 

status of complex numbers in France at the end of the 18th Century. 

Neither mathematician made innovations in complex number theory, but 

both made bold use of them. As with many mathematicians, although 

they thought complex numbers baffling and to be avoided if possible, they 

both felt obliged to accept them on the basis of their usefulness. 

Lagrange discusses complex numbers as roots of the cubic and 

the paradox of the irreducible case •. To him !number' is ~onymous 

with 'real ·number' and the test of existence for a number is whether 

it can be constructed geometrically. The paradox of the irreducible 

case is that, as the complex expression represents a real number, it 

can be constructed geometrically which means tha.t it is also valid in - \ 

algebra. Unfortunately he does not discuss here the problem of re-

presenting negatives geometrically, his attitude to this would make 

an interesting comparison. Lagrange says of .the irreducible case(1): 

'But how is this value of x to be assigned? It would seem 
that it can be represented only by an imaginary expression or 
by a series which is the development of an imaginary expression. 
Are we to regard this class of imaginary expressions, which 
correspond to real values as constituting a new species of 
algebraic expressions which although they are not, like other 
expressions susceptible of being numerically evaluated in the 
form in which they exist, yet possess the indisputable advan
tage - and this is the chief requisite - that they can be em
ployed in the operations of algebra exactly as if they did not 
contain imaginary expressions [?] They further enjoy the ad
vantage of having a wide range of usefulness in geometrical 
constructions as we shall see in the theory of angular sections 
so that they can always be exactly represented by lines; while 
as to their numerical value, we can always find it approximately 
to any degree of exactness that we desire •••• We may regard it 
as a demonstrated truth that the general expression of the roots 
of an equation of the third degree in the irreducible case can
not be rendered indenendent of imaginary quantities. t 

(1) Lagrange, Lectures, pp.54-95 (p.19) 
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Lagrange shares the general uncertainty as to whether the roots in 

the irreducible case are a new species of number. In a sense they are 

a species different from reals, that is complex, but this difference 

is more apparent than genuine as they reduce to reals. Lagrange does 

not take these properties as vindication of the case for complex num

bers. Lagrange attempted to prove the fundamental theorem of algebra 

but, as he says later in this lecture, he could devise no proof that 

did not lead to a circular argument. 

Laplace's attitude to complex numbers was similar to that of 

Lagrange. He defines imaginary numbers and describes the form taken 

by roots. He gives the properties of conjugates and of the roots in 

the irreducible case. He stresses the usefulness of complex numbers, 

especially the equating of real and imaginary parts in analysis. In 

the Quatri~e S~ce of the 1795 lectures(1) Laplace solves the equation 

3x - x2= 2, and obtains the roots x = 1 t v-3. He then talks about 
(2) 2 2 

real and imaginar,y quantities : 
; / 

'La quantite v-3 est impossible; car un nombre reel, POsitif 
~ / / 

ou negatif, ne peut avoir pour carre un nombre negatif; Ie 
....." ObI C probleme qui conduit aces valeurs est donc impOSS1 e. es 

valeurs se nomment imaginaire; on peut les mettres sous la 
/ ...., ,..... , 

forme d'une quantite reelle, augmentee ou diminnee d'ilile autre 
" ..... ~ quantite reelle multipliee par .J-1; ••• 

Quoique les quantit~s imaginaires soient impossibles, ce--pendent leur consideration est du plus grand usage dans l' 
/ 

Analyse. Souvent les grandeurs reelles se presentent sous la 

forme de plusiers imaginaires, dans lesquelles tout ce qulil 

y a d'imaginaire se detruit mutuellement quoiqu'il soit 
A , 

difficile de Ie reconnaitre a I 'inspection des formules. On 
A / 

verra bientot que 1 'expression des racines des equations du 

troisieme degr~ est dans ce cas, lorsque toutes les racines 
/ / 

sont reelles; d'ailleurs, la comparison des grandeurs reelles 

entre elles, et des imaginaires avec les imaginaires, est un 
/ ' d' moyen fecond de l'Analyse, pour determiner les gran eurs. 

(1) Laplace, Oeuvre~ , XIV, pp. 10-178 

(2) Laplace, p. 45 



To Laplace an imaginary consists of a real and an imaginary 

part, either of which may be positive or negative. He describes in 

thi ti th ti f j t I th Ci . .... "" s sec on e proper es 0 con uga es. n e nquleme Sceance 

he discusses the nature of roots, the form ta.ken by complex roots and 

says that there can be no roots that are not either real or complex, 

the equivalent of d'Alembert's result(1). In this session he acknow

ledges Waring's Meditationes Algebraicae and some of Gauss's ideas. 

The separation· and equating of real and imaginary parts is covered in 

the Sixi~me 5eance(2), and in the Huitieme Seance(3) he gives some 

useful substitutions. The problem under discussion is the division 

of angles into equal parts, and Laplace uses de Moivre's theorem with 

the substitutions t(cosx + Y!-1sinx) + !(~osx - J-1sinx) for cosx, and 

1 (cosx + J-lsimd - 1 (cosx - v-1sinx) for sinx. De MJivre's 
2 J-1 2 )-1 

. n n n n 
theorem is also used to find the factors of x - a and x + a • 

Both Lagrange and Laplace were interested in the applications 

of mathematics, they saw it as a useful tool for solving difficult 

problems in mechanics and physics. Both saw the value of complex 

numbers as residing in their usefulness, and stressed this point in 

their lectures. 

(1) Dhombres, Rev.Hist.Sci., 33(1980), 314-48 (p.336) 

(2) Laplace, pp. 66-11 (p.16) 

(3) Laplace, pp.101-132 (p.106) 
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Louis Arbogast 1759-1803 

Louis Arbogast was professor of mathematics at Strasbourg, and 

his book Du Calcul des Derivations was published there in the year VIII, 

that is 1800. He makes frequent use of the symbol 'D' which he calls a 

'signe des derivations', of which the modern 'd ' is a particular case. 
ax Waring had previously used D to mean d (see above), although 

'- other writers had used it to dx represent a finite difference. 

On page xxj of the preface Arbogast gives a 'Tableau des notations 

principales t in which D, D-1, D-n, ~, ~ -1, 0 -n, 6 , L , 8 ' ! ' 
d and B are given, sometimes in conjunction with various prefixes and 

suffixes. The relationships ~= d-1 and ~n= d-n are also given. 

Arbogast says that he is generalising Lagrange's analysis, of which 

differential calculus methods are only a particular case, and claims 

his ideas as a great simplification. He has a simplified notation and 

says that the secret of the strength of analysis lies in the happy 

choice of 'signs' (that is, notation). He says in the preface that the 

rules for deriving the quantities which depend on the function are the 

same as those of the differential calculus for taking successive 

differentials of a function. The differential of the variable is 

constant and equal to unity, which means that it can always form part 
2 

of these quantities. That is, since dx = 1, then D(x) can be taken as 
-1 -2 -1-2 2x.dx or simply 2x. Later d , d , etc and D , D etc are described .,. 

as meaning respectively 'differentiales inverses' and 'derivees inverses'. 

This seems to contradict the +elationship ~= d-1 etc, unless it can 

be taken that~d = 1, with no arbitrary constant. 

Arbogast emphasises what he describes as the simplicity of his 

methods acknowledging many previous writings, such as the Meditationes 

Analyticae of Waring and his series methods, and the method of exhaustion 

of the 'Ancients'. In a footnote, referring to his paper of 1789, he 

shows how to obtain any function of x as a power series in ~x, follow

ing Lagrange's method. Arbogast's book is divided into six Articles. 
2 

In the first he sets up a series assuming that F(~ + x) = a + bx + cx 

finding a, b, c etc by differentiating and setting x = o. 
:;- 1:""2 
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Articles two to five are about expanding nolynomials in series, and 

article three shQws that the product of two series is another series. 

Article six is about differentiation and begins to show the point of 

expanding functions in series when they are to undergo further mani

pulations such as integration. 

Arbogast is meticulous in acknowledging the work of other 

mathematicians and, among others, mentions Leibniz, Waring, Lagrange 

and Laplace. This book shows his great skill, not only in manipulating 

'- series, but in devising and operating with new notations. His use of 

D, d etc is a very early example of the separation of operator and 

operand in the differential calculus. This method was new, and proved 

very fruitful when developed in the early 19th Century. Arbogast 

stresses repeatedly the simplicity of his methods, but it would be 

fair to say that this simplicity was bought at the expense of great 
. 

proliferation of symbols. In this book he lays down a simple ~stem 

for real analysis, so unfortunately complex numbers are not brought into 

the discussion at any point. This is a pity as Arbogast was an ad

venturous innovator of symbolism ,and an interesting operational treat

ment of complex numbers might have been hoped for. Further research 

might prove rewarding. 
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Antoine Suremain de Missery 1767-1840 

An illuminating summary of the state of the algebra of complex 

numbers in France at the end of this period is given by Antoine Sure

main de Missery in Theorie Purement Alg~brique des Quantit~s Imaginaires 

et des fonctions qui en r~sultent, published in Paris in 1801. The 

author is described an the title page as 'ci-devant Officier d'Artill-
." ...-

erie, de la Societe des Sciences de Paris et de celIe de Dijon'. 

In this work de Missery starts by claiming that he will use 

only simple algebra, that is, he will not be using either geometry or 

infinitesimals (calculus), with the implication that algebra is easier 

and superior. In this he is taking a similar line to Arbogast, who 

was also trying to simplify the analysis of Lagrange. De Missery dis

cusses the controversy between I.eibniz and '1 'un des Bernoulli ,(1 ) (Jean 

1667-1748), on the nature of the logarithms of negative quantities 

which the former, supported by Euler, considered imaginary and the 

latter, supported by d'Alembert, thought real. He describes the uncer

taintyof 'vulgar' mathematicians and says that he agrees with Euler who 

takes the view that positive reals each have an infinite number of 

logarithms all imaginary except one, and negative reals an infinite 

number all imaginary. He proposes to raise some extraordinary mistakes 

of d'Alembert, whose hypotheses that log(-x) = log x and log(-1) = 0, 

are inadmissible. De Missery seems to be taking nleasure in pointing 

out d'Alembert's errors. He then talks about imaginary exponents and 

the functions that might result. These functions, when applied to the 

arc of a circle of radius one, give the sine, cosine, tangent, cotangent, 

secant and cosecant of the a.rc and other pronerties of circles, snheres 

and triangles both rectilinear and spherical, and formulae in both trig

onometries very 'elegantly'. He says he will obtain the logarit~ of 

an imaginary quantity such as A + ~-1B using only ordinary algebra, 

whereas d'Alembert and Fuler had used calculus and geometry, and Fon-

cenex had used algebra and geometry. D'Alemoer~ thought that algebra alone 

.,,-
(1) De Missery, Theorie, pp.1-3 
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would be insufficient without geometry, but de Missery's method involves 

expressing arcs of circles in terms of imaginary logarithms (Jean 

Bernoulli's result, quoted by Hutton in his Dictionary from Playfair, 

see above). The use made of this result by de Missery is in marked 

contrast to the dismissive remarks of Playfair. The 'ordinary' algebra 

required includes some series and their inverses. These are (p. 12) : 

log (x + s) = log x + s - 1 s2 + 1 s3 

~ 2x2 3x3 

4 
- 1s + 

z 
e 

or, more generally 

+ 

log (x + s) = log x + A ( ~ - 1 s2 + 1 s3 

x 2x2 3x3 

z 
c.· = 1 + z + z2 + z3 + 

A 2A2 2.3.A3 

-
4x4 

+ 

etc 

etc 

etc, e being the base, 

etc) A being the modulus 

c being the base 

e
y '!:. z v'-1 After expansion of , de Missery shows that if log x = y, then 

log (-x) = y.:! II -/-1 belongs to the same system as eY = x, so y is not 
\ 

now the logarithm of the two different quantities log x and loge-x) (pp.23-25). 
Similarly if loge-x) is taken as y, then log x = y4- IIJ-1. An ob-

jection is anticipated, for 

log (a) = log (real a) where 'real' means positive 

loge-a) = log(real a) + 10g(-1) taking -a = a x (-1), a positive 

log(a) = log(real a) + 10g(-1) + log(-1) taking -a = (-a) x (-1) 

= log(real a) + ?10g(-1) from which can be obtained the result 

2log(a) = 2log(-a) so log (a) = loge-a). 

However this does not indicate that log (a) = loge-a), but only that the 

sum of two particular values of log (a) is the double of loge-a). The 

same result is obtained starting with 10g(_a)2 = log(real a)2. So de 

Missery holds with Leibniz and Euler against Bernoulli and d'Alembert, 

that the logarithm of a negative is imaginary, and that log (x) r loge-x). 

He notes also that it is possible to have, in an infinite number of 

ways (p. 21), the sum of 
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2 different logs of -a = that of two different logs of a 

or 2 ' \ -a = the double of log a 

or 2 l\ a = Il a 

or 2 II a = \\ -a • 

He further labours the point about the error in d'Alembert's calculus 

method as follows (p. 28) : 

d'Alembert takes d(log x) = dx and d(log(-x)) = -dx = dx - - -x -x x 

. _ so that d(log x) = d(log(-x)) and log x = loge-x) by integration. 

'But he knows better than I do that the complete integral is loge-x) = 
log x + constant' and the constant is 10g(-1), which d'Alembert knows 

is ! II J-1. 
In the next section (pP. 33-46) de Missery shows that : 

log (x + s .J-1) = ~log (xc + s2) + (q +- 2kII) 1-1 where x :> 0 
2 2 -= ~log(x + s ) + (-q + (1 + 2.1<:11)) -/-1 where x < 0, 

using the series noted earlier as essential; the convergence is also 

discussed. 

Using log (x + s .)-1) = log x + log (1 + s /-1) and 
x 

log (x + s -/-1) = log s ./-1 + 10g(1 + x ) he obtains 
s J-1 

log (-1 ) = 2(p + q) J-1 where q = s - 1s3 + etc 
x 3x3 

and p = x - 1x3 + etc 

s 3s3 

and if x = s, q = p = 1 - 1 + 1 - 1 + etc 
'35"7 

so 10 g (-1) = 4 ( 1 - 1 + 1 - 1 + etc ) v'-1 
3 5 7 

If x is taken = 0, 
3 + 1«) 5 etc and p = 0 o -= oQ - 1 cO -

3 5 

10g(-1 ) 2 (d) - 1c() 3 
+ 1GO 5 etc ) J-1 thus 

from this = -
3 5 

giving 

two different values for 10g(-1). The following results are eventually 

obtained (p.46) : 
log ( '/-1) = !II ./-1 and log (- v"-1) = -!II v"-1 = -log ( v"-1 ) 

but log (-/-1 ) = 10g(-1) + ~10g(-1) = ~10g(-1) and loge v'-1) = ~log(-1) 
so 310g (-1) = -ilog(-1) and this gives 10g(-1) = o. 

2 
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The flaw in this argument, says the author, is that log(- /-1 ) 

should be taken as log( /-1) - 10g(-1) and not as log( v-1) + 10g(-1). 

If this alteration is made, then the result obtained is ~10g(-1) = 

-'~10g(-1), a correct identity. The formulae for imaginary logarithms 

are then used to find a value for II or 10'~~1). The next point is 

that it is possible to deduce from 10g(-1) = II /-1 that 10g(-1) = 
(2k + 1 )11 /-1 or II /-1/(2k + 1), but there is also an 'infinity of 

others'. Likewise it is possible to deduce that log(-1) = 
211 v"-1/-t (?k + 1), where k is an integer (pp.46-49). 

The adventurous and ingenious use made of the result 10g(-1) = 
II 1-1 by de ~~ssery is just one examnle of the way in which continental 

mathematicians had taken the lead over British ones at this time. re 

tAissery was able to make use of it, whereas Dlayfair referred to it 

as 'wholly insignificant'. However, in his work on series and mani

pUlation of vO, de Hissery seems to show no knowledge of convergence 

or concern over meaning. In this he was less advanced than 'vi,qring. 

De ~~ssery next explores the exponential function eZ /-1 (p.50), 

which he says is to be developed 'as a series. The function he starts 

with is eZ J-1 = fz + J-1f 'z , and he states in a footnote (n.69) that he 

intends fz and' f'z to be cos z and sin z. Here he says that in another 

memoir he shows that if z is the arc of a circle of raduis one, II is 

the demicircumference, fz is the cosine, f'z the sine, f' 'z the cotan

gent, f" 'z the tangent, f'v z the secant and fV z the cosecant. This is 

difficult to follow on the basis that f"z = (f'z)', f" 'z = (f"z)' 

etc, which is evidently not the case. fe Missery's own result 

(f7,)2+ (flz)2 = 1 is not applicable to flz and f"z etc, and similarly 

for his results f' 'z = fz/f'z and f"'z = flz/fz etc (pp.50-53). These 

are obtained by inspection of the results given above. It apnears that 

fz, f'z f 1 I Z etc are unrelated defined functions, and would be better , 
d. e. ':) i H lI\ 0. (-~ fz, gz, hz etc. flZ is not the derivative of fz, if 

this were the case, f 'z, f" z etc would be -sin z, -cos z etc. De 

V~ssery's whole thesis is that he is not going to introduce differenti

atione However, if flZ is meant to be the derivative of fz, introduced 
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as a defined function, the lack of the '_I sign is an error. If 

differentiation was intended, the starting point should have been 

e
Z 

v-1 = fz - v-1f'z, and had this been used no doubt many useful 

results would have been verified. The results obtained appear to be 

inconsistent, but to be sure of the line being taken it would be 

necessary to trace the 'other memoir'. If the functions are unrelated, 

this is a weaker line of thought than it appears. There is at least 

a lack of clarity, if not an inconsistency. The use of " , " at the 

end of t.he 18th Century for any function, 'derived' or otherwise, 

causes much confusion for modern readers. 

De J'ldssery takes e Z \/'-1 = fz + v-1f 'z 
-z /-1 

and e = fz - 1-1f'z , and solving them 
t h ( z 1-1 -z v-1 ) I oget er obtains fz = e + e ,2 

( z 1-1 -z /-1 ) I , and f 'z = e - e ,2 ",-1 (pp.50-52). 

He then obtains the relationship (fz)2 + (f'z)2 = 1, and calculates 

values for fz, f 'z etc when z = 0, II, 211, II/2, ! 2kII, T (2k + 1 )11 

etc, and other properties, such as their signs in various ranges. He 

next takes f"z = fz/flz and f"'Z = f'z/fz giving no reasons. These 

assumptions are based on the values of fz., f'z etc which lead in

evitably back to the same results nreviously given for flt z etc. 

The most important aspect of this work is not the possible 

inconsistency of some of the results, but the confidence with 

which the manipulation of complex numbers was undertaken. It is 

assumed that complex numbers behave in the same way as reals. This 

assumption was being stated as a rule by which to explore the pro

perties of complex numbers from this time, particularly by Peacock 

and de Morgan. De Missery helped to raise their status to that of 

numbers subject to the usual algebraic manipulations. De Missery's 

book exemplifies the sophisticated level which had been reached by the 

beginning of the 19th Century in the assimilation of complex numbers 
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into mathematics. The rules are known and their nature is not auestioned 
l 

or discussed. The interconnections that had now been made with 

logarithmic, trigonometric and exponential functions and with the 

calculus were becoming widely known and increasingly used. 
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Jean-Robert Argand 1168-1822 

The single most important and innovative contribution to 

complex number theory during the whole of the period under consideration 

was undoubtedly Argand's Essai sur une mani~re de repr~senter les 
;-

guantites imaginaires, published initially as a pamphlet in 1806, and 

1 t i Ge 'A 1./ / a er n rgonne s nna es de Mathematiques Pures et Appliquees , 

Paris in 1814. The paper of 1191 (published 1199) by the Norwegian 

born Caspar Wessel, contained a similar idea for the geometrical repre

sentation of complex numbers, but because it remained in obscurity for 

a century its influence was small. Little information is available 

about Argand. He lived in Paris, working as a book seller,- and 

the Essaiand some related papers were almost his only contribution 

to mathematics. Neither Wessel nor Argand were professional mathe

maticians (Wessel was certainly self-taught), and it is salutory that it 

took the amateur Argand to point out in clear terms the woolly thinking 

enshrined in the number s.ystem nomenclature of his time. Argand's 

paper was not immediately influential, but his ideas were taken up by 

Gauss, Cauchy and Hamilton, and are still of great importance today. 

Gauss and Argand, working at about the same time, appear to have been 

the first mathematicians to have made serious criticisms of the names 

in use for certain number categories. Gauss introduced the word 

'complex', Argand produced his diagram and a new and logical notation. 

The pamphlet of 1806, and its authorship, were almost overlooked 
\\ 

by the mathematical establishment. The preface by J. Houel in the 
. (1) 

English translation of the Essai describes what happened : 

'Fran~ais, an artillery officer at Metz, sent to the Editor of 
the Annales [Joseph Diaz Gergonne] the outline of a theory whose 
germ he had found in a letter written to his brother by Le
gendre, the latter having obtained it from another author whose 
name he did not give. This article came to the notice of 
Argand who immediately wrote Gergonne a note in which he made 
himself known as the author of the work cited in Legendre's 
letter and in which he gave a complete summary of his pamphlet 
of 1806. This double publication gave rise to a discussion in 
the Annales in which Fran~ais,Gergonne and Servois took part, 
closing with a remarkable article, in which Argand explained 
more satisfactorily certain points in his theory.' 

(J) Argand, L~aginarY Quantities, p.v (preface) 
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The Essai begins with a model for negative numbers, which must 

be extended be.yond zero on the number line. This model had not been 

obvious to all mathematicians (see Wallis and Euler above). Argand 

gives an example in which objects are weighed using a balance; the 

principle of moments is used in which distance is separate from dir

ection. He defines J-1 in terms of the geometric mean between -1 and 

+1 in the relationship +1: x :: x: -1. He says (pp.23-24) : 

' ••• as the quantity which was imaginary [negative] when applied 
to certain magnitudes, became real when to the idea of absolute 
number,we added that of direction, may it not be possible to 
treat this quantity, which is regarded as imaginary [imaginary], 
because we cannot assign it a place in the scale of positive and 
negative quantities, with the same success? On'reflection this 
has seemed possible, provided we can devise a kind of quantity 
to which we may apply the idea of direction, so that having 
chosen two opposite directions, one for positive and one for 
negative values, there shall exist a third - such that the posi
tive direction shall stand in the same relation to it that the 
latter does to the negative. ' 

Argand gives the diagram shown, and his description uses the vector 

concept although the word 'vector' is not used (pp.24-25) : 

'For the direction of KA to that of KE, is as the latter to that 
of KI. MOreover we see that this same condition is equally met 
by KN, as well as KE, these two last quantities being related 
to each other as +1 and -1. The.y are, therefore, what is 
ordinarily expressed by +/-1 and -J-1. In an analogous manner 
we may insert other mean proportionals between the quantities 
just considered • • • Similarly we might insert a greater number 
of mean proportionals between two given quantities • • • ' 

E 

I~--------~~------~A 

N 
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Argand compares KA and AK with two equal and opposite forces 

eliminating each ~ther, a concept well-known to mathematicians. He 

refers to vectors as 'directed lines' and scalars as 'absolute lines'. 

The diagram emphasises strongly the uniformity in the nature of 

numbers, whether real or complex, positve or negative. This was the 

first time such a clear demonstration had been given. Numbers are all 

represented by lines, and the only difference between those for reals 

and those for imaginaries lies in their directions. The circular form 

__ of the diagram and the method of finding further mean proportionals 

between two numbers by equal sub-divisions of the angle between the two 

lines representing them, gives a direct illustration of de Moivre's 

theorem (with which Argand was familiar). He says he got his initial 

ideas for representing numbers in a meaningful way from consideration 

of the inappropriate and illogical names in common use for certain 

number categories. The numbers themselves are not actually absurd, im

possible or imaginary since meaningful results can be obtained from 

their use. Argand does not use Gauss's word 'complex' which became 

widely used somewhat later. Arg~d's point is that mathematicians 

should take a more mature and realistic view of the number system, 

both in nature and in nomenclature. He says (pp.31-32) : 

• -•• every line parallel to the primitive direction is expressed 
by a real number, those perpendicular to it are expressed by 
imaginaries of the form ~ a 1-1, and those having other directions 
are of the form + a;- b \/'-1, and are composed of a real and 
imaginary part. But these lines are quantities just as real as 
the positive unit; they are derived from it by the association of 
the idea of direction with that of magnitude, and are in this 
respect like the negative line, which has no imaginary signifi
cation. The terms real and imaginarY do not therefore accord 
with the above exposition. It is needless to remark that the 
expressions impossible and absurd, sometimes met with, are 
still less appropriate. The use of these terms in the exact 
sciences in any other sense than that of not true is perhaps 
surprising. An absurd quantity would be one whose existence 
involved the truth of a false proposition. , .but the results 
obtained from the use of the so-called imaginaries are in all 
respects conformable to those derived from reasonings in,which 
only real quantities appear. We might thus foresee the,lmpropriety 
of a nomenclature which classifies truly absurd quantitles and 
the even roots of negative quantities together, and it was a con
sciousness of this impropriety which first gave rise to the ideas 
developed in this essay. It is thus that we are led to a new 
nomenclature. ' 
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These remarks are very scathing but eminently sensible. Argand 

does not put forward any new names in place of the unsatisfactory ones 

but shows much flexibility in his use of, for instance, 'imaginary', 

which can mean negative, complex or imaginary. However he makes an

other fundamental advance towards unification of the number system with 

his suggestions (pp.35-36) for a new notation and an operational ap

proach. He assigns numbers to the four operators as follows : 

v'-1 or /'V = 1, - = 2, -v'-1 or t\J= 3, + = 4; a straight line counts 

as two and a curved one as one. To find the symbol for any product, add 

the numbers corresponding to the signs and subtract fours to obtain a 

number from 1 to 4. This is the number corresponding to the correct 

sign. For division the numbers are subtracted. This operational alge

praic_notation for treating v-1 parallels the operational geometric ap

proach of the diagram. Unfortunately this new system was never taken 

up, it might have helped Hutton to clarify his ideas, if he could have 

accepted it (1). 

UsingJf~~cular diagram, Argand gives the construction for 

multiplying two h'l~~ and notes that division is the inverse process 
."\ \ 

(p. 36). Other rules and consequences are given, including the product 

of vectors not measured from the origin, and factorisation of the bin

omials xn + 1 and xn - 1 in terms of cosines. He uses cos. na rV sin na = 

(cosa f'\..J sina)n (de Moivre's theorem), to obtain the series 
2 4 6 3 5 cos x = 1 - x + x - x + • • • , sin x = x - x + x - ••• and 

- ~ ~ 3T. sr. 21 4. O~ 

x = tan x - tan3x + tan5x + • • •• The new notation and the vector 
3 5 

method are combined to obtain the standard trigonometrical relationshins, 

and the diagram, with suitable arcs, is used (pp.50-52) to obtain series 

for log(1 + x) and log(1 + z)/(1 - z). About polynomials he says (p.79) 

n n-1 n-2 
' ••• every polynomial of the form x + ax + bx + ••• 
+ fx + g is decomposable into factors x + 0( of the first degree. 
It is to be noticed that a, b, • • • g are not necessarily 
reals • • • 

Argand obtains this result from the addition and multiplication of 

directed lines and is one of only a few writers to consider polynomials 

with non-integral coefficients. 

(1) Hutton's Dictionar;y (1815) contains no entry under 'IArgand ll
• 
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Argand concludes his Essai with these remarks (p.82) : 

• the method of directed lines as an instrument of research 
whose use is advantageous in certain cases, because geometric ' 
constructions offer, as it were, a picture to the eye which fac
ilitates purely intellectual operations. Moreover it is al
ways possible to translate the demonstrations founded on this 
method into ordinary language. ' 

Argand is suggesting, quite rightly, that a visual representation of 

the kind he has given is of help when seeking new developments. He has 

demonstrated its versatility by using his methods to derive many known 

series and theorems, although no new results are obtained. In this 

Essai , Argand is the first to treat complex numbers on a truly equal 

footing with reals. 

Frangais had written in the Annales describing the new 'geo

metry of position' and giving a notation in which 1±~ represents one 

unit in a direction perpendicular to the real number line(1). Among other 

ideas, he suggests that this system makes sense of the 'symbolic and 

mysterious equation' I~ ./-1 = log ( '/-1), has applications to circular 

arcs and the roots of unity, uniting them all in one theory. Argand 

had responded to this letter, revealing his identity~2)and his work was re

printed in the Annales in 1814. He s~s that 'direction' is to be 

preferred to 'position', because AB F BA, and uses the word 'module' 

(modulus), for the first time. Argand also introduces yet another 
.1. 

notation, an index notation in which 14 means v-1, that is one unit 

at i of a complete revolution from +1. 
Using this notation Argand tries to place numbers such as 

( V-1 )cosp + -/-1 sinp on the diagram, concluding that these vectors 

must be perpendicular to KA. He says that these numbers are represented 

round a circle centre K perpendicular to IA(3), with the modulus determin

ing the distance from K and p the direction. He admits that there have 
)m + n ./-1 

been demonstrations tending to show that (a + b./-1 can be 

reduced to the form p + q J-1, so they should be represented in the 

original plane. But these demonstrations involve development in series 

and p and q have not been shown to be finite. Argand says that they are 

infinite when they represent imaginaries, an idea first suggested by 

Newton. He says that a number p + q "'-1 or ~ can become infinite if 

Francais, Annales , 4(1813-14), 65 
~ 

Argand, Annales , 4(1813-14), 133-147 

( 8 3 14) 145 this new circle takes these 
Argand, Annales , 4 1 1 - , 
numbers into a third dimension 
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it can be expressed in the form ~ , and stresses the need to verify the 

existence of a he~rarchysuch as c a,~, ~ etc. Argand expresses 

himself uncertain about the nature of the c logarithms of imagin

aries, he says there is 'a cloud on the spirit'. 

Frangais then wrote to say that as real angles are found in the 

x,y plane, it is reasonable to expect imaginary angles in the perpendic

ular plane, but he is not satisfied that two dimensions are insufficient 

and points out that three dimensions require three coordinates(1). This 

point is not the same as that of Argand, who was taking an imag-

ary modulus and a real angle. Frangais says that it has been shown that 

numbers like (a+- bV'-1)m + n -/-1 reduce to p + q \/"-1, and so must lie in 

the x,y plane. 

Argand questions the rigour of his system(2), moreover it should not 

only be right, but simple and brief. He also questions the rigour of 

Euler's proof that (/-1) /-1 is real, and his work on series for eZ and 

the formula eZ = cosz + -/-1sinz, where Z is complex. Argand is not 

claiming that his own work is any more correct than that of Euler, only 

that neither have been proved rigorously, each has only been shown to 
, 

lead to no inconsistency. He makes the very interesting point that if 

all the numbers lie in the x,y plane, what can there be that is represented 

on the perpendicular plane? He then discusses the relationship 

1 : \/'-1 :: 1-1 : -1. Servois has expressed scepticism about the mean 

proportional method, and doubt about the usefulness of directed lines 

on the grounds that not everyone is able to use them. 

For his ideas Argand claims simplicity and ease of application 

He describes the proofs for the fundamental theorem of algebra as either 

relying on complex numbers or on development in series which are non

rigorous as they have not been shown to involve only real quantities. 

The problem is not that the theorem is not true, the problem is the 

proof. He says that concrete quantities can always represent abstract 

numbers, but abstract numbers, such as infinitesimals and complex numbers, 

cannot always represent concrete quantities. This is an argument 

against Argand's system and he defends infinitesimals by the definition 

of a limiting value. However Argand returns to the simplicity of his 

methods and describes in some detail how he obtains sums, products, etc 

(1) Frarl:cais, Annales , 4(1813-14), 222-27 

(2) Argand, Annales , 5(1814-15), 197-209 
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of complex numbers, in terms of their moduli and angles. He claims that 

his simpler methods must constitute a gain, and compares his directed 

lines favourably with Lagrangian analysis. 

Argand made several other minor contributions to the Annales, 

mostly solutions to geometrical problems. Apart from the brilliant 

Essai , he made no other original contribution to mathematics. Al

though he was mistaken about the need for a third dimension to his 

diagram, this work constituted a great reform and simplification of 

'- the number system. The work of Gauss and Argand marks the beginning of 

the clear understanding and proper description of the number ~stem, 

and the place of complex numbers in it. 
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Chapter V 

The Early 19th Century 

The picture of the number system at the beginning of the 19th 

Century was one in which irrationals were acceptable, negatives were 

accepted by most mathematicians and complex numbers accepted on the 

basis of their usefulness and consistency with the reals. The most marked 

change during the previous two centuries was the advancement of 

complex numbers from 'useless' to 'useful'. Results, such as the 

number of roots in a polynomial, had been obtained using them, which 

could be verified by other means. A powerful visual representation had 

been given which enabled complex numbers to be constructed geometrically, 

and which demonstrated graphically their behaviour under algebraic 

operations. Argand took an operational approach in which '-' is repre-
\ 0 I 0 sented by an anticlockwise rotation of 180 and' v-' by one of 90 , 

applied to directed lines. Wessel's representation was similar, but of 

a more static Euclidean kind. In his paper of 1797 he used vectors and 

the triangle rule for vector addition, but his ideas were not influential 

during the 19th Century as his work wa's overlooked until published in 

French in 1897. Cotes, de Moivre and Euler were among many who already 

thought of complex numbers as points in the (Cartesian) plane, but at 

an intuitive rather than rigorous level. 

At this time Gauss was starting to use a number couple notation 

(a,b), for complex numbers. He used complex numbers in proofs of the 

fundamental theorem of algebra, seeing them as represented by points 

in the Cartesian plane. In 1811 he described his idea in a letter to 
(1 ) 

Bessel, in which he says that a +V-1b can be represented by (a,b) • 

The two elements are real numbers taken as an ordered pair, with al

gebraic rules of combination, from which has been eliminated the symbol 

V-1. By 1831 Gauss had published his description of complex numbers as 

(1) Kline, p. 631 
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number pairs, that is points rather than vectors, with geometric 

demonstrations for addition and multiplication. Like Argand, he saw 

the need for new names for number categories, and advocated the words 

direct, inverse and lateral for positive, negative and imaginar,y. 

These excellent suggestions were not taken up, but his less satisfactor,y 

'complex' eventually became universal. In spite of his apparently 

enlightened attitude, Gauss did not take easily to complex numbers. 

He regards negatives as validated by the success of results obtained 

by using them over a long period, and complex numbers as 'still 

rather tolerated than fully naturalised .•• an empty play upon symbols,(1). 

Gauss_made many remarks showing his lack of confidence in complex 

numbers, his diffidence contrasts strongly with the certainty of 

Argand. 

The innovations of Argand and Gauss constituted imoortant steps 

towards clear understanding and definition of the number system later 

in the 19th Century. The geometrical basis for the revolutionar,y ideas 

of Argand may account for the slowness with which they were taken up; 

although Gauss's contribution with its algebraic emphasis came consider-
\ 

ably later than that of Argand, the complex plane has been known as 

the Gaussian plane. Both interpretations paralleled the Cartesian 

co-ordinate system, confirming the logicality of extending the axes in 

the negative directions. The most obvious benefit of the Argand diagram 

was that it gave a simple visual means of modelling the number system, 

but, equally important, was Argand's use of it to verify and demonstrate 

the rules for adding and multiplying complex numbers. This, therefore, 

was the point when the supposed ambiguities in their behaviour were 

removed, and the rules of combination seen to be certain and consistent. 

Gauss's number couple notation can be used in many ways, for instance to 

eliminate negatives, rationals or irrationals from the number system. 

Apparently no writers except Hamilton took such a step. This idea 

might have enabled Frend, de Morgan etc to overcome their scruples 

about negatives. It was a fortunate coincidence for the status of 

complex numbers, that the algebraic interpretation became available as 

confidence in Euclidean rigour declined. 

(1) Tahta, Complex Numbers , p. [8 J 
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The step from the one-dimensionality of the reals to the two 

dimensions of complex numbers was, in each of the new definitions, the 

essential innovation, and gave rise inevitably to attempts to generalise 

to three and more dimensions. The success of new theory and notation 

is measured not only by whether it is easy to understand and manipulate, 

but also on whether it facilitates new ways of thinking. In this 

sense the two dimensional approach to complex numbers was highly suc

cessful, as it led Hamilton to generalise to quadruples, and Grassman 

to n-tuples. These discoveries played an important part in the 19th 

Century reorientation of ideas about mathematics. 

As the ideas of Argand, Gauss and others became better known, 

the potential acceptability of complex numbers increased. To invest

igate this it was decided to examine briefly work of three early 19th 

Century mathematicians, Cauchy, Hamilton and de Morgan. 

Cauchy laid the foundations of complex function 

in 1821 he described results obtained using /-1 as not 

unless real and imaginary parts are separately equated, 
\ 

theory. Although 

making sense 

in the same 

work he was using "'-1. to get results without employing this technique(1). 

An example from number theory (not original with Cauchy) is given 

below. In 1822 he gave a method for integration round a rectangle show

ing that the integral is independent of the path, in 1825 he considered 

integration of real functions using complex limits(2). He used complex 

numbers in many novel w~s but his treatment was algebraic. Not only 

did he not make use of the Argand diagram or complex plane, he does not 

appear to have used Gauss's number pair method either. 

(1) Cauchy, Oeuvres, (2),3,154; (Cours d'Analyse) 

(2) Kline, p. 635-36 
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Cauchy did not see complex numbers as having any other than an 

abstract meaning. In the Cours d'Analyse of 1821 he considers the 

expressions cose. + Y-1sina 

cos (a+b) + ../-1 sin (a+b) (1 ) • 

and cosb + ../-1sinb, and their product 

He describes them as sYmbolic expressions 

which do not represent anything real, but does not suggest anything that 

they might represent. He finds it strange that the first two can be 

multiplied to obtain the third. He sees complex expressions as having 

an important role in containing two pieces of information simultaneously, 

one in the real part and one in the imaginary. He refers to /-1 as a 

'- coefficient and to the equating of real and imaginary parts. What is 

being equated in these methods is actually two pairs of real quantities, 

one pair having each the coefficient ~-1. A few pages further on he 

demonstrates the power of complex numbers to produce results in 

number theory, when he uses them to prove that the product of two numbers, 

each of which is the sum of two squares, is itself the sum of two 
·222222 

squares in two different ways. For instance (2 + 1 )(3 + 2 ) = 4 + 7 ~ 
12 + 82 , (5 x 13 = 65). The proof is as follows (2) 

(a + ib) (p + iq) = ap - bq + i (aq + pb) and 

(a - ib) (p - iq) = ap - bq - i (aq + pb) 

Multiplying gives : 

(a2 + b2 ) (p2 + q2) = (ap _ bq)2 + (aq + bp)2 

in which.p and q_are interchangeable on the left. 

on the right gives : 
. (a2+ b2 )(p2+ q2) = (aq _ bp)2 + (ap + bq)2 

(i) 

Interchanging them 

(ii) 

Equations (i) and (ii) are two different ways of decomposing 

(a2 + b2 ) (p2 + q2) into the sum of two squares. 

Cauchy expresses the view that complex numbers are extremely 

useful in algebra and analysis as well as in number theory. He covers 

de Moivre's theorem, series for trigonometric functions of complex 

numbers, roots of complex numbers and other similar topics. He des

cribes symbolic algebra, which may contain imaginaries, as one in which 

a fix~d set of rules are obeyed, but says that that the expressions 

obtained may be entirely abstract, that is, devoid of meaning. 

(1) Cauchy, Oeuvres, (2),3,154 

(2) Cauchy, p.159 



Although Cauchy had little confidence that complex numbers 

represented anything meaningful, he made good use of them to obtain 

important new re~ults. He continued the fruitful work of continental 

mathematicians on the involvements between complex numbers, the 

calculus and mathematical functions. British mathematicians who, at 

this time, were not in the forefront of developments in the calculus, 

were turning to algebra; in this area is found their main contribution 

to complex number theory. 

The English mathematician George Peacock published the 'principle 

.- of the permanence of equivalent forms' in his Treatise on Algebra of 
1830. He wrote(1) : 

'Whatever form is Algebraically equivaient to another, when 
expressed in general symbols, must be true, whatever these 
symbols denote. ' 

Peacock had· formulated the commutative, associative and distributive 

laws, as they applied to numbers and to polynomials. His Algebra 

contained an attempt to describe a formal algebra in abstract terms, 

tied implicitly to number as it conformed to the rules of number. 
, 

Peacock's Principle was shattered by Hamilton's non-commutative algebra 

of quaternions published in 1843, and by the doubly distributive 

algebraic system of George Boole of 1854, and by other work. The 

Principle was discredited so soon after its formulation that one must 

speculate whether the commutative law, for instance, could have been 

discarded by Hamilton had it not first been pointed out by Peacock. 

Alexander Macfarlane wrote in 1916(2) 

'When algebra is based on any unidimensional subject, such as 
time or a straight line, a difficulty arises in explaining the 
root~ of a quadratic equation when they are imaginary. To get 
over this difficulty Hamilton invented a theory of algebraic 
couplets • • • ' 

Hamilton extended Gauss's work on number pairs. He thought that 

space and time were indissolubly conne?ted, with geometry being the 

science of space and algebra that of time. The algebra of quaternions 

(1) Peacock, Algebra, p.104 

(2) Macfarlane, Lectures, p.42 
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can be used to transform a three-dimensional vector, but is free of 

geometrical ideas, depending for its validity on ~ne consistency of 

the number S,Ystem. 

Hamilton's paper Theory of conjugate functions. • Algebra as 

the Science of Pure Time was given in 1833 and 1835. Even he could 

entertain doubts about negatives, he says (1 ) : 

'But it requires no peculiar scepticism to doubt, or even to dis
believe , the doctrine of Negatives and Imaginaries • • • 

He debates whether algebra is a science like geometry, with a s.ystem 

of rules, or an art like a language, a system of expression. It seems 

to be useful only so far as it is applicable. In the discussion he uses 

the word 'magnitude' as well as 'number', and later refers to 'step

couples' and 'moment-couples', that is locations and vectors. Most of 

what follows refers to numbers, but evidently Hamilton is bearing in 

mind both geometric and algebraic approaches. 

Hamilton justfies abandonment of /-1 in favour of number couples 

as follows (2) : 

'In the THEORY OF SINGLE' NUMBERS, the symbol /-1 is absurd, 
and denotes an IMPOSSIBLE EXTRACTION, or a merely IMAGINARY 
NUMBER; but in the THEORY OF COUPLES, the sarne symbol /-1 
is significant, and denotes a POSSIBLE EXTRACTION, or a REAL 
COUPLE, namely. • 0 the principal square root of the couple 
(-1,0). In the latter theory, therefore, though not in the 
former, this sign J-1 may properly be employed; and we may 
write, if we choose, for any couple (a1,a2 ) Whatever, 
(a1'~) = a 1+ a2 V-1.' 

This seems to bring Hamilton back to the 'absurd' symbol 1-1, the 

difference is that the s.ymbol is not to be used in number manipulations, 

but only as an alternative way of expressing a number pair. He does 

not say that imaginary numbers are absurd, only the symbol V- 1, but 

an imaginary number can be represented by any symbqlism one chooses, 

and the symbol cannot be any more or any less absurd than the concept 

it represe~ts. Hamilton is not as whole-hearted as Argand in rejecting 

such words as 'absurd' when dealing with the number s.ystem. 

(1) Hamilton, Mathematical Papers , III, p.4 

(2) Hamilton, p.93 
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Hamilton tried to make the case that his algebra related to 

time. The view that there can be many algebras, that they are abstract 

and can relate to many s.ystems but need not be tied to anyone, was 

rapidly gaining ground. In this sense it was not significant that 

Hamilton related his algebra specifically to time, this would soon be 

disregarded. A mathematician who was prominent in the move towards 

the-formalisation of algebra as sets of rules was de MOrgan, whose 

views on negative and complex numbers were, in many ways, similar to 

those of Hamilton. 
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Augustus de Morgan, Professor of Mathematics at Uni versi ty 

College London, was an algebraist in the forefront of his field in the 

1830's and 1840's. He was son-in-law to William Frend and shared some of 

Frend's views on negative and complex numbers, although he was not as extreme 

as' Frend. De Morgan was a prolific writer of articles on many subjects 

and contributed to the Penny Cyclopaedia, which was published in weekly 

parts by the Society for the Diffusion of Useful Knowledge. It appeared 

from 1833 to 1837, amounting.eventually to twenty-seven volumes. His 

articles on mathematical topics in this publication refer to recent 

papers and provide an up-to-date description of the state of algebra 

in the late 1830's. It can be seen that de MOrgan did not have great 

confidence in his subject, although he went on to develop many new ideas 

in s.ymbolic algebra. It is appropriate to conclude this study with some 

extracts from these articles. 

There is no entry under 'Complex' but entries under 'Negative 

and impossible quantities' and 'Operation' consist of the two parts of 

a single long article and give the writer's views on negative and complex 

numbers. Like Frend, he calls the arithmetic of negatives an art, but 

never took the step of eliminating them from algebra. He distinguishes 

between their use and meaning as follows(1) : 

' ••• a modification of quantity unknown in arithmetic called 
negative quantity, as distinguished from positive ••• a general
isation of which the use was obvious, but not the meaning • • • 

[1here being ~ obvious deficiency of rational explanation which 
characterised every attempt at their theory. ' 

He says that algebra is learnt by rules rather than understanding, and 

verified by the correctness of results, a view that would be unpopular 

today. He regards positives and negatives as inhabiting two separate 

worlds, he makes no reference to their continuity or to a number line. 

To de Morgan, the inclusion of negatives represents the step from arith

metic (a science) to algebra (an art). This has to be done using a set of 

rul +~ k the results obtained for negatives consistent with those e~ lJV eep; 

for positives. He says (p. 132) : 

(1) De l-brgan, "Negative and impossible quantities", Penny 

Cyclopaedia, Vol.16, pp.130-37, (p.130) 
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'The first step from arithmetic to algebra is made by the follow
ing definitions : -
1. Quantities are distinguished into positive and negative which 
are to be considered of diametrically opposite kinds; and common 
arithmetical quantities (abstract numbers without signs) are to 
be considered as positive. 
2. The rules of arithmetical algebra are to be applied to the 
extended algebra, and in all cases in which the latter presents 
a case unknown in the former, the rule of signs already known 
in the former must be applied.' 

Addition and subtraction are described as 'operations', signed number 

- notation is not used. This limited view taken of negatives contrasts 

with the sophisticated idea that algebra may be abstract in the sense of 

being independent of the meanings of quantities involved. But de Morgan 

seems to have been influenced towards the idea of a symbolic algebra by 

the s.ymbol 1-1, a symbol that he regards as virtually meaningless. He 

says (p. 134) : 

'In such a case where the meaning of a SYmbol [~-1J is left 
undetermined ••• if such meaning cannot be given, then the 
s.ymbol is properly called impossible; if it can be given in more 
ways than one, it is usually called ambiguous.' 

He does not give an example of an ambiguous symbol, he may have been 

thinking of a square root. 

De Morgan's view of negative numbers is not a good foundation 

for a clear understanding of comolex numbers. He says (p. 136) : 

' ••• no result was fit for actual application until the im-
possible quantities had disappeared. ' 

In spite of this remark de MOrgan goes on to obtain de Moivre's theorem, 

he deduces expressions for sine and cosine using series, and for the 

binomial theorem, and demonstrates that any algebraic function of V-1 
can be reduced to the form A + B {-1, so that algebra leads to no more 

impossibles. He shows that reals have an infinite number of logarithms, 

covers the roots of unity and uses trigonometric functions to deal with 

the irreducible case of the cubic. He gives Wallis's mean proportional 

definition for 1-1 and describes the Argand diagram. He gives the 
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rotational justification and uses e
ie 

= cose + isine to define a unit line 

at angle e. He emphasises that numbers on the real axis are only a 

special case of numbers on the Argand diagram (p. 136) : 

'F~r lines measured_ in that unit .Jine, _ the extended definitions 
coincide with the ordinary ones. ' 

Although de MOrgan does not regard V-1 as representing anything that 

exists, and in spite of his serious reservations about negatives, he uses them 

in deriving many important results. In the same article he makes it 

clear that it is their usefulness that gives complex numbers their place 

in mathematics. About Cauchy and Hamilton he says (p. 137) : 

'Mr. Cauchy and others had previously considered it as merely a 
symbolical contrivan?e to express the coexistence of two equations 
thus a + b 1(-1) =c + d 1(-1) is .a weli';';')mown method of im-oly
ing. a = c and b = d, both in one equation. The manner in which 
Sir ~lliam Rowan Hamilton has connected this symbol with his 
system would justify us in saying that, if his science of time 
were retranslated into a science of magnitude, his explanation 
of impossible quantities would fall back into the one I have 
just alluded to. 

We are inclined to think that this explanation of algebra with 
reference to time may finally be admitted as one method of sup
plying the foundations of the purely symbolical science : but 
we must confess ourselves not yet sufficiently clear upon the 
matter in which the symbol /(-1) is connected with its defin
ition, to hazard a positive opinion. ' 

Although the last remark is somewhat ambiguous, de furgan seems to be 

saying that he does not fully understand Hamilton's 5,Ystem, but suggests 

that his algebra does not only apply to time, but also to magnitude and 

number. 
Similar views are expressed in the second part of this article, 

under 'Operation' (1). He continues with his ideas for a symbolic ~stem, 
attributing the first use of symbolism to represent 'directions how to 

proceed with magnitudes' to Newton and Leibniz in the calculus. Nega

tives and their square roots are both used as possible elements of a 

symbolic algebra in which specific meanings need not be attached to all 

symbols. This is an early algebra that is truly symbolic. 

(1) De Morgan, "Operation", Penny Cyclopaedia, Vol.16, op.442-46 
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De Morgan still held the same views about negatives and imagin

aries, and about algebra as a 'useless' art in 1849, when he published 

Trigonometry and Double Algebra(1). 'Double' algebra was that of complex 

numbers, 'single' algebra involved negatives, and the algebra of positive 

reals was 'universal arithmetic'. In this book he speaks of the experi

mental use of the unexplained symbol ~-1, and 'intelligible results 

when such things occur', showing that his doubts about complex numbers 

--were, if anything, becoming more serious. 

During the period under consideration some mathematicians ex

pressed the view that comolex numbers did not represent anything real in 

the sense that they did not represent anything at all. By the early 

19th Century it was generally thought that complex numbers were useful 

as there was no doubt that they gave valid results. It is surprising 

that there was still so much uneasiness about negatives. This uneasiness 

seems particularly to have afflicted English mathematicians, though even 

Hamilton was sceptical. It was also English mathematicians who, follow

ing Frend, were concerned over the status of algebra, wishing to cate

gorise it as either a science or an art. It was more desirable that it 

should be counted a science, but to some it was debarred by containing 

complex numbers and to others by containing negatives. 

(1) Smith, "De Morgan and the foundations of algebra", pp.9-13 

103 



Chapter VI 

Summary and conclusion 

Absurd 
Chimaera 
Complex 
Desperate 
False 
Ficticious 
Figment 
Imaginary 
Impossible 

Irrational 
Irreducible 
~nster 

Negative 
Ridiculous 
Sophistic 
Tortures 
Useless 

Posi tive 
Rational 
Real 
True 
Useful 

Collected above are some of the extraordinary terms encountered 

while researching this study, as having been applied to number subsets 

or to polynomials or equations, during this period. It can be seen 

that adverse names considerably outnumber favourable ones. This was the 

position reached by neglecting to allow nomenclature arising as reluctant 

steps were taken into new number subsets, to be superceded. The obscure 

mathematician Argand, with commendable commonsense pointed out the 

illogicality of some of these adverse terms and proposed a useful new 

symbolism for v-1 etc, which unfortunately was not taken up. It is 

inevitable that words change their meanings and associations and, to 

begin with, many of these words would have been merely descriptive 

without a well-defined technical meaning. Where they were used semi

technically (for instance 'impossible'), the meanings were not particu

larly precise, and some cases have been mentioned of words having been 

used with different meanings on different occasions. But the number 

system is an imoortant and sophisticated structure, and it is very de

sirable that suitable names should be devised for its subsets. 

An attempt has been made to identify a point at which mathe

maticians ceased to refer to roots as 'impossible' and started to use 

this word for the problems whose solutions the roots represented. In 
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other words to separate the problem and its properties from the number 

~stem and its properties. This attempt has not been notably successful. 

Saunderson thought of the numbers as impossible, Wallis refers to 'the 

imaginary roots of impossible equations,(1)and, when giving examples 

leading to complex answers, refers to the problems rather than the 

solutions as impossible. Wallis seems to have been ahead of his time 

in this, Euler reverts to using both 'imoossible' and 'imaginary' for 

numbers, stating in somewhat reluctant terms that complex numbers must 

0- be impossible but elsewhere referring to the problems as impossible(2). 

One of the confusing things about Waring's Meditationes Analyticae is 

the language used, but he does not use words meaning 'imaginary'. In 

Hutton's Dictionary 'Impossible' is entered, but the reader is referred 

to 'Imaginary'. Under 'Root' he says 'impossible or imaginary' in

dicating that 'imaginary' is preferable, 'impossible' having been added 

merely for clarity. Under 'Imaginary' Hutton sometimes uses this word 

and sometimes 'impossible', but he is evidently moving away from the 

use of 'impossible' for complex numbers. Gauss, who introduced the term 

complex, did not use the word 'impossible', but de Morgan reverts to it(3) in 

the Penny CyClopaedia. Argand points out the general unsatisfactoriness 

of current nomenclature and uses the word 'imaginary' with the modern 

meaning; Maclaurin had also usually used this word in the same way. Some 

caution must be exercised here as neither Waring, Euler, Gauss nor 

Argand was writing in English, and much of Maclaurin's Algebra was 

compiled posthumously. There is no clear-cut point after which the 

word 'impossible' was dropped for a complex or imaginary quantity, but 

it may be said that its use declined during the early 19th Century. 

(1) Wallis, Algebra, p.(yJ, (preface) 

(2) Euler, Algebra (1191), p.64 
(3) De Morgan, "Negative and impossible quantities", Penny 

Qyclopaedia , Vol.16, op.130-31 
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This study is in no sense comprehensive, a selection has been 

made among available sources. Most use has been made of works on 

algebra as these have been most helpful in providing information on the 

points being considered (listed in the Introduction). Complex numbers 

appeared first in algebraic works, it was the algebraists who discovered 

and described them, and had most to say about their nature. Trigono

metry, calculus and analysis were first developed in the real number 

field, their extension into the complex number field was a subsequent 

step. Algebraists may be thought of as originators or constructors 

while writers in trigonometry, calculus and analysis were users and 

applyers, who accepted and used complex numbers and their rules as 

described by the algebraists. This division is not clear cut as Euler, 

for instance, can be placed in both categories. 

The' fundamental theorem of algebra was widely accepted, though 

not rigorously proved until after the end of the 18th Century. If the 

Argand diagram represents geometrical clarification of complex numbers, 

then Gauss's proofs of the fundamental theorem represent their 
\ 

vindication from an algebraic stand-point. The consequence of this 

theorem is that roots of all kinds, negative, irrational and complex 

included, must be summed together. This must imply that these are all 

entities of the same kind, and that complex numbers are, in fact, 

numbers. Any mathematician with a sense of pattern in mathematics 

must have recognised the desirability of this simplification. 

Few mathematicians considered polynomials having coefficients 

that were other than natural numbers. The nature of roots was studied, 

but the normal assumption is that coefficients (and powers) are not 

irrational or complex, and in some cases, not even negative. Descartes 

briefly considered irrational coefficients, mainly as entities to be 

eliminated, Frend does not even entertain negative ones. other 

mathematicians, Euler and Newton for instance, were more interested in 

non-integral powers than in non-integral multipliers in polynomials. 

Before their integration into trigonometry etc, complex numbers passed' 

through a phase of being acceptable as roots of equations but not 

elsewhere. 
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A recurrent theme has been that number categories have been 

accepted because-they were useful and produced desired results, and not 

because their introduction was based on any sound theoretical foundation. 

Girard and Gauss expressed this view about negatives, Vieta about 

irrationals and Newton, Hutton, Laplace, Lagrange and de Morgan about 

complex numbers. Pell, Collins and Wallis all expressed the view that 

complex solutions could be used as an indication or measure of the 

impossibility of a problem, although there seems to have been no useful 

.- attempt to quantify this. Euler and Newton both said that complex 

answers are needed to cover cases where a problem has no answer, that 

is, no real answer. It has been mentioned that it was during the 

period being studied that complex numbers advanced in status from 

'useless' to 'useful'. I suggest that this is the single most important 

factor that. has been identified. The new discoveries made about them 

enhanced and emphasised their usefulness, and the increasingly favour

able view of their usefulness gave point and purpose to further invest

igation of their properties. 

It is not uncommon for mathematicians to evade aspects of their 

subject that they have not understood, Euler being a notable exception. 

Many mathematicians ignored complex numbers, some avoided them where 

possible or recommended their avoidance. One reason for avoidance ·of 

complex numbers was the occasional published error. Mistakes published 

by Bombelli and Euler have been mentioned as having had important re

percussions. Among writers who have consistently or occasionally avoided 

negative and complex numbers are Vieta (avoids negative and complex 

numbers in Arithrnetica Speciosa), Oughtred (avoids both in the Clavis), 

d'Alembert (avoids complex numbers in the Encyclop~die), Hutton (avoids 

complex numbers in the Course of Mathematics and says in the Dictiona~ 

that they should be avoided), Frend (eliminates both from algebra), 

Gauss (avoids complex numbers as long as possible in his proofs of the 

fundamental theorem of algebra). Lagrange hardly mentions complex 

numbers in his Additions to Euler's Algebra in spite of the prominence 
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given them by Euler; and in one of his lectures, when he says that 

certain roots c~ot be rendered independent of imaginary quantities, 

implies that this would have been desirable(1). It is not unknown for 

mathematical discoveries that have been made in one way to have a 

totally different proof devised for them, the usual reason being that 

the original nroof or discovery method was thought to lack credibility. 
Hutton wrote(2) : 

'. • • the theorems that are sometimes discovered by the use of 
this symbol [V-1] may be demonstrated without it by the inverse 
operation, or some other way' 

Laplace(3) is among other mathematicians who make similar observations. 

With hindsight much of the work of 18th and early 19th Century 

mathematicians on matters related to the number system can be seen as 

filling in details in a structure that was broadly known. Although it 

was not realised at the time, all the subsets of the complex number field 

and their behaviour, were essentially known by the mid-18th Century. 

When d'Alembert and Euler showed that a complex number raised to a 

complex power gives another complex number, this meant that the complex 

number field was known to be closed under the five algebraic operations. 

There was therefore no need to seek a larger number set, there were no 

unresolved gaps to fill. 

In conclusion, it is necessary ~o summarise the extent to which 

the points listed in the Introduction have been resolved. 

(1) Lagrange, Lectures, p.87 

(2) Hutton, Dictionary (1796), p.147 

(3) Kline, p.628 
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(i ) The establishment of the rules of behaviour of complex numbers 

Bombelli gave the four rules for negative and complex numbers and, 

although the first printed version of his Algebra contained errors, these 

were corrected and it is true to say that the period began with a sound 

arithmetical foundation. Unfortunately these rules did not spread and 

gain acceptance as they deserved. I have mentioned Harriot's trial with 

an incorrect rule for (-) x (-) and Euler's errors in the multiplication 

'- of imaginaries. In his Dictionary, Hutton summarises contradictory 

information in circulation near the end of the period. Although not every 

mathematician was in such a state of confusion, Gauss for instance, there 

are grounds for saying that uncertainty about the four rules for complex 

numbers was greater at the end of the period than at the beginning. How

ever, as more mathematicians were using complex numbers at the end than 

at the beginning, the number using them effectively would also have been 

greater. The properties of conjugates were given correctly by Bombelli, 

and first came into prominence in the solution of the cubic. These pro

perties seem to have been well understood in spite of their unexpectedness, 

and did not become the subject of controversy. Newton first gave a rule 

for the number of complex roots in a polynomial, but it was not justified 

until the mid~19th Century. Towards the end of the period the rules for 

powers and roots were given by d'Alembert and Euler, Euler being the 

first to give a value for /_1 / -1. All these algebraic rules were used 

when complex numbers were incorporated into trigonometry, calculus and 

analysis. The Argand diagram gave a geometrical demonstration of the rules 

and it could be used to show that they were correct. In extending the 

real number field to include complex numbers, the criterion was that the 

rules should be such as to give the accepted real number results when 

restricted to reals. This view was stated explicitly by Euler, Peacock, 

de MOrgan etc. The process was still that of extension and synthesis in 

the 18th Century; analysis of the complex number field into its component 

subsets did not start until well on in the 19th Century. 
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(ii) The usage of complex numbers 

Complex numbers, which came forcibly to the attention of mathe

maticians through the solution to the cubic, soon had to be accepted as 

roots of quadratics. Many mathematicians (Euler, Descartes), accepted 

the fundamental theorem of algebra. Proofs were put forward by Gauss, 

the later, most satisfactory ones relying on complex numbers in the proof. 

One of the benefits of this theorem was-the great simplification brought 

to the algebra of polynomials, and it demonstrated that complex roots had 

an essential part to play. During the 18th Century it had also become 

clear that complex numbers were essential to complete the algebra of 

logarithmic, exponential and trigonometric functions. So complex numbers 

were known to be vital to complete understanding of several different 

branches of mathematics at the beginning of the 19th Century. Also, by 

this time, mathematicians had started to extend calculus and analysis 

techniques to complex numbers as a wider branch of mathematics in its own 

right, of which real calculus and analysis formed a part. The powerful 

technique of separating a complex function into its real and imaginary 

parts was used to solve various problems, and was especially useful in 

real integration. In the solution of problems, complex answers were 

seen by some mathematicians as a mathematical means of recognising that 

a problem was impossible and even of assessing the degree of impossibility 

(Collins, Newton, Euler etc ).- I have suggested that the view of 

complex numbers as useful rather than useless was the single most im

portant advance during this period. 
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(iii) Manipulation of ~bols 

Many mathematicians were able to use the ~bol Y-1 together 

with its rules of behaviour to great effect; this spite of the fact 

that some of them were expressing doubts about its nature. Most 

prolific was Euler but Cotes, d'Alembert, de Moivre, Laplace and 

Leibniz were also important. The lack of definitions and visual 

representations for complex numbers makes the successes achieved the 

more remarkable. The emphasis on verification of such results by 

other means (Lagrange, Maclaurin), and the evasion of complex numbers 

(Gauss, Frend, Hutton etc), are hardly surprising. Such verification 

might have prevented some of the slips mentioned (Euler, Playfair) and 

rendered results compatible with those already known. Euler's ~bol 

'i', Gauss's number couples and Argand's AJ and r}Jwere all potentially 

useful for clarification of ideas. ~bol manipulation enabled the 

relationships between logarithmic, exponential, trigonometric and 

complex functions to be discovered, even if in somewhat mechanical 

w~s, and calculus methods to be apulied to them. Advances made in this 

superficial w~ could not be made more insightful until the number 

system was put on a sounder theoretical basis. $ymbol manipulation is 

an important process for mathematical advancement under these circum

stances. The question of detailed interaction between V-1 and other 

totally different symbols, such as D, is the one on which least progress 

has been made in this study. Rather few examules have been encountered, 

partly because the use of such symbolism for advanced concepts had not 

come into general use by the early 19th Century. This point is the 

one which might most repay further research, particularly towards the 

end of the period. 
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(iv) Views of mathematicians on the nature of comnlex numbers 

The question of the metaphysical nature of complex numbers has 

been the most interesting one. This constituted a great difficulty and 

was undoubtedly a reason why some mathematicians avoided them, some 

cases of this have been described. Words attached to the subsets of 

the complex number field, and the adverse nature of most of them have 

been discussed. It is easy to understand the inevitable effect of the 

implied attitudes contained in them. Even the favourable terms such as 

real or true carry the implication that somewhere there is some non-real, 

untrue aspect or entity from which the.y must be distinguished, and it is 

difficult to see how these problems can ever be resolved. In the meta

physical sense the answer is that complex numbers are by nature two

dimensional or two-element numbers, this answer was not given until the 

early 19th Century. They first arose in the solution of equations 

which were expected to give numerical roots, but did not always appear 

to do so. The properties of conjugates and their strange ability to 

extinguish imaginary parts when added or multiplied, were known during 

the whole of the period. In the mathematical sense, Wallis gave geo

metrical and arithmetical interpretations, and Argand gave an improved 

geometrical interpretation. The algebraic number pair interpretation 

given by Gauss gave further insight, and this idea proved fruitful to 

later algebraists. B.1 the early 19th Century, complex numbers had been 

interpreted algebraically, arithmetically and geometrically, and many 

words had been used to describe them. Some of these terms, such as 'im

possible', tended to place these quantities not only outside mathematics 

but outside reality itself. Algebraists have been most inclined to 

discuss in print the nature of complex numbers, and Euler expressed most 

openly the doubts shared by many writers of his time. The eccentric 

English mathematician Frend took scepticism to the greatest lengths 

when eliminating even negatives from his Algebra, a book whose contents 

would not have seemed strange to mathematicians of a millennium earlier. 
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(v) Representations and models for complex numbers 

Mathematicians' earliest encounter with complex numbers involved 

the roots of equations, an equation being thought of as representing an 

actual concrete problem. Complex roots arising in a quadratic could 

not be represented in the diagrams of AI-Khowarismi because a negative 

area was involved, or in the Cartesian plane because no real intersections 

could be found. Neither could the roots be interoreted in a concrete 

way in terms of the solution to the problem, because complex roots to 

the equation meant that there was no real solution to the problem. This 

meant that mathematicians had to look elsewhere for a representation or 

model, and they found it very difficult to know where to look. Wallis's 

diagram has been mentioned, also his attempt to gain more concrete in

sight by the study of nroblems giving complex answers. Wallis must be 

acknowledged as the writer making most contribution on this question up 

to the end of the 18th Century. The notion that the imaginariness of 

the solution measured the degree of impossibility of the problem was 

fairly widespread, but no successful attempt at quantification 

has been found. In 1768, W.J.G. Karsten 

produced a diagram(1) which showed the 

many logarithms of a real or complex 

quantity represented by the circle whose 

ordinates are the imaginary ordinates 

of a hyperbola. As shown in the diagram, 

this circle is the one whose centre lies 

on the axes of symmetry and which touches the two branches. For the 

hyperbola y2= x2_ a2, and for the circle y2= a2_ x
2

• This diagram was 

not capable of much generalisation. The first break-through came with 

the Wessel/Argand diagram and the complex plane of Gauss. These must 

constitute by far the most imoortant step in nroviding a representation 

for complex numbers. 

Cajori, "Historical note on the Graphic 

Imaginaries before the time of Wessel", 

19(1912), 167-71, (p.170 ) 
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(vi) The status of complex numbers and attitudes to them 

The attitudes of mathematicians to the number system can be 

inferred from the list of terms given above. The unfavourable terms 

not only express lack of confidence in the number system by those who 

devised them, but perpetuation of this attitude in those who continued 

to use them. Succeeding mathematicians, and others, must have absorbed 

the impression that the number system contains some very obscure and 

difficult elements, and this is especially so for the complex numbers. 

As complex numbers were seen over the period as increasingly useful, 

attitudes became more favourable, and eventually Argand and Gauss were 

able to make some valuable suggestions for reform. ~ the early 19th 

Century complex numbers were known to be vital to several branches of 

mathematics, and the fundamental theorem of algebra made it essential 

to regard complex roots as numbers with status similar to that of other 

roots. The Argand diagram gave a geometrical interpretation from which 

, V-1' could be eliminated, and number couples did the same for an al

gebraic approach. However, the impression remains that many mathematicians 

were still very unsure about complex numbers, and some examples have 

been given. They had been forced into the formalist position of having 

to accept an undefined set of numbers with known rules of behaviour, 

but whose nature was not thought to be well understood. The formalist 

stance was not to be described until well into the 19th Century, and the 

dissatisfaction with this state of affairs is clear. The fact that no 

other number categories had been defined was not noticed because it was 

possible to feel an intuitive comprehension of these; this may be 

attributed to the fact that there were plenty of simple concrete models 

and diagrammatic representations for them. Mathematicians have been 

mentioned who have avoided complex numbers where possible, others who 

totally ignored them and a few who have made ambiguous statements about 

them. Some, like Wallis, were able to deal with them in a seemingly 
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cool and confident way, whereas others, such as Euler, expressed doubts 

but nevertheless "manipulated them effectively to obtain new and useful 

results. Hutton summarised what he saw as an area of confusion in the 

rules of operation. The many discoveries made, and their recognised 

usefulness, were advances which should have consolidated confidence in 

complex numbers by the early 19th Century. It is remarkable that they 

do not seem to have done so. Even de Morgan, a pioneer of symbolic 

algebra, had little confidence in either complex or negative numbers. 

It was this very lack of confidence which led him to devise a ~bolic 

system, in which not all terms were necessarily defined. Attitudes are 

often difficult to assess and much has to be inferred, few writers have 

been willing to express their opinions openly. Those who have done so 

have provided some fascinating insights. 
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Appendix I 

J J s,ylvester 1814-1897 

Sylvester held several University posts on both sides of the 

Atlantic, but also spent sixteen years as Professor of Mathematics at 

the Royal Military Academy Woolwich (see Hutton). It was during this 

period, in 1864 and 1865, that he produced three papers(1) on the Droof 

of Newton's rule. In the first he expresses admiration for Newton's 

discovery and points out that many other mathematicians (Maclaurin, 

Waring, Euler) had tried unsuccessfully to find a proof. He dismisses 

the quadratic and cubic as trivial and gives proofs for the quartic 

and quintic. The quartic is expressed homogeneously in x and y and 

these are given infinitesimal increments. These are used to prove the 

rule. A different, graphical method is used for the quintic. This 

paper was long, over 100 pages, it did not provide a general method. 

The second paper of 1865 dealt with the sextic and above, it used the 

sign of the second differential in the neighbourhood of the roots. 

This paper did not provide a proof, and consisted of only two pages. 

It was in the third paper of 1865 that the first satisfactory 

general proof was given. This paper was the 5,Yllabus of a lecture 

given at King's College London and to the Mathematical Society of 
(2 ) 

London when Augustus de Morgan was in the chair • In this method, 

which is algebraiC, the polynomial is written in the form 
n n-1 ~.. ( 1) n-2 •• + na 1 x + a wi th fx = a

O
x + na1x + ~n n- a2x + n- n 

A 2 (the differences used by Newton). He then n-1 = an_1 - an_2an 

considers ::1 an associated couple of elements, and 

(1) Sylvester, Mathematical Papers, II, PP.176-479;493-94;498-5 13 

(2) Sylvester, II, 498-513 



associated couple of successions. He then considers the permanence or 

variation of signs in successive associated succession couples, taking 

all cases, noting the effects of these on the roots, also the effects 

of the omission of terms, in a close and detailed analysis. He traces 

'. • • the law of change in the number of double permanences • 
as x increases continuously. No change can take place except 
at the instant when one or more of terms in the inferior or 
superior series, or in both simultaneously become zero ••• 

'Thus for a single vanishing of an intermediate term in the 
upper or lower series double permanences may be gained as x 
continually increases but never lost. ' 

The same is true for the lower series. The series referred to are 

the terms of the polynomial and the Newtonian fractions added above. 

The law of change in double permanences has to be laboriously verified 

as x changes continuously, to check that the number can only change 

when a term in one of the series is zero. 

Unfortunately we do not know how Newton discovered his rule, 

or how he justified it. The successful proof of Sylvester is com

plicated and difficult to describe. It does not produce the rule and 

if Newton had a proof of this kind, he must have discovered the rule 

in some other way. Newton may have just guessed the rule from simole 

cases or may not have thought it worthwhile to write out the details 

of such a proof. 

(2 ) 
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Appendix II 

Some suggestions for further research 

While working on this study it has been impossible to 

overlook the fact that there is a great deal of material still 

to be investigated. It is suggested that the following may be 

of most importance. 

Work in algebra of : 

John Napier (1550-1617) 

Thomas Harriot (1560-1621) 

Alexis-Claude Clairaut (1713-1765) 

Carl Friedrich Gauss (1777-1855) 

~rk in trigonomet~, calculus and analysis of : 

Roger Cotes (1682-1716) 

Abraham de Moivre (1667-1754) 

Louis Arbogast (1759-1803) 



• 

Diana Willment 

31 Numa Court 

Brentford Dock 

Brentford 

~.iddlesex 

January 1985 
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