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a b s t r a c t 

Malware creators have been getting their way for too long now. String-based similarity measures can 

leverage ground truth in a scalable way and can operate at a level of abstraction that is difficult to com- 

bat from the code level. At the string level, information theory and, specifically, entropy play an important 

role related to detecting patterns altered by concealment strategies, such as polymorphism or encryption. 

Controlling the entropy levels in different parts of a disk resident executable allows an analyst to detect 

malware or a black hat to evade the detection. This paper shows these two perspectives into two scal- 

able entropy-based tools: EnTS and EEE . EnTS, the detection tool, shows the effectiveness of detecting 

entropy patterns, achieving 100% precision with 82% accuracy. It outperforms VirusTotal for accuracy on 

combined Kaggle and VirusShare malware. EEE , the evasion tool, shows the effectiveness of entropy as a 

concealment strategy, attacking binary-based state of the art detectors. It learns their detection patterns 

in up to 8 generations of its search process, and increments their false negative rate from range 0–9%, up 

to the range 90–98.7%. 

© 2018 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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1. Introduction 

Arms races alternate between incremental and disruptive

moves like the stockpiling of armaments and the invention of air-

planes. The malware detection/evasion arms race is no exception.

Its history exhibits periods of minor moves and counter-moves like

tweaking malware to avoid known signature of disruptive moves

like the transition to polymorphic concealment. Our core contri-

bution is to show how to use search to restrict the adversary to

only making disruptive moves. Given an evasion or detection tech-

nique, we use machine learning to search for transformations that

produce variants that force the adversary to make expensive, dis-

ruptive moves. The specific detection and evasion techniques we

consider use information theoretic entropy. 

To conceal their malware, black hats often rewrite it. Polymor-

phism hides malware by encoding it and decoding it at runtime.

Because it is trivially semantic preserving, it is the dominant way

black hats conceal their malware — in 2016, Webroot reported

that 97% of malware is polymorphic ( Lonas, 2016 ). There are two

main classes of polymorphism: those that encrypt the malware

and those that compress it. 
∗ Corresponding author. 
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Both encryption and compression increase the entropy of their

nput, when forced to produce output whose size is not much

arger than the input. Neither Trojans that are large relative to their

osts nor disk-resident malware that hide themselves polymorphi-

ally can violate this constraint without risking becoming too large

nd therefore less viable. In this case, polymorphism introduces

n entropy signature ( Lyda & Hamrock, 2007 ) that distinguishes it

rom many classes of benign-ware. The promise of entropy as a

alware detector is that it works on executables as binary strings,

ithout needing pre-processing, disassembly, dynamic analysis, re-

erse engineering, or manual analysis. 

Structural Entropy ( SEnt ) ( Sorokin, 2011 ) took the first step to-

ard effectively exploiting entropy to detect malware when treat-

ng executables solely as binary strings. When a file is separated

nto chunks, the entropy signature of that file is its per-chunk en-

ropy. SEnt computes the entropy signature of a file over small,

xed size chunks. After computing a file’s entropy signature, SEnt

egments this signature into sequences of chunks, treats these seg-

ents as symbols, then uses Levenshtein to compare the resulting

tring against the segmentation strings it extracts from other files.

t has two severe limitations. First, it does not scale: it relies on the

airwise comparison ( O ( n 2 )) of a suspicious program with a zoo of

nown malware and benign-ware. Second, its decomposition of an

ntropy signature into segments, whose entropy it compares, relies

n six parameters, three of which are implicit and baked into SEnt
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echnique itself ( Section 4.1 ). The authors do not elucidate the set-

ings of these implicit parameters, nor is it obvious from first prin-

iples how they should be set and whether they can be learned.

here are other three explicit parameters: the chunk size that di-

ides the file into blocks to measure their entropy, the number of

hunks or blocks used and a noise threshold. 

To overcome these limitations, we present a disruptive detec-

ion move called EnTS (Entropy Time Series), a new entropy-based

alware detector. EnTS scales and requires only three explicit pa-

ameters that can be learned from a corpus. EnTS constructs a met-

ic space for entropy signatures. EnTS considers an entropy signa-

ure as a time series, then applies wavelet analysis to clean the

ignature and extract a simplified signature from the amplitude

nd longitudinal variation in a file’s entropy. EnTS then treats this

ignature as a point. In this way, EnTS constructs a metric space,

hile SEnt resorts to segmentation and then to the pairwise com-

utation of edit distance to construct its metric space ( Section 2 ).

liminating SEnt ’s segmentation step removes the implicit param-

ters that SEnt requires. The zoo defines EnTS’ three explicit pa-

ameters: the chunk size, number of chunks, and noise threshold

 Section 4.1 ). 

We designed EnTS to defeat polymorphism. On a corpus that

ncludes the Kaggle and the VirusShare training sets and an equal

umber of benign-ware from download.com , EnTS achieves 82%

ccuracy when maximizing 100% precision and 93.9% accuracy

hen maximizing accuracy. EnTS surpasses the quality of SEnt in

erms of scalability: it is more than 15 times faster and linear in its

ime and memory consumption in contrast to SEnt ’s O ( n 2 ). EnTS’

ccuracy is between 2 to 5 points higher than SEnt ’s in all cases.

nTS is also good at detecting metamorphic malware, not just poly-

orphic, because metamorphic malware often has compressed or

ncrypted regions. It detect all the metamorphic variants from our

est corpus. EnTS outperforms all 56 VirusTotal AV engines 1 ap-

lied to the same data, the best of which achieved only 40.6% ac-

uracy. EnTS’ time complexity is linear in the number of files be-

ng classified; it is 30 0 0 times faster than its main competitor in

ccuracy, another information theoretic technique named normal-

zed compression distance ( Li & Vitányi, 2013 ) that we built as a

aseline ( Section 4.1 ). 

Clearly, the next disruptive evasion to defeat EnTS must control

he entropy of packed regions. For this task, we developed EEE

the evolutionary packer or ‘El Empaquetador Evolutivo’). EEE is

 polymorphic engine that controls the entropy of packed regions

nder a tight space budget, increasing the size of its input at most

% ( Section 5 ). EEE creates a packed variant with a specific en-

ropy signal by creating chunks with a specific entropy and inject-

ng into the packed binary. To decide position, entropy, and size of

hese chunks, EEE leverages evolutionary computation. EEE is an

nstance of adversarial machine learning; it uses search to exploit

he vulnerabilities of a entropy-based detector in order to fool it

 Section 5 ). 

EEE defeats SEnt , EnTS, and other state of the art binary-based

etection techniques ( Section 6.2 ). EEE explodes the false negative

FN) rates of these techniques: Prior to EEE ’s application, these

echnique’s FN rates range over [0%–9.4%]; after EEE ’s application,

heir FN rates range over [90.8–98.7%]. EEE rapidly learns to defeat

hese tools; It takes two generations to defeat the weakest ones

nd eight to defeat the strongest. To its credit, EnTS resists EEE

etter than the other techniques ( Section 6.3 ). 

EnTS embeds binaries into entropy metric space and uses ma-

hine learning to detect malware and to advance the state of the

rt. Defeating it requires EEE , a disruptive entropy-based evasion
1 VirusTotal comprised 56 AV engines at the time of our experiments, 2016. 

/

(

echnique that uses search to control the entropy of the binary it

s concealing. 

The main contributions of this paper are: 

• We introduce EnTS ( Section 2 ), the new state of the art in

entropy-based malware detector that operates in linear time.

EnTS detects malware with high accuracy and 100% precision,

achieving better detection rates than any single VirusTotal AV

engine ( Section 4.7 ), outperforming the previous state of the

art and two baselines constructed from normalized compres-

sion distance and compressibility rate ( Section 4.4 ). 
• We introduce EEE ( Section 5 ), a new polymorphic engine that

leverages information theory and adversarial machine learning

to evade detection. EEE defeats all known mechanisms for de-

tecting malware in binaries based on entropy or n-gram, in-

cluding EnTS: it pushes all of their false negative rates over a

90% ( Section 6 ). 
• This work presents a blueprint for how to use search and ma-

chine learning to automate incremental moves ( EEE ’s entropy

signature adaptation), thereby forcing the disadvantaged player

to resort to disruptive moves ( EEE forces expensive dynamic

detection). 

EnTS, EEE , and the corpus on which we evaluated them will be

vailable online 2 

. EnTS: Entropy Time Series Analysis 

The dominant forms of polymorphism hide their payloads us-

ng either compression or encryption. These are string transforma-

ions that change the entropy of their input string. The promise of

tring-based malware detection is that it can distinguish benign-

are from polymorphic malware based on the differences in the

ntropy of their binaries. This is a potentially disruptive move that

ould obsolete the current state of the art polymorphic engines.

n pursuit of this game changing malware detection, we present

nTS 3 , which we designed to advance the state of the art in the

calability and accuracy of string-based malware detection. 

Our goal is to define entropy-based signatures for code. Shan-

on entropy ( Shannon, 1948 ) is defined over an event sequence,

ence, we must convert strings to event sequences. First, we define

he event space as the byte sequence within a string, and measure

heir entropy counting the byte frequency. This defines the entropy

ignature. This method can be applied to any string-based informa-

ion source, like source code. EnTS instantiates this idea for bina-

ies. 

We consider each file as a stream of chunks (fixed length seg-

ents), each with an associated entropy value. The entropy of each

hunk is calculated from the byte frequencies of that chunk from

hich a probability distribution on the bytes is calculated. As we

ant to compare strings of different lengths, we normalize the sig-

ature to a fixed length. This signature is noisy so we use wavelet

nalysis to clean it. Finally, EnTS leverages machine learning to

lassify the signatures. 

EnTS exploits time series analysis. Time series have been widely

tudied in the literature ( Brockwell & Davis, 2013 ), applied in many

elds, and have often been used for prediction. Typically, time se-

ies are either analysed to estimate the next value ( Chatfield, 20 0 0 )

r grouped by similarity ( Liao, 2005 ). Here, we focus on similarity

n our design of Entropy Time Series or EnTS. 

Like other machine learning malware detection techniques,

nTS requires labelled data ( Dua & Du, 2016 ). It compares a sus-
2 EnTS is available at https://github.com/hdg7/EnTS and EEE is available at https: 

/github.com/hdg7/EEE . 
3 EnTS is also part of our technical report on entropy and n-gram based detection 

 Bhattacharya, Menéndez, Barr, & Clark, 2016 ). 

http://www.download.com
https://www.github.com/hdg7/EnTS
https://www.github.com/hdg7/EEE
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picious binary P against a zoo containing labelled malware and

benign-ware. It considers P to be a malicious if it is more similar

to malware than benign-ware. EnTS creates the classification space

from these binaries as follows: 

1. File division: Use the smaller median file length for the zoo, to

set a fixed number of chunks, N . 

2. Entropy signature: Use a (Procrustean) deterministic algorithm

to choose evenly spread chunks from each file to produce a vec-

tor of N chunks in order. Calculate the entropy for each chunk

in the vector to obtain an N -vector of entropies. 

3. Wavelet de-noising: Apply a wavelet transform to obtain an N -

vector of smoothed entropies with less trivial variation. 

This N -vector of smoothed entropies forms the time series for

each file. We can then interpret each time series as a coordinate in

an N -dimensional space and train a machine learning classifier to

distinguish malware and benign-ware. 

2.1. File division 

We compute the entropy signature of a file, F , as a Discrete

Haar wavelet Transformation ( Section 2.3 ). This requires that the

entropy signature length and, as a consequence, the number of

chunks, N , be a power of 2, i.e. N = 2 α for some α ∈ N : 

α = 

⌈
log 

min { med ian (Z| M 

) , med ian (Z| B ) } 
c 

⌉
, 

where Z | B is the zoo’s benign-ware, Z | M 

is the zoo’s malware and c

is the chunk size . The ceiling operator produces an integer between

the two median lengths for the two sets of binaries. Then, for each

program P , we divide its binary representation into chunks of size

c . 

The chunk size is a critical parameter for EnTS. Chunks are file

segments but we also considered sliding windows as an alterna-

tive. This was quickly rejected because it adds redundant informa-

tion into the entropy signature. 

Given that the atomic constituents of chunks are bytes, it is

easy to see that a chunk size of 256 bytes is optimal with re-

spect to the amplitude of entropy variation. There are 256 = 2 8 

possible different bytes. According to Cover and Thomas (2012) the

entropy is maximum if and only if the distribution is uniform,

i.e. the entropy of a chunk will be maximal when every possible

byte has equal probability. This corresponds to a uniform distribu-

tion, where every element has the same appearance probability. To

measure the probability of appearance of these 256 elements, we

need, at least, 256 samples composing a chunk. Hence, the mini-

mum chunk size that allows the maximal possible variation in en-

tropy (from 0 to 8 bits) is 256. On the other hand we want as

many chunks as possible in each file so we also want the length of

chunks to be as small as possible. These chunks provide more in-

formation about the entropy signature, showing granular variations

within it. 

Example. Consider a zoo of just two binary files, P and Q , and a

chunk size of c . These programs, considered as binary strings, are

divided in chunks. Suppose that length (P ) = 20 c and length (Q ) =
6 c. Each chunk is related to a wavelet coefficient, therefore, the

number of coefficients would be 20 for P and 6 for Q . However,

the Haar wavelet requires 2 α coefficients. Next section shows how

to adapt the width. 

2.2. The entropy signature 

Once we have the chunk division for a file, we need to reduce

or increment the number of chunks to N , in order to fit the mother
avelet, which is explained next in Section 2.3 . The selection pro-

ess of the chunks is equidistant. The first and last chunks have

pecial status because file head and tail are usually relevant parts

n malware analysis. To choose the rest, we calculate an increment

alue inc = (| C| − 1) / (N − 1) to get the next chunk index using the

oor of the accumulation of this factor as the next chosen index.

or each chosen chunk, we calculate its Shannon entropy on the

asis of the byte frequencies of the chunk: 

(C j ) = −
∑ 

b∈ C j 
p(b) log 2 p(b) , (1)

here p ( b ) is the probability of byte b within the j th chunk, C j , of

rogram P , calculated from its frequency count within the chunk. 

The concept of chunk generates a local entropy computation.

herefore repeated chunks will not reduce the entropy. For ex-

mple, imagine a string (0 0 011011) over the alphabet � = { 0 , 1 } 2 .
his string has maximum local entropy, i.e. , chunk entropy. How-

ver, the global entropy H ((0 0 011011) k ) tends to 0, as k → ∞ with

fixed. In this case, local or chunk entropy is maximised, while

lobal entropy is minimized. This problem did not occur in our

ataset and can be easily checked. 

xample. Following the example of Section 2.1 , we need to adapt

he width of P and Q to the Haar wavelet coefficients, which are

 

α . Suppose that we choose α = 3 , then we need N = 2 α = 8 co-

fficients. For P we need to contract the number of chunks from

0 to 8 and for Q we need to increase the number of chunks from

 to 8. In order to choose these chunks, we generate a subset of

he current chunks using a jump factor for each file. The chunk

ndex is initially set to 0, and it is incremented in every step by

nc 1 = 19 / 7 = 2 . 71 for P and inc 2 = 5 / 7 = 0 . 71 for Q . The indices

re selected using the floor of the accumulated jump value, so the

hosen indices will be: 

 P = (0 , 2 , 5 , 8 , 10 , 13 , 16 , 19) I Q = (0 , 0 , 1 , 2 , 2 , 3 , 4 , 5) 

fter, we only need to calculate the entropy of each chunk, defin-

ng an N-vector of entropy values for each file which is considered

s an entropy time series. 

.3. Wavelet denoising 

This last step smooths the entropy signal using wavelets. In our

ase, the mother wavelet is defined by: 

 (N, b) = 

1 

| N| 1 / 2 
| C| ∑ 

j=1 

H(C j ) · �HAAR 

(
t j − b 

N 

)
. (2)

here N corresponds with the dimensions of the final N -vector

pace, b is a shifting parameter, H ( C j ) are the entropy values, | C |

s the total number of chunks, t j is the current chunk j in the se-

uence and �HAAR ( t ) is the Haar wavelet defined by: 

HAAR (t) = 

{ 

1 , 0 ≤ t < 1 / 2 

−1 , 1 / 2 ≤ t < 1 

0 , otherwise 
(3)

he Haar wavelet is chosen because it approximates a step func-

ion from the original function ( Addison, 2002 ). Other wavelets,

uch as Daubechies or Biorthogonal wavelets were considered, but

heir performance was worse and their results were similar to the

aar wavelet. As EnTS focuses on the variation patterns, a noise

ree step function provides all the information it needs about the

ost relevant entropy variations. 

Then, we calculate the discrete Haar wavelet transformation.

ach iteration in the process is divided into two parts: calculat-

ng the scale coefficients and calculating the detail coefficients. The

cale coefficients contain the most relevant information about the
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4 https://www.kaggle.com/c/malware-classification . 
5 http://virusshare.com . 
6 http://linux.about.com/library/cmd/blcmdl1 _ xxd.htm . 
7 http://yara.readthedocs.org . 
8 http://yararules.com/ . 
9 https://www.virustotal.com/ . 
ignal while the detail coefficients contain information about the

mall variations. In each iteration, the coefficients used are the

cale coefficients for the previous iteration, e.g. in iteration number

 only the scale coefficients of iteration 1 are used to calculate the

cale and detail coefficients of iteration 2, and the other wavelet

oefficients are not modified. According to the Haar wavelet equa-

ions, a scale coefficient is calculated by: 

 

1 
i = 

1 √ 

2 

(x i + x i +1 ) , s αi = 

1 √ 

2 

(s α−1 
i 

+ s α−1 
i +1 

) , α > 1 , 

nd a detail coefficient is calculated by equations: 

 

1 
i = 

1 √ 

2 

(x i − x i +1 ) , d αi = 

1 √ 

2 

(s α−1 
i 

− s α−1 
i +1 

) , α > 1 , 

he scale coefficients are positioned at the beginning of the

avelet and the detail coefficients after the scale coefficients. For

xample, with α = 3 , the iterations generate the coefficients as fol-

ows: 

(x 0 , x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 7 ) 
↓↑ 

(s 1 0 , s 
1 
1 , s 

1 
2 , s 

1 
3 , d 

1 
0 , d 

1 
1 , d 

1 
2 , d 

1 
3 ) ↓↑ 

(s 2 0 , s 
2 
1 , d 

2 
0 , d 

2 
1 , d 

1 
0 , d 

1 
1 , d 

1 
2 , d 

1 
3 ) ↓↑ 

(s 3 0 , d 
3 
0 , d 

2 
0 , d 

2 
1 , d 

1 
0 , d 

1 
1 , d 

1 
2 , d 

1 
3 ) 

In the final iteration the wavelet, W , has been constructed. We

an use it to reduce the noise from the entropy time series, us-

ng a threshold, τ , on the wavelet coefficients in this final iteration.

hose values that are below the threshold are set to 0. This process

mproves the performance of the classification task by eliminating

inor variations in the original signature. 

Lastly, we apply the inverse wavelet transformation to recon-

truct the entropy signature without the noise. 

 i = 

1 √ 

2 

(s 1 k + d 1 k ) , s αk = 

1 √ 

2 

(s α+1 
k 

+ d α+1 
k 

) , α > 0 

 i +1 = 

1 √ 

2 

(s 1 k − d 1 k ) , s αk +1 = 

1 √ 

2 

(s α+1 
k 

− d α+1 
k 

) , α > 0 

The resulting coefficients vary between 0 and 8 because of the

hoice of chunk size and will be used as coordinates of the en-

ropy time series in the classification space. This space allows the

reation of scalable models based on machine learning classifiers,

nd significantly improves the speed of the classification process.

he model scales linearly (as we discuss in Section 4.1 and show in

ection 4.6 ) because it does not require a pairwise comparison be-

ween every element on the training data, as other state of the art

lgorithms such as Structural Entropy do ( Sorokin, 2011 ). The clas-

ifier will infer a way of discriminating the malware and benign-

are files within the zoo, focused on targeting 100% precision, that

s one of our main goals. 

xample. Following the examples of Sections 2.1 and 2.2 , We need

o remove noise and simplify each time series by obtaining the

econstruction coefficients. Now, for purposes of illustration, we

ocus on P . We apply the discrete Haar wavelet transformation.

ssume that the entropy values for P are (4,5,4,1,1,2,1,2) then the

avelet transformation process will give us: 

 P | α=1 = (6 . 4 , 3 . 5 , 2 . 1 , 2 . 1 | − 0 . 7 , 2 . 1 , −0 . 7 , −0 . 7) 
 P | α=2 = (7 , 3 | 2 , 0 , −0 . 7 , 2 . 1 , −0 . 7 , −0 . 7) 
 P = (7 | 2 . 8 , 2 , 0 , −0 . 7 , 2 . 1 , −0 . 7 , −0 . 7) 

e apply the threshold, in this example it is 0.75, to W P and we

et 

 P = (7 , 2 . 8 , 2 , 0 , 0 , 2 . 1 , 0 , 0) . 
hen, we apply the reconstruction process to W P and we get the

econstructed signal as (4.5,4.5,4,1,1.5,1.5,1.5,1.5). These values are

he coordinates of P ’s signature in the space. 

. Experimental data 

We want to study EnTS’ performance on encryption-only,

ompression-only and both encrypting and compressing poly-

orphic engines, so we use three malware datasets: Kaggle

 Kag ) malware competition dataset 4 , packed ( Pck ) malware from

irusShare 5 , and Mix , a dataset that we construct from Kag
nd Pck . EnTS requires labelled benign-ware (Benign) to operate

 Section 2 ) so, for each of these cases, we collect 3 corresponding

enign-ware datasets KagB , PackB , and MixB . 
Kag contains two subsets: train and test. Kaggle’s test subset is

ot labelled, so we train and test on the train subset. It is com-

osed of 10,869 Malware files. The dataset contains 9 malware

amilies whose features are summarised in Table 1 . The families

re useful for understanding how EnTS works. There are two files

er malware: a byte representation (hexdump) and an asm file

ith IDA Pro-information from the disassembly process. We used

xd 6 to convert the hexdumps to binary executables. According to

aggle description, these binaries are not packed. This dataset was

ublished February 2015, and it has become a benchmark on mal-

are analysis, used in more than 50 research papers ( Ronen, Radu,

euerstein, Yom-Tov, & Ahmadi, 2018 ). 

Pck contains Win32 malware whose packing system was

nown, so we focused on malware uploaded to VirusShare in Jan-

ary 2016. This database is composed of approximately 131,0 0 0

alware files, covering different types of malware. We filter them

sing Linux file command. Only those files identify as PE software

assed this filter. By combining Yara 7 with packer rules extracted

rom the YaraRules project 8 . We extracted 10,0 0 0 malware with

nown packers. Around 70 specific packing systems were detected

y Yara, however, several of them came from the same family, so

e focused on the most frequently occurring families ( Table 2 ). 

Mix synthesises Kag and Pck by sampling: one joining dif-

erent types of malware and benign-ware and the second for

istinguishing packed and non-packed software. The former is

ormed by 1 
3 from Polymorphic data ( Kag ), 1 

3 from Metamor-

hic ( Kag ) and 

1 
3 from Pck . In industry, white hats often

ust analyse different kinds of malware at the same time. This

ataset aims to emulate this scenario. The second mixed dataset,

ix 2 , is composed by 1 
2 packed and 

1 
2 non-packed files. This

ataset aims to evaluate our abilities discriminating packed and

on-packed. 

For Benign, we collected 20 0 0 packed benign ( PckB ) and 20 0 0

on-packed benign files ( KagB ). For Mix the benign-ware mixed

s 2 
3 non-packed and 

1 
3 packed (to keep packed and non-packed

roportions), in the first case and 

1 
2 packed, 1 

2 packed for the

econd case. The resulting datasets have 20 0 0 malware and 20 0 0

enign instances. The benign files were collected from download.

om . All the benign-ware was submitted to VirusTotal 9 to ensure

hat no anti virus detect it as malware. All the files are also PE

xecutables and the packed files are discriminated using Yara. 

EnTS is a classifier ( Section 2 ). The class imbalance problem is

he bane of classifiers ( Domingos, 2012 ). In our corpus, malware

utnumbers benign-ware so we uniformly sampled 10,0 0 0 files

http://www.download.com
https://www.kaggle.com/c/malware-classification
http://virusshare.com
http://linux.about.com/library/cmd/blcmdl1_xxd.htm
http://yara.readthedocs.org
http://yararules.com/
https://www.virustotal.com/
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Table 1 

Information about Kaggle classes:number of instances, instances used in EnTS’ experi- 

ments, concealment strategies and types of malware. 

Class Instances K. 1 K. 2 K. 3 K. 4 K. 5 Conc. Type 

Ramnit 1541 300 255 295 281 287 Poly Worm 

Lollipop 2478 476 427 454 479 443 Poly Adware 

Kelihos_3 2942 550 594 522 540 510 Poly Botnet 

Vundo 475 76 99 83 80 102 Meta Trojan 

Simda 42 7 7 9 8 6 Poly Botnet 

Tracur 751 126 142 150 126 143 Poly Trojan 

Kelihos_1 398 75 65 68 75 77 Encr Botnet 

Obf.ACY 1228 218 232 228 219 230 Meta Trojan 

Gatak 1013 172 179 191 192 202 Poly Trojan 

Total 10,868 

Table 2 

Information about VirusShare packers: number of instances in 

EnTS samples, and instances in SLaMM experiments. 

Packer Total P. 1 P. 2 P. 3 P. 4 P. 5 

Armadillo 542 101 98 111 105 127 

ASPack 186 32 37 42 41 34 

ASProtect 54 10 4 11 17 12 

Borland 2123 417 435 425 438 413 

NET 2351 476 486 483 454 452 

PECompact 445 88 80 89 89 99 

UPX 3175 641 665 610 635 624 

Rest 1124 235 195 229 226 239 

Total 10 0 0 0 
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10 https://cran.r-project.org/web/packages/party/index.html . 
11 
from the Kag and Pck dataset without replacement and randomly

divided it into five partitions with equal size ( Tables 1 and 2 ). 

4. Evaluating EnTS 

We built EnTS to be accurate and scalable, here we demonstrate

that it achieves both ends, its accuracy is 93.9% improving over

SEnt by 1.5 points, and the other state of the art up to 8.9 points,

and it scales linearly. 

The evaluation consists of four steps. The first is data selection.

In every experiment, we have chosen the same number of malware

and benign-ware instances. The training data consists of two thirds

of the instances and the remaining third comprises the test data.

The test data is always fresh data for either approach and is ran-

domly selected by uniform sampling at the beginning of the pro-

cess. The second step consists of the feature space generation for

classification in EnTS. Once this is prepared, we train a classifier as

appropriate. After, we evaluate malware detection on the test set,

recording the accuracy and the false positive rate. 

4.1. Algorithms and Parameters for EnTS study 

To compare against EnTS, we implemented three other infor-

mation theoretic features of binary strings from the literature as

baselines. The first is the compression rate (CR) which calculates

the ratio of the compressed length to the uncompressed length

for a given file compressor and is related to the Kolmogorov com-

plexity of the specific file ( Li & Vitányi, 2013 ). We chose LZMA2 as

the compressor and its maximum compression parameters and the

maximum windows size, i.e. , 4GB, using the package 7zip . 

The second is the Normalised Compression Distance (NCD),

which approximates the Normalised Information Distance ( Li &

Vitányi, 2013 ), a universal, generic, information theoretic metric.

Formally, NCD is 

NC D (P, Q ) = 

C (P Q ) − min { C (P ) , C (Q ) } 
max { C (P ) , C (Q ) } , 
here P, Q are strings, PQ is their concatenation, and C ( · ) is the

ompressed size function for a specified compressor. NCD also uses

ZMA2 as the compressor. 

Finally, we compare against Structural Entropy ( SEnt ). Sorokin

ntroduced this technique in 2011 ( Sorokin, 2011 ) and Baysa et al.

pplied it to metamorphic malware in 2013 ( Baysa, Low, & Stamp,

013 ). It divides a file into chunks, calculates the entropy of each

hunk, then groups the chunks into arbitrarily sized segments (the

nformation for each segment is its average entropy and its size).

t generates a similarity matrix, performing a pairwise compari-

on on the files based on Levenshtein distance. This approach is

 ( n 2 ), where n is the number of files. Further, the variable number

nd variable size of segments in a file means this approach may

etermine a file with more segments to be totally different from

nother file with fewer segments even though the overall entropy

attern in the two files is similar. EnTS escapes this problem: it

xtracts a fixed length entropy time series from a file as a token

tream and operates directly on this time series and therefore all

f the file’s information at once. The implicit parameters chosen

or this comparison are the same as those used in both Baysa and

orokin’s work: τ = 0 . 3 , c ε = 0 . 6 and c α = 1 . 4 . 

EnTs has three parameters: the chunk size, signature size, and

he wavelet threshold. In this experiment we set the chunk size

o 256 ( Section 2.1 ). The signature size ( i.e. the number of dimen-

ions) is 512 (2 9 ) because the smaller zoo (packed files) has an av-

rage size of 116 KB ( α = 
 log (116 · 2 10 / 2 8 ) � = 9 , Section 2.2 ). The

avelet threshold is 0.5 ( Section 2.3 ). 

EnTS uses two classic classification algorithms: Random Forest 10 

nd Inference Trees 11 . To optimize finding the boundary between

alware and benign-ware for each measure, we used multiple-

earning to combine these two algorithms. Multi-learning divides

he learning process, specialising it to different regions of the

pace. Multi-learning penalises false positives during construction

 Hothorn, Lausen, Benner, & Radespiel-Tröger, 2004 ). 

.2. EnTS’ accuracy 

EnTS was designed to detect polymorphic malware. “How accu-

ate it is at detecting all types of malware?” Following related work

 Section 7 ), we consider a detector to be accurate when its accu-

acy is at least 90%. EnTS uses a classifier ( Section 2 ). To determine

ow much of its performance is due to its machine learning classi-

er and how much to its similarity metric, we compared EnTS with

ther information theory similiarity measures, using the same pa-

ameters and classifier and ask: “How does EnTS’ accuracy compare

o that of other information theory similarity measures?”

NCD and SEnt generate a similarity matrix while EnTS and CR

escribe point coordinates for the signatures and the compression
https://cran.r-project.org/web/packages/party/index.html . 

https://cran.r-project.org/web/packages/party/index.html
https://cran.r-project.org/web/packages/party/index.html
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Table 3 

Accuracy Results for all datasets and techniques. The best results are remarked 

in bold. The second best results are remarked in italic. The and symbols 

indicate whether a technique is statistically better or worse to EnTS respectively, 

according to the Wilcoxon test. 

Data NCD CR SEnt EnTS 

Kag 1 93.9 ± 0.3 91.7 ± 0.1 94.5 ± 0.2 98.1 ± 0.1 

Kag 2 94.1 ± 0.2 90.5 ± 0.3 94.1 ± 0.2 98.2 ± 0.2 

Kag 3 94.0 ± 0.3 90.5 ± 0.0 93.7 ± 0.3 97.8 ± 0.2 

Kag 4 94.0 ± 0.3 91.6 ± 0.0 94.4 ± 0.2 97.5 ± 0.1 

Kag 5 95.4 ± 0.3 90.6 ± 0.1 93.9 ± 0.2 98.0 ± 0.1 

Pck 1 95.4 ± 0.2 82.2 ± 0.2 92.0 ± 0.2 94.1 ± 0.2 

Pck 2 95.1 ± 0.2 83.0 ± 0.1 93.1 ± 0.2 94.3 ± 0.2 

Pck 3 95.1 ± 0.2 81.2 ± 0.2 91.1 ± 0.2 94.0 ± 0.2 

Pck 4 95.1 ± 0.2 83.3 ± 0.2 93.0 ± 0.2 95.1 ± 0.2 

Pck 5 95.7 ± 0.2 81.1 ± 0.2 92.3 ± 0.2 94.1 ± 0.2 

Mix 1 91.7 ± 0.3 85.0 ± 0.1 92.4 ± 0.2 93.9 ± 0.2 
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Table 4 

False positives and true positives rates for all techniques and 

datasets. The ROC curve that has been chosen is the median of all 

the ROC curves generated during the experimental process. Italic 

characters highlight the best results for different cut-off values. 

Bold characters highlight the best results with 0 false positives and 

the highest false positive tolerance. 

0 0.002 0.01 0.05 0.1 0.15 

Kag NCD 0.67 0.76 0.86 0.96 0.98 0.99 

Kag CR 0.00 0.00 0.41 0.70 0.91 0.96 

Kag SEnt 0.44 0.60 0.72 0.92 0.98 0.99 

Kag EnTS 0.38 0.70 0.93 1.0 1.0 1.0 

Pck NCD 0.19 0.26 0.55 0.96 0.98 0.99 

Pck CR 0.00 0.00 0.27 0.55 0.75 0.79 

Pck SEnt 0.20 0.25 0.39 0.88 0.95 0.96 

Pck EnTS 0.18 0.26 0.53 0.94 0.98 0.99 

Mix 1 NCD 0.61 0.67 0.77 0.89 0.94 0.96 

Mix 1 CR 0.00 0.21 0.26 0.58 0.81 0.83 

Mix 1 SEnt 0.29 0.34 0.45 0.82 0.95 0.97 

Mix 1 EnTS 0.64 0.67 0.76 0.92 0.97 0.98 
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ate, respectively. Applying machine learning to EnTS and CR is

traightforward because we have the points and we only need to

iscriminate them. For NCD and SEnt we consider each row of

he training similarity matrix as coordinates, due to the number

f files is fixed. This provides the points that the machine learning

lgorithm uses. For testing, we will consider the coordinates as the

imilarities among the test files and the training files. The machine

earning algorithms chosen are non-deterministic approaches (they

hoose a random seed during the initialization process), then, we

eed to generate different models to measure their median per-

ormance ( Hothorn et al., 2004 ). Hence, each experiment has been

arried out 100 times, and the median and standard deviation have

een provided to compare the results. Furthermore, in order to

ompare different algorithms, we have applied the Wilcoxon test

o evaluate whether there is statistical significance among the re-

ults or not. We consider that there is statistical significance when

he p value is less than 0.05 using EnTS as benchmark. In order

o reduce the redundancy of correlated variables in the space, we

ave eliminated those dimensions whose Pearson correlation was

igher than 0.8 with respect to other dimension. This reduces the

pace to the 5% of the original dimension. 

Table 3 shows the direct comparison between the four tech-

iques discriminating malware and benign-ware, according to the

ccuracy. It divides the results by technique and provides the accu-

acy of applying each algorithm to the specific datasets described

n Section 3 . For Kag , EnTS and NCD generally obtain the best re-

ults (EnTS is over 97% of accuracy in all cases and NCD over 93%).

Ent is always worse than EnTS and CR is the worst approach. For

ck , all techniques reduce their accuracy but NCD, which incre-

ents its discrimination abilities. EnTS and NCD keep competitive

esults compare with the rest of the techniques (over 94% and 95%

n all cases). Mix 1 shows that EnTS and SEnt are better discrimi-

ating malware and benign-ware than the other techniques (93.9%

nd 91.7% of accuracy, respectively) when the dataset mixes packed

nd non-packed binaries. NCD obtains worse results than in the

revious cases and CR is the worst technique. This analysis shows

hat EnTS and SEnt are the best techniques classifying malware,

hen no previous information about the malware has been ob-

ained. 

indings. We originally asked whether EnTS is accurate. Targeting

ccuracy, it obtains 98.0% in Kag , 94.1% in Pck and 93.9% in Mix .
e also compared EnTS to the other techniques. EnTS is more ac-

urate than CR and SEnt , and similar to NCD. These results show

hat NCD and EnTS are competitive classifiers in all cases, although

nTS scales 30 0 0 times better ( Section 4.6 ). CR does not detect any

alware that the other techniques do not also detect; EnTS easily

efeats SEnt . 
.3. EnTS’ precision 

One of the main aims of a malware detector is to reduce false

ositives, and, as a consequence, improve precision ( Section 7 ). We

sk “Does EnTS accurately and precisely detect malware?”. We aim

o achieve a precision of 100% ( i.e. there are no false positives).

ue to the classification nature of EnTS we use the ROC curve to

ecide a cut-off during its validation process. We compared EnTS

ith the other information theory similarity measures, using the

ame parameters and classifier and ask: “How does EnTS’ accuracy

nd precision compare to that of other information theory similarity

easures, like NCD?”

Improving precision is equivalent to reducing false positives.

he classifier penalizes false positives during the learning process,

s mentioned above, to ensure that the model effectively detects

alicious programs. The cut-off or threshold used in the ROC curve

lso provides a confidence value to the random forest voting sys-

em that helps to reduce false positives. Using 10 cross-fold valida-

ion in the training set, we set the cut-off to the most conservative

alue, i.e. the one that ensures 0 false positives in all validation

ets. It is this last model that we apply to the test data. 

Table 4 shows the median results for the ROC curves for all the

xperiments. In this table, we can see how the threshold variation

odifies the true/false positives rates for each dataset. For Kag ,
nTS detects 38% of malware with 100% precision ( i.e. 0 false pos-

tive), NCD detects 67% and SEnt detects 44%. For Pck , EnTS de-

ection rate is reduced to 18%, NCD to 19% and SEnt to 20%. For

ix , NCD improves its results significantly (61%), as well as EnTS

64%). This table shows that EnTS only outperforms all techniques

ith 100% precision, when the data is mixed, in the other scenar-

os there are not significant improvements. These results also dis-

ard CR as a classifier targeting the 100% precision. After setting

he threshold to the 100% precision, the median accuracy achieved

y EnTS for Kag is 69.0%, for Pck is 59.0% and for Mix is 82.0%. 

We aim to understand why EnTS obtains better results in some

pecific cases and why it is not performing as well as the other

echniques with respect to the precision. 

First, the results suggest that EnTS can easily separate non-

acked malware and benign-ware. In order to provide an intuition

bout how this separation is performed we have generated a t-

NE ( Maaten & Hinton, 2008 ) projection of Mix . This projection

ims to show, in a low-level dimensional space (normally 2 or 3

imensions) the separation among the data instances in their orig-

nal (usually high-level dimensional) space, according to a specific

etric, in our case, the Euclidean distance. During the mapping

rocess, which generates the projection, t-SNE aims to keep coher-
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Fig. 1. t-SNE projections of NCD and EnTS spaces using Mix data. While the borders are fuzzy, both techniques achieve good global separation; NCD’s clustering is more 

compact, but comes at great computational cost. 
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ence among those instances that are close in the high dimensional

space, setting them close in the low dimensional space. Compared

with other projection techniques like Isomap, Sammon mapping or

a Locally Linear-Embedding, t-SNE performs better showing high

dimensional data discrimination based on their manifolds struc-

ture ( Maaten & Hinton, 2008 ). It is effective with space of similar

dimensions to us, for instance, Maaten and Hinton showed its per-

formance projecting spaces of 784, 10,304 and 1024 dimensions to

2 and 3. Our space contains 512 dimensions ( Section 4.1 ), hence

our dimensionality is inside the projection bounds. 

Fig. 1 shows the results of this projection for EnTS and NCD.

During the discrimination process, the application of Random For-

est helps to discriminate those sections which are fuzzier, due to

the multi-learner approach, that sets different trees in these sec-

tions to ensure a clearer discrimination. To analyse the false posi-

tive rate, we focus on those black instances (benign) invading red

clusters (malware). If a black instance is in the middle of a red

cluster, it will be considered as malware with high probability.

Therefore, even when the cut-off is more conservative, it will still

be misclassified. In Fig. 1 we can see this phenomena in both: EnTS

and NCD. In this case of NCD this normally happens closer to the

boundary. The cut-off sets this whole boundary section as benign,

to reduce false positives. EnTS has wider red regions free of black

instances. However, the boundary of these regions are problematic,

due to they are covered by several black instances. This forces the

cut-off to consider the boundary as benign-ware. 

Findings. We asked whether EnTS is accurate and precise. It is pre-

cise: it obtains 100% precision. However, it falls short of the 90%

accuracy bar. It obtains 64% accuracy on Mix , 38% on Kag and 18%

on Pck . Again, EnTS is more accurate than CR and SEnt , and sim-

ilar to NCD. 

4.4. EnTS’ accuracy by family 

We want to go deeper in the specific concealment strategies

used by the families and packing systems and how they affect the

performance of each technique. This leads us to ask: “How do the

different f amilies and packers affect EnTS and the other baselines?”

Table 5 breaks down the results from Table 3 in families ( Kag ),
packing systems ( Pck ) and strategies ( Mix ). This only increments

the granularity of the binary classification in order to detect how

different families or packers affect it. For Pck , NCD achieves the
est performance in almost all cases, followed by EnTS, but NCD’s

ime and memory performance is significantly lower ( Section 4.6 ).

ll techniques are good discriminating Armadillo system, as well as

ET. For Kag families, we can see that NCD and EnTS outperforms

he rest of techniques in all cases. This also shows the effectiveness

f EnTS when it is applied to metamorphic malware. Due to meta-

orphic malware has not intuitive entropy variations we focus on

he two specific families: Vundo and Obfuscator.ACY. Vundo was

reviously studied by Li et al., who provided a description about

he metamorphic engine ( Li, Loh, & Tan, 2011 ). This description

entions that the data section is encrypted or compressed, there-

ore this produces entropy variations that can be detected by EnTS.

his fact is also detected in the entropy signature, where there are

ong sections with higher entropy than others. For Obfuscator.ACY

he previous pattern is also frequent in the entropy signature, but

n smaller sections, probably related to encrypted or compressed

trings. These variation patterns make the metamorphic data to-

ally unique for EnTS, and it is the reason it can easily detect them.

or Mix , the best results are for polymorphic and metamorphic

ata, applying NCD and EnTS. For Pck , NCD is the best, followed,

n this case, by SEnt which is close to EnTS. 

indings. We wondered how different concealment strategies af-

ect EnTS and the other baselines. EnTS and NCD are strong against

olymorphism and, surprisingly, metamorphism. They can handle

pecific families and packers, forcing malware writers to create

ew ones. 

.5. Packed and non-packed 

The current state of the art is focused on distinguishing be-

ween packed and non-packed software, this leads us to ask: “How

oes EnTS’ detect packing compared with the other information theory

imilarity measures?”

EnTS and NCD are accurate detecting malware in different

acked and non-packed zoos, this section aims to analyse their

bility to discriminate between packed and non-packed software.

ix 2 dataset was designed to fulfil this goal: the dataset con-

ains 50% packed and 50% non-packed binaries, mixing malware

nd benign-ware in the same proportions. 

The accuracy values for distinguishing packed and non-packed

re: 88.1 ± 0.7 for NCD, 69.4 ± 0.3 for CR, 82.1 ± 0.4 for SEnt

nd 88.9 ± 0.3 EnTS. According to Wilcoxon test, EnTS and NCD



H.D. Menéndez et al. / Expert Systems With Applications 118 (2019) 246–260 253 

Table 5 

Breakdown of Table 3 results by malware families in Kag , packing systems in Pck 
and concealment strategy in Mix . Bold characters highlight the best results and italic 

character the second. Underlined characters highlight results higher to a 99%. 

Dataset Class NCD CR SEnt EnTS 

Kag Ramnit 97.9 ± 0.7 95.6 ± 0.3 96.1 ± 1.1 98.8 ± 0.4 

Lollipop 97.9 ± 0.5 94.6 ± 0.2 96.0 ± 0.8 99.2 ± 0.3 

Kelihos3 98.2 ± 0.7 93.8 ± 0.3 95.5 ± 0.8 98.9 ± 0.2 

Vundo 97.4 ± 1.2 94.9 ± 0.1 92.8 ± 1.8 98.0 ± 0.4 

Simda 95.0 ± 2.5 97.1 ± 1.6 97.1 ± 0.0 100.0 ± 0.0 

Tracur 99.5 ± 1.4 94.2 ± 0.2 96.6 ± 1.4 98.6 ± 0.4 

Kelihos1 98.4 ± 1.2 97.0 ± 0.5 94.6 ± 2.7 100.0 ± 0.9 

Obf.ACY 98.7 ± 0.8 93.8 ± 0.2 96.1 ± 1.0 97.6 ± 0.6 

Gatak 98.2 ± 0.8 93.2 ± 0.3 96.2 ± 1.2 99.3 ± 0.5 

Pck Armadillo 99.5 ± 0.3 94.7 ± 0.6 95.7 ± 0.5 97.3 ± 0.3 

ASPack 91.6 ± 3.7 59.3 ± 2.5 80.2 ± 3.2 88.8 ± 3.6 

ASProtect 80.0 ± 7.4 36.0 ± 0.0 58.0 ± 4.9 88.0 ± 7.5 

Borland 97.1 ± 0.5 78.3 ± 0.6 84.3 ± 1.2 88.8 ± 1.0 

NET 99.6 ± 0.1 95.2 ± 0.2 98.7 ± 0.4 99.2 ± 0.3 

PEComp 91.4 ± 4.4 70.1 ± 2.5 94.3 ± 1.1 91.4 ± 1.3 

UPX 97.0 ± 0.3 76.8 ± 0.6 92.5 ± 0.5 94.6 ± 0.7 

Rest 91.7 ± 0.9 77.9 ± 1.1 77.8 ± 1.7 82.4 ± 1.6 

Mix Meta 100.0 ± 0.0 95.9 ± 0.3 96.8 ± 0.5 100.0 ± 0.0 

Poly 99.6 ± 0.2 95.5 ± 0.3 98.2 ± 0.4 99.6 ± 0.1 

Packed 86.9 ± 0.8 65.8 ± 0.2 85.1 ± 0.7 81.5 ± 1.0 

Table 6 

False positives and true positives rates for all techniques and Mix 
2 dataset. The ROC curve that has been chosen is the median of 

all the ROC curves generated during the experimental process. Bold 

characters highlight the best results. 

0 0.002 0.01 0.05 0.1 0.15 

Mix 2 NCD 0.27 0.29 0.44 0.75 0.88 0.95 

Mix 2 CR 0.11 0.11 0.16 0.31 0.42 0.51 

Mix 2 SEnt 0.16 0.24 0.38 0.57 0.71 0.79 

Mix 2 EnTS 0.51 0.53 0.64 0.81 0.88 0.92 

Table 7 

Average time results for the different methods and all the 

databases. Time is approximated in minutes (m) and days. Bold 

characters highlight the best results. 

NCD CR SEnt EnTS 

Kag Space Gen > 5 days 30 m 40 m 2 m 

Kag Classification 25 m 0.4 m 3 m 0.5 m 

Kag Total > 5 days 30.4 m 43 m 2.5m 

Pck Space Gen > 5days 30 m 40 m 2 m 

Pck Classifications 25 m 0.4 m 3 m 0.5 m 

Pck Total > 5 days 30.4 m 43 m 2.5m 

Mix Space Gen > 5 days 30 m 40 m 2 m 

Mix Classification 25 m 0.4 m 3 m 0.5 m 

Mix Total > 5 days 30.4 m 43 m 2.5m 
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esults are not significantly different. Table 6 shows the detection

ercentage considering packed as the detection target. It illustrates

hat EnTS overcomes the rest of the techniques specially for 0 false

ositives. 

indings. After comparing EnTS packing detection abilities with

he other techniques, we discovered that EnTS is more accurate

han CR and SEnt and similar to NCD. EnTS also performs better

han the other techniques when the target precision is 100%. 

.6. Scalability 

We explore the scalability by asking: “Does EnTS scale better

han NCD, CR and SEnt ?”Table 7 shows the average time consump-

ion of the techniques for training and testing. The table is divided

n three datasets ( Kag , Pck and Mix ), and three specific values:

he space generation or training (where the algorithms generate
he similarity matrices, entropy signatures or the compressibility

alues), the classification process and the total average time. EnTS

utperforms every single technique. We can also see that NCD is

he most impractical technique, taking 2 days in the best case and

 in the worse. This shows that NCD is not optimal for malware

etection. It is a consequence of the file compression and the pair-

ise comparison to generate the similarity matrix. The compres-

ion process also affects to CR which needs more time to calcu-

ate the ratios. The pairwise comparison affects to NCD and SEnt .

nTS uses no pairwise comparison, and this improves the time

onsumption. Besides, the entropy signature generation and the

avelet decomposition are linear processes, they do not generate

 bottleneck during the analysis. 

The memory consumption of each metric grows depending on

he space size. For NCD and SEnt , this space is related to the simi-

arity matrix, which grows as O ( P 2 ) while EnTS grows linearly O ( P )

ccording to the number of programs, P , due to the number of co-

fficients (or coordinates) used in the space is fixed. CR also grows

inearly according to the number of files. 

The time consumption ranking for the techniques and for

atasets containing 20 0 0 malware and 20 0 0 benign-ware starts

ith NCD consuming more than five days. It follows with SEnt

onsuming 43 min, CR consuming 40.3 min and finally EnTS con-

uming only 2.5 min. The equivalent memory consumption rank-

ng starts with NCD and SEnt consuming a big square similarity

atrix ( O ( P 2 )). It follows with EnTS and CR as O ( P ) techniques. 

indings. EnTS does scale better than NCD, SEnt and CR. It is linear

calable, 10 times faster than the second fastest technique. 

.7. EnTS vs AV Engines 

This last part of the study was focused on comparing EnTS with

ommecial tools. We ask: “Can EnTS improve the detection results of

he AV engines?”

We have compared EnTS with 56 Anti-Virus Engines. For this

omparison, we have sent all the test set from the Kag , Pck and

ix to Virus Total. In the case of Pck , all the data was already

lassified as Malware using this system, but Kag is fresher and

here are a few anti-virus that can detect it. Table 8 shows the

omparison between the best engines related to accuracy. We can

ee that EnTS and NCD obtain the best accuracy results. 
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Table 8 

Comparison between the top ten Anti-Virus 

Engines, EnTS, CR, SEnt and NCD according 

to detection. 

Technique Kag Pck Mix 

EnTS 98.9% 93.0% 93.7% 

CR 94.4% 81.7% 85.7% 

SEnt 95.6% 90.5% 93.4% 

NCD 98.2% 96.7% 95.5% 

Avast 29.1% 83.5% 40.6% 

AVG 0.3% 86.1% 27.5% 

Avira 6.4% 23.5% 11.8% 

ESET 0.0% 87.1% 28.2% 

GData 0.0% 87.5% 27.8% 

Ikarus 0.6% 86.6% 27.2% 

McAffe 0.0% 89.4% 28.8% 

Qihoo 4.3% 61.2% 24.0% 

VBA32 0.1% 73.4% 23.2% 

VIPRE 0.0% 88.1% 27.5% 
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Findings. We find that EnTS outperforms all the 56 AV Engines in

term of accuracy up to 69 points for the best anti-virus using the

Kaggle data. 

4.8. Discussion 

The results suggest that EnTS quality depends on the sparsity of

the data in the space. When the data is more sparse, i.e. , when the

entropy signatures are different among them, it is more difficult for

the classifier to find a good discrimination, however, in the oppo-

site situation, it is clear that the variants generate small clusters in

the space, where the families or the packers are set together. EnTS

space is based on the signatures, it does not depend on the data,

therefore the classifier can be easily transported to detect other

malware or retrain with new malware, keeping no information of

the original training data. Zero-day malware, which is totally differ-

ent to all the previous data and more likely to benign-ware, might

be a countermeasure for EnTS, but if black hats aims to repack or

re-conceal variants from current malware they will find limitations

set by EnTS (we will discuss this fact in the following section). 

NCD’s quality roots in the compressor: when NCD assigns a

high similarity, the strings have patterns that can be identified

by the compressor after the concatenation. However, when NCD

sets two strings as different, it is not confident, because if one

of the objects is already compressed, the distance will be maxi-

mum. NCD space is based on similarities, therefore, the object se-

lection will affect the space construction. In this case, the fact that

we work with specific families and packers improve the abilities

during the detection process, because they are more likely to be

similar among them. On the other hand, the scalability of NCD is

extremely problematic if we want to use this technique as an on-

line detector. However, EnTS is almost 30 0 0 times faster than NCD

for the zoos we had studied. 

Next section will be focused on finding a potential countermea-

sure generating variants for EnTS. 

5. EEE : the evolutionary packer 

EnTS advances the state of the art in entropy-based malware

detection, achieving an unprecedented combination of speed and

accuracy. Is it a disruptive move? To answer this question, we im-

mediately take the next step in the malware detection arms race

and present EEE (the evolutionary packer or “El Empaquetador

Evolutivo”), an EnTS countermeasure. EEE manipulates the entropy

signature of the binaries to create malware variants. It injects con-

trolled entropy regions (CERs) into the binary file and learns how
any CERs to create and where to put them. In so doing, EEE de-

eats EnTS and all other frequency-based malware detectors. 

Fig. 2 shows EEE workflow. It uses a malware binary and a

etector as starting points ( Algorithm 1 ). The malware contains

lgorithm 1 EEE evolutionary process. 

nput: P is the input program. 

Det Malware detector. 

utput: P ∗ is the best program variant. 

1: ˆ P = Compress (P ) 

2: Create an initial population of Chromosomes: Pop

3: for i = 0 to Total_Generations do 

4: for all C ∈ Pop do 

5: for all d i ∈ C.D do 

6: for j = 0 to d i . Num do 

7: // cers is a priority queue sorted by position 

8: cers . enqueue ( d .N ∗ | ̂  P | , d . Size , d . Density ) 

9: cers . removeOutOfRange() 

10: cers . NormalizeSize (| P | − | ̂  P | ) 
11: P ′ := inject( ̂  P , cers , C. Del ) 

12: C.fitness = Det.DetectionProb( P ′ ) 
13: P ∗ = arg max (Det.DetectionProb( P ′ ),Det.DetectionProb( P ∗)) 

14: Pop = reproduction (Pop) + selection (Pop) 

15: Pop.crossov er() 

16: Pop.mutate () 

17: return P ∗. 

he malicious semantics, which is not modified. EEE changes

he malware shape injecting CERs ( Section 5.1 ). This produces

ariants whose new features aim to produce a misclassification

n the detector. Due to the manipulation process might not be

nough, we include a learning process, based on genetic algorithms

 Section 5.2 ). EEE learns to create and place the CERs based on the

ariant’s classification score, which feeds the fitness function of the

earning process. Every variant generated is executable and it runs

s the original malware after the unpacking process performed in

untime ( Section 5.3 ). 

The adversarial machine learning process of EEE is embedded

nto the fitness function. Every time that EEE generates a new vari-

nt with the aim of reducing the classification abilities of the ma-

hine learning based malware detector, it is playing adversary to

he machine learning algorithm. From an adversarial perspective,

EE has access to the classifier and can get the classification prob-

bility, but it does not know which specific features needs to be

odified, that information is learnt during the search process de-

ending on the response from the malware detector. 

.1. Controlled entropy regions. 

EEE introduces controlled entropy regions (CERs) anywhere in

he binary file. A CER is a set of random bytes constructed so that

he entropy of the byte distribution is under our control. EEE sets

 delimiter, Del , at the starting and at the ending points of each

ER for bounding them. This delimiter identifies the CERs into the

inary. Three parameters control the generation of controlled en-

ropy regions: Size , Density and a Gaussian probability distribu-

ion sampled to select their placement position (described by its

ean μ and standard deviation σ ). The Size parameter is given

s the percentage of the available size a region can use. The Den-

ity parameter is a number between 0 and 1 used to calculate the

ercentage of bytes used in the CER from the 256 possible bytes.

he probability distribution is a Normal distribution over the in-

erval [0,1]. EEE samples this distribution and multiplies the value

btained by the size of the compressed file to define an insertion

oint. 
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Fig. 2. The architecture of EEE , the Evolutionary Packer, showing the initialization of the packer and the GA at top, the interactions among the components of EEE and the 

interaction with the malware detector at bottom. 

Fig. 3. Modifications on the original binary performed by EEE . First, the original 

file is compressed. After, the controlled entropy regions are set. Depending on their 

position they lie between different pieces of the compressed program. 
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Fig. 4. EEE Chromosome scheme. A chomosome is a vector where the first delim- 

iters; then follows the types of CER, where the information for each descriptor is 

the number of CERs for that descriptor, the Size , the Density , and the parameters 

for the position distribution. 
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To construct a CER, we sample bytes from a uniform distribu-

ion until the number sampled over 255 reaches or exceeds the

ensity . We concatenate these bytes in sampling order into an

nitial string, then construct a new string by repeating that initial

tring until the desired length is reached, based on Shannon’s en-

ropy definition ( Eq. (1) ) so this method achieves the maximum

ntropy possible for the probability distribution on byte frequen-

ies in the CER. For example, imagine three strings, 111111, 121212

nd 123123. The entropy of the first is 0, as the probability of 1

s maximum. The entropy of the second is 1, as the probability

or each value is 0.5. The entropy for the third is 1.58 because the

robability for each value is 1 
3 , and so on. The entropy increases as

e introduce values until our string contains all 256 bytes, when

he entropy is maximum, i.e. , 8. 

A fixed number of CER descriptors limits the CER search

pace. Descriptors define a set of CERs sharing similar proper-

ies. Descriptors are formed by a Size , a Density , and a pair of

ormal distribution parameters. Formally, a CER descriptor d =
( Num , Size , Density , μ, σ ) , where Num represents the number of

ERs instantiated on this descriptor. The number of descriptors

nd their characteristics are parameters for the genetic search al-

orithm ( Section 5.2 ). 

For giving room to the CERs without significantly increment-

ng the file size, we start compressing the binary. After, we instan-

iate the CER descriptors creating Num CERs per descriptor. Each

ER has a memory position ranged from 0 to the size of the com-

ressed area. There is a low probability to generate out-of-range

ERs, due to the Gaussian distribution. Those CERs are removed.

he size of the CER depends on the available area, i.e. , the differ-

nce between the original binary size and the compressed size. We

im to not create a variant bigger than the original malware, af-

er the CER injection (within a 1% of tolerance). This allows EEE

o work with compressed binaries. The CERs sizes are normalized

ccording to the available size. After setting their final size, EEE

njects the CERs ( Fig. 3 ) between two delimiters ( Del ). 
.2. Genetic CER creation and placement 

The genetic algorithm looks for the best combination of CER de-

criptors and delimiters ( Algorithm 1 ). They form the chromosome,

here the CER parameters become the encoding or search space.

he number of descriptors is fixed to limit the size of this space,

mproving the performance. 

EEE encodes the CER descriptors parameters into a real valued

ector, which serves as a chromosome during EEE ’s search. Fig. 4

hows the components of a chromosome: delimiter ( Del ), and, for

ach region descriptor: Density , Size , μ, σ and number of regions

 Num ). 

The adversarial search process runs as given in Algorithm 1 .

t starts compressing the original program P → 

ˆ P and creat-

ng a population of chromosomes ( Pop ) that represents different

arametrizations for the CERS (lines 1 and 2). These chromosomes

re created by sampling from a uniform distribution. Then for each

hromosome, it creates the CERs, as explained in Section 5.1 (lines

 to 10), and injects them into the compressed program 

ˆ P , creat-

ng a program variant P ′ (line 11). This variant remains executable,

s explained in 5.3 . The algorithm measures the variant’s quality

o calculate the chromosome’s fitness (line 12). If this fitness is

etter than the best variant found during the whole search so far,

his record ( P ∗) of the best variant is updated (line 13). The fitness

unction, which guides the search, is the malicious class probabil-

ty provided by the malware detector we seek to defeat. The search

ims to minimize this value. Once the algorithm ends with the fit-

ess computation of each chromosome, it applies four genetic op-

rations to the population (lines 14 to 16): reproduction (chooses

hromosomes for crossover), elitism selection (chooses the best

hromosomes for use in the next generation), crossover (swaps

 random number of common parameters between two chromo-

omes) and mutation (sets new values for a chromosome). These

perations improve the population’s quality using the information

earnt from the previous generation. When there are no improve-
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Table 9 

Feature space, machine learning strategy and test accuracy for the 7 models we attack using EEE. 

Technique Features Strategy Accuracy FNs 

Structural Entropy ( Baysa et al., 2013 ) Entropy segments Random Forest 91.6% 7.4% 

EnTS Entropy signatures Random Forest 93.5% 9.4% 

Kolter ( Kolter & Maloof, 2006 ) 4-grams vector Boosted J48 95.2% 0.0% 

Kolter ( Kolter & Maloof, 2006 ) 4-grams vector SVM 89.3% 7.2% 

Kolter ( Kolter & Maloof, 2006 ) 4-grams vector Boosted SVM 91.7% 6.4% 

McBoost( Perdisci et al., 2008 ) 2-grams vector Bagging J48 95.5% 2.8% 

McBoots( Perdisci et al., 2008 ) 3-grams vector Bagging J48 93.2% 6.8% 
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ments in the population, or after a fixed number of generations,

the search process stops, and the algorithm returns P ∗, the fittest

individual (line 17). 

5.3. Modifying UPX to produce EEE 

EEE implementation is based on UPX ( Oberhumer, Molnár, &

Reiser, 2004 ) packer. UPX reformats binaries, compressing their

sections and creating a new binary with three sections: (1) UPX0

an empty section where the code is uncompressed; (2) UPX1 the

compressed original binary and the uncompression code (named

stub); and (3) UPX2 a section containing all imports to properly

run the binary. 

When an UPX-packed binary is invoked, the stub in UPX1 ex-

ecutes and reconstructs the original binary by rebuilding the im-

ports table using the imports in UPX2 and uncompressing the code

in UPX1 into UPX0 ( Sikorski & Honig, 2012 ). UPX uses the UCL

compressor ( Oberhumer et al., 2004 ). This compressor produces

outputs with higher entropy, and consequently a n-gram distribu-

tion closer to uniformity than its input. 

The adaptation of UPX to create EEE requires the manipulation

of both the packing and unpacking processes in a synchronized

way. The manipulation of the packing process is performed after

the compression step when new space is available ( Section 5.1 ). At

this point, EEE reads the parameters for the CERs and creates new

regions with different entropy densities. The positions of these re-

gions in the binary depend on a Gaussian probability distribution

( Fig. 3 ). The delimiters are set at the beginning and end of the

regions. The manipulation of the unpacking process employs the

stub, i.e. the assembly code injected into the packed file that will

undo the packing process at runtime. Inside the stub, we include a

step that identifies and eliminates the CERs before decompression.

The identification process uses the inserted delimiters to find the

CERs. Following these steps, we create executable static variants

that in execution run just as their original programs. 

6. Evaluating EEE 

We built EEE to learn the limits of EnTS. Here, we conduct ex-

periments using EEE to find these limits. We establish baselines by

evaluating EEE againts SEnt and frequency-based techniques ex-

tracted from the literature. Unfortunately, we find that EEE com-

prenhensively defeats all the frequency-based techniques, includ-

ing EnTS. We discuss the prospects for EnTS in Section 6.4 . For

EEE study, we use executable malware. Due to Kaggle malware

has no PE headers, the binaries can not run. Therefore for EEE ex-

periments we used directly the VirusShare dataset for training the

detection algorithms ( Section 3 ). The variants generated by EEE

require a base binary, hence we sample the malware from this

dataset to choose it, in order to ensure that it is known malware

for the detectors. 
.1. Algorithms and parameters for EEE study 

We have focused this part of the study on machine learning

ools. In Table 9 the different techniques are listed. For each tech-

ique we also list the feature space (n-gram vectors or entropy)

nd the machine learning technique that is used during the clas-

ification phase. Kolter techniques ( Kolter & Maloof, 2006 ) use the

ame feature space (4-grams) and authors report 3 classifiers that

enerates top results: Boosting combined with J48 trees, Support

ector machines and boosting combined with Support Vector Ma-

hines. In the case of McBoost ( Perdisci, Lanzi, & Lee, 2008 ) the

uthors use dynamic analysis to generate an unpack version of the

alware, however, this work is not focused on dynamic analysis,

herefore we take the two classifiers used for the authors to decide

f a binary is malware or not (authors named these classifier as C1

nd C2). Structural entropy and EnTS are combined with Random

orest, as described in Section 4.1 . 

For the algorithms we have set the specific parameters speci-

ed in each paper, for those parameters that are not specified, we

eft the default parameters of the implementation. For training, we

ave used 

2 
3 of the whole data and we leave 1 

3 of fresh data for

esting. 

The parameters for EEE are the following: the genetic algo-

ithm has a population containing 50 individuals and evolves dur-

ng 20 generations. In each generation the chromosomes are cho-

en for reproduction using a tournament process, while 10 individ-

als are chosen to pass directly to the next generation by elitism.

hose that are chosen for reproduction used a two-point crossover

perator whit a probability of 0.8 and the elements mutate with

 probability of 0.1. When no changes are produced in the fitness

alue after 5 generations, the algorithm considers it as a conver-

ence point and stops. For those parameters of UPX that are not

ontrolled by the GA, we have set the default parameters. The

earch is also bounded for those parameters that have no maxi-

um limit: the delimiter length is fixed to 8 bytes, the number of

ER types is 10 and for each type the number of CERs goes from 0

o 20. 

EEE focuses on entropy-based detectors, but it is more sensi-

ive to some detectors than others, therefore Section 6.2 studies its

ffectiveness against different statistical detection techniques. Af-

er, we aim to understand its learning abilities. This is studied in

ection 6.3 . 

We have trained the 7 techniques described in Section 6.1 , and

e measured their test accuracy and FNs, shown in Table 9 . 

.2. EEE effectiveness against frequency-based detection. 

Initially, our interest is to understand how the detectors can

chieve high level of accuracy. Table 9 shows the accuracy for the

lassifiers. 

EEE aims to defeat detectors based on entropy features, there-

ore initially, we ask: “How effective is EEE against entropy-based

alware detectors?” For this experiment, we train two detectors

sing our malware corpus: Structural Entropy ( SEnt ) ( Baysa et al.,
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Fig. 5. False negative rate for the malware detectors. The blue bar represents the 

false negative rate on the corpus before applying EEE . The red bar represents the 

false negative rate on the same corpus after applying EEE . (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version 

of this article.) 
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013 ) and Entropy Time Series (EnTS). After, we sample 250 packed

alware and 250 non-packed malware from the training corpus

sing an uniform distribution. EEE repacks these instances, origi-

ally classified as malware, until they are no longer detected, in-

reasing the false negatives rate of the detector. 

Fig. 5 shows how the false negative rate is increased by EEE for

tructural Entropy ( SEnt ) and the Entropy Time Series (EnTS) de-

ection techniques. SEnt is more sensitive than EnTS to EEE grow-

ng from 7.4% false negatives to 95.9%, while EnTS grows from 9.4%

o 90.8%. This supposes an increment of, at least, 80 points show-

ng the effectiveness of EEE against these techniques. 

EEE manipulates the original entropy signature used by both,

nTS and SEnt . It changes its shape to obtain the misclassification.

Ent operates with the segmentation generated by the signature,

nd compares two signatures with the Levenshtein distance, i.e. ,

he edition needed from the original signature to obtain the other,

sing the segments’ entropy and size as the edition units. Once

EE manipulates the signature, the edition from the original to the

ariant is higher, this makes the variant more different, guiding to

he misclassification of SEnt . EnTS considers the whole signature

s a point in a multi-dimensional space. EEE manipulations trans-

ate the point in several dimensions, changing its possition with

espect to the discrimination boundary. This is enough to deter-

ine that the two signatures are far from each other, and, as a

onsequence, they are considered different. 

Once we have evaluated the effectiveness of EEE against

ntropy-based detection methods, we also want to ask about its

ffectiveness against other frequency-based detection techniques,

herefore, we ask: “How well does EEE work against n-gram vector

ased detection techniques?”

In this case, EEE is not targeting these methods, however, both,

he compression and the injection of controlled entropy regions,

anipulate the n-gram frequency, therefore they affect the detec-

ion. 

For this experiment, we implemented 5 different n-gram vector

ased detection methods extracted from the literature. Their accu-

acy and false negative rates are in Table 9 . In this case we have

hosen three different classifiers sharing the same feature space

nd two different feature space sharing the same classifier. This
ecision helps to understand the importance of the feature space

nd the chosen classifier. 

Fig. 5 show the false negative rates for all the techniques. For

he three Kolter’s technique, we can see that, even when the boost-

ng based classifiers are more accurate, according to Table 9 , they

re also more sensitive to EEE than SVM. According to the figure,

oosting J48 and boosting SVM increase their false negative rates

n 98.7 and 89.7, respectively, while SVM only increases its false

egative rate 85.9 points. For McBoost’s techniques, the increment

s stronger in the 2-gram feature space than in the 3-gram feature

pace (95.7 and 87.5 points, respectively). These results show that

oth, the feature space and the classifier are sensitive places for

ttacking using techniques such as EEE , because, for Kolter’s clas-

ifiers, SVM shows better results than the others using the same

eature space. MCBoost’s detectors show that the 3-gram feature

pace is stronger than the 2-gram feature space, using the same

lassification technique. 

These results show that EEE performs modifications that affect

he n-gram counting process. This changes the distribution, affect-

ng specially the most frequent grams. These changes affect the

lassifiers, specially those sensitive to specific features, such as the

ost frequent one. 

indings. EEE is effective against entropy-based detection, and

urprisingly, it is also effective against n-gram vectors based de-

ection, incrementing the false negative rates, at least, 80 points

ith respect to the original rate. 

.3. EEE learning process 

The previous section measures the abilities of EEE to evade n-

ram vectors and entropy based detection techniques, however, we

re also interested in measuring the effort of EEE to defeat these

echniques. This effort can be measure in terms of the evolutionary

rocess. Therefore we ask: “How many generations does the evolu-

ionary process need to defeat a detection technique?”

For this experiment we use the same setup of the previous sec-

ion, and we increment the granularity to the number of genera-

ions. By design, all the classifiers detect malware when its mali-

ious probability is higher than 0.5. Then, considering a population

f EEE parameters, this experiment aims to measure when these

arameters are properly set to generate variants that always evade

he classifier. In terms of search, this is consider as a convergence

oint, therefore we want to find the convergence point of the evo-

utionary algorithm. 

Fig. 6 shows the evolution of the median detection probability

f the whole population over a number of generations. The gray

ine in 0.5, represents the boundary between being detected as

alware (over 0.5 probability) and not being detected as malware

under 0.5 probability). The figure shows that during the first gen-

ration at least one technique goes under 0.5 probability (McBoots

etector using 2-grams). In the fourth generation, there is a strong

ecaying tendency for all the techniques. From the seventh genera-

ion, no technique is over the threshold. This shows how the learn-

ng process is reducing the detection abilities of all techniques, but

t also shows that the behaviour of EEE is different for the differ-

nt techniques. 

It is important to remark that some techniques, such as Mc-

oost’s classifiers, have a stepped tendency. Analysing the classi-

er feedback during the evolutionary process, we discovered that

t provides discreet values, generating a fixed set of detection lev-

ls. Kolter’s and entropy based detection techniques have a contin-

ous tendency. In this case, the classifier generates continues val-

es. Continuity is better for the search process, due to it is easier

o find a gradient by learning. 
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Fig. 6. Evolution of the median detection probability for the variants created using 

EEE by generation. 
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It is also interesting to remark that several techniques have an

asymptotic behaviour close to 0.2. The search process focuses on

defeating the classifier finding vulnerabilities on it, that is, areas

where our modifications might generate a misclassification, but the

variants used in this experiment come from the original training

data of the classifier. Due to the classifier knows the original mal-

ware, the modifications are bounded by this knowledge. Trying to

set this value from these variants is an open problem. 

Findings. EEE learns to defeat detectors reaching its convergence

point in less than 8 generations of the search process. The most

resisting technique against EEE is EnTS. 

6.4. Prospects for EnTS 

EEE comprehensively defeats EnTS and the other frequency-

based detectors from the state of the art. The next step in the

arms race is how to improve EnTS to defeat EEE . There are po-

tential improvements in different directions. First, the packing pro-

cess of EEE is not protected against sophisticated unpacking tech-

niques. Using one of these technique will remove the CERs expos-

ing the original malware. Second, EEE constantly attacks the de-

tection technique. Adding an extra protection to the classifier for

detecting small variations on adversarial queries, might give it the

ability of detecting an adversarial attack. However, a smart adver-

sary could include some dummy variants to cheat this adversary

detector. Finally, EnTS can specialize itself in detecting EEE , find-

ing specific features of EEE variants that can detect an attack. 

7. Related work 

This work examines the prospects for frequency-based malware

detection by taking two steps in the malware arms race. First, it

introduces EnTS to advance the state of the art in frequency-based

detection and, then, immediately creates EEE to advance the state

of the art in evasion by defeating EnTS. This section contextualizes

both tools with respect to the literature. First, we discuss malware

detection in general, before turning prior specifically on frequency-

based detection. We use frequency-based detection to explore the

arms race, so we close with adversarial machine learning. 
.1. Dynamic and static analysis in the malware arms race 

Somayaji described the cybersecurity arms race as a coevolu-

ion between the black hats and the white hats ( Somayaji, 2004 ).

e explained that this is a competition with both sides learning

rom each other, but he did not model this phenomena or study it.

uerra et al. did study this coevolution in the context of spam e-

ails ( Guerra et al., 2010 ). They studied this from the perspective

f white hats, focusing on a tool for spam filtering and a dataset of

pam across 12 years. This tool, and similar tools, forced spammers

o evolve. At the same time, the filters also improved their features

o detect new spam. This study provided evidence of the arms race

oevolution, and we based our work in a similar idea, focused on

odern machine learning detectors. 

Our main detection scenery is disk resident malware, prevalent

pecially in Windows machines. Windows malware has become in-

reasingly sophisticated at hiding itself and resisting analysis. The

iterature contains seveal works mainly focused on static, dynamic

r hybrid techniques aiming to detect it. 

Static analysis, whether based on abstractions of Control Flow

raphs and program semantics ( Preda, Christodorescu, Jha, & De-

ray, 2007 ) or on opcode analysis ( Santos et al., 2010 ), or focused

n PE Headers and Static API Calls ( Xu, Sung, Mukkamala, & Liu,

007; Ye, Li, Jiang, & Wang, 2010 ) as features for machine learn-

ng, faces the increasing difficulty of initial reverse engineering.

n addition, Moser et al. demonstrated hard limits to the abil-

ty of static anaysis to deal with obfuscation ( Moser, Kruegel, &

irda, 2007 ). Dynamic analysis via virtual machines and sandboxes

an avoid anti-disassembly measures but suffer from resistance via

ynamic defence predicates and red pill environment detection

echniques ( Paleari, Martignoni, Roglia, & Bruschi, 2009 ). Windows

alware analysis aiming to integrate dynamic and static analysis,

s Santos, Devesa, Brezo, Nieves, and Bringas (2012) , Islam, Tian,

atten, and Versteeg (2013) and andA. Salim (2015) , to produce

eatures for data mining approaches suffer the same problems. 

Recent approaches to Android malware exploit the relative lack

f sophistication of that type of malware. These include Drebin

 Arp et al., 2014 ), CopperDroid ( Tam, Khan, Fattori, & Cavallaro,

015 ), which combine machine learning with behavioural models.

ther tools as DroidSIFT ( Zhang, Duan, Yin, & Zhao, 2014 ) are fo-

used on anomaly detection and malware family classification. 

Malware detection tools focused on network neighbour-

oods, for example, Nazca ( Invernizzi et al., 2014 ) and AESOP

 Tamersoy, Roundy, & Chau, 2014 ) show real promise in terms of

cale and accuracy but require ground truth as a seed, just as

ur similarity techniques do. Also, the work of Zhongqiang Chen

t al. focuses on how malware is propagate on these networks

 Chen et al., 2012 ). Our work focuses on frequency-based detec-

ors, that have the ability of detecting malware before any static or

ynamic analysis. 

.2. Frequency-based detection 

In 1994 Kephart presented an n-gram approach for extracting

ignatures but reported no results ( Kephart, 1994 ). In 2001, Schultz

t al. used several data mining techniques on binaries to distin-

uish between benign and malicious executables in Windows or

S-DOS format. Memory consumption was a scalability bottleneck.

hey experimented on a dataset of 3265 malware and 1001 benign

les but lacked fresh data for testing. Validation achieved 97.11%

ccuracy with 3.8% FP rate ( Schultz, Eskin, Zadok, & Stolfo, 2001 ). 

In 2006, Kolter and Maloof used Information Gain combined

ith byte level analysis of n-grams to classify and detect malware.

gain they did not use fresh data for the test phase. They exper-

mented on two small datasets, one of 476 malware, 561 benign-

are (95% accuracy with 5% FP in validation); the second of 1971
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enign-ware, 1651 malware (94% accuracy and 1% FP in validation)

 Kolter & Maloof, 2006 ). 

In 2007, Lyda and Hamrock used the average entropy of a whole

le and the entropy of specific code sections (discovered only by

sing static analysis). They showed that binary files with a higher

ntropy score tend to be correlated with the presence of encryp-

ion or compression. They compared more than 20,0 0 0 malware to

heck whether they are able to detect these concealment methods

ut did not consider malware detection ( Lyda & Hamrock, 2007 ).

n the same year, Stolfo et al. used 1-gram and 2-gram byte distri-

utions for a file to compare it with different filetype models for

letype identification ( Li, Wang, Santos, & Herzog, 2005 ) in mal-

are detection within DOC and PDF files. They reported on exper-

ments with over 140 pdfs and 361 benign and 616 malware and

esults with between 3% to 20% of false positives but no accuracy

nformation. This work considered n-grams in a vector space, us-

ng their frequency and variation as features, but each dimension

as a n-gram resulting in exponential increase in the number of

imensions ( Stolfo, Wang, & Li, 2007 ). 

Tabish et al. in 2009 divided files into blocks, and calculated

requency of n-gram histograms for each block, then extracted sta-

istical and information-theoretic features from the histogram to

efine a feature vector per block. They used this to classify a fea-

ure vector as normal or potentially malicious. Pairwise compari-

on between blocks of different files reduces the scalability of this

pproach. They claimed an accuracy rate of 90% with a False Posi-

ive rate of around 10% ( Tabish, Shafiq, & Farooq, 2009 ). 

Santos et al. in 2011 introduced a semi-supervised methodology

o reduce the labelling process. Their n-gram vector was the fre-

uency of all possible n-grams, an important scalability limitation.

fter experiments on 10 0 0 malware and benign-ware, they re-

orted 89% of accuracy with 10% of false positives ( Santos, Nieves,

 Bringas, 2011 ). 

Finally, Sorokin presented SEnt in 2011 ( Sorokin, 2011 ). The

rst evaluation of SEnt was an use case comparison between

wo files. After, Baysa et al. extended it to metamorphic malware

n 2013 ( Baysa et al., 2013 ), showing that this technique scales

uadratically. This was a consequence of the implicit pairwise com-

arison of the metric. Another relevant bottleneck, that the au-

hors identified in the technique, was the definition of the seg-

ents that describe the files. This definition depends on three pa-

ameters whose setting depends on the analyst. The Levenshtein

istance, applied during the files comparison, depends directly on

he parameters. They directly affect the number of segments that

ill pass to this metric, affecting to the performance. EnTS is free

f this parametrization, leveraging directly the properties of the

avelet to speed up the comparison and scale linearly. 

EnTS has three advantages over previous work in detection via

yte level content: (1) better accuracy combined with lowenr false

ositive rates, (2) better (linear) scalability in the detection phase,

nd (3) a more rigorous experimental approach. Nevertheless, EnTS

s sensitive to adversarial machine learning, introduced in the next

ection. 

.3. Adversarial machine learning 

Adversarial machine learning inspired our step forward into

he arms race. This field aims to exploit the vulnerabilities of

 learning system, attacking the test data distribution and mak-

ng it different to the training data ( Moreno-Torres, Raeder, Alaiz-

odríGuez, Chawla, & Herrera, 2012 ). The adversary introduces

oise into the data or makes some other alteration to achieve a

isclassification. This sensitivity was originally noticed on spam

etectors ( Chinavle, Kolari, Oates, & Finin, 2009 ), where the adver-

ary studied different modifications to emails to enable the passing

f machine learning based filters. 
Xu, Qi, and Evans (2016) were the first authors applying these

odels to malware. They created evademl, a genetic programming

ool that modifies pdf malware to cheat two machine learning

ased detectors, extracted from the literature: Hidost ( Šrndic &

askov, 2013 ) and PDFrate ( Smutz & Stavrou, 2012 ). In this work,

he authors knew the features used by the machine learning al-

orithm, the classifiers, and the training data. In particular, they

ad access to the classification probabilities, providing them with

 search gradient per classifier. In addition, they were effectively

orking off-line with no evolution on the part of the detectors. In

ur experiments, EEE did not use any information about the train-

ng data or the detector features it attempted to attack. Moreover,

EE creates variants for Windows binary executable malware that

s protected against disassembly or reassemble, while evademl ma-

ipulates PDF malware. Furthermore, since UPX is compatible with

everal different architectures, EEE can potentially be adapted to

everal different platforms ( Oberhumer et al., 2004 ). More recent

orks, as the one introduced by Calleja, Martín, Menéndez, Tapi-

dor, and Clark (2018) apply adversarial machine learning to cheat

he triage process of malware analysis. 

Adversarial machine learning has been also consolidated as an

nalytical process to measure the degree to which different ma-

hine learning algorithms can be exploited. A good example is the

ork of Biggio et al. who studied different vulnerabilities for Sup-

ort Vector Machines. They also presented a methodology to im-

rove the robustness of this classification technique ( Biggio, Nel-

on, & Laskov, 2012 ). They extended this work to another classi-

er, where they also formalized the language for adversarial mod-

ls ( Biggio, Fumera, & Roli, 2014 ). While important, this work is

angential to this paper as we only used access to the classifica-

ion output as a fitness function. 

. Conclusions 

We have demonstrated that EnTS outperform previous informa-

ion theoretic similarity measures. Its level of abstraction makes

t difficult to counter and it offers scalability advantages. We have

emonstrated excellent precision and accuracy on a representative

ixture of malware types drawn from the Kaggle malware data

nd VirusShare. Indeed, EnTS outperforms existing AntiVirus en-

ines (as represented in VirusTotal) for accuracy and precision. Its

ime complexity is bounded above by the number of files to be

lassified. As an automated, execution agnostic, string-based simi-

arity metric it offers wider scalability advantages beyond its time

omplexity class alone – reducing human effort and reducing the

eed for dynamic or static analysis. 

EEE also demonstrated its ability to increment false negatives

n entropy and n-gram based detectors. It learns from them, creat-

ng variants whose properties are unknown to the classifier or sim-

lar to benign-ware. It is the first packer with the ability to learn

bout its concealment strategy. 
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