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Abstract

Programming is notoriously hard for novices to learn and a substantial number

of learners fail in introduction to programming courses. It is not just a UK

problem: a number of multi-institutional and multi-national studies reveal that

the problem is well-known and is widespread.

There is no general agreement about the causes or the remedies. The major

factors which can be hypothesised as a cause of this phenomenon are: learners’

psychology; teaching methods; complexity of programming.

In this study, learners’ common mistakes, bugs, misconceptions, frequencies

and type of errors (syntactic and semantic) in the early stages of learning program-

ming were studied. Noticing the patterns of rationales behind novices’ mistakes

swayed the study toward investigating novices’ mental ability which was found

to have a great effect on their learning performance. It was observed that novices

reported a recognisable set of models of program execution each of which was log-

ically acceptable as a possible answer and it appeared that some students even

used these models systematically. It was suspected that the intellectual strategies

behind their reasoning could have been built up from their programming back-

ground knowledge and it was surprising when it was found that some of those

novices had not even seen a program before.

A diagnostic questionnaire was designed that apparently examined a student’s

understanding of assignments and sequence but in fact was capturing the reason-

ing strategy behind their interpretation of each question, regardless of a correct

or wrong answer. The questionnaire was administered in the first week of an

introductory programming course, without giving any explanation of what the

questions were about. A full response from most participants was received, de-

spite the fact that the questions were unexplained.

Confronted with a simple program, about half of novices seem to sponta-

neously invent and consistently apply a mental model of program execution. They
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were called the consistent subgroup. The other half are either unable to build a

model or to apply one consistently. They were called the inconsistent subgroup.

The first group perform very much better in their end-of-course examination than

the rest.

Meta-analysis of the results of six experiments in UK and Australia confirmed

a strong effect of consistency on success which is highly significant (p < 0.001).

A strong effect persisted in every group of candidates, sliced by background fac-

tors of programming experience (with/without), relevant programming experi-

ence (with/without), and prior programming course (with/without) which might

be thought to have had an effect on success. This result confirms that consistency

is not simply provided by prior programming background.

Despite the tendency in institutions to rely on students’ prior programming

background as a positive predictor for success, this study revealed that prior

programming education did not have a noticeable effect on novices’ success. A

weak positive effect of prior programming experience was observed overall which

appeared to be driven by one experiment with a programming-skilful population.

This study shows that students in the consistent subgroup have the ability to

build a mental model, something that follows rules like a mechanical construct.

It also seems that when programming skill is measured by a weak assessment

mechanism, the effect of consistency on success is reduced.
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Chapter 1

Introduction

Students in introductory programming courses find programming notoriously

hard to learn and a substantial number of them fail in those courses. Students

joining programming courses are keen to find out how a set of instructions can

apparently pass on intelligence to an electronic machine, and teachers are keen

to help them. But many find it difficult to learn, however hard they try. On the

other hand some seem to have a natural aptitude for programming.

Despite considerable research effort, the causes of this phenomenon remain

unknown and no testing mechanism is able to separate these two populations at

the early stage of their learning.

1.1 Phenomenon

In UK schools, students are prepared for higher education with a number of

“Advanced Level” (A-level) studies which provide a background and evidence of

aptitude for universities to keep their drop-outs low in the early stage. Computing

Science departments were never able to do this, even when a Computer Science

A-level existed. They try nowadays to select on mathematical or general abilities,

but it has not worked: there has always been a large failure rate. No effective

predictor of programming aptitude has ever been found.

A study undertaken in nine institutions in six countries (McCracken et al.,

2001) looked at the programming skills of university computer science students

at the end of their first year of study. All the participants reported that at the

conclusion of their introductory courses very many students still did not know

how to program.

9
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Lister et al. (2004) looked at evidence from seven countries and found the

same thing. Members of the same team (Raadt et al., 2005) looked at various

possible predictors of programming success and found a few weak correlations.

After attending a Psychology of Programming Interest Group (PPIG) meeting

and discussing the issue with other researchers, it became apparent to me that

the problem is well-known and is widespread.

In introduction to programming courses the majority of novices complain of

being confused from the beginning, despite the hard work and attention given

to them by their instructors. They describe programming as a peculiar subject

which is hardly related to any of the subjects they have encountered in the past.

Just a handful of novices in this group could manage to overcome the problem

but most of them carried the problem up to the end of the course or looked for

alternative course of study. I found them hard to teach.

A minority seem quite confident, ready to take in the relevant materials

swiftly, providing opportunity for their teachers to work on their misconceptions

and direct them toward the correct models. A vast majority of novices in this

group will manage to progress to the next level of programming courses. I found

them easy to teach.

Observing two groups of novices with diverse ability in introduction to pro-

gramming courses was a common phenomenon in Computer Science in many

institutions and I was not the only programming teacher who was mystified by

it.

1.2 Causes of the phenomenon

The causes of the phenomenon could be:

Students’ psychology Some students can comprehend programming much

more easily than others. Perhaps it is a matter of mental ability.

Problems in teaching The phenomenon could be caused by a variety of factors

related to teaching the subject, such as: inadequate teaching methods;

inappropriate materials; incompatibility of teaching and learning styles; and

so on.

Complexity of programming The subject could be more difficult than it
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needs to be. The underlying programming constructs may have not been

designed around learners’ needs (Blackwell et al., 2002).

There is no general agreement about the cause of the phenomenon and no agree-

ment on remedies.

1.3 This study

This research is focused on learners’ mental ability which I found to be the most

effective explanation of the phenomenon.

I observed that some patterns of rational strategies were employed by novices

when responding to a programming question at a very early stage of learning to

program. Each rationale was recognisable and similar to the mechanisms actually

used in program execution although not precisely addressing the correct answer.

For example, the mechanism of assigning the value of a variable from left to right

is very similar to assigning it from right to left, but only the second is the correct

model of Java execution.

This gave me the idea that the novices may have already been equipped with

some abilities before the course started. Therefore I decided to give a test in

the first week of the course, investigating the mechanisms they brought into the

programming learning context before they were affected by teaching methods and

materials.

A test was designed that apparently examined a student’s knowledge of as-

signment and sequence but in fact was capturing the reasoning strategy behind

their interpretation of each question, regardless of a right or wrong answer. I

deliberately chose assignment and sequence because they are simple and funda-

mental programming constructs. The test was administered in the first week of

an introductory programming course, without giving any explanation of what the

questions were about.

The result brought up three surprises:

• I received a full response from almost all participants, despite the fact that

the questions were unexplained.

• About half of them not only had the ability to create a rational model, they

also managed to generalise their models and applied them consistently to
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answer most of the questions. The other half did not seem to use the same

model consistently or refused to answer most of the questions.

• When I correlated the test result with the subjects’ examination mark the

consistent subgroup clearly performed better than the others. The consis-

tent subgroup overall had 85% chance of success in the course while the

chance of success in the inconsistent subgroup was only 35%.

I showed the test result to the research community at a PPIG (Psychology of

Programming Interest Group) conference (Dehnadi and Bornat, 2006). A number

of objections were raised. The objections were mainly about the following issues:

• The questionnaire – participants’ prior programming background, age and

sex were not recorded.

• Interpretation of mental models – judgment of consistency was not clearly

defined and was subjective.

• Data analysis methods – were not strong enough.

I responded to these objections by amending the questionnaire, objectifying the

process of interpretation by introducing an answer-sheet, a mark-sheet and a

marking protocol as well as employing better statistical methods when analysing

the test results.

Six experiments, five in UK and one in Australia, were analysed individually

and also combined in a meta-analysis. The results and analysis are reported in

chapter 6 and 7.

The overall result strongly confirmed the original test result. Consistency

does have a strong effect on success in learning programming. Background pro-

gramming experience, on the other hand, has little or no effect. The mechanisms

of rationalisation which students bring to the study of programming have a great

effect on their learning performance.

1.4 What is programming?

Programming is generally agreed to consist of a number of activities, including

designing, coding, testing, debugging, and maintaining the source code of com-

puter programs. Students in universities develop these skills gradually through a

series of courses.
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In introductory courses novices learn part of each of the activities involved

in programming. Some courses focus on coding and debugging activities from

the beginning and some emphasise design activity first. However, there is no

evidence that any particular approach has an effect on novices’ fail rate. The

coding/debugging approach was followed in all the courses which were involved

in this study.

Success in an introductory course is proof of ability in some programming

activities. But why should my study have any impact in the wider area of pro-

gramming and what does it contribute to the knowledge of this field? This study

looks at recognisable models of assignment and sequence used by candidates which

are similar to the mechanical processes behind the execution of programs, which

Mayer called an effective mental model of the virtual machine (Mayer, 1981).

Ability to use such a model seems to be an essential requirement for novices to

pass the course and it is possible that this ability lies behind all activities of

programming:

• Without envisaging the underlying activities such as execution of an algo-

rithm, writing or reading a chunk of code is impossible;

• Debugging activity cannot succeed without an understanding of what each

line of code does and what they do together;

• Designing also heavily relies on understanding the capability and limitation

of programs;

• Large-scale maintenance requires knowledge about small fixes which relies

on skill in coding.

Success in an introductory programming course demonstrates candidates’ abil-

ity to envisage the mechanical processes behind the execution of programs. This

ability seems to be an essential foundation which facilitates all programming ac-

tivities and learning programming may be impossible without it.

1.5 Chapter summaries

Chapter 2 is a review of the literature. Chapter 3 explains the early stages of

this study, when I was trying to find a suitable way of understanding the sources
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of learners’ difficulties. Chapter 4 describes the first methodical experiment that

revealed the subpopulations and the effect of consistency. Chapter 5 describes

the methodology of later experiments, in which the process of the experiment

and methods of analyses are more objective. Chapter 6 shows the results and

analyses of those experiments. In order to get an overall view of the effect of con-

sistency among diverse institutions the results are also meta-analysed in Chapter

7. Chapter 8 summarises the outcome of this study and discusses opportunities

for future studies.



Chapter 2

Literature Review

Researchers in this area agree that novices find it difficult to learn to program,

but have different opinions about causes and cures. Some of the researchers

tried to find characteristics which could have an effect on learners’ success, while

some believed that learning programming needs skills that should be developed in

advance. Some other researchers claimed that teaching methods are causing the

problem. I found three major directions in the literature which were distinguished

by the way they tackled the problem.

• Empirical correlations – look at novice learners’ attributes for factors which

are correlated to their success in a first programming course.

• Explanations – look for the causes of learners’ difficulties in their psychology.

• Interventions – introduce new forms of teaching programming such as

concept-first, visual learning tools and Integrated Development Environ-

ments (IDE’s).

I describe each of these directions, highlighting their strengths, weaknesses and

scope of validity.

2.1 Empirical correlations

Since the 1960s, following industrial innovation in computer technology, demand

for programming courses has grown rapidly. However the considerable failure

rate in these courses prompted a huge interest to find factors which correlate

15
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with learners’ success in introductory programming courses. Researchers tried a

variety of methods such as:

• Aptitude/Psychometrics test;

• Personality/Self-ranked test;

• Background elements (e.g. sex, age, race, skill at bridge and chess, parental

education level and occupation);

• Ability in mathematics.

2.1.1 Aptitude/Psychometrics

Reinstedt et al. (1964), the founders of the Special Interest Group for Computer

Personnel Research (SIG/CPR), were concerned to investigate any programming

aptitude test that could assist management to select experienced or trainee pro-

grammers. They examined the relationship between job performance and certain

measures of interest like cognitive abilities and biographical data. They applied

a battery of aptitude tests: PAT (Programmer Aptitude Test used by IBM),

TSI (Test of Sequential Instructions) and SVI (Strong Vocational Interest). The

tests were administered to 534 experienced programmers employed by 24 separate

organisations.

Although a significant correlation between PAT scores and supervisory rank-

ing of performance was found in some organisations, there were not significant

correlations between these factors for the total sample. Similarly, the correla-

tion between TSI and ranking of performance was not significant across different

organisations.

Mayer (1964) from an industrial management position, criticised SIG/CPR

for their stress on legitimising current aptitude tests and turned to a traditional

method to select programmers. He emphasised direct personal interview for ex-

perienced programmers rather than a written test to determine level of capability,

as well as an impression of personal traits. Mayer believed that the SIG/CPR

aptitude results were ambiguous and claimed (without supporting evidence) that

his interviewing technique gave him a 60-70% effectiveness in selection.

Mayer and Stalnaker (1968) reported on more programming aptitude tests

such as WPT (Wonderlic Personal Test) and PMA (Test of Primary Mental
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Ability) that were widely used in 1960-1970. They concluded “It is true that the

PAT measures certain attributes required in programming – numerical capability

and spatial relationships – and the TSI probably measures the ability to perform

parallel operations, but apparently neither measures the whole cloth of what

managers believe to indicate programming ability”.

Huoman (1986) invented a programming aptitude test and Tukiainen and

Mönkkönen (2002) evaluated it at the beginning of an introduction to program-

ming course. At first they found a very significant correlation between the Huo-

man test and the final examination, but when candidates’ programming back-

ground was examined, the test was found to give no evidence of success in the

programming exam.

Bennedsen and Caspersen (2006) found no correlation between cognitive de-

velopment and results in a model-based introductory programming course; and

they found, in a three-year longitudinal study (Bennedsen and Caspersen, 2008),

that general abstraction ability was not a predictor for success in learning com-

puter science.

2.1.2 Background

Reinstedt et al. (1964) reported that after recognising some serious problems

with different kinds of testing, SIG/CPR decided to look for non-cognitive fac-

tors to predict programming ability. They reported that age bore no weight in

programming performance; that with the exception of a relevant mathematics

major in scientific programming, college majors had no effect on programming

performance; the college average score of programmers had no predictive value

for programming performance; no relationship was found between interest in or

frequency of participating in puzzle solving, bridge and chess; parental education

level and occupation likewise failed to be significantly correlated.

Wilson and Shrock (2001) used a questionnaire plus the Computer Program-

ming Self-Efficacy Scale test developed by Ramalingam and Wiedenbeck (1998).

They administered the test to 105 students after the midterm exam. They exam-

ined possible predictive factors including mathematics background, attribution

of success and failure (luck, effort, difficulty of task, and ability), domain-specific

self-efficacy, encouragement, comfort level in the course, work-style preference,

previous programming experience, previous non-programming computer experi-
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ence, and gender. They revealed a number of predictive factors in the following

order of importance: comfort level, math background, and attribution to luck for

success/failure (based on students’ beliefs about their reasons for success or fail-

ure). Comfort level and math had positive correlations with the midterm score,

but attribution of success/failure to luck had negative correlation.

The study also revealed that by considering different types of previous com-

puter experience (including formal programming class, self-initiated program-

ming, internet use, game playing, and productivity software use) that both a

formal class in programming and game playing had influence. Formal training

had a positive influence and games a negative influence on class grade.

However some of the correlated factors used by this study, like comfort level

and attribution to luck for success/failure, could not be provided before midterm

at least, so cannot be used as predictors and the authors did not report any

succeeding investigation to support their claim.

Besie et al. (2003) examined age, race and sex to see if they were correlated

with success in a first programming course, particularly for computer science and

information systems. Statistical analysis of their data indicated that neither sex

nor age is correlated with success in the first programming class. This study also

indicates that the proportion of women is higher in IS majors than CS, and that

CS majors have a higher probability of passing the first programming course than

IS majors.

2.1.3 Personality

Biamonte (1965) investigated the relationship of the attitude patterns of dogma-

tism, authoritarianism, and political conservatism versus success in programming

training. A sample of 201 trainees was used. It was found that even though there

were significant correlations between scores on the tests used to measure each of

the three attitudes, scores were related to neither training grades nor scores on

an independent measure of intelligence.

Cross (1970) and Mayer and Stalnaker (1968) introduced occupational apti-

tude tests at the initial stage of joining software industry employment, hoping

to predict successful candidates. Cross relied heavily on a psychometric aptitude

test instrument, called JAIM (Job Analysis and Interest Measurement), which

was a self-report of a candidate’s personality. It was designed to measure per-
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sonal qualities, aptitudes, training and knowledge which has an influence on job

performance.

Applying JAIM to a group of programmers, Cross found them to be rather

peculiar individuals, willing to work in isolation, avoiding interaction with dif-

ferent features of the organisation, preferring not to be involved in any possible

confrontation with others including supervision and being supervised, avoiding

structure and routine, and being motivated primarily by achievement rather than

external reward, status, or approval of others. Since this particular personality

pattern was found in most programmers, Cross considered it as a good measure

of programming aptitude. Unfortunately there is a lack of statistical analysis in

his study.

Thirty-three years after Cross’s comment about programmers’ peculiar per-

sonality pattern, Baron-Cohen et al. (2003) exposed this pattern as a classic trait

associated with autism. He labeled people such as scientists, mathematicians and

engineers as systematizers, who are skilled at analysing systems; they also tend

to be less interested in the social side of life, and can exhibit behaviour such as an

obsession with detail. Wray (2007) inspired by (Baron-Cohen et al., 2001, 2003)

administered a number of aptitude tests, using Baron-Cohen’s instruments, a self-

ranking questionnaire and my test (chapters 4 and 5). He found some interesting

associations. Since my research was started four years before Wray’s experiment

I will discuss his experiment in section 6.7.

Rountree et al. (2004) revealed that the students most likely to succeed are

those who are expecting to get an ‘A’ grade and are willing to say so, in the

middle of the course. They rely on students’ self consciousness, and believe that

a student’s expectations may influence their result. They asked questions such

as ‘what grade do you expect to get in this course’ and ‘how hard do you expect

this paper to be?’ showing that the best indicators of success appear to be self-

predicted success, attitude, keenness and general academic motivation. They

supposed that students have a better idea of their own background strengths

than we can determine from their mix of school examination grades, so they

asked them what they considered their strongest background. Using decision-

tree induction, they found a group of students who seem to be about twice as

likely to fail as the others in the class. These students seem likely to be those who

are surprised at how different a programming course is from anything else they

have encountered. However, these indicators do not distinguish programming
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from other disciplines, and have less effect as discipline-specific indicators. They

did not reveal the figures that indicate how many students who expected to get

‘A’ failed, and how many who did not expect ‘A’ passed the course.

The phenomenon of observing two noticeable subgroups of learners was fre-

quently reported by researchers: the first subgroup struggle from the beginning

and give up when they strike the first difficulty; in contrast, the other subgroup

seem comfortable when confronting a problem and learn actively. Perkins et al.

(1986) described the first group as “stoppers” and the second as “movers” who

seemed to use natural language knowledge to get beyond an impasse. Perkins

et al. added that some of the “movers” were not genuinely engaging with the

problem, but rather carrying on in an extreme trial-and-error fashion that es-

caped any intellectual challenge with the programming difficulties. Perkins et al.

suggested that it would be encouraging to give some positive feedback to prevent

“movers” from quitting the study of programming.

2.1.4 Ability in mathematics

Reinstedt et al. (1964) found that relevant mathematics background correlates to

success in learning scientific programming and Wilson and Shrock (2001) found

math background had positive correlations with the programming score.

McCoy and Burton (1988) studied good mathematical ability as a success fac-

tor in beginners’ programming. They claimed that understanding mathematical

variables was correlated with success in programming courses, but no evidence

was cited. In a subsequent paper McCoy (1990) states that understanding pro-

gramming variables involves knowing that the label can store a value that changes

and concludes that programming helps students understand mathematical vari-

ables.

2.1.5 Large-scale tests

McCracken et al. (2001) in a multi-national research project tried to find an

assessment mechanism to measure first-year students’ programming ability. Their

collaborators all reported that many students do not know how to program at the

conclusion of their programming course. Their explanation for that inability was

that students lack knowledge and skills that are precursors to problem-solving.

They introduced an assessment mechanism to monitor students’ progress in five
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steps: ability to take a problem description, decompose it into sub-problems,

implement each fragment, assemble the pieces together as a complete solution,

evaluate the problem and produce a solution iteratively. The paper does not

isolate the causes of the problems.

Lister et al. (2004) followed the McCracken group’s study and administered

another multi-national research project. First they tested students on their ability

to predict the outcome of executing a short piece of code. Second, students were

tested on their ability, when given the desired function of a short piece of near-

complete code, to select the correct completion of the code from a small set

of possibilities. Many students were weak at these tasks, especially the latter,

which revealed their lack of skills that are a prerequisite for problem-solving.

They added to McCracken et al.’s explanation that the important elements were

students’ fragile grasp of both basic programming principles and their inability

to carry out routine programming tasks systematically, such as tracing through

code – students had more difficulties to read code than to write it.

A full report on this study is (Fincher et al., 2005) followed by Simon et al.

(2006a) and Tolhurst et al. (2006) with more detail on each component of the

study, full analysis of the data and justification of the conclusions.

Simon et al. (2006b) described another multi-national, multi-institutional

study that investigated the potential of four diagnostic tasks as success factors

in introductory programming courses, in eleven institutions. The four diagnostic

tasks were:

1. A spatial visualisation task (a standard paper folding test);

2. A behavioural task used to assess the ability to design and sketch a simple

map;

3. A second behavioural task used to assess the ability to articulate a search

strategy;

4. An attitudinal task focusing on approaches to learning and studying (a

standard study process questionnaire).

It seems possible that a multi-factor model employing tasks such as those used

in this study could be used as a reasonable factor of success in introductory

programming. However, the study failed to demonstrate any significant effect
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and suggests further exploration of possible diagnostic tasks, and a need for clear

understanding of their inherent biases.

The study suggested to explore how strongly these tasks are associated with

general IQ or standard components of IQ such as verbal and spatial factors, as a

potential extension to this study. They added that there is no accepted measure

of programming aptitude, therefore they cannot find correlations between perfor-

mance on simple tasks and programming aptitude. They stated that they had to

replace it with the readily quantified measure of exam mark in a first program-

ming course. They believe that there is not a simple linear relationship between

programming aptitude and mark in a first programming course, but there is no

other easily-measured quantity available.

2.1.6 Summarising empirical correlations

Research looking for a robust factor correlated with programming ability has

been actively carried out for five decades, starting with a series of aptitude tests

designed to find suitable candidates for employment in the software industry.

After recognising serious problems with some of these instruments, researchers

returned to traditional alternatives: non-cognitive factors in subjects’ background

such as age, race and sex; puzzle-solving; skill at bridge and chess; mathematics;

parental education level; and occupation. Most studies failed to find any strong

correlation.

Two studies, on the other hand, found that subjects’ comfort level and high

expectation correlated with programming success; but this seems to be a gen-

eral attitude to success, which works among all disciplines (Wilson and Shrock,

2001; Biamonte, 1965). Another found relevant mathematics background helps

scientific programming (Reinstedt et al., 1964).

A peculiar personality pattern was also observed commonly in programmers

which was considered as a good measure of programming aptitude; this personal-

ity pattern was similar to that described as a classic trait associated with autism

thirty years later.

A number of multi-national studies, which were looking for an effective factor

correlated to programming success, found that programming difficulty is a global

problem. No strong correlations were reported.

Despite all this effort, a reliable method of predicting the success of students
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who enter an introductory programming course has not been found. Although

some weak evidence has been reported, there is no available effective and solid

test which could categorise novices or measure their ability to learn programming

and predict their success or failure at the beginning of an introductory course.

2.2 Explanations

Researchers in this group tried to examine a variety of elements in order to

understand the causes of learners’ difficulties and explain the phenomenon. They

tackled the problem from two different directions:

1. Common mistakes – researchers in this area were mostly teachers who were

directly involved in teaching programming. They studied novices’ errors,

recording, cataloguing and analysing them in order to understand what is

common amongst them and how misconceptions occur. They looked deeply

at novices’ misconceptions in order to hypothesise what they are thinking.

2. Psychology – researchers in this area were mostly psychologists who looked

at learners’ problems like an equation: learners with their mental abilities on

one side; and the programming construct with its complexities on the other

side. Then they tried to evaluate learners’ mental abilities when dealing

with the complexities which were found in programming constructs so as

to analyse the causes of learners’ difficulties.

Researchers in all of these directions reached similar conclusions. Hence I cate-

gorise them by the way they explained the phenomenon. Researchers attributed

novices’ problems to the following factors:

1. Lack of an effective mental model of the machine. An effective mental

model can be developed in two stages: first a correct mental model of basic

concepts of computer ability; then an effective mental model of the virtual

machine.

2. Teaching – issues such as negative impact of misapplication of analogy; or

introducing topic “B” which relies on understanding of topic “A” which has

not yet been fully understood.

3. Lack of domain knowledge.
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4. Complexity in programming constructs (formalism) – they identified the

complexities underlying structural characteristics in programming construct

which are not designed around the needs of learners.

2.2.1 Mental models

The idea of mental model was frequently used by researchers in this area, although

they did not all use exactly the same notion.

The idea of mental model can be traced back to Craik (1943) who suggested

that the mind constructs “small-scale models” of reality that it uses to anticipate

events. He explained that mental models are representations in the mind of real or

imaginary situations. He added that mental models can be built from perception,

imagination, or the comprehension of discourse. He believed that mental models

underlie visual images, but they can also be abstract, representing situations that

cannot be visualised. He stated that each mental model represents a possibility,

similar to architects’ models or to physicists’ diagrams in that their structure is

analogous to the structure of the situation that they represent.

Johnson-Laird studied people’s competence in deductive reasoning. He at-

tempted to identify alternative mental models used by subjects trying to solve

syllogistic puzzles (Johnson-Laird, 1975). Later, Johnson-Laird and Bell (1997)

put forward the theory that individuals reason by carrying out three fundamental

steps:

1. They imagine a state of affairs in which the premises are true - i.e. they

construct a technical/mathematical mental model of them.

2. They formulate, if possible, an informative conclusion true in the model.

3. They check for an alternative model of the premises in which the putative

conclusion is false. If there is no such model, then the conclusion is a valid

inference from the premises.

Johnson-Laird concludes that comprehension is a process of constructing a men-

tal model (Johnson-Laird, 1981), and set out his theory in an influential book

(Johnson-Laird, 1983). Since then he has applied the idea to reasoning about

Boolean circuitry (Bauer and Johnson-Laird, 1993) and to reasoning in modal

logic (Johnson-Laird and Bell, 1997). The model theory is an alternative to the
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view that deduction depends on formal rules of inference similar to those of a

logical calculus (Rips, 1994; Braine and O Brien, 1991). The distinction between

the two sorts of theories parallels the distinction in logic between proof-theoretic

methods based on formal rules and model-theoretic methods based on semantics

such as truth tables.

Gentner and Stevens (1983) introduced a different notion of mental model.

They explained that people’s views of the world, of themselves, of their own

capabilities, and of the tasks that they are asked to perform, or topics they are

asked to learn, depend heavily on the conceptualisations that they bring to the

task. In interacting with the environment, with others, and with the artefacts of

technology, people form internal mental models of themselves and of the things

with which they are interacting; these models provide predictive and explanatory

power for understanding the interaction.

Gentner and Stevens’ mental models are about the ability to envisage me-

chanical processes and changing of states in each process. Kieras and Bovair

(1984) termed Gentner and Stevens’s mental model a device model to distinguish

it from the other senses of the term mental model such as that used by Craik

and Johnson-Laird. They conducted an experiment to examine the role of mental

model in learning how to operate an unfamiliar piece of equipment. In this exper-

iment two groups of subjects learned a set of procedures for operating a simple

control panel device consisting of switches, push buttons and indicator lights.

The goal of the procedure was to get a certain indicator light to flash. One group

learned how-it-works knowledge in the form of internal component and processes

of the device. The second group received no how-it-works knowledge, but only

learned the procedures by rote. Kieras and Bovair found the first group who

received how-it-works knowledge performed significantly better than the second

group. They reported that device model information provides a definite and

strong facilitative effect.

Craik’s mental models are models of structures. Johnson-Laird’s mental mod-

els are models of static situations. Gentner and Stevens’ mental models are mod-

els of mechanisms with processes and states. They emphasise peoples’ ability

to build a mechanical mental model of a target system. These are the mental

models discussed by researchers into the programming problem, and which I use

in this research.

Spohrer and Soloway (1986) were amongst the first researchers to stress the
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significance of mental models in learning programming. They indicate that for

most programming tasks there is some model – an imagined mechanism – that

a novice will use in his/her first attempts and we need to understand when it is

appropriate to appeal to this model and when it is necessary to move a novice to

some more appropriate model.

They focused on bugs and buggy programs, catalogued them, and classified

novices’ mistakes and misconceptions. They tried to use novices’ mistakes and

misconceptions to hypothesise what they were thinking as they programmed.

They found that just a few types of bug cover almost all those that occur in

novices’ programs. They believed that bugs and errors illuminate what a novice

is actually thinking. They hypothesised a “programming goals/subgoals/plans”

theory that is used widely by novices in order to break down the complexities of

program applications. They alerted educators about cognitive bugs and advised

them to teach students strategies for putting the pieces of programs together.

They stated that learners need more guidance at the beginning, but that their

supports need to be changed as they build competence, and become more inde-

pendent in their learning.

Bayman and Mayer (1983) studied misconceptions in two different types of

statements. One statement was an initialisation D=0 and the other was an as-

signment A=B+1. They describe how in both of these statements students often

thought the computer was writing the information somewhere or printing it to

the screen as opposed to storing it in a named memory location. The authors

suggested that beginners need explicit training concerning memory locations and

under what conditions value stored in those locations get replaced.

du Boulay (1986) explained misconceptions about variables, based upon the

analogies used in class. He illustrated that the analogy of a box or drawer with

a label on it may lead learners to build a wrong mental model that a variable

can hold more than one value at a time. Comparing a variable to a box triggers

learners’ minds to their existing mental model of boxes, rather than building a

correct model of variable. He also noted students’ misconceptions concerning

variables when assigning one variable to another: for example x=y may be viewed

as linking the second variable to the first, and therefore a change in x results in a

change in y. He highlighted novice users’ vital misunderstanding of the temporal

scope of variables and explained that they may not understand that a value stays

in a variable until it is explicitly changed or the contents of memory are erased
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or the machine is switched off.

du Boulay said that novices find the syntax and underlying semantics of a pro-

gramming language hard to comprehend and have no idea about the capabilities

of a computer. He concluded that novices with a lack of mechanical understanding

build a poor mental model which is not adequate for their learning requirements.

du Boulay showed that when a variable is used to hold a running total, the fact

that learners forget to initialise the total to zero comes from the wrong analogy

that introduces a variable as a box which, even when empty, has some value.

Perkins and Simmons (1988) explained that novices have misconceptions

about the names of variables, even though they know in principle that the choice

of variable names is theirs. Having a weak mental model of the virtual machine,

students have the notion that a computer program knows that the highest input

values should go into variables with names like LARGEST. They highlighted that

people commonly fail to notice inconsistencies in their intuitive mental models,

and often, when inconsistencies are brought to their attention, cannot notice their

importance.

Kessler and Anderson (1986) studied students’ errors in learning recursion

and iteration. They observed that students who had poor mental models of the

mechanical processes of recursion and iteration in programming adopted poor

learning strategies. They emphasised that novices’ appropriate mental models of

such techniques should be developed prior to engaging them in any implementa-

tion task.

Mayer (1981) believed that experts are able to think semantically and demon-

strates four areas of differences between them and novices in computer program-

ming: semantic knowledge, syntactic knowledge, ability in task management and

taking advantage of having an effective mental model of the virtual machine.

Novices are at the beginning of their mental model development; syntactic knowl-

edge is hard for them because it’s difficult to catch grammatical mistakes; they are

inexperienced in problem decomposition; and lack of strategic knowledge forces

them to lean on low-level plans during problem solving.

Mayer describes existing knowledge as a “cognitive framework”, and “mean-

ingful learning” as a process by which new information is connected to existing

knowledge. In (Mayer, 1992) he stated that people who know how their pro-

grams work do better than those who do not, and mental models are crucial to

learning and understanding programming. He also emphasises background ex-
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perience and explains that a person who is an accomplished problem solver in a

particular domain tends to build up a range of problem solving techniques and

strategies. When confronted with a new problem, such an expert compares it

with past problems and, where possible, constructs a solution out of familiar,

reliable techniques.

van Someren (1990) investigated novices learning Prolog. He came to the

conclusion that those who were successful had a mechanical understanding of the

way that the language implementation, the Prolog virtual machine, worked. As a

result, he claimed that more complex statements and implicit behaviours, where

multiple actions take place as a result of a single statement, are likely to be more

confusing to students. He added that the difficult bits of Prolog – unification and

depth-first search – gave rise to most difficulties.

Cañas et al. (1994) introduced a tracing mechanism to show novices how

a computer works as code is executed, helping them to develop a mechanical

mental model. The result showed that students who used the tracing mechanism

to follow the code had different mental models than those who did not; the

students who used the trace mechanism managed to organise the concepts by

semantic aspects of the programming language while those who did not use the

tracing mechanism organised the concepts by syntax. They concluded that those

who have appropriate mental models are likely to do better on programming tests

and show greater understanding than students with poor or inappropriate mental

models.

Putnam et al. (1986) examined high school students’ misconceptions in the

BASIC programming language. They used a screening test and structured inter-

views to determine their understanding of fundamental concepts such as variables,

assignments, loops, flow and control, and tracing and debugging. They found that

novices’ misconceptions about the capabilities of computers could have a mas-

sive negative impact on their success at programming. Many of their subjects

tried to use meaningful names for their variables, apparently hoping that the

machine would be able to read and understand those names and so perceive their

intentions.

Murnane (1993) relates programming to psychological theories and how it can

be applied to programming. He suggested that, initially, students require solid,

tangible objects to work with. They need good feedback, and a clear path from

cause to effect – “when I do x, it causes y”. They confirmed van Someren (1990)
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who suggested that a good understanding of the underlying virtual machine is

vital for students learning programming languages.

Winslow (1996) described a psychological overview of programming pedagogy

and explained the characteristic differences between novices and experts. He

explained that most studies differentiate between a task – a goal with a known

solution – and a problem – a goal with no familiar solution. A problem to

a beginner may be a task to someone more advanced, which is an important

characteristic of experts regardless of discipline.

Winslow believed that programming pedagogy should build confidence in

novices to put the bits and pieces of the programming puzzles together. He

indicated that novices know the syntax and semantics of individual statements

but they don’t have any idea how to chain them into a valid program; even when

they can solve a problem by hand, they have trouble transferring their solution

into a comparable computer program. He suggested that practice helps, and

complained about students who don’t study the problem cautiously or read it in

trivial manner.

Ahmadzadeh et al. (2005) looked at programming difficulties and described

teaching programming as a problematic issue for computer science. They stressed

the difficulty of finding an effective method of teaching suitable for all students.

They also described that in order to adopt a better teaching strategy, examin-

ing students’ mistakes is essential. They recorded compiler errors generated by

students’ programs and observed them during their debugging process. They ini-

tially thought that the majority of good debuggers would be good programmers

(students with a high mark); they find that less than half of the good program-

mers are good debuggers and that this is a major obstacle to their productivity

when dealing with complex codes. This might reveal that the half of “good pro-

grammers” in this study, in spite of having good marks, did not develop a correct

mental model of programming yet. They explained it as lack of knowledge of the

actual program implementation which prevents many of the good programmers

becoming good debuggers. They suggested skill at debugging increases a pro-

grammer’s confidence and more emphasis should be placed on debugging skills in

the teaching of programming.
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2.2.2 Teaching

In the literature researchers described the effect of inappropriate teaching which

increases programming learners’ difficulties and suggested alternative approaches.

Hewett (1987) tried to use the study of psychology to motivate learning to

program. He originally used an existing model from (Shneidermann, 1980) when

undertaking the development of a course in software psychology. He gradually

modified the course in two different directions: the cognitive psychology of com-

puter programming, the application of cognitive psychology to design and the

evaluation of human-computer interfaces. It was a ten-week course involving

mixed lectures and discussions without using a computer. Hewett reported that

the course strongly supported the “Architect-Builder Metaphor” (Brooks, 1975)

that tried to separate the jobs of designers and programmers in the software de-

velopment life-cycle. He claimed that the course has an impressive impact on the

students’ design projects. After a year, when equipment allowed, he changed the

focus from software psychology to application design and implementation. By

changing the structure of the course he lost momentum and never followed up

the sustainability of the effect.

Thirteen years after Hewett’s study, Vat (2000) reported a similar effect in a

junior course, titled Software Psychology, offered in the undergraduate Software

Engineering program at university. The course in particular introduced the ped-

agogy of problem-based learning and addressed issues such as the resources and

facilities needed for a programming course.

This study pointed to some evidence that the course developed students’ qual-

ity of performance in the following characteristics: high level communication,

technological literacy, effective problem solving ability, flexibility and adaptabil-

ity to ease with diversity, creativity, resourcefulness and team-work ability.

Linn and Dalbey (1985) studied programming psychology and mental models

of novice programmers. The study suggested that a good pedagogy should keep

initial facts, models, and rules simple and only expand and refine them as the stu-

dent gains experience. They complained about the sophisticated materials that

were taught to introductory programming students while study had shown that

they failed to understand the basic concept of a simple element – like variables

and assignments – even weeks after the course began. This study suggested that

spending more time on simple algorithms might pay a much larger return in the
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long run.

du Boulay (1986) pointed out that some misconceptions are based on analogies

used by teachers. He explained that when a variable is compared to a slate where

values are written, learners might not think the existing value gets overwritten.

They might think that a variable is a list which keeps all the values that have

been assigned to it.

Haberman and Kolikant (2001) implemented a new instructional method, aim-

ing to help novice high-school students to develop a mental model of basic con-

cepts of computation. In this method a basic computational model of input and

output, variables and value assignment, and the notion of executing a simple se-

quential algorithm could be constructed through activating “black boxes”. Each

“black box” demonstrates the properties of a new concept and its role in the

computing process which incorporates a set of correct pieces of knowledge (CPK)

associated with the concept. Haberman et al. believed that the “black boxes”

method enabled novices to create a valid mental model by incorporating a com-

plete set of CPKs concerning the concept. The study described the CPK for a

model of a variable: “the variable is a location in the computer’s memory that

can contain one value of a specific type at a time; the value of a variable may be

used (more than once) as long as it is not changed by any input/assignment state-

ment”. The study pointed that the lack of any of the required CPKs, or adapting

alternative wrong pieces of knowledge (WPK), gives an incorrect perception of the

concept. Haberman et al. also conducted research aimed at assessing the effec-

tiveness of the method on novices’ perceptions of basic concepts in computation.

They indicated that students who learned according to the “black box” approach

gained a better understanding of the basic computational model, compared to

students who learned according to the traditional approach.

Lahtinen et al. (2005) organised an international survey with participation

of more than 500 students and teachers to get opinions about difficulties in the

programming teaching/learning area. The survey result showed that students

seem to be quite confident to study alone rather than attending lectures; that

learning by doing was considered to be more effective, therefore they asked for

more exercise, practical sessions and to be left alone to accomplish their program-

ming coursework on their own; example programs were considered as the most

useful type of material both by the students and the teachers; the teachers opined

that practical sessions in computer rooms, exercise sessions in small groups and
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working alone on coursework are the most effective learning situations; the teach-

ers seemed to think that the students needed guidance more than the students

themselves; the teachers considered their teaching more effective than it actually

was, because they rated all the guided learning situations more highly than the

students did. They concluded that the major difficulties are the lack of effective

learning and teaching materials in programming courses.

2.2.3 Lack of domain knowledge

Adelson and Soloway (1985) described how many programming problems comes

from a wide range of problem domains and how having a correct mental model

of the problem domain is critical.

Pennington (1987) looked at the way that expert programmers understand

problem domains and programs. He explained that despite the admonition of

the computer science establishment to construct programs top down, experts

build them bottom-up. He emphasised that knowledge of the problem domain

is one way that experts have an advantage over novices: even if they know no

more about programming language than novices, they know a lot more about

their problem domain, and they utilise that knowledge. He suggests that five

types of programming knowledge are necessarily to enable a novice to overcome

the syntactic and semantic requirements of a programming language: control

flow, data flow, function, state and operations. Pennington believed that lack

of knowledge of the problem domain and imperfect mechanical understanding of

programming constructs cause novices’ difficulties.

Lahtinen et al. (2005) believed that programming is related to several fields of

technology, and universities just provide the basic concepts of those technologies.

Students with problems are often stuck at the beginning of the introductory

courses, as proved by the high drop-out rates.

2.2.4 Complexities in programming constructs

Researchers in this area tried to examine the complexity of programming in order

to identify the complexities underlying structural characteristics of programming

constructs. They also tried to evaluate the usability of some programming lan-

guages in order to understand novice learners’ difficulties.
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Bonar and Soloway (1983) were the first to raise questions like: “Why is pro-

gramming, even at a simple level, so difficult to learn? Are novices’ difficulties

really inherent in programming or are they related to the nature of the program-

ming tools currently given to them?”. They stated that novices’ programming

difficulties stem from an inappropriate use of natural language specification strate-

gies and suggested that skill in natural language seemed to have a great deal of

impact on their conceptions of programming.

Dyck and Mayer (1985) conducted an experiment with two groups of students.

Students in the first group were given some statements in BASIC to understand

and students in the second group, who had no knowledge of BASIC, were given

some statements in English to understand. They also looked at factors which

influence the difficulty of the comprehension process for English and BASIC pro-

cedural statements; they found that the micro-structure of each statement (the

number of actions required) and the macro-structure (the number of other state-

ments in the program) were strongly related to response time performance for

both BASIC and English. They concluded that understanding of procedural

statements is related to underlying structural characteristics common to both

languages.

Thomas Green made enormous contributions identifying novices’ obstacles in

design and construction of programming language. Green (1997) exposed the

falsity of claims that a programming language is easy to use because it is more

natural, or because it works the way people think. He explained how impera-

tive programming, object-oriented programming, logic programming, functional

programming, graphical programming, and others are all “natural” in someone’s

eyes but none of them uniformly best for all purposes. He added that the obvious

point has been missed out; a programming language cannot be natural; it is not

really like natural language, and if it were “natural” it would not be so hard to

learn or understand.

Green (2000) put forward a “cognitive dimensions framework” for usabil-

ity evaluation of all types of information artifact, from programming languages

through interactive systems to domestic devices. Cognitive dimensions provides

an important list of points to be aware of during the design of any notation.

Green introduced some of these cognitive dimensions as:

• Viscosity – resistance to change.
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• Premature commitment – constraints on the order of doing things.

• Hidden dependencies – important links between entities are not visible.

• Role-expressiveness – the purpose of the entity is readily inferred.

• Error-proneness – the notation invites mistakes and the system gives little

protection.

• Abstractions – types and availability of abstraction mechanisms.

Green (2000) measured the difficulty levels of different languages, and found some

were much worse than the others. Green discussed the cognitive complexity of

the fact that in some programming languages – such as C, C++ and Java – array

indices start at 0, rather than 1 as is more traditional in mathematics. This

is a very efficient technique, as array variables in C are pointers to the start of

the array, and the index is actually an offset into the array. He added that for

programmers, however, it can be difficult to remember and to take into account

in all appropriate calculations that a 10 element array actually has indices 0-9,

rather than 1-10.

Later, with Blackwell (Blackwell et al., 2002), he evaluated the usability of

information-based artifacts and notations such as programming languages. They

opened issues such as cognitive ergonomics and language usability. They sug-

gested that a usable programming language should be designed around the needs

of the programmer, rather than the needs of the machine.

Shneidermann (1980) investigated different uses of variables and addressed

issues such as assignment statements and the difference between the variables

and the value stored in the variable, printing, using, changing, and comparing

the value stored in a variable as well as the different types of variables (integer,

float, character). He mentions three properties or types of variables:

• Counting with a variable

• Summing with a variable

• General uses of a variable

Across the first three types he raised the issues of initialisation, incrementation,

final values, and forming totals.
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Samurcay (1985) does a similar job by explaining the four ways variables are

assigned values through assignment statements:

• Assignment of a constant value (a=3)

• Assignment of a calculated value (a=3*b)

• Duplication (a=b)

• Accumulation (x=x+1)

He described how each of these techniques can be used within two different con-

texts:

• External – where variables are inputs to or outputs of the program, under

control of the program user.

• Internal – where variables are necessary only for the solution of the problem

and are controlled by the programmer.

He explained that internal variables will be harder for novices to process and

supported his claim by illustrating three types of variable, involved in a loop

process:

• Update (accumulation variable)

• Test (condition for terminating the loop)

• Initialisation (initial values of loop)

He reported that novices found more difficulties with initialisation than updating

or testing.

McIver (2001) explained that a programming language is a type of user inter-

face, and hence that usability principles apply to the design of a programming

language in the same way as they apply to the design of any other user interface.

She brought up evidence that the first programming language has considerable

impact on the novice’s learning process. McIver described some pedagogical prob-

lems which were frequently found in languages used for introductory programming

and introduced a framework (GRAIL) to evaluate these languages.

Lischner (2001) introduced a specific kind of homework which he believed

can provide structural dialogues with novices and improve their understanding of



2.2 Explanations 36

programming and eliminate language obstacles. Lischner’s proposed homework is

called “an exploration”, and was described as: the student must read a short pro-

gram first and then answer questions about that program, make predictions about

the program’s behavior, and then test that knowledge by running the program;

follow-up questions ask the student to make some predictions; if a prediction was

wrong, the student is asked to give a reasonable explanation. Lischner claimed

that using the exploration method increased student satisfaction, retention, and

learning.

2.2.5 Summarising explanations

Teachers and psychologists tackled learners’ difficulties from different directions

and despite diversities in the research methods used, they reached similar con-

clusions in most areas. Hypothesising learners’ thinking when they stumbled

over programming complexities helped researchers to have a clearer picture of

the problem by fitting the bits of the puzzle together.

The lack of a correct mental model of the underlying virtual machine was

found to be a problem with enormous consequences. Issues included using mean-

ingful names for variables, hoping that the machine would be able to read and

understand it; problems with variables, assignment, sequence, recursion and so

on.

Spohrer and Soloway brought up the idea that novices use some mental mod-

els in their first attempt, and Mayer added that models can be developed by using

relevant experience through meaningful learning, hence some novices who were

experienced problem-solving strategists would compare programming problems

with past problems and construct a rational solution using familiar techniques.

From what Mayer, Spohrer and Soloway indicated, we can speculate that a suc-

cessful novice may have already developed some mental models required in pro-

gramming skill in advance, by a variety of factors such as experience, knowledge

of the problem domain and so on.

On the other hand a number of complexities were found in programming

constructs. Issues such as using variables with different types (integer, float,

string and so on) in different roles (loop counter, check, sum) different contexts

(internal, external) and with different purposes (initialisation, assignment) were

recognised as some of the complexities in the design of programming constructs
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which puzzle novices.

Inaccurate teaching such as misapplication of analogies or delivering concepts

in an incorrect order (according to their dependencies) were found to be confusing.

It was recommended that spending more time on simple algorithms might pay a

much larger return in the long run.

Lack of domain knowledge was reported to be a crucial factor in this learning

process, therefore avoiding applications with complex domain knowledge, to start

with, was strongly recommended.

2.3 Interventions

Researchers in this group are mostly teachers who think they know, or hope

they know, the solution for this peculiar problem. They can be categorised in

two divisions by their intervention strategies: those who are introducing new

languages and tools, advising other teachers on what to teach; and those who

are presenting new approaches to the teaching of programming, advising how to

teach.

As we shall see, there are some difficulties in drawing conclusions from research

in this area.

2.3.1 What to teach?

The group who advised on what to teach are described briefly here in two sections

on programming languages and tools.

The history of invention of programming languages shows that simplicity was

an urgent issue from the beginning. From assembly language which associated

symbolic names with the machine-language codes, an enormous number of lan-

guages were introduced one after the other, aimed to simplify programming. Even

children were invited to experience the programming world with Logo with its

moving “turtle” (Papert and Minsky, 1969). Programming languages can be

grouped as:

• Imperative languages – e.g Fortran, Lisp, Algol/60/68, PL/1, Simula, Pas-

cal, C, BCPL, Ada;

• Logic languages – e.g Prolog;
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• Functional languages – e.g Miranda, Haskell;

• Object Oriented languages – e.g Smalltalk, C++, Java.

Although simplicity in a programming language was always the main issue, de-

spite all these efforts the number of drop-outs in introductory courses shows that

the problem still persists. All languages were claimed to be simpler to learn

and easier to teach than their predecessors, but none are simple or easy; even

paying attention to the programming development environment has not changed

any fundamental issues to ease the complexities of learning programming. In my

view programming languages are designed for the successful programmer not the

novice who stumbles over basic concepts. Looking at this situation, I decided to

avoid the study of programming languages.

2.3.2 Visual tools

There is a vast quantity of literature describing different tools such as Integrated

Development Environments (IDEs). Researchers suggested that by making pro-

gramming point-and-click, novices will find it easier.

Boyle et al. (2003) tried to tackle this problem with a top-down approach,

aiming to improve the learning experience for first-year students. Their study fo-

cused on three main areas: curriculum development, organisation of the teaching

environment, online learning environment. The evaluation of this research was

published a year later, stating that the system had been used by over 1,500 stu-

dents in Manchester Metropolitan University and two other British universities.

The result indicates a 10% to 20% increase in pass rate extracted from different

courses but the impacts of individual components used in this project were not

exposed. The improvement in pass rate was as a result of many changes made in

the course and it is difficult to find out the influences of individual factors. As

we shall see, these are typical problems with this kind of research.

Giannotti (1987) designed and implemented VISAL, an interactive visual tool

to support learning programming. The tool was designed to stimulate laboratory

activities and to facilitate the development and debugging process of a program.

VISAL was able to animate the execution of a program, and contained a li-

brary of fundamental algorithms to support visualisation. The study claimed

that visualising the execution of a given program would enable students to have
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a better understanding of the dynamic aspects of programming. An experiment

was carried out on undergraduates of a programming course in order to verify

the effectiveness of the VISAL implementation as an aid in learning activities. In

this study the lack of a statistical evaluation to demonstrate that VISAL had a

significant effect on candidates success is noticeable.

Ramadhan (1992) introduced “Discover” as a tool that was designed to sim-

plify the programming development environment using a rapid feedback mech-

anism. This tool targeted novice programmers, helping them to build up their

programming knowledge and skills. “Discover” is an interactive interface that

helps novices to program, using common-sense logical phrases. In this study,

however, the tool’s usability, practicality and its impact on novices’ skills en-

hancement were not evaluated.

Boyle and Margetts (1992) introduced the CORE (Context, Objects, Re-

finement, and Expression) methodology to the design of interactive multimedia

learning environments to provide simplicity through the use of software visuali-

sation tools in programming. Their tools were widely used by students in North

London University and several systems have been developed using the CORE

method. Boyle et al. (1994) built CLEM (Comprehensive Learning Environment

for the Modula-2 language), using a set of design principles extracted from the

study of language and cognitive development.

Boyle and Green (1994) described VirCom (Virtual Computer), for learning

about hardware by constructing an end-user virtual computer. Boyle et al. (1996)

described DOVE (Dynamic Observation in a Virtual Environment), a structured

tutorial and virtual field trip in animal ecology. Gray et al. (1998) extended a

version of CORE to create a Web-based system in order to facilitate the teaching

of the Java programming language in an enriched environment. The outcome of

this project has been evaluated as an encouraging and supportive tutorial, with

a down side of inadequate feedback mechanism in its prototype system.

Quinn (2002) introduced the “Interrogative Programming tool”, in order to

ease the process of programming for novices. The tool asks a series of closed

ended questions, in order to discover what the user wants to do. The answer

will be either a selection from a list of choices or the raw input of a string or

number and each choice clarifies some aspect of the program. There were some

problems reported with this tool such as: the proposed model could not support

functional decomposition; the tool forces the programmer to solve all problems
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in a depth-first way while the novices could hardly go that far. Although several

unsolved problems have been reported, the authors claimed that the tool is a

paradigm with substantial potential to teach programming to novices.

Chalk et al. (2003) described a new approach to solving the problem of teach-

ing first year software development, using web-based multimedia learning objects

(LOs), which include student interaction, animation and self-assessment. A vari-

ety of evaluation techniques have been applied, including student questionnaires

and interviews and server-side tracking. They reported some improvement in

student performance in the first semester.

In my view the automated standard tasks provided by IDEs encourage stu-

dents to deploy a number of pre-built components without understanding the pro-

gramming mechanism which underlie their actions. It makes it easier for them

at first but various essential programming concepts will be hidden from them.

Consequently their understanding will be restricted to a shallow and inadequate

level. Lack of understanding is revealed when something in the program goes

wrong or an essential change is needed which cannot be dealt with in the IDE.

I think experienced programmers get more advantage from IDEs than novices

because they have the knowledge of the programming mechanism behind their

actions and IDEs basically help them to speed up their progress.

2.3.3 How to teach?

The group of teachers who advised how to teach programming proposed a va-

riety of methods, teaching programming through formalisim, programming-first,

concept-first, object-first and so on. I try to explain a few of them briefly here.

Programming-first

Programming-first was one of the preliminary approaches which was often used

in introductory computer science courses. In this approach most emphasis was

given to control structures such as sequence, conditions, loops, recursion and

so on. When object-oriented design and implementation were first introduced,

programming-first was still the most common approach. Learners were taught

those constructs required for imperative programming first and then were ex-

posed to notion of classes and objects later in the course. Hence introducing

the constructs required for imperative programming forced teachers to hide the
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features and concepts of object-orientation from learners at the beginning. Then

the programming-first approach became inadequate.

Concept-first

The concept-first approach with its variety of tools and methods became the most

common replacement for the programming-first approach. The notion of analogy

between programs and the real world is a widely used method to teach program-

ming concepts. Teachers try to make a link between a real world activity and a

program behaviour (execution). By using analogy they compare a programming

behaviour with similar activities that learners might be supposed to understand.

Teachers first introduce a real world activity, helping novices to observe the fea-

tures (sequences/repetitions/controls) behind the activity and when the activity

is clearly understood, help them to use the knowledge to understand the proposed

formal program execution.

Some positive and some negative effects of analogy used in this way are re-

ported by researchers. Curzon (1999) and Curzon (2000) encouraged teaching

programming through analogies with games and puzzles. Lopez Jr. (2001) pro-

posed the use of analogy in teaching declarative programming. Neeman et al.

(2006) suggested the use of analogy to teach programming. On the other hand

du Boulay (1986) and Samurcay (1985) showed how misapplication of analogy

can increase confusion (see section 2.2.1).

Klinger (2005) used Stanislavski and Reynolds Hapgood (1984)’s director and

actors analogy in computer science, teaching concepts of Object-Orientation. In

Stanislavski’s method the director asks the actor to “be an old oak tree”. The

actor is told to understand what it is to be an old oak tree. What does it

see? What does it do? What happens if there is a fire? Klinger substituted

programmer for actor in Stanislavski’s statement and believed that it is exactly

the same sort of thing that programmers are asked to do when they invent a new

class in Object-Oriented programming; understanding of what an object must

know (its members) and to know how an object will act and react. Klinger found

the personification and acting out of computer science concepts to be a powerful

teaching technique which enables students to quickly grasp new concepts and

gain insights that they otherwise might not have got and which also makes a

class more interesting and fun. But this study is another example of teachers’
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experiments, described without any scientific evaluation or follow-up report to

support the claim.

DuHadway et al. (2002) stated that the concept-first approach is based on

three principles:

1. “Drawing on the student’s everyday experiences when introducing the prin-

ciples of computer science in order to ensure that meaningful learning takes

place, instructors and designers can employ a variety of strategies to help

learners relate their prior knowledge to new information they are to ac-

quire.”

2. “Allowing the students to work within a single domain for a period of time

before adding a second or third one. Typically programming consists of

three domains: general programming concepts; a programming language;

and a development environment. It takes time for a student to assimilate

new material from any one of these domains. Expecting them to learn new

material from all three domains simultaneously may be too much for many

students.”

3. “Separating computer science concepts from language syntax. Separating

concepts from language syntax helps build a cognitive framework that gives

students a structure on which they can hang new ideas.”

Goldman (2004) used JPie, an integrated programming environment – JPie en-

ables live construction of Java applications through direct manipulation of graph-

ical representations of programming abstractions – to present a concepts-first

method in an introduction to programming course, exposing students without

programming experience to Object-Oriented programming concepts. He argued

that if students could directly manipulate programming abstractions, rather than

encoding them textually, syntax difficulties could be by-passed and students could

move directly into exploring ideas. He concluded that integrated programming

environments allow students to modify programs while they are running and stu-

dents can learn more easily through experimentation. Since the programming

environment supported a standard model of computation, students who continue

in a standard computer science curriculum could transfer much of their knowl-

edge and experience. Although most of the students in this course did not intend

to major in computer science, they learned a broad set of concepts.
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Formalism

Bornat (1986) explained his attempt to teach programming via formal reasoning.

He argued that expert programmers can justify their programs, so let’s teach

novices to do the same. The novices protested that they did not know what

counted as a justification, and Bornat was pushed further and further into formal

reasoning. In Dehnadi and Bornat (2006) he described how after seventeen years

or so of futile effort, he was set free by a casual remark of Thomas Green’s,

who observed that people don’t learn like that, introducing him to the notion of

inductive, exploratory learning.

Objects-first

Recently, teachers introduced the idea of an objects-first approach, promoting

the notion of teaching classes and objects at the beginning of a course, and many

new textbooks have followed this approach. The choice of environment, how-

ever, remains an issue. Despite Java being consistently described as an excellent

language for teaching, its environments were regularly identified as a significant

source of problems and valuable teaching time is spent teaching the students how

to use the environment.

Kölling and Rosenberg (2000) introduced “BlueJ” as a Java program devel-

opment environment, which addressed these issue. They believed BlueJ helps

novices to avoid Java’s platform setup problems, and that by diagramming classes

and objects in UML-like format it simplifies the complexities of introducing ob-

jects and their relationships to novices.

Barnes and Kölling (2006) explained how features in the BlueJ environment

can be used to create an introductory Java course that fully embraces the “objects

first” approach. They added that BlueJ provides graphical support for object-

oriented design, abstracts over files and the operating system and provides fully

integrated support for a design, edit, compile and test cycle. They also explained

how BlueJ supports interactive creation of objects, interactive calling of methods

of objects, includes an easy-to-use debugger, support for applications and applets

and support for incremental development, one of the major advantages of object-

orientation. They believed that BlueJ combines powerful tools with an easy-

to-use interface, avoiding the complexity that creates so many problems when

using existing environments in a classroom and most importantly is focused on a
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teaching context.

Cooper et al. (2003) discussed the challenge of the objects-first strategy with

a new approach. The new approach was centered on the visualization of objects

and their behaviors using a 3D animation environment. They presented a series of

examples, exercises, and projects with solutions. Developing a large collection of

examples, despite being a time consuming task, should be done if the associated

approach is to be successful. They also compared the pedagogical aspects of this

new approach with other relevant work and provided statistical data as well as

informal observations as evidence of improved student performance as a result of

this approach.

Bruce et al. (2001) explained that although in the objects-first approach many

concepts must be introduced before students can understand the construction of

classes, students were required to think about the programming process with

a focus on methods and objects from the start. They described their invented

library “OO-from-the-beginning” developed to support learners in the object-first

approach. They used graphical objects with event-driven programming, believing

that an interactive graphical environment helps learners to use objects as well as

writing methods early while designing and implementing interesting programs.

Unexpectedly they proposed to introduce concurrency in the early stage which

they believed is a natural extension of single-threaded execution and a way to

simplify the interaction of objects.

Cooper et al. (2003) discussed the challenge of the objects-first strategy. They

explained that students must dive right into classes and objects, their encapsu-

lation (public and private data, etc.) and methods (the constructors, accessors,

modifiers, helpers, etc.); concepts of types, variables, values, references as well as

frustrating details of syntax will be added to the other complexities. They added

that the objects-first strategy taught through an IDE like BlueJ requires learning

of event-driven concepts and the details of its graphical user interface; and all

those concept, ideas and skills, which presents various mental challenges, must

be grasped almost concurrently.

2.3.4 Difficulty of researching interventions

In my view, there are always some factors hiding underneath teachers’ experi-

ments which undermine the accuracy of their claims to produce some effect upon
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the learning of programming. I list a few of these hidden elements that I have

noticed in teachers’ interventions:

• The sustainability of the effects in teachers’ interventions was rarely followed

up. The effect on students performance, if temporary as I suspect, could be

as a result of enthusiastic teaching/learning social individual interactions

which are known as the “Hawthorne effect” (Landsberger, 1958).

• Teachers normally conduct experiments in their own classrooms, using small

numbers of students without control groups, and try to examine the effect

of the new changes by comparing the candidates’ final results with the

results of students in the same course the year before, ignoring the fact

that things change year by year in the normal course of effect – e.g the

content of final examinations, the numbers of candidates who chose pro-

gramming as a major subject or those who had prior experience; as well

as economic/social/political changes that may have influence on students’

performance in each year.

• The effects in teachers’ experiments occurred in the context of a number

of changes which may have caused these effects: e.g a web-based feedback

mechanism is introduced to support a objects-first approach which is pre-

sented in a number of discussion groups; and at the end of the course the

effect of the objects-first approach method is evaluated as a result of all

these changes.

2.3.5 Summarising interventions

Researchers in this area proposed a variety of methods to teach programming to

facilitate learning programming. They also put considerable effort into proposing

new languages with more attention on pedagogy. Introducing event-driven lan-

guages within a graphical Integrated Development Environment was an attempt

to make programming point-and-click, with the hope that novices will find it

easier.

Inventing new languages and tools directed more attention on to the capabili-

ties of teaching methods. When object-oriented design and implementation were

introduced the programming-first approach became inadequate, because it forced

teachers to hide the features and concepts of object-orientation from learners at
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the beginning when introducing the constructs required for imperative program-

ming.

The concept-first approach was found to be the most common replacement

for the programming-first approach, and it could handle imperative languages as

well as Object-Oriented programming languages. The most recent method is the

objects-first approach to teach Object-Oriented programming. This approach

is supported by a variety of tools, web-based multimedia object libraries, and

animations to simulate the execution of a program and a number of IDEs.

Some weak effects were reported as a result of teachers’ interventions which

were evaluated in the context of several other changes that occurred at the same

time and the effect of the intervention was hardly ever followed up to check

if it was sustainable or was just a Hawthorne effect. Although most teachers’

interventions were reported to have some effect on learners’ performance, the

number of drop-outs in introductory programming courses remains very high.

2.4 Summary and conclusion

Empirical research has sought a reliable predictor which can categorise novices

on the basis of a non-programming attribute at the beginning of an introductory

course. Research has turned up very little, after five decades.

The result of most studies in this category convinced me that predicting suc-

cess in an introductory course is a complicated issue. Large projects (Lister et al.,

2004; Fincher et al., 2005; Raadt et al., 2005; Simon et al., 2006a; Tolhurst et al.,

2006; Simon et al., 2006b) clearly indicate that a large proportion of students

fail entry-level programming, but none found a good predictor. Tukiainen and

Mönkkönen (2002) pursuing a reliable success predictor, failed in their latest at-

tempt: the Huoman (1986) programming aptitude test gave no correlation. Even

a general abstraction ability does not assist learning programming, as reported

by Bennedsen and Caspersen (2006) and in (Bennedsen and Caspersen, 2008)

they also found no correlation between cognitive development and results in a

model-based introductory programming course.

There was enough evidence in the literature to convince me not to seek a

categorising non-programming attribute.

In general I found some difficulties in drawing conclusions from research in

teaching intervention. Although most researchers claimed that their proposed
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language, tools or teaching methods made programming easier to learn, the num-

ber of drop-outs in introductory programming courses remains very high. In fact

the effect of their intervention was always evaluated in the context of several

other changes that occurred at the same time and the research was hardly ever

followed up to check if the improvement was sustainable. Studying the research

in this area did not satisfy me that I could find a clear result; therefore I decided

not to sway my study in this direction.

This study takes most of its inspiration from the group of researchers who

tried to explain programming learning difficulties by looking at learners’ psychol-

ogy and hypothesising learners’ thinking when they stumbled over programming

complexities. They stated that learners’ understanding of program execution

plays a major role in the learning process.

Gentner and Stevens (1983) introduced a notion of a mental model which

has process and states. It is similar to the processes and states underlying a

program execution. Mayer’s emphasis on the importance of understanding the

mental model of virtual machine as a crucial element in learning programming

was influential (Mayer, 1981). The studies of Spohrer and Soloway on novices’

rational misconceptions and the way they hypothesised what novices thinking as

they programmed were inspiring too. Their findings on the relationship between

mistakes and interference of background knowledge on learning programming

were valuable clues to research in this area (Spohrer and Soloway, 1986; Soloway

and Spohrer, 1989, 1988). du Boulay demonstrated how misunderstanding of tiny

elements in programming can have major effects. His categorisation of novices’

difficulties and the way he classified them according to mental models (du Boulay,

1986) was a major influence in my study.



Chapter 3

Initial Work

In the early stages of this research I made an effort to find a suitable method

to facilitate understanding of difficulties in learning to program. In the litera-

ture, research concentrates either on teachers or on learners. In order to build a

methodology I needed to study a number of practical research methods. There-

fore I decided to make an initial study of methods in both the teaching-centered

and learner-centered areas to get some general ideas about the strengths and

weaknesses of possible research methods as well as estimating my own skills and

limitations to carry on the research confidently within the allocated time. This

initial work is briefly explained in this chapter.

One of the most common techniques in research on teaching methods is to look

for the effect of a proposed method on learners’ success, while research on learners

looks for particular characteristics/attributes of learners which have an effect on

their success at the end of the course. Observation, interviewing, psychometric

tests and the study of common mistakes/misconceptions are the most popular

techniques when research concentrates on the learning process.

3.1 Teaching-centered research

I initially had the impression that teaching-centered research would be about

studying what teachers do when teaching. I found in the literature that that is

not what researchers do; instead they propose a variety of teaching methods and

tools for teachers to use. Some example proposals are:

• Use analogy as a tool to build a bridge between the real world and a formal

48
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programming construct (Curzon, 1999, 2000; Neeman et al., 2006).

• Use graphical examples and tools in order to visualise formal programming

(Boyle et al., 2003).

• Use novel teaching strategies (DuHadway et al., 2002).

• Use technical tools like an IDE (Integrated Development Environment)

which offers a graphical user interface to simplify the process of writing

a program (Chen and Marx, 2005; Allowatt and Edwards, 2005).

Ideally the effect of a new teaching method should be examined by comparing

two groups within a large scale educational experiment: an experimental group

which will be taught with the intervention method; and a control group which will

be taught conventionally. Unfortunately this is not usually what happens. The

samples are mostly small numbers of students that teachers use in a classroom

as a experimental group and rarely have a control group.

Educational effects are in any case hard to assess because of many factors such

as enthusiastic teaching/learning and social individual interaction additional to

the complexity of the intervention. An example is Chalk et al. (2003) who used

web-based multimedia learning objects (LOs), Java graphics library and virtual

learning environment (WebCT) all at the same time to improve first year students’

performance in software development and claimed that the changes had an effect

on students’ performance in that particular academic year. It’s very hard to say

which one of those elements (LOs, Java graphics library, virtual learning) caused

the most effect and which one the least. The study also failed to report whether

the effect was sustained afterward or not.

3.1.1 Teaching by analogy

In chapter 2, section 2.3.3, I reviewed some studies which proposed using analogy

when teaching programming. In an experiment I used an analogy to explain the

role of a counter in a loop process. The description of the real world activity was

“a cleaner cleans 10 rooms in a day”. When the activities of the cleaner’s job were

discussed and well understood, the associated formal programming construct was

introduced. There were several obvious ways of writing the program:

• until E do C
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int room = 1;

while(room <= 10)

{
clean();

room ++ ;

}

Figure 3.1: An example of a “while” loop

• while E do C

• do C until E

• do C while E

The second and fourth styles are used in Java. Because the course was designed

to teach programming by Java I decided to use the second (figure 3.1) to build

up a program which represents the “cleaner” analogy.

Some students strongly responded to this analogy and managed to understand

the link between the cleaner’s activities and the associated program’s behaviour,

while some found it very difficult from the beginning and became confused. There

were two points made by students when I tried to explain the code:

1. Students were not happy that the “cleaner” should clean the rooms in the

order of room 1 to room 10. They believed that the “cleaner” should choose

the rooms in the order of their location or in any order she/he likes. I could

have used a different loop construct (figure 3.2) to hide the counter but I

would have first had to explain the concept of array, as well as missing the

target of the role of a counter in programming.

2. They also were not happy that in the formal programming “10 days” comes

first and “clean()” comes later while we described the real world activities

of the cleaner’s job in the reverse order.

The students first objection to the ordering mechanism in this analogy opened

a discussion about the fact that a computer does thing differently from how we

do it and this is what they should learn and accept. They failed to understand
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Room rooms = new Room[10];

for(Room r : rooms)

{ clean(r); }

Figure 3.2: An example of a “for” loop

Figure 3.3: Syntactic structures for cleaner’s progam
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L1 int room ;
L2 int day = 1;
L3 while(day <= 7)
L4 {
L5 room = 1;
L6 while(room <= 10)
L7 {
L8 clean();
L9 room ++;
L10 }
L11 day ++;
L12 }

Figure 3.4: An example of a “nested while” loop

that although in the real world cleaners clean rooms in any order that suit them,

in the programming world, the order is compelled by a computer program.

Regarding their second objection, apparently the differences between the anal-

ogy’s description and the appearance of the program structure caused the prob-

lem. They expected to see all elements of the analogy’s description linearly

mapped to the structure of the associated program. They did not understand

how the structure of program conveys meaning and lack of experience prevented

them from realising that in figure 3.3 A1 and A2, despite having different concrete

structures, have exactly the same abstract structure. Use of the alternative loop

presentation in Java “do C while E” could be a response to their second objection

but the problem with the counter would remain.

Later, I expanded the cleaner analogy to “a cleaner cleans 10 rooms each day

of the week” in order to expose them to nested loops. Again when the cleaner’s

job as a real world activity was discussed and well understood, the associated

program was introduced (figure 3.4).

As well as the problems experienced with a single loop, more complications

were created when nested loops were introduced.

• When I asked them to write a similar program they often wrote the loops

wrongly nested, like repeating “10 rooms” outside and “7 days” inside.

• They kept forgetting to increment the program counters (L9, L11) and re-

initialising room when the day is changed (L5). They thought the features
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L1 int room ;
L2 int day = 1;
L3 do
L4 {
L5 room = 1;
L6 while(room <= 10)
L7 {
L8 clean();
L9 room ++;
L10 }
L11 day ++;
L12 }while(day <= 7);

Figure 3.5: An example of “nested do-while” loop

like days and months do not need to be incremented, they just happen.

Writing the loops wrongly nested seems to be caused by the same problem of the

differences between the real world activity’s description and the appearance of

the program structure that were observed when the analogy for the single loop

was presented. Using the alternative loop presentation in Java “do C while A”

might be a better example here (figure 3.5) but the problem with the counter

issue would remain.

It appeared that the “cleaner” analogy, despite having a useful effect at a

certain level in some individuals, was not completely useful to present a loop

and introduce the role of counter and caused some confusion. I might have

imposed the loop presentation without counter but I doubt that I could abolish

confusion when nested loops were introduced. Maybe I could have found a better

analogy which would cause less confusion. The “cleaner” analogy might be a

weak example to judge the capability of analogy but it is a good example to show

that even a simple analogy is not an identity and finding an identity for a formal

program is hard if not impossible.

I did not find that teaching by analogy was a simple tool to look at program-

ming learners’ difficulties. As a research method I needed a simpler method to

break down the complexities of the programming learning process. I decided to

continue searching in experimental methods, looking for a clearer phenomenon

for study.
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3.2 Learner-centered methods

Learner-centered research focuses on learners, studying their background educa-

tion, reasoning strategy, psychological attributes, cognitive behavior and mistakes

they make. Three groups of researchers are described in chapter 2:

1. The first group measures learners’ attributes and tries to predict their per-

formance (Mayer and Stalnaker, 1968; Rountree et al., 2004).

2. The second group looks at learners’ cognitive behavior and mental models.

Spohrer and Soloway (1986) explain as follows:

• Just a few types of bug cover almost all those that occur in novices’

programs.

• For most computerised tasks there is some model that a novice will

use in his or her first attempts and we need to understand when is

it appropriate to appeal to this model, and, when necessary, how to

move a novice to some more appropriate model.

• Novices plan to deal with the complexity of programming by breaking

goals into subgoals.

3. A third group studied common mistakes, bugs and misconceptions in order

to describe problematical areas (Bayman and Mayer, 1983; Shneidermann,

1985; Adelson and Soloway, 1985).

Studying common mistakes can reveal valuable indications of novices’ misconcep-

tions which can facilitate our understanding of problem areas. I believe that the

considerable number of failures in introduction to programming courses reveals

that the learning process in this subject is problematic. Thus learner-centered

research seems to be appropriate. In learner-centered research, the difficulties

of learning programming can be investigated from basic and foundation levels

through a series of experiments.

I decided to move my study toward bottom-up learner-centered research and

to study learners’ difficulties objectively. I investigated the effect of a variety of

methods such as asking them to explain their reasoning strategy, investigating

their background education, their psychology and also looking at their common

mistakes and misconceptions.



3.2 Learner-centered methods 55

3.2.1 Observing problem solving behaviour

A considerable amount of data can be captured by observing novices’ analytic

behavior in their learning process. As a lab tutor I could observe students’ ob-

stacles by watching their debugging process and looking at their draft notes. On

the other hand, interaction of researchers and learners is only possible within

timetabled teaching slots; there were time restraints that prevented me from re-

lying on this method as the study’s main method.

Interviewing is a tool that can help teachers to see where problems start and

perhaps to see the roots of misconceptions if the learners are able to express their

mindset by describing the strategy behind their decisions. I have interviewed

students informally at different stages of their study and logged information which

was quite helpful in understanding learners’ thinking routes and strategies. On

the other hand it is a time consuming process for both teachers and learners and

some learners were unable to describe what they think.

After a short while I started to think of adopting a more objective method.

The observation method could still be used in parallel as a supplemental pro-

cess. Observing candidates’ misconceptions and problem solving behavior made

a substantial contribution to this study and led me toward a valuable source of

information.

3.2.2 Background education

One of my initial investigations looked at the effect of learners’ background educa-

tion. A questionnaire was designed in two parts. The first part had 10 questions

aimed at assessing students’ ability in algebra, numerical reasoning and general IQ

and the second part had 10 programming-related questions to test their program-

ming learning progress. The effect of candidates’ ability in any of the background

elements (first part) on their programming score (second part) was the objective

of this study.

A sample question in Algebra:

What is the value of A if A = 5+((2*(9+5))-4)/2

A sample IQ question:

Your sister is 8 years old. You are three times as old as her.

How old will you be when you are twice as old as her?
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A sample numerical reasoning question:

Which of the following is the odd one out:

3 ... 9 ... 12 ... 24 ... 8 ... 16

A programming-related question:

int a = 10; int b = 20;

what is the new value of a and b when:

a = b

I administered the test to 40 students in week 5 of a introduction to programming

course in Barnet College on an informal voluntary basis after giving them 15 hours

of instruction. The scores that candidates achieved in part one (maths, reasoning)

did not have any obvious correlation1 with the score they achieved in part two

(programming). Some learners with a high score in maths and reasoning failed

to pass the programming section while some with weaker maths and reasoning

managed to achieve a good programming score.

I looked again, in more detail, at the effect of candidates’ programming edu-

cation background in experiments which will be analysed in chapter 6.

3.2.3 Psychometric techniques

Since I did not see any obvious effect of candidates’ background education on

their programming achievement I decided to examine if a psychometric test could

predict programming success. During my literature review I came across the work

of psychologists who were trying to separate learners according to their positions

on a number of scales which indicate the way they receive and process information.

Mahmud and Kurniawan (2005) used psychometric tests for input-device eval-

uation with older people. Sutton et al. (2005) used conversion of a psychometric

test to a web-based study to measure understanding of three-dimensional (3D)

concepts as they apply to technical drawing. Borgman (1987), by using a psy-

chometric test, found a wide range of skills in ability to use information-retrieval

systems.

I decided to administer a test using one of the psychometric instruments,

the “Learning Style and Strategies” model introduced by Felder and Silverman

(1988), in order to investigate the correlation between psychological character-

istics and scores in a final programming examination. Felder and Silverman’s

1None of the results that I describe in this chapter were statistically analysed. I was looking
for indications of strong association, not pursuing weak effects.
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Table 3.1: Attributes of psychometric test (Felder and Silverman (1988))

Dimension(a) Balance Dimension(b)
11 . . . . . . . . . 1 0 1 . . . . . . . . . 11

ACT REF
SEN INT
VIS VRB
SEQ GLO

instrument measures learning and teaching dimensions that describe learning

styles. They divide learners into “Active/Reflective”, “Visual/Verbal”, “Sens-

ing/Intuitive” and “Sequential/Global”.

In this instrument four different sets of questions were designed targeting the

following issues (taken from Felder and Silverman (1988)):

• What type of information do they mostly respond to: sensory (external)

sights, sounds, physical sensations, or intuitive (internal) possibilities, in-

sights or hunches?

• Through which sensory channel is external information most effectively per-

ceived: visual – pictures, diagrams, graphs, demonstrations – or auditory –

words or sounds? (Other sensory channels – touch, taste, and smell – are

relatively unimportant in most educational environments)

• How does the student prefer to process information: actively – through

engagement in physical activity or discussion, or reflectively – through in-

trospection?

• How does the student progress toward understanding: sequentially – in

continual steps – or globally in large jumps, holistically?

Each student could be fitted into one of several learning styles within the proposed

conceptual framework. The test was taken by 30 students of an introductory

programming course in Barnet College a few weeks before their final examination.

I did not find any obvious correlation between any of the psychometric attributes

and programming learning success.

I searched the literature, looking for any reports of the effect of psychometric

attributes on programming learning ability. I found Willoughby (1978) that in
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a single-page paper, reviewed Penney (1975)’s work who referred to two studies

which showed a significant correlation between aspects of systems analysis or

programming and scores in standard psychometric tests. Lewis et al. (2005)

demonstrated that out of two samples with the same ability to visualise, one could

make progress and another could not. They also examined the effects of various

measures of prior computer science experience and cognitive abilities on overall

performance in a second-level programming course. The first sample was School

A, a mid-sized comprehensive university, and the second sample School B, in a

large research-intensive university. In school A, the cognitive ability to visualize

was significantly related to course performance. However, when examining school

B, no significant correlation was found.

Bennedsen and Caspersen (2008) found that general abstraction ability was

not a predictor for success in learning programming. Tukiainen and Mönkkönen

(2002) found no significant correlation between the Huoman test (Huoman, 1986)

and success in the programming exam.

Otherwise I haven’t seen any literature concerning whether the predictions

made from a psychometric questionnaire significantly distinguish successful pro-

gramming learners from the rest.

My own experience with Felder and Silverman’s instrument, and the lack

of studies confirming positive effect of any psychometric attributes on learning

programming, made it seem an unproductive area of research. To make progress

in this area would seem to require novel psychological measurements and more

theoretical psychological insight than I possess. I decided to move on to further

investigations in order to find alternative methods to study the programming

learning process.

3.2.4 Common mistakes

The literature on common mistakes is quite rich, with considerable outcomes

reported by researchers who have studied learners’ common mistakes in the early

stages of learning programming (Bonar and Soloway, 1983; Adelson and Soloway,

1985).

Observing types and frequencies of novice programmers errors, studying their

syntactic and semantic errors, highlights the problematic areas. I decided to look

at the most common mistakes, analysing each mistake individually in order to
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hypothesise its cause, so as to make a logical explanation of it. Some of the

problematic areas in programming constructs are as follows:

• Similarities between a programming construct and students’ background

knowledge cause interference. For example the “=” symbol, used as the

assignment sign in Java, is the same as the symbol used to denote equality

in school mathematics. In an assignment “a=3” might be read, thinking

mathematically, as the value of “a” is “3” and remains “3” forever; while

in a programming context the value of “a” is “3” only as long as another

number has not been assigned to it.

• Another cause of interference is the same symbol used for different purposes.

For example + represents concatenation in “3”+i but addition in 3+i and

incrementation in i++.

• In Java indexing, 0 is used as the first ordinal. For example for the array

a with n elements, the elements are arranged a[0], a[1], a[2], a[3], . . . ,

a[n-1], and a loop which initializes the array’s elements to 0 is for (int

i = 0; i <10; i++) a[i] = 0. Students have difficulty in understanding

why the loop’s counter starts from 0 (not from 1) and ends with 9 (not with

10).

• Variables are always problematic. Some novices imagine a variable as a pot

which can stack numbers on the top of each other which when it gets a new

value keeps its previous value too. Students may have misconceptions about

the names of variables (Perkins and Simmons, 1988); assigning a variable to

another variable (du Boulay, 1986); different uses of variables as “internal”

and “external” variables (Samurcay, 1985).

• Alternative representations of a value always cause confusion, for example

when the code:

JOptionPane.showInputDialog("Enter a number")

in Java returns a numeric result as a string. Understanding that a numeral

can be seen as a string as well as representing a numerical value is not easy

for novices.
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• Soloway and Spohrer (1989) studied novices’ errors and explained how their

background knowledge interfered with their learning process and caused

many of their misconceptions. Bonar and Soloway (1985) compared some

programming constructs and put forward evidence to support the startling

theory that prior knowledge of one programming language has a negative

impact on novices’ attempts to program in a second language.

3.2.5 First test

During the investigation of novices’ common mistakes I administered a series of

short quizzes on an ad hoc basis in the early stage (week 3/4) of an introduction

to programming course. I aimed to identify common mistakes, catalogue them

and pursue the misconceptions behind each individual mistake. When students’

responses, rough notes around the test paper, and verbal explanations were anal-

ysed their deductive strategy behind each particular mistake became more visible.

It appeared that some of the mistakes were not just slips or guesses or confusion,

but there was some rational strategy behind them. It seemed that most of these

mistakes had their basis in a series of recognisable models which could be used

rationally.

I decided to move from ad hoc quizzes to more methodical test materials with

a number of related questions. A new test was designed with a number of related

similar questions in order to trace learners’ mistakes step by step and illumi-

nate logically related mistakes. I examined each individual candidate’s response,

looking for answers to the following questions:

1. Can I recognise any rational mistakes?

2. Have these rational mistakes occurred systematically in their answers to

similar questions?

I administered the test in the 3rd week of an introductory programming course.

The test result suggested that students had the ability to create a rational model,

though perhaps not the Java model, logically acceptable as a possible answer to

the question.

Some even managed to generalise their models and apply them systematically

to answer most of the related questions. It appeared that some simple miscon-

ceptions can be extended to a series of related mistakes which are all based on the
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same misinterpretation. An example illustrates how a candidate could make a ra-

tional mistake based on a simple misconception and apply it systematically. The

two questions below were given to novice candidates who had not been exposed

to post/pre-increment in programming:

Question 1:

int a = 10;

What is the new value for a if:

a++;

Question 2:

int a = 10;

What is the new value for a if:

a--;

Most candidates who picked 20 for the new value of a in the first question,

picked 0 in the second question. They seemed to have the misconception that

a++ means a=10+10 and a-- means a=10-10. Their explanations confirmed the

misconception when I asked them to explain it in an informal interview.

Again, most candidates who picked 30 for the new value of a in the first

question also picked -10 in the next question. They had the misconception that

a++ means a=a+10+10 and a-- means a=a-10-10.

When I interviewed candidates who were able to apply recognisable models

behind their deduction process systematically, most declared that they had never

been taught programming before. It became clear that there was an intellectual

strategy behind their reasoning that had been extracted from what they brought

with them, most likely from their prior education.

Capturing candidates’ rationalisation patterns with such a simple test gave

me an indication that something serious was going on and that I should narrow

my study to focus on learners’ pre-determined models. It was the first spark in

this study that lit up a tiny slice of learners’ minds. I decided to follow it in a

deeper investigation.

3.2.6 Mental models

Reviewing the literature I became familiar with the notion of “mental model”

which was introduced by Gentner and Stevens (1983) (discussed in chapter 2,
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section 2.2.1) which directed my investigation toward mental models required for

learning programming.

Mayer explained programming as a cognitive activity and said that novices

are required to learn new reasoning skills as well as to understand new techni-

cal information. He introduced “mental model” as a framework that novices try

to build up from their background domain-specific knowledge and their skill in

understanding problem description in order to understand new information (de-

scribed in chapter 2, section 2.2.1). I discussed Perkins in chapter 2, section 2.1.3,

who called some novices “stoppers”, who appeared to give up at the first diffi-

culty, the others, as “movers” seemed to use a different approach to get beyond

an stalemate. Mayer’s interpretation of “mental model” and Perkin’s explanation

were appealing and led me toward a new stage of investigation.

The test that I administered in week 3 with subjects who had never been

taught programming before revealed a series of recognisable models which logi-

cally were acceptable as a possible answer and it appeared that some students

even used these models systematically. At this stage I thought the intellectual

strategies behind their reasoning could have been built up from their background

domain-specific knowledge to find a rational explanation for unknown phenom-

ena. I decided to follow this in a deeper investigation, applying a more methodical

approach in order to get a better understanding of novices’ mental models.



Chapter 4

First methodical experiment

The result of the first test – see section 3.2.5 – suggested that students bring

different patterns of rationalisation/explanation into the programming context. I

narrowed my study by focusing on learners’ mental models and moved toward a

more methodical approach. I planned to conduct a series of formal experiments

in order to examine the following research questions:

• Can we identify the mental models used in novices’ responses?

• Can they apply their mental models systematically?

• Are these models pre-determined prior to the programming course?

• Can we categorise learners by the mental models they present?

• Have the mental models affected their success in the final programming

exam?

I decided to devise a test and aimed to use it as a detective device to capture

candidates’ mental models.

4.1 Method used

I designed test materials as a questionnaire that apparently examines students’

knowledge of assignments and sequence. I did not seek with this test to judge

respondents according to the right/wrong answers they give, but to capture the

reasoning strategy behind their interpretation of each question.

63
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1. Read the following The new values of a and b: Use this column for your
statements and tick the rough notes please
box next to the correct a = 30 b = 0
answer in the next column. a = 30 b = 20

a = 20 b = 0
a = 20 b = 20

int a = 10; a = 10 b = 10
int b = 20; a = 0 b = 10

a = b;
Any other values for a and b:

a = b =

Figure 4.1: The first question in the test, a single assignment

4. Read the following The new values of a and b: Use this column for your
statements and tick the rough notes please
box next to the correct a = 30 b = 0
answer in the next column. a = 30 b = 50

a = 0 b = 20
a = 20 b = 20

int a = 10; a = 10 b = 10
int b = 20; a = 10 b = 0

a = b;
b = a; Any other values for a and b:

a = b =

Figure 4.2: The fourth question in the test, two assignments

4.2 Test materials

The questionnaire was designed in three columns: questions were in the first

column, multiple-choice lists of the alternative answers were in the second column

and the blank third column was for rough work, in which I occasionally found

very interesting marks that the subjects made.

The questionnaire consisted of 12 questions. Each gave a program fragment

in Java, declaring two or three variables and executing one, two or three variable-

to-variable assignment instructions. The first three questions had only a variable-

to-variable single assignment as illustrated in figure 4.1.

The next three had two variable-to-variable assignment instructions, illus-

trated in figure 4.2.

The last 6 questions had three variable-to-variable assignment instructions,
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7. Read the following The new values of a and b: Use this column for your
statements and tick the rough notes please
box next to the correct a = 0 b = 0 c = 15
answer in the next column. a = 12 b = 14 c = 22

a = 0 b = 0 c = 7
int a = 5; a = 7 b = 7 c = 7
int b = 3; a = 3 b = 5 c = 5
int b = 7; a = 3 b = 12 c = 0

a = 8 b = 15 c = 12
a = c; a = 7 b = 5 c = 3
b = a; a = 3 b = 7 c = 5
c = b;

Any other values for a and b:
a = b =

Figure 4.3: The seventh question in the test, three assignments

illustrated in figure 4.3.

4.3 Mental model exposure

The questionnaire asked the student to predict the effect of the program on its

variables and to choose their answer/s from a multiple-choice list of alternatives.

The questionnaire did not give any explanation of the meaning of the questions or

the equality “=” sign that Java uses to indicate assignment. Except for the word

“int” and the semicolons in the first column, the formulae employed would have

been reasonably familiar to anybody who has experienced algebra. I expected

that students would have some notion of what x=y might mean, and would use

that knowledge in guessing what box to tick in the second column. The test looked

like algebra but when the question asked about the “new values” of variables it

hinted that the program produces a change.

I had a prior notion of the ways that a novice might understand the pro-

grams, and I prepared a list of mental models accordingly. The mental models of

assignment that I expected my subjects to use are shown in table 4.1.

In the first three single-assignment questions all models correspond to a single

answer. Observing different patterns of rationalisation/explanation brought in by

novices I captured five popular strategies that were used most often by candidates

in order to handle a single two-variable assignment like a=b. These strategies are

as follows:
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Table 4.1: Anticipated mental models of assignment a=b (question 1 figure 4.1
used as an example to explain the mental models)

Models Description
(M1) Value moves from right to left

a:=b ; b:=0
Ans ( a=20 , b=0 ) 3rd Answer

(M2) Value copies from right to left
a:=b

Correct model of Java for assignment
Ans ( a=20 , b=20 ) 4th Answer

(M3) Value moves from left to right
b:=a ; a:=0

Ans ( a=0 , b=10 ) 6rd Answer
(M4) Value copies from left to right

b:=a
the reversed version of Java model

Ans ( a=10 , b=10 ) 5th Answer
(M5) Right value moved and added to the left value

a:=a+b ; b:=0
Ans ( a=30 , b=0 ) 1st Answer

(M6) Right value copied and added to the left value
a:=a+b

Ans ( a=30 , b=20 ) 2nd Answer
(M7) Left value moved and added to the right value

b:=a+b ; a:=0
Ans ( a=0 , b=30 ) missed in the answer list

(M8) Left value copied and added to the right value
b:=a+b

Ans ( a=10 , b=30 ) missed in the answer list
(M9) Left and right swap values

b:=a; a:=b
Ans ( a=20 , b=10 ) missed in the answer list
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1. They “moved” the value from one variable to the other (a:=b and b:=0). I

called this strategy M1 when the “move” was from right to left and called

it M3 when the “move” was from left to right.

2. They “copied” the value of one variable to the other (a:=b and b keeps its

previous value). I called this strategy M2 when the “copy” was from right

to left and called it M4 when the “copy” was from left to right.

3. They “moved” and “added” the value of one variable to the other (a:=a+b

and b:=0). I called this strategy M5 when the “move” and “add” was from

right to left and called it M7 when the “move” and “add” was from left to

right.

4. They “copied” and “added” the value of one variable to the other (a:=a+b

and b keeps its previous value). I called this strategy M6 when the “move”

and “add” was from right to left and called it M8 when the “move” and

“add” was from left to right.

5. They swapped the value of the variables (a:=b and b:=a). I called this

strategy M9.

The last 8 questions contained more than one assignment and I expected more

answers, because the respondents must use a model of composition of commands

as well as assignment. I have come across only three models of composition. The

effect of the combination of assignment models with sequence models is to increase

the complexity of analysis of the results: in single-assignment questions there is

more or less one model per tick; with multiple assignments there is considerable

ambiguity.

The mental models of composition that I expected my subjects to use are

shown in table 4.2.

Sequence (S1): The first assignment has its effect using the initial values of

variables; then the second assignment has its effect using the state produced

by the first; then the third has its effect using the state produced by the

second; and so on for subsequent assignments (the ‘correct’ answer in Java).

Simultaneous-multiple (S2): Each assignment takes effect using the initial val-

ues of variables, and all effects are reported. This model has rarely been

observed.
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Table 4.2: Anticipated mental models of composition of a=b; b=a (question 4
figure 4.2 used as an example to explain the mental models)

Models Description
Sequence S1 is a=b; b=a
(S1) Conventional sequential execution

Suppose M1 Applies sequentially through both statements:
L1) The value of b is given to a and b changes its value to 0

a=20 ; b=0;
L2) The value of a is given to b and a changes its value to 0

a=0; and b=20;
Result is a single answer a = 0; b = 20; 3rd Answer

Independent S2 is a=b || b=a
(S2) Independent assignments, independently reported

Suppose M1 Applies independently for each line:
L1) The value of b is given to a and b changes its value to 0

a=20 ; b=0;
L2) The value of a is given to b and a changes its value to 0

a=0 ; b=10;
Result is two answers:

a = 20 ; b = 0; and a = 0; b = 10;
(These answers are not in the list)

Simultaneous S3 is a,b=b,a
Single (S3) Simultaneous multiple assignment, ignoring effect upon source

variable Suppose M1 applies to each line but effect on
right-hand-side is ignored

L1) The value of b is given to a and change to b ignored :
a=20;

L2) The value of a is given to b and change to a ignored :
b=10;

A single answer a=20 ; b=10;
(this answer is not in the list)
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Simultaneous-single (S3): Each assignment takes effect using the initial values

of variables, but only the effect on the destination side is reported (in fig-

ure 4.2, for example, if the assignment model being used was right-to-left

(M1/M2/M5/M6) the box would be ticked which reports the effect of the

first assignment on a, the second on b and the third on c). This model has

been observed more frequently than any others.

Some of the answers associated with these mental models were missed in the ques-

tionnaire by mistake and were added to the questionnaire when the methodology

was enhanced (see chapter 5).

4.4 Test administration

I decided to administer the test in the first week before the subjects had received

any programming teaching. I hoped to identify candidates’ mental models at

the beginning of the course, before any lectures had been given. It should be

emphasised that I was not looking for right or wrong models; any models which

offered a rational solution would be interesting.

The test was administered to 30 students on a further-education programming

course at Barnet College. In this experiment no information was recorded about

earlier education, programming experience, age or sex. I interviewed half of the

students before admission, and taught them all.

The same test was then administered to 31 students in the first-year pro-

gramming course at Middlesex University, once again before they had received

any programming teaching. They were mostly male, aged about 18-20, from the

middle range of educational attainment. This time I tutored them but did not

teach the course.

In the questionnaire, I did not ask the candidates if they have had any previous

contact with programming or not. An assumption had been made that they all

had enough school mathematics to make the equality sign familiar.

I expected that after a short period of instruction the novices would display

the model that corresponds to the way that a Java program actually works. I

therefore planned to administer the same test for a second time to the same

subjects after the topic had been introduced, and then a third time just before

the examination, intending to track changes in subjects’ mental models and their
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understanding of assignment. I called these three administrations T1, T2, T3

and expected to correlate the results of them with each other as well as with the

marks in the official end-of-course examination. Because of what was found on

the first and second administrations, the plan for a third administration (T3) was

abandoned.

4.4.1 Mental model test (T1)

Despite the risk that taking a programming-related test before giving the relevant

instruction might cause participants’ rejection, I received a full response from

most participants. I combined the two populations (Barnet College and Middlesex

University) when the results were analysed.

A small group gave a blank, or mostly blank response (answered none, one

or two questions). Of the rest, about half gave answers which corresponded

to a single mental model in most or all questions; the other half gave answers

which corresponded to different models in different questions, or responded in

unexpected ways like ticking three boxes which did not seem to correspond to a

rational model.

Table 4.3 details the subdivision into three groups in the first test adminis-

tration (T1):

1. 27 subjects (44%) appeared to use the same assignment model for all, or

almost all, of the questions. I call this the consistent group “C”.

2. 24 subjects (39%) appeared to use different assignment models in different

questions or to use unrecognisable models. I call this the inconsistent group

“I”.

3. The 10 remaining subjects (16%) answered few or none of the questions. I

call this the blank group “B”.

Subjects were not interviewed after the test to determine anything about their

answers, so it was not known whether students chose consciously or unconsciously

to follow one strategy or another, nor how choices were motivated, nor what any

particular choice meant to a subject who made it.
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Table 4.3: populations in T1 result

population
C 27
I 24
B 10
Total 61

Table 4.4: Shift in group membership between T1 to T2

C (T2) I (T2) Total
C (T1) 25 2 27
I (T1) 11 13 24
B (T1) 5 5 10
Total 41 20 61

4.4.2 Mental model test (T2)

Teaching in the first three weeks of the course concentrated on assignment model

M2 (right to left copy) and the sequence model (S1) of sequential composition.

When the same test was administered in week 3, it was found that almost all the

consistent subjects in T1 remained consistent in the second test (table 4.4, row

1) and that about half of each of the other groups became consistent. There were

no blank returns in the second test.

Table 4.4 demonstrates that almost all the consistent subjects in the T1 re-

mained consistent in the second test. It indicates that the T1 result was not an

accident; the consistent subgroup was different. My original hypothesis was that

subjects brought patterns of reasoning to the course, and changes between T1

and T2 seem to support that.

When I considered not only consistency but also use of the M2/S1 models

(the correct model of Java) in the T2 test, I produced table 4.5. In this table,

“CC” is used for candidates who were consistent in both tests, “CI” is used for

consistent candidates who became inconsistent in the second test and so on.

I observed that:

• Only 29 (47%) of the subjects managed to grasp the meaning of assignment

and sequence in Java within the first three weeks of the course.

• 21 (78%) of consistent subjects in T1 used the correct model of Java for
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Table 4.5: Tendency toward correct model T1 to T2 (week 0 and week 3)

Correct Incorrect Total
CC 21 4 25
CI 2 2
IC 5 6 11
II 13 13
BC 3 2 5
BI 5 5
Total 29 32 61

assignment and sequence in T2, while only 5 (21%) of inconsistent subjects

and 3 (30%) of blank subjects in T1 used the correct models in T2.

This was the first indication that the consistent subgroup’s performance was

better than the other two subgroups. I review this table again in section 4.4.4,

correlating it with the course’s final marks.

4.4.3 Assessment of programming skill

Formal examinations are by no means a perfect measure of programming apti-

tude, but there is general agreement (Simon et al., 2006a) that they are the only

measure available in large-scale surveys. Like other researchers, therefore, I have

decided to correlate my test results with course examination results.

There were two in-course quizzes in weeks 7 and 11, which by arrangement

were identical between the Barnet and Middlesex groups, and there were distinct

end-of-course examinations in week 12. The marks from the three examinations

were combined to form the overall mark. I had no access to final examination

results. With subject cooperation, however, I was able to obtain their scores on

the two quizzes.

For various reasons the examinations were designed to give those with no

or minimal programming skills a chance to pass. The first quiz in particular

contained a lot of “book-work” questions whose answers could be memorised

from lecture notes, and a minimum of technical questions requiring programming

skill and understanding. The second quiz was more engaged with programming,

asked them to write code fragments and, using dry-run, to pursue the changing

of values of a variable.
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Table 4.6: T1 population and average grade

Good Average Pass Fail Total
C 7 10 6 4 27
I 0 5 1 18 24
B 1 1 2 6 10
Total 8 16 9 28 61

χ2 = 24.649, df = 6, p < 0.0001
very highly significant

4.4.4 Relating test and quiz results

I recorded the quiz results as a percentage (0-100), a grade (Good, Average,

Pass, Fail) and a binary (Pass, Fail). I also worked out an average percentage, an

average grade and an average binary from the two quizzes. Table 4.6 demonstrates

the association of consistency and subjects average grade result. I correlated with

the average grade result here, because averaging was used as part of the final mark

in programming courses; I process quiz results individually later in this chapter.

Table 4.6 shows that almost all of the subjects with a “Good” grade (7 out of

8) and a majority of subjects with an “Average” grade (10 out of 16) were from

the “C” population. Most of the subjects with a “Fail” grade (18 out of 28) were

from the “I” population. Chi-square shows that the subgroups are significantly

different on the basis of the observed result but having some cells with small

values in this table caused at least 20% of expected frequencies to be less than 5.

The scores’ density in the C/I/B subgroups could be seen more clearly (avoid-

ing small numbers) when I merged “Good”, “Average” and “Pass” columns in a

single “Pass” column. Table 4.7 shows the results of T1 with the average of Quiz

1 and Quiz 2 expressed as pass/fail. Chi-square shows the difference between

populations is significant in this table.

This table shows that 85% (23 out of 27) of the C subgroup passed the course

while only 25% (6 in 24) of the I subgroup managed to pass. For the B subgroup

with a small population (10) it is hard to make any comment but it is clear that

the C subgroup performed much better than the I.

I also augmented table 4.5 with the average binary result in order to examine

the tendency toward the correct model from T1 (week 0) to T2 (week 3) and how

this tendency influenced performance. Table 4.8 shows two interesting effects:
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Table 4.7: T1 population and average binary

T1 Pass Fail Total
C 23 4 27
I 6 18 24
B 4 6 10
Total 34 27 61
χ2 = 19.491, df = 2, p < 0.0001

very highly significant

Table 4.8: Tendency toward correct model in T1 to T2 (week 0/ week 3) and the
average binary result

Correct Incorrect
Pass Fail Pass Fail Total

CC 20 1 2 2 25
CI 1 1 2
IC 3 2 1 5 11
II 2 11 13
BC 3 0 1 1 5
BI 0 5 5
Total 26 3 7 25 61

• 90% (26 out of 29) of subjects who grasped assignment and sequence in the

first three weeks, passed the course.

• Only 22% (7 out of 32) of subjects who did not grasp assignment and

sequence in the first three weeks managed to pass the course.

When I examined T1 and T2 results as a programming success predictor, I found

the following details:

• If we take C as a positive result, I and B as negative then T1 gives 30%

false-negative (10 out of 34) and 15% false-positive (4 out of 27) shown in

table 4.7.

• 22% false-negative (7 out of 32) and 10% false-positive (3 out of 29) were

given by T2, shown in table 4.8.

The above figures revealed that T1 (week 0) cannot be considered as a strong

predictor of programming success because of the high number of false-negatives
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Table 4.9: T1 and the first quiz binary result

T1 Pass Fail Total
C 19 5 24
I 9 15 24
B 6 4 10
Total 34 24 58
χ2 = 8.598, df = 2, p < 0.014 significant

but the T2 test (week 3) is a better predictor; 22% false-negative is a quite

acceptable figure in an educational context.

Despit the temptation to point the research toward a third-week success pre-

dictor, I decided to stick with my original research question, focusing on the test

which reveals what subjects bring with them to this learning environment.

4.4.5 Analysing methods

The results so far suggest that the C/I/B subgroups are different and that the

C subgroup members had much better performance in exams, but this has to be

confirmed by statistical analysis. I used a chi-square test in order to examine

statistically whether the subgroups (C, I, B) performed differently in the quizzes.

Mental model tests and quiz results

As I mentioned in section 4.4.3 the first quiz was designed to give a chance to

weaker students to pass the test but the second quiz was more engaged with

programming.

Since association between T1 and the average binary result suggests that the

C, I and the B subgroups are significantly different, I tried to examine whether

these subgroups were better distinguishable in one rather than the other of these

two quizzes. I decided on a threshold significance of p = 0.05.

First I examined the result of T1 with the first quiz binary result, shown in

table 4.9. The table shows 79% (19 out of 24) of the C subgroup passed the first

quiz and 44% (15 out of 34) of I/B subgroups also managed to pass. Chi-square

shows that the differences between C/I/B subgroups is significant.

Then I examined the result of T2 with the first quiz binary result as shown in

table 4.10. The table shows that 68% (26 out of 38) of the C subgroup passed the
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Table 4.10: T2 and the first quiz binary result

T2 Pass Fail Total
C 26 12 38
I 8 12 20
Total 34 24 58
χ2 = 4.363, df = 1, p < 0.037 significant

Table 4.11: T1 and second quiz binary result

T1 Pass Fail Total
C 22 4 26
I 8 15 23
B 4 6 10
Total 34 25 59
χ2 = 13.944, df = 2, p < 0.0001

very highly significant

first quiz and 40% (8 out of 20) of the I subgroup managed to pass. Chi-square

shows that the C/I difference is still just significant.

Next I examined the result of T1 with the second quiz binary result shown in

table 4.11. The table shows that 85% (22 out of 26) of the C subgroup passed

the second quiz and only 36% (12 out of 33) of I/B subgroups managed to pass.

This time chi-square shows a strongly significant difference between the C and I

subgroups (p < 0.0001).

Finally I examined the result of T2 with the second quiz binary result shown

in table 4.12. The table demonstrates that 74% (29 out of 39) of the C subgroup

passed the second quiz and 25% (5 out of 20) of the I/B subgroups managed to

pass. Again chi-square shows a strong significant difference between the C and I

subgroups (p < 0.0001).

4.5 Summary

Test T1 separated the candidates into 3 subgroups at the beginning of the course.

One of the subgroups was apparently able to build a systematic strategy and apply

it consistently in most of the questions; I called it the “consistent” subgroup.

Another group might be able to build a strategy but failed to apply it consistently;
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Table 4.12: T2 and second quiz binary result

T2 Pass Fail Total
C 29 10 39
I 5 15 20
Total 34 25 59
χ2 = 13.190, df = 1, p < 0.0001

very highly significant

I called it the “inconsistent” subgroup. The third subgroup reserved its ideas and

handed in the questionnaire incompleted; I called it the “blank” subgroup.

Test T2 revealed that 93% of the consistent population remained consistent

and 78% of them corrected their model within 3 weeks, while 46% of the incon-

sistent population shifted to the consistent subgroup, but only 21% managed to

correct their model by week 3. Half of the blank subgroup shifted toward the

consistent subgroup, another half joined the inconsistent subgroup and only 30%

managed to get the correct model by week 3.

The participants sat two internal examinations (first and second quiz) and

the results were averaged and recorded as a number (percentage), a grade and a

binary. The results revealed that 93% of subjects who grasped assignment and

sequence in the first three weeks passed the course while only 22% of the others

managed to pass the course.

Table 4.13 shows a summary of the association of consistency (T1 and T2) and

the results of quiz 1 and quiz 2. The consistency captured by the T1 score had

a strong positive association with success in the first and the second quiz binary

result (79%/43% and 85%/37%). This association was also strong when the T2

score was examined with the first and the second quiz binary result (68%/40%

and 74%/25%). Chi-square shows a highly significant result (p < 0.0001) when

the association of T1/T2 with the second second quiz was examined and shows

less significant results (p < 0.014, p < 0.037) when the first quiz was examined.

This result suggests that the second quiz, with a higher proportion of technical

questions was more reliable in separating the C subgroup from the others in this

experiment. The data clearly demonstrates that the consistent subgroup had a

better chance of success in the second, more technical, quiz than the inconsistent

subgroup.

Table 4.13 shows that the test has produced many fewer false positives (15%,
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Table 4.13: Summarising the correlation between T1 and T2 and the first, second
and average of quiz’s binary results

Success rate
χ2 df p

C notC

Quiz 1
T1 79% 43% 8.60 2 p < 0.014 significant
T2 68% 40% 4.36 1 p < 0.037 significant

Quiz 2
T1 85% 37% 13.94 2 p < 0.0001 highly significant
T2 74% 25% 13.19 1 p < 0.0001 highly significant

Average
T1 82% 40% 20.46 1 p < 0.0001 highly significant
T2 71% 33% 7.36 1 p < 0.007 highly significant

T1 in the second quiz) than the university’s admission system (40%), but it is

producing far too many false negatives to be considered as an admission criterion

(37% of the inconsistent and blank groups combined passed the examination).

I believe that combining this test with a formal assessment with more technical

questions might separate the C and I populations even more emphatically.



Chapter 5

Improving Methodology

The results in chapter 4 were encouraging, with an apparent potential to pro-

vide a clearer understanding of the patterns of reasoning that learners bring to

programming courses. The first test (in week 0) revealed three distinguishable

populations and the second test (in week 3) showed that consistency is persis-

tent. A very small number shifted from the consistent subgroup while nearly

half shifted from inconsistent to consistent. The correlation with the second quiz

result demonstrated that the ability to adopt and maintain a consistent mecha-

nism has a considerable association with success in the first level of programming

courses.

Presenting this result (Dehnadi, 2006) to the research community attracted

a number of collaborators as well as provoking a number of objections to my

methodology. The objections were supplemented with a number of encouraging

comments and constructive feedback which generated a series of improvements of

the instrument and data analysis. The objections focused on the following issues:

1. The questionnaire did not ask and the analysis did not consider candidates’

programming experience, age or sex.

2. Methods to interpret subjects’ mental models were not clearly documented

and may have been subjective.

3. The sample size was not big enough to support the claimed result.

4. Data analysis was weakly presented and consistency was measured as a

binary (black/white) attribute.

79
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In order to respond to these objections I made a number of improvements to the

test materials and their analysis, considering various possible elements which may

have played a part in the association observed in the initial test.

5.1 Learners’ programming background

In the initial experiment the assumption was made that no subjects had prior

knowledge in programming. I was advised that the data might be contaminated

by subjects’ programming background which might have caused the effect – see,

for example, (Wilson and Shrock, 2001). Since programming background was

not recorded, I decided to rectify the questionnaire and replicate the test to

investigate the association with cleaner data. A number of questions were added

asking candidates about their programming experience, any formal/informal prior

programming courses, age and gender.

5.2 Mental models enhancement

Two more models (observed in candidates responses to the chapter 4 experi-

ments) were added to the list of mental models and to the list of answers in the

questionnaire. The conceptions behind the new mental models are as follows:

• Nothing is changed in a and b; they both keep their original values.

• An assignment is a simple mathematical equation, so all equal values of a

and b are acceptable.

Figure 5.1 shows the first question when the answers, corresponding to the

new mental models, were added. I use the question in this figure as an example

to describe the new list of the mental models for single assignment in table 5.1.

Mental models for composition remained unchanged from table 4.2.

5.3 Interpretation enhancement

Another main issue raised by collaborators was the unclarity of the test instruc-

tions regarding the interpretation of candidates’ mental models. In order to

objectify the instrument and facilitate replication of the experiment by others, a

number of improvements were applied to the test instruments.
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Table 5.1: Anticipated mental models of single assignment a=b
(question 1 figure 5.1 used as an example)

(M1) Value moves from right to left a:=b ; b:=0
Ans ( a = 20 , b = 0 ) 8th Answer

(M2) Value copies from right to left a:=b
Correct model of Java for assignment
Ans ( a = 20 , b = 20 ) 4th Answer

(M3) Value moves from left to right b:=a ; a:=0
Ans ( a = 0 , b = 10 ) 3rd Answer

(M4) Value copies from left to right b:=a
the reversed version of Java model

Ans ( a = 10 , b = 10 ) 1st Answer
(M5) Right-hand value added to left a:=a+b

Ans ( a = 30 , b = 20 ) 2nd Answer
(M6) Right-hand value extracted and added to left a:=a+b ; b:=0

Ans ( a = 30 , b = 0 ) 10th Answer
(M7) Left-hand value added to right b:=a+b

Ans ( a = 10 , b = 30 ) 9th Answer
(M8) Left-hand value extracted and added to right b:=a+b ; a:=0

Ans ( a = 0 , b = 30 ) 5th
(M9) a and b keep their original values a:=10 ; b:=20

Ans ( a = 10 , b = 20 ) 6th Answer
(M10) Assignment is a simple equation, and then all equal values

of a and b are acceptable.
Ans ( a = 10 , b = 10 ) 1th Answer
Ans ( a = 20 , b = 20 ) 4th Answer

(M11) a and b swap their values simultaneously. a:=b || b:=a
Ans ( a = 20 , b = 10 ) 7th Answer
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1. Read the following The new values of a and b: Use this column for your
statements and tick the rough notes please
box next to the correct a = 10 b = 10
answer in the next column. a = 30 b = 20

a = 0 b = 10
a = 20 b = 20

int a = 10; a = 0 b = 30
int b = 20; a = 10 b = 20

a = 20 b = 10
a = b; a = 20 b = 0

a = 10 b = 30
a = 30 b = 0

Any other values for a and b:

a = b =
a = b =
a = b =

Figure 5.1: Question 1 with a single assignment

5.3.1 Answer sheet

An answer sheet was introduced to objectify and simplify the marking process.

By looking at a candidate’s answers we can find the relevant mental model/s for

that particular question in the answer sheet without any prior knowledge of the

mental models introduced in this study. For example when a candidate ticks the

second box in the answer list in figure 5.1 the examiner, by looking at the answer

sheet of question 1 (see figure 5.2), indicates M5 as the candidate’s mental model

in this question.

In multiple assignments (Q4 onwards) there is more complexity in assessing

consistency because of the interaction between models of assignment and composi-

tion. I introduced a mark sheet in order to facilitate this process more objectively.

More examples in the next section clarify the usability of these components.

Figure 5.4 shows the answer sheet for question 7 (figure 5.3). When a can-

didate ticked the eighth box in the question, according to the answer sheet the

candidate’s model for this question could be any one of (M1+S3), (M2+S3) or

(M11+S3). This creates a level of ambiguity that has been resolved by introduc-

ing a marking protocol.
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Question Answers/s Model/s
a = 20 b = 0 M1

1. a = 20 b = 20 M2
int a = 10; a = 0 b = 10 M3
int b = 20; a = 10 b = 10 M4

a = 30 b = 20 M5
a = b; a = 30 b = 0 M6

a = 10 b = 30 M7
a = 0 b = 30 M8
a = 10 b = 20 M9
a = 20 b = 10 M11

a = 20 b = 20 M10
a = 10 b = 10

Figure 5.2: Answer sheet for question 1

7. Read the following The new values of a and b: Use this column for your
statements and tick the rough notes please
box next to the correct a = 3 b = 5 c = 5
answer in the next column. a = 3 b = 3 c = 3

a = 12 b = 14 c = 22
a = 8 b = 15 c = 12

int a = 5; a = 7 b = 7 c = 7
int b = 3; a = 5 b = 3 c = 7
int b = 7; a = 5 b = 5 c = 5

a = 7 b = 5 c = 3
a = c; a = 3 b = 7 c = 5
b = a; a = 12 b = 8 c = 10
c = b; a = 10 b = 8 c = 12

a = 0 b = 0 c = 7
a = 0 b = 0 c = 15
a = 3 b = 12 c = 0
a = 3 b = 5 c = 7

Any other values for a and b:

a = b =
a = b =
a = b =

Figure 5.3: Question 7 with multiple assignments
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Question Answers/s Model/s
a = 0 b = 0 c = 7 M1
a = 7 b = 5 c = 3 (M1+S3)/(M2+S3)/(M11+S3)

7. a = 7 b = 7 c = 7 M2
a = 3 b = 5 c = 0 M3

int a = 5; a = 3 b = 5 c = 5 M4
int b = 3; a = 3 b = 7 c = 5 (M3+S3)/(M4+S3)
int c = 7; a = 12 b = 15 c = 22 M5

a = 12 b = 8 c = 10 (M5+S3)/(M6+S3)
a = c; a = 0 b = 0 c = 15 M6
b = a; a = 8 b = 15 c = 12 M7
c = b; a = 8 b = 10 c = 12 (M7+S3)/(M8+S3)

a = 3 b = 12 c = 0 M8
a = 5 b = 3 c = 7 M9
a = 3 b = 5 c = 7 M11

a = 5 b = 5 c = 5 M10
a = 3 b = 3 c = 3
a = 7 b = 7 c = 7
a = 7 b = 3 c = 0 (M1+S2)
a = 0 b = 5 c = 7
a = 5 b = 0 c = 3
a = 7 b = 3 c = 7 (M2+S2)
a = 5 b = 5 c = 7
a = 5 b = 3 c = 3
a = 0 b = 3 c = 5 (M3+S2)
a = 3 b = 0 c = 7
a = 5 b = 7 c = 0
a = 5 b = 3 c = 5 (M4+S2)
a = 3 b = 3 c = 7
a = 5 b = 7 c = 7
a = 12 b = 3 c = 7 (M5+S2)
a = 5 b = 8 c = 7
a = 5 b = 3 c = 10
a = 12 b = 3 c = 0 (M6+S2)
a = 0 b = 8 c = 7
a = 5 b = 0 c = 10
a = 5 b = 3 c = 12 (M7+S2)
a = 8 b = 3 c = 7
a = 5 b = 10 c = 7
a = 0 b = 3 c = 12 (M8+S2)
a = 8 b = 0 c = 7
a = 5 b = 10 c = 0
a = 7 b = 3 c = 5 (M11+S2)
a = 3 b = 5 c = 7
a = 5 b = 7 c = 3

Figure 5.4: Answer sheet for question 7
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Figure 5.5: A marksheet

5.3.2 Mark sheet

A mark sheet was produced which allowed examination of the judgment of con-

sistency; the means of dealing with ambiguous responses was codified; levels of

consistency were defined; judgment of blankness was also clarified. A sample of

the mark sheet is illustrated in figure 5.5.

Each column of the mark sheet represents a single model. The examiner ticks

the mark sheet according to the ticked model/s in the answer sheet, notionally

in pencil. For questions with a single assignment (Q1-Q3) the relevant model/s

will be ticked and for questions with multiple assignments (Q4 onwards) instead

of just ticking the corresponding model column on the mark sheet, “S1”, “S2” or

“S3” can be put next to the tick. The logical explanation of these symbols can

be found in chapter 4 table 4.2.

A single tick in the first three questions (except M10 which requires two single

ticks) maps to a single mental model. In later questions some of the single tick

boxes give alternative models. When I made mental models explicit in the answer

sheet, it exposed the problem of ambiguity in the S2 and S3 models.
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Ambiguity

Suppose a subject consistently applies M1+S3: responses to Q1-Q3 will all be

M1; responses to Q4-Q12 will be ambiguous, all containing M1+S3. On the other

hand we could obtain the same response from a less consistent subject, starting

with M1, but oscillating between different models (all with S3) in Q4-Q12.

If we assess ambiguous responses as inconsistent, all users of the S3 model

would be judged inconsistent. If we assess them as consistent, we run the risk of

mistakenly increasing the size of the consistent subgroup. I decided to take the

second choice, despite the risk that it might weaken my conclusion. The following

procedure illustrates how to resolve these ambiguities, indicating a candidate’s

mental model by using the answer sheet and the marksheet together:

1. Multiple answers in Q1-3 do not indicate a single model (except M10): put a

tick in the leftmost (questions) column so that the candidates is not judged

’blank’.

2. Some answers in Q4-Q12 are ambiguous: e.g. the second answer in figure

5.4. We want to maximize judgment of consistency: put pencil ticks in each

of the relevant columns. Then, when all the questions are marked, look for

the column with the most ticks; and ink pencilled ticks in that column.

3. Finally, sum the inked ticks in each column in the C0 row.

Blankness and Consistency

A protocol defines the criteria for consistency and blankness:

1. A response with six inked ticks in the same column for Q1-Q6 (single and

double assignment) is judged consistent.

2. Otherwise, a response with 8 or more inked ticks in the same column is

judged consistent.

3. Otherwise, a response with fewer than 8 inked ticks in total (two-thirds of

questions) is judged blank.

4. Otherwise, the response is judged inconsistent.
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This protocol gives us the basic notions of consistency and blankness and main-

tains the objectivity of the process. Some deliberate flexibility was included in

rules 1 and 2 to let candidates with some inconsistency be judged consistent. As

with ambiguity the size of the consistent subgroup increases and consequently the

effect of the protocol would be to dilute this subgroup and reduce the correlation;

if we still see the correlation, we can be more confident that it is real.

Levels of consistency

In the first experiment (chapter 4) consistency was a factor which was measured

as a binary (black/white) attribute. Each candidate was either consistent or not.

I was criticised for this and was told that consistency is not black and white

and should be measured within a wider spectrum. I decided to try to measure

consistency at four different levels in order to examine:

• Correlation of different consistency levels with overall success.

• Whether there is a linear correlation between consistency levels and overall

success.

Candidates who used only one model are clearly consistent; candidates who switch

between two related models are also consistent, but less so.

For example M1 (left := right; right := 0) and M2 (left := right) are very

similar, also M3 and M4, for similar reasons. That gives the first level of the

related models (C1) which is illustrated in figure 5.6. I also grouped together

M9, M10 and M11, the three non-assignment models. Then similar considerations

group M1+M2 with M3+M4 at the next level (C2), and M5+M6 with M7+M8.

At the final level (C3) M1 to M8, the assignment models, are grouped together.

In assessing consistency at each level we use the same protocol as before: a

candidate’s consistency level is the first row with an entry ≥ 8.

I could have joined models in any of three different dimensions: copy/move,

left/right, add/overwrite. Because in the S3 model of multiple assignment the

copy/move distinction goes away, I chose that as the weakest dimension. Then I

decided to ignore direction, and finally addition/overwrite.

In practice joining models in this way was not very successful. It did not

expand the C group very much: C0 is always large and C1-C3 were almost always

small.
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Figure 5.6: Structure diagram to show relationships between models

Figure 5.7: Algorithm used to interpret mental models in mark sheet
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5.4 Counteracting selection bias

Participants in each experiment of this study were undergraduate students of an

introduction to programming course in a University or an institution of higher

education. In the initial experiment the assumption was made that no subjects

had prior knowledge in programming. In order to allow for the possibility that

the data might be influenced by the influence of prior programming experience,

I decided to revise the questionnaire and replicate the test to investigate the

association with cleaner data.

Seven questions were added to the questionnaire

1. Age

2. Gender

3. A-Level or any equivalent subjects

4. Have you ever written a computer program in any language?

5. If so, in what language(s)?

6. Will this be your first course in programming?

7. If not, what other programming courses have you studied?

The selection process consists of three different types of selection which are

considered separately:

1. Experimental selection process

2. Self-selection process

3. Intake selection process

Some of the biases which may be caused by the experimental process, and the

corresponding solutions, are:

1. Small groups may give insignificant results and might not represent the

whole population of the course: each experiment uses a large sample group

(50+).
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Table 5.2: Bias caused by programming skill

Population Pass Fail Total
Consistent programmers 20 0 20
Consistent non-programmers 24 16 40
Inconsistent 24 16 40
Total 68 32 100

2. A selected group of students in a class might not represent the whole pop-

ulation of the class: as far as possible, all students in the class participated

in each experiment.

3. The population who withdrew from the course might perform differently

in the test from those who stay to the end: I shall check the significant

differences between these populations in their test performance.

4. The intake policy in different institutions might produce different results: I

shall conduct experiments in a wide range of institutions.

The most important source of bias is that some subjects already know how

to program. Consider an extreme case: suppose 100 subjects participate in an

experiment, of whom 20 are expert programmers and 80 are novices. Suppose that

consistency in the test has no effect in the novice subgroup. Suppose also that

a novice is equally likely to be judged consistent as inconsistent in the test, and

that each novice has a 60% chance of passing the exam. The expert programmers

all score consistently in the test, and all pass the examination (row 1 of table 5.2).

Of the novices, 40 are judged consistent, and 40 inconsistent; in each group 24

pass and 16 fail (rows 2 and 3 of table 5.2). Overall, it appears that 60 subjects

are consistent (rows 1 and 2 of the table 5.2), and 40 inconsistent. But in the

“consistent” group, 20 will pass because they are expert (row 1 of table 5.2),

and 24 (60% of 40) novices will also pass (row 2 of table 5.2). In the inconsistent

group, 24 (60% of 40) novices will pass. Overall, the “consistent” group has a pass

rate of 73% (20+24 out of 60, rows 1 and 2 of table 5.2), while the inconsistent

group has a pass rate of 60% (24 out of 40, row 3 of table 5.2). The apparent

effect of consistency is the result of bias caused by prior programming expertise.

I use two approaches to investigate this bias: the first approach is spotting

those who use the correct model of assignment and sequence (Java model) in the
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test; the second approach is looking at candidates’ responses to prior program-

ming knowledge questions in the questionnaire.

Following the first approach, I can use the marksheet which allows me to pick

out those who use the Java/C/imperative language models (M2 and S1). They

may have learnt how to program prior to the course start; I call them the CM2

subgroup. I shall slice the population into two groups of CM2 and notCM2 and

examine if the effect of consistency persists in the notCM2 subgroup.

Following the second approach, I shall examine if the effect of consistency is

related to prior programming experience by looking at the candidates’ responses

to the questionnaire. As I mentioned earlier in this section, four questions are

related to candidates’ prior programming knowledge in the questionnaire. By an-

swering these questions, candidates report if they have written a program or have

attempted a programming course. They also reveal which language they have had

experienced if they have any programming experience. Using these details I shall

examine the effect of consistency in three different group arrangements:

1. I shall divide the population into programmers and non-programmers, and

examine the effect of consistency separately in each group.

2. Because the test is based on assignment and sequence in Java, I shall di-

vide the population into programmers who have used a Java/C/imperative

language and the rest, and examine the effect of consistency separately in

each group.

3. I shall divide the population into those who had previously attempted a

programming course and those who are in their first course, and examine

the effect of consistency in each group.

Some of the subpopulations produced by these divisions will be small, and the

results may therefore not be statistically reliable. It will be necessary, therefore,

to combine the results by using a meta-analysis technique to get a reliable result

overall, in each of the subdivisions.

5.5 Data Analysis

“Making a strong claim on a basis of a small experiment which was weakly anal-

ysed” was an objection that was made when the initial result was presented
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Table 5.3: MM1 population and average percentage

MM1 Mean N Std. Deviation Variance

C 66.74 27 19.320 373.276
I 43.25 24 16.933 286.717
B 49.30 10 15.699 246.456
Total 54.64 61 20.765 431.168

Table 5.4: Test of Homogeneity of Variance, MM1 population and average per-
centage

Levene Statistic df1 df2 p

.578 2 58 .564

(Dehnadi, 2006). It was a fair objection because I presented the result with only

a few tables and figures, analysed with the chi-square test.

In order to improve the data analysing process the T1, T2, first quiz and

second quiz test results were added to a SPSS file and data were examined with

parametric and nonparametric statistical tools.

First I compared Means and Variances in the C/I/B categories. Table 5.3

shows the subgroups’ Mean, Variance and Standard Deviations with the average

percentage.

Differences between subgroups’ variances were small. 23% between C and I;

34% between C and B; 14% between I and B. I decided to use a test of Homogene-

ity of Variance to examine if the subgroups’ variances are approximately equal

across the sample. The result of the homogeneity test in table 5.4 reveals that

the subgroups’ variances are approximately equal and the null hypothesis cannot

be rejected (p < 0.564).

Geng et al. (1982) show that parametric statistical techniques such as ANOVA

are robust under minor departure from homogeneity and normal distribution

assumptions, such as in this case.

ANOVA was therefore used to examine the differences between subgroups,

which revealed significant differences between subgroups (F = 11.514, p <

0.0001) shown in table 5.5.

Welch’s Robust Tests of Equality of Means, which is a part of ANOVA and

does not require the data to be normally distributed, confirms the significance



5.5 Data Analysis 93

Table 5.5: ANOVA, MM1 population and average percentage

Sum of df Mean F p
Squares Square

Between Groups 7352.280 2 3676.140 11.514 .0001
Within Groups 18517.785 58 319.272
Totals 25870.066 60

Table 5.6: Welch’s Robust Tests of Equality of Means, MM1 population and
average percentage

Statistic df1 df2 p

Welch 10.813 2 26.750 0.0001

of the difference between subgroups. Table 5.6 shows that the null hypothesis of

Welch’s Robust Tests of Equality of Means significantly rejected the assumption

that the C/I/B subgroups were from the same population.

I also used the chi-square test, as an alternative nonparametric statistics tool,

which is used for analysing categorical data. Chi-square is a test for detecting

changes in responses due to experimental intervention and I used it in order to

examine statistically whether the subgroups (C, I, B) performed differently in the

quizzes. The chi-square test can be used in two similar but distinct circumstances:

• Chi-square goodness-of-fit test is used for estimating how closely an ob-

served distribution matches an expected distribution.

• The other primary use of the chi-square test is to examine whether two

variables are independent regardless of what the distribution should look

like.

As this was the the first experiment with C/I/B categories, the expected fre-

quencies for these categories were unknown and statistical results for chi-square

test analysis were based on the observed rather than expected results. The use

of the chi-square “independence” test seems more relevant to examine if C/I/B

subgroups were “not correlated with” or were “independent of” each other. If

any of these subgroups were correlated, their frequencies tend to move together,

either in the same direction or in the opposite. The null hypothesis was that the

exam performance is the same for all the subgroup members.
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Although SPSS documentation confirms that the “independence” test of chi-

square is used, I decided to use table 4.7 and calculate the “independence” test

manually and compare the result with the figure obtained by SPSS, to build con-

fidence in using it. The significance value obtained from the manual calculation

was p < 0.0001, the same as SPSS. Comparing this result with the SPSS result

revealed that SPSS uses a very similar method to calculate chi-square. The man-

ual calculation double checked the SPSS chi-square test result and gave me more

confidence to use SPSS’s chi-square test, for the rest of this experiment.

The result of the SPSS chi-square test confirmed the result of Welch’s Robust

Tests of Equality of Means, which significantly rejected the null hypothesis that

C/I/B subgroups are the same.

For my nominal data, chi-squared methods have been used to explore the

relationship between variables. No assumptions about causality have been made.

Even where the word “effect” is used, it should be taken to indicate a statistically

significant result and not causality.

As is often the case in research conducted in real-life settings, the sample sizes and

expected values are not always optimal. However, significant use has been made

of advanced meta-analysis methods, where the results of analyses from smaller

samples are combined across larger samples to reflect different sample sizes and

sample diversity. Where some of the expected values are below five, we can simply

note that this result is consistent with the broad pattern of results and with the

meta-analysis, so undue reliance is not placed on them.

5.6 Summary

Exposing the initial experiment’s result to the research community raised a num-

ber of objections about programming background, testing materials and the ob-

jectifying of mental models. I augmented the questionnaire to record subjects’

programming background as well as age and sex. The list of mental models was

enhanced and a number of tools and protocols were introduced to facilitate de-

tection and interpretation of mental models. Administering the test in a variety

of institutions was intended to see if there was more than just a local effect.

In order to find appropriate tools both parametric and nonparametric statis-

tical tools were used to examine the data. Parametric tools appeared to be as

applicable as nonparametric alternatives; both confirmed that the C/I/B sub-
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groups were significantly different.



Chapter 6

Further Experiments

The results of the initial experiment suggested that the mechanisms of rationali-

sation which students bring to the study of programming have a correlation with

their learning performance. In order to demonstrate the reality of the effect, it

had to be verified in large scale experiments. Nine experiments were undertaken:

one in Australia (Newcastle University), six in UK (Middlesex University, Uni-

versity of Sheffield, The University of York, University of Westminster, Banff and

Buchan College, Royal School of Signals), one in Denmark (Aarhus University)

and one in Germany (OSZ TIEM the Department of Informatik in Berlin). Final

examination results have not yet been received from the experiments in Banff

and Buchan college and in OSZ TIEM.

6.1 University of Newcastle - 2006

Data provided by: Simon1, School of DCIT (Design, Communication,

and Information Technology), Newcastle, Australia.

The experiment was carried out at the beginning of the academic year

2006/2007. The test was administered once, before the course began (week 0).

From 90 participants, 17 withdrew before the examination, and two subjects did

not attend the end of course examination, leaving 71 active subjects.

1Simon has only a single-word name. He contributed the seven additional questions set out
on page 89.

96
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Table 6.1: Consistency levels among population

Consistency levels Active Withdrawn
C0 44 11
C1 3 1
C2 1 0
C3 4 1
I 18 6
B 1 0
Total 71 19

Table 6.2: Consistency and active/withdrawn divisions)

Consistency Active Withdrawn
C 52 13
I/B 19 6
Total 71 19

χ2 = 0.173, df = 1, p < 0.677
not significant

6.1.1 Assessment methods

The assessment method in the course consisted of two practical tests (each with

10% credit), two assignments (each with 15% credit) and a final examination

(with 50% credit). The course mark was the total of these five.

6.1.2 Test result

Table 6.1 shows the distribution of consistency levels in the subject population.

44 subjects (62% of the active population) were assessed as C0 (eight questions

or more with a single model), three C1 (eight questions or more with two related

models), one C2 (four related models), four C3 (more than four models M1-

M8), 18 Inconsistent and one Blank. In this table, a chi-square shows that the

withdrawn population is not significantly different from the active population.

This table has 8 cells with fewer than five expected entries which weakens the

chi-square test result. In order to avoid small numbers I combined consistent

subgroups (C0, C1, C2, C3) as C and, the other subgroups (I, B) as I/B. Table

6.2 shows that there is no significant difference between the withdrawn and active

populations.
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Table 6.3: Consistency (C/notC) and grade course result

Result C notC Total
HD 3 0 3
D 9 2 11
C 10 1 11
P 19 3 22
F 11 13 24
total 52 19 71
χ2 = 14.392, df = 4, p < 0.006

highly significant

Measuring the level of consistency in the marksheet (see section 5.3.2) was

not very successful in this case. It did not expand the C group very much: C0

is large and C1-C3 are small. Since cells with small expected numbers would

not be suitable for data analysis purposes, I decided to combine C1-C3 with

other subgroups in two different ways and analyse each of these combinations

separately:

1. C1-C3 join C0 to build a single consistent group and I joins B to build a

single inconsistent group (C/notC).

2. C0 remains as a single consistent group and C1-C3 joins I and B to build a

single group (C0/notC0).

Course results were recorded as a percentage mark (0-100), as a grade P(pass)

/ C(credit) / D(distinction) / HD(high distinction) / F(fail) and as a binary (Pass

/ Fail).

I first examined the association of the C/notC populations with grade. Table

6.3 shows a highly significant difference between the C and the notC subgroups.

But in this table half of the cells have fewer than 5 subjects. I therefore decided

to investigate the strength of the correlation with the binary (pass/fail) result.

Combining columns P, C, D and HD into ‘Pass’ and FF as ‘Fail’, gives table

6.4. A chi-square test shows a highly significant association between consistency

and binary course mark. The pass rate in the C0-C3 subgroups is 79% (41 out

of 52) and in I/B is 32% (6 out of 19).

Second, I examined the association of the C0/notC0 populations with the

binary result. Table 6.5 shows a highly significant difference between C0 and the
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Table 6.4: Consistency (C/notC) and binary course result

Result C notC Total
Pass 41 (79%) 6 (32%) 47
Fail 11 13 24
Total 52 19 71

χ2 = 13.894, df = 1, p < 0.001
highly significant

Table 6.5: Consistency (C0/notC0) and binary course result

Result C0 notC0 Total
Pass 35 (80%) 12 (44%) 47
Fail 9 15 24
Total 44 27 71

χ2 = 9.213, df = 1, p < 0.002
highly significant

other subgroups. The pass rate in the C0 subgroup is 80% (35 out of 44) and

44% (12 out of 27) in notC0.

The C1-C3 subgroups are small in this experiment, and tables 6.4 and 6.5 show

that adding them to either the C0 or the I/B subgroups does not much affect the

result – 79%/32% in C/notC and 80%/44% in C0/notC0 which is only slightly

weaker. Chi-square shows a highly significant difference between subgroups in

either case – p < 0.001, p < 0.002.

6.1.3 Prior programming knowledge

There were four questions about programming background in the questionnaire

(see section 5.4). In this experiment 21 out of 46 who reported prior program-

ming experience used the correct model of Java assignment (M2) and the correct

model of composition (S1) before the course began. I call them the CM2 sub-

group. This subgroup seems likely to contain those who have had some effective

prior programming experience with a Java-like language, although it is interest-

ing to note that two of them said they had no previous programming experience.

Observing this diversity within the population that reported prior programming

experience, I decided to investigate the effect of that experience on candidates’

success in two different ways:
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Table 6.6: Prior programming experience and binary course results

Result Yes No Not answered Total
Pass 29 13 5 47
Fail 17 6 1 24
Total 46 19 6 71

χ2 = 1.304, df = 2, p < 0.596
not significant

Table 6.7: Prior programming experience and binary course results, without am-
biguous responders

Result Yes No Total
Pass 29 13 42
Fail 17 6 23
Total 46 19 65
χ2 = 0.170, df = 1, p < 0.680

not significant

1. Considering prior programming experience as reported in the questionnaire.

2. Considering the CM2 population as a separate subgroup.

Prior programming experience reported in the questionnaire

Table 6.6 shows that 46 candidates (70%) reported programming experience,

19 reported none and 6 did not give a reply. Almost the same success rate in

the population with prior programming experience and the population without

(63%/68%), shows that there is no association between prior programming ex-

perience and candidates’ success. The chi-square test also shows that there is

no significant difference between subgroups with or without programming experi-

ence. Table 6.7 shows almost the same result when the “not answered” population

is removed.

Relevant programming experience

Programming experience was categorised as relevant or irrelevant upon the sim-

ilarity of assignment and sequence in subjects’ prior programming experience to

assignment and sequence in Java. For example, experience with languages such
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Table 6.8: Prior relevant programming experience and binary course results

Result Yes No Not answered Total
Pass 20 22 5 47
Fail 13 10 1 24
Total 33 32 6 71

χ2 = 1.342, df = 2, p < 0.511
not significant

Table 6.9: Prior relevant programming experience and binary course results, with-
out ambiguous responders

Result Yes No Total
Pass 20 22 42
Fail 13 10 23
Total 33 32 65
χ2 = 0.471, df = 1, p < 0.492

not significant

as Pascal, C, C++ and Java was considered relevant but experience of HTML,

Visual Basic or PHP was considered irrelevant.

Table 6.8 shows whether having relevant programming experience helped sub-

jects to pass the course more often than those who had no such experience. Al-

most the same success rate in the population with prior relevant programming

experience and population without (61%/69%), shows there is no association be-

tween relevant programming experience and candidates’ success. The chi-square

test also shows that there is no significant difference between subgroups with

or without prior Java-like programming experience. Table 6.9 shows almost the

same result, when the “not answered” population is removed.

Prior programming course

Table 6.10 shows that 30 candidates (49%) reported they had taken a prior pro-

gramming course, 32 reported they had not and 9 did not reply. Almost the same

success rate in population with/without prior programming course (63%/69%)

shows that there is no association between prior programming course and candi-

dates’ success. The chi-square test also shows no significant difference between

subgroups with or without a prior programming course. Table 6.11 shows that the
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Table 6.10: Prior programming course and binary course results

Result Yes No Not answered Total
Pass 19 22 6 47
Fail 11 10 3 24
Total 30 32 9 71

χ2 = 0.204, df = 2, p < 0.903
not significant

Table 6.11: Prior programming course and binary course results, without am-
biguous responders

Result Yes No Total
Pass 19 22 41
Fail 11 10 21
Total 30 32 62
χ2 = 0.203, df = 1, p < 0.652

not significant

correlation is still not significant when the “not answered” population is removed.

Summarising the effect of reported prior programming experience

Candidates’ prior programming attributes such as programming experience or

attendance in a prior programming course appear to have no effect on the bi-

nary mark. Chi-square also shows no significant difference between subgroups

with/without prior programming background. Table 6.12 shows the significance

of prior programming attributes and numeric course mark examined by ANOVA.

The results given by ANOVA are similar to the result given by the chi-square

test.

CM2 population as a subgroup

In the C0 subgroup 52% of subjects (23 out of 44) used the correct models of

assignment (M2) and sequential composition (S1) before the course began (CM2

subgroup). The success rate of this subgroup was 87%. Table 6.13 separates

the CM2, C0, C1-3 and (I/B) subgroups. The figure shows that when CM2 is

a separate subgroup, the differences between subgroups is strongly significant.

But note that the remaining C0 subgroup still has 71% (15 out of 21) success
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Table 6.12: (ANOVA) Prior programming attributes and numerical course results

Sum of df Mean F p
Squares Squares

Programming experience
Between groups 6.946 39 .178 .685 .859
Within groups 6.500 25 .260

Total 13.446 64

Relevant experience
Between groups 27.599 40 .690 .702 .854
Within groups 29.500 30 .983

Total 57.099 70

Prior course
Between groups 8.817 37 .238 .858 .670
Within groups 6.667 24 .278

Total 15.484 61

Table 6.13: Consistency and binary course results – CM2 separated

Result CM2 C0 C1-3 I/B Total
Pass 20 (87%) 15 (71%) 6 (75%) 6 (32%) 47
Fail 3 6 2 13 24
Total 23 21 8 19 71

χ2 = 15.139, df = 3, p < 0.002
highly significant

compared to I/B’s 32% (6 out of 19).

Effect of consistency on success in non-CM2 population

In table 6.14 the CM2 subgroup is excluded. A chi-square test shows that the

result is significant, but there is at least one cell with less than 5 expected subjects.

Table 6.15 shows the C/notC populations when the CM2 subgroup is ex-

cluded. A chi-square test shows that the difference between the subgroups is

highly significant. The pass rate of 72% in C and 32% in notC shows a strong

Table 6.14: Consistency and binary course results – CM2 excluded

Result C0 C1-3 I/B Total
Pass 15 6 6 27
Fail 6 2 13 21
Total 21 8 19 48

χ2 = 7.808, df = 2, p < 0.02
significant
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Table 6.15: Consistency (C/notC) and binary course results – CM2 excluded

Result C notC Total
Pass 21 (72%) 6 (32) 27
Fail 8 13 21
Total 29 19 48

χ2 = 7.778, df = 1, p < 0.005
highly significant

Table 6.16: Consistency (C0/notC0) and binary course results – CM2 excluded

Result C0 notC0 Total
Pass 15 (71%) 12 (44%) 27
Fail 6 15 21
Total 21 27 48

χ2 = 3.495, df = 1, p < 0.062
not significant

correlation beween consistency and candidates’s success.

Table 6.16 shows the C0/notC0 population when the CM2 subgroup is ex-

cluded. Although chi-square shows a weaker difference between subgroups, the

numbers are still in the right direction: a success rate of 71% (15 out of 21) in

C0 and 44% (12 out of 27) in notC0 shows the correlation is still strong.

Separating candidates by programming background factors recorded in the

questionnaire failed to indicate any significant difference. Most of the CM2 sub-

group (21 out of 23) had prior programming experience, and from that experience

they had learned about assignment and sequence. Their 87% success rate in the

course can hardly be a surprise. When the result of the initial experiment (re-

ported in section 4.4) was presented to the research community, one of the main

objections was that subjects in the consistent subgroup might be simply those

who have learned to program before. In this experiment, when this subgroup

is removed, despite the chi-square result which shows less significant difference

between subgroups, the association of consistency was still strong (71%/44%).

Therefore consistency is not simply the effect of learning to program.
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Table 6.17: Consistency and binary course results – prior programming experience
= yes

Result C0 notC0 Total
Pass 26 3 29
Fail 7 10 17
Total 33 13 46
χ2 = 12.424, df = 1, p < 0.001

highly significant

Effect of consistency on success in sliced populations (prior program-

ming background)

From the evidence shown in tables 6.15 and 6.16 it seems that consistency is

not the same as programming skill. In order to look further into the question of

whether consistency is an effect of programming background I decided to separate

candidates into different slices based on prior programming experience or prior

programming course and examine the correlation of consistency with success in

each slice separately. By this examination I hoped to see whether the effect of

consistency persists, unrelated to programming background.

As tables 6.4 and 6.5 show, adding the C1-C3 subgroups to either the C0 or

the I/B subgroups does not much affect the association. I decided to combine

them with the I/B subgroup in the rest of my analysis of this experiment.

As a result of slicing the participants into small sub-populations according to

their programming background, most tables have cells with very small expected

numbers, which affects the reliability of a chi-square test result. In order to

overcome this problem I use a meta-analysis procedure in chapter 7 to produce a

more reliable result by combining several experiments. We shall see that meta-

analysis shows that the effect of consistency on success is strongly significant

in every sub-population, even though individual experiments give less definite

results.

Table 6.17 shows the subjects who claimed programming experience: 46 sub-

jects with an overall pass rate of 63%. The pass rate in the C0 subgroup is 79%

(26 out of 33) which drops to 23% (3 out of 13) in the notC0 subgroup. It shows a

strong effect of consistency on candidates’ success in this slice and the chi-square

test result also reports a highly significant difference between the subgroups.
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Table 6.18: Consistency and binary course results – prior programming experience
= no

Result C0 notC0 Total
Pass 11 2 13
Fail 2 4 6
Total 13 6 19
χ2 = 4.997, df = 1, p < 0.025

significant

Table 6.19: Consistency and binary course results – prior relevant programming
experience = yes

Result C0 notC0 Total
Pass 19 1 20
Fail 5 8 13
Total 24 9 33
χ2 = 12.698, df = 1, p < 0.001

highly significant

Table 6.18 shows the candidates who claimed no programming experience: 19

subjects with an overall pass rate of 68%. The pass rate in the C0 subgroup is

85% (11 out of 13) which drops to 33% (2 out of 6) in notC0 subgroup. It shows

a strong effect of consistency on success in this slice and a chi-square test shows

a weaker but still significant difference between subgroups.

Table 6.19 shows the subjects who claimed relevant programming experience:

33 subjects with a pass rate of 60%. The pass rate in the C0 subgroup is 79%

(19 out of 24) which drops to 11% (1 out of 9) in the notC0 subgroup. It shows

the effect of consistency on candidates’ success is also strong in this slice and a

chi-square test also shows a strongly significant difference between subgroups.

Table 6.20 shows the candidates who claimed no relevant programming expe-

rience: 32 subjects with a pass rate of 69%. The pass rate in the C0 subgroup is

80% (12 out of 15) which drops to 59% (10 out of 17) in the others. It shows the

effect of consistency on candidates’ success is weak in this slice and a chi-square

test shows no significant difference between subgroups.

Table 6.21 shows candidates who claimed a prior programming course: 30

subjects with an overall pass rate of 63%. The pass rate in the C0 subgroup is

73% (16 out of 22) which drops to 33% (3 out of 9) in notC0. It shows the effect
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Table 6.20: Consistency and binary course results – prior relevant programming
experience = no

Result C0 notC0 Total
Pass 12 10 22
Fail 3 7 10
Total 15 17 32
χ2 = 2.586, df = 1, p < 0.108

not significant

Table 6.21: Consistency and binary course results – prior programming course =
yes

Result C0 Others Total
Pass 16 3 19
Fail 5 6 11
Total 21 9 30
χ2 = 4.178, df = 1, p < 0.041

significant

of consistency on candidates’ success is strong in this slice and a chi-square test

shows a weaker but still significant difference between subgroups.

Table 6.22 shows the candidates who claimed not to have attended a prior

programming course: 32 candidates with an overall pass rate of 69%. The pass

rate in the C0 subgroup is 93% (14 out of 15) which drops to 47% (8 out of 17) in

notC0. It shows the effect of consistency on candidates’ success is strong in this

slice and the chi-square test result shows a highly significant difference between

subgroups.

Table 6.22: Consistency and binary course results – prior programming course =
no

Result C0 notC0 Total
Pass 14 8 22
Fail 1 9 10
Total 15 17 32
χ2 = 7.942, df = 1, p < 0.005

highly significant
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Table 6.23: Summarising consistency and binary course mark – groups

Groups
Pass rate

χ2 df p Size
Consistent Inconsistent

CM2/notCM2 87% (21 of 23) 56% (27 of 48) 6.552 1 0.010 71
C0/notC0 80% (35 of 44) 44% (12 of 27) 9.213 1 0.002 71
C/notC 79% (41 of 52) 32% (6 of 19) 13.894 1 0.001 71

6.1.4 Summarising the Newcastle experiment

The result of this experiment supported the result of the initial experiment (sec-

tion 4.4). The effect of consistency on success was examined in three different

group arrangements and with seven different filtering arrangements which might

have had an effect on the result. Table 6.23 shows a summary of the group

arrangements. Observing a relatively strong effect in the CM2/notCM2 sub-

groups (87%/56%) is not surprising (discussed in 6.1.3) but the size of the effect

in C0/notC0 (80%/44%) and C/notC (79%/32%) group arrangements is even

larger. The chi-square test shows the test result significantly separated the sub-

groups, in favour of the consistent subgroup in each case.

Table 6.24 shows a summary of the effect of consistency in seven sub-

populations: candidates outside the CM2 subgroup; candidates with prior pro-

gramming experience; candidates without prior programming experience; candi-

dates with relevant experience; candidates without relevant experience; candi-

dates with a prior programming course; candidates without a prior programming

course. A strong effect persisted in each filtered sub-population and was sig-

nificant in every case, except for the subgroup without relevant programming

experience. The weaker effect of consistency in candidates with no relevant pro-

gramming experience in this experiment suggests that consistency might be an

effect of relevant programming experience. I pursue this issue below in other

experiments and examine the overall effect by meta-analysis.

Applicants with prior programming experience may often be preferred to those

without, both in university admissions and in employment. But table 6.25 sug-

gests that there is no significant association between programming background

and candidates’ success. The pass rate of the candidates with/without prior

programming experience are almost the same, and attendance at a prior pro-

gramming course has no effect on the pass rate either. Note also that in every
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Table 6.24: Summarising consistency and binary course mark – filters

Slices
Pass rate

χ2 df p Size
C0 notC0

CM2 excluded 65% (15 of 23) 44% (12 of 27) 4.428 1 0.062 48
Prior experience 79% (26 of 33) 23% (3 of 13) 12.424 1 0.001 46
No prior experience 85% (11 of 3) 33% (2 of 6) 4.997 1 0.025 19
Relevant experience 79% (19 of 24) 11% (1 of 9) 12.698 1 0.001 33
No relevant experience 80% (12 of 15) 59% (10 of 17) 1.663 1 0.197 32
Prior course 76% (16 of 21) 33% (3 of 9) 4.178 1 0.041 30
No prior course 93% (14 of 15) 47% (8 of 17) 7.942 1 0.005 32

Table 6.25: Summarising prior programming factors and course binary mark

Slices
Pass rate

χ2 df p Size
yes no

Prior experience 63%(29 of 46) 68%(13 of 19) 0.170 1 0.680 65
Relevant experience 61%(20 of 33) 69%(22 of 32) 0.471 1 0.492 65
Prior course 63%(19 of 30) 69%(22 of 32) 0.203 1 0.652 62

case those without prior programming did better than those with – though the

effect is not significant.

6.2 Middlesex University - 2006

Experiment conducted by the author in the School of Computing Sci-

ence, Middlesex University, UK.

The experiment was carried out in the academic year 2006/2007. The test was

administered once, before the course began (week 0). 118 subjects participated,

26 subjects withdrew before week 7 and 20 more withdrew by the end of the

course.

6.2.1 Assessment method

Students had to undertake two quizzes in weeks 7 and 11. The week 7 quiz

contained sixteen multiple-choice questions ranging from trivial bookwork (e.g.

figure 6.1) to technical analysis (e.g. figure 6.2), and two creative questions (e.g.

figure 6.3). The week 11 quiz had write-in bookwork questions (e.g. figure 6.4),

technical write-in questions (e.g. figure 6.5) and longer creative questions (e.g.

figure 6.6).
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Figure 6.1: A bookwork multiple-choice question from the week 7 in-course exam
(1 mark)

Figure 6.2: A bookwork multiple-choice question from the week 7 in-course exam
(1 mark)
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Figure 6.3: A technical creative question from the week 7 in-course exam (5
marks)

Figure 6.4: A bookwork write-in question from the week 11 in-course exam (1
mark)

Figure 6.5: A technical write-in question from the week 11 in-course exam (1
mark)
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Figure 6.6: A technical creative question from the week 11 in-course exam (5
marks)
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Table 6.26: Consistency levels in the first quiz

Active Withdrew
C0 35 6
C1 3 0
C2 8 2
C3 10 8
I 24 4
B 12 6
Total 92 26

Table 6.27: Consistency and active/withdrew in the first quiz

Active Withdrew
C 56 16
I/B 36 10
Total 92 26
χ2 = 0.004, df = 1, p < 0.95

not significant

Since the difficulty of the questions and the number of subjects who withdrew

were considerably different in the first and the second quiz, I decided to analyse

each quiz result separately.

6.2.2 Result of the first quiz

From 118 participants, 26 were absent in the first quiz, leaving 92 active subjects.

35 subjects were assessed as C0, three as C1, eight as C2, ten as C3, 24 as I and

12 as B. Table 6.26 shows the population of candidates in consistency subgroups.

In order to examine if the withdrawn population is significantly different from

the active population, I combined the consistent subgroups (C0, C1, C2, C3)

as C and, the other subgroups (I, B) as I/B to avoid small expected numbers

in the chi-square test. Table 6.27 shows that the withdrawn subgroup was not

significantly different from the active population.

6.2.3 Analysing the first quiz

C0 was large but unlike the Newcastle experiment C1-C3 were together not very

small. Table 6.28 shows a weak effect of consistency on candidates’ success in the
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Table 6.28: Consistency and the first quiz result

Result C0 C1-3 IB Total
Pass 27 (77%) 11 (55%) 20 (54%) 58
Fail 8 9 17 34
Total 35 20 37 92

χ2 = 4.825, df = 2, p < 0.090
not significant

Table 6.29: Summarising consistency and the first quiz result – grouped

Groups
Pass rate

χ2 df p Size
Consistent Inconsistent

CM2/notCM2 100% (11 of 11) 58% (47 of 81) 7.324 1 0.007 92
C0/notC0 77% (27 of 35) 54% (31 of 57) 4.820 1 0.028 92
C/notC 70% (39 of 56) 53% (19 of 36) 2.675 1 0.102 92

first quiz result. 77% (27 out of 35) in the C0 subgroup passed the course while

this figure is 54% (31 out of 57) in notC0. A chi-square test shows there is not a

significant difference between subgroups.

Table 6.29 summarises the effect of consistency on CM2/notCM2, C0/notC0

and C/notC slices. As expected the effect is large in CM2/notCM2 subgroup

(100%/58%) and highly significant (p < 0.007). The effect became weak in the

C0/notC0 (77%/54%) and even weaker in C/notC (70%/53%) group arrangem-

nets. Although the consistent subgroup achieved a better result than the incon-

sistent subgroup in these two cases, consistency did not significantly separate the

subgroups.

Consistency and success rate in sub-populations: first quiz

The effect of consistency on results is shown in table 6.30 within seven different

slices. Candidates in the C0 subgroup achieved a better result than the rest in

each slice, but the effect of consistency is weak and chi-square shows no signif-

icant difference between subgroups in five of the slices. The effect was strong

in the subgroup with relevant programming experience (94%/54%) and signif-

icant (p < 0.013). The effect was almost strong in the subgroup with prior

programming course (79%/55%) but chi-square did not separate the subgroups

significantly (p < 0.051). Notice that the assessment mechanism in the first quiz
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Table 6.30: Summarising the consistency (C0/notC0) and the first quiz result –
sliced by programming background

Slices
Pass rate

χ2 df p Size
C0 notC0

CM2 excluded 67% (16 of 24) 54% (31 of 57) 1.046 1 0.306 81
Prior experience 75% (9 of 12) 48% (16 of 33) 2.506 1 0.113 45
No prior experience 78% (18 of 23) 62% (13 of 21) 1.411 1 0.235 44
Relevant experience 94% (15 of 16) 54% (7 of 13) 6.237 1 0.013 29
No relevant experience 63% (12 of 19) 54% (22 of 41) 0.477 1 0.490 60
Prior course 79% (19 of 24) 55% (22 of 40) 3.805 1 0.051 64
No prior course 73% (8 of 11) 58% (7 of 12) 0.524 1 0.469 23

Table 6.31: Summarising prior programming factors and the first quiz result

Slices
Pass rate

χ2 df p Size
yes no

Prior experience 55% (25 of 45) 70% (31 of 44) 2.117 1 0.146 89
Relevant experience 76% (22 of 29) 57% (34 of 60) 3.088 1 0.079 89
Prior course 64% (41 of 64) 65% (15 of 23) 0.01 1 0.920 87

was non-technical and it did not separate consistent and inconsistent subgroups

significantly.

Programming background and success rate: first quiz

Table 6.31 shows the effect of programming background on pass rates when candi-

dates who did not answer questions about their prior programming experience are

eliminated. Programming experience had a negative effect (55%/70%), relevant

programming experience had a low effect (76%/57%) and attending programming

course had no visible effect (64%/65%) on candidates’ success.

6.2.4 Result of the second quiz

From 118 potential participants in the second quiz, 46 were absent leaving 72

active subjects. 28 subjects were assessed as C0, two as C1, five as C2, seven

as C3, 19 as I and 11 as B. Table 6.32 shows the population of candidates and

consistency subgroups. Table 6.33 shows that the withdrawn subgroup was not

significantly different from the active population.
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Table 6.32: Consistency levels among population in the second quiz

Active Withdrew
C0 28 13
C1 2 1
C2 5 5
C3 7 11
I 19 9
B 11 7
Total 72 46

Table 6.33: Consistency and active/withdrew divisions in the second quiz

Consistency Active Withdrew
C 42 30
I/B 30 16
Total 72 46

χ2 = 0.559, df = 1, p < 0.455
not significant

6.2.5 Analysing the second quiz

Table 6.34 shows the effect of candidates’ consistency in the second quiz result.

The effect of consistency on candidates’ success is large. 79% (22 out of 28)

candidates in C0 passed the couse and the figure drops to 27% (12 out of 44)

in the notC0 subgroup. A chi-square test also shows that consistency has a

significant effect to separate the subgroups.

Table 6.35 shows a summary of the results in three slices (CM2/notCM2,

C0/notC0, C/notC). The table shows that the consistent subgroup performed

much better than the inconsistent subgroup. As expected the effect is large

Table 6.34: Consistency and the second quiz result

Result C0 C1-3 IB Total
Pass 22 (79%) 5 (38%) 7 (29%) 34
Fail 6 8 24 38
Total 28 13 31 72

χ2 = 18.994, d = 2, p < 0.001
highly significant
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Table 6.35: Summarising consistency and the second quiz result – grouped

Groups
Pass rate

χ2 df p Size
Consistent Inconsistent

CM2/notCM2 89% (8 of 9) 41% (26 of 63) 7.652 1 0.022 72
C0/notC0 79% (22 of 28) 27% (12 of 44) 18.067 1 0.001 72
C/notC 64% (27 of 42) 23% (7 of 30) 11.776 1 0.001 72

in CM2/notCM2 (89%/41%), but it is also large in C0/notC0 (79%/27%) and

in C/notC (64%/23%). The chi-square test shows that the result is strongly

significant to separate the candidates in each group arrangement. The second

quiz required candidates to write program code and they could not have done

this without basic programming knowledge. This quiz seems to have been a

stronger assessment mechanism than the first quiz and thus could separate the

consistent and inconsistent subgroups.

Consistency and success rate in sub-populations: second quiz

Table 6.36 shows the effect of consistency when candidates are filtered by their

programming background. The consistent subgroup within each slice achieved

much better results than the inconsistent subgroup and the effect of consistency

is large in each slice. The chi-square test shows strongly significant differences

between the subgroups in six slices. Consistent candidates performed almost

twice as well as inconsistent candidates in the sub-population with no prior expe-

rience (67%/33%), although the chi-square test shows only a weak significance.

The pattern of results is very similar to that seen in the Newcastle experiment,

except for the weak effect in the sub-population without relevant programming

experience in the Newcastle experiment (80%/59%).

Programming background and success rate: second quiz

Table 6.37 shows the effect of prior programming experience on pass rates when

candidates who did not answer questions about their prior programming ex-

perience are eliminated. There is no large or significant effect of prior pro-

gramming background on candidates’ success. Relevant programming experience

was observed to have some effect (62%/42%) but prior programming experience

(51%/44%) and prior programming course (51%/44%) none. The chi-square re-



6.2 Middlesex University - 2006 118

Table 6.36: Summarising consistency (C0/notC0) and the second quiz result –
sliced by programming background

Slices
Pass rate

χ2 df p Size
C0 notC0

CM2 excluded 74% (14 of 19) 27% (12 of 44) 17.104 1 0.001 63
prior experience 88% (14 of 16) 70% (5 of 17) 11.386 1 0.001 33
No prior experience 67% (8 of 12) 33% (8 of 24) 3.600 1 0.058 36
Relevant experience 100%(10 of 10) 27% (3 of 11) 11.748 1 0.001 21
No relevant experience 67% (12 of 18) 27% (8 of 30) 7.406 1 0.007 48
Prior course 77% (17 of 22) 31% (9 of 29) 10.702 1 0.001 51
No prior course 86% (6 of 7) 20% (2 of 10) 7.137 1 0.008 17

Table 6.37: Summarising prior programming factors and the second quiz result

Slices
Pass rate

χ2 df p Size
yes no

Prior experience 51% (17 of 33) 44% (16 of 36) 0.345 1 0.557 69
Relevant experience 62% (13 of 21) 42% (20 of 48) 2.398 1 0.121 69
Prior course 51% (26 of 51) 44% (8 of 17) 0.078 1 0.780 68

sult also shows that the prior programming factor did significantly separate the

candidates.

6.2.6 Summarising the Middlesex experiments

Although the result of the first quiz indicated a weak effect of consistency on

subjects’ success rate, the numbers were in the right direction – the consistent

subjects did better than the others. The result of the second quiz showed the

same effect, but much more strongly. It seems possible that the different level of

difficulty of the two quizzes produced this distinction.

In the second quiz, the effect of consistency on success rate was shown to be

strong in the CM2/notCM2, C0/notC0 and C/notC divisions and in six out of

seven sub-populations filtered by programming background. The effect was weak

only when candidates with no prior programming experience were examined.

None of the prior programming elements had a strong effect on candidates’

success in the Middlesex experiments. The pass rate of candidates with prior pro-

gramming experience was slightly higher than those who had never programmed

before in the second experiment and very similar in the first one. Attending a

prior course had no effect on candidates’ success in either experiment.
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Table 6.38: Consistency levels

Consistency level Active
C0 43
C1 0
C2 0
C3 2
I 12
B 1
Total 58

6.3 University of Sheffield - 2007

Experiment conducted by Peter Rockett, Department of Electronic

Engineering, University of Sheffield, UK.

In this experiment the test was administered at the beginning of the aca-

demic year 2007/2008. The test was administered once, before the course began

(week 0). 58 subjects participated in this study and all were present in the final

examination.

6.3.1 Assessment method

The assessment mechanism consisted of a compulsory group-work assignment

and a formal examination which had to be taken at the end of the academic year.

In both the group-work assignment and the formal examination, subjects were

required to write program code for particular problem-solving purposes.

6.3.2 Test result

Table 6.38 shows the candidate population. 43 subjects (74%) were assessed as

C0, two as C1-3, twelve (21%) as I and one as B.

6.3.3 Analysing the result

Joining models in the marksheet hardly expanded the C group; C0 is large and

C1-C3 are very small. Table 6.39 shows the effect of consistency on the binary

exam result. Chi-square suggests that the effect is strongly significant, but two

cells contain small expected numbers which undermines this result.
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Table 6.39: Consistency and the binary course mark

Result C0 C1-3 IB Total
Pass 39 (91%) 2 5 (38%) 46
Fail 4 0 8 12
Total 43 2 13 58

χ2 = 17.139, d = 2, p < 0.0001
very highly significant

Table 6.40: Summarising consistency and the binary course mark – grouped

Groups
Pass rate

χ2 df p Size
Consistent Inconsistent

CM2/notCM2 72% (8 of 11) 81% (38 of 47) 0.359 1 0.549 58
C0/notC0 91% (39 of 43) 47% (7 of 15) 13.139 1 0.0001 58
C/notC 91% (41 of 45) 38% (5 of 13) 17.039 1 0.0001 58

Table 6.40 shows a summary of the results in three slices (CM2/notCM2,

C0/notC0 and C/notC). The table shows, as in the Newcastle experiments,

that the consistent subgroup produced much better results than the incon-

sistent subgroup in both the C0/notC0 and C/notC group arrangement with

strongly significant difference between subgroups. Surprisingly there is no effect

in CM2/notCM2 and chi-square shows no significance. It can be explained per-

haps by the fact that about half of the CM2 population (5 out of 11) in the

Sheffield experiment reported no prior programming experience.

Consistency and success rate in sub-populations

The effect of consistency on candidates result is shown in table 6.41 within seven

different slices. Subjects in two slices (with prior experience, with relevant expe-

rience) were all in C0 and in one slice (with prior course) there was only one in

notC0, effectively leaving four slices for analysis. The effect of consistency in these

slices are large and chi-square shows a strongly significant difference between sub-

groups. Note that the effect of consistency in the sub-population without relevant

programming experience, which was weak in the Newcastle experiment, is strong

in this experiment.
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Table 6.41: Summarising consistency and the binary course mark – filtered

Slices
Pass rate

χ2 df p Size
C0 notC0

CM2 excluded 97% (31 of 32) 47% (7 of 15) 16.629 1 0.001 47
Prior experience 93% (13 of 14) none none none none 14
No prior experience 90% (26 of 29) 47% (7 of 15) 9.744 1 0.002 44
Relevant experience 86% (6 of 7) none none none none 7
No relevant experience 92% (33 of 36) 47% (7 of 15) 12.675 1 0.001 51
prior course 80% (8 of 10) 0.0% (0 of 1) 2.933 1 0.087 11
No prior course 94% (31 of 33) 50% (7 of 14) 12.258 1 0.001 47

Table 6.42: Summarising prior programming factors and binary course mark –
sliced

Slices
Pass rate

χ2 df p Size
yes no

Prior experience 93% (13 of 14) 75% (33 of 44) 2.064 1 0.151 58
Relevant experience 86% (6 of 7) 78% (40 of 51) 0.199 1 0.655 58
Prior course 93% (13 of 14) 81% (38 of 47) 0.359 1 0.549 58

Background and success rate

Table 6.42 shows the effect of prior programming experience on pass rates when

candidates who did not answer questions about their prior programming expe-

rience are eliminated. Although none of the programming background elements

had a significant effect on candidates’ success, prior programming experience is

shown to have a slightly bigger effect than the other two factors. The relatively

strong effect of prior relevant experience on success, which was observed in both

Middlesex experiments, has entirely vanished in this experiment.

6.3.4 Summarising the Sheffield experiment

As in the Newcastle and the second quiz at Middlesex experiments, the effect of

consistency on success rate was highly significant. The effect was strong and also

significant in the four subgroups sliced by prior programming background which

could be analysed.

None of the programming background aspects had a significant positive effect

on candidates’ success in this experiment, although the pass rate of the candidates

with prior programming experience was slightly higher than those who never did

programming before.
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Table 6.43: Consistency levels

Consistency level Active
C0 62
C1 3
C2 10
C3 5
I 25
B 5
Total 110

6.4 University of Westminster - 2008

Experiment conducted by Christopher Thorpe, Department of Com-

puting Science, University of Westminster, UK.

The test was administered once, at the beginning of the academic year

2007/2008. 139 subjects participated in this study; 29 were not present in the

final examination, leaving 110 active subjects. I did not have access to the test

score of withdrawn subjects.

6.4.1 Assessment method

A compulsory formal examination was taken at the end of the academic year. I

had no access to the examination paper.

6.4.2 Test result

Table 6.43 shows the candidate population. 62 subjects were assessed as C0, 25

as I and five as B. There were 18 in C1-C3: compared to other experiments, this

is quite high.

6.4.3 Analysing the result

Joining models in the mark-sheet expanded the C groups quite a lot in this

experiment, but the C0 subgroup, with 62 subjects, is still the largest and I, with

25 subjects, is the second largest. Table 6.44 shows the effect of consistency on

success. The effect is weak (77%/60%) and chi-square also shows that the effect
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Table 6.44: Consistency and the binary course mark

Result C0 C1-3 I/B
Pass 48 (77%) 12 (66%) 17 (57%) 77
Fail 14 6 13 33
Total 62 18 30 110

χ2 = 4.260, d = 2, p < 0.119
not significant

Table 6.45: Summarising consistency and binary course mark – grouped

Groups
Pass rate

χ2 df p Size
Consistent Inconsistent

CM2/notCM2 75% (6 of 8) 70% (71 of 102) 0.103 1 0.749 110
C0/notC0 77% (48 of 62) 60% (29 of 48) 3.724 1 0.054 110
C/notC 75% (60 of 80) 57% (17 of 30) 3.492 1 0.062 110

is not significant. Although the effect is weak and not significant the pattern of

success is slightly in favour of consistent subjects.

Table 6.45 shows a summary of the results in three group arrangements

(CM2/notCM2, C0/notC0 and C/notC). As in the Sheffield experiment the effect

was surprisingly weak in the CM2/notCM2 group arrangement, except with a the

difference that this time only one candidate in the CM2 population reported no

programming background. The consistent subgroup achieved slightly better than

the inconsistent subgroup in the two other cases but not significantly so. The

effect on consistency in every group arrangement is weak and the chi-square test

did not show significance in any of these cases.

Consistency and success rate

Table 6.46 shows that the consistent subgroup achieved a better result in every

slice than the inconsistent subgroup even though the chi-square test result shows

no significance in all but one case. The effect more or less disappears in subjects

without prior programming experience and those who attended a programming

course before.

Despite the fact that the result of this experiment and the first at Middlesex

do not significantly support my hypothesis, they are included as they should be

in the meta-analysis (chapter 7).
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Table 6.46: Summarising consistency and binary course mark – filtered

Slices
Pass rate

χ2 df p Size
C0 notC0

CM2 excluded 78% (42 of 54) 60% (29 of 48) 3.621 1 0.057 102
Prior experience 85% (34 of 40) 60% (15 of 25) 5.182 1 0.023 65
No prior experience 62% (10 of 16) 60% (12 of 20) 0.023 1 0.878 36
Relevant experience 80% (12 of 15) 50% (3 of 6) 1.890 1 0.169 21
No relevant experience 76% (31 of 41) 61% (24 of 39) 1.842 1 0.175 80
Prior course 77% (27 of 35) 70% (18 of 26) 0.483 1 0.487 61
No prior course 93% (13 of 14) 50% (8 of 16) 6.531 1 0.011 30

Table 6.47: Summarising programming background factors and binary course
mark – sliced

Slices
Pass rate

χ2 df p Size
yes no

Prior experience 75% (49 of 65) 61% (22 of 36) 2.261 1 0.133 101
Prior relevant experience 71% (15 of 21) 69% (55 of 80) 0.056 1 0.813 101
Prior course 74% (45 of 61) 70% (21 of 30) 0.143 1 0.705 91

Programming background and success rate

Table 6.47 shows the effect of programming background on pass rates when can-

didates who did not answer questions about prior programming experience are

eliminated. Prior programming experience appeared to have a slight effect, al-

though it is not significant. None of the other programming background factors

had even a weak effect on candidates’ success in this experiment.

6.4.4 Summarising the Westminster experiment

Although there was no significant effect of consistency in this experiment, the

numbers were in the right direction – the consistent subjects did better than

the others. It is possible that the assessment method was not strong enough to

separate consistent and inconsistent subgroups clearly, or that the candidates were

not drawn from the same population as the participants of the other experiments

in this study. As in the other experiments, the programming background factors

had no significant effect on the candidates’ success.
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Table 6.48: Consistency levels

Consistency level Active
C0 99
C1 1
C2 0
C3 3
I 0
B 2
Total 105

6.5 University of York - 2006

Experiment conducted by Dimitar Kazakov, Department of Computer

Science, University of York, UK. The test was administered at the beginning

of the academic year 2006/2007. 109 subjects participated, of whom 4 withdrew

before the final exam.

6.5.1 Assessment method

The assessment mechanism consisted of three compulsory group-work assign-

ments, and a formal examination taken at the end of the academic year.

6.5.2 Test result

Table 6.48 shows the candidate population. 94% (99 out of 105) of subjects were

assessed as C0, 4 as C1-3, none as I and two as B.

6.5.3 Analysing the result

Joining models in the marksheet did not expand the C group very much: C0 is

huge and C1-C3 is tiny. Table 6.49 shows the effect of candidates’ consistency

on the binary exam results. The effect is large (92%/50%) and chi-square shows

that the effect is highly significant but expected values in most cells are too small

for us to rely on the result.

Table 6.50 summarises the effect of consistency in three group arrangements of

CM2/notCM2, C0/notC0 and C/notC. Like the experiment in Westminster the

effect was surprisingly weak in CM2/notCM2 group arrangement (92%/78%) and
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Table 6.49: Consistency levels and the binary course mark

Result C0 C1-3 I/B Total
Pass 91 (92%) 2 1 94
Fail 8 2 1 11
Total 99 4 2 105

χ2 = 10.599, d = 2, p < 0.005
highly significant

Table 6.50: Summarising consistency and binary course mark – grouped

Groups
Pass rate

χ2 df p Size
Consistent Inconsistent

CM2/notCM2 92% (80 of 87) 78% (14 of 18) 3.196 1 0.074 105
C0/notC0 92% (91 of 99) 50% (3 of 6) 10.599 1 0.001 105
C/notC 90% (93 of 103) 50% (1 of 2) 3.396 1 0.065 105

chi-square shows no significant difference between CM2 and notCM2 populations.

In this experiment 7 candidates in the CM2 population reported no programming

background but all passed the course, so they are not the cause of the weak effect.

The consistent subgroups in the other two group arragements achieved much

better results than the inconsistent subgroup and the effect was large (92%/50%

and 90%/50%) and strongly significant in C0/notC0 – but again, too few in the

inconsistent subgroup to believe it.

Consistency and success rate

Table 6.51 shows that only 18 subjects remained when CM2 subjects are excluded.

This means that 87 subjects (83%) were in the CM2 subgroup out of 91 subjects

(87%) who reported prior programming experience. Therefore when candidates

were filtered in seven slices by background programming factors, most were in the

C0 subgroup, and only a small number were left in notC0 in each slice. We should

not pay too much attention to the chi-square test results of these slices when the

figures in the notC0 group are so small. But the results of this experiment are

included as they should be in the meta-analysis (chapter 7) as a top-extreme case,

an experiment with a programming-skilful population.
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Table 6.51: Summarising consistency and binary course mark – filtered

Slices
Pass rate

χ2 df p Size
C0 notC0

CM2 excluded 92% (11 of 12) 50% (3 of 6) 4.018 1 0.045 18
Prior experience 92% (81 of 88) 100% (3 of 3) 0.259 1 0.611 91
No prior experience 91% (10 of 11) 0.0% (0 of 3) 9.545 1 0.002 14
Relevant experience 95% (54 of 57) 100% (1 of 1) 0.056 1 0.814 58
No relevant experience 88% (37 of 42) 40% (2 of 5) 7.318 1 0.007 47
prior course 94% (61 of 65) 50% (3 of 6) 11.883 1 0.001 71
No prior course 88% (30 of 34) none none none none 34

Prior programming experience and success rate

Table 6.52 shows the effect of programming background on pass rates when can-

didates who did not answer questions about prior programming experience are

eliminated. Prior programming experience had an effect and relevant experience

had a weak effect on candidates success (92%/71% and 95%/85%) and the chi-

square test shows the effect significantly separated the subgroups (p < 0.02 and

p < 0.049). There is no effect of prior programming course. There are a num-

ber of elements which separate the York experiment from the other experiments

which were conducted in this study:

• The distribution of subjects in the consistent subgroups was entirely dif-

ferent. 94% (99 out of 105) of subjects were in C0 and there were none in

I.

• 87 subjects (88%) in C0 were in the CM2 subgroup (using the correct model

of Java).

• 87% (91 out of 105) had prior programming experience.

• 68% (71 out of 105) had attended a programming course before.

6.5.4 Summarising the York experiment

The population in the York experiment was clearly different from the popula-

tion in other experiments of this study. The huge number of subjects in the

CM2/C0/C and tiny numbers in notC0/notC caused many cells to be too small

to give a reliable result.
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Table 6.52: Summarising programming background elements and binary course
mark – sliced

Slices
Pass rate

χ2 df p Size
yes no

Prior experience 92% (84 of 91) 71% (10 of 14) 5.64 1 0.020 105
Relevant experience 95% (55 of 58) 88% (39 of 47) 3.886 1 0.049 105
Prior course 90% (30 of 34) 88% (64 of 71) 0.089 1 0.765 105

When examining the overall effect of consistency on success, I consider this

experiment as a top-extreme case, because the population had a strong program-

ming background, and I consider the first Middlesex experiment as a bottom-

extreme case because of its non-technical assessment mechanism.

6.6 University of Aarhus - 2006

Experiment conducted by Michael E. Caspersen, Jens Bennedsen,

Kasper Dalgaard Larsen, Department of Computer Science, Univer-

sity of Aarhus, Denmark.

The experiment was carried out in the first week of the academic year

2006/2007. 142 subjects participated in this study and all were present in the

final examination.

6.6.1 Assessment method

The assessment mechanism was a computerised online task where students could

accumulate marks step-by-step in accomplishing the task.

6.6.2 Test result

Table 6.53 shows the candidate population reported in Caspersen et al. (2007).

124 subjects (87%) were assessed as C, 18 (13%) as notC. The table shows that

there is no significant effect of consistency on success in this experiment. I did

not have access to any further data for analysis.

As I discussed earlier, the effect of consistency on success was low in the first

Middlesex experiment, compared to other experiments. I speculate that the effect

of consistency to separate candidates, into consistent and inconsistent subgroups,
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Table 6.53: Consistency among population

Result C notC Total
Pass 120 16 136
Fail 4 2 6
Total 124 18 142
(χ2 = 1.888, d = 1, p < 0.169)

not significant

could be weakened by a non-technical assessment mechanism. The examination

mechanism in Aarhus, accumulating marks through an online process, was totally

different from the assessment mechanism of the other experiments in this study.

The experimenters appeared to have believed, based on reading of Dehnadi

and Bornat (2006), that my test is psychometric and can be taken at anytime.

Their experiment refutes that notion, but it is not one that I put forward in this

thesis.

6.7 Royal School of Signals, Blandford - 2007

Experiment conducted by Stuart Wray, Royal School of Signals, Bland-

ford, UK.

Baron-Cohen et al. (2003) exposed an association between classical autism and

people such as scientists, mathematicians and engineers who are systematizers,

skilled at inventing, using and analysing systems.

Wray (2007), inspired by Baron-Cohen et al. (2001) and Baron-Cohen et al.

(2003), administered four tests: the SQ (Systemizing Quotient) test and the

EQ (Empathy Quotient) test; a self-ranking test; and the original version of

my instrument (chapters 4 and 5) to 19 students of a postgraduate course, five

months after the end of the course. Wray correlated the results with students’

end of course programming test result. He found some interesting associations.

He found a correlation between the SQ and EQ results and programming

ability which became stronger when he examined SQ–EQ (score in Systemiz-

ing Quotient minus score in Empathy Quotient). SQ–EQ has been shown to

be significantly different for males, females and Asperger syndrome individuals

(Baron-Cohen et al., 2003).

In contrast, for this group of students, there was no association between pro-
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Table 6.54: Success rates

NewC Mdx1 Mdx2 Shef West York Overall
Population 71 92 72 58 110 105 508
Success 66% 63% 47% 79% 70% 90% 70%

gramming ability measured by exam mark and either the self-ranking test result

or my test.

Wray appears to have believed, based on reading of Dehnadi and Bornat

(2006) that my test is psychometric. But that is not a claim that I put forward

in this thesis. Wray has not noticed that my test will be ruined by candidates’

prior knowledge of assignment and sequence. Conducting the test five months

after the end of the course demonstrates only that most subjects have moved to

the CM2 subgroups who know the correct model of assignment and sequence.

6.8 Summary of further experiments

The pass rates in the experiments and overall are shown in table 6.54. The pass

rate in the second Middlesex experiment is exceptionally low, in Sheffield high

and in York exceptionally high. There is a gradient in UK universities in the prior

achievement levels of admitted students: Middlesex and Westminster are towards

the lower end, Sheffield and York towards the higher. Differences in pass rates

may reflect this. The first and second Middlesex experiments were successive

in-course examinations of the same cohort.

Table 6.55 shows the effects of background factors on success (the small num-

ber who did not reply in each case are ignored). There were few strong differences

in the figures. Effects of age and sex are not analysed here: there were very small

numbers of women in the experiments, too small to analyse with the tools I had

available; and the very small age spread in the populations, typically two or three

years, showed almost no differences in the experiments in which I analysed it.

Table 6.56 shows the success rates of consistent subjects against the rest, in

C0/notC0 and C/notC divisions.

Table 6.57 shows the effect of consistency on success in subgroups in separate

experiments. I added the CM2/notCM2 group arrangement as the top row of

this table. To see whether the effect of consistency was simply the effect of prior
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Table 6.55: Effect of programming background on success in separate experiments

NewC Mdx1 Mdx2 Shef West York Overall
pop succ pop succ pop succ pop succ pop succ pop succ pop succ

Prior
experience

yes 46 63% 45 56% 33 52% 14 93% 65 75% 91 92% 294 74%
no 19 68% 44 70% 36 44% 44 75% 36 61% 14 71% 193 65%

Relevant
experience

yes 33 61% 29 76% 21 62% 7 86% 21 71% 58 95% 169 78%
no 32 69% 50 68% 48 42% 51 78% 80 69% 47 83% 308 68%

Prior
course

yes 30 63% 64 64% 51 51% 14 93% 61 74% 34 88% 254 69%
no 32 69% 23 65% 17 47% 47 81% 30 70% 71 90% 220 76%

Table 6.56: Effect of consistency on success in separate experiments

NewC Mdx1 Mdx2 Shef West York Overall
pop succ pop succ pop succ pop succ pop succ pop succ pop succ

C0 44 80% 35 77% 28 79% 43 91% 62 77% 99 92% 311 84%
notC0 27 44% 57 54% 44 27% 15 47% 48 60% 6 50% 197 48%
C0-C3 52 79% 56 70% 42 64% 45 91% 80 75% 103 90% 378 80%

notC 19 32% 36 53% 30 23% 13 38% 30 57% 2 50% 130 42%

learning of programming, I looked at this row, and I looked again at subjects

outside the CM2 group (incorrect model) divided by C0/notC0. Then I looked

at each of the subgroups defined by the background questions analysed in table

6.55. The CM2 group does generally better than the rest in every experiment

but one – the exception is Sheffield. In the rest of the table in every single case

the C0 group does better than notC0, usually by a considerable margin.

The effect was weakest in the first Middlesex, Westminster and York exper-

iments. In Newcastle, second Middlesex and Sheffield consistent subjects did

about twice as well as the rest. At York, as at Aarhus, most subjects scored

consistently in the test (99 out of 105 in York, 124 out of 142 in Aarhus). To

evaluate more reliably the claim that consistency has a noticeable effect on suc-

cess in learning to program, the results of the experiments were combined in a

meta-analysis. There were so few non-consistent subjects at York that I could

put little weight on that particular result, but I can, as I should, include it in the

meta-analysis.
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Table 6.57: Effect of consistency on success in subgroups, separate experiments

NewC Mdx1 Mdx2 Shef West York Overall
pop succ pop succ pop succ pop succ pop succ pop succ pop succ

Correct
model

CM2 23 87% 11 100% 9 89% 11 73% 8 75% 87 92% 149 89%
notCM2 48 56% 81 58% 63 41% 47 81% 102 70% 18 78% 359 62%

Incorrect
model

C0 21 71% 24 67% 19 74% 32 97% 54 78% 12 92% 162 80%
notC0 27 44% 57 54% 44 27% 15 47% 48 60% 6 50% 197 48%

With prior
experience

C0 33 79% 12 75% 16 88% 14 93% 40 85% 88 92% 203 87%
notC0 13 23% 33 48% 17 18% 0 25 60% 3 100% 91 44%

No prior
experience

C0 13 85% 23 78% 12 66% 29 90% 16 62% 11 91% 104 80%
notC0 6 33% 21 62% 24 33% 15 47% 20 60% 3 0% 89 47%

With rele-
vant exp

C0 24 79% 16 94% 10 100% 7 86% 15 80% 57 95% 129 90%
notC0 9 11% 13 54% 11 27% 0 7 50% 1 100% 40 38%

No rele-
vant exp

C0 15 80% 19 63% 18 67% 36 92% 41 76% 42 88% 171 80%
notC0 17 59% 40 55% 30 27% 15 47% 39 63% 5 40% 146 50%

With prior
course

C0 21 76% 24 79% 22 77% 10 80% 35 77% 65 94% 177 84%
notC0 9 33% 40 55% 29 31% 1 0% 26 69% 6 50% 111 50%

No prior
course

C0 15 93% 11 73% 7 86% 33 94% 14 93% 34 88% 114 89%
notC0 17 47% 12 58% 10 20% 14 50% 16 50% 0 69 46%



Chapter 7

Meta-analysis

The Winer procedure of meta-analysis (Winer et al., 1971) was used to examine

the overall effect of consistency and/or programming background on success. The

procedure combines p values from χ2 analysis of separate experiments – the prob-

ability of obtaining the effect by accident – to give an overall p value. Because

this is a meta-analysis of several experiments, our threshold significance value is

set at a conservative 0.01 (1%).

7.1 Overall effect of programming background

The overall effect of programming experience, relevant programming experience

and prior course on candidates’ success was examined. The population, success

rate, chi-square (χ2) and probability (p) values were extracted from tables 6.25,

6.31, 6.37, 6.42, 6.47 and 6.52. Tables 7.1, 7.2 and 7.3 give the results.

Meta-analysis in table 7.1 shows prior programming experience had a weak

effect on success overall. The weak effect was driven by 60% of candidates with

prior programming experience overall. The success rate in table 7.1 shows that

prior programming experience had a negative effect on success in the Newcastle

and Middlesex first experiments. The effect was weak in the second Middlesex

and Westminster experiments. The York experiment with 86% experienced candi-

dates and 83% CM2 population (see table 6.57) had a strong weight in the overall

weak effect. The significance drops to 0.2 < p < 0.3 if the York experiment is

eliminated. The overall effect has not been driven by any other experiments.

Meta-analysis in table 7.2 shows prior relevant programming experience had a

weak effect on success overall, also not significant (0.1 < p < 0.2), with a negative

133
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Table 7.1: Overall effect of programming experience on success

pop succ χ2 p −ln(p)

NewC
yes 46 63%

0.170 0.680 0.38566
no 19 68%

Mdx1
yes 45 55%

2.117 0.146 1.89712
no 44 70%

Mdx2
yes 33 52%

0.345 0.557 0.57982
no 36 44%

Shef
yes 14 93%

2.064 0.151 1.69712
no 44 75%

West
yes 65 75%

2.261 0.133 2.04022
no 36 61%

York
yes 91 92%

5.64 0.020 3.91202
no 14 71%

Total
yes 249 74% ∑

−ln(p) 10.51196
no 193 65%

df = 2 ∗ (6) = 12; χ2 = 2 ∗ (10.51196) = 21.02392
0.05 < p < 0.10 not significant

Table 7.2: Overall effect of prior relevant programming experience on success

pop succ χ2 p −ln(p)

NewC
yes 33 61%

0.471 0.492 0.71335
no 32 69%

Mdx1
yes 29 76%

3.088 0.079 2.65926
no 60 57%

Mdx2
yes 21 62%

2.398 0.121 2.12026
no 48 62%

Shef
yes 7 86%

0.199 0.655 0.43078
no 51 78%

West
yes 21 71%

0.056 0.813 0.21072
no 80 69%

York
yes 58 95%

3.886 0.049 2.99573
no 47 83%

Total
yes 169 77% ∑

−ln(p) 9.1301
no 318 66%

df = 2 ∗ (6) = 12; χ2 = 2 ∗ (9.1301) = 18.2602
0.10 < p < 0.20 not significant
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Table 7.3: Overall effect of prior programming course on success

pop succ χ2 p −ln(p)

NewC
yes 30 63%

0.203 0.652 0.43078
no 32 69%

Mdx1
yes 64 64%

0.010 0.920 0.8338
no 23 65%

Mdx2
yes 51 51%

0.078 0.780 0.49430
no 17 47%

Shef
yes 14 93%

0.359 0.549 0.59783
no 47 81%

West
yes 61 74%

0.143 0.705 0.45667
no 30 70%

York
yes 34 88%

0.089 0.765 0.27443
no 71 90%

Total
yes 254 68% ∑

−ln(p) 2.33739
no 220 76%

df = 2 ∗ (6) = 12; χ2 = 2 ∗ (2.33739) = 4.67478
0.95 < p < 0.98 not significant

impact on success in the Newcastle experiment. The Westminster and Sheffield

experiments (p < 0.813, p < 0.655) respectively had the least weight and the

York experiment (p < 0.049) had the most, in the overall effect.

Meta-analysis in table 7.3 shows prior programming course apparently had no

visible or significant effect on overall success and similar results in each individual

experiment. The success rate shows that attending a programming course had a

negative effect in the Newcastle, first Middlesex and the York experiments, and

overall.

7.2 CM2 population

Meta-analysis in table 7.4 shows an overall significant difference in the CM2/notCM2

division (p < 0.001). The candidates in the CM2 subgroup did know about as-

signment and sequence before the course started and the notCM2 subgroup did

not. As we might expect the CM2 candidates with prior programming knowledge

should perform better than the notCM2 population in every experiment, and they

almost always did. Despite the overall significant difference in the CM2/notCM2

division, the success rates show that the CM2 population performed worse than
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Table 7.4: Overall effect of prior programming learning on success, using CM2
subgroup

pop succ χ2 p −ln(p)

NewC
CM2 23 87%

6.552 0.010 4.60517
notCM2 48 56%

Mdx1
CM2 11 100%

7.324 0.007 4.60517
notCM2 81 58%

Mdx2
CM2 9 89%

7.165 0.007 4.60517
notCM2 63 41%

Shef
CM2 11 73%

0.359 0.549 0.59783
notCM2 47 81%

West
CM2 8 75%

0.103 0.749 0.30110
notCM2 102 70%

York
CM2 87 92%

3.196 0.074 2.65926
notCM2 18 78%

Total
CM2 149 89% ∑

−ln(p) 17.3737
notCM2 359 62%

df = 2 ∗ (6) = 12; χ2 = 2 ∗ (17.3737) = 34.7474
p < 0.001 highly significant

the others in Sheffield, were almost the same in Westminster and not much differ-

ent in York. However, it is clear that this division separates the population better

than the separations made by prior programming factors (89%/62%, p < 0.001

compared to 74%/65%, 0.05 < p < 0.10, 77%/66%, 0.10 < p < 0.20, 68%/76%,

0.95 < p < 0.98) but not as well as the separations made by both the C0/notC0

divisions (84%/48%, p < 0.001) or C/notC (82%/40%, p < 0.001) and even

the C0/notC0 division when the CM2 group is excluded (table 7.7, 80%/48%,

p < 0.001).

7.3 Overall effect of consistency on success in

the whole population

The overall effect of consistency on success in two group arrangements (C0/notC0

and C/notC) was examined. The population, success rate, chi-square (χ2) and

probability (p) values were extracted from tables 6.23, 6.29, 6.35, 6.40, 6.45 and

6.50.

Meta-analysis in table 7.5 and 7.6 shows a highly significant effect of con-
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Table 7.5: Overall effect of consistency (C0/notC0) on success

pop succ χ2 p −ln(p)

NewC
C0 44 79%

9.213 0.002 4.60517
notC0 27 44%

Mdx1
C0 35 77%

4.820 0.028 3.50655
notC0 57 54%

Mdx2
C0 28 79%

18.067 0.001 4.60517
notC0 44 27%

Shef
C0 43 91%

13.139 0.001 4.60517
notC0 15 47%

West
C0 62 77%

3.724 0.054 2.99573
notC0 48 60%

York
C0 99 92%

10.599 0.001 4.60517
notC0 6 50%

Total
C0 306 84% ∑

−ln(p) 24.92296
notC0 202 48%

df = 2 ∗ (6) = 12; χ2 = 2 ∗ (24.92296) = 49.84592
p < 0.001, highly significant

Table 7.6: Overall effect of consistency (C/notC) on success

pop succ χ2 p −ln(p)

NewC
C 52 79%

13.894 0.001 4.60517
notC 19 32%

Mdx1
C 56 70%

2.675 0.102 2.30258
notC 36 53%

Mdx2
C 42 64%

11.776 0.001 4.60517
notC 30 23%

Shef
C 45 91%

17.039 0.001 4.60517
notC 13 38%

West
C 80 75%

3.492 0.062 2.81341
notC 30 57%

York
C 103 90%

3.396 0.065 2.81341
notC 2 50%

Total
C 378 80% ∑

−ln(p) 22.25574
notC 130 42%

df = 2 ∗ (6) = 12; χ2 = 2 ∗ (22.25574) = 44.51148
p < 0.001, highly significant
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sistency on success in both the C0/notC0 (84%/48%, p < 0.001) and C/notC

(80%/42%, p < 0.001) group arrangements. The first Middlesex and the West-

minster experiments had the least weight in the overall significance in both cases

(C0/notC0 and C/notC) especially in C/notC. The overall significance has not

been driven by any individual experiment: eliminating any of them would not

sway the overall result.

7.4 Overall effect of consistency on success in

sub-populations

The overall effect of consistency on success in seven sub-populations has been ex-

amined. The population, success rate, chi-square (χ2) and probability (p) values

were extracted from tables 6.24, 6.30, 6.36, 6.41, 6.46 and 6.51.

Meta-analysis in table 7.7 shows an overall significant effect (80%/48%,

p < 0.001) of consistency when the CM2 population is excluded. The Westmin-

ster experiment had the least weights in the overall effect (76%/60%, p < 0.057)

and first Middlesex had none (67%/54%, p < 0.306). The success rate in the

consistent subgroup is strongly higher than in the inconsistent subgroup in ev-

ery other experiment. The overall effect has not been driven by any individual

experiment: eliminating any of them would not sway the overall result.

Meta-analysis in table 7.8 shows an overall significant effect of consistency

on success in the prior programming experience slice (87%/41%, p < 0.001).

The York experiment had three and Sheffield had no candidates in the notC0

subgroup. The success rate in the consistent subgroup is strongly higher than

the inconsistent subgroup in all other experiments. Surprisingly the effect in the

Westminster experiment was almost as high as in Newcastle and second Middlesex

(85%/60%, p < 0.023). The overall significance has not been driven by any

individual experiment: eliminating any of them would not sway the overall result.

Meta-analysis in table 7.9 shows an overall significant effect of consistency on

success in the no prior programming experience slice (80%/47%, p < 0.001). The

Westminster (62%/60%) and first Middlesex (78%/62%) experiments had again

the least weights in the overall effect, although the consistent subgroup performed

slightly better than the inconsistent subgroup even there. The success rates in

the consistent subgroup were strongly higher than the inconsistent subgroup in
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Table 7.7: Overall effect of consistency (C0/notC0) on success (without CM2
subgroup)

pop succ χ2 p −ln(p)

NewC
C0 21 71%

4.428 0.062 2.81341
notC0 27 44%

Mdx1
C0 24 67%

1.046 0.306 1.20397
notC0 57 54%

Mdx2
C0 19 74%

11.793 0.001 4.60517
notC0 34 35%

Shef
C0 32 97%

16.629 0.001 4.60517
notC0 15 47%

West
C0 54 76%

3.621 0.057 2.81341
notC0 48 60%

York
C0 12 92%

4.018 0.045 3.21887
notC0 6 50%

Total
C0 162 80% ∑

−ln(p) 19.26
notC0 197 48%

df = 2 ∗ (6) = 12; χ2 = 2 ∗ (19.26) = 38.52
p < 0.001, highly significant

Table 7.8: Overall effect of consistency (C0/notC0) on success (candidates with
prior programming experience)

pop succ χ2 p −ln(p)

NewC
C0 33 79%

12.424 0.001 4.60517
notc0 13 23%

Mdx1
C0 12 75%

2.506 0.113 2.20727
notCo 33 48%

Mdx2
C0 16 85%

16.102 0.001 4.60517
notC0 44 27%

Shef
C0 14 93%

none none none
notC0 0 -

West
C0 40 85%

5.182 0.023 3.91202
notC0 25 60%

York
C0 88 92%

0.259 0.611 0.49430
notC0 3 100%

Total
C0 203 87% ∑

−ln(p) 15.82393
notC0 118 41%

df = 2 ∗ (5) = 10; χ2 = 2 ∗ (15.82393) = 31.64786
p < 0.001 highly significant
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Table 7.9: Overall effect of consistency (C0/notC0) on on success (candidates
with no prior programming experience)

pop succ χ2 p −ln(p)

NewC
C0 13 85%

4.997 0.025 3.91202
notC0 6 33%

Mdx1
C0 23 78%

1.411 0.235 1.46968
notC0 21 62%

Mdx2
C0 12 67%

3.600 0.058 2.99573
notC0 24 33%

Shef
C0 29 90%

9.744 0.002 4.60517
notC0 15 47%

West
C0 16 62%

0.023 0.878 0.13926
notC0 20 60%

York
C0 11 91%

9.545 0.002 4.60517
notC0 3 0%

Total
C0 104 80% ∑

−ln(p) 17.72703
notC0 89 47%

df = 2 ∗ (6) = 12; χ2 = 2 ∗ (17.72703) = 35.45406
p < 0.001, highly significant

every other experiment. This overall effect has not been driven by any individual

experiment: eliminating any of them would not sway the overall result.

Meta-analysis in table 7.10 shows an overall significant effect of consistency on

success in the prior relevant programming experience slice (90%/37%, p < 0.001).

The Sheffield experiment had none and York had one candidate in the notC0

subgroup. The success rate of the consistent subgroup in every other experiment

was strongly higher than the inconsistent subgroup. The overall effect was not

driven by any of the individual experiments: eliminating any of them would not

sway the overall result.

Meta-analysis in table 7.11 shows an overall significance of consistency on

success in the no prior relevant experience slice (80%/50%, p < 0.001). The

success rate in the consistent subgroup in the Newcastle (80%/59%, p < 0.197),

Westminster (76%/61%, p < 0.175) and the first Middlesex (63%/54%, p < 0.490)

experiments were slightly higher than the inconsistent subgroup but had no weight

in the overall effect. The success rate of the consistent subgroup was significantly

higher than the inconsistent subgroup in every other experiment. The overall

effect was strong and not driven by any of the individual experiments: eliminating
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Table 7.10: Overall effect of consistency (C0/notC0) on success (candidates with
prior relevant programming experience)

pop succ χ2 p −ln(p)

NewC
C0 24 79%

12.698 0.001 4.60517
notC0 9 11%

Mdx1
C0 16 94%

6.237 0.013 4.60517
notC0 13 54%

Mdx2
C0 10 100%

11.748 0.001 4.60517
notC0 11 27%

Shef
C0 7 86%

none none none
notC0 0 -

West
C0 15 80%

1.890 0.169 1.77196
notC0 6 50%

York
C0 57 95%

0.056 0.814 0.21072
notC0 1 100%

Total
C0 129 90% ∑

−ln(p) 15.79819
notC0 40 37%

df = 2 ∗ (5) = 10; χ2 = 2 ∗ (15.79819) = 31.59638
p < 0.001, highly significant

any of them would not sway the overall result.

Meta-analysis in table 7.12 shows an overall significant effect of consistency

on success in the prior course slice (84%/50%, p < 0.001). The Sheffield ex-

periment had no candidates in the notC0 subgroup. The consistent subgroup

performed slightly better than the inconsistent group in the Westminster ex-

periment (77%/70%, p < 0.487) but significantly better in all other experiments.

The overall effect was strong and not driven by any of the individual experiments:

eliminating any of them would not sway the overall result.

Meta-analysis in table 7.13 shows an overall significant effect of consistency

on success in the no prior programming course slice (90%/46%, p < 0.001). York

has none in the notC0 subgroup. The consistent subgroup performed slightly

better than the inconsistent group in the first Middlesex experiment (73%/58%,

p < 0.469) but much better in all other experiments. The overall effect was strong

and not driven by any of the individual experiments: eliminating any of them

would not sway the overall result.
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Table 7.11: Overall effect of consistency C0/notC0) on success (candidates with
no relevant programming experience)

pop succ χ2 p −ln(p)

NewC
C0 15 80%

1.663 0.197 1.60944
notC0 17 59%

Mdx1
C0 19 63%

0.477 0.490 0.71335
notC0 41 54%

Mdx2
C0 18 67%

7.406 0.007 4.60517
notC0 30 27%

Shef
C0 36 92%

12.675 0.001 4.60517
notC0 15 47%

West
C0 41 76%

1.842 0.175 1.77196
notC0 39 61%

York
C0 42 88%

7.318 0.007 4.60517
notC0 5 40%

Total
C0 171 80% ∑

−ln(p) 17.91026
notC0 147 50%

df = 2 ∗ (6) = 12; χ2 = 2 ∗ (17.91026) = 35.82052
p < 0.001, highly significant

Table 7.12: Overall effect of consistency (C0/notC0) on success (candidates with
prior programming course)

pop succ χ2 p −ln(p)

NewC
C0 21 76%

4.178 0.041 3.21887
notC0 9 33%

Mdx1
C0 24 79%

3.805 0.051 2.299573
notC0 40 55%

Mdx2
C0 22 77%

10.702 0.001 4.60517
notC0 29 31%

Shef
C0 10 80%

2.933 0.087 2.52573
notC0 1 0%

West
C0 35 77%

0.483 0.487 0.73397
notC0 26 70%

York
C0 65 94%

11.883 0.001 4.60517
notC0 6 50%

Total
C0 177 84% ∑

−ln(p) 17.9885
notC0 111 50%

df = 2 ∗ (6) = 12; χ2 = 2 ∗ (17.9885) = 35.977
p < 0.001, highly significant
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Table 7.13: Overall effect of consistency (C0/notC0) on success (candidates with
no prior programming course)

pop succ χ2 p −ln(p)

NewC
C0 15 93%

7.942 0.005 4.60517
notC0 17 47%

Mdx1
C0 11 73%

0.524 0.469 0.75502
notC0 12 58%

Mdx2
C0 7 86%

7.137 0.008 4.60517
notC0 10 20%

Shef
C0 33 94%

12.258 0.001 4.60517
notC0 14 50%

West
C0 14 93%

6.531 0.011 4.60517
notC0 16 50%

York
C0 34 88%

none none none
notC0 0 -

Total
C0 114 90% ∑

−ln(p) 19.1757
notC0 69 46%

df = 2 ∗ (5) = 10; χ2 = 2 ∗ (19.1757) = 38.3514
p < 0.001, highly significant

7.5 Summarising the overall effects

Table 7.14 summarises the overall effects of programming background on suc-

cess, showing the size of the effect, the χ2 value and significance. None of the

programming background factors had a large or a significant effect. Attending

a programming course was shown to have no significant effect on success, both

overall and in each individual experiment.

On the other hand, meta-analysis shows in table 7.15 a large and highly

significant effect of consistency on success in both the C0/notC0 and C/notC

Table 7.14: Overall effect of programming background on success

pop succ χ2 df p

Prior experience
yes 294 74%

21.02 12 0.05 < p < 0.10
no 193 65%

Relevant experience
yes 169 78%

18.26 12 0.10 < p < 0.20
no 308 68%

Prior course
yes 254 69%

4.67 12 0.95 < p < 0.98
no 220 76%
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Table 7.15: Overall effect of consistency on success

pop succ χ2 df p

C0 311 84%
49.84 12 p < 0.001

notC0 197 48%
C0-3 378 80%

44.51 10 p < 0.001
notC 130 42%

Table 7.16: Overall effect of consistency on success in filtered subgroups

pop succ χ2 df p Significance

Correct model
CM2 149 89%

34.75 12 p < 0.001 very high
notCM2 359 62%

Incorrect model
C0 162 80%

40.27 12 p < 0.001 very high
notC0 197 48%

With prior experience
C0 203 87%

31.65 10 p < 0.001 very high
notC0 91 44%

No prior experience
C0 104 80%

35.45 12 p < 0.001 very high
notC0 89 47%

With relevant experience
C0 129 90%

31.60 10 p < 0.001 very high
notC0 40 38%

No relevant experience
C0 171 80%

35.82 12 p < 0.001 very high
notC0 146 50%

With prior course
C0 177 84%

35.98 12 p < 0.001 very high
notC0 111 50%

No prior course
C0 114 89%

38.35 10 p < 0.001 very high
notC0 69 46%
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group arrangements. Despite the weak effect in the first quiz at Middlesex and

the Westminster experiment, especially in C/notC, none of the experiments is

driving the result: if we eliminate any one of them there is still strong significance.

Table 7.16 summarises the overall effect of consistency on success in the eight

population divisions characterised by programming background factors. The

overall result confirms the result of the initial experiment by demonstrating a

strong and significant effect of consistency on success in every slice. None of the

experiments is driving the overall result: if we eliminate any one we still find a

large significant effect.

This analysis shows that consistency is not simply the effect of learning to pro-

gram. The CM2 group does do better than any other, as might be expected. But

there are slightly more individuals who are C0-consistent but not CM2, their suc-

cess rate is almost as good, and they are almost twice as likely to pass as those who

are not consistent. I note that the CM2/notCM2 division (89%/62%) is a more ef-

fective predictor of success than prior programming experience (74%/64%), even

if we take the weakly significant effect of prior experience at face value, but both

give many more false negatives than either measure of consistency (C0/notC0

84%/48%, C/notC 80%/42%). We can see these effects more starkly if we look

at failure rates: the CM2 group, which has learnt one of the basics of imperative

programming, has an 11% failure rate against 38% for the others; programming

background gives 26%/36%; consistency gives either 16%/52% or 20%/58%.

The size of the effect varies according to the population division but it is

significant everywhere and it is never small. Programming background, or its

absence, does not eliminate the effect of consistency.

During these experiments, some factors have been identified that could dam-

age the result of this test:

Non-standardised assessment mechanism It is an accepted principle that

programming ability be measured by final examination mark or by averag-

ing marks of practical tests, assignments and final examination in a major-

ity of institutions. But there are no procedures to keep these assessment

mechanisms at the same standard among different institutions.

Population In the York and the Westminster experiments some of the attributes

such as the size of the CM2 population, the population with prior experi-

ence, the overall success rates, and so on, indicated that candidates may
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not be drawn from the same population as the participants of the other

experiments in this study.

Psychometric My test is not a psychometric test and will be ruined by can-

didates’ prior knowledge of assignment and sequence. Conducting the test

at an inappropriate time of a programming course demonstrates only that

most subjects have moved to the CM2 subgroup who know the correct

model of assignment and sequence.



Chapter 8

Conclusion and future work

This study started by examining novice programmers’ common mistakes and

misconceptions, targeting the causes of students’ difficulties in learning program-

ming. Noticing the patterns of rationales behind novices mistakes swayed the

study toward investigating novices’ mental ability which was found to have a

great effect on their learning performance.

The test characterises two populations in introductory programming courses

which perform significantly differently. More than half of novices spontaneously

build and consistently apply a mental model of program execution; the rest are

either unable to build a model or to apply one consistently. The results of the

experiments described in chapters 5 and 6 confirm that the first group performed

very much better in their end-of-course examination than the second: an overall

84% success rate in the first group, 48% in the second (in the C0/notC0 group

arrangement, table 7.15).

Administering a test related to assignment and sequence in the first week of

an introductory programming course, without giving any explanation of what the

test is about despite the risk of participants’ rejection, revealed an extraordinary

result. It revealed that the ability to build mental models of programming exe-

cution were behind some novices’ reasoning strategies. This ability was found to

be pre-determined and brought into the first programming course.

The test introduced by this study divides students into consistent and inconsis-

tent subgroups on the basis of their mental modelling of program execution. The

significant differences between the consistent and inconsistent subgroups persisted

in the sub-populations produced when candidates were separated by background

factors of programming experience, relevant programming experience and prior

147
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programming course which might be thought to have had an effect on success.

Despite the tendency of institutions to rely on students’ prior programming

experience as a predictor of success, programming background has only a weak

effect on novices’ success, and though effective prior learning of assignment and

sequence has a stronger effect, it is not as strong as consistency. A weak positive

effect of prior programming experience (relevant/irrelevant) was observed which

appeared to be driven by one of the experiments with a programming-skilful

population.

8.1 Deficiencies of the test

The test results revealed that some candidates apply a mental model systemat-

ically. But the present data does not easily distinguish between ability to form

models and a mere willingness to do so.

The test was not an ordinary questionnaire. Candidates were asked to answer

programming related questions with no explanation, no instruction and at the

beginning of a course before any lessons were given. This peculiarity of the

test may have affected the result. There are various obvious reasons that some

candidates judged inconsistent might still have the ability to use a mental model:

1. They might be able to use a mental model if we explained what sort of

answer we are looking for;

2. They might be able to use a mental model of assignment and sequence if

we taught it to them;

3. They might be using a mental model not recognised in the test;

4. The might not like to answer a multiple choice questionnaire;

5. They might not like to guess.

All these contribute to the false negative proportion in the experimental result.

In section 4.4 I found that when the test was taken in week 3, some of the

candidates in groups 1 and 2 had learnt assignment and sequence and shifted

from inconsistent to consistent. The false-negative proportion in that test result

decreased to 25%. I speculate that if candidates were given a pre-session study,

helping them to build a mental model, similar to a model of program execution,
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it might help them to become consistent in the test. I cannot think of anything

to persuade candidates who do not like to guess.

There are also various reasons why some candidates judged consistent might

lack the ability to use a mental model:

• They might guess correctly by chance;

• They might be following some sort of pattern, such as “always choose num-

bers which add up 11”;

• They might have learned the answer in advance.

There were many alternatives in each question, and they were permuted so

that the order of models was different in each question. It seems unlikely, there-

fore, that a significant proportion could guess by chance. There do not seem to

be visible patterns in the data. The test is novel and not widely published, so it

seems unlikely that any student had prior knowledge. I conclude, therefore, that

those judged inconsistent genuinely lacked the ability to use a model.

On the other hand, it seems likely that a significant number of candidates

judged inconsistent do have the ability to use a model. If we could reduce this

number then the test would be more reliable.

8.2 More about counteracting selection bias

Section 5.4 deals with bias caused by prior knowledge of programming. Intake

policy might also cause bias. In general, institutions look at candidates’ mathe-

matical, scientific and general education attainment. Some institutions are more

restrictive in the level of these requirements and some less restrictive. Candidates’

response to questions about background education revealed the different intake

policies in institutions. For example, the University of Sheffield only recruited

students with a strong background in mathematics, and in the University of York

almost all students had a prior programming background (indeed, almost all were

CM2), while intake requirements in the University of Westminster and Middlesex

University were weaker. I did not examine the effect of candidates’ mathematics

or general education background on success because, looking at the literature in

the field, relevant mathematical background was only found to be weakly corre-

lated to success in learning scientific programming (Reinstedt et al., 1964). But is
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there a correlation of, say, maths ability and the effect of consistency on success?

It would seem not: the signal of the effect of consistency on success is clearly

similar in each experiment regardless of the institution’s intake policy.

Sex and age may also effect the test result. The questionnaire asks about

candidates’ age and gender, and I had the intention of analysing their effect on

success. I found the age groups in introductory to programming courses very

restricted and therefore did not attempt an analysis. The very low proportion

of female candidates in Computer Science did not let me examine the effect of

gender either.

Another important bias which might cause an effect in the test results is

a surprisingly large number of candidates with programming background who

failed to learn programming in the course. Most likely they were not able to

learn programming in their first attempt either. If they knew assignment and

sequence in advance they would be judged consistent and if they then failed the

course, would increase the false-positive proportion in the test result. If they did

not learn assignment and sequence in advance they would be judged inconsistent

and those who cross the pass/fail borderline, would increase the false-negative

proportion in the test result.

I have not had the opportunity to directly investigate the level of candidates’

success/failure in their past programming experience and its impact on their

current performance. However, the present results gave no substantial indication

of a major influence of prior programming experience.

8.3 Speculations

Although the study exposed the patterns of rationalisation underlying novices’

strategies which make them different from each other, the causes of difficulties

to learn programming and why candidates in the consistent subgroup find it

easier to learn than the others are still obscure. It might be explained by some

speculations.

Cross (1970) found programmers to be rather peculiar individuals, willing to

work in isolation, avoiding interaction with different features of the organisation.

At that time computer programming was not a widespread skill and Cross pro-

posed such a peculiarity as a good measure of programming aptitude on the basis

of a small sample population. The proposal was not taken seriously until thirty-
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three years later, when Baron-Cohen et al. (2003) exposed this peculiarity as a

classic trait associated with autism. He labeled people such as scientists, math-

ematicians and engineers as systematizers, who are skilled at analysing systems;

they can exhibit behaviour such as obsession with detail and are less interested

in the social side of life. Baron-Cohen has not addressed any association between

ability to systematize and programming skills but Wray (2007) has found a corre-

lation between Baron-Cohen’s measures and success in programming, five months

after the end of a programming course.

My study shows that students in the consistent subgroup have the ability to

build a mental model, a drive to construct a system, something that follows rules

like a mechanical construct, and this is what more or less what a systematizer

does. In fact my study shows that candidates in the consistent subgroup have

the ability to systematize. I can speculate that Wray and I are both measuring a

similar trait by different instruments. The results in both studies separate learners

with a high ability to systematize, using two different approaches. He used Baron-

Cohen’s EQ and SQ measures and I chased candidates’ mental models.

8.4 Further Work

During the process of this research I have noticed some opportunities to enhance

this study.

8.4.1 Repeat the test at week 3

In the first methodical experiment of this study, described in section 4.4, the

test was administered twice. The first test was conducted in the week before the

subjects had received any programming teaching and the second one in the third

week when the assignment model M2 (right to left copy) and the sequence model

(S1) of composition had been taught. Table 8.1 shows that 49% of subjects (29

out of 59) had managed to understand assignment and sequence in three weeks,

and from them 90% managed to pass the course at the end. The 51% who did not

understand assignment and sequence after three weeks had only a 20% chance

of passing the course. The effect of consistency captured by week 3 test in the

initial experiment was 74%/25% which was large and significant (p < 0.0001).

Table 8.2 demonstrates the effect of understanding assignment and sequence



8.4 Further Work 152

Table 8.1: Early understanding of assignment and sequence and average result

Yes(+) No(–) Total

Pass 26 (90%) 6 (20%) 32
Fail 3 24 27

29 30 59

Table 8.2: Consistency and early understanding of assignment and sequence

C+ I+ C– I– Total

Pass 20 (95%) 3 (60%) 3 (50%) 3 (17%) 29
Fail 1 2 3 16 22

21 5 6 19 51

in the success of the C and I subgroups (51 out of 59). The notation “+” and

“–” in the labels is used to indicate understanding assignment and sequence after

three weeks. The table shows that 72% of those who learned assignment and

sequence in the first three weeks were in the C subgroup in week 0 and had a

95% chance to pass the course.

Table 8.3 shows the same effect in the blank subgroup (small population).

Only subjects who understood assignment and sequence within three weeks man-

aged to pass the course and the rest failed.

As a result of this evidence I suggest that the additional test in week 3 has a

valuable potential to be used as a success predictor. It would also show a group

of students who are likely to struggle in the course and might be supported by

remedial teaching.

Table 8.3: Blankness and early understanding of assignment and sequence

B+ B– Total

Pass 3 (100%) 0 (0%) 3
Fail 0 5 5

3 5 8
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Table 8.4: Distribution of subgroups among experiments

Experiment C0 C1-3 IB Total

Sheffield 43 2 (3%) 13 58
York 99 4 (4%) 2 105
Newcastle 44 8 (11%) 19 71
Westminster 62 18 (16%) 30 110
Middlesex 35 21 (23%) 37 93

283 53 (12%) 101 437

8.4.2 Reviewing the judgment of mental models by com-

bining columns differently in the mark sheet

In section 5.3.2, I explained that candidates who used only one model are clearly

consistent and candidates who switched between two related models are also

consistent, but less so. In section 5.3.2 I described my judgment of related models.

I could have combined models in any of three different dimensions:

• copy/move

• left/right

• add/overwrite

Because in the S3 model of multiple assignment the copy/move distinction goes

away, I chose that as the weakest dimension. Then I decided to ignore direction,

and finally addition/overwrite.

In practice joining models in this way was not very successful. It did not

expand the C group very much: C0 is always large and C1-C3 are usually small.

Table 8.4 illustrates the pattern of C1-3 population in five experiments with

average of 12%.

Decomposing the C/I subgroups with a more accurate test might provide

some answers to the excess number of false negative results – those inconsistent

subjects who pass the exam – observed in these experiments.

8.4.3 Mental models of another hurdle

Assignment and sequence are not the only hurdles which trip up novices.

Two other major hurdles which trip novice imperative programmers are recur-
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sion/iteration and concurrency. Concurrency trips not only novices, it is a hurdle

jumped by just a few. Iteration trips novices at an early stage, particularly when

all the alternative kinds of iteration (while, do-while, for) are introduced at the

same time. In fact iteration is conceptually difficult, and the proper treatment of

iteration is mathematically complicated.

One of the potential extensions to this study is looking at the mental mech-

anism that students use when thinking about a simple iteration. Since studying

students’ mental models of assignments and sequences revealed distinguishable

populations, understanding the mechanism involved when students think about

an iteration might reveal some other unsuspected phenomena.

8.4.4 Revising the mental models list

I prepared the list of mental models by analysing novices’ rational mistakes and

enhanced it during the progress of this study. Failing to notice a mental model

would cause some novices to be misplaced in their subgroup which would effect

the accuracy of the test result. The potential of revising the list of mental models

of assignment and sequence should not be overlooked.

8.4.5 Testing high school students

By the method introduced in this study, students with the ability to construct

and apply a model systematically can be distinguished at the beginning of an

introductory programming course. Having this result before the course starts

shows that this capability has not been developed by the University’s education.

Therefore there is a potential that the test could separate learners at an earlier

stage of their academic study. I would not be surprised if half of the students in

high school have the ability to use a consistent mental model systematically and

I would be interested to see how far back it goes. Understanding when novices

start to develop this ability is one of the major potentials to extend this study.

8.4.6 Interviewing

In the initial stage of this study I interviewed some of the students and cap-

tured valuable information which helped me to analyse the mistakes behind their

misconceptions. Unfortunately none of the later experiments included a formal
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interview. Novices’ strategies were judged on the basis of their responses to the

questions and the draft notes around their test papers. Interviewing candidates

might light up some ideas which could lead us to a better understanding of their

thinking strategies.

8.4.7 Follow-up performance

The result of this study confirmed that the ability to use a recognisable model

consistently has a considerable impact on novices’ success in the first level of pro-

gramming courses. But how this ability could assist their success in the next level

of programming courses remains unknown. There were no follow-up experiments

in this study to trace the effect.

Pursuing candidates’ progress in a higher level of programming course (sec-

ond semester, second year, final year) could expose the scope of the effect of

consistency on candidates’ performance.

8.5 Open problems

During the process of this research I have faced some problems which remained

unsolved.

8.5.1 Alternative methods

In this study I followed the notion of mental models as a vehicle to derive a

rationale behind novices’ reasoning when solving a series of unexplained problems.

Although the significance of mental models in novice learners was repeatedly

confirmed in the literature, the method is surely not the only way of looking at

their difficulties.

The result of this study showed that 49% of candidates from the inconsistent

population managed to pass the first programming course. Thus is quite a high

negative occurence, against the initial hypothesis in this study. The study cannot

suggest a remedial enhancement to reduce the false-negative occurence in this

result.
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8.5.2 Measuring programming skills

This study introduced a test that measures ability to learn programming which

is confirmed to be associated with course marks at the end of the introductory

programming course. It should be taken into consideration that the course mark

is not a perfect mechanism to reflect programming skills, but there is no well-

defined alternative.

Measuring programming skills by course mark in this study showed noticeable

variation in the strengths of consistency among institutions. Each institution

has its own assessment mechanism which is designed under restraint of many

individual factors.

At Middlesex, where I have access to the examination materials, I know that

the first Middlesex exam was a non-technical first in-course quiz, largely book-

work, whereas the second Middlesex exam was a more technical second quiz. The

second exam separated students more radically and showed a stronger effect of

consistency, with far fewer passes in the non-consistent groups. It may be that the

effect of consistency is generally weaker in non-technical examinations. I believe

that this matter is worth further investigation.

Simon et al. (2006b) explained the lack of an accepted measure of program-

ming aptitude which does not let us to find correlations between performance

on simple tasks and programming aptitude. He added “We do not pretend that

there is a linear relationship between programming aptitude and mark in a first

programming course, or that different first programming courses are assessed

comparably; but we have succumbed to the need for an easily measured quan-

tity.”

Although the test introduced by this study measures the ability to learn pro-

gramming with some accuracy, without a solid method of measuring program-

ming skill, an optimum result cannot be achieved. Now we have a mechanism

which measures programming aptitude, what we need is a well-defined and ef-

fective assessment mechanism to measure programming skills at the end of the

introductory programming course.
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Appendix A

Questionnaire

Multiple-choice test for the Research Project:

Test created by Saeed Dehnadi & Prof Richard Bornat, School of Computing,

Middlesex, University, UK

Researcher: · · · · · · · · ·
Date: · · · · · · · · ·

The following questionnaire will be recorded in a database. It will never be

revealed to any person who could in any way identify you from the data given

above. The questionnaire will never be used for assessment purposes.

I consent to the use of the following questionnaire for the research project

conducted by · · · · · · · · ·.

Please sign here: · · · · · · · · ·
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Name
Student No:
Age
Gender M F
A-Level or any equivalent subjects:

Have you ever written a computer program in any language?
If so, in what language(s)?

Will this be your first course in programming?
If not, what other programming courses have you studied?
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1. Read the following The new values of a and b: Use this column
statements and tick the for your rough
box next to the correct a = 10 b = 10 notes please
answer in the next column. a = 30 b = 20

a = 0 b = 10
a = 20 b = 20

int a = 10; a = 0 b = 30
int b = 20; a = 10 b = 20

a = 20 b = 10
a = b; a = 20 b = 0

a = 10 b = 30
a = 30 b = 0

Any other values for a and b:

a = b =
a = b =
a = b =

2. Read the following The new values of a and b:
statements and tick the
box next to the correct a = 0 b = 30
answer in the next column. a = 30 b = 10

a = 0 b = 10
a = 20 b = 0

int a = 10; a = 20 b = 20
int b = 20; a = 20 b = 10

a = 30 b = 0
b = a; a = 10 b = 20

a = 10 b = 10
a = 10 b = 30

Any other values for a and b:

a = b =
a = b =
a = b =
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3. Read the following The new values of big and Use this column
statements and tick the small: for your rough
box next to the correct big=30 small=0 notes please
answer in the next column. big=20 small=0

big=0 small=30
big=20 small=10

int big = 10; big=10 small=10
int small = 20; big=30 small=20

big=20 small=20
big = small; big=0 small=10

big=10 small=20
big=10 small=30

Any other values for big and
small:

big= small=
big= small=
big= small=

4. Read the following The new values of a and b:
statements and tick the
box next to the correct a = 10 b = 0
answer in the next column. a = 10 b = 10

a = 30 b = 50
a = 0 b = 20

int a = 10; a = 40 b = 30
int b = 20; a = 30 b = 0

a = 20 b = 20
a = b; a = 0 b = 30
b = a; a = 30 b = 30

a = 10 b = 20
a = 20 b = 10

Any other values for a and b:

a = b =
a = b =
a = b =
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5. Read the following The new values of a and b: Use this column
statements and tick the for your rough
box next to the correct a = 30 b = 50 notes please
answer in the next column. a = 10 b = 10

a = 20 b = 20
a = 10 b = 0

int a = 10; a = 0 b = 20
int b = 20; a = 30 b = 0

a = 40 b = 30
b = a; a = 0 b = 30
a = b; a = 20 b = 10

a = 30 b = 30
a = 10 b = 20

Any other values for a and b:
a = b =
a = b =
a = b =

6. Read the following The new values of a and b:
statements and tick the
box next to the correct a = 30 b = 50 c = 30
answer in the next column. a = 60 b = 0 c = 0

a = 10 b = 30 c = 40
a = 0 b = 10 c = 0

int a = 10; a = 10 b = 10 c = 10
int b = 20; a = 60 b = 20 c = 30
int c = 30; a = 30 b = 50 c = 0

a = 20 b = 30 c = 0
a = b; a = 10 b = 20 c = 30
b = c; a = 20 b = 20 c = 20

a = 0 b = 10 c = 20
a = 20 b = 30 c = 30
a = 10 b = 10 c = 20
a = 30 b = 30 c = 50
a = 0 b = 30 c = 50
a = 30 b = 30 c = 30
a = 0 b = 0 c = 60
a = 20 b = 30 c = 20

Any other values for a and b:
a = b =
a = b =
a = b =
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7. Read the following The new values of a and b: Use this column
statements and tick the for your rough
box next to the correct a = 3 b = 5 c = 5 notes please
answer in the next column. a = 3 b = 3 c = 3

a = 12 b = 14 c = 22
a = 8 b = 15 c = 12

int a = 5; a = 7 b = 7 c = 7
int b = 3; a = 5 b = 3 c = 7
int b = 7; a = 5 b = 5 c = 5

a = 7 b = 5 c = 3
a = c; a = 3 b = 7 c = 5
b = a; a = 12 b = 8 c = 10
c = b; a = 10 b = 8 c = 12

a = 0 b = 0 c = 7
a = 0 b = 0 c = 15
a = 3 b = 12 c = 0
a = 3 b = 5 c = 7

Any other values for a and b:
a = b =
a = b =
a = b =

8. Read the following The new values of a and b: Use this column
statements and tick the for your rough
box next to the correct a = 3 b = 5 c = 7 notes please
answer in the next column. a = 15 b = 10 c = 22

a = 12 b = 8 c = 22
a = 7 b = 7 c = 7

int a = 5; a = 3 b = 5 c = 3
int b = 3; a = 0 b = 0 c = 7
int b = 7; a = 5 b = 3 c = 7

a = 3 b = 3 c = 3
a = c; a = 7 b = 5 c = 3
b = a; a = 3 b = 5 c = 0
c = b; a = 3 b = 7 c = 5

a = 8 b = 10 c = 12
a = 5 b = 5 c = 5
a = 15 b = 8 c = 10
a = 10 b = 5 c = 0
a = 0 b = 0 c = 15

Any other values for a and b:
a = b =
a = b =
a = b =
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9. Read the following The new values of a and b: Use this column
statements and tick the for your rough
box next to the correct a = 15 b = 18 c = 10 notes please
answer in the next column. a = 7 b = 5 c = 3

a = 7 b = 0 c = 5
a = 0 b = 3 c = 0

int a = 5; a = 10 b = 0 c = 5
int b = 3; a = 5 b = 3 c = 7
int b = 7; a = 3 b = 3 c = 3

a = 12 b = 8 c = 10
c = b; a = 7 b = 7 c = 7
a = c; a = 15 b = 10 c = 12
b = a; a = 7 b = 7 c = 5

a = 8 b = 10 c = 12
a = 0 b = 15 c = 0
a = 7 b = 3 c = 5
a = 5 b = 5 c = 5
a = 3 b = 7 c = 5

Any other values for a and b:
a = b =
a = b =
a = b =

10. Read the following The new values of a and b:
statements and tick the
box next to the correct a = 0 b = 7 c = 3
answer in the next column. a = 12 b = 8 c = 10

a = 15 b = 0 c = 0
a = 0 b = 7 c = 8

int a = 5; a = 3 b = 7 c = 3
int b = 3; a = 5 b = 3 c = 7
int b = 7; a = 3 b = 3 c = 3

a = 7 b = 5 c = 3
b = a; a = 20 b = 8 c = 15
c = b; a = 3 b = 7 c = 5
a = c; a = 5 b = 0 c = 0

a = 8 b = 10 c = 15
a = 5 b = 5 c = 5
a = 8 b = 10 c = 12
a = 5 b = 7 c = 3
a = 7 b = 7 c = 7

Any other values for a and b:
a = b =
a = b =
a = b =
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11. Read the following The new values of a and b: Use this column
statements and tick the for your rough
box next to the correct a = 8 b = 18 c = 15 notes please
answer in the next column. a = 7 b = 0 c = 8

a = 5 b = 5 c = 5
a = 12 b = 8 c = 15

int a = 5; a = 7 b = 0 c = 5
int b = 3; a = 3 b = 7 c = 5
int b = 7; a = 7 b = 5 c = 3

a = 0 b = 15 c = 0
b = a; a = 0 b = 3 c = 0
a = c; a = 3 b = 3 c = 3
c = b; a = 7 b = 7 c = 7

a = 12 b = 8 c = 10
a = 8 b = 10 c = 12
a = 7 b = 5 c = 5
a = 5 b = 3 c = 7
a = 7 b = 3 c = 5

Any other values for a and b:
a = b =
a = b =
a = b =

12. Read the following The new values of a and b:
statements and tick the
box next to the correct a = 0 b = 12 c = 3
answer in the next column. a = 5 b = 5 c = 5

a = 0 b = 7 c = 3
a = 8 b = 10 c = 12

int a = 5; a = 15 b = 0 c = 0
int b = 3; a = 3 b = 7 c = 5
int b = 7; a = 12 b = 15 c = 10

a = 5 b = 7 c = 3
a = c; a = 3 b = 3 c = 3
c = b; a = 7 b = 7 c = 7
b = a; a = 12 b = 8 c = 10

a = 5 b = 0 c = 0
a = 5 b = 3 c = 7
a = 7 b = 7 c = 3
a = 20 b = 15 c = 12
a = 7 b = 5 c = 3

Any other values for a and b:
a = b =
a = b =
a = b =
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Question Answers/s Model/s
a = 20 b = 0 M1

1. a = 20 b = 20 M2
int a = 10; a = 0 b = 10 M3
int b = 20; a = 10 b = 10 M4

a = 30 b = 20 M5
a = b; a = 30 b = 0 M6

a = 10 b = 30 M7
a = 0 b = 30 M8
a = 10 b = 20 M9
a = 20 b = 10 M11

a = 20 b = 20 M10
a = 10 b = 10
a = 0 b = 10 M1

2. a = 10 b = 10 M2
int a = 10; a = 20 b = 0 M3
int b = 20; a = 20 b = 20 M4

a = 10 b = 30 M5
b = a; a = 0 b = 30 M6

a = 30 b = 20 M7
a = 30 b = 0 M8
a = 10 b = 20 M9
a = 20 b = 10 M11

a = 20 b = 20 M10
a = 10 b = 10
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Question Answers/s Model/s
big=20 small=0 M1

3. big=20 small=20 M2
int big = 10; big=0 small=10 M3

int small = 20; big=10 small=10 M4
big=30 small=20 M5

big = small; big=30 small=0 M6
big=10 small=30 M7
big=0 small=30 M8
big=10 small=20 M9
big=20 small=10 M11

big=20 small=20 M10
big=10 small=10
a = 0 b = 20 M1+S1
a = 20 b = 10 (M1+S3)/(M2+S3)/(M3+S3)/

(M4+S3)/ (M11+S3)
a = 30 b = 30 (M5+S3)/(M6+S3)/(M7+S3)/

4. a = 20 b = 20 M2+S1
int a = 10; a = 10 b = 0 M3+S1
int b = 20; a = 10 b = 10 M4+S1

a = 30 b = 50 M5+S1
a = b; a = 0 b = 30 M6+S1
b = a; a = 40 b = 30 M7+S1

a = 30 b = 0 M8+S1
a = 10 b = 20 (M9+S1)/(M11+S1)

(M8+S3)

a = 20 b = 20 (M10+S1)/(M2+S2)/(M4+S2)
a = 10 b = 10
a = 20 b = 0 (M1+S2)/(M3+S2)
a = 0 b = 10
a = 30 b = 0 (M5+S2)/(M7+S2)
a = 0 b = 30
a = 30 b = 20 (M6+S2)/(M8+S2)
a = 10 b = 30
a = 20 b = 10 (M11+S2)
a = 20 b = 10
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Question Answers/s Model/s
a = 10 b = 0 M1+S1
a = 20 b = 10 (M1+S3)/(M2+S3)/(M3+S3)/

5. (M4+S3)
a = 10 b = 10 M2+S1

int a = 10; a = 0 b = 20 M3+S1
int b = 20; a = 20 b = 20 M4+S1

a = 40 b = 30 M5+S1
a = b; a = 30 b = 30 (M5+S3)/(M6+S3)/(M7+S3)/
b = a; (M8+S3)

a = 30 b = 0 M6+S1
a = 30 b = 50 M7+S1
a = 0 b = 30 M8+S1
a = 10 b = 20 (M9+S1)/(M11+S1)/

(M11+S3)
a = 20 b = 20 (M10+S1)/(M2+S2)/(M4+S2)
a = 10 b = 10
a = 0 b = 10 (M1+S2)/M3+S2)
a = 20 b = 0
a = 30 b = 20 (M5+S2)/(M7+S2)
a = 10 b = 30
a = 0 b = 30 (M6+S2)/(M8+S2)
a = 30 b = 0
a = 10 b = 20 (M11+S2)
a = 10 b = 20
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Question Answers/s Model/s
a = 20 b = 30 c = 0 M1+S1

6. a = 20 b = 30 c = 30 (M2+S1)/(M2+S3)/(M1+S3)
a = 0 b = 0 c = 10 M3+S1

int a = 10; a = 10 b = 10 c = 10 M4+S1
int b = 20; a = 10 b = 10 c = 20 (M3+S3)/(M4+S3)/(M6+S3)
int c = 30; a = 30 b = 50 c = 30 (M5+S1)/(M5+S3)

a = 30 b = 30 c = 0 M6+S1
a = b; a = 10 b = 30 c = 60 M7+S1
b = c; a = 0 b = 0 c = 60 M8+S1

a = 10 b = 30 c = 50 (M7+S3)/(M8+S3)
a = 10 b = 20 c = 30 M9+S1
a = 20 b = 30 c = 10 (M11+S1)/(M11+S3)

a = 10 b = 10 c = 10 M10+S1
a = 20 b = 20 c = 20
a = 30 b = 30 c = 30
a = 20 b = 0 c = 30 (M1+S2)
a = 10 b = 30 c = 0
a = 20 b = 20 c = 30 (M2+S2)
a = 10 b = 30 c = 30
a = 0 b = 10 c = 30 (M3+S2)
a = 10 b = 0 c = 20
a = 10 b = 10 c = 30 (M4+S2)
a = 10 b = 20 c = 20
a = 30 b = 20 c = 30 (M5+S2)
a = 10 b = 50 c = 30
a = 30 b = 0 c = 30 (M6+S2)
a = 10 b = 50 c = 0
a = 10 b = 30 c = 30 (M7+S2)
a = 10 b = 20 c = 50
a = 0 b = 30 c = 30 (M8+S2)
a = 10 b = 0 c = 50
a = 20 b = 10 c = 30 (M11+S2)
a = 10 b = 30 c = 20
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Question Answers/s Model/s
a = 0 b = 0 c = 7 M1
a = 7 b = 5 c = 3 (M1+S3)/(M2+S3)/(M11+S3)

7. a = 7 b = 7 c = 7 M2
a = 3 b = 5 c = 0 M3

int a = 5; a = 3 b = 5 c = 5 M4
int b = 3; a = 3 b = 7 c = 5 (M3+S3)/(M4+S3)
int c = 7; a = 12 b = 15 c = 22 M5

a = 12 b = 8 c = 10 (M5+S3)/(M6+S3)
a = c; a = 0 b = 0 c = 15 M6
b = a; a = 8 b = 15 c = 12 M7
c = b; a = 8 b = 10 c = 12 (M7+S3)/(M8+S3)

a = 3 b = 12 c = 0 M8
a = 5 b = 3 c = 7 M9
a = 3 b = 5 c = 7 M11

a = 5 b = 5 c = 5 M10
a = 3 b = 3 c = 3
a = 7 b = 7 c = 7
a = 7 b = 3 c = 0 (M1+S2)
a = 0 b = 5 c = 7
a = 5 b = 0 c = 3
a = 7 b = 3 c = 7 (M2+S2)
a = 5 b = 5 c = 7
a = 5 b = 3 c = 3
a = 0 b = 3 c = 5 (M3+S2)
a = 3 b = 0 c = 7
a = 5 b = 7 c = 0
a = 5 b = 3 c = 5 (M4+S2)
a = 3 b = 3 c = 7
a = 5 b = 7 c = 7
a = 12 b = 3 c = 7 (M5+S2)
a = 5 b = 8 c = 7
a = 5 b = 3 c = 10
a = 12 b = 3 c = 0 (M6+S2)
a = 0 b = 8 c = 7
a = 5 b = 0 c = 10
a = 5 b = 3 c = 12 (M7+S2)
a = 8 b = 3 c = 7
a = 5 b = 10 c = 7
a = 0 b = 3 c = 12 (M8+S2)
a = 8 b = 0 c = 7
a = 5 b = 10 c = 0
a = 7 b = 3 c = 5 (M11+S2)
a = 3 b = 5 c = 7
a = 5 b = 7 c = 3
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Question Answers/s Model/s
a = 3 b = 5 c = 0 M1
a = 7 b = 5 c = 3 (M1+S3)/(M2+S3)/(M11+S3)

8. a = 3 b = 5 c = 3 M2
a = 0 b = 0 c = 7 M3

int a = 5; a = 7 b = 7 c = 7 M4
int b = 3; a = 3 b = 7 c = 5 (M3+S3)/(M4+S3)
int c = 7; a = 15 b = 8 c = 10 M5

a = 12 b = 8 c = 10 (M5+S3)/(M6+S3)
c = b; a = 10 b = 5 c = 0 M6
b = a; a = 15 b = 10 c = 22 M7
a = c; a = 8 b = 10 c = 12 (M7+S3)/(M8+S3)

a = 0 b = 0 c = 15 M8
a = 5 b = 3 c = 7 M9
a = 3 b = 5 c = 7 M11

a = 5 b = 5 c = 5 M10
a = 3 b = 3 c = 3
a = 7 b = 7 c = 7
a = 5 b = 0 c = 3 (M1+S2)
a = 0 b = 5 c = 7
a = 7 b = 3 c = 0
a = 5 b = 3 c = 3 (M2+S2)
a = 5 b = 5 c = 7
a = 7 b = 3 c = 7
a = 5 b = 7 c = 0 (M3+S2)
a = 3 b = 0 c = 7
a = 0 b = 3 c = 5
a = 5 b = 7 c = 7 (M4+S2)
a = 3 b = 3 c = 7
a = 5 b = 3 c = 5
a = 5 b = 3 c = 10 (M5+S2)
a = 5 b = 8 c = 7
a = 12 b = 3 c = 7
a = 5 b = 0 c = 10 (M6+S2)
a = 0 b = 8 c = 7
a = 12 b = 3 c = 0
a = 5 b = 10 c = 7 (M7+S2)
a = 8 b = 3 c = 7
a = 5 b = 3 c = 12
a = 5 b = 10 c = 0 (M8+S2)
a = 8 b = 0 c = 7
a = 0 b = 3 c = 12
a = 5 b = 7 c = 3 (M11+S2)
a = 3 b = 5 c = 7
a = 7 b = 3 c = 5



184

Question Answers/s Model/s
a = 0 b = 3 c = 5 M1
a = 7 b = 5 c = 3 (M1+S3)/(M2+S3)/(M11+S3)

9. a = 3 b = 3 c = 3 M2
a = 7 b = 0 c = 5 M3

int a = 5; a = 7 b = 7 c = 5 M4
int b = 3; a = 3 b = 7 c = 5 (M3+S3)/(M4+S3)
int c = 7; a = 15 b = 18 c = 10 M5

a = 12 b = 8 c = 10 (M5+S3)/(M6+S3)
c = b; a = 0 b = 15 c = 0 M6
a = c; a = 15 b = 10 c = 12 M7
b = a; a = 8 b = 10 c = 12 (M7+S3)/(M8+S3)

a = 10 b = 0 c = 5 M8
a = 5 b = 3 c = 7 M9
a = 7 b = 3 c = 5 M11

a = 5 b = 5 c = 5 M10
a = 3 b = 3 c = 3
a = 7 b = 7 c = 7
a = 5 b = 0 c = 3 (M1+S2)
a = 7 b = 3 c = 0
a = 0 b = 5 c = 7
a = 5 b = 3 c = 3 (M2+S2)
a = 7 b = 3 c = 7
a = 5 b = 5 c = 7
a = 5 b = 7 c = 0 (M3+S2)
a = 0 b = 3 c = 5
a = 3 b = 0 c = 7
a = 5 b = 7 c = 7 (M4+S2)
a = 5 b = 3 c = 5
a = 3 b = 3 c = 7
a = 5 b = 3 c = 10 (M5+S2)
a = 12 b = 3 c = 7
a = 5 b = 8 c = 7
a = 5 b = 0 c = 10 (M6+S2)
a = 12 b = 3 c = 0
a = 0 b = 8 c = 7
a = 5 b = 10 c = 7 (M7+S2)
a = 5 b = 3 c = 12
a = 8 b = 3 c = 7
a = 5 b = 10 c = 0 (M8+S2)
a = 0 b = 3 c = 12
a = 8 b = 0 c = 7
a = 5 b = 7 c = 3 (M11+S2)
a = 7 b = 3 c = 5
a = 3 b = 5 c = 7
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Question Answers/s Model/s
a = 5 b = 0 c = 0 M1
a = 7 b = 5 c = 3 (M1+S3)/(M2+S3)/(M11+S3)

10. a = 5 b = 5 c = 5 M2
a = 0 b = 7 c = 3 M3

int a = 5; a = 3 b = 7 c = 3 M4
int b = 3; a = 3 b = 7 c = 5 (M3+S3)/(M4+S3)
int c = 7; a = 20 b = 8 c = 15 M5

a = 12 b = 8 c = 10 (M5+S3)/(M6+S3)
b = a; a = 15 b = 0 c = 0 M6
c = b; a = 8 b = 10 c = 15 M7
a = c; a = 8 b = 10 c = 12 (M7+S3)/(M8+S3)

a = 0 b = 7 c = 8 M8
a = 5 b = 3 c = 7 M9
a = 5 b = 7 c = 3 M11

a = 5 b = 5 c = 5 M10
a = 3 b = 3 c = 3
a = 7 b = 7 c = 7
a = 0 b = 5 c = 7 (M1+S2)
a = 5 b = 0 c = 3
a = 7 b = 3 c = 0
a = 5 b = 3 c = 3 (M2+S2)
a = 7 b = 3 c = 7
a = 5 b = 5 c = 7
a = 5 b = 7 c = 0 (M3+S2)
a = 0 b = 3 c = 5
a = 3 b = 0 c = 7
a = 5 b = 7 c = 7 (M4+S2)
a = 5 b = 3 c = 5
a = 3 b = 3 c = 7
a = 5 b = 3 c = 10 (M5+S2)
a = 12 b = 3 c = 7
a = 5 b = 8 c = 7
a = 5 b = 0 c = 10 (M6+S2)
a = 12 b = 3 c = 0
a = 0 b = 8 c = 7
a = 5 b = 10 c = 7 (M7+S2)
a = 5 b = 3 c = 12
a = 8 b = 3 c = 7
a = 5 b = 10 c = 0 (M8+S2)
a = 0 b = 3 c = 12
a = 8 b = 0 c = 7
a = 5 b = 7 c = 3 (M11+S2)
a = 7 b = 3 c = 5
a = 3 b = 5 c = 7
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Question Answers/s Model/s
a = 7 b = 0 c = 5 M1
a = 7 b = 5 c = 3 (M1+S3)/(M2+S3)/(M11+S3)

11. a = 7 b = 5 c = 5 M2
a = 0 b = 3 c = 0 M3

int a = 5; a = 3 b = 3 c = 3 M4
int b = 3; a = 3 b = 7 c = 5 (M3+S3)/(M4+S3)
int c = 7; a = 12 b = 8 c = 15 M5

a = 12 b = 8 c = 10 (M5+S3)/(M6+S3)
b = a; a = 7 b = 0 c = 8 M6
a = c; a = 8 b = 18 c = 15 M7
c = b; a = 8 b = 10 c = 12 (M7+S3)/(M8+S3)

a = 0 b = 15 c = 0 M8
a = 5 b = 3 c = 7 M9
a = 7 b = 3 c = 5 M11

a = 5 b = 5 c = 5 M10
a = 3 b = 3 c = 3
a = 7 b = 7 c = 7
a = 0 b = 5 c = 7 (M1+S2)
a = 5 b = 0 c = 3
a = 7 b = 3 c = 0
a = 5 b = 3 c = 3 (M2+S2)
a = 7 b = 3 c = 7
a = 5 b = 5 c = 7
a = 5 b = 7 c = 0 (M3+S2)
a = 0 b = 3 c = 5
a = 3 b = 0 c = 7
a = 5 b = 7 c = 7 (M4+S2)
a = 5 b = 3 c = 5
a = 3 b = 3 c = 7
a = 5 b = 3 c = 10 (M5+S2)
a = 12 b = 3 c = 7
a = 5 b = 8 c = 7
a = 5 b = 0 c = 10 (M6+S2)
a = 12 b = 3 c = 0
a = 0 b = 8 c = 7
a = 5 b = 10 c = 7 (M7+S2)
a = 5 b = 3 c = 12
a = 8 b = 3 c = 7
a = 5 b = 10 c = 0 (M8+S2)
a = 0 b = 3 c = 12
a = 8 b = 0 c = 7
a = 5 b = 7 c = 3 (M11+S2)
a = 7 b = 3 c = 5
a = 3 b = 5 c = 7
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Question Answers/s Model/s
a = 0 b = 7 c = 3 M1
a = 7 b = 5 c = 3 (M1+S3)/(M2+S3)/(M11+S3)

12. a = 7 b = 7 c = 3 M2
a = 5 b = 0 c = 0 M3

int a = 5; a = 5 b = 5 c = 5 M4
int b = 3; a = 3 b = 7 c = 5 (M3+S3)/(M4+S3)
int c = 7; a = 12 b = 15 c = 10 M5

a = 12 b = 8 c = 10 (M5+S3)/(M6+S3)
a = c; a = 0 b = 12 c = 3 M6
c = b; a = 20 b = 15 c = 12 M7
b = a; a = 8 b = 10 c = 12 (M7+S3)/(M8+S3)

a = 15 b = 0 c = 0 M8
a = 5 b = 3 c = 7 M9
a = 5 b = 7 c = 3 M11

a = 5 b = 5 c = 5 M10
a = 3 b = 3 c = 3
a = 7 b = 7 c = 7
a = 0 b = 5 c = 7 (M1+S2)
a = 5 b = 0 c = 3
a = 7 b = 3 c = 0
a = 5 b = 3 c = 3 (M2+S2)
a = 7 b = 3 c = 7
a = 5 b = 5 c = 7
a = 5 b = 7 c = 0 (M3+S2)
a = 0 b = 3 c = 5
a = 3 b = 0 c = 7
a = 5 b = 7 c = 7 (M4+S2)
a = 5 b = 3 c = 5
a = 3 b = 3 c = 7
a = 5 b = 3 c = 10 (M5+S2)
a = 12 b = 3 c = 7
a = 5 b = 8 c = 7
a = 5 b = 0 c = 10 (M6+S2)
a = 12 b = 3 c = 0
a = 0 b = 8 c = 7
a = 5 b = 10 c = 7 (M7+S2)
a = 5 b = 3 c = 12
a = 8 b = 3 c = 7
a = 5 b = 10 c = 0 (M8+S2)
a = 0 b = 3 c = 12
a = 8 b = 0 c = 7
a = 5 b = 7 c = 3 (M11+S2)
a = 7 b = 3 c = 5
a = 3 b = 5 c = 7
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Figure C.1: A marksheet



Appendix D

Marking protocol

The instruction below was used in the six experiments of this study:

In the answer sheet for Q1-Q3 (single assignment questions) there are ten

single-tick boxes (M1 to M11) and one double-tick box (M10). If the subject

gives one tick, we use a single-tick box. If they give two ticks in the positions

specified, we use the double-tick box. We can’t interpret anything else.

In multiple assignments (Q4 onwards) there is more complexity. First, some

of the models are decorated with S1, S2 or S3. Instead of just ticking the cor-

responding model column on the mark sheet, put the S1, S2 or S3 next to the

tick.

Second, some of the single-tick boxes give alternative models. In this case tick

all of the alternative models on the mark sheet, in pencil. Then, when you have

marked all the questions, try to maximise the coherence of the subject’s answers

by inking in on of the pencil ticks on each row, so as to maximise the numbers

in the summary row (labelled C0 on the mark sheet).

Subjective marking is needed to decide what to do with not-entirely- blank

scripts. At present we use the following rule:

Rule 1: A consistent response to Q1- Q3 (all the ticks in a single column or

in two adjacent columns) can be considered non-blank, but if all we get is

three ticks all over the place and nothing else, it’s blank. If we could get

consistent responses to all the double-assignments or the triple-assignments,

then that was non-blank too.

Using joined columns; we can investigate four different levels of consistency

in the rows that represent by labels C0, C1, C2 and C3. Level C0 contents of
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the 11 single models and demonstrates the highest rate of consistency while

sliding toward level C3 leads to lower rate and poorer sign of consistency.

Level C1 contents of 4 columns that each is created by joining two adja-

cent models, logically carried common concepts. M1 and M2, M3 and M4,

M5 and M6, M7 and M8. Each of these new columns logically approved

Assignment, assigning value to the left or to the right. Level C2 contents 2

columns that each is created by joining 4 adjacent models, logically carried

common concepts. M1 and M2 and M3 and M4, M5 and M6 and M7 and

M8. Each of these new columns logically approved Assignment, assigning

value to the left and to the right. Level C3 contents of a single column that

created by joining 8 other models, logically carried common concepts. M1

and M2 and M3 and M4 and M5 and M6 and M7 and M8. The new column

logically approved assignment.

Rule 2: Any C level can be considered as subject’s level of consistency if:

1. (mode value in C level) >= abs (no. of answered questions * 80%)

and (no. of answered questions) >= abs (no. of questions * 80%).

2. According to the above rule the subject in figure E.2 is consistent in

C3 level. This method creates around 20% flexibility in C level of

subject’s that answered 80% of the questionnaire.
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Figure E.1: A marksheet sample
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Figure E.2: A marksheet sample
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Figure E.3: A marksheet sample


