
JOURNAL OF LATEX CLASS FILES, VOL., NO., AUGUST 2020 1

Data-Driven Structural Health Monitoring using
Feature Fusion and Hybrid Deep Learning

Hung V. Dang, Hoa Tran-Ngoc, Tung V. Nguyen, T. Bui-Tien, Guido De Roeck, and Huan X. Nguyen, Senior
Member, IEEE

Abstract—Smart structural health monitoring (SHM) for
large-scale infrastructures is an intriguing subject for engineering
communities thanks to its significant advantages such as timely
damage detection, optimal maintenance strategy, and reduced
resource requirement. Yet, it is a challenging topic as it requires
handling a large amount of collected sensors data continuously,
which is inevitably contaminated by random noises. Therefore,
this study developed a practical end-to-end framework that
makes use of physical features embedded in raw data and an
elaborated hybrid deep learning model, namely 1DCNN-LSTM,
featuring two algorithms - Convolutional Neural Network (CNN)
and Long-Short Term Memory (LSTM). In order to extract
relevant features from sensory data, the method combines various
signal processing techniques such as the autoregressive model,
discrete wavelet transform, and empirical mode decomposition.
The hybrid deep learning 1DCNN-LSTM is designed based on
the CNN’s capacity of capturing local information and the LSTM
network’s prominent ability to learn long-term dependencies.
Through three case studies involving both experimental and
synthetic datasets, it is demonstrated that the proposed approach
achieves highly accurate damage detection, as accurate as the
powerful two-dimensional CNN, but with a lower time and
memory complexity, making it suitable for real-time SHM.

Note to Practitioners: This manuscript aims to develop a
practical data-driven method for automatically monitoring the
operational state of structures. In order to achieve consistently
and highly accurate results in performing different tasks for
diverse structures, we combine underlying features in both time
and frequency domains extracted from measured signal vibration
data. Three popular data featuring methods are combined to
achieve the diversity gain which would not be possible with each
individual method. As the vibration is usually measured by long
time-series signals, the most efficient deep learning architecture
for time-series signal, namely Long-Short Term Memory (LSTM),
is considered for this work. Besides, each structure has its own
dynamic properties, i.e., eigen frequencies, around which the most
relevant information is in the frequency domain, thus Convolu-
tional Neural Network specifically designed for capturing local
information is used in combination with LSTM, forming a hybrid
Deep Learning architecture. The applicability and effectiveness of
the proposed approach are supported by three case studies with
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different types of structures, showing highly accurate damage
detection with reduced resource requirements. These advantages
can be valuable for developing a model for live monitoring of
structural health in the future life-line infrastructures.

Index Terms—Structural health monitoring, deep learning,
signal processing, damage detection, vibration, dynamic analysis.

I. INTRODUCTION

LARGE-SCALE civil structures are expensive assets play-
ing a vital role in society [1] as they ensure smooth

transportation and improve the quality of people’s daily life.
However, they are permanently exposed to various unpredicted
excitations involving wind loads, vehicular loads, accidental
loads, environmental changes, and even earthquakes. Towards
intelligent and real-time monitoring, the data-driven model re-
cently emerges as a promising alternative to other techniques,
which provides unprecedented advantages such as timely
detecting damage, predicting structural behaviors in extreme
scenarios, and optimizing maintenance strategies. However, it
is challenging to design a high-performance algorithm dealing
with a large volume of data for long-term structural health
monitoring.

The Autoregressive (AR) model belonging to the time-
domain class is widely used when working with sensor data
in many sectors such as civil, mechanical engineering, infor-
mation technology, healthcare, etc. Sohn et al. [2] used AR in
combination with the X-bar control chart to handle vibration-
based damage detection problems of concrete bridge columns.
It is shown that the method is able to identify all investigated
damage levels in an unsupervised learning fashion, which is
significantly useful in real application because of the scarcity
of data related to different damage scenarios. Entezami et
al. [3] developed a fast unsupervised approach for SHM
having the capability of dealing with large vibration data
based on the AR models for feature extraction and Kullback-
Leibler distance for classification. The applicability of the
method was supported through both numerical simulation and
experimental datasets, with emphasis on its computational
efficiency and highly accurate damage localization. Carden
and Brownjohn [4] developed a derived AR technique called
autoregressive moving average model (ARMA), to assess
respective conditions of a structure in service, a.k.a the level
1 of SHM. The method was proved to distinguish the health
state from various damaged ones through three datasets ac-
quired from the laboratory IASC–ASCE benchmark structure
and two real-world structures, i.e., the Z24 bridge and the
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Singapore–Malaysia Second Link Bridge. However, the AR-
based methods require mathematically elaborated criteria and
manual thresholds to classify time-series into corresponding
classes. These thresholds are usually sensitive not only to
structures’ properties but also to characteristics of excitation
and environmental parameters.

In reality, the correctness of a time-domain technique may
be impaired by unwanted noise, then techniques in time-
frequency domain are developed, of which the Wavelet Trans-
form (WT) is commonly appreciated by its ability to provide a
proper representation of data with multiple time and frequency
resolutions. Pnevmatikos et al. [5] achieved high accurate
results in damage localization of a steel frame structure by
estimating the difference of wavelet coefficients extracted
from acceleration measurements of undamaged and damaged
structures subjected to an earthquake. For long term structural
health monitoring of bridges, Zeng et al. [6] employed WT
to discern characteristics in both time and frequency domain
of structures responses under external excitation such as tem-
perature variation and traffic loads. Recently, Ma et al. [7]
combined WT and independent component analysis to identify
sudden stiffness loss of a nonlinear hysteretic structure in a fast
and accurate fashion.

On the other hand, an adaptive technique called Empirical
Mode Decomposition (EMD), which is able to retain local
characteristics of data, has received increasing interest. For
bridge damage detection under vehicular load, Obrien et al. [8]
found that Intrinsic Mode Functions corresponding to pseudo-
frequency, obtained from EMD are sensitive to damage and
can serve as effective indicators for damage localization.
Sadhu [9] investigated a hybrid EMD method to address the
potential mode mixing issue of the traditional EMD method.
The proposed method was then applied to perform modal iden-
tification and achieved accurate results, for example, modal
assurance criteria of higher than 0.98, despite measurement
noise and closely-spaced modes. In [10], Xiao et al., developed
an extension of the EMD to analyze the acceleration response
of the Chulitna River bridge in Alaska to a moving vehicle,
which could provide clear transient frequencies with high
resolution without the need of linearity assumptions required
by Fourier transform-based methods.

Another way to work with measured time series data is to
convert them into two-dimensional graphical representations,
then using computer vision algorithms to detect the corre-
sponding states of the physical object. Tang et al. [11] applied
a two dimensional convolution neural network (2DCNN) to the
anomaly detection problem of a long-span cable-stayed bridge,
utilizing 2D representation of accelerometer sensor signals.
Their results suggested that the 2DCNN approach performed
better than the existing method in structural anomaly detection,
and was scalable to include more signal data from multiple
measurements. This idea is also supported by research in other
domains, for example, the works of [12], [13] in machine fault
diagnosis.

Although 2DCNN is a powerful algorithm for structural
damage detection tasks, the network requires 2D time-
frequency representation of the 1D sensor time-series, and sub-
sequent image management process including proper selection

of parameters for image conversion, labeling images, split-
ting images into separate training/validation/ testing folder,
moreover when performing a new task with same data or
new label incorporated, the whole process related to image
needs to repeat, or even to duplicate existing images. Be-
sides, reviewed signal processing techniques have their own
advantages but also drawbacks such as manual thresholds,
high time complexity, and less flexibility to adapt to different
structures. And, it is likely using features in only one domain
(time or frequency) might provide good results for some
specific problems but not for others. In addition, toward an
intelligent SHM, its components should be robust to different
scenarios, and flexible to various tasks in order to facilitate the
incorporation of new events and lower required resources in
terms of time, complexity, memory, budget, etc., as much as
possible. Therefore, this study develops a practical data-driven
method for monitoring the operational state of structures using
Feature Fusion and Hybrid Deep Learning. The proposed
method operates on processed data where relevant features
extracted from sensory data using signal processing techniques
involving Autoregressive model, Discrete Wavelet Transform,
and Empirical Mode Decomposition, are integrated into three-
dimensional tensors of features which enter further into a
hybrid deep learning model, called 1DCNN-LSTM, to identify
corresponding structural conditions. The 1DCNN-LSTM is
designed based on the ability to capture local connectivity
of the Convolutional Neural Network (CNN) and the well-
known performance in accounting for long-term dependencies
of Long-Short Term Memory (LSTM) network. By doing so,
the unobserved underlying patterns at multi-level, multi-scale,
and multi-domain embedded in raw structure responses can be
extracted and favor damage detection performance. The main
contributions of the work are summarized as follows:

• An end-to-end hybrid DL framework is developed for
structural damage detection, that includes raw data
processing, data augmentation, data fusion, a hybrid
1DCNN-LSTM model, and damage detection outcomes.

• The correctness and effectiveness of the proposed frame-
work are demonstrated through three case studies, in-
cluding two experimental and one synthetic database. It
achieves comparable performance with 2DCNN method
while having time complexity reduced by more than 50%
and no supplement storage required for images.

• From the proposed method, various studies are conducted
to provide insights into the effect of different parame-
ters on structural damage detection performance: i) the
method maintains a good performance when there is
data contamination of up to 10% random noise; ii) a
reduction in length (10%) of input time-series can lead to
a significant decrease in detection accuracy (20%); and
iii) increasing the number of sensors effectively improves
the damage detection accuracy.

The remainder of this paper is organized as follows. Section
2 briefly introduces various signal processing techniques.
Section 3 details the architecture of the hybrid Deep Learning
algorithm. Section 4 presents the validation of the method via
three case studies. Finally, Section 5 draws conclusions and
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gives some ideas for future work.

II. FEATURE EXTRACTION FOR SENSOR TIME-SERIES
DATA

Acceleration time series obtained from sensor j is denoted
by xj(t), and a system with S accelerometers will provide
multivariate time series X =< x1(t), x2(t), . . . , xS(t) >. It is
well known that the distance from sensors to damage location
is sensitive to the performance of any structural damage
detection (SDD) method, hence, a SDD method aggregating
multiple sensors data will enable to detect potential damages
across the whole structure. However, working with multiple
time-series data is challenging due to multiple factors such
as the curse of dimensionality, long lengths of time series,
skewed distribution of measured values, and noise due to
device instability, transmission error, signal distortion and so
on. Therefore, it is beneficial to extract underlying features
from raw measured data beforehand, then using these extracted
features to perform SDD tasks. In the literature, there are
a large number of signal preprocessing techniques classified
into three groups: time domain, frequency domain, and time-
frequency domain, which can capture different unobserved fea-
tures embedded in time series data. The following subsection
describes in detail the techniques adopted in this work.

A. Autoregressive Model

Autoregressive (AR) modelling is a time-domain method
used to predict future values of time series data based on
previous ones. This technique is adopted here owing to its
practicality, effectiveness, and popularity. The number of pre-
vious values used in calculation corresponds to the order of
the AR model whose formula is expressed as follows [14]:

xt,j =

p∑
k=1

φk,jxt−k,j + et,j , (1)

in which the subscript t denotes the time stamp, j stands
for the sensor number, p is the order of AR model, Φ =
[φ1, . . . , φp] stands for AR parameters, et,j is the residual
error, i.e., the deviation between the estimated value and the
measured one at timestamp j. If p = 1, the current value is
only affected by the immediately previous value, if p = 2, two
previous values are needed, and so on. One of the most com-
mon ways to determine the AR parameter is the ordinary least
squares. Given N signal readings < x1,j , x2,j , . . . , xN,j >,
the AR parameters are estimated to minimize the following
square:

Φesj =Φ

(
N∑

t=p+1

[xt,j − φ1,jxt−1,j − ...− φp,jxt−p,j ]2
)
.

(2)
In this work, the AR model is determined based on the signal
data measured from the intact structural state. Afterward, the
obtained AR models are applied to other structural states and
the residual errors between the measured values and predicted
ones are derived. It is assumed that the nonlinearity caused
by damage will lead to significant residual errors, while slight
modification of structural parameters only introduces linear

variation to the baseline condition, thus, associated residual
errors are at a low level. That is why performing SDD on
residual errors from the AR model can boost the detection
accuracy.

B. Short Time Fourier Transformation

On the other hand, the time-series signal can also be rep-
resented in the frequency domain via Fourier transformation
(FT). For civil structures, the frequency range of interest
depends on both dynamic characteristics of structures and ex-
ternal excitation, which can exhibit time-dependent (nonlinear)
behavior. Thereby, the Short-Time Fourier Transform (STFT)
technique is developed by scientists, which renders a 1D
time-series in a 2D image of time-frequency-amplitude rep-
resentation. Specifically, a long signal is divided into shorter
segments of equal length, then FT is applied to each segment.
Mathematically, the STFT is formulated as follows:

STFT (τ, f) =

∫ ∞
−∞

xj(t)ψ(t− τ)e−2πiftdt. (3)

With the time discretization, the formulation is rewritten as
follows:

STFTn,f =

n+N−1∑
k=n

xk,jψk−ne
−2πifk, (4)

where xj(t) is a signal from sensor j to be transformed, ψ is
the window function, N denotes the length of the segment. The
2D representation of STFT amplitude is called the spectrogram
of the signal [15].

C. Discrete Wavelet Transformation

The above STFT technique employed a fixed-width window
to extract all frequency contents in time-series, but such a
constant window could lead to missing information at lower or
higher frequencies. Dealing with low-range frequency requires
a long window, whereas, for high-range frequency, a shorter
window is needed. To circumvent this drawback, the Wavelet
Transform (WT) technique is proposed, using varying-length
windows to capture better frequency information at different
resolutions. Considering a time series xj(t), the continuous
wavelet transform CWTj is defined by the following convo-
lution operator [16]:

CWT (a, b) =

∫ ∞
−∞

1√
a
ψ̄

(
t− b
a

)
xj(t)dt, (5)

where ψ̄ is called mother wavelet, having wave form with
finite duration and zero-average, a is a scale variable, and
b is a translation variable. Owing to the scaling effect of a,
the wavelet function ψ̄ has a smaller time duration at high
frequency, and longer duration at low frequency, conversely,
resulting in the multi-scale resolution characteristic of WT.

For discrete time-series, discrete wavelet transform (DWT)
is used in which the variables a and b are expressed as follows:

a = 2i, b = k × 2i with i, k ∈ Z, (6)
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Fig. 1. Schematic representation of Discrete Wavelet tranformation.

and the DWT coefficient is written as [5]:

DWTi =
∑
k

ai,kψ̄i,k(t), (7)

where ψ̄i,k(t) is discretized wavelets defined by

ψ̄i,k(t) = 2−i/2ψ̄(2−it− k), (8)

and
ai,k =

∫ ∞
−∞

xj(t)ψ̄i,k(t). (9)

In terms of algorithm, the DWT can be implemented
through the multi-rate filterbank algorithm as schematically
shown in Fig. 1. There are multiple decomposition levels, each
of which contains a half-band low-pass and high-pass filter,
namely h(n) and g(n). The signal is fed into the high-pass
filter for the analysis of the high-frequency component, and
low-pass filter for low-frequency ones. The above decompo-
sition procedure can be repeated multiple times until a small
number of samples is left. The original time series can be
recovered by using the inverse DWT process and specified
high-pass and low-pass filters.

D. Empirical Mode Decomposition

Fig. 2. Example of an intrinsic mode function with its zero-mean in solid
line, maxima, and minima envelopes in dashed lines.

Although the WT can address the locality of signal pro-
cessing, prevailing patterns of signals could evolve over time,
hence the use of a fixed wavelet mother could miss certain
underlying features. To address the non-linearity and nonsta-
tionarity of signals, Huang et al. [17], introduced an adaptive

method called Empirical Mode Decomposition, which can
provide insight into time evolution of data property. To do
this, the EMD decomposes the original signals into a finite
number of functions called intrinsic mode functions (IMFs).
An IMF must meet two required conditions: (1) the number
of extrema, i.e. minima and maxima, must be equal or differ
at most by one that of zero-crossings and (2) the mean value
of the upper envelope of IMF formed by connecting local
maxima and the lower envelope defined by the local minima
is zero at any point.

Technically, the EMD method is realized by repeating the
sifting process involving five following steps. First, the minima
and maxima of the signal are identified. Second, two envelopes
of the signal are created by using a cubic or higher-order
interpolation connecting these minima and maxima. Third,
the mean spline of these two envelopes is deduced. Next,
the extrapolation is applied to relieve the swing effect at the
ends of the signal where extrema values may not be available.
Finally, the original signal is subtracted by the mean spline
obtained from the third step. If the remaining wave satisfies
two aforestated conditions, then an IMF is obtained, otherwise
steps 1-5 are repeated. The sifting process can be performed
multiple times to obtain different IMF components until one of
stopping criteria is met, for example, a predefined number of
IMFs or the remaining signal is smaller than a given tolerance
or becomes monotonic, i.e., no extrema can be identified. At
the end of the decomposition procedure, one obtains a set of
IMFs and a residue. The original signal can be reconstructed
by adding all the IMFs and the residue.

xj(t) =

M∑
m=1

IMFm(t) +Res(t), (10)

where IMFm(t) is the mth intrinsic mode function and
Res(t) denotes the residue.

Raw acceleration data from a sensor are fed into the signal
processing component with three algorithms presented above
to extract relevant features. For AR, the feature used is the
residual error computed as the deviation between original time-
series with AR prediction. For DWT, extracted features are
DWT coefficients in frequency domain as defined in Eq. (7).
And for EMD, the used features are extracted IMFs expressed
in time-histories as defined in Eq. (10). In order to bypass
the scale difference between features, the standard scaler is
applied, resulting in scaled features with zero mean unit
variance, which serves as input for the hybrid 1DCNN-LSTM
model. By doing so, one can profit the measurements from all
sensors mounted across the structure, favoring the structural
damage detection tasks which hardly accomplished by only
using a single sensor such as damage localization or damage
severity.

III. DEEP LEARNING MODEL FOR STRUCTURAL HEALTH
MONITORING

The proposed approach is schematically illustrated in Fig. 3,
consisting of two main blocks: the preprocessing block whose
details are described above, and the hybrid deep neural net-
work which takes as input features processed from the previous
block to perform structural health monitoring tasks.
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Fig. 3. Architecture of the hybrid 1DCNN-LSTM network.

A. Hybrid Deep Learning Model 1DCNN-LSTM

It is commonly acknowledged that the convolution neu-
ral networks (CNNs) can provide outstanding performance
on signal classification and pattern recognition because of
two reasons. First, its architecture is especially suitable for
discovering local relationships among data points, second, it
reduces the number of network parameters, thus leading to
a lower computational complexity compared to conventional
plain neural network architectures. The formula of one typical
convolutional layer is expressed as follows [18]:

Xconv = conv1D(W conv, X) (11)

where Xconv,W conv, are respectively the output vector,
weight matrix of the convolution layer, X is sensors input,
and conv1D is the 1D convolution operator. The essential hy-
perparameters of the convolution layer is the number of kernel
Nk signifying the number of local features extracted and the
length of kernel Lk denoting the number of surrounding data
points are aggregated.

Next, Xconv is fed into a LSTM layer, which uses infor-
mation at multiple previous time steps to perceive insight into
recent time steps, referred to as “long-term dependencies” as
shown in Fig. 3. The fundamental theory of the LSTM can be
found in the work of Hochreiter and Schmidhuber [19].

Introducing L a typical linear transformation of a combina-
tion of Xconv

t with Nk features at time step t and an output
of hidden layer ht−1 with Nh features at previous step as

follows:

L(ht−1, X
conv
t ) = W [ht−1, X

conv
t ] + b, (12)

where W and b denote weight matrix and bias vector, it is
noted that the number of features of L is equal to that of
hidden output h. Each cell of LSTM consists of three gates,
namely forget gate ff , input gate fi, and output gate fo, which
involve applying the non-linear signmoid function σ to a linear
transformation L as below:

ff = σ(Lf (ht−1, X
conv
t ))

fi = σ(Li(ht−1, X
conv
t ))

fo = σ(Lo(ht−1, X
conv
t )).

(13)

On the other hand, a new candidate of information created
at time step t is calculated by applying the tanh activa-
tion function to a linear transformation of the concatenation
[ht−1;Xconv

t ]:

Ct = tanh(Lc(ht−1, X
conv
t )), (14)

Then, the candidate enters LSTM cells:

st = (ff � ht−1)⊕ (fi � Ct), (15)

and a hidden output of the LSTM cell at time step t is
calculated at the output gate as follows:

ht = fo � st. (16)

In these equations, � and ⊕ stand for component-wise multi-
plication and addition of two vectors, respectively.
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Having established the convolutional layer and LSTM’s
memory cell, the hybrid deep learning architecture is schemat-
ically illustrated in Fig. 3. Once vibration data enters into
the network, it is divided into fixed-length segments, then
the 1DCNN layer will extract local relationships between
data points and their surrounding points before feeding to
the memory cell of LSTM where long-term dependencies are
identified and retained over time. The output of the last LSTM
cell will be flattened and fed into a fully connected layer before
being passed to the output layer with the softmax activation
function to provide damage identification results. In this hybrid
DL architecture, the essential hyperparameters which need to
be determined further are the number of kernels Nk, the kernel
length Lk in the convolution layer, and size of hidden output
Nh at each LSTM cell. The present hybrid deep learning
algorithm is implemented with the help of the open-source
machine learning library Pytorch [20].

B. 2D convolution neural network

The deep 2D convolution neural network utilizes as input
data 2D representation of time series. The vibration signal
is translated into the time-frequency representation through
STFT, as presented in Section 2. Then a powerful image
classifier in the Artificial Intelligent literature is applied to
detect damaged structural cases. Here one adopted the ResNet-
18 classifier [21] owing to its competitive performance, and
explicit feed-forward architecture and used the transfer learn-
ing technique to fine-tune the model for structural damage
identification tasks. The transfer learning technique allows
exploiting general knowledge pretrained with a vast amount of
data of different categories in a particular domain. For further
details of the transfer learning technique, refer to [22]. Herein,
the parameters of the ResNet-18 model are pretrained with
millions of images from the ImageNet dataset from Google.

The workflow of the algorithm is illustrated in Fig. 4.
Firstly, original vibration signal is fed into a spectrogram
preprocess module to be converted into images of time-
frequency representation, then entering the ResNet-18 models.
Next, data continuously go through two fully connected layers
before giving the classification results at the output layer using
softmax activation function. The 2DCNN is implemented with
the help of the deep learning library Fastai [23].

IV. CASE STUDIES

A. Case Study 1: Laboratory Data

In this section, the hybrid deep learning structure is applied
to a study case involving experimentally measured vibration
data from a three-story frame structure realized at Los Alamos
National Laboratory [24] as shown in Fig. 5. The dataset is
selected because of its validity, clarity and an appropriate
number of available data. The frame consists of columns
with 17.7 cm length and 2.5 x 0.6 cm2 cross-section, and
plates with 2.5 cm thickness and 30.5x30.5 cm2 area. These
structural components are made from aluminum and joined
together using bolts. An electrodynamic shaker at the base
floor serves to excite the structure randomly, the excitation is
band-limited in the range of 20-150 Hz. At the top floor and

the third floor, an additional column (15.0 x 2.5 x 2.5 cm)
and a bumper are installed, respectively. The contact between
these two elements when the frame vibrates will induce non-
linearity into the dynamic behavior of the frame. Each floor
of the structure is equipped with an accelerometer of 1000
mV/g nominal sensitivity to measure the structure vibration.
An acceleration signal is recorded for 25.6 s with a sampling
frequency of 320 Hz. As the maximum excitation frequency
is 150 Hz, then such sampling frequency is large enough to
capture essential information content in the structure response.

The above default configuration of the structure is consid-
ered as the baseline condition. Afterward, a number of mod-
ifications are introduced to the structure to generate different
structural state conditions. The modifications involve reducing
12.5% stiffness of one or two columns at each story, adding
19% extra floor’s mass at the base or the 1st floor, and inducing
contact between the suspended column at the top floor with
the bumper. The structural states not involving contact are
numbered from 1 to 9, and classified as undamaged states.
Otherwise, structural states involving the intermittent contact
between the column and the bumper are numbered from 10
to 17 and treated as damaged conditions. It is noteworthy that
by varying frequency of contact between these two elements
through their initial distance, one could generate different
levels of damage in the structure (minor, medium, or major).
Table 1 lists all 17 structural states with detailed descriptions.
Following the working flow in Fig. 3, measured accelerations
from four floors of the frame are processed, then fused into
a global 3D tensor before entering the hybrid network. Note
that here and throughout, a structural state is considered as an
output class of the classification problem.

Applying the foregoing processing data techniques to the
laboratory data, one can distill raw arbitrary acceleration signal
into a set of canonical features which can benefit the damage
detection of the structure. Figs 6 to 8 show representative
results extracted from an acceleration signal at the top floor
using the AR model, DWT, EMD, and STFT, respectively. To
be specific, the parameters for each technique as follows: the
order of AR model is set to 30 [24], the ”haar” wavelet family
is used for DWT [5], the sifting process for EMD can be found
in [24] and for STFT, the length of windowed segment is set
to 1000 which ensures to capture available details of vibration
signal sampled at the frequency fs = 322.58 Hz.

After applying the AR technique, one obtained a vector of
residual error in the time domain with a length of 8192, which
was reshaped to a 3D tensor with a shape of (1,1,8192) for
the feature fusion later, where 8192 was the original length of
the acceleration signal. With DWT, one obtained a vector of
DWT coefficients in the frequency domain, as shown in the
bottom of Fig. 6, which was interpolated and reshaped into the
same shape of (1,1,8192) for facilitating the fusion with time
domain features in the numerical sense. Using EMD resulted
in 10 IMFs (Fig. 7), which were combined in a 3D tensor
with a shape of (1, 10, 8192). By fusing features extracted
from AR, DWT, and EMD one received a 3D tensor of (1,
12, 8192) for one sensor, after that features from 4 sensors
are concatenated, resulted in a global 3D tensors of (4, 12,
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Fig. 4. Workflow of the 2DCNN-based method for structural damage detection.

TABLE I
STRUCTURAL STATE CONDITIONS OF THE THREE-STORY FRAME STRUCTURE

State 1 2 3 4 5 6

Condition 0 0 0 0 0 0
Description Baseline Added Added Columnn Columnn Columnn

mass mass stiffness stiffness stiffness
reduction reduction reduction

State 7 8 9 10 11 12

Condition 0 0 0 1 (minor) 1 (medium) 1(medium)
Description Columnn Columnn Columnn 0.2mm 0.15mm 0.13mm

stiffness stiffness stiffness gap gap gap
reduction reduction reduction

State 13 14 15 16 17

Condition 1 (medium) 1 (major) 1 (minor) 1 (minor) 1 (minor)
Description 0.10mm 0.05mm 0.2mm gap, 0.2mm gap, 0.1mm gap,

gap gap added mass added mass added mass

Fig. 5. Three-story frame structure experiment [24].

8192) before feeding to the hybrid network.
1) Data Augmentation: In this subsection, the process of

generating data for the hybrid deep learning is presented.
In general, a large and well-balanced database favors the
performance of Deep Learning algorithms, therefore data
augmentation techniques are adopted to increase the size of
the experimental data. In principle, the data augmentation
technique introduces some minor changes in the original data
without altering its underlying pattern. Herein the utilized tech-
niques are flipping (rotation), scaling, permuting [25]. Flipping
inverts the sign of the signal, scaling increases/decreases the
magnitude of the raw data slightly by a random ratio from 5

to 10%, and permuting will swap two randomly selected small
fractions (2% length) of the signal. Fig. 9 illustrates how data
augmentation techniques work. After applying data augmen-
tation techniques, the size of the final database increases up to
1000 time series, which is sufficient for training and validation
of the proposed hybrid deep learning model.

2) Data Preparation: Formally, the database is split into
three subsets, i.e., training, validation, and test one with a user-
defined ratio. However, a single split might not ensure a well-
balanced distribution of different structural conditions among
sub-dataset. Therefore, the K-fold cross-validation strategy is
employed to reduce the bias of the model. Firstly, the whole
database is divided into training (90%) and test data (10%).
Secondly, the training data is augmented with the presented
data augmentation technique, before being split into the K
equal portions. Here a common value K = 10 is selected [26],
meaning the training process will be iterated ten times, each
time one different portion is used for validation, whereas the
remaining serves for training as illustrated in Fig. 10. Once
the model is trained, its final performance is reported on the
test data unseen during training. To be specific, the size of
test data and augmented training data are 60 and 540 samples,
which results in global feature tensors with the shape of (60,
4, 12, 8192) and (540, 4, 12, 8192), respectively.

3) Training Process: As previously mentioned in Section
3, the hyperparameters of the proposed hybrid architecture
are the number of kernels Nk, the kernel length Lk, in the
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Fig. 6. DWT of a vibration signal. The first row is the original signal, the second to fourth rows are three levels of DWT decomposition where leftmost
figures are remaining components after each DWT decomposition level, and rightmost figures are resulting DWT coefficients. The last row is the total DWT
transform of the original signal.

Fig. 7. EMD of a vibration signal. The first row is the original signal, the next rows are resulting IMFs. There are in total 10 IMFs for this example.
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Fig. 8. Spectrogram of a vibration signal obtained by using the STFT. The
brighter the color, the higher the amplitude, meaning that more signal energy
concentrates over corresponding frequency ranges.

convolution layer, and the number of hidden layers Nh in
LSTM cell. Actually, these is not existing a common way
for the selection of the best parameters, but it depends on
specific problems. Thus, one adopts the Grid search technique
to test all possible combinations of hyperparameters for the
identification of the optimal architecture. Specifically, k varies
in the range [5, 50], Lk in [10, 100], and Nh in [3, 30].
It is noted that other parameters are set by common values
found in literature and fixed throughout the whole training
process. Specifically, the optimizer is Adam [27], the learning
rate standing for the relative amount of DL model weights
updated after each optimization iteration, is set to lr = 0.0001,
the number of epochs Nepoch=200, the batch size, i.e., the
number of data utilized in one optimization iteration is 32, and
stop training early with a patience value of 20, meaning the
training process will be stopped if no improvement is observed
after 20 consecutive iterations. These values are defined to
ensure covering as many details as possible in behaviors of DL
model during the training process. It is recorded that the final
hybrid deep learning model with the number of convolutional
kernels Nconv=50, the kernel length Lk=200, and the number
of LSTM cell’s hidden layers Nh = 20 provides the highest
averaged accuracy of 93.5% and a standard deviation of 1.4%
on the validation dataset.

TABLE II
COMPARISON RESULTS OF DAMAGE DETECTION PERFORMANCE BETWEEN

MODELS

Model Raw DWT AR EMD Fusion 2DCNN

K-fold mean (%) 81.4 90.2 93.2 88.1 93.5 93.7
K-fold std (%) 6.6 2.5 1.2 1.5 1.4 1.2

CPU time (min) 26 28 26.5 41 45 118
Storage (Mb) 49 49 49 49 49 292

4) Damage Detection Results: Table II compares detection
results obtained by each method, in which the first row
presents the mean value of validation accuracy of 10-fold
technique, the second row is the standard deviation, the last
two rows are the used resources, i.e., CPU time and memory.

TABLE III
COMPARISON RESULTS OF DAMAGE DETECTION PERFORMANCE BETWEEN

MODELS PERFORMED ON NOISY DATABASE

Model Raw DWT AR EMD Fusion 2DCNN

K-fold mean (%) 80.1 86.1 68 86 92.1 91.2
K-fold std (%) 5.9 2.1 3.8 1.7 1.8 1.5

Note that the calculated result with raw data is presented here
for the comparison purpose, obtained by entering the raw data
from sensors directly to the concatenate layer then the hybrid
1DCNN-LSTM, bypassing the preprocessing blocks (Fig. 3).
As observed, the 2DCNN provides a high accuracy result
of 93.7% on the validation data set, which is approximately
achieved by the proposed feature-fusion method. The hybrid
DL model using raw time-series data yield significantly lower
accurate results, i.e., 81.4%, whereas models with DWT and
EMD provide better results, i.e., 88.1% and 90.2% respec-
tively. However, the method using only the popular AR
technique can also nearly attain the same accuracy as the
sophisticated 2DCNN and the feature-fusion technique. This
confirms the usefulness of the popular AR technique, although
simple but efficient in some scenarios. On the other hand, the
required CPU time for the training process associated with
each method clearly shows the high demanding resources from
2DCNN, both in time and storage.

In practice, measured vibrational data encompass inevitable
noise related to data acquisition units, device instability, and
so on. Therefore, it is of great importance to quantify the
robustness of a SHM application in dealing with noisy data
before applying to the real-world structure. It is noted that the
data considered above are acquired in controlled laboratory
conditions though some small amount of noise is also present,
in the next step, the performance of methods when dealing
with a more pronounced noise is explored. The white-noise is
defined by the following equation:

Xnoise(t) = X(t) + α× η(t), (17)

in which X(t) and Xnoise(t) are original and added-noise
time series, respectively, η(t) is a white noise time series
with zero mean and unit variance, α is the noise amplitude
compared to the RMS value of the signal amplitude XRMS =√

(X2
1 + ...+X2

n)× 1/n, where Xi is a value of the signal at
time instant ti. The white noise reflects the avoidable unknown
ambient excitation, whose amplitude α can be set to 10%
on average as considered in [28], [29]. Table III and Fig. 11
present in detail performance results for methods of interest on
noisy data. It is noticed that the performance of the hybrid-DL
using only AR coefficients decreases drastically with added
noise, from about 90% down to below 70%, while the 2DCNN
and fusion-feature method can retain sufficiently high accurate
results of 91%. The observed decrease in performance of
methods using DWT and EMD is also significantly lower than
that of AR, i.e., a reduction of 4.0% and 2.1%, respectively.
This can be explained by the fact that the incorporated white
noise has flat broadband frequency spectra in nature, hence the
feature extraction method in the frequency domain and time-
frequency domain such as DWT, EMD, and STFT still discern
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Fig. 9. Data augmentation techniques for time-series data.

Fig. 10. 10-fold cross-validation strategy.

Fig. 11. Comparison of structural damage detection obtained by different
models. The fusion method and 2DCNN provide the best results.

the underlying frequency components from the noise. Indeed,
there are methods using AR coefficients, which are able to
address noisy data effectively, for example, the works in [30],
[19] extracting modal characteristics of the structure from AR
coefficients. However, these methods require further mathe-
matical transformation and expert knowledge in the dynamics
of structures. Besides, to ease the fusion with other signal
processing techniques, residues obtained from AR models in
a time-series form is preferable than tabular data of frequency
values or mode shape vectors, in this work.

In short, these above results imply that fusing advantages
of different feature extraction techniques favor the hybrid
DL method’s robustness and reliability when encountering
different scenarios in reality.

5) Damage Severity Results: As shown in Table I, the
damaged state of the structure can be divided further in order
as minor, medium, and major damage. Then, the proposed
method is adapted to address the damage severity task by fine-
tuning the numbers of perceptron at the output layer to four

Fig. 12. Confusion matrix for damage severity classification. Resulting global
classification accuracy is 90.7% by summing diagonal terms.

Fig. 13. Damage severity performance versus the length of shortened signals.

and relabelling the database by corresponding damage levels.
Note that it is not a trivial task as the difference between
the minor damage state with the pristine one, or between two
consecutive damage levels, is subtle and can be overlapped
by random noise, that is why the required classifier should
possess robust discriminative power.

After carrying the training stage with 10-fold cross-
validation, the network is tested on the unseen and also noisy
data. Note that The network architecture presented previously
is kept unchanged, i.e., Nconv=50, Lk=200, Nh = 20. Fig. 12
illustrates the detection results via a confusion matrix where
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TABLE IV
LABELING FOR DAMAGE LOCALIZATION TASK OF THE THREE-STORY FRAME STRUCTURE

State 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Location S0 S0 S0 S1 S1 S2 S2 S3 S3 S4 S4 S4 S4 S4 S4 S4 S4 S4

S0: No damage. S1, S2, S3: stiffness reduction of columns at the first, second, and third story, respectively. S4: intermittent
contact at the fourth story.

the diagonal terms denote the correctly detected damage cases
in terms of global percentages, the off-diagonal terms for false
detection, and all values of the matrix sum up to 100%. It is
ideal that all non-diagonal values are zeros. Thus, by summing
the diagonal terms, one obtains the global classification accu-
racy of the proposed method as high as 90.7%. These results
reaffirm the capability in capturing the underlying dynamical
features and mapping them to the corresponding structural
states of the featured-fusion approach.

Next, one investigates the impact of the effective length of
the signal on the detection performance. The same process
with the damage severity task is carried out except for the
length of the signal, which varies from 40% to 100% of the
original one. For instance, a 50% shortened signal means
only the first half of the signal is taken as input for the
proposed approach, another half is removed. The evolution
of the detection accuracy in a function of the relative length
of the shortened signal is depicted in Fig. 13. As expected,
there is a trade-off between the performance and the length
as a clear downward trend is observed, for example, a 20%
reduction in length leads to 10% decrease in accuracy (from
90% to around 80%).

Fig. 14. Confusion matrix for damage localization classification. Resulting
global classification accuracy is 91.0% by summing diagonal terms.

6) Damage Localization Task: As demonstrated, the
feature-fusion hybrid DL method can perform the level 1 of
SSD, i.e., damage detection with high accuracy, then in this
paragraph the present method is adapted to perform the level 2
of SSD, i.e., damage localization. To this end, the experimental
database is relabelled, each time-series is annotated by the
story where modification is realized accordingly, as listed in
Tables IV. Structural states 1 through 3 are labeled as S0,

meaning no damage is introduced, states 4, 5 as S1, states
6, 7 as S2 and states 8, 9 as S3, since the column stiffness
at the first story, the second story, and the third story are
reduced, respectively. States 10 through 17 are labeled as S4
because the intermittent contact caused by the additional short
column happens at the fourth story. Next, a similar procedure
involving data generation, data augmentation, training, and
validation procedure, as described above, is conducted. Fig. 14
details the localization results for each class, where diagonal
terms denote accurate predictions, and off-diagonal terms refer
to misclassifications. Summing the diagonal terms yields a
global classification accuracy of 91.0%. This result shows
that the proposed method is applicable for level 2 of SDD,
and the conversion between different SDD tasks is fairly
straightforward without requiring any complex and tedious
manual calculations.

B. Case Study 2: My Thuan Stayed-Bridge

For the second case study, ones apply the proposed fusion
feature DL approaches to a synthetic database of the full-scale
bridge My Thuan in Vietnam, which is a stayed-cable bridge
playing a vital role in the transport system. Among the most
critical structural elements of the bridge, cables have a great
impact on the dynamic behavior of the structure. A significant
loss in the cable’s prestressed force will result in reduced
structure rigidity, then causing potential excessive vibration
and inducing further damages such as crack, fatigue, and so
on. Hence, using the present approach provides an alternative
approach to quickly and remotely assess the location of
tendons with tension loss based on the dynamic response of
the bridge before requiring workers to perform in-situ tests to
check tendons thoroughly.

1) Finite Element Model: Fig. 15 presents main geometric
parameters of the bridge: the total length of the bridge is
650 m with a 350 central span and two side spans of 150
m, the bridge reinforced concrete deck has a width of 23.6
m, a depth of 0.2 m, and is supported by two longitudinal
girders of 2.0 m depth and transverse beams placed at 5.2 m
intervals. The two H-shaped bridge towers have a total height
of 129.5 m, including legs of 2.5 m width. The materials of
the superstructure components are concrete of Grade 50 with
Ec=35.75 GPa, a volumic density of 2400 kg/m3, compressive
strength of f ′c=50 MPa. The system of cables consists of 128
cables with a diameter of 15.2 mm, an elastic modulus of
195 GPa, and a tensile strength fpu = 1860 MPa, dividing
into four groups, each connected to one pylon. As the layout
of the cables is symmetric, the groups of cables have similar
influences on the bridge’s behavior. The cables are annotated
from 1 through 32 within each group, which is also the number
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Fig. 15. My Thuan stayed-bridge in Vietnam.

Fig. 16. Finite element modeo of the stayed-bridge.

TABLE V
TENSION FORCE IN CABLES

Cable 1 2 3 4 5 6 7 8 9 10 11

Measured Force (kN) 6395 5264 4554 3668 3459 3459 3481 3478 3266 3128 2935
Length (m) 177.5 173.8 170.4 162.4 152.5 142.8 133.1 123.6 114.3 105.2 96.4

Cable 12 13 14 15 16 17 18 19 20 21 22

Measured Force (kN) 2543 2267 2497 2042 2171 2512 2376 1938 2135 2508 2743
Length (m) 88.0 80.0 72.6 65.5 58.5 57.4 63.4 69.6 76.4 83.9 91.9

Cable 23 24 25 26 27 28 29 30 31 32

Measured Force (kN) 2403 3033 2947 3145 3417 3688 4077 4006 4489 5967
Length (m) 100.4 109.2 118.3 127.6 137.1 146.8 156.5 165.4 176.3 186.4

of output classes of the DL model for this case study. The
prestressed force in each cable is provided in detail in Table V,
according to as-built design drawings.

Herein, the structural damage detection task is referred
to as the damage localization, meaning that the proposed
method is used to inversely identify the location of the cable

with tension loss based on acceleration time series computed
at the points uniformly distributed across the bridge. It is
widely acknowledged that acceleration is rich in discriminative
features, thus suitable to take as inputs to SDD models [31].
To be specific, there are 32 measured points on each side of
the bridge, as illustrated in Fig. 15, resulting in a total of
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64 points. The same workflow presented for the first example
is carried out, including using AR model, DWT, and EMD
to extract salient features in both time and frequency domain
from raw acceleration time series and the k-fold validation
strategy. However, here one needs to integrate information
from a significantly larger number of sensors, which can
be efficiently realized by using the convolution layer in the
proposed hybrid DL model.

TABLE VI
COMPARISON RESULTS OF DAMAGE LOCALIZATION PERFORMANCE

BETWEEN MODELS

Model Raw DWT AR EMD Fusion 2DCNN

Accuracy (%) 22.5 28.0 43.0 78.0 84.5 85.2
CPU time (min) 110 135 125 170 180 486

Storage (Gb) 1.3 1.3 1.3 1.3 1.3 2.9

To generate the database for the DL model, one adopts
the Monte Carlo simulation upon a calibrated Finite Element
Model (FEM) of the bridge using model updating technique
and in-situ measured data. At first, an initial 3D FEM of the
bridge is constructed from the as-built design drawings using
the software Abaqus [32], then a series of measurements is
carried out to measure the vibration of each cable in service,
i.e., under vehicular loads. After that, an optimization-based
model updating technique is used to minimize the difference
between modal characteristics of cables with the numerical
counterpart, including eigenfrequencies and mode shapes. As
detailed solutions for similar problems can be found in the
optimization literature [33], [34], thus for brevity, one only
presents measured forces in cables in Table V.

In terms of the FEM, the Abaqus software is adopted
because of its modeling power and practical Python inter-
face programming to build the bridge model. The bridge
deck is modeled by four noded S4R shell elements, the
pylons and reinforced concrete girders are modeled using
3D beam elements, the stay cables are modeled using two-
noded T3D2 truss elements subjected to pre-stressed action.
The pre-stressed value per strand is obtained by dividing the
tension force by the strand area and is modeled as an initial
condition, directly applied to cable elements at the beginning
of the analysis using predefined mechanical fields. In this
work the source of excitation is the vehicular load which
is the most common type of load encountered in the bridge
structure. The vehicular load is modeled using a standard
HS20 truck after the American Association of State Highway
and Transportation Officials specifications [35] moving with
a constant velocity whose details are highlighted in Fig. 16.
In order to enrich the database for training the DL model,
the number of cars varies from 1 to 5, the velocity of the
cars is in the range of [10, 15, 20, 25, 30] m/s, and various
damage scenarios are introduced, involving 100% tension
loss at a random cable, resulting in an extensive series of
10000 simulations. Afterward, the vertical accelerations at 64
virtual sensors uniformly spaced along the bridge deck are
virtually recorded, and fed into the present approach to identify
the respective location of the defected cable. After the data
preparation step, the test data and training data have the shape

of (1000, 64, 12, 6000) and (9000, 64, 12, 6000), respectively
where 64 is the number of sensors, 12 is the number of
extracted features, i.e., AR, DWT, IMF, and 6000 is the length
of time-series measured for 60 s with a sampling frequency
of 100 Hz.

2) Computation results: Table VI compares the obtained
detection accuracy using the feature fusion approach with the
powerful 2DCNN, as well as models using separately extracted
features. Apparently, the DL-based method can properly per-
form the damage localization tasks based on acceleration
signals. Such a task is not trivial as it requires a powerful
discrimination ability because the number of outputs herein is
16 times as much as that of the damage detection task with
binary outputs (damaged /undamaged) in the first case study.
Furthermore, the proposed approach can equivalently achieve a
considerably high accurate result of about 85% as the 2DCNN,
following by the model using EMD, AR, DWT, and raw data.
Fig. 17 shows in more detail the accuracy percentage for each
cable through a confusion matrix.

All the calculations were conducted on a high-end machine
equipped with 16 cores CPU Intel Xeon, 64-GB RAM, and
2 Geforce GTX 1080Ti GPU. The model using directly raw
data requires the least CPU time of 110 minutes; the DWT
and AR have higher CPU time, mainly due to the feature
extraction step, as listed in Table VI. For the EMD, as
the number of features increases to 10, corresponding to a
training data with the shape of (9000, 64, 10, 6000), the
CPU time increases to 170 minutes, and for the model with
feature fusion, i.e., the number of features is 12, the CPU
is 180 minutes. As the calculations were realized with the
library Pytorch, which allows the parallel computation and
take advantage of GPUs; thus, the computational time with
fusion-features can be reduced. On the other hand, the factors
having considerate influences on the CPU time are the number
of data and the length of time-series, that is why the CPU time
in this example is significantly larger than those in the case
study. In comparison, 2DCNN demands 490 minutes for the
training process and more than twofold memory volume for
respective 2D representation of each time-series.

In addition, the effect of the number of virtual sensors on the
model performance is explored by varying the former in the
range of [1, 2, 4, 8, 16, 32, 48, 64]. As can be seen in Fig. 18,
a smaller number of sensors leads to significantly reduced
detection accuracy. On the other aspect, for this example, the
DWT and the raw time-series yield low accurate detection
results despite increasing the number of sensors, possibly
because the mass of vehicular load is fairly small compared to
that of the bridge. Then, the difference between the frequency
range of forced vibration responses with free vibration of the
bridge is subtle, and limit the capacity of the frequency-domain
method. Besides, the time-domain such as the AR model gives
better accuracy, and the EMD provides dominant contributions
to the performance of the fusion-feature method. Overall, a
stable trend is observed when more than 32 sensors are used.

C. Case Study 3: Progressive Damage Tests of Z24 Bridge
In this subsection, the proposed framework is extended to

a real database of the Z24 Bridge in Switzerland from the
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Fig. 17. Confusion matrix results of the damage localization task for the stayed-bridge structure.

TABLE VII
LABELING FOR THE SDD TASK OF THE Z24 BRIDGE.

State 1 2 3 4 5 6 7 8
Description No No 20 mm 40 mm 80 mm 95 mm Tilt of No

damage damage settlement settlement settlement settlement foundation damage

State 9 10 11 12 13 14 15 16
Description 12 m2 24 m2 1 m 1 column 2 anchors 4 anchors 2 tendons 4 tendons

spalling spalling landslide failure failure failure failure failure

Fig. 18. Model accuracy in functions of the number of sensors.

BRITE-EURAM project SIMCES (System Identification to
Monitor Civil Engineering Structures) [36]. The Z24 bridge
is a prestressed bridge overpassing a highway connecting
Bern and Zurich. The bridge consists of three spans with
a total length of about 60 m, as illustrated in 19. Before
the bridge was completely demolished, different progressive
damage scenarios were carried out over a month in 2008,
including lowering, lifting of piers, spalling of concrete, failure
of anchor heads, rupture of prestressed tendons. Details of
progressive damage tests (PDT) and corresponding labels are
reported in Table VII. A system of sensors was strategically
installed across the bridge to measure its structural responses
during PDTs. For each PDT, nine test setups were conducted,
and for each setup, 33 acceleration time-series from various
sensors were collected, of which five time-series, namely R1-
V, R2-T, R2-V, R2-L, and R3-V were common between setup
tests, where R1, R2, R3 are the location of sensors, V, T, L
denote the directions of displacement, i.e., vertical, transversal
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Fig. 19. Z24 bridge in Switzerland: The geometry of the bridge is depicted at the top, locations of sensors are presented at the bottom.

and longitudinal.

TABLE VIII
SDD RESULTS FOR PROGRESSIVE DAMAGE TEST OF Z24 BRIDGE.

Model Raw DWT AR EMD Fusion

Accuracy (%) 61 78.6 70.6 81.2 90.1

In order to prepare databases for the DL model, a similar
procedure successfully reported in [4] is adopted. More specif-
ically, data from a sensor is sampled with a frequency of 100
Hz, resulting in a signal of 65,568 samples, which is further
divided into 8 time-series of length 8000. Hence, for each PDT
with nine test setups, 72 time-series are extracted from one
sensor. Then, the obtained database of Z24 consists of 1224
groups of five time-series, each group labeled from 1 to 16
according to PDT associated. Applying the data preparation
step results in a test data and augmented training data with
the shape of (231, 5, 12, 8000) and (4769, 5, 12, 8000),
respectively where 5 is the number of sensors, 12 is the number
of extracted features, i.e., AR, DWT, IMF, and 8000 is the
length of time-series.

Next, the 10-fold cross-validation strategy is applied to train
and valid the detection accuracy of the proposed approach.
The key parameters of the DL architecture after fine-tuning
for this study-case is as follows: the number of convolution
kernels Nk = 200, the length of convolution kernel Lk = 100
and the size of hidden output of LSTM cell Nh = 100.
Table. VIII summarizes the damage detection results obtained
by the fusion-feature method and their counterparts using one
extracted feature. It can be seen that the fusion-feature method
achieves a highly accurate SSD result of 90.1%, more detailed
classification result for each PDT is illustrated via the confu-
sion matrix in Fig. 20, moreover, PDTs in same categories are
also clearly separated, for example, PDT 9 and PDT 10 for
concrete spalling, PDT 15 and 16 for tension failure, which
are sometimes misclassified by other methods [4].

To provide more intermediate results about the performance
of the hybrid model, the t-Distributed Stochastic Neighbor

Fig. 20. Confusion matrix for SDD results of Z24 bridge.

Embedding (t-SNE) [37] method is employed to show the
clustering of different conditions of the structure. It is ex-
pected that measurements from a given structural condition
will be grouped into the same cluster, and well separated
from others. In contrast, if data points are mixed together,
meaning further improvement is required to achieve a better
SDD performance. Fig. 21 illustrates the t-SNE representation
on test data obtained at different main steps of the hybrid
1DCNN-LSTM, namely, after the 1DCNN step, the LSTM
step, and the fully connected (FC) step. It can be seen that
at the 1DCNN step, data points from different classes overlap
together, no observable clustering is obtained, while after the
LSTM step, the clustering is much better, data points are
divided into different groups, though some classes are not
clearly separated. At the fully connected step, data points are
almost split; only a small number of data points are mixed at
their corresponding class boundaries; for example, those from
classes 14 and 15.

In short, the validity of the present method is successfully
proved through experimental data from a real-world bridge.
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Fig. 21. t-SNE visualization of damage localization task obtained at main steps of the hybrid 1DCNN-LSTM algorithm

V. CONCLUSION

In this work, a novelty method for Structural Damage
Detection was developed based on the feature fusion technique
and a hybrid deep learning architecture for improving the
detection performance with low required resources in terms
of computational cost and storage capacity. Remarkably, the
present method works on pure data; thus, a numerical model
of the structure is not required, which allows addressing real-
world problems in which pure forced excitation is challenging
to identify. Moreover, the method is able to perform not only
level 1 of damage assessment but also level 2 (damage local-
ization). Such a SDD method enables to monitor structures in
a smart and real-time fashion.

The applicability and efficiency of the proposed method
were first validated through a case study with experimental
vibrational data obtained from a three-story frame. Two levels
of SDD were conducted, i.e., damage detection and damage
localization, with both original data and data contaminated by
random noise. It was found that the feature fusion method
outperforms the other ones using separately features in terms
of accuracy and robustness. When comparing with the sophis-
ticated 2DCNN method, the proposed one provided equivalent
performance. Moreover, it significantly reduced both time and
memory complexity, which would be costly when performing
long term monitoring and when structures become more
complex. Secondly, real data from progressive damage tests
of the Z24 bride were used to support the validity of the
fusion-feature method. It showed that the proposed method
consistently achieves highly accurate damage detection results,
while performances of methods using separately extracted fea-
tures could vary significantly depending on specific SDD tasks.
Next, the method was applied to the full-scale cable-stayed
bridge My Thuan in Vietnam for the detection of tension
loss in prestressed cables. The case study emphasized the
discrimination power of the proposed method in the detection
of structural damage when dealing with a multi-classification
problem of a complex structure using simultaneously multiple
time-series input. Moreover, the low time complexity and
memory usage of the proposed method facilitated parametric
studies, which quantified the influence of the number of
sensors on the detection accuracy, providing tradeoff con-

straints for engineers and owners when drawing an optimized
maintenance strategy.

In future works, it is noteworthy to extend the method
to an online framework where measured data are collected
from IoT sensors, then uploading to cloud servers. After that,
the present SDD method can analyze data and provide infor-
mative structural assessments for responsible personnel from
anywhere in the world through a web application. Another
exciting direction is to incorporate probabilistic analysis into
Deep Learning frameworks, then even with limited input data,
one is still able to perform SDD tasks with corresponding
confidence intervals. When more data are available, the model
will be updated, and the variability of the detection results will
reduce, i.e., the confidence interval will become narrower.
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