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Abstract
The problem of evaluating the accuracy of Poisson approximation to the distribu-
tion of a sum of independent integer-valued random variables has attracted a lot of
attention in the past six decades. Among authors who contributed to the topic are
Prokhorov, Kolmogorov, LeCam, Shorgin, Barbour, Hall, Deheuvels, Pfeifer, Roos,
and many others. From a practical point of view, the problem has important appli-
cations in insurance, reliability theory, extreme value theory, etc. From a theoretical
point of view, the topic provides insights into Kolmogorov’s problem concerning the
accuracy of approximation of the distribution of a sum of independent random vari-
ables by infinitely divisible laws. The task of establishing an estimate of the accuracy
of Poisson approximationwith a correct (the best possible) constant at the leading term
remained open for decades.We present a solution to that problem in the case where the
accuracy of approximation is evaluated in terms of the point metric. We generalise and
sharpen the corresponding inequalities established by preceding authors. A new result
is established for the intensively studied topic of compound Poisson approximation to
the distribution of a sum of integer-valued r.v.s.
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1 Introduction

The task of approximating the distribution of a sum of independent random variables
lies at the heart of the probability theory. The central role is played by the normal
approximation. However, in situations where one deals with rare events Poisson or
compound Poisson approximation may be preferable (cf. [4, 5, 35, 36, 40]).
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Interest to the topic of Poisson/compound Poisson approximation arises in connec-
tion with applications in extreme value theory, insurance, reliability theory, etc. (cf.
[6, 7, 29, 33]). The theory of Poisson/compound Poisson approximation underpins the
extreme value theory [29, 33].

Let X1, X2, . . . be integer-valued non-negative random variables (r.v.s). Denote
S0 = 0,

Sn = X1+· · ·+Xn, λ≡λ(n)= IESn (n>1).

For example, given r.v.s ξ1, ξ2, . . ., onemay dealwith exceedances of a chosen “thresh-
old” x . Set Xi = 1{ξi > x}. Then

Sn ≡ Sn(x) =
n∑

i=1

1{ξi > x}

denotes the number of exceedances of threshold x . In particular,

{
max
1≤i≤n

ξi ≤ x
}

= {Sn(x)=0}, {ξk,n ≤ x} = {Sn(x)<k} (k∈ IN), (1)

where ξk,n denotes the k-th largest element among ξ1, . . . , ξn . Thus, results concerning
the distribution of sample extremes can be derived from the corresponding results
concerning L(Sn).

In applications, indicators 1{ξ1 > x},1{ξ2 > x}, . . . may be dependent. A well-
known approach (Bernstein’s blocks method [14]) consists of grouping observations
into blocks which can be considered almost independent. The number of r.v.s in a
block is an integer-valued random variable; hence, the number of rare events is a sum
of almost independent integer-valued r.v.s.

In (re)insurance applications, the sum
∑n

i=1Yi1{Yi > x} of integer-valued r.v.s
allows to account for the total loss from the claims {Yi } exceeding threshold x [22].
More information concerning applications can be found in [6, 7, 22, 29, 35, 36].

The distribution of a sum Sn(x) of integer-valued non-negative random variables
can often be approximated by a Poisson or compound Poisson law. In early 1950s,
Kolmogorov has formulated the task of evaluating the accuracy of approximation of
the distribution of a sum Sn of independent and identically distributed (i.i.d.) r.v.s by
infinitely divisible distributions (Kolmogorov’s uniform approximation problem). The
topic has attracted a lot of attention among researchers (see, e.g., [4, 19, 35, 36, 40,
49] and references therein).

From a theoretical point of view, the question concerning the accuracy of Pois-
son/compound Poisson approximation is a particular case of Kolmogorov’s problem.
Besides, it was noticed that estimates of the accuracy of approximation to the Binomial
distribution can provide important insights in other areas of probability theory [32,
38]. In a sense, the Binomial distribution plays the role of a “testing stone” [4].

Note that there is a strong connection between the topics of Poisson and compound
Poisson approximation [35, 36, 38, 48]; the latter plays a special role in approximating
L(Sn) by infinitely divisible laws since the class of infinitely divisible distributions
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coincides with the class of weak limits of compound Poisson distributions [26, Theo-
rem 26].

In a range of situations, both normal and (compound) Poisson approximations can
be applicable (cf. [4, 40]). Due to the complex structure of the compound Poisson
distribution, in applications one would prefer pure Poisson approximation where pos-
sible.

One can choose between possible types of approximation by comparing estimates
of the accuracy of approximation. Obviously, one would make a choice according to
the sharpest estimate, thus the need of sharp estimates of the accuracy of approximation
with explicit constants.

1.1 Notation

Let S denote the class of measurable functions taking values in [0; 1]. Then

dTV (X; Y ) ≡ dTV(L(X);L(Y )) = sup
h∈S

(IEh(X)−IEh(Y ))

denotes the total variation distance between the distributions of r.v.s X and Y .
We denote by

dK(X; Y ) ≡ dK(L(X);L(Y )) = sup
x

|FX (x) − FY (x)|

the uniform (Kolmogorov’s) distance between the distributions of random variables
X and Y with distribution functions (d.f.s) FX and FY .

The Gini–Kantorovich distance between the distributions of r.v.s X and Y with
finite first moments (known also as the Kantorovich–Wasserstein distance) is

dG (X; Y ) ≡ dG (L(X);L(Y )) = sup
g∈L

|IEg(X) − IEg(Y )| ,

where L = {g : |g(x)−g(y)| ≤ |x−y|} is the set of Lipschitz functions. Note that

dG (X; Y ) = inf
X ′,Y ′ IE|X ′ − Y ′|,

where the infimum is taken over all random pairs (X ′,Y ′) such that L(X ′) = L(X)

and L(Y ′) = L(Y ).
Set ‖ f ‖ = supk | f (k)|. We denote by ‖ · ‖1 the L1-norm of a function. Given a

discrete r.v. Y , we denote

IPY = IP(Y =·).

In the case of discrete distributions, it is natural to exploit the point metric

do(X; Y ) ≡ do(L(X);L(Y )) = sup
k

|IP(X =k)−IP(Y =k)| = ‖IPX −IPY ‖,
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where ‖ · ‖ denotes the sup-norm.
Initially, estimates of the accuracy of Poisson approximation to the Binomial dis-

tribution B(n, p) were established in terms of the uniform distance dK and the total
variation distance dTV [27, 40, 47]. Metrics dTV, dK , do have obvious merits. For
instance, they are shift- and scale invariant. The O(n−2/3) estimate of the accuracy
of approximation in Kolmogorov’s problem holds in terms of dK [1–3] (and hence
in terms of do) but generally not in terms of dTV [49]. Bounds in terms of do can be
sharper than those in terms of the uniform and the total variation distances.

In extreme value theory, one is interested in the distribution of the k-th largest
sample element Xn:k . Metric do appears more suitable than dK and dTV if one evaluates
probabilities like IP(Sn(x) < k) for “small” k, cf. (1). A similar observation can be
made concerning the length of the longest head run (LLHR), the length of the longest
match pattern (LLMP), etc. (see [35]). Metric do is shift and scale invariant. Another
advantage of using do in comparison with dTV, dK is the higher rate of approximation
(cf. (4), (8)).

1.2 Independent Bernoulli r.v.s

Hereinafter, {Xi } are independent non-negative integer-valued random variables; mul-
tiplication is superior to the division. W.l.o.g. we may assume that IEXi >0 (∀i).

Letπλ denote aPoisson�(λ) r.v.Manyauthorsworkedon the problemof evaluating
the accuracy of approximation

Sn ≈ πλ

in the case where {Xi } are 0-1 r.v.s (see, e.g., [4, 7, 35, 36] and references therein).
The problem goes back to Prokhorov [40]. It has attracted a lot of attention among
specialists (see, e.g., [35, 36] and references therein).

Estimates of the accuracy of Poisson approximation to the distribution of a sum of
independent 0-1 random variables in terms of the uniform distance dK and the total
variation distance dTV have been derived by Kolmogorov [27, Lemma 5], Tsaregrad-
skii [47], LeCam [30], Kerstan [25], Romanowska [41], Shorgin [46], Barbour and
Eagleson [12] and other authors (see, e.g., [20, 34, 39, 45]). Concerning estimates in
terms of some other metrics, see [15, 21, 35–37] and references therein.

In the case of independent 0-1 r.v.s estimates with correct (the best possible) con-
stants at the leading terms have been found by Roos [45]:

dTV(Sn;πλ)≤3θ/4e(1−√
θ )3/2, (2)

dK (Sn;πλ)≤ θ/2e + 1.2θ
√

θ/(1−√
θ), (3)

do(Sn;πλ)≤ θ(3/2e)3/2/2λ1/2 + θ
√

θ

3
√

λ

6−4
√

θ

(1−√
θ)2

, (4)

where θ = ∑n
i=1 p

2
i /λ, pi = IP(Xi =1) (i≥1); constants at the leading terms in (2)–

(4) cannot be improved. Note that 3/4e ≈ 0.276, 1/2e ≤ 0.184, 1
2 (3/2e)

3/2 ≤ 0.205.
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Estimate (3) has a sharper constant at the leading term than that in (2), estimate (4)
has a sharper rate of decay if λ≡λ(n)→∞ as n→∞.

Estimates of the accuracy of shifted (translated) Poisson approximation to the
distribution of a sum of independent 0-1 r.v.s have been given by Barbour and
Xia [9], Čekanavičius and Vaitkus [18], Barbour and Čekanavičius [11], Röllin [43],
Novak [34, 37]. Kruopis [28] has evaluated the accuracy of shifted Poisson approxi-
mation to L(Sn) in terms of do :

do(Sn; Y ) ≤
n∑

j=1

p2j min

⎧
⎨

⎩1;
√

e

π

( n∑

j=1

p j (1− p j )

)−3/2
⎫
⎬

⎭ , (5)

where Y = λ2+0.5� + πλ−λ2+0.5�, λ2 = ∑n
j=1 p

2
j . Note that IEY = λ, |var Y −

var Sn| ≤ 1/2. In the case of the Binomial distribution B(n, p), the right-hand side
(r.h.s) of (5) is of order

√
p/n.

1.3 Integer-valued r.v.s

Let {Xi }i≥1 be independent non-negative integer-valued r.v.s. The problem of evaluat-
ing the accuracy of Poisson approximation to the distribution of a sum of independent
non-negative integer-valued r.v.s has been considered, e.g. in [8, 11, 13, 21, 25, 33,
37]; an overview of the results on the topic can be found in [35, 36].

Röllin [43, formula (2.13)], assuming that third moments are finite, states that

do(Sn; [λ−σ 2]+πσ 2+{λ−σ 2}) ≤
(
2+d ′

n∑

i=1

ψi

)
/σ 2, (6)

where σ 2 = var Sn, ψi = σ 2
i IEXi (Xi−1)+|IEXi−σ 2

i |IE(Xi−1)(Xi−2)+IE|Xi (Xi−
1)(Xi −2)|, d ′ = maxi≤n ‖IPSn,i+2 − 2IPSn,i+1 + IPSn,i ‖1/2, Sn,i = Sn−Xi , [x] =
max{k ∈ Z : k ≤ x}, {x} = x−[x]. In the case of the Binomial distribution B(n, p)
bound (6) is of order 1/np.

Tsaregradskii [47] has shown that the rate of the accuracy of compound Poisson
approximation to the Binomial distribution B(n, p) in terms of the uniform distance
is O(1/np). Presman [38] has shown that

dTV(B(n, p); Pn,p) ≤ C min
{
np2; p;max{(np)−2; n−1}} (0≤ p≤1/2),

whereC is an absolute constant and Pn,p is a particular compoundPoisson distribution.
Hence,

sup
p≤1/2

dTV(B(n, p); Pn,p) = O(n−2/3). (7)
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According to Čekanavičius [16], there exists an absolute constant C such that

do(B(n, p); Pn,p) ≤ C max{(np)−2; n−1}(np)−1/2 (n−2/3≤ p≤1/2). (8)

In the case of i.i.d.r.v.s X , X1, X2, . . . obeying IEX4<∞ Čekanavičius [17] has shown
that the accuracy of compound Poisson approximation to L(Sn) is CXn−3/2, where
CX depends on L(X).

The problem of establishing an estimate of the accuracy of Poisson approximation
to the distributions of a sum of independent non-negative integer-valued r.v.s in terms
of the point metric with a correct constant at the leading term remained open for a long
while. In particular, an open question was whether 1

2 (3/2e)
3/2 would remain the best

possible constant at the leading term in the case of integer-valued r.v.s. We give below
the affirmative answer to that question. We generalise and sharpen the corresponding
results from [16, 21, 43, 45].

Theorem 1 presents an estimate of the accuracy of Poisson approximation toL(Sn)
in terms of the point metric with a correct constant at the leading term. Theorem 2
provides a first-order asymptotic expansion. Theorem 3 presents an estimate of the
accuracy of shifted Poisson approximation. Theorem 4 provides an estimate of the
accuracy of compound Poisson approximation in terms of the point metric. Theo-
rems 1–3 only assume that the second moments are finite, Theorem 4 does not impose
moment requirements, and the constants are explicit.

2 Results

Let {Xi }i≥1 be independent non-negative integer-valued r.v.s.
First, we present an estimate of the accuracy of pure Poisson approximation.

2.1 Poisson Approximation

If random variables X , ξ, η have finite second moments, let

κX = IEX−varX , γξ,η = IE|ξ(ξ−1) − η(η−1)|.

Denote X0=0, ε∗
λ = 1∧1/√2π [λ]. If i ∈{0, 1, . . . , n}, let Sn,i = Sn−Xi , λi = IESn,i ,

ui = 1−dTV(Xi ; Xi +1), U =
n∑

i=1

ui , u∗ = max
1≤i≤n

ui , U∗ = U−u∗,

εi,n = εoi,n ∧
(
ε∗
λi

+2ε+
i,n

)
, εoi,n = 1∧√

2/π
(
1/4+U−ui

)−1/2
,

ε+
i,n = 1−e−λ

λi

n∑

j=1

dG (X j ; X∗
j )IEX j ,

r∗
i,n = min

{
εi,n; 8

π
(U 2∗ +(1−2u∗)U∗+1/4)−1/2

}
,
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where X∗
i denotes a random variable with the distribution

IP(X∗
i =m) = (m+1)IP(Xi =m+1)/IEXi (m≥0) (9)

(cf. [33, Ch. 4.4]). Note that U 2∗ +(1−2u∗)U∗+1/4≥0. If u∗ ≤1/4, then U 2∗ +(1−
2u∗)U∗+1/4≥U 2, and r∗

i,n ≤ min
{
εi,n; 8/πU

}
.

Set

εo1 = λ−1
n∑

i=1

min{4dG (Xi ; X∗
i )εi,n; γXi ,X∗

i
r∗
i,n}IEXi , εo+ = 2

n∑

i=1

|κXi |εi,n/λ,

εo2 = 2λ−1
n∑

i=1

|κXi |IEXir
∗
i,n, εo3 = 2λ−1|κSn |(εo1 + εo+).

Theorem 1 If X1, . . . , Xn are independent non-negative integer-valued random vari-
ables with finite second moments, then

do(Sn;πλ)≤ co|κSn |λ−3/2 + (1−e−λ)(εo1 + εo2 + εo3) (n>1), (10)

where co = 1
2 (3/2e)

3/2.

If X , X1, . . . , Xn are i.i.d.r.v.s, set θ∗ =|κX |/IEX ,

εo
X

= ε̃o1+16|κX |/π(n−1)u1+2θ∗(2θ∗ε1,n+ ε̃o1),

ε̃o1 = 2dG (X; X∗)ε1,n∧8γX ,X∗/π(n−1)u1.

Then (10) becomes

do(Sn;πλ) ≤ co|κX |/(IEX)3/2
√
n + (1−e−λ)εo

X
. (10∗)

According to [45], constant co in (10), (10∗) cannot be improved.
Note that themoment assumption in Theorem 1 can be relaxed at a cost of adding an

extra term if one uses truncation at some levels {Ki } (i.e. switches from {Xi } to {X ′
i },

where X ′
i = Xi1{Xi ≤ Ki }) since dTV((X1, . . . ,Xn); (X ′

1, . . . ,X
′
n)) ≤ ∑n

i=1IP(Xi >

Ki ).

Example 1 Let {Xi } be independent Bernoulli B(pi ) random variables, where pi ∈
[0; 1/2] (i ≥1). Then λ = ∑n

i=1 pi , κSn = ∑n
i=1 p

2
i , ε

o
1 =0, and (10) yields

do(Sn;πλ) ≤ co

n∑

i=1

p2i

( n∑

i=1

pi

)−3/2

+2λ−1(1−e−λ)

( n∑

i=1

p3i r
∗
i,n +

n∑

i=1

p2i ε
o+
)

. (11)

The constant at the leading term in (11) is sharper than that in (5).
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In the case of the Binomial distribution B(n, p), one has κX = p2, u1= p,

εo2 ≤ 16p/π(n−1), εo+ = 2pε1,n, εo3 = 4p2ε1,n, ε1,n ≤ ε̃n,

where ε̃n = min
{√

2/π
/(

1/4+(n−1)p
)1/2; 1/√2π [(n−1)p] +2(1−e−np)p/(1−

1/n)
}
. Then

do(B(n, p);�(np)) ≤ 1
2 (3/2e)3/2

√
p/n

+4(1−e−np)p
(√

2p/π(n−1) + 4/π(n−1)
)

. (12)

The rate of the second-order term in (12) is sharper than that in (4) if p≡ p(n)→0
as n→∞. Note that supk IP(Sn =k) = O(1/

√
np ), cf. [31, 42].

Example 2 Let X , X1, X2, . . . be independent geometric 0(p) r.v.s:

IP(X =m) = (1− p)pm (m≥0, 0≤ p<1).

Then Sn is a Negative Binomial NB(n, p) r.v.:

IP(Sn = j) = (n+ j)

(n) j ! (1− p)n p j ( j ≥0, 0≤ p<1),

where(y) = ∫ ∞
0 x y−1e−xdx . It is easy to see that IP(X∗

i = m) = (m+1)pm(1−p)2.
Hence,

X∗
i

d= Xi + X .

Set r = p/(1− p). Note that λ≡ IESn =nr .
It is easy to check that κX =−r2, γX1,X∗

1
=4r2, u1= p, θ∗ =r ,

εoX ≤ ε̃o1 + 32p/πq(n−1) + 2r
(
2r

√
2/π(1/4 + (n−1)p) + ε̃o1

)
,

ε̃o1 ≤ 32p/πq2(n−1), ε1,n ≤ ε�
n,p,

where ε�
n,p = √

2/π
/(

1/4+ (n−1)p
)1/2 ∧

(
1
/√

2π [(n−1)p] + 2r/(1−1/n)
)
.

Theorem 1 yields

do(Sn;πλ) ≤ 1
2 (3/2e)3/2

√
r/n + (1−e−nr )εoX . (13)

Estimate (13) has a correct constant at the leading term, εoX = O(p
√
p/n + p/n).
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Example 3 Let X , X1, . . . be i.i.d.r.v.s with the distribution

IP(X =0)=1− p+ p2/2, IP(X =1)= p− p2, IP(X =2)= p2/2,

where p∈[0; 1/2]. Then IEX = varX = p, L(X∗) = B(p).
Note that IEX = IEX∗ = p,

κX =0, ε2=ε3=0, u1 = p− p2/2, γX ,X∗ =dG (X; X∗)= p2.

Hence, εo1 ≤ 8p/π(1− p/2)(n−1), and Theorem 1 yields

do(Sn;πλ)≤8(1−e−np)p/π(1− p/2)(n−1) (n>1). (14)

While the rate of the accuracy of approximation in (12) is
√
p/n, the rate is p/n in

(14).

2.2 A First-Order Asymptotic Expansion

For any function f , denote � f (·) = f (·+1)− f (·). The following theorem provides
a first-order asymptotic expansion in terms of do.

Theorem 2 Let X1, . . . , Xn be independent non-negative integer-valued random vari-
ables with finite second moments. If h(·)= 1{·=k}, where k∈ IN, then

∣∣∣IEh(Sn) − IEh(πλ) + IE�2h(πλ)κSn
/
2
∣∣∣ ≤ (1−e−λ)

(
εo1 + εo2 + εo3

)
. (15)

Let π�
λ denote a random variable with the distribution

IP(π�
λ =k) = IP(πλ =k)(k−λ)2/λ (k∈Z+), (16)

where Z+ = {0, 1, 2, . . .} is the set of non-negative integer numbers. Note that

λIE�2h(πλ) = IEh(π�
λ) − IEh(πλ+1) = IP(π�

λ =k) − IP(πλ+1=k) (17)

(cf. [34, Remark 1]). Thus,

∣∣∣IP(Sn =k)−IP(πλ =k) + (IP(π�
λ =k)−IP(πλ+1=k))κSn

/
2λ

∣∣∣

≤ (1−e−λ)
(
εo1 + εo2 + εo3

)
.

In particular,

|do(Sn;πλ) − do(π
�
λ;πλ+1)|κSn|

/
2λ| ≤ (1−e−λ)

(
εo1 + εo2 + εo3

)
.
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According to Roos [44],
∣∣∣λ‖�2IPπλ‖ − 1/

√
2πλ

∣∣∣ ≤ C/λ. Therefore,

|do(Sn;πλ) − |κSn|λ−3/2/2
√
2π | = O(εo1+εo2+εo3+|κSn|λ−2). (18)

If X1, . . . , Xn are i.i.d. Bernoulli B(p) r.v.s, then for any k∈ IN

‖IP(Sn =k) − IP(πnp =k) + (IP(π�
np =k)−IP(πnp+1=k))p/2‖ ≤ (1−e−np)εoX ,

where εoX = 4p
(√

2p/π(n−1) + 4/π(n−1)
)
; hence,

∣∣∣do(Sn;πλ) − 1
2

√
p/2πn

∣∣∣ = O
(
p
√
p/n + 1/np

)
. (18o)

2.3 Shifted Poisson Approximation

Set μ=var Sn+{κSn }. The next theorem deals with shifted Poisson approximation

L(Sn) ≈ L([κSn ]+πμ).

Note that [κSn ]+IEπμ = IESn, |var πμ− var Sn| < 1. W.l.o.g. we may assume that
μ>0.

Given a r.v. Y , we denote Ȳ = Y−IEY . Let σ 2=var Sn , Ui =U−ui ,

ε̂μ = min
{
2μ−1(1−e−μ)ε0,n; ε̄μ

}
, ε̄μ = 2ε∗

μ

√
2/eμ + 2μ−1(1−e−μ)ε�

μ,

ε#
μ = μ−1

n∑

i=1

min{4IE|X̄i Xi |εoi,n; IE|X̄i Xi ||Xi −1−2X̃i |r∗
i,n}.

Theorem 3 Let X1, . . . , Xn be independent non-negative integer-valued random vari-
ables with finite second moments. Then

do(Sn; [κSn ]+πμ) ≤ |{κSn }|ε̂μ + (1−e−μ)ε#
μ. (19)

Example 1 (continued). Let L(Sn) = B(n, p), where p ∈ [0; 1/2]. Set q = 1− p.
Clearly,

μ = npq+{np2}, κSn = np2, δ
(μ)
Xi

= 0, ε0,n ≤ √
2/πnp, r∗

1,n ≤ 8/π(n−1)p.

Therefore, μ≤np, ε̂μ ≤2μ−1ε0,n, and (19) yields (n>1)

do(Sn; [np2]+πμ) ≤ 2
√
2/π(1−e−np)(npq)−3/2 + 16(1−e−np)q/π(n−1).(20)
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Using (12) as p<1/
√
n and (20) as 1/

√
n ≤ p≤1/2, we derive

sup
0≤p≤1/2

do(Sn; [np2]+πμ) ≤ 2
√
2/π

n3/4(1−1/
√
n )3/2

+ 16

π(n−1)
+ 4

√
2/π

(n−1)5/4
.

(21)

Indeed, (12) entails

do(Sn;πnp) ≤ con
−3/4 + 4

√
2/π(n−1)−5/4 + 16/π(n−1)3/2

if p<1/
√
n. If p≥1/

√
n, then (20) yields

do(Sn; [np2]+πμ) ≤ 2
√
2/π n−3/4(1−1/

√
n )−3/2 + 16/π(n−1),

and (21) follows. A uniform in p ∈ [0; 1/2] estimate of the accuracy of Poisson
approximation to the Binomial distribution B(n, p) in terms of the point metric seems
to be new.

3 Compound Poisson Approximation

The topic of compound Poisson approximation to the distribution of a sum of random
variables has attracted a lot of attention in the past decades (see, e.g., [19] and references
therein).

The topic has applications in extreme value theory, insurance, reliability theory,
patterns matching, etc. (cf. [6, 10, 22, 33]). In order to decide if a particular compound
Poisson approximation to L(Sn) is applicable, one would require an estimate of the
accuracy of compound Poisson approximation indicating the distance between two
distributions is “small”, hence the need of sharp bounds with explicit constants.

From a theoretical point of view, the interest to the topic arises in connection with
Kolmogorov’s problem concerning the accuracy of approximation of the distribution
of a sum of independent r.v.s by infinitely divisible laws (see [4, 19] and references
therein). From a practical point of view, the problem has important applications in
insurance, reliability theory, extreme value theory, etc., cf. [19], and references therein.

Estimates of the accuracy of compound Poisson approximation have been derived
mainly in terms of the uniform distance and the total variation distance. Very few
estimates of the accuracy of compound Poisson approximation are available in terms
of the point metric. However, in situations where one needs to evaluate IP(Sn < k)
for a “small” k the point metric may be advantages as estimates in terms of the point
metric are expected to have better rate of approximation than estimates in terms of the
uniform of the total variation distances, cf. (2)–(4).

By Khintchine’s formula (see [24, Ch. 2]), the distribution of any random variable
X obeys

X
d= τp X

′, (22)
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where τp and X ′ are independent r.v.s, L(X ′) = L(X |X �=0), τp is a Bernoulli B(p)
r.v., p = IP(X �=0). Since X1, . . . , Xn are independent r.v.s,

Sn
d= τ1X

′
1 + · · · + τn X

′
n, (23)

where τ1, X ′
1, . . . , τn, X

′
n are independent r.v.s, pi = IP(Xi �=0),

L(X ′
i ) = L(Xi |Xi �=0), L(τi ) = B(pi ) (∀i). (24)

Assume that X ′, X ′
1, . . . , X

′
n are i.i.d.r.v.s. Then

Sn
d=

νn∑

i=1

X ′
i , (25)

where r.v. νn = τ1 + · · · + τn is independent of {X ′
i }.

If L(X ′) is degenerate (i.e. X ′ = c, where c is a constant), then Sn
d= cνn, and

the problem of compound Poisson approximation to L(Sn) reduces to the problem of
Poisson approximation to L(νn).

Assume thatL(X ′) is not degenerate. According to Kolmogrov [27], formula (30),

dTV

( νn∑

i=1

X ′
i ;

πλ∑

i=1

X ′
i

)
≤ dTV(νn;πλ), (26)

where πλ denotes a Poisson �(λ) r.v.. Thus, an estimate of the accuracy of “accom-
panying” compound Poisson approximation (the terminology of Gnedenko and
Kolmogorov [23]) in terms of the total variation distance follows from an estimate of
the accuracy of pure Poisson approximation.

The following theorem presents an estimate of the accuracy of “accompanying”
compound Poisson approximation to L(Sn) in terms of the point metric.

Recall (24), where pi = IP(Xi �=0). Denote p̄ = ∑n
i=1 pi/n.

Theorem 4 If X , X1, X2, . . . are independent integer-valued random variables,
X ′, X ′

1, X
′
2, . . . are i.i.d.r.v.s, where L(X ′) = L(X |X �=0), then

do

(
Sn;

πn p̄∑

i=1

X ′
i

)
≤ co

n∑

i=1

p2i

( n∑

i=1

pi

)−3/2

+2
1−e−n p̄

n p̄

( n∑

i=1

p3i r
∗
i,n +

n∑

i=1

p2i ε
o+
)

. (27)

If X , X1, . . . are i.i.d.r.v.s, then p̄= p, where p= IP(X �=0), and (27) becomes

do

(
Sn;

πnp∑

i=1

X ′
i

)
≤ co

√
p/n + 4(1−e−np)p (pε̃n+4/π(n−1)) . (27∗)
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Bound (27) appears suitable for evaluating probabilities IP(Sn < k) when k is
“small”. A feature of the bound is that Theorem 4 does not impose moment require-
ments.

The rate of the accuracy of approximation in (27∗) is at least n−1/2, the rate is
o(n−1/2) if p≡ p(n)→0 as n→∞.

If X is a Bernoulli r.v., then X ′ ≡ 1,
∑πnp

i=1 X
′
i = πnp is a Poisson r.v., and (27)

coincides with (12). Thus, the constant at the leading term in (27) cannot in general
be improved.

The advantage of employing the “accompanying” compound Poisson distribu-
tion is the simplicity of the approximating distribution. An open question is if the
accuracy of compound Poisson approximation to L(Sn) can be improved using more
complex approximating laws? Relation (29) suggests the following hypothesis. Let
X , X1, X2, . . . be i.i.d.r.v.s. Denote PX = L(X), and let CP denote the class of
(shifted) compound Poisson r.v.s. An open question is if there exists an absolute con-
stant Co such that

sup
PX

do(Sn;CP) ≤ Con
−5/6.

Example 4 Suppose that X , X1, . . . are i.i.d. random variables,

IP(X =0) = 1− p, IP(X =1) = IP(X =2) = p/2.

Then IP(X ′ = 1) = IP(X ′ = 1) = 1/2. Hence,
∑πnp

i=1 X
′
i

d= π ′ +2π ′′, where π ′, π ′′
are independent Poisson �(np/2) r.v.s. Note that π ′+2π ′′ is a compound Poisson r.v.
Theorem 4 yields

do(Sn;π ′+2π ′′) ≤ co
√
p/n + 4

√
2/π p3/2/

√
n−1 + 16p/π(n−1). (28)

If p ≡ p(n) → 0 as n → ∞, which is typically the case when one deals with rare
events, then the r.h.s. of (28) is o(n−1/2).

We now present a uniform in p ∈ [0; 1/2] estimate of the accuracy of compound
Poisson approximation to the Binomial distribution in terms of the point metric.

Let Pn,p denote the compound Poisson distribution from (7).

Proposition 5 There exists an absolute constant C such that

sup
0≤p≤1/2

do(B(n, p);�(np)) ∧ do(B(n, p); Pn,p) ≤ Cn−5/6. (29)

Bound (29) provides a better rate of approximation than (21). However, (21) offers
a simpler approximating distribution, and the constants are explicit.
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4 Proofs

First, we present the proof of Theorem 2, then the proof of Theorem 1.
We start with a particular lemma, which is needed in the proof of Theorem 2.
For any function h∈S, we denote by g ≡ gh the solution of the Stein equation

g(n+1) − λ−1ng(n) = h(n) − IEh(πλ) (n∈Z+). (30)

Note that it is possible to write down the Stein equation in a different manner (see,
e.g., [33, Remark 4.1]). The way shown in (30) is in line with the general approach to
the characterisation of discrete distributions (cf. [33, Ch. 12]).

Lemma 6 Let h(·) ≡ hk(·) = 1{·= k} for a particular k ∈Z+. If gh is given by (30),
then

‖gh‖ ≤ 1−e−λ. (31)

Proof of Lemma 6 It is known that the solution of Eq. (30) is

g(m) = (IEh(πλ)1{πλ <m} − IEh(πλ)IP(πλ <m))/IP(πλ =m−1) (m≥1) (32)

(see, e.g., [7, 33]). The value of g(0) is irrelevant (we can set g(0)=0).
If h(·)=1{·=k}, where k∈Z+, then

g(m) = (IP(πλ =k<m) − IP(πλ =k)IP(πλ <m))/IP(πλ =m−1) (m≥1). (33)

Denote

G(n) = IP(πλ >n)/IP(πλ =n), G∗(n) = IP(πλ ≤n)/IP(πλ =n) (n∈Z+).

It is known (see, e.g., [33, p. 82]) that functionG is decreasing; functionG∗ is increas-
ing. Therefore, (33) yields

−ghk (m) = IP(πλ =k)G∗(m−1) ≤ IP(πλ =k)G∗(k−1) = IP(πλ ≤k−1)λ/k

≤ IP(πλ ≤k)−e−λ ≤ 1−e−λ (m≤k),

ghk (m) = IP(πλ =k)G(m−1) ≤ IP(πλ =k)G(k) = IP(πλ >k) ≤ 1−e−λ (m>k),

and (31) follows (Röllin [43] mentions without proof that ‖gh‖≤1). ��
Proof of Theorem 2 We will use Stein’s method. The details of the method have been
presented in many publications (see, e.g., [7, 33]).

According to (30),

IEh(Sn) − IEh(πλ) = IEg(Sn+1) − λ−1IESng(Sn).

Below we evaluate |IEg(Sn+1) − λ−1IESng(Sn)|.
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Let h(·)=1{·=k}, where k∈Z+. Then

g(m) = IP(πλ =k)
IP(πλ >m−1)

IP(πλ =m−1)
(k<m),

g(m) = −IP(πλ =k)
IP(πλ ≤m−1)

IP(πλ =m−1)
(k≥m).

If ‖�g‖= 0, then g is a constant, and λIEg(Sn+1) − IESng(Sn) = 0. Therefore,
without loss of generality we may assume that ‖�g‖>0.

Recall that Sn,i = Sn−Xi . Set

gi (·) = IEg(Sn,i+1+ ·).

It is known that

IEXi f (Xi ) = IEXi IE f (X∗
i +1) (34)

for any function f such that IE|Xi f (Xi )| < ∞ (cf. [33, Ch. 4]). Therefore,

λIEg(Sn+1) − IESng(Sn) = λIEg(Sn+1) −
n∑

i=1

IEXi g(Sn,i+Xi )

=
n∑

i=1

IEXi
(
IEg(Sn,i+Xi +1) − IEg(Sn,i+X∗

i +1)
)

=
n∑

i=1

IEXi
(
IEgi (Xi ) − IEgi (X

∗
i )

)
. (35)

Given a function f : Z+ → IR, we denote (�≥0,m≥0, k≥0)

R f (m, k, �) = f (m) − f (k) − (m−k)� f (�), (36)

c1( f ) = supi, j |� f (i)−� f ( j)|, c2( f ) = ‖�2 f ‖,
δ
(�)
m,k = min{c1( f )|m−k|; c2( f )|(m−�)(m−� −1) − (k−�)(k−� −1)|/2} .

According to Proposition 4 in [35, 36],

| f (m) − f (k) − (m−k)� f (�)| ≤ δ
(�)
m,k . (37)

Clearly,

gi (Xi ) − gi (X
∗
i ) = (Xi −X∗

i )�gi (0) + Rgi (Xi , X
∗
i , 0). (38)
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From (35), (38), (37),

∣∣∣∣λIEg(Sn+1) − IESng(Sn) −
n∑

i=1

IEXi IE(Xi −X∗
i )IE�g(Sn,i+1)

∣∣∣∣

≤
n∑

i=1

IEXi IEδ
(0)
Xi ,X∗

i
. (39)

It is known (see Barbour and Eagleson [12] or [7, Remark 1.1.2]) that

‖�gh‖ ≤ 1−e−λ, ‖gh‖ ≤ √
2λ/e ∧ λ. (40)

Thus, |c1(gi )| ≤ 2‖�gi‖ ≤ 2(1−e−λ). Using (51), we get

‖�gi‖ ≤ ‖gi‖
∑

k

|�IP(Sn,i =k)| = 2‖gi‖ dTV(Sn,i ; Sn,i +1). (41)

Recall that

dTV(Sn,i ; Sn,i +1) ≤ εi,n . (42)

Taking into account Proposition 6 and (42), we derive

|c1(gi )| ≤ 4(1−e−λ)εi,n .

Note that

|IE�2g(Sn,i+�)| ≤ 2‖�g‖εi,n .

Taking into account (40), ‖�2gi‖ ≤ 2(1−e−λ)εi,n . By (51), (56) and (31),

|�2gi (·)| ≤ ‖g‖
∑

k

|�2IP(Sn,i =k)| ≤ 16
π

(1−e−λ)
/√

U 2∗ +(1−2u∗)U+1/4.

Therefore,

‖�2gi (·)‖/2 ≤ (1−e−λ)r∗
i,n . (43)

Combining these estimates, we get

IEδ
(0)
Xi ,X∗

i
≤ (1−e−λ)min{4IE|Xi −X∗

i |εi,n; γXi ,X∗
i
r∗
i,n}. (44)

Here random variables Xi , X∗
i can be defined on a common probability space in such

a way that IE|Xi −X∗
i | = dG (Xi , X∗

i ). Notice that

κXi = IEXi IE(Xi −X∗
i ) (45)
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(cf. (34)). Taking into account (39), (44), (45), we derive

∣∣∣λIEg(Sn+1) − IESng(Sn) −
n∑

i=1

κXi IE�g(Sn,i+1)
∣∣∣ ≤ λ(1−e−λ)εo1. (46)

By (51), IE�g(Y ) = −∑
k g(k)�IPY (k). Using (42) and (31), we get

|IE�g(Sn,i +1)| ≤ 2‖g‖dTV(Sn,i ; Sn,i +1) ≤ 2(1−e−λ)εi,n .

This and (46) entail

do(Sn;πλ) ≤ (1−e−λ)(εo1 + εo+). (47)

Now we replace IE�g(Sn,i+1) in (46) with IE�g(Sn+1).
If m>k, then

f (m) − f (k) =
m−1∑

i=k

� f (i) (48)

for any function f . In particular,

IE�g(Sn,i +Xi +1) − IE�g(Sn,i +1) = IE
Xi−1∑

�=0

�2gi (�). (49)

According to [35], Lemma 5, for any bounded function f

|IE� f (Sn,i )| ≤ min
{
2‖ f ‖εi,n; (‖� f ‖∧2‖ f ‖ε∗

λi
) + 2‖� f ‖ε+

i,n

}
. (50)

An application of (50) with f = �gi yields

∣∣IE�g(Sn,i+Xi +1) − IE�g(Sn,i +1)
∣∣ ≤ 2‖�g‖εi,nIEXi ,

where ‖�g‖≤1−e−λ by (40). Note that (43) and (49) yield

|IE�g(Sn,i +Xi +1) − IE�g(Sn,i +1)| ≤ 2(1−e−λ)r∗
i,nIEXi .

Therefore,

∣∣∣∣
n∑

i=1

(
IE�g(Sn+1) − IE�g(Sn,i+1)κXi

)∣∣∣∣ ≤ 2(1−e−λ)

n∑

i=1

|κXi |IEXir
∗
i,n .

We have shown that
∣∣∣IEh(Sn) − IEh(πλ) − λ−1κSn IE�g(Sn+1)

∣∣∣ ≤ (1−e−λ)(εo1 + εo2).
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It remains to evaluate IE�g(Sn+1) − IE�g(πλ+1).
Recall that h(·)=1{·=k}, where k∈Z+. It is known that �g(i)≤0 if i �=k, while

0≤�g(k)≤1−e−λ (cf. [12] or the proof of Proposition 6). Note that
∑

i �=k �g(i) =
−�g(k). Therefore,

∣∣∣∣∣∣

∑

i �=k

�g(i) (IP(Sn+1= i) − IP(πλ+1= i))

∣∣∣∣∣∣
≤ (1−e−λ)do(Sn;πλ),

|�g(k) (IP(Sn+1=k) − IP(πλ+1=k))|≤ (1−e−λ)do(Sn;πλ).

An application of (47) yields

|IE�g(Sn+1) − IE�g(πλ+1)| ≤ 2(1−e−λ)do(Sn;πλ) ≤ 2(1−e−λ)(εo1 + εo+).

Thus,
∣∣∣IEh(Sn) − IEh(πλ) − λ−1κSn IE�g(πλ+1)

∣∣∣ ≤ (1−e−λ)(εo1 + εo2 + εo3).

Note that

IE�ghA(πλ+1) = (
IP(πλ+1∈ A) − IP(π�

λ ∈ A)
)
/2

for any indicator function hA(·) = 1{· ∈ A} (cf. (4.31) in [33]). Since every function
h∈S can be represented as h(·) = ∑

k ck1{·=k}, where {ck} are constants,

IE�gh(πλ+1) = (
IEh(πλ+1) − IEh(π�

λ)
)
/2 (∀h∈S).

Therefore,

∣∣IEh(Sn) − IEh(πλ) − (
IEh(πλ+1)−IEh(π�

λ)
)
κSn

/
2λ

∣∣ (15∗)
≤ (1−e−λ)

(
εo1 + εo2 + εo3

)
.

This and (17) lead to (15). ��
Proof of Theorem 1 If λ = 0, then Sn = πλ = 0, and (10) trivially holds. Therefore,
w.l.o.g. we may assume that λ>0.

Given a r.v. Y , denote

�IPY (·) = IP(Y+1=·) − IP(Y =·).

In particular, � f (·, ·) means the increment of the first argument.
Clearly, for any bounded function h

IE�h(Y ) = −
∑

j

h( j)�IPY ( j). (51)
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Given an arbitrary k∈Z+, let h(·)=1{· = k}. We apply (15).
Note that

�2h(·) = 1{·=k−2}−21{·=k−1}+1{·=k}.

Therefore,

IE�2h(πλ) = �2IPπλ(k).

According to Lemma 3 in Roos [45],

‖�2IPπλ‖ ≤ (3/2λe)3/2. (52)

Bounds (15) and (52) entail

|IP(Sn =k) − IP(πλ =k)| ≤ 1
2 |κSn |(3/2λe)3/2 + (1−e−λ)(εo1+εo2+εo3).

The proof is complete. ��
The proof of Theorem 3 requires the following

Proposition 7 For any bounded function f and any integer-valued random variable
Y

|IE� f (Y )| ≤2‖ f ‖ dTV(Y ; Y+1), (53)

|IE�2 f (Y )| ≤ ‖ f ‖ ‖�2IPY ‖1 . (54)

As a consequence,

|IE� f (Sn)| ≤ 2‖ f ‖ ε0,n, (55)

|IE�2 f (Sn)| ≤ 16
π

‖ f ‖/
√
U 2+(1−2u∗)U+1/4. (56)

If 2u∗ ≤1, then (56) yields

|IE�2 f (Sn)| ≤ 16‖ f ‖/πU .

If 2u∗ > 1, then (56) entails

|IE�2 f (Sn)| ≤ 16‖ f ‖/π(U−1/2).

Proof of Proposition 7 Relation (53) follows from (51): IE� f (Y ) = −∑
k f (k)�

IPY (k), hence

|IE� f (Y )| ≤ ‖ f ‖ ‖�IPY ‖1 = 2‖ f ‖ dTV(Y ; Y+1).
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Similarly,

|IE�2 f (Y )| =
∣∣∣
∑

k

f (k)�2IPY (k)
∣∣∣ ≤ ‖ f ‖ ‖�2IPY ‖1 .

Bound (55) is an immediate consequence of (53) and (42). Relation (56) will follow
from (54) and the following inequality:

‖�2IP(Sn =·)‖1 ≤ 16
/
π

√
U 2+(1−2u∗)U+1/4. (57)

We proceed with the proof of (57); the argument is similar to that behind (4.9) in [11].
Let Ix denote the distribution concentrated at point x , I ≡ I0, and let ∗ denote the

convolution of measures. Then

�IPY = IPY ∗ (I1− I ), �2IPY (·) = (I1− I )∗2 ∗ IPY .

Let Q1, Q2 be two measures. By the property of the total variation norm,

‖Q1 ∗ Q2‖1 ≤ ‖Q1‖1 ‖Q2‖1 .

Set J = {1, . . . , n}. If J = C ∪ D, we denote S′ = ∑
i∈C Xi , S′′ = ∑

i∈D Xi .
Since IPSn = IPS′ ∗ IPS′′ , we have

‖�2IPSn‖1 = ‖(I1− I )∗2 ∗ IPSn‖1 = ‖(I1− I )∗IPS′ ∗ (I1− I )∗IPS′′ ‖1

≤ ‖(I1− I )∗IPS′ ‖1 ‖(I1− I )∗IPS′′ ‖1 = 4dTV(S
′; S′+1)dTV(S

′′; S′′+1).

We will exploit this bound and (59).
IfU =0, then (57) trivially holds. Therefore, we may assume thatU >0. Set J can

be split into C∪D so that sets C, D are non-empty,

UC >U/2−u∗, UD ≥U/2, (58)

where UC = ∑
i∈C ui , UD := ∑

i∈D ui .
Indeed, r.v.s X1, . . . , Xn (and hence numbers u1, . . . , un) can be rearrangedwithout

affecting Sn . Therefore, we may assume that u0 :=0≤u1≤ · · · ≤un =u∗. Denote

�k = u1 + · · · + uk, ν = min{k≥1 : �k >U/2}.

If�n−1≤U/2, then ν = n, hence un >U/2.One can chooseC = {1, . . . , n−1}, D=
{n}. Then

UC =U−u∗ ≥ (U/2−u∗)+, UD =un >U/2.
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If�n−1>U/2, then ν ≤n−1 and u∗ ≤U/2.One can chooseC = {1, . . . , ν−1}, D =
{ν, . . . , n}. Then

UC = �ν − uν ≥ �ν − u∗ > U/2 − u∗, UD = U − �ν−1 ≥ U/2,

and (58) holds.
According to Mattner and Roos [31, Corollary 1.6],

dTV(Sn; Sn+1) ≤ √
2/π

/
(1/4+U )1/2 . (59)

Inequality (59) can be applied to S′, S′′:

dTV(S
′; S′+1) ≤ √

2/π
/(

1/4+UC

)1/2
, dTV(S

′′; S′′+1) ≤ √
2/π

/(
1/4+UD

)1/2
.

One can check that (1/4+UC )(1/4+UD) ≥ U 2/4+(1−2u∗)U/4+1/16. Hence,

‖�2IPSn‖1 ≤ 8
π

(UC+1/4)−1/2(UD+1/4)−1/2 ≤ 16
π

(U 2+(1−2u∗)U+1/4)−1/2.

This leads to (57) and hence to (56). The proof is complete. ��
Proof of Theorem 3 Recall that Z denotes the set of integer numbers. Set

a = [κSn ], b = {κSn }.

Then

μ = σ 2+ b = λ−a ≥ 0. (60)

We need to evaluate |IEh(Sn) − IEh(πμ+a)|, where h(·)=1{· = k}.
W.l.o.g. we may assume that μ>0: if μ= 0, then (60) yields σ 2 = {λ}=0; hence,

every Xi is a constant, a = λ, and (19) trivially holds.
In the case of shifted Poisson approximation, the basic equation is

f (k+1) − μ−1(k−a) f (k) = h(k) − IEh(πμ+ a) (k≥a) (61)

(cf. (12.26) in [33]). The solution f ≡ fh of Eq. (61) is

f (k)=0 (k≤a), f (k) = gh̃(k−a) (k≥a),

where h̃(m) = h(m+a) (m≥0) and g ≡ gh̃ is given by (32) with λ replaced with μ.
According to (61),

IEh(Sn) − IEh(πμ+a) = IE f (Sn+1) − μ−1IE(Sn−a) f (Sn).

Below we evaluate |μIE f (Sn+1) − IE(Sn−a) f (Sn)|.
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First, we show that

do(Sn;πμ+a) ≤ μ−1|b| |IE� f (Sn)| + (1−e−μ)ε#
μ. (62)

Let {X̃ j } denote independent copies of {X j }. Set X̄i = Xi −IEXi ,

fi (·) = IE f (Sn,i +·), ri = R fi (Xi , 0, X̃i ),

cf. (36). Because of (60),

μ f (Sn+1) − (Sn−a) f (Sn) = μ f (Sn+1) − (S̄n+μ) f (Sn)

= μ� f (Sn) − S̄n f (Sn).

Since ri = fi (Xi ) − fi (0) − Xi� fi (X̃i ),

IES̄n f (Sn) =
n∑

i=1

IEX̄i
(
f (Sn) − f (Sn,i )

)

= σ 2IE� f (Sn) +
n∑

i=1

IEX̄i ri .

Recall that μ = σ 2+b. Hence,

μIE f (Sn+1) − IE(Sn−a) f (Sn) = bIE� f (Sn) −
n∑

i=1

IEX̄i ri .

Note that |ri | ≤ δ
X̃i
Xi ,0

, c1( fi ) ≤ 2‖� fi‖ ≤ 4(1−e−μ)εoi,n by (37), (41), (42), (31).
Therefore,

IE|X̄i ri | ≤ 4(1−e−μ)εoi,nIE|X̄i Xi |.

According to (55), ‖�2 fi‖ ≤ 2‖�g‖εi,n, while (56) yields

‖�2 fi‖ ≤ 16
π

‖g‖/
√
U 2
i +(1−2u∗)Ui +1/4.

In view of (40) and (31), max{‖g‖; ‖�g‖} ≤ 1−e−μ. Therefore,

c2( fi ) ≡ ‖�2 fi‖ ≤ 2(1−e−μ)r∗
i,n . (63)

Note that (m−�)(m−� −1) − �(�+1) = m(m−1) − 2m�. Hence,

IE|X̄i ri | ≤ IE|X̄i ||Xi (Xi −1)−2Xi X̃i |‖�2 fi‖/2
≤ (1−e−μ)IE|X̄i ||Xi (Xi −1)−2Xi X̃i |r∗

i,n
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by (37), (40), (55), (31), (63). Thus,

IE|X̄i ri | ≤ (1−e−μ)min{4IE|X̄i Xi |εoi,n; IE|X̄i Xi ||Xi −1−2X̃i |r∗
i,n},

i.e. (62) holds.
It is known (cf. [35, 36]) that

|IE� f (Sn)| ≤ με̄μ.

According to (51), (41), (42), (31),

|IE� f (Sn)| ≤ 2(1−e−μ)ε0,n .

Thus, (19) holds. The proof is complete. ��
Remark 1 Estimates ofTheorems1–3workbest if themaximumspanofL(X1), . . . ,L(Xn)

is 1. If the maximum span of L(Xi ) is >1 for a particular i , then dTV(Xi ; Xi+1) may
be equal to 1, reducing U =∑n

i=1 ui and hence increasing the bounds.

The following inequality is employed in the proof of Theorem 4.

Lemma 8 Let ν̃, ν, X , X1, X2, . . . be independent r.v.s taking values in Z+, Xi
d=

X (∀i). Denote S0 = 0, Sk = X1 + · · · + Xk (k∈ IN). Then

do(Sν̃; Sν) ≤ do(ν̃; ν)/IP(X �=0). (64)

Relation (64) is an analogue of (26) in terms of the point metric.

Proof of Lemma 8 W.l.o.g. we may assume that p := IP(X �=0) �=0. For any m ∈ Z+

IP(Sν̃ =m) − IP(Sν =m) =
∑

k≥0

(IP(ν̃ =k) − IP(ν =k)) IP(Sk =m).

Therefore,

|IP(Sν̃ =m) − IP(Sν =m)| ≤ do(νn; ν)
∑

k≥0

IP(Sk =m). (65)

Denote

f (m) =
∑

k≥0

IP(Sk =m) (m∈Z+).

Estimate (64) will follow if we show that f (m)≤1/p for any m∈Z+.
Clearly, f (0) = ∑

k≥0 q
m = 1/p, where q = 1− p. Let m ∈ IN. By Khintchine’s

formula (23),

Sk
d= S′

νk
,
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where Binomial B(k, p) r.v. νk is independent of {X ′
i }. Hence

f (m) =
∑

k≥0

IP(S′
νk

=m) =
∑

k≥0

k∑

j=0

(
k

j

)
p jqk− j IP(S′

j =m)

=
∑

j≥0

p j IP(S′
j =m)

∑

k≥ j

(
k

j

)
qk− j =

∑

j≥0

IP(S′
j =m)/p,

where 00 :=1; we have used the fact that
∑

k≥ j

(k
j

)
p jqk− j = 1/p.

Denote by η(·) the renewal process

η(m) = max{k∈ IN : Sk ≤m} (m∈Z+). (66)

Then {S′
k ≤m} = {k≤η(m)}, IEη(m)=∑

k≥1 IP(S′
k ≤m),

∑

k≥0

IP(S′
k =m) = IEη(m) − IEη(m−1) (m∈ IN).

Since X ′ takes values in IN, we have

|η(m) − η(m−1)|≤1.

Indeed, Sη(m−1) ≤ m−1, Sη(m−1)+1 ≥ m by (66). If Sη(m−1)+1 > m, then η(m) =
η(m−1). Therefore,

0 ≤ η(m) − η(m−1) ≤ 1{Sη(m−1)+1=m}.

Thus,
∑

j≥0 IP(S′
j =m)≤1 for all m∈Z+, and (65) entails (64). ��

Proof of Theorem 4 According to (25),

Sn
d= S′

νn
,

where νn = τ1 + · · · + τn, τ1, X ′
1, . . . , τn, X

′
n are independent r.v.s, L(X ′

i ) =
L(Xi |Xi �=0), L(τi ) = B(pi ) (∀i), pi = IP(Xi �=0),

S′
0 := 0, S′

k = X ′
1 + · · · + X ′

k (k∈ IN).

Thus, do(Sn; S′
πn p̄

) = do(S′
νn

; S′
πn p̄

). Since IP(X ′ �=0)=1, inequality (64) yields

do(S
′
νn

; S′
πn p̄

) ≤ do(νn;πn p̄). (64∗)

An application of (11) leads to (27). ��
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Proof of Proposition 5 If p≤n−2/3, then (12) yields

do(B(n, p);�(np)) ≤ 1
2 (3/2e)3/2n−5/6 + 4

√
2/π (n−1)−3/2 + 16

π
(n−1)−5/3.

If p>n−2/3, then we apply (8) to get

do(B(n, p); Pn,p) ≤ Cn−5/6.

Combining these bounds, we derive (29). ��
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18. Çekanavičius, V., Vaitkus, P.: A centered Poisson approximation via Stein’s method. Lith. Math. J.
41(4), 319–329 (2001)
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