
Improving the Model Checking of Strategies
under Partial Observability
and Fairness Constraints

Simon Busard1?, Charles Pecheur1, Hongyang Qu2, and Franco Raimondi3

1 ICTEAM Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium,
{simon.busard,charles.pecheur}@uclouvain.be

2 Dept. of Automatic Control and Systems Engineering, University of Sheffield,
Sheffield, United Kingdom, h.qu@sheffield.ac.uk

3 Dept. of Computer Science, Middlesex University, London, United Kingdom,
f.raimondi@mdx.ac.uk

Abstract. Reasoning about strategies has been a concern for several
years, and many extensions of Alternating-time Temporal Logic have
been proposed. One extension, ATLKirF , allows the user to reason about
the strategies of the agents of a system under partial observability and
unconditional fairness constraints. However, the existing model-checking
algorithm for ATLKirF is inefficient when the user is only interested in
the satisfaction of a formula in a small subset of states, such as the set of
initial states of the system. We propose to generate fewer strategies by
only focusing on partial strategies reachable from this subset of states,
reducing the time needed to perform the verification. We also describe
several practical improvements to further reduce the verification time
and present experiments showing the practical impact of the approach.

1 Introduction

Logics to reason about the strategies of a group of agents have been studied for
years and they have a number of practical applications, from security to synthe-
sis of plans to achieve a certain goal. Starting with Alternating-time Temporal
Logic (ATL), reasoning about all strategies of the agents [1], many extensions
have been developed. For example, ATLir restricts the strategies of interest
to those that the players can actually play, based on their local knowledge of
the system [2]. ALTKirF [3] is another extension that combines strategies under
partial observability and unconditional fairness constraints, with branching-time
and epistemic operators. This logic can be used, for example, to verify strate-
gic properties of multi-agent programs in the presence of a fair scheduler [4].
However, the basic algorithm proposed in [3] is inefficient when the user is in-
terested in the existence of a winning strategy in a small subset of the states of
the system, such as the initial states, instead of all the states of the system.

? This work is supported by the European Fund for Regional Development and by the
Walloon Region.

The objective of this paper is to improve the practical efficiency of the algo-
rithm presented in [3] by checking fewer strategies. Let us consider the following
simple motivational example of a 3-card poker, inspired by the card game of [5]:
the system is a card game played between two agents, a player and a dealer.
The game is composed of three cards: the ace A, the king K and the queen Q;
the ace wins over the two others and the king wins over the queen. The game is
played in three steps: 1) the dealer gives a card to the player; he also takes one
for himself and keeps it secret; 2) the player can abandon the game or continue;
3) the player can choose to keep his card or to swap it with the third one. If the
third step is reached—the player did not abandon after the first step—the win-
ner is the one with the winning card, and the game restarts from the beginning.
The graph of the system is illustrated in Figure 1.

−,−

Q,K A,K A,Q K,Q K,A Q,A

Q,K A,K A,Q K,Q K,A Q,A

Q,K A,K A,Q K,Q K,A Q,A

−,−

Fig. 1. The graph of the card game. Circles are states, (K,A means the player has K,
the dealer has A). Arrows are transitions (actions of the agents are easily inferred).
Waved edges link together the states that are indistinguishable for the player.

We are interested in whether the player has a strategy to eventually win the
game before the dealer. Intuitively, to consider all strategies of the player in the
initial state, we have to consider his choices at the second step—abandoning or
continuing the game—and, if he chooses to continue the game, his choices at the
third step—keeping or swapping his card. But if he chooses to abandon when
he does not receive the ace, we do not need to consider his choice at third step
when his card is the king or the queen. This amounts to considering 27 strategies.
Figure 1 shows such a strategy in bold and the states in which we do not need
to consider the player’s choices with dashed borders.

On the other hand, the algorithm presented in [3] blindly makes a choice for
all possible sets of indistinguishable states of the system. In the present case,

it considers whether the player keeps or swaps his king (or queen) at the third
step, even if the considered strategy is to abandon the game at step 2; that is,
the algorithm enumerates the strategies in the dashed states of Figure 1, too,
considering 64 strategies. The contributions of this paper are:

– an algorithm to generate only strategies that are relevant for given states;
– an new model-checking algorithm for ATLKirF based on these strategies;
– further practical improvements of this algorithm—for example, stopping

when a winning strategy has been found instead of checking them all;
– an implementation of these algorithms (to the best of our knowledge, this is

the only implementation currently available);
– experiments showing the benefits of the approach.

The paper is organized as follows: Section 2 briefly describes ATLKirF and
the original model-checking algorithm; Section 3 proposes an algorithm to gen-
erate fewer strategies and Section 4 presents the new model-checking algorithm;
Section 5 describes further improvements to the approach, and Section 6 presents
experiments made on the implementation of the approach. The proof of theorems
are omitted due to space constraints.

2 Background

This section presents the syntax and the semantics of ATLKirF . This logic has
been presented in [3], where it is called ATLKF

po. This section also describes
the original model-checking algorithm for ATLKirF proposed in [3] and gives
an intuition of how to use partial strategies—that is, strategies that give actions
for a subset of the state space—to improve the algorithm.

Syntax and semantics. Formulas of ATLKirF are built from a set of atomic
propositions AP , standard Boolean connectives, CTL operators [6], epistemic
operators [7] and strategic operators [1]. They follow this grammar:

φ ::= true | p | ¬φ | φ ∨ φ | Eψ | 〈Γ 〉ψ | Kiφ | EΓφ | DΓφ | CΓφ
ψ ::= Xφ | φ U φ | φ W φ

where p ∈ AP , Γ is a subset of a set of agents Ag, i is an agent of Ag.
Models and notations. ATLKirF formulas are interpreted over states of

models M = 〈Ag, S,Act, T, I, {∼i}i∈Ag, V, FC〉 where (1) Ag is a set of n agents;
(2) S is a set of states; (3) Act ⊆ Act1 × ...× Actn is a set of joint actions (one
action for each agent); (4) T ⊆ S×Act×S is a transition relation giving at least

one successor for each state (we write s
a−→ s′ for (s, a, s′) ∈ T); (5) I ⊆ S is the

set of initial states; (6) {∼i}i∈Ag is a set of equivalence relations on S × S, one
for each agent (we write ∼Γ for

⋂
i∈Γ ∼i, the distributed knowledge relation of

agents in Γ ⊆ Ag); (7) V : S → 2AP is a function labeling the states of M with
atomic propositions of AP ; (8) FC ⊆ 2S is a set of fairness constraints.

The function img : S ×Act→ 2S returning the set of states accessible from
a given state through a given action is defined as img(s, a) = {s′ ∈ S|s a−→ s′}.
Furthermore, the set of states that are indistinguishable for Γ from the states
of Z is defined as [Z]Γ = {s′|∃s ∈ Z s.t. s′ ∼Γ s}.

A partially joint action is an element aΓ of ActΓ =
∏
i∈Γ Acti; we say that

action a ∈ Act completes aΓ , written aΓ v a, if the actions of agents of Γ in
aΓ correspond to the actions of Γ in a. The function enabled : S × Ag → 2Act

returning the actions a group of agents can perform in a state is defined as

enabled(s, Γ) = {aΓ ∈ ActΓ |∃s′ ∈ S, a ∈ Act s.t. aΓ v a ∧ s
a−→ s′}. (1)

Two additional constraints are set on the models:

∀s, s′ ∈ S, s ∼i s′ =⇒ enabled(s, i) = enabled(s′, i), (2)

∀s ∈ S, enabled(s,Ag) =
∏
i∈Ag

enabled(s, i). (3)

They ensure that an agent only needs its own information about the current
state to make a choice (2), and that nobody can prevent him from choosing an
enabled action (3).

A path is a sequence π = s0
a1−→ s1

a2−→ ... such that (si, ai+1, si+1) ∈ T for
all i ≥ 0. We write π(d) for sd. A path π is fair according to FC if for each
fairness constraint fc ∈ FC, there exist infinitely many d such that π(d) ∈ fc.

A memoryless strategy for Γ is a function fΓ : S → ActΓ such that ∀s, fΓ (s) ∈
enabled(s, Γ), specifying, for each state of the model, which action group Γ has
to choose in each state. A strategy fΓ is uniform iff ∀s, s′ ∈ S, s ∼Γ s′ =⇒
fΓ (s) = fΓ (s′). In the sequel, we only speak about memoryless uniform strate-
gies, and simply call them strategies. The outcomes out(s, fΓ) of a strategy fΓ
from state s is the set of paths reached by fΓ from s and is defined as

out(s,fΓ)=
{
π=s0

a1−→s1...
∣∣∣s0 = s ∧
∀d ≥ 0, sd+1 ∈ img(sd, ad+1)∧fΓ (sd)vad+1

}
. (4)

Finally, a move of Γ is a state/action pair, that is, an element of S × ActΓ .
A strategy fΓ can be represented as a set of moves as

{〈s, aΓ 〉|s ∈ dom(fΓ) ∧ aΓ = fΓ (s)}, (5)

that is, the set of moves 〈s, aΓ 〉 such that s is a state for which fΓ is defined and
aΓ is the action that fΓ chooses.

Semantics. The semantics of ATLKirF is defined over states of a model M
as the relation M, s |= φ, where s is a state of M and φ is a formula of the logic.
This relation is defined in the standard way for atomic propositions, Boolean
connectors, branching-time and epistemic operators. The semantics of strategic
operators is defined as

M, s |= 〈Γ 〉ψ ⇐⇒ there exists a strategy fΓ s.t.
∀s′ ∼Γ s,∀ fair paths π ∈ out(s′, fΓ),M, π |= ψ,

(6)

where the relation M,π |= ψ is defined as

M,π |= Xφ ⇐⇒ M,π(1) |= φ; (7)

M,π |= φ1Uφ2 ⇐⇒ ∃d ≥ 0 s.t. M,π(d) |= φ2 ∧ ∀e < d,M, π(e) |= φ1; (8)

M,π |= φ1Wφ2 ⇐⇒ ∀d ≥ 0,M, π(d) |= φ1 ∨ ∃e ≤ d s.t. M,π(e) |= φ2. (9)

Note that the remaining strategic operators can be expressed in terms of the
previous three operators: [Γ]ψ = ¬〈Γ 〉¬ψ, Gφ = φ W false and Fφ = true U φ.

Due to space constraints, we only focus on strategic operators in this paper,
but our approach can be employed for the remaining operators (our implemen-
tation has all the operators).

Standard model-checking algorithm. The original algorithm consists in
enumerating all the strategies of the model and accumulating, for each of them,
the set of states for which the strategy is winning. Algorithm 1 is the original
algorithm for evaluating the set of states satisfying a strategic operator; it uses
Algorithm 2 for computing the set of strategies of the model as sets of moves
and the function evalIrF (〈Γ 〉ψ, fΓ) for computing the set of states for which
strategy fΓ is winning on ψ for Γ . The function evalIrF (〈Γ 〉ψ, fΓ) relies on the
function Pre〈Γ 〉(Z, fΓ), defined as, given fΓ ⊆ S ×ActΓ and Z ⊆ S,

Pre〈Γ 〉(Z, fΓ) = {s|∀a, fΓ (s) v a =⇒ img(s, a) ⊆ Z}. (10)

Pre〈Γ 〉(Z, fΓ) computes the set of states for which Γ can force to reach states
of Z in one step, by using the actions provided by fΓ . evalIrF is defined using
fix-point operations as

evalIrF (〈Γ 〉Xφ, fΓ) = Pre〈Γ 〉
(
evalirF (φ) ∪NFair〈Γ 〉(fΓ), fΓ

)
(11)

evalIrF (〈Γ 〉φ1Uφ2, fΓ) =

µZ.Φ ∩
(
Φ2 ∪

⋃
fc∈FC

Pre〈Γ 〉

(
νY.

Φ ∩ (Z ∪ fc) ∩(
Φ2 ∪ Pre〈Γ 〉(Y, fΓ)

) , fΓ)) (12)

evalIrF (〈Γ 〉φ1Wφ2, fΓ) = νZ.Φ ∩
(
Φ2 ∪ Pre〈Γ 〉(Z, fΓ)

)
(13)

where

fc = S\fc, (14)

Φ = evalirF (φ1) ∪ evalirF (φ2) ∪NFair〈Γ 〉(fΓ), (15)

Φ2 = evalirF (φ2), (16)

NFair〈Γ 〉(fΓ) = µZ.
⋃

fc∈FC

Pre〈Γ 〉(νY.(Z ∪ fc) ∩ Pre〈Γ 〉(Y, fΓ), fΓ). (17)

Given a set of moves SA, Algorithm 2 produces all the strategies only com-
posed of moves of SA. When Algorithm 1 uses Split(S×ActΓ) at Line 2, it gets
all the strategies of the whole model.

Algorithm 1: evalirF (〈Γ 〉ψ)

Data: Γ a set of agents of a model M , ψ an ATLKirF path formula.
Result: The set of states of M satisfying 〈Γ 〉ψ.

sat = {}
2 for fΓ ∈ Split(S ×ActΓ) do

winning = evalIrF (〈Γ 〉ψ, fΓ)
sat = sat ∪ {s ∈ winning|∀s′ ∼Γ s, s′ ∈ winning}

return sat

The goal of evalirF (〈Γ 〉ψ) is to compute the set of states of the system that
satisfy 〈Γ 〉ψ, that is, the set of states for which there exists a winning strategy.
For this, the algorithm has to produce and check all strategies of the entire
model. But when we only need to know if some states satisfy the formula—for
example, when we want to know if the initial states of the model satisfy 〈Γ 〉ψ—
we can improve this algorithm by only checking the partial strategies reachable
from these states. We say that a strategy is partial if it provides moves for a
subset of the states of the model.

Algorithm 2: Split(SA)

Data: Γ a given (implicit) subset of agents, SA ⊆ S ×ActΓ .
Result: The set of all the strategies fΓ composed only of moves of SA.

conflicting = {〈s, aΓ 〉 ∈ SA|∃〈s′, a′Γ 〉 ∈ SA s.t. s′ ∼Γ s ∧ aΓ 6= a′Γ }
if conflicting = ∅ then return {SA}

else
〈s, aΓ 〉 = pick one element in conflicting
equivalent = {〈s′, a′Γ 〉 ∈ SA|s′ ∼Γ s}
actions = {a′Γ ∈ ActΓ |∃〈s, a′Γ 〉 ∈ equivalent}
substrats = Split(SA\equivalent)
strats = {}
for aΓ ∈ actions do

equivStrat = {〈s′, a′Γ 〉 ∈ equivalent|a′Γ = aΓ }
strats = strats ∪ {equivStrat ∪ substrat|substrat ∈ substrats}

return strats

If a state in not reachable from the initial states through a given strategy, then
it is useless to consider all the possible choices in this state, since no particular
choice will modify the fact that the strategy is winning or not in the initial
states. This is illustrated with the example in Figure 2. There are eight possible
strategies, choosing one action per state; but if a strategy chooses action (1) in
s0, then the choice made in s2 is irrelevant regarding the fact that the strategy
is winning or not for s0 because s2 is not reachable from s0 in this strategy. In
fact, there are only four (partial) strategies to check to know if the initial state
satisfies a given 〈Γ 〉ψ formula:

1. 〈s0, (1)〉, 〈s1, (1)〉, 〈s3, (1)〉;
2. 〈s0, (1)〉, 〈s1, (2)〉, 〈s4, (1)〉;

3. 〈s0, (2)〉, 〈s2, (1)〉, 〈s5, (1)〉;
4. 〈s0, (2)〉, 〈s2, (2)〉, 〈s6, (1)〉.

These partial strategies cover all the ways the agent can act from the initial state
and are sufficient to know whether the initial state satisfies a strategic formula.

s0

s1 s2

s3 s4 s5 s6

(1) (2)

(1) (2) (1) (2)

(1) (1) (1) (1)

Fig. 2. A model where a strategy from the initial state s0 makes a part of the model
unreachable.

3 Generating partial strategies

This section presents the notions of partial strategies and maximal partial strate-
gies, and shows how to generate them. A partial strategy is a strategy that is
defined for a subset of the states of the model.

Given a set of states S′ ⊆ S, a partial strategy that contains a move for
all s ∈ S′, and that contains a move for all states reachable from the moves
it defines is called maximal. More formally, a partial strategy fΓ is a maximal
partial strategy reachable from S′ iff

S′⊆dom(fΓ) ∧ ∀〈s, aΓ 〉∈fΓ ,∀a∈Act, aΓ va =⇒ img(s, a)⊆dom(fΓ). (18)

Such a strategy is uniform iff ∀s, s′ ∈ dom(fΓ), s ∼Γ s′ =⇒ fΓ (s) = fΓ (s′).
The main advantage of maximal partial strategies reachable from S′ is that

they can be used to check if there is a winning strategy for the states of S′.

Theorem 1. Given a model M = 〈Ag, S,Act, T, I, {∼i}i∈Ag, V, FC〉, a set of
states S′ ⊆ S and a group of agents Γ ⊆ Ag, we have that for all s ∈ S′,
M, s |= 〈Γ 〉ψ iff there exists a uniform maximal partial strategy fΓ reachable from
[S′]Γ such that for all s′ ∈ [S′]Γ , for all fair paths π of out(s′, fΓ),M, π |= ψ.

Proof (Proof sketch). We can proof this theorem by showing that there exists
a winning uniform strategy in s′ ∈ S′ iff there exists a winning uniform max-
imal partial strategy reachable from [S′]Γ . Indeed, a strategy can be reduced
to a partial one by removing unreachable moves, and a partial strategy can be
augmented with moves in unreachable states, producing a complete strategy.

By Theorem 1, it is sufficient to check all maximal partial strategies reachable
from [S′]Γ to know whether there exists a winning strategy for the states of S′.
Thus, if we are interested in the satisfaction of a strategic operator for only
a subset of states S′, it is sufficient to check the maximal partial strategies
reachable from [S′]Γ . Before focusing on such a model-checking algorithm, we
propose an algorithm to produce these maximal partial strategies.

Algorithm 3 can be used to generate the set of maximal partial strategies
reachable from a set of states. It uses functions Post, Compatible and Split.

Post(Z, fΓ) is a version of the post-image computation modified to take actions
present in fΓ and states of Z into account. More formally, given Z ⊆ S and a
strategy fΓ ⊆ S ×ActΓ ,

Post(Z, fΓ) =
{
s
∣∣∣∃〈s′, a′Γ 〉 ∈ fΓ , a′ ∈ Act s.t.
s′ ∈ Z ∧ a′Γ v a′ ∧ s ∈ img(s′, a′)

}
. (19)

is the set of states reachable through a move of fΓ from states of Z. Compatible
is defined by

Compatible(Z,fΓ)=
{
〈s, aΓ 〉

∣∣∣s ∈ Z ∧ aΓ ∈ enabled(s, Γ) ∧
6 ∃〈s′, a′Γ 〉∈fΓ s.t. s ∼Γ s′∧aΓ 6=a′Γ

}
. (20)

It returns the set of moves m, composed of states of Z and actions enabled in
these states, such that m are not conflicting with any move of fΓ . We say that
two moves 〈s, aΓ 〉 and 〈s′, a′Γ 〉 are conflicting iff s ∼Γ s′ and aΓ 6= a′Γ , that is, if
they propose different actions for states that are indistinguishable by Γ .

Given a partial strategy represented by a set of moves, Algorithm 3 returns
the set of maximal partial strategies extending the given one. A partial strategy
f ′Γ extends another partial strategy fΓ if the choices made in f ′Γ match the
choices in fΓ , that is, if fΓ ⊆ f ′Γ .

Algorithm 3: ReachSplitΓ (fΓ)

Data: Γ a subset of agents, fΓ ⊆ S ×ActΓ a partial strategy.
Result: The set of maximal strategies extending fΓ .

1 new = Post(dom(fΓ), strat)\(dom(fΓ))
if new = ∅ then return {fΓ }

else
5 compatible = Compatible(new, fΓ)

newstrats = Split(compatible)
strats = {}
for f ′

Γ ∈ newstrats do strats = strats ∪ReachSplitΓ (fΓ ∪ f ′
Γ)

return strats

Algorithm 3 first gets the states reachable in one step from fΓ that are not
yet included in fΓ (Line 1). These states are the states reachable in one step from
fΓ for which an action is not already chosen. If there are no such states, fΓ is
already maximal since a choice has already been made for each reachable state.
Otherwise, we have to make some choices for new states. First, some uniform
choices may have already been made through choices of fΓ : if a new state s is
indistinguishable from a state s′ in fΓ , the choice in s must follow the one in s′.
Thus, we can remove from the choices possible in states of new all the choices
that are conflicting with the ones in fΓ (Line 5). After that, compatible can
still contain conflicts, which are resolved by splitting compatible into strategies
with Split. These strategies are compatible with fΓ because all the potentially

conflicting choices are removed at Line 5. Thus, any splitting f ′Γ of compatible
combined with fΓ is a partial strategy extending fΓ and we can recursively call
ReachSplit until all reachable states are encountered.

The correctness of Algorithm 3 is given by the following theorem.

Theorem 2. Given a subset Γ of the agents of a model M = 〈Ag, S,Act, T, I,
{∼i}i∈Ag, V, FC〉 and a partial strategy represented by a set of moves fΓ , the
result of ReachSplitΓ (fΓ) is the set of maximal strategies extending fΓ .

Finally, we can compute the set of maximal partial strategies reachable from
S′ by using ReachSplit: let PartialStrats be the function defined as

PartialStrats(S′) =
⋃
{ReachSplitΓ (st)|st ∈ Split(MovesΓ (S′))}, (21)

where MovesΓ (Z) = {〈s, aΓ 〉|s ∈ Z ∧ aΓ ∈ enabled(s, Γ)} is the set of moves
that Γ can play from states of Z. PartialStrats(S′) computes the set of maximal
partial strategies reachable from S′.

Theorem 3. Given a model M = 〈Ag, S,Act, T, I, {∼i}i∈Ag, V, FC〉, a subset
Γ of the agents of M and a subset S′ of states of M , PartialStrats(S′) is the
set of maximal partial strategies reachable from S′.

4 Model checking ATLKirF with partial strategies

The number of partial strategies to consider to determine whether a group of
agents Γ has a winning strategy in a subset of states S′ can be substantially
smaller than the overall number of strategies of the model (see Section 2). We can
thus improve the model-checking algorithm for ATLKirF presented in Section 2
by using partial strategies. The idea is to only get the satisfaction of the formula
in the states that matter, instead of getting it in all states of the system. For
example, when checking whether a model satisfies 〈Γ 〉Fp, we only need to know
whether all the states indistinguishable from the initial states satisfy the formula,
instead of knowing all states satisfying the formula. On the other hand, when
checking AG〈Γ 〉Fp, we need to know whether all reachable states satisfy 〈Γ 〉Fp
to say whether the formula is satisfied or not by all initial states.

Our algorithm keeps track of the set of states for which the satisfaction of
the formula has to be known. Whenever an operator is evaluated, the algorithm
is recursively called on the set of states in which the satisfaction of the top-level
subformulas have to be known before evaluating the current operator. Given the
initial states, the algorithm returns all the initial states satisfying the formula.

Given a set of states Z and a formula φ, Algorithm 4 returns the states of
Z that satisfy φ. It works recursively on the structure of φ, and evaluates, on
each step, the set of states in which it is necessary to know the satisfaction of
the top-level subformulas. Due to space constraints, only the cases for strategic
operators are presented. In these cases, the algorithm goes through all partial
strategies reachable from Z and their indistinguishable states, and needs to know

the satisfaction for the top-level subformulas in the states reachable by each
partial strategy before computing the states of Z satisfying the main formula.

The goal of Algorithm 4 is to evaluate the satisfaction of the formula in as
few states as possible. When dealing with strategic operators, the generation of
partial strategies allows the algorithm to avoid a potentially large number of
strategies. Note that, while it computes the partial strategies through a forward
traversal of the model (see Section 3), it performs the evaluation of the states
satisfying a given strategic operator with a backward traversal of the strategy.

Algorithm 4: evalPartialirF (Z, 〈Γ 〉ψ)

Data: Z ⊆ S a subset of states, 〈Γ 〉ψ an ATLKirF formula.
Result: The set of states of Z satisfying 〈Γ 〉ψ.

sat = {}
2 for fΓ ∈ PartialStrats([Z]Γ) do
3 case ψ = Xφ′

Φ′ = evalPartialirF (Post([Z]Γ , fΓ), φ′)
5 win = Pre〈Γ 〉(Φ

′ ∪NFair〈Γ 〉(fΓ), fΓ)

case ψ = φ1Uφ2

Φ1 = evalPartialirF (dom(fΓ), φ1); Φ2 = evalPartialirF (dom(fΓ), φ2)
8 win =

µX.(Φ1 ∪ Φ2 ∪NFair〈Γ 〉(fΓ)) ∩(
Φ2 ∪

⋃
fc∈FC

Pre〈Γ 〉

(
νY.

(Φ1 ∪ Φ2 ∪NFair〈Γ 〉(fΓ))

∩ (X ∪ fc) ∩
(
Φ2 ∪ Pre〈Γ 〉(Y, fΓ)

) , fΓ))
case ψ = φ1Wφ2

Φ1 = evalPartialirF (dom(fΓ), φ1); Φ2 = evalPartialirF (dom(fΓ), φ2)
11 win = νX.(Φ1 ∪ Φ2 ∪NFair〈Γ 〉(fΓ)) ∩

(
Φ2 ∪ Pre〈Γ 〉(X, fΓ)

)
sat = sat ∪ {s ∈ win ∩ Z|∀s′ ∼Γ s, s′ ∈ win}

return sat

Finally, to get the set of initial states satisfying an ATLKirF formula φ, we
can simply use Algorithm 4 on these initial states. The following theorem proves
the correctness of Algorithm 4:

Theorem 4. Given a model M = 〈Ag, S,Act, T, I, {∼i}i∈Ag, V, FC〉, a set of
states Z ⊆ S and an ATLKirF formula 〈Γ 〉ψ, evalPartialirF (Z, 〈Γ 〉ψ) is the subset
of states of Z that satisfy 〈Γ 〉ψ.

The strategies considered by ATLKirF are slightly different from the strate-
gies of ATLir [2]. ATLKirF considers the agents of Γ under supervision of a
virtual supervisor, as in the case of ATLDiR, a variant of ATLir using distributed
knowledge, perfect recall and partial observability [8]. On the other hand, ATLir
considers that each agent acts independently and does not share his knowledge
with the other agents of Γ . Nevertheless, the approach of this paper can be
easily adapted to fit ATLir strategies: the notion of conflicting moves needs to
be changed to take into account the knowledge of each agent individually in-
stead of as a group, and the Compatible and Split algorithms must be adapted
accordingly.

5 Further optimisations

Several improvements can be added to Algorithm 4 to make it more efficient in
common cases.

Checking fewer strategies by early termination. When dealing with a
strategic operator 〈Γ 〉ψ, evalPartialirF goes through all partial strategies generated
from [Z]Γ and accumulates in sat the subset of Z for which the current strategy
is winning. The for loop at Line 2 could be terminated as soon as all states of Z
are winning, that is, when sat = Z. In this case, we know that we found winning
partial strategies for all states of Z and it is not necessary to check the remaining
strategies. But if a state of Z does not satisfy 〈Γ 〉ψ, all partial strategies must
be checked. In the sequel, we call this improvement full early termination.

Following this idea, we could reconsider smaller strategies when sat grows.
Indeed, when checking the strategies computed by PartialStrats([Z]Γ), we could
recompute the smaller strategies reachable from [Z]Γ \sat when states are added
to sat, ignoring the part of these strategies taking sat states into account. This
can be done by recomputing a new set of strategies whenever sat grows—we call
this approach partial early termination.

We can also perform fewer recomputations of the strategies by recomputing
them when the number of states of Z that are not in sat decreases under a certain
threshold; the value given in the following is the threshold under which the part
of the remaining states must be to trigger the recomputation of strategies. We
call this approach threshold-based early termination.

The main drawback of the two last approaches is that parts of some strategies
will be checked again, while we know they are not winning for the remaining
states: indeed, when recomputing partial strategies for the remaining states,
some of the new partial strategies will be parts of a partial strategy that has
already been checked, and thus they cannot be winning for the remaining states.

Another approach to tackle this drawback would be to avoid recomputing
the strategies and simply reduce the remaining ones to the moves reachable
from the remaining states. In this case, we would need a mechanism to filter out
the reduced strategies that are met multiple times. The current implementation
(see next Section) only uses the approach of recomputing strategies.

Avoiding recomputation of subformulas with caching. When the
model-checking algorithm deals with a strategic operator 〈Γ 〉ψ, it enumerates
all partial strategies reachable from [Z]Γ and, for each of them, first computes
the set of states of the strategy satisfying the top-level subformula(s) of ψ. This
can perform a lot of redundant work since several strategies can share the same
subpart of the model. We can improve this by accumulating, for each subformula
of ψ, their satisfaction value in encountered states.

Note that there is a difference between this approach and the standard
caching techniques for BDD-based CTLmodel checking. BDD-based CTLmodel
checking keeps track of BDDs representing states satisfying a property; these
BDDs do not change for different occurrences of a subformula since they repre-
sent all the states satisfying it. This mechanism can not be used here because
subsets of states of interest change for different strategies, thus BDDs change,

and these new BDDs must be completely recomputed. The caching mechanism
we propose is to only recompute satisfaction for new states, and keep the results
in two accumulated BDDs, avoiding to recompute strategies for states for which
it has already been done.

Pre-filtering out losing moves. A move is losing if it does not belong to a
winning strategy. Experiments showed that pre-filtering out moves that are not
winning under full observability can decrease the time needed to check a strategic
operator [3]. We can include this improvement in evalPartialirF by pre-filtering the
state space reachable from [Z]Γ before building the partial strategies, and only
consider the remaining submodel. This can lead to ignoring a large part of the
system if this part cannot be winning, reducing the number of choices to make
and the number of strategies to consider.

6 Experiments

The algorithm generating partial strategies shown in Section 3, the model-
checking algorithm presented in Section 4 and the improvements discussed in
Section 5 have been implemented with PyNuSMV, a Python framework for pro-
totyping and experimenting with BDD-based model-checking algorithms based
on NuSMV [9]. The implementation has been tested on two different models and
several ATLKirF formulas.

The first model is another variant of the card game from [5]. The game is
composed of two players—the player and the dealer—and n cards. The n cards
c1, ..., cn are such that ci wins over cj if i > j or i = 1 and j = n. The game is
played in four steps: 1) the dealer gives one card to himself; 2) he gives one card
to the player; 3) the player can choose to keep his card or to ask for another,
but cannot get back a card he discarded before; 4) the game stops when the
player chooses to keep his card or when the stack of cards is empty. The winner
of the game, known during the last step, is the one with the winning card. The
game can then be repeated infinitely many times and the dealer is fair, that is,
if the game is repeated infinitely many times, the dealer gives the cards in each
possible order infinitely many times.

The second model is inspired from the ancient tale of Tian Ji. It is composed
of two agents: Tian Ji and the king. Both agents have n horses h1, ..., hn and
horse hi wins over hj if i > j; if i = j, the winner is chosen non-deterministically.
Their game is as follows: Tian Ji and the king go for n races, with n different
horses. They can choose their own horses in the order they want, but do not
know the horse the opponent chose. The winner is the one with the most won
races. The game can then be repeated infinitely many times and the king is fair,
that is, if the game is repeated infinitely many times, the king will choose his
horses in each possible order infinitely many times.

Several ATLKirF formulas have been checked on each model to assess the
impact of partial strategies and the improvements presented in Section 5. These
formulas are listed in Table 1. They use different atomic propositions; for exam-
ple, playerWins is true when the game is done (at the fourth step) and the card

of the player wins over the dealer’s card; playerHasFirst is true when the player
has card c1. Similarly, tianjiWins is true when the game is done (all horses have
been used) and Tian Ji won more races than the king; tianjiLostUpToNow is
true when Tian Ji has lost all races since the beginning of the game.

Table 1. Formulas checked over the models of the card game and Tian Ji’s race.

Card game formulas Tian Ji’s race formulas
〈player〉F playerWins 〈tianji〉F tianjiWins
〈player〉F (playerWins ∧ playerHasFirst)
〈player〉G 〈player〉F playerWins 〈tianji〉G 〈tianji〉F tianjiWins
〈player〉F 〈player〉[¬dealerWins U playerWins] 〈tianji〉F 〈tianji〉[¬kingWins U tianjiWins]
AF 〈player〉X playerHasFirst 〈tianji〉X tianjiLostUpToNow
AG(FirstStep =⇒ ¬〈player〉X playerWins) 〈tianji〉G 〈tianji〉X tianjiWon < 2Races

These formulas are intended to test the proposed algorithms under different
circumstances. For example, the formula 〈tianji〉F tianjiWins must only be
checked over the initial states. In this case, partial strategies should help since
the number of strategies to check substantially decreases. On the other hand, for
the formula 〈tianji〉G 〈tianji〉F tianjiWins, the 〈tianji〉F tianjiWins subfor-
mula must be evaluated on all states, and partial strategies do not help. Other
formulas, like AF 〈player〉X playerHasFirst, are used to test the improvements
presented in Section 5. In this case, the 〈player〉X playerHasFirst subformula
is true in a significantly small subset of the states, thus pre-filtering out losing
moves before generating partial strategies should help.

A first set of tests have been performed to assess the efficiency of the model-
checking algorithm of Section 4 compared to the original algorithm presented
in Section 2. For each formula of Table 1, the size of the model to check has
been increased and both model-checking algorithms have been run with a limit
of 15 minutes. Some of the results are shown in Table 2. They show that using
partial strategies can improve the efficiency of the process: for example, for the
specification 〈player〉F playerWins, and even more for 〈tianji〉F tianjiWins,
the time needed for the verification is significantly decreased. This is due to the
fact that in these cases, we are interested in the existence of winning strategies
in the initial states, and thus the number of strategies to consider is smaller. On
the other hand, for the specification AF 〈player〉X playerHasFirst, we need to
know the satisfaction of the inner strategic operator in all reachable states, and
thus the verification does not run faster.

A second set of tests have been performed to assess the impact of the proposed
improvements. Each formula of Table 1 has been checked with partial strategies
on models of increasing sizes, with all combinations of improvements of Section 5
and with the same limit of 15 minutes. This resulted in a huge set of time results
that have been analyzed with box plots. More precisely, for each formula, each
improvement type and each size of the model, a box plot has been drawn showing
the time results for each possible value of the improvement. For example, Figure 3
shows the box plots for times to check the formula 〈tianji〉F tianjiWins for 3
to 5 horses, grouped by value of early termination. The box plots show, for a
given parameter, the time needed for model checking the property when the
parameter takes a particular value. This means that, in a box plot, a single box

Table 2. Execution times of the original algorithm and the algorithm based on partial
strategies, for some formulas checked over the card game and the problem of Tian Ji.

Formula Size # States Original algorithm Partial strategies
〈player〉F playerWins 3 28 0m2.527s 0m2.603s

4 101 0m8.035s 0m8.205s
5 326 0m34.937s 0m30.885s
6 967 2m14.461s 1m39.931s
7 2696 > 15m 9m46.126s

〈tianji〉F tianjiWins 3 61 0m5.388s 0m2.489s
4 409 > 15m 0m25.172s

AF 〈player〉X playerHasFirst 3 28 0m1.506s 0m1.444s
6 967 0m39.285s 0m38.535s
8 7177 11m37.270s 12m9.149s
9 18442 > 15m > 15m

represent the model-checking time when the other parameters vary. Thus, if a
box is much lower than another, this means that whatever the other parameters
are, the first parameter value gives better performances than the other.

From these box plots, we analyzed the effect of each improvement value on
the time needed to model check a formula. For example, the box plots of Figure 3
show that when checking the formula 〈tianji〉F tianjiWins, early termination
really decreases the time needed, but the kind of early termination used has
no significant impact; this is expected since the formula is satisfied in all states
with all strategies, and the model checking algorithm stops at the first strategy
(instead of having to check all of them if early termination is deactivated).

Fig. 3. Box plot of time (in seconds) needed for checking the formula
〈tianji〉F tianjiWins with 3 to 5 horses. In each plot, boxes represent measures with
different type of early termination (from left to right): threshold (trigger value: 0.9),
partial, threshold (trigger value: 0.1), threshold (trigger value: 0.5), full, no early ter-
mination. On the third box plot, model checking exceeded the limit of 900 seconds for
all checks without early termination.

The box plots of Figure 4 show that, when model checking the formula
〈tianji〉G 〈tianji〉X tianjiWon < 2Races, filtering can really decrease the time
needed for the verification. This is expected since the 〈tianji〉X tianjiWon <
2Races subformula is true in a small subset of the states, reducing the number
of strategies to consider.

Finally, the box plots of Figure 5 show that, when checking the formula
〈player〉G 〈player〉F playerWins without early termination, caching really helps.
This is expected because without early termination, all strategies must be checked;

Fig. 4. Box plot of time (in seconds) needed for checking the formula
〈tianji〉G 〈tianji〉X tianjiWon < 2Races with 3 to 5 horses. In each plot, boxes
represent measures without filtering and with filtering (from left to right). On the
third box plot, model checking exceeded the limit of 900 seconds for all checks without
filtering.

thus, a lot of redundant work is performed to get the states satisfying the sub-
formula and this redundant work is avoided with caching.

Fig. 5. Box plot of time (in seconds) needed for checking the formula
〈player〉G 〈player〉F playerWins with 3 to 6 cards. In each plot, boxes represent
measures without caching and with caching (from left to right), when early termina-
tion is not activated. On the last two box plots, model checking exceeded the limit of
900 seconds for all checks without caching.

The conclusions we can make based on the test results are the following.

– Activating pre-filtering can greatly improve the process—when there is only
a small part of the model that satisfies the formula under full observability—
but can also generate unnecessary work when this is not the case, and this
can become significant when the number of strategies is small—for example,
when early termination is activated. This improvement can thus be helpful
in certain cases, but decreases performances for some other cases.

– Activating early termination has, at worst, no impact. It should always be
activated since it can greatly improve the verification time when most of the
strategies are winning. However, the performed tests did not show a type of
early termination better than the others;

– Caching increases performances in some of the tests above; for the others, it
has no impact. It should thus be always activated.

7 Conclusion

The model-checking algorithm for ATLKirF presented in [3] is in many cases
inefficient because it blindly enumerates all possible strategies to check whether
there exists a winning strategy in some states. This paper has presented an
approach to generate fewer strategies when we are interested in whether there
exists a winning strategy in a small subset of the states of the model. More
precisely, we proposed to generate partial strategies reachable from a subset of
states of the model that are sufficient to determine the satisfaction of a strategic
formula in these states. Based on the generation of these partial strategies, a
new algorithm has been designed and the experimental results showed that in a
number of cases, the new approach is more efficient than the original one.

While the presented model-checking algorithm clearly improves the efficiency
of the verification, it may still be improved along different directions. For exam-
ple, given the ATLKirF formula 〈player〉F playerWins, it is in theory not nec-
essary to generate and check any strategy if the initial states satisfy playerWins.
The approach of on-the-fly model checking consists in exploring only the part of
the system that is necessary to know whether a particular state satisfies or not
a given property. It has been studied by several authors and many techniques
have been developed in this direction [10,11,12]. One possible extension of our
work involves the possibility of applying such techniques to our setting.

References

1. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J.
ACM 49(5) (September 2002) 672–713

2. Schobbens, P.Y.: Alternating-time logic with imperfect recall. Electronic Notes in
Theoretical Computer Science 85(2) (2004) 82 – 93

3. Busard, S., Pecheur, C., Qu, H., Raimondi, F.: Reasoning about strategies under
partial observability and fairness constraints. In: SR. (2013) 71–79

4. Dastani, M., Jamroga, W.: Reasoning about strategies of multi-agent programs.
In: Proceedings of AAMAS 10. (2010) 997–1004

5. Jamroga, W., van der Hoek, W.: Agents that know how to play. Fundamenta
Informaticae Volume 63(2) (2004) 185–219

6. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press (1999)
7. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge.

MIT Press, Cambridge (1995)
8. Dima, C., Enea, C., Guelev, D.: Model-checking an alternating-time temporal

logic with knowledge, imperfect information, perfect recall and communicating
coalitions. In: GANDALF 2010. 103–117

9. Busard, S., Pecheur, C.: Pynusmv: Nusmv as a python library. In: NASA Formal
Methods. Springer (2013) 453–458

10. Stirling, C., Walker, D.: Local model checking in the modal mu-calculus. In:
TAPSOFT’89, Springer (1989) 369–383

11. Bhat, G., Cleaveland, R., Grumberg, O.: Efficient on-the-fly model checking for
ctl. In: LICS’95. 388–397

12. Mateescu, Sighireanu: Efficient on-the-fly model-checking for regular alternation-
free mu-calculus. Science of Computer Programming 46(3) (2003) 255–281

	Improving the Model Checking of Strategiesunder Partial Observabilityand Fairness Constraints

