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Abstract 

This paper aims to develop an explainable deep learning network to classify COVID from non-COVID based on 

3D CT lung images. It applies a subset of the data for MIA-COV19 challenge through the development of 3D 

form of Vision Transformer deep learning architecture. The data comprise 1924 subjects with 851 being diagnosed 

with COVID, among them 1,552 being selected for training and 372 for testing. While most of the data volume 

are in axial view, there are a number of subjects’ data are in coronal or sagittal views with 1 or 2 slices are in axial 

view. Hence, while 3D data based classification is investigated, in this competition, 2D  axial-view images remains 

the main focus. Two deep learning methods are studied, which are vision transformer (ViT) based on attention 

models and DenseNet that is built upon conventional convolutional neural network (CNN). Initial evaluation re-

sults indicates that ViT performs better than DenseNet with F1 scores being 0.81 and 0.72 respectively. (Codes 

are available at GitHub at https://github.com/xiaohong1/COVID-ViT).  

 

1. Introduction 

COVID-19, officially known as SARS-CoV-2 is a strain of coronavirus. The first cases were seen in 

Wuhan, China, in late December 2019 before spreading globally [1-3] which as and was classified as a 

pandemic in March 2020 [4]. At present there are more than 182 million people infected with the virus 

and 3.9 million of deaths [5] with new variants keep appearing. 

The clinical picture can range from a mild common cold-like illness, to a severe viral pneumonia leading 

to acute respiratory distress syndrome (ARDS) that is potentially fatal. The presence of COVID-19 in 

respiratory specimens was detected by next generation sequencing or real-time reverse transcription 

polymerase chain reaction (RT-PCR) methods, a laboratory technique combining reverse transcription 

of Ribonucleic acid (RNA) into Deoxyribonucleic acid (DNA) and amplification of specific DNA tar-

gets. While PCR tests offer many advantages, results are not usually available for at least several hours. 

On the other hand, high resolution Computerised Tomography (CT) are non-invasive, easy to operate 

and prevalent and hence can assist diagnosis for COVID-19 rapidly. 

 

With regard to imaging features, it appears that bilateral infiltrates with peripheral opacities and patchy 

consolidation are the most common findings on chest radiographs (CXR) [6,7] and bilateral ground 

glass opacities is often a key finding on CT [8,9]. 

As confirmed cases continues to increase considerably all over the world, timely detection of the disease 

not only can provide supportive care required by patients but also can prevent further spread of the virus.  

Consequently, effective screening of infected patients appears to be a critical step in this fight against 
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COVID-19 as well as to circumvent the temporary shortage of RT-PCR kits to confirm COVID-19 

infection. 

The challenge here facing detecting COVID-19 based on chest CT images is that when the disease is at 

its early onset, the characteristic patterns present less obvious to the human eyes [10]. Hence, machine 

learning based approaches are applied to investigate COVID-specific biomarkers. In this study vision 

transformer architectures are investigated. 

2. Related work 

Vision transformer (ViT) have recently demonstrated its potentials in image processing by achieving 

comparable results while requiring fewer computational resources.  Based on self-attention architec-

tures, transformer becomes the leading model in natural language processing (NLP) [11]. For NLP, by 

employing attention models, i.e. transformers, training speed can be significantly improved hence en-

hancing the performance of neural machine translation applications. For image processing, vision trans-

formers are emerging and starting to show protentials by applying to computer vision tasks, such as 

image recognition [12]. Specifically, ViT appears to demonstrate excellent performance when trained 

on sufficient data, outperforming a comparable state-of-the-art CNN with four times fewer computa-

tional resources. 

 

One of the advantages that that Transformers present is computational efficiency and scalability. It has 

become possible to train models of unprecedented size, with over 100 billion parameters [13].  

 

Figure 1 illustrates the architecture of ViT employed in this study. In this study, the ViT is implemented 

in pytorch and heavily based on the code  at [14].  

 

The training process takes place at a GPU sever that equipped with one Quadro RTX 8000 GPU and 

64GB memory under Debian Linux operating system. While in the training, the 2D images are resized 

to 224×224×3 and 224×224×32 for 3D.  For 3D training, each subject’s 2D slices (in JPG format) are 

firstly converted into Analyze (7.5) format, with both header (.hdr) and image (.img) files. The patch 

size for the application of ViT model is 7×7 for 2D images and 8×8×8 for 3D volumes. It takes about 

24 hours for training 80 epochs for 2D images and ~30 hours for 3D volumes. 

 

 



 

Figure 1. The 3D ViT architecture implemented in this work. 

 

 

As illustrated in Figure 1, the classification of COVID applying a ViT architecture takes 8 steps, which 

are splitting an image into patches, flattening the patches, producing low-dimensional linear embed-

dings from the flattened patches, adding positional embeddings, inputting the sequence to a standard 

transformer encoder, pertaining the modelling with labels, and finetuning on the downstream datasets 

for image classification and finally, voting for image volume. In Figure 1, a volumetric image (𝑥) in the 

space of ℝ𝐻×𝑊×𝑍×𝐶  is reshaped into a sequence of flattened 2D patches 𝑥𝑝 ∈ ℝ𝑁×(𝑃3∙𝐶) , where 

(𝐻, 𝑊, 𝑍) refers to the resolution (i.e. height, width, depth) of the original image volume whereas 𝐶 the 

number of channels. At this study, 𝐶 = 1 is for grey level images whilst (𝑃, 𝑃, 𝑃) is for dimensions of 

patch-volume, leading 𝑁 =  𝐻𝑊𝐷/𝑃3, the resulting number of patches. 

Instead of using raw image patches, the input sequence is formed from feature maps extracted from a 

convolutional neural network (CNN) model. In this way, the patch embedding projection E (Eq. (1)) is 

employed to patches extracted from a CNN feature map. In this study, the feature map is extracted 

applying the built-in ViT extractor. The Transformer encoder comprises alternating layers of multi-

headed self-attention (MSA) and Multilayer perception (MLP) blocks (Eqs. (2) & (3)).  In addition, 

Layer normlisation (LN) is applied to every block and residual connections after every block. 

In transformer encoder, MLP contains two layers with a Gelu non-linearity. Similar to Dosovitskiy et 

al. [12], the class token is prepended to sequence of embedded patches (𝑧0
0 = 𝑥𝑐𝑙𝑎𝑠𝑠), whose state that 

is the output of the Transformer encoder (𝑧𝐿
0) serves as the image representation 𝒚 (Eq.(4)).  

𝒛0 = [𝒙𝑐𝑙𝑎𝑠𝑠; 𝒙𝑝
1 𝑬; 𝒙𝑝

1 𝑬; … ; 𝑥𝑝
1𝑬] + 𝑬𝑝𝑜𝑠           (1)  

Where  𝑬 ∈ ℝ𝐷×(𝑃3∙𝐶), 𝑬𝒑𝒐𝒔 ∈ ℝ(𝑁+1)×𝐷 

𝒛ℓ
′ = 𝑀𝑆𝐴(𝐿𝑁(𝒛ℓ−1)) + 𝒛ℓ−1, ℓ = 1 … 𝐿     (2) 

𝒛ℓ = 𝑀𝐿𝑃(𝐿𝑁(𝒛′ℓ)) + 𝒛′ℓ, ℓ = 1 … 𝐿     (3) 

𝒚 = 𝐿𝑁(𝒛𝐿
0)        (4) 

 

3. The MIA-COV19 competition datasets 

The CT thorax lung images are collected from MIA-COV19 competition [15-18]. Table 1 lists the de-

tailed information the data applied in this paper. In total, the data from1926 subject are employed, con-

sisting of 1,552 for training (20% for validation) and 372 for testing. The resolution of these images is 

either 512×512 or 768×768 pixels whereas the depth of each volume ranges from 4 slices to 1026. 

Table 1. The datasets from MIA-COV19 competition applied in this paper. Note 2D slice numbers are the slices 

that have undertaken pre-processing stage and removed those with little lung contents. 

Label Train Testing Total (subject) 

 3D subject 

(block)      (2D slice) 

3D subject 

(block)      (2D slice) 

 

COVID 687 

(11,490) 

 

61,141 

164 

(2,388) 

 

15,410 

851 

 

Non-

COVID 

865 

(16,005) 

 

82,197 

208 

(4,076) 

 

19,681 

1073 

total 1,552 

(27,495) 

 

143,338 

372 

(6,464) 

 

35,091 

1,924 

 



3.1 Image pre-processing 

Because the diseased regions of a COVID-19 dataset occupy less than 10% of the whole volume and 

are presented in a certain number of slices, image pre-processing hence takes place first to maximise 

the large visibility of diseased slices while removing scanner artefact. Figure 2 demonstrates a montage 

view of a data set. It shows that the first 3 slices hardly depict any lung content whereas the boundary 

information as well as the background in each slice accommodates more than half of the slice in concern 

in each 2D image. In addition, the heart (arrow) and liver (arrow head) also make a large appearance in 

several slices. 

 

Figure 2. An axial view of a data volume in the form of montage. Arrow: heart. Arrow head: liver. This subject 

has confirmed diagnosis of COVID-19. 

Hence, before the training and testing, all images undertake pre-processing stage to remove the bound-

ary, which is illustrated in Figure 3(a). In addition, each dataset is divided into a number of each 3D 

blocks with a resolution of 224×224×16, which covers bottom (3(c)), left (3(b)) and right  (3(d)) lung 

regions (pointed out by orange boxes in 3(a)) in the form of montage. 



 

Figure 3. Generation of 3D blocks for each data set. (a) original image sequence after segmentation. (b) right 

lung segment montage, (c) Middle bottom region; (d) left lung region.  

 

3.2 The challenges detecting COVID from Non-COVID CT images 

Since there are still many unknowns regarding to COVID-19 features, many biomarkers attributed to 

COVID-19 are not specific. The common visible patterns of COVID-19 include bilateral involvement 

and peripheral distribution, with superimposed interlobular septal thickening and visible intralobular 

lines. However, other patterns, such as with uni-lobular, perihilar patchy ground glass distribution do 

exist with COVID-19 patients [19]. 

4. Experimental results 

The classification results are subject based, which is calculated from the predicted scores of all the 2D 

or 3D components images for that subject. Considering the artefact that might be introduced during the 

pre-processing stage and not every slice of a COVID patient containing the disease features, the subject 

is classified as having COVID if more than a threshold (e.g. 25% ) number of slices or 3D components 

are predicted as COVID. Similarly, if the remaining number, e.g. 75% or more, slices are predicted as 

nonCOVID, this subject will be classified as nonCOVID patient. Table 1 presents the confusion ma-

trixes for the two deep learning systems, one is COVID-CT system based on DenseNet [20] and one is 

Vision Transformer architecture shown in Figure 1. The evaluation results are based on test dataset 

whilst the training data sets are divided into both training (80%) and validation (20%).  It shows ViT 

performs slightly better than DenseNet with 78.8% accuracy in comparison of 76% for DenseNet. 

Table 2. Evaluation results for the two deep leaning system, CNN-DenseNet and VIT, in the form of confusion 

matrix. 

 CNN – DenseNet Vit—Vision transformer 

 COVID Non COVID Average COVID 

 

Non COVID Average 

COVID 

 (predict) 

119 29 80.4 138 26  



Non COVID 

 (predict) 

64 130 67.0 44 164  

Sensitivity (%) 80.4 67.0 72.8 84.1 82.5 83.3 

Specificity (%) 75.1 83.6 79.3 78.9 86.3 82.6 

Accuracy (%) 77.1 74.9 76 84.1 78.8 81.1 

F1-score 0.71 0.73 0.72 0.80 0.82 0.81 

 

 

5. Conclusion 

The aim of this work is to build an explainable system for medical application.  Vision transformer 

(ViT) architectures are built upon attention models and are scalable when compared with CNN based 

models. Specifically, in the medical domain, the number of data sets can never be as large as current 

benchmark databases, e.g. ImageNet, with over millions of images. Hence a system that can still achieve 

good performance while employing limited number of datasets will make significant impact in the med-

ical applications. 

In comparison with CNN based model DenseNet for COVID-CT, ViT model appears to perform better 

with 78.8% accuracy whereas DenseNet realised accuracy of 76%. 

While chest CT images are in 3D volume, it is a natural approach to process these data in 3D form. 

However, due to the large variations of slice numbers (depth), ranging from 4 to 1000+, with varying 

resolutions, generating 3D volumes present a challenge. Hence a depth of 16 slices, i.e. a volume of 

224×224×16, is created for those subjects with sufficient depth images, by selecting slices evenly cross 

the whole volume. For example, if a 3D dataset has 64 slices in depth, then two sub-volumes are created 

for this subject with sub-volume 1 containing slices 1,3, … 31. and sub-volume 2 having slices of 2,4, …, 

32.  

As addressed previously, the lesioned regions are proportionally small in relation to the whole volume, 

which might constitute the main reason that 3D based system perform far worse (68% accuracy) than 

2D based models (78.8%). Future work will further investigate this challenging issue. Another chal-

lenge remains to be the data volume size when preforming pre-pressing. Overall the training, validation 

and testing sizes are around 100 GB. Therefore pre-processing to segment lung content takes about 12 

hours for all the subjects’ dataset. 
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