

Introducing a framework for improving
competitive programming education for the

Cyprus Olympiad in Informatics

A project submitted to Middlesex University in
partial fulfilment of the requirements

for the degree of
Doctorate in Professional Studies

Panayiotis Eracleous

Faculty of Professional and Social Sciences

January 2022

2

Disclaimer

The views expressed in this document are mine and are not necessarily the views of my
supervisory team, examiners or Middlesex University.

3

Table of Contents

Disclaimer .. 2

Table of Contents ... 3

List of Figures .. 6

List of Tables .. 8

Abstract .. 10

CHAPTER 1: Project Information ... 11

1.1 Introduction ... 11

1.2 Competitive Programming ... 15

1.3 Purpose and Aim .. 18

1.4 Research objectives ... 19

1.5 Chapter summary ... 20

CHAPTER 2: Review of Knowledge and Information 21

2.1 Introduction ... 21

2.2 Computer Science in the Educational System of Cyprus .. 22

2.3 Cyprus Olympiad in Informatics (COI) .. 24

2.4 The COI Community .. 25

2.5 Teaching and learning programming .. 27

2.6 Pedagogical framework ... 31

2.7 Conceptual challenges of programming .. 38

2.8 Troublesome knowledge ... 42

2.9 Threshold concepts and liminality.. 44

2.10 Strategies of competitive programmers.. 52

2.11 Mental models .. 54

2.12 Motivation for competitive programming ... 59

2.13 Problem-Based Learning (PBL) .. 61

2.14 Scaffolding and collaboration ... 64

2.15 Assessment of programming code .. 66

2.16 Predicting success .. 71

2.17 Chapter summary ... 73

CHAPTER 3: Methodology .. 74

3.1 Introduction ... 74

3.2 Action Research approach .. 75

3.3 Action Research design ... 84

4

3.4 Ethical Considerations .. 91

3.5 Positionality in research ... 93

3.6 Chapter summary ... 96

CHAPTER 4: Project Activity .. 97

4.1 Introduction ... 97

4.2 Research study activity: The COI framework design and focus 98

4.3 Research study activity: Course context and format .. 102

4.4 Research study activity: Integration of the Michanicos platform 107

4.5 Research study activity: Task development ... 111

4.6 Research study activity: Task assessment and evaluation 115

4.7 Research study activity: Michanicos interactions .. 118

4.7.1 Student-level interactions .. 118

4.7.2 Teacher-level interactions .. 123

4.8 Research study activity: Slack interactions .. 128

4.9 Chapter summary ... 131

CHAPTER 5: Project Findings ... 132

5.1 Introduction ... 132

5.2 The pre-liminal space .. 135

5.3 Threshold concepts in competitive programming ... 142

5.4 Students’ perceived/actual coding efficiency ... 151

5.5 Code optimisations/Programming strategies ... 160

5.6 Student feedback on the framework and its components 170

5.7 Student engagement with the Michanicos platform ... 176

5.8 Statistical Analysis of COI Round A ... 178

5.9 Statistical Analysis of COI Round B ... 182

5.10 Statistical Analysis of COI Round C ... 187

5.11 International contest participation .. 194

5.12 Training systems from IOI participating countries .. 197

5.13 Reaching the post-liminal space .. 197

5.14 Issues under consideration and research limitations .. 199

5.15 Chapter summary ... 201

CHAPTER 6: Conclusions .. 202

6.1 Introduction ... 202

6.2 Main conclusions ... 203

5

6.3 Chapter summary ... 219

CHAPTER 7: Self Reflection ... 220

References ... 231

Appendices ... 259

6

List of Figures

Figure 1: COI framework design .. 12
Figure 2: Illustration of the task solution .. 16
Figure 3: The Educational System of Cyprus in 2019 .. 22
Figure 4: Computers course periods per week in the gymnasium .. 23
Figure 5: Lyceum Computer Science core subjects ... 23
Figure 6: Theory-Based Pedagogical Framework design (Dabbagh, 2005) 32
Figure 7: A programming framework by Robins et al., 2003 .. 40
Figure 8: Five characteristics of threshold concepts (Hamm, 2016) ... 46
Figure 9: Visualisation of a segment tree build function .. 57
Figure 10: Scoring phase of the Michanicos platform ... 69
Figure 11: Action research involves continuous cycles of action and reflection (Coghlan and
Brannick, 2005 p.24) .. 78
Figure 12: Action research cycle activity ... 80
Figure 13: Research design Illustration ... 85
Figure 14: The interface of the Contest Management System with the third-round tasks 107
Figure 15: The Michanicos platform and the CMS .. 108
Figure 16: Example of a graph depicting cities and distances ... 113
Figure 17: Task Seats point distribution (IOI 2018) ... 117
Figure 18: Michanicos platform menu .. 118
Figure 19: Michanicos registration form ... 119
Figure 20: Tags on Michanicos .. 119
Figure 21: Tasks under implementation tag .. 120
Figure 22: Task statement for task Wasawa ... 120
Figure 23: Statistics for a selected task ... 121
Figure 24: Code editor and previous submissions ... 121
Figure 25: Previous submissions for a selected task ... 122
Figure 26: Full feedback for a task ... 122
Figure 27: Task tags, time and memory limits ... 123
Figure 28: Administrator menu on platform ... 123
Figure 29: Task setting ... 126
Figure 30: Adding test cases to a task ... 127
Figure 31: Viewing all submissions on the platform ... 127
Figure 32: Q&A feature during a contest .. 128
Figure 33: Slack workplace interactions .. 129
Figure 34: Computer Literacy .. 135
Figure 35: Prior Programming Knowledge .. 136
Figure 36: Programming languages identified .. 137
Figure 37: Performance in Bebras competition .. 138
Figure 38: Intention for lecture participation ... 140
Figure 39: Intention of competition participation .. 141
Figure 40: Threshold concepts identified .. 144
Figure 41: Methods used for negotiating liminality .. 148
Figure 42: First round perceived coding efficiency ... 153
Figure 43: Second round perceived coding efficiency ... 153
Figure 44: Third round perceived coding efficiency .. 154
Figure 45: Perceived and actual understanding (Dynamic Programming) 156

file:///C:/Users/Panos/Desktop/MDX/ULTIMO/DPS5360_V12.docx%23_Toc91852679
file:///C:/Users/Panos/Desktop/MDX/ULTIMO/DPS5360_V12.docx%23_Toc91852701
file:///C:/Users/Panos/Desktop/MDX/ULTIMO/DPS5360_V12.docx%23_Toc91852702
file:///C:/Users/Panos/Desktop/MDX/ULTIMO/DPS5360_V12.docx%23_Toc91852703

7

Figure 46: Perceived and actual understanding (Segment Trees) .. 156
Figure 47: Solved tasks on the Michanicos platform .. 157
Figure 48: Submissions by user Dremix10 ... 158
Figure 49: Tasks attempted per week on Michanicos ... 159
Figure 50: Total solved tasks on other platforms .. 160
Figure 51: Big-O Complexities from O(1) to O(n!) ... 161
Figure 52: Submission feedback for TLE .. 163
Figure 53: Receiving a full score on a task ... 164
Figure 54: Screenshot from Slack workspace interaction ... 165
Figure 55: How many possible paths exist from Times Square to the Empire State building? ... 167
Figure 56: Calculating paths to reach point P .. 167
Figure 57: Memory limit exceeded ... 169
Figure 58: Positive aspects of the Michanicos platform ... 171
Figure 59: Negative aspects of the Michanicos platform .. 172
Figure 60: Requests for future upgrades ... 172
Figure 61: Student feedback on the Michanicos platform .. 174
Figure 62: Reviews for the CMS .. 175
Figure 63: Recommended changes in the training process .. 175
Figure 64: Total user submissions on Michanicos ... 176
Figure 65: Histogram for task Shopping .. 179
Figure 66: Histogram for task Think .. 179
Figure 67: Histogram for task Titanic .. 180
Figure 68: Histogram for task Strings .. 181
Figure 69: Histogram for task Infinity .. 182
Figure 70: Histogram for task Metro ... 183
Figure 71: Histogram for task Money .. 184
Figure 72: Histogram for task Travel ... 187
Figure 73: Histogram of task Bacteria ... 188
Figure 74: Histogram of task Ducks ... 190
Figure 75: Histogram of task Art ... 191
Figure 76: Task Art circle images ... 191
Figure 77: Histogram of task Flow ... 192
Figure 78: The game Flow ... 193
Figure 79: COI framework layout .. 225
Figure 80: Performance of Cyprus teams in IOI competitions .. 227
Figure 81: Medals won by COI students .. 228

file:///C:/Users/Panos/Desktop/MDX/ULTIMO/DPS5360_V12.docx%23_Toc91852728

8

List of Tables

Table 1: Overview of methods used in the empirical study .. 20
Table 2: Online judge systems surveyed. The columns include system name, the languages
supported by the graphical user interface, the number of supported compilers, the number of
programming tasks available, the number of users and contest availability 70
Table 3: Framework outline for competitive programming education ... 99
Table 4: Three phases of COI programming curriculum .. 105
Table 5: Statistics of IOI 2018 tasks ... 116
Table 6: Perceived coding efficiency levels format ... 152
Table 7: Statistics for solved tasks on Michanicos .. 157
Table 8: Statistics for solved tasks on other platforms ... 160
Table 9: First-round tasks' statistics .. 177
Table 10: Second-round tasks' statistics ... 177
Table 11: Third-round tasks' statistics ... 178
Table 12: Statistical analysis of the first round ... 178
Table 13: Statistical analysis of the second round .. 182
Table 14: Statistical analysis of the third round .. 187
Table 15: Statistical analysis of all rounds ... 188
Table 16: Cyprus results from IOI 2019 ... 194
Table 17: Cyprus results from IOI 2018 ... 194
Table 18: Task 'Shoes' results (IOI) .. 195
Table 19: Task 'Shoes' results (CYP) ... 195
Table 20: Cyprus results from EJOI/JBOI 2019 .. 196
Table 21: Cyprus results from BOI 2019 .. 196
Table 22: Cyprus results from IOI 2020 ... 216
Table 23: Association of empirical data with research findings and research objectives 219

9

Glossary

ACM: Association for Computing Machinery

BFS: Breadth-First Search

BOI: Balkan Olympiad in Informatics

CCS: Cyprus Computer Society

CER: Computing Education Research

COI: Cyprus Olympiad in Informatics

CS: Computer Science

DFS: Depth-First Search

DP: Dynamic Programming

EJOI: European Junior Olympiad in Informatics

ICT: Information and Communications Technology

IOI: International Olympiad in Informatics

JBOI: Junior Balkan Olympiad in Informatics

KMP: Knuth Morris Pratt algorithm

LIFO: Last In First Out

MOEC: Ministry of Education and Culture of Cyprus

URL: Uniform Resource Locator

10

Abstract

The purpose of the study is to empower the next generation of Computer Science experts

by helping high school students comprehend complex programming concepts and solve

challenging tasks in programming competitions. The research aims to enhance the

pedagogy and the teaching practice of competitive programming education by introducing

and evaluating a framework as a training system and utilising a code-evaluation platform

within the Cyprus Olympiad in Informatics (COI) (Eracleous et al., 2019). The proposed

COI framework intends to redefine the teaching and learning processes within its

discipline. The research focuses on four critical pillars: the pedagogical model of a learning

community, the instructional strategy of Problem-Based Learning (PBL), mental models

and strategies, and online technologies. In addition, the project introduces Michanicos, a

code-evaluation platform that enables real-time code assessment and facilitates the

application of the framework’s scope in practice.

The research project reports on the empirical evaluation of the COI framework in the

context of the COI course that selects and prepares the Cypriot delegations for

international competitions. I used a constructivist approach with a combination of action

research and mixed-methods assessment. The data was collected within a year from 125

participants using interviews, questionnaires and performance data. The research project

has provided evidence that the COI framework is a reliable pedagogical method that

supports students to increase their programming abilities and enables Cypriot delegations

to improve their results in international competitions.

The research project provides three distinctive contributions to knowledge: (a) the

identified threshold concepts of competitive programming, (b) the methodology for

identifying threshold concepts, (c) the COI framework offers methods of inquiry to assess

student performance in the liminal space by using programming tasks on Michanicos. The

project has the potential to inform theory and practice in competitive programming

education. Furthermore, it provides a method that can produce consistent results in

international competitions by supporting educators and students in their preparation and

threshold concepts researchers in their quest for unlocking new ways of thinking.

11

CHAPTER 1: Project Information

1.1 Introduction

Decades of research have proven that learning to programme is a complicated process

for many students. As a result, programming courses have been associated with high

student dropout rates (Bennedsen and Caspersen, 2007) and fragile learning (McCracken

et al., 2001; McGettrick et al., 2005). This condition creates substantial challenges for

programming educators, who want their students to progress and compete at the highest

level. To investigate these challenges and understand student engagement with learning

resources, I have explored the theory of threshold concepts (Meyer and Land, 2003) as a

theoretical framework. Furthermore, I reviewed the theory-into-practice framework

design by Dabbagh (2005) that suggests that educators need to have a reflexive

awareness of the theoretical basis underlying instructional design.

For my research project, building on the work of Meyer and Land (2003) and Dabbagh

(2005), I have developed a system of training for competitive programming, the COI

framework, that I have integrated into the Cyprus Olympiad in Informatics programming

course (Eracleous et al., 2019). Meyer and Land (2005) proposed using threshold concepts

to distinguish specific concepts that can be used to organise the learning process with

linkage to ways of thinking and practising. One of the COI framework’s elements, the

redesigned COI curriculum, includes identified threshold concepts that are complex for

students but have potentially transformative effects. Meyer and Land (2005) introduce the

liminal space, which explicitly focuses on teaching and learning these concepts. The COI

framework supports the idea of releasing students into an intentionally created liminal

space of uncertainty where I can identify students’ strategies and assess performances

with the identified threshold concepts.

Dabbagh (2005) proposes a theory-based design outline highlighting the transformative

interactions between pedagogical models, teaching strategies and learning technologies.

She argues that situated cognition is a practical knowledge perspective from which to

develop pedagogical models for learning. Learning technologies can bring together a

learning community and allow distributed forms of interaction and organisation of learning

12

activities to achieve a common goal. Moreover, she suggests that advances in web-based

technologies have facilitated learning interactions and inspired the development of

pedagogical models. These models are grounded in constructivist views to promote

meaningful knowledge acquisition (Dabbagh, 2005).

The COI framework (Figure 1) capitalises on: the pedagogical model of a learning

community, the teaching strategy of Problem-Based Learning, the learning technologies

of a code-evaluation platform and a contest management system that direct the learning

activities, and the worked examples of programmes that support the mental models’

acquisition. I redesigned the COI curriculum around identified threshold concepts, and by

investigating students’ liminal spaces, I was able to target specific ways of thinking.

 Forms

Figure 1: COI framework design

Pedagogical model

(Learning community)

Instructional Strategy

(Problem-Based Learning)

- Promote collaboration

- Provide scaffolding

Learning technologies

- Michanicos (Code-evaluation platform)

- CMS (Contest Management Software)

Worked examples

- Mental models acquisition

- Influences activities

- Aligns instructional strategy

Situated Cognitive View
(Experience and activities)

13

The constructivist theory holds that students actively build knowledge. The threshold

concepts are the foundations of the structure that keep the remaining components

together, and the liminal space is the construction site (Eckerdal et al., 2007). Advanced

online technology can support the development of a constructivist learning environment,

which is a robust structure for improving students’ engagement, motivation, and learning

skills (Yacob, 2012). In a constructivist environment, learning something new builds upon

the students’ prior knowledge and interests through their interaction with new experiences

(Howe and Berv, 2000).

From a constructivist perspective, it is crucial to identify mental models (Johnson-Laird,

1983) to develop student learning. Mental models and, specifically, the notional machine

(Du Boulay, 1986) are vital aspects of my framework, and their acquisition is supported

by the provision of worked examples of programmes. The responsibility is put on the

students to explore the liminal space, create the appropriate mental models, and the

support is analogous to the struggles and rigour during the process of threshold capture.

The Problem-Based Learning (PBL) approach employed by the COI framework as an

instructional strategy matches this requirement. There is evidence that PBL, compared to

other instructional methods, has significant value for enhancing student learning and

problem-solving skills (Looi and Seyal, 2014).

Recognising the different levels of cognitive ability and programming experience, I

propose a layered approach to scaffolding as the required support level for each student

through three rounds of competitions may vary. Furthermore, the COI framework

promotes collaboration among students, and they are encouraged to engage in social

negotiations to deal with the same programming task. With social negotiation and

collaboration, the purpose is to communicate different views and ideas and cooperate on

problem-solving and knowledge constructing activities (Dabbagh, 2005). Peer support is

evident as experienced students actively support younger peers through a collaborative

workplace with discussion areas focused on specific topics or programming tasks.

Opportunities for collaborative learning provide the ability to learn from others and

increase engagement and motivation with the learning process (Looi and Seyal, 2014).

14

The methodology for identifying threshold concepts is a critical aspect of my research.

There are numerous studies on threshold concepts in Computer Science courses.

However, most of them cover introductory courses (Khalife, 2006; Eckerdal et al., 2007;

Sanders and McCartney, 2016) or teachers’ perspectives in secondary education (Kallia

and Sentance, 2017). Furthermore, several of the identified threshold concepts

mentioned, such as object orientation and pointers (Boustedt et al., 2007), are

infrequently used, or their usage is not common in competitive programming

competitions. Nevertheless, while the threshold concept framework is highly appealing on

a theoretical level, very few programming researchers have attempted to measure their

acquisition empirically (Shanahan et al., 2006; Walker, 2013).

The findings of my study contribute to the threshold concept literature in competitive

programming. There is minimal data for threshold concepts in my field compared to

introductory programming courses. My research provides a methodological approach for

identifying threshold concepts based on data from alumni students obtained through

questionnaires. I have concluded that dynamic programming, segment trees and recursion

are central threshold concepts and can act as theoretical gateways for unlocking students’

previously inaccessible ways of thinking about fundamental concepts of the IOI syllabus.

The actual effectiveness of these concepts concerning student learning progression was

measured by investigating current COI students’ actual performance on programming

tasks embedded with the identified threshold concepts (Chapter 5).

To measure the level of understanding of threshold concepts, I have established methods

of inquiry and evaluation of students’ experiences with the threshold concepts. To identify

students’ strategies and code optimisations, I used the Michanicos code-evaluation

platform to collect and analyse rich empirical data. One significant advantage of the

Michanicos platform is that it can help teachers identify the liminal variation of a threshold

concept based on the students’ strategies with the associated tasks. I have measured the

variation in students’ engagement using qualitative data (strategies, perceptions and

source code of students) and quantitative data (accumulated scores from the platform) to

assess the level of interaction with the identified threshold concepts.

15

My research proposes a methodological approach for identifying threshold concepts using

data from alumni students and empirically assessing COI students’ actual programming

performance on these concepts. Only one study (Eckerdal et al., 2007) has investigated

programming students in liminal spaces, and they have used semi-structured interviews

from a previous study (Boustedt et al., 2007). My research goes further and collects actual

performance data from students attempting to solve programming tasks embedded with

threshold concepts on a code-evaluation platform. To my knowledge, no other work has

explored the liminal spaces of competitive programming students to this extent.

1.2 Competitive Programming

Competitive Programming is about solving complex programming tasks on a computer by

writing computer programmes following specific time and memory constraints. These

tasks are not research problems, meaning that the tasks’ authors have already solved

them under the specified time and memory limits. Instead, the competitive component

lies in the time frame of the competition, with multiple contestants simultaneously trying

to solve the same tasks. To illustrate the general nature of regular programming training

material, consider the following task statement of one of the COI practice tasks:

Task: Volleyball teams

Andreas is the administrator of the annual beach volleyball camping event. He is responsible

for setting up the teams and assigning each player to a camping tent. Unfortunately, each

camping tent can accommodate only one person. Since each beach volleyball team consists of

two players who have to practice together, their tents should be as near as possible. Andreas

has the coordinates (-10,000 ≤ x, y ≤ 10,000) of each of the N (1<N ≤16) tents in a Cartesian

coordinate system. He must pair these N tents into K teams of two so that the total distance

between all of the teams’ tents is minimised.

Sample input

6

5.0 8.0

4.0 4.0

-6.0 6.0

-10.0 3.0

-2.0 -4.0

4.0 -6.0

Sample output

15.45

16

Explanation

Andreas must pair up the players in the following manner creating these three teams. The

minimum total distance between the teams’ tents is 15.45.

Figure 2: Illustration of the task solution

For most high school or college students, this problem is practically unsolvable by hand

due to the large data input set, regardless of their mathematical background, critical

thinking capability, or ingenuity. To solve the problem by hand, students must calculate

the distances for each possible pair of points (120 total pairs for N=16). Then, they must

determine the best arrangement of tents and add their distances to find the minimum

calculated total distance. To solve this problem on a computer, high school students must

reach a certain required level of programming ability unattainable within current

secondary education settings. The students must write code that can produce the same

output as the author by using unknown test cases within the allowed time and memory

constraints. For a student that has reached the required programming level, this is a trivial

minimum-weight perfect matching task, and it is efficiently solvable using dynamic

programming1 (Bellman, 1954). Each state is a bitmask2 that defines the matching status

of each pair, and when unmatched points are matched, it will set the equivalent bits in

the bitmask. An experienced student can write the following C++ code that solves the

problem in under five minutes.

1 A technique for solving a problem by breaking it into subproblems and solving each one separately.
2 A bitmask is a binary representation of the subset of a set.

17

#include <bits/stdc++.h>
using namespace std;
double memo[65536];

struct point {
 double x, y;
} P[20];

double dist(int a, int b) {
 double X = P[a].x-P[b].x;
 double Y = P[a].y-P[b].y;
return sqrt(X*X + Y*Y);
}

int main() {
 int N;
 cin >> N;
 for(int i=0; i<N; i++)
 cin >> P[i].x >> P[i].y;
 for (int p=1; p<(1<<N); p++) {
 memo[p] = INT_MAX;
 int m;
 for (m=0; m<N; m++)
 if (p & (1<<m))
 break;
 for (int j=m+1; j<N; j++)
 if (p & (1<<j))
 memo[p] = min(memo[p], dist(m,j) + memo[p^(1<<m)^(1<<j)]);
 }
 cout << fixed << setprecision(2) << memo[(1<<N)-1] << endl;

return 0;
}

I have dedicated most of my academic career to using my knowledge to empower others,

making high school students capable of solving problems similar and even more

complicated than the task ‘Volleyball teams’ mentioned above. My life’s inspiration is to

successfully continue challenging arguably some of the brightest minds of future

generations. Accordingly, this research project is a personal testament produced within

the context of my professional role as a Computer Science (CS) instructor for the Cyprus

Olympiad in Informatics and the team leader of Cyprus in international programming

competitions.

COI is the learning community that selects and prepares Cypriot delegations that

participate every year in the International Olympiad in Informatics (IOI, 2019), the Balkan

Olympiad in Informatics (BOI, 2019) and the Junior European/Balkan Olympiad in

18

Informatics contests (EJOI, 2019). The fundamental mission of COI is to recruit and

prepare high school students by increasing their problem-solving skills and performance

in competitive programming. My main research objective was to determine students’

potential and learning difficulties and create a framework within an evaluative learning

environment for improving competitive programming education. I have incorporated

multiple theoretical elements into practice to stimulate the desired transformations and

encourage new ways of thinking. It was the foundation upon which I formulated the

research proposal, the project aims, and the research objectives.

1.3 Purpose and Aim

Programming is the language of Computer Science, and because it is observed universally,

it is vital to enhance programming education and effectively promote it to students and

society (Verhoeff, 2013). In a world where the essential aptitude employers seek is

problem-solving skills (Karzunina et al., 2019), it is critical to support our students to

unlock new ways of thinking and understanding. As educators, we must discover, inspire,

bring together, challenge and recognise competent students. Accordingly, we ought to

improve our teaching practices at all levels of CS education and not just within the IOI

community. We need to prepare the new generation of professionals required for the

digital economy for the projected 1.5 million new digitised positions worldwide (WEF,

2018). CS education must adapt quickly as the requirements for information and

communications technology (ICT) skills in the workforce are increasingly evolving.

The purpose of the study is to empower the next generation of Computer Science experts

by helping students comprehend complex programming concepts. The research aims to

enhance the pedagogy and the teaching practice of competitive programming education

by introducing and assessing a pedagogical framework and utilising a code-evaluation

platform. The COI framework intends to redefine the teaching and learning processes

within its discipline. To achieve a new way of learning, I must first understand how my

current practice is working. Then, I need to improve my knowledge of the teaching

practice and pedagogy that I must provide. Finally, aligning with constructivist principles,

as discussed further in later chapters, I can understand the role educators play in bringing

change to students’ lives by learning about them and how they learn.

19

The most challenging aspect of this project was that I had to teach programming concepts

taught in university courses to high school students. These students are not supposed to

learn these concepts, no matter how brilliant and competent they are in algorithmic

thinking. The learning outcomes model (Hussey and Smith, 2003) states that learning can

be achieved with a predefined set of activities to meet specific outcomes phrased as ‘by

the end of the semester the students must be able to...’. In contradiction, the COI

framework challenges students to learn and transform to find their new identity within

their learning community. A learning community is a powerful educational practice linked

with improved academic performance, enhanced skills, quality knowledge and learner

satisfaction with the overall experience (Zhao and Kuh, 2004; West and Williams, 2018).

For redefining the teaching/learning processes, I formulated the following research

objectives.

1.4 Research objectives

The study has the following research objectives:

RO 1: Investigate and identify threshold concepts in competitive programming and how

they relate to the pre-liminal and liminal variations of students’ learning.

RO 2: Investigate the process of integrating a framework by the Cyprus Olympiad in

Informatics for preparing students for the International Olympiad in Informatics

participation and the practical context of this decision.

RO 3: Evaluate the teaching and learning processes of competitive programming using a

code-evaluation platform with competition-type programming tasks embedded with

identified threshold concepts and measure the effect on students’ strategies.

RO 4: Determine if the degree of related student engagement and motivation with the

learning process can improve the learning outcomes for the Cyprus Olympiad in

Informatics.

To meet the research objectives, I chose to combine action research with mixed methods

(Maxcy, 2003; Johnson and Onwuegbuzie, 2004; Thota et al., 2012). Mixed methods

require a hands-on, performance-oriented focus for incorporating quantitative and

qualitative practices with action research methodology. Combining approaches and

methods can be accomplished by sharing the findings obtained from quantitative data

20

using action learning sets and focus groups. The data will be applied to support reflection,

decision-making and further actions (Parker et al., 2017). It has been reported that the

combination of the two can produce scientifically robust and transferable results to instruct

planning, implementation, evaluation and adjustment (Ivankova and Wingo, 2018). The

following is an overview of the empirical study and the methods used with each of the

research objectives:

Research Objective Research Purpose Data Source Form of Analysis

RO1

Qualitative evaluation,

identifying threshold

concepts

Questionnaires

Interviews
Qualitative analysis

RO2
Qualitative, quantitative

evaluation
Action research

Qualitative, quantitative

analysis

RO3
Qualitative, quantitative

evaluation
Platform data

Qualitative, quantitative,

statistical analysis

RO4 Quantitative evaluation
Questionnaires

Action research
Quantitative analysis

Table 1: Overview of methods used in the empirical study

Cyprus Olympiad in Informatics supports future computer scientists for a world with a

growing dependence on technology and its applications in our lives. Confidently, my

research will improve the quality of competitive programming education, deliver steadily

increased performance for Cypriot delegations in international contests and establish the

COI framework as a distinctive contribution to the IOI community.

1.5 Chapter summary

This chapter presents the motivational context in which I have considered my research

proposal, aim and objectives. The research aim is to enhance the teaching practice of

competitive programming education. The research objectives are the foundation for

evaluating the proposed framework’s impact and bringing forth this research’s distinctive

contributions.

21

CHAPTER 2: Review of Knowledge and Information

2.1 Introduction

This chapter presents a review of knowledge and information on investigating the

theoretical and practical features of competitive programming education. The literature

review covers pedagogies and methodologies used for the instruction of students in

programming courses and ways to increase students’ problem-solving skills and

performance. Based on the literature, I focused on particular features that have been

proven to be effective in programming practice. I reviewed pedagogical practices to

enhance students’ programming strategies and deal with the conceptual difficulties. To

put everything into context, I also present an introduction to the educational system of

Cyprus, the Cyprus Olympiad in Informatics (COI) and the associations with the

stakeholders and policymakers of the COI.

For this research project, I have investigated the theory of threshold concepts, how it can

be applied in competitive programming and the ways that threshold concepts are affecting

student learning. I was very interested in exploring liminality and the distinct states a

student is navigating through the learning process. Additionally, in this chapter, I have

studied the principles of framework design, the usefulness of mental models, the

significance of student strategies, the effects of competitions on engagement and

motivation, and the importance of online judges in programming education and their

effects on students’ performance.

My goal is to make competitive programming meaningful and accessible for students and

improve programming education within my discipline. Therefore, a framework that

encompasses all of the above features is in great need. Such a framework should be

meticulously designed, and with further research, it can become readily accessible in other

levels of programming education. As students' abilities increase, the need to extend the

possibilities of student instruction outside school settings is much more prominent

(Morelock and Feldman, 2003). An introduction to the educational system of Cyprus

follows next.

22

2.2 Computer Science in the Educational System of Cyprus

Computers were introduced to secondary education in Cyprus in the early 1990s as part

of technological advancement (MOEC, 2013). In 2001, with the establishment of the

unified lyceum, this initiative received more support. Consequently, with the induction of

Cyprus to the European Union (EU) in 2004, numerous EU funding and projects were used

for modernising the school equipment and for teacher preparation. As a result, in the

European Commission survey (EC, 2013), the schools of Cyprus were rated higher than

the EU average, with exceptional internet accessibility and connection speeds. Secondary

education is divided into two parts: The first part is the gymnasium, a compulsory three-

year period, and the second is the lyceum. This voluntary three-year period leads to entry

examinations for tertiary education (Figure 3).

Figure 3: The Educational System of Cyprus in 2019

Today, CS courses are taught as follows: First, the compulsory course ‘Computers’ in the

gymnasium for ages 12 to 15 for two hours per week (Figure 4). Then, the mandatory

successor course in the lyceum for age 16 for two hours per week. Last, the four elective

courses for the second and third grades for ages 17 and 18, respectively. Currently, these

electives include two distinct directions for each class: The enrichment form (algorithmic-

23

oriented) and the applications form (application-oriented), each of them taught for four

hours per week.

Figure 4: Computers course periods per week in the gymnasium

CS is widely considered a necessary skill, and many global initiatives such as ‘Computer

Science for All’ (CSforALL, 2019) aim to make the discipline an integral part of high school

education. However, no equivalent course is currently in the common core subjects for

lyceums in Cyprus (Figure 5).

Figure 5: Lyceum Computer Science core subjects

From my experience, the courses above, even though revised, are inadequate to produce

better programmers with the current teaching practices. Also, the programming

curriculum is very restricted and unfitting to prepare our students for programming

competitions. Regrettably, the lyceum practices employed for programming education

currently include writing source code on paper.

24

To promote programming education outside of the school, CS educators have organised

programming contests since the initial introduction to students. Undoubtedly, education

and competitions are firmly connected, especially when contemplating contests as a

means to endorse and strengthen programming education (Dagiene and Skupiene, 2004).

Dagiene also reported on competitions for learning competitive programming in secondary

schools (Dagiene and Skupiene, 2004) and for general education (Dagiene, 2005). Audrito

(2012) reports that competitions have a considerable impact on programming education

as they create an inclination to begin programming education as early as possible.

Therefore, competitions must be an indispensable aspect of education (Verhoeff, 1997).

Additionally, Pohl (2006) reports that when their involvement and achievements in

competitions are distributed, it boosts students’ enthusiasm and motivation. To send a

team to international contests, Cyprus has to organise a local competition for selecting its

best students initially. The formula for administering the local competitions is the

responsibility of the participating countries, given that objectivity is secured between the

participants. The Cyprus Olympiad in Informatics supported this procedure (COI, 2019).

2.3 Cyprus Olympiad in Informatics (COI)

In 1990, high school competitions in maths and physics with unusual challenges marginally

above the regular school syllabus were labelled ‘Olympiads’. The Ministry of Education of

Cyprus (MOEC), in cooperation with the Cyprus Computer Society (CCS), established the

Cyprus Olympiad in Informatics (COI) in 2004. Since then, the COI has offered weekly

lectures and annual camps for high school and elementary students. In partnership with

the MOEC and the CCS, the COI organises an annual competition resulting in forming the

Cypriot delegations that participate in the IOI, the BOI and the EJOI/JBOI competitions.

COI has substantially grown since it was founded. At first, there was an initial theoretic

round involving writing algorithms on paper and then a coding round on a computer. Next,

the setup of two coding rounds with separate time frames was applied. Significant

variations were established, such as the number of points awarded for solved tasks or

introducing numerous subtasks for some tasks. Presently, the COI is associated with

international competitions and follows specific guidelines and curricula.

25

Currently, the COI is organising four programming competition rounds. The competitions’

scores are evaluated by the CMS (CMS, 2019), the identical Contest Management System

used in IOI and BOI. The Bebras competition is organised annually to attract COI

newcomers and is the first level for COI participation (Bebras, 2019). The competition

requires problem-solving skills rather than programming skills. Participating in the Bebras

contest is not mandatory, and it does not have a qualifying objective. It merely measures

student readiness to compete in the COI competition rounds. Junior and senior levels are

the next two levels of participation for COI. Despite the formal age limit of fifteen for the

advanced level, younger students can participate if they display extraordinary

programming abilities. For example, the youngest contestant in 2019 was eleven years

old. Additionally, several colleagues participate in the second-round contests, confirming

that COI is a learning community for all individuals.

2.4 The COI Community

The International Olympiad in Informatics (IOI) is the most prestigious programming

contest globally. The United Nations Educational, Scientific and Cultural Organisation

(UNESCO) and the International Federation for Information Processing are patrons (IOI,

2019). The IOI was organised for the first time in Bulgaria in 1989 and by other countries

annually ever since. The competition symbolises the highlight of programming for

secondary education.

Approximately 900 participants, including 350 contestants from 85 countries, participated

in the IOI 2018 in Japan to solve six programming tasks in two competition days (IOI

Statistics, 2019). Most of the participating students were familiar with programming

concepts taught in university CS curricula. Cyprus initially took part in 1993 and became

a consistent participant. With an expanding support base from scholars, educators and

alumni, an international movement was created to support the IOI. I had the opportunity

to participate in the former five IOIs (2015-2019) as the team leader of Cyprus (IOI

Statistics, 2019).

The Balkan Olympiad in Informatics (BOI) is the equivalent of IOI for students of the

Balkan region and adjoining nations: Cyprus, Greece, Bulgaria, Bosnia and Herzegovina,

26

Croatia, North Macedonia, Albania, Italy, Montenegro, Romania, Moldova, Slovenia, Serbia

and Switzerland. Like the IOI, the BOI has two competition days and a practice day. On

each competition day, the contestants are presented with three programming tasks to

solve within a time frame of five hours. The students programme on a computer without

any help, particularly without interaction with team members, contestants, or reviewing

notes and books.

To solve a problem, the contestants have to create a programme using any permissible

programming languages and submit it through the system within the time and memory

constraints. The source code is evaluated with unknown test cases and graded

accordingly. Several tasks are separated into subtasks with increasing complexity, and

points are won when all of the subtask’s test cases produce accurate results. The scores

from both days are accumulated for every participant. Depending on their total score,

contestants are awarded medals. Approximately the top half of students get medals, so

the gold: silver: bronze: no-medal ratio is about 1:2:3:6 (IOI, 2019).

Cyprus organised the BOI of 2016. It has been an extremely challenging assignment that

verified our capabilities to coordinate and manage such a significant event. By being in

the scientific committee of the competition, my duties included: task setting and

assessment, delegation training, hosting coding camps, CMS server administration, all

similar to my job description. What we at COI have achieved with hosting BOI 2016 was

that we received more interest from our stakeholders: the MOEC and the CCS.

The Ministry of Education and Culture (MOEC, 2018) is the supervisor of COI. The Ministry

is responsible for teacher selection and assistance and sets the directives for all the

participants. Additionally, it establishes the specifications for the CS syllabus for secondary

education. The CCS is a non-profit organisation that recognises the effect of CS on

academics, employment and society, and on the quality of life of individuals. The yearly

COI budget is minimal, and the CCS covers up to 70% of our annual expenses required

for travelling. Government resources cover the remaining costs through the MOEC.

27

The theoretical background of the study follows next. My motivational context for

investigating the teaching and learning processes of competitive programming involves

pedagogical, academic, and practical factors.

2.5 Teaching and learning programming

Competitive programming is much more complicated than introductory programming

because it is more of an art than a body of knowledge. Most of the concepts that high-

school students must learn can be found in university curricula. Writing a computer

programme for solving a problem is equivalent to writing poetry or composing music

(Knuth, 1974). Knuth suggested that there is no appropriate style for writing a programme

as students have unique styles and should not be forced into an unnatural mould. From

my experience teaching competitive programming for the past decade, programming is

best learned with practical engagement with complex programming tasks. Each

programming task can be a special case of a problem-solving session where students can

solve at their own pace, with regular feedback from teachers and peer support within a

learning community (Wilson et al., 1996).

The implementation and teaching of a programming course should be realistic in its

expectations and systematic in its development. Multiple pedagogical approaches that

consider learning theories and information technology have been introduced for

introductory programming. However, there seems to be a lack of agreement on the best

method to teach programming (Robins, 2019). Furthermore, advances in Computer

Science have led to more different methods in introductory programming courses (ACM,

2013). Moreover, the teaching approaches used in these courses are in a greater state of

variation (Robins, 2019).

Despite the disagreement on applicable specifications, there is agreement on guidelines

and theoretical issues arising from the experiences of instructors and Computing

Education Research (CER). In a literature review on teaching programming, Pears et al.

(2007) propose three approaches based on the central focus of the instructional design:

problem-solving, discovering a specific programming language, and code development.

Linn and Dalbey (1989) suggest an ideal sequence of cognitive achievements for teaching

28

and learning programming. The sequence includes programming language features,

design skills that include knowledge schemata, planning, testing, and optimising code,

and problem-solving skills that include knowledge, strategies and aptitudes of the specific

language that can be used for unknown problems and circumstances.

Acknowledging the significance of problem-solving, numerous ACM course standards

address it along with the programming language aspects (ACM, 2013). Multiple studies

report improved results with this method (Davies, 2008; Koulouri et al., 2014; Hill, 2016).

Kay et al. (2000) report considerable progress in programming competency in reviewing

the issues involved in problem-based learning. The connection between problem-solving

and programming skills is broadly reviewed by Palumbo (1990), and a report of numerous

instances is explained.

Robins et al. (2003), in a broad review of the literature, used three dimensions to propose

an outline for course design and implementation: knowledge, strategies and mental

models. Learning to programme involves acquiring the necessary declarative knowledge

(understanding how recursion works) and using practical strategies for its application

(using recursion in a programme) (Davies, 1993). Making the dimensions explicit to

students may engage them in the learning process and support their understanding.

Successful learning of the three dimensions depends on engaging with programming tasks

because mental models, programming knowledge and skills cannot be efficiently

developed in theory; they have to be rooted in practical experience (Robins, 2019).

Research on novice programmers has indicated that the core challenges are not related

to the programming language concepts but to general programme structure and design

(Lahtinen et al., 2005; Garner et al., 2005; Robins et al., 2006). This issue is consistent

with numerous suggestions in the literature that teaching should focus on combining

language elements with the core issue of programme design. Spohrer and Soloway (1989)

recommend concentrating specifically on strategies to integrate and coordinate the

concepts beneath the source code. Students should acknowledge these concepts and be

equipped with new ways of writing programmes. Specifying and presenting basic

29

schemata or coding patterns should be introduced in computer programming curricula

(Mayer, 1989).

A review of programming education research involves an approach to teaching which

utilises a shift from studying the syntax of programming languages to the progression of

overall problem-solving and code-writing abilities (Caspersen and Bennedsen, 2007).

Moreover, the review underlines the value of worked examples, along with scaffolding,

controlled feedback, and emphasis on patterns to support schema creation and improved

learning. Learning schemata involves mindful abstraction, assumes the confrontation with

a carefully selected set of tasks and their worked examples, and offers comparisons that

could guide successive performance in solving unknown programming tasks (Van

Merrienboer and Paas, 1990). Worked examples or completed programmes are supportive

and available sources of information, but the strategies that produced them are more

challenging to define.

Robins et al. (2003) suggest that strategies are the most critical aspect for defining failure

or success of learning to programme. The authors propose that differences in strategy

distinguish effective and ineffective learners. Regardless of their significance, strategies

are not considered as much as knowledge in programming courses. Brooks (1990)

suggests that programmers' strategies cannot be determined from the final form of a

programme, even if they might affect the coding process and thus the final form. A critical

point that arises here is the possibility to assess the coding process of students from their

initial submission to the final one. Continuous assessment of students’ code throughout

the coding process can support code optimisations and identify optimal strategies for

solving complex tasks. The latter highlights the significance of actively creating

programmes and explicitly focusing on the strategies used in course design and

instruction.

Like schemata, mental models are adopted from cognitive science and have been variously

defined and widely utilised (Johnson-Laird, 1983; Gentner, 2002). The mental models that

students must create, according to a fundamental notional machine (Du Boulay, 1986)

and the critical features of planning, understanding, and optimising code, are vital for

30

improving learning. Mental models of specific programmes or algorithms are internal and

unique to students and can be linked to particular examples. Therefore, pedagogical and

technical features of course design should implicitly support students in the acquisition

process of mental models by providing worked examples and encouraging the process of

optimising code.

Multiple implications for practice can emerge from the literature for designing a

programming course and developing a pedagogical framework to foster it. I have chosen

to familiarise myself with most of the research, adopt the specific methods that have been

proven to be effective in programming practice and be as reflective as possible during the

study. I have considered these particular methods in the context of pedagogical models,

conceptual difficulties, problem-solving, motivation, scaffolding, collaboration,

assessment, and feedback. Nevertheless, the most effective teaching method related to

these features, and the best practices to support programming students, are still elusive.

Most of the proven methods in the literature have been found to fit with the situated

cognition view of knowledge. In situated cognition, learning is defined as a process of

constructing meaning from activity and experiences (Jonassen, 1991) and is consistent

with the epistemological orientation of constructivism. Knowledge is acquired through

facilitated forms of interaction through a community of learning and practice where the

students actively negotiate their understanding with the external world (Dabbagh, 2005).

The students take ownership of their learning and are the primary meaning-makers, while

the teacher is the facilitator of learning who provides scaffolding and creates an innovative

learning environment. Lave and Wenger’s work on situated learning (1991) has been

decoded by Meyer and Land (2006) into a space that lies between basic concepts with

marginal involvement and threshold concepts, which allow full participation in the

community of practice (Walker, 2013).

Based on situated cognition and constructivist views of learning, the emerging pedagogical

models and instructional strategies provide the instructional sequence control to students

(Coleman et al., 1997) and allow them to construct depictions of particular meaning

(Hannafin, 1992). Pedagogical models that embody these attributes include communities

31

of practice, knowledge-building communities and learning communities. Instructional

strategies that exemplify these characteristics include facilitating problem-based learning,

promoting authentic learning activities, promoting social negotiations and collaboration,

and providing scaffolding.

2.6 Pedagogical framework

Pedagogical frameworks define the general rules through which theory is employed in the

teaching and learning processes. Bednar et al. (1991) indicated the significance of

connecting theory to practice for developing any instructional design and emphasised that

efficient design is achievable when the creator has an intuitive understanding of the

design's theoretical foundation. Hadjerrouit (2008) describes a pedagogical framework as

an awareness of the connections between learning theories, educational practices,

information technology, and an academic discipline. Ivala et al. (2013) claim that

frameworks present a method for integrating a discipline’s pedagogical model into the

learning environment.

Modern advances in web-based technologies have redefined the limitations and extended

the scope of such frameworks by deepening their interconnectedness (Dabbagh and

Bannan-Ritland, 2005). Moreover, all educational learning environments must be

embedded in epistemological frameworks to be efficient for teaching and learning.

Therefore, describing learning and creating guidelines for programming education must

include suitable instructional structures and appropriate online learning technologies and

tools to promote student learning.

Pedagogical approaches, which exploit learning theories and technologies, have been

introduced in the literature to deal with the learning obstacles associated with

programming education (McGowan, 2016). Dabbagh’s framework (2005) is based on two

other studies. Coleman’s research (1997) on requirements of pedagogical models

emerging from constructivist views of learning. Hannafin’s research (1992) for assigning

students with creating depictions of personal meaning.

32

Dabbagh (2005) suggests that three key components are working together to promote

meaningful learning and communication. These are pedagogical models, teaching and

learning strategies and online learning technologies or pedagogical tools. The three

elements form an iterative relationship. The models, grounded in constructivist theory,

inform the framework design by specifying the instructional strategies facilitated by

learning technologies (Figure 7). I have used these three components for the development

of the COI framework.

Figure 6: Theory-Based Pedagogical Framework design (Dabbagh, 2005)

The first component of the COI framework design is the pedagogical models. The

pedagogical models are theoretical constructs that originate from knowledge acquisition

views about cognition and are the basis of the learning theory. These models are the

methods to associate theory with practice. Conole (2010) presents a review of pedagogical

models that have been used in education based on the following three learning theories

as they are grouped by Mayes et al. (2004):

• Associative learning as an activity through structured tasks

• Cognitive learning through understanding

• Situative learning as social practice

33

Mayes et al. (2004) emphasise that learning theories are empirically based accounts of

the parameters which impact the learning process and consistently support the

instructional design planning. The theoretical underpinnings use one or a combination of

learning theories to describe views about cognition and the construction of knowledge

(McGowan, 2016). Consequently, these viewpoints shape the beginning of the COI

framework designed to communicate threshold concepts of competitive programming.

To link the COI framework with existing education theory and establish its theoretical

underpinnings, I reviewed Conole’s report (2010). Conole presents twenty pedagogical

frameworks and models, all of which have online components. Thirteen of these

frameworks are classified according to whether they adopt associative, cognitive or

situative learning perspectives. Five are categorised as generic, and two are mainly about

assessment practice. Conole also considers several advantages of adopting pedagogical

models and mentions several constraints.

Pedagogical models can be used as guidelines or schema to align a specific pedagogical

approach. Moreover, they can steer design decisions about the learning activities that

would encourage the pedagogical method used in the framework. Similarly, they can be

applied to support the design of a learning environment. There has been some criticism

of pedagogical models because they are theoretical constructs. Instructors may

misinterpret how to employ the framework successfully by implementing a superficial

application of the model to their practice (Lisewski et al., 2003). The elements involved in

learning and teaching and their interdependencies show that pedagogical frameworks are

not a panacea or a shortcut to a coherent structure (Conole, 2008).

The associative perspective concentrates on performance adjustment via stimulator-

reaction pairs, trial and error learning, learning through association/reinforcement, and

measurable results. The most influential theoretical approach supporting this theory is an

instructional design based on the deconstruction of learning (Gagne, 1973) into elements

intended to develop knowledge and skills throughout a sequence of processes. Merrill

examined instructional design models and theories and described a set of interrelated

prescriptive instructional design principles (Merrill, 2002). Merrill’s model implies that

34

problem-based settings are the most efficient learning environments in which students

are engaged in four different phases: activation of previous knowledge, presentation of

skills, application of skills and incorporation into real-world activities. Collis and Margaryan

(2005) have added six related standards concerning the successful application in specific

learning environments: technology support, supervisor support, reuse, collaboration,

differentiation and learning from others.

The cognitive perspective identifies learning as a transformation in core cognitive

structures. Educationally, it is illustrated by administering and communicating information

through problem-solving, explanation, communication, recombination, contrast and

inference (Driscoll, 1994). It generates constructivist and reflective views. An example of

a framework that supports constructivism was created by Jonassen (1999; 2003). It can

be used as a guideline to develop Constructivist Learning Environments (CLEs). A CLE is

an environment where students may assist others using various tools and information

resources in their quest for learning objectives and problem-solving assignments (Savery

et al., 1995; Wilson, 1996; Gance, 2002). The crucial claim is that learning happens when

students actively engage in making meaning.

The situative perspective defines learning as social participation and highlights

interpersonal relationships involving modelling, imitation, and the collaborative

construction of knowledge. Knowledge in this perspective is viewed as belonging and

allocated in communities of learning. The learners practice the patterns of learning and

inquiry to become members of the community (Firdyiwek, 1999). In educational settings,

such communities can be groups of students that share resources and information, solve

tasks and accomplish common goals, and by doing so, collaboratively acquire new

knowledge and advance the methods of the community (Dabbagh, 2005). Pedagogical

models include Wenger’s theory of communities of practice (1998), firmly embedded in

the situative perspective. However, the Activity theory also encompasses some aspects of

the cognitive perspective (Conole, 2010). Activity theory initiates on the assumption that

activities occur within a context that needs to be considered to make the situation

meaningful and appropriately interpret the results (Mwanza, 2002).

35

Even though it was not explicitly developed as an educational environment, Wenger’s

theory of communities of practice is invaluable as it examines how communities of practice

are established. Wenger identifies four main attributes of learning: a community, an

identity, a meaning, and a practice (1998). Therefore, each one is important because it

emphasises particular attributes of learning, which can then be used to offer support.

Communities of practice and knowledge building communities (KBC) are synonymous

concepts. However, learning communities might be viewed as a broader term that involves

any social group or structure that brings people together to pursue and share knowledge

(Dabbagh, 2005).

Learning communities, such as the COI community, are groups of individuals who support

each other in their learning journeys, work collectively for solving problems and learn from

others and their settings. Students and teachers engage in a collaborative practice where

participation transforms into new experiences and new learning (Rogoff, 1994; Wilson et

al., 1996). Learning communities exemplify a deliberate reform of students’ learning

experiences across an interdisciplinary premise to encourage specific emotional and

intellectual relationships among students, teachers, and disciplines (MacGregor et al.,

1999). Learning communities perform as social and academic support constructs that

stimulate students to engage in more challenging and authentic learning methods. They

are identified as informal learning environments, shifting the focus from teaching to

learning. Preece (2001) proposed a framework for forming and supporting online learning

communities based on two crucial components: usability and sociability (Preece, 2001).

The components can determine the design criteria and associate success factors.

Teaching strategies is the second component of the COI framework design. Strategies are

what teachers or education systems do to facilitate student learning. Jonassen et al.

(1991) describe instructional strategies as teaching methods to engage students and

facilitate learning. When discussing the implications of the learning theories for education,

teaching strategies are the essentials of how these inferences will be transformed into

instructional processes (Shuell, 1980), resulting in a method, or sequence of activities,

intended for achieving a specific objective (Jonassen et al., 1991). Therefore, instructional

36

strategies originated from pedagogical models, which, in turn, originated from learning

theory.

Instances of instructional strategies that exemplify the attributes of pedagogical models

grounded in constructivist views involve: supporting authentic learning activities, enabling

problem-solving, promoting collaboration and providing scaffolding. Generally, the

purpose of instructional strategies is to deliver a learning environment where learning with

self-awareness, collaboration, and self-management are encouraged. The teacher’s role

is supportive, reciprocal, communicative and responsive to the students’ requirements

(McLoughlin et al., 1999).

Problem-Based Learning is an instructional approach that is learner-centred, and students

learn by solving problems (Barrows, 2000; Hmelo-Silver, 2004). Within the COI

framework, students must identify what they have to understand to solve a problem. They

take part in self-directed learning and then employ their acquired knowledge to solve the

task, reflect on what they learned and the efficacy of the strategies they used. The teacher

acts as a facilitator to the learning process rather than the knowledge provider.

PBL supports knowledge construction as students activate their previous knowledge in

their initial negotiations (Schmidt et al., 1989). It also supports the social construction of

knowledge as students work in small teams using analytical skills to solve real-world

problems (Greeno et al., 2006). From a cognitive perspective, organised learning

experiences support students’ understanding of concepts through problem-solving

activities. However, from a situative perspective, social interactions and negotiations are

the sources of knowledge construction (Hmelo-Silver, 2012). This viewpoint recognises

that social practices assist the growth of students as capable learners and proficient both

as problem solvers and in their disciplinary knowledge (Lampert, 2001).

One approach for promoting a constructive environment that has been broadly employed

in developing learning environments is cognitive scaffolding. The learning activities are

reinforced by a series of guidelines (offering hints, reminders, and feedback). Scaffolding

supports students to reflect on their actions and helps them develop metacognitive skills.

37

As these skills develop, the scaffolding is gradually removed. There is a vast amount of

research on scaffolding and learning in problem-based environments (Collins et al., 1989;

Davis et al., 2000; Golan et al., 2002) and programming courses (Vihavainen et al., 2013).

The third component of COI framework design is the learning technologies. Research on

the instructional usage of technology in pedagogical frameworks has revealed that

instructors in higher education do not have the necessary knowledge to integrate

technology into their teaching practices effectively, and their efforts are likely to be limited

in scope and depth (Kochler, 2013). The COI framework introduces two such technologies:

a contest management system (CMS, 2019) to organise and administer programming

competitions and an online code-evaluation platform (Michanicos, 2018) used in the COI

course. The contest management system and the automated code-evaluation platform

offer multiple advantages to a programming learning community. These will be presented

more extensively in the following chapters.

Implementation of the COI framework requires an authentic learning community to

incorporate the teaching practice and the learning technologies. A learning community

where the knowledge constructed is meaningful for the student, relates to the world

outside the classroom, offers an opportunity to reflect in the modes of the discipline, and

where the means of assessment reflect the learning process (Shaffer and Resnick, 1999).

Connolly and Berg (2006) have recommended that the term authentic should be expanded

to include learning using the tools and methods of contemporary professionals.

However, learning to programme is generally acknowledged to be very challenging.

Multiple reports indicated that many students completed CS courses having fragile

learning, without a firm grasp of fundamental concepts in the past four decades (Soloway

et al., 1983; Kurland and Pea, 1989; McCracken et al., 2001; Lister et al., 2004; Utting et

al., 2013; Robins, 2019). Students must have the proper conceptual understanding of a

notion and employ it in a concrete approach using appropriate strategies (Robins et al.,

2003; Lahtinen et al., 2005). The latter also supports the assumption that the major

challenge is not the programming languages used but rather the structures and concepts

and the required new way of thinking. When students go through a transitional period to

understand this new way of thinking, it will enable them to implement optimal

38

programming strategies designed using this new way of thinking and acquire a concrete

understanding of concepts.

According to the Threshold Concept theory, students get stuck in these transitional periods

or liminal spaces. Meyer and Land (2005) have proposed using threshold concepts to

differentiate particular topics that might be used to organise the learning process. They

further developed a theoretical framework, the liminal space, specifically focusing on

learning these concepts. Eckerdal et al. (2007) identified a framework for determining

when and where a student is in a liminal space while learning to programme. Eckerdal’s

framework was based on dissimilar types of understanding: abstract understanding,

concrete understanding demonstrated through practical programming, the aptitude to

progress from abstract to concrete understanding, recognising why the concept is used

and acknowledging the application of the concept in new conditions (Eckerdal et al.,

2007).

The COI framework builds upon all of these theoretical underpinnings. It recognises the

conceptual difficulties of programming students, identifies threshold concepts in

competitive programming, and proposes learning technologies to foster the pedagogical

model of a learning community. Moreover, it uses Problem-Based Learning as an

instructional method, provides scaffolding with three phases of a redesigned curriculum,

promotes motivation with competition participation and encourages peer support and

collaboration. All of these features are discussed more extensively in the following

sections.

2.7 Conceptual challenges of programming

Very few programming educators would argue that students find writing programming

code easy. Many of us are familiar with the struggles and disappointments of novice

programmers as they struggle to comprehend even the most basic coding patterns.

Decades of research have informed that learning to programme is a complicated process

for many students. Hagan et al. (1997) noted this concern, reporting that programming

was considered the most challenging and least exciting subject in all computer science

courses. Many authors have supported the claim that programming is a complicated task

39

throughout the years (Baldwin and Kuljis, 2001; Jenkins, 2002; Robins et al., 2003; Hanks

et al., 2004; Bergin and Reilly, 2005; Lahtinen et al., 2005; Gomes and Mendes, 2007;

Butler and Morgan, 2007; Konecki, 2014).

Consistent with the learning difficulties surrounding programming, studies have shown

that failure and dropout rates are high in introductory programming courses (Nikula et al.,

2011; Teague, 2011; Mendes et al., 2012; Watson and Li, 2014). In a survey of 63

institutions internationally, the pass rates of programming courses were estimated to be

approximately 67% based on group size and other factors (Bennedsen and Caspersen,

2007). Learning programming requires problem-solving skills that are complicated and

multi-dimensional. Programming is complex because the skill-set includes particular

cognitive skills that are not used in everyday life or work activities. It is multi-dimensional

because it also requires an understanding of the syntax and semantics of a specific

programming language. It also requires an understanding of fundamental programming

concepts such as conditions, loops and functions. In the end, the learner has to apply all

of these aptitudes to solve a complex problem.

Du Boulay et al. (1981) describe five overlapping domains that must be learned by a

novice programming student: what programmes are for and what can be done with them;

a general model of the computer as it relates to the execution of programmes; the syntax

and semantics of a specific programming language; the use of schemata for organising

knowledge; the skills of planning, developing, testing and debugging programming code.

Although most programming instruction focuses on the syntax and semantics of

programming languages, novice programmers will generally deal with many of these

domains at once, increasing the difficulties.

In their literature review on novice programmers, Robins et al. (2003) synopsised the

investigated issues using the domains of knowledge, strategies and models (Figure 7).

The columns describe the qualities required for writing code: knowledge of a programming

language; strategies for using this knowledge correctly; ability to create and evaluate

mental models of programme states. The rows define the stages of developing a

programme: the processes of design, generation (code-writing), and evaluation. Similar

40

to Du Boulay’s domains, a novice programmer will generally deal with several of these

requirements simultaneously.

Figure 7: A programming framework by Robins et al., 2003

When considering the requirements, the essential capabilities and the interactive nature

of programming, I must also investigate the constraints that apply to the teaching process.

It is, therefore, necessary to acknowledge the difficulties that programming students

encounter. Lahtinen et al. (2005) surveyed 559 programming students and 34 teachers.

Students identified the most challenging aspects of programming to be understanding

how to design a programme to solve a particular task and discovering bugs (errors) in

their programmes. These issues do not relate to the syntax and semantics of the

programming language but instead create correct mental models and strategies (Lahtinen

et al., 2005). The authors suggest that the biggest problem of novice programmers is not

the understanding of basic concepts but mastering how to implement them correctly. In

the same study, students found example programmes to be the most useful material for

learning to programme.

Similar studies explored the problems encountered by novice students attempting

programming tasks over two successive years (Garner et al., 2005; Robins et al., 2006).

The most repeatedly recorded issues were: understanding the task, issues relating to

overall programme design and structure, and basic procedure. Similar to the Lahtinen

study, these studies suggest that developing the algorithm and the overall programme

design is more complex than implementing any particular programming language

construct.

41

Butler and Morgan (2007) reported that programme design elements were among the

most complex introductory programming curriculum aspects for approximately 150

students. Curriculum concepts such as object orientation and algorithms with a relatively

high conceptual nature proved challenging both from an understanding and an

implementation perspective. The same study also discovered a shift in perceived difficulty

from understanding to implementing most curriculum concepts. The only concept for

which the shift was not experienced was the syntax and semantics of the programming

language (Butler and Morgan, 2007).

Butler and Morgan (2007) also reported that students experienced conceptual difficulties

with curriculum concepts that required abstract and logical thinking. Very little feedback

was available, and student performance on these concepts was poor. The authors further

suggest that feedback is inherently limited in programming environments. Therefore,

consideration should be given to teaching methods that provide quality feedback both

inside and outside the classroom. Moreover, the teaching method should scaffold the

learning and support the student learning through the programme design to reduce the

perceived complexity of the troublesome concepts (Butler and Morgan, 2007).

Jenkins (2002) argues that two cognitive factors might complicate learning programming:

learning style and motivation. As students tend to learn in different ways, some may prefer

a more solitary approach, and others may prefer to learn by discussing with their peers.

Students tend to have a variety of motivations regarding programming (intrinsic, social

and extrinsic) and the students who struggle most tend to have primarily extrinsic

motivation (Jenkins, 2002). I will look into motivational issues in the following sections.

Konecki (2014) surveyed 190 students after their programming courses. He also drew

attention to motivation and appropriate learning styles and suggested that programming

courses integrate different aspects of various learning styles to be suitable for all

programming students. Programming students have a specific intuitive understanding of

programming concepts based on their previous knowledge, age and experience (Pea et

al., 1983). However, this intuitive way of thinking might be the main reason for most of

their struggles (Konecki, 2014). Konecki concludes that some form of constructivism

42

should be applied when designing programming courses as new methods that promote

this way of thinking are required. The teacher should act as a facilitator and integrate

elements of constructivism into the teaching process that will support students to

understand the concepts by themselves. In this way, the students will acquire a concrete

and durable understanding rather than a superficial one.

One way of investigating the challenges faced by novice programmers is to compare them

to experts. The widely agreed belief is that the most crucial distinction between experts

and novices is the richness of their individual experiences or collections of learned

schemata (Robins, 2019). Additionally, a key factor separating novices and experts is the

effectiveness of the strategies they are using and, therefore, the ability to optimally solve

a programming task and acquire the necessary schemata (Robins, 2003; Rist, 2004).

The use of aptitude testing can be viewed as attempting to predict whether students will

be successful programmers and comprehend the characteristics of these groups. More

specifically, if I can understand the behaviour that results in better programmers, I may

cultivate this behaviour explicitly. However, as evidence in the effectiveness of aptitude

testing is inconclusive (Mazlack, 1980; Evans and Simkin, 1989; Hagan and Markham,

2000; Borzovs et al., 2015), the focus for understanding the conceptual difficulties of

programming must be on a more cognitive view of the learning process.

2.8 Troublesome knowledge

Based on the previous section, concrete knowledge is difficult to achieve in programming

education. Students must have the proper theoretical understanding of a concept and

implement it concretely using appropriate strategies (Robins et al., 2003). Nevertheless,

it has been reported that novice programmers usually have a superficial, context-specific

understanding of programming and struggle with transferring their knowledge (Lahtinen

et al., 2005). Learning to write code involves acquiring abstract knowledge (stating how

a concept works) and an appropriate strategy for its application (using the concept

appropriately in a programme) (Davies, 1993; Robins et al., 2003). Between knowledge

and strategy, knowledge receives the most attention in research and programming

43

courses, which usually focus on communicating knowledge about a specific programming

language.

Some of the difficulties mentioned may be due to simple misunderstandings, learning

styles or motivation for learning, and others on external factors on the learners which

impact their ability to understand. Moreover, some students appear to understand initially

but later fail when they apply the knowledge and require additional support. To address

these issues, I must try to comprehend the difficulties students face in learning

programming through a learning theory.

Troublesome knowledge was initially identified by Perkins (1999), discussing challenges

that constructivists must face. Perkins undertakes a constructivist approach to learning,

confirming that learners take an active role in their learning. The latter requires providing

activities to help the students create knowledge by themselves. Perkins classifies four

types of troublesome knowledge: inert, ritual, conceptually difficult and foreign. Inert

knowledge is the information known but rarely used. Ritual knowledge requires meaning

and tends to be part of a routine. Conceptually difficult knowledge includes concepts that

require multiple pieces of information and might be counterintuitive to students’

accustomed way of thinking. Foreign knowledge comes from a different perspective than

our own.

Other types of knowledge can also be troublesome. For example, Meyer and Land (2003)

stated that much of the knowledge acquired by experts in a field is tacit. Tacit knowledge

has become so ingrained in the experts that they use it without thinking about it, which

is difficult to explain. Therefore, concepts and programming structures apparent to

programming experts may not be as clear to programming novices. Generally, the concept

of troublesome knowledge suggests that we should engage students actively, allowing

them to create knowledge with appropriate teaching methods and measure the variables

within these methods.

Threshold concepts is an educational theory regarding particularly important forms of

knowledge where they are described as portals that open up new and previously

44

inaccessible ways of thinking (Meyer and Land, 2003, 2006). A more practical definition

by Davies (2006) is that threshold concepts represent potential obstacles in the path of

growing understanding. However, when mastered, they empower students to view

problems in entirely new ways and think and practice like experts of a particular discipline

(Davies and Mangan, 2008). An initial survey of thirty-six teachers identified several

candidate threshold concepts in introductory programming courses: levels of abstraction,

pointers, object orientation, instances, recursion, induction, and polymorphism (Shinners-

Kennedy and Fincher, 2013).

Despite their appeal for competitive programming, threshold concepts have only a recent

impact, and there are two rising issues. First, while the threshold concepts framework is

highly appealing on a theoretical level, very few researchers have attempted to measure

their acquisition empirically (Shanahan et al., 2006; Walker, 2013). The relatively limited

empirical research has used questionnaire methods (Shanahan et al. 2006), oral

recordings (Scheja et al., 2010), key reflections (McLean, 2009) and framing exercises

(Davies and Mangan, 2008). Second, despite their intuitive nature, I must consider how

they are identified and the methodological implications. Atherton et al. (2008) suggest

that the notion of a threshold concept is itself a threshold concept. In the following section,

I will discuss how the threshold concepts have emerged, the methods used in their

identification process and their empirical acquisition.

2.9 Threshold concepts and liminality

The theory of threshold concepts originated from the work of Meyer and Land (2003),

evaluating attributes of student learning in Economics. Since then, the threshold concept

framework has become popular and gained acceptance throughout a wide range of

disciplines, including Biology (Taylor, 2008), Computer Science (Zander et al., 2008),

Economics (Ashwin, 2008), Engineering (Carstensen and Bernhard, 2008), educational

development (Timmermans, 2014), Geography (Slinger, 2011), Mathematics (Quinnell

and Thompson, 2010), and spatial awareness (Osmond et al., 2008).

Threshold concepts are not similar to the core concepts generally considered by teachers

as being necessary for a subject (Davies and Mangan, 2005, Davies, 2006). Instead, Meyer

45

and Land (2006) specified that threshold concepts are a subset of core concepts that,

once comprehended, lead to a transformed understanding. This transformed

understanding may represent how people think in a particular discipline or how they

perceive or experience specific situations within that discipline (Meyer and Land, 2006).

Instead, core concepts do not essentially lead to a qualitatively different view of the

subject, but they may help students understand and learn (Meyer and Land, 2006).

More specifically, a threshold concept is ‘akin to a portal’, opening up a new and formerly

inaccessible way of thinking about a concept. It represents a transformed way of

understanding something without which the student cannot progress. As a result of

understanding a threshold concept, there may be a transformed internal view of subject

matter, or even world view (Meyer and Land, 2006, p. 3). Likewise, Perkins (2006) claimed

that threshold concepts act like gateways. Once students go through the gate, they reach

a new understanding of specific topics central to the discipline. This greater conceptual

understanding might signify ways of thinking and practising, unique to a discipline (Meyer

and Land, 2003; Davies and Mangan, 2007). Consequently, mastery of threshold concepts

is vital to further progress in a discipline (Meyer and Land, 2003; O’Donnell, 2010).

The Threshold Concepts framework focuses on what the students are expected to learn

and the teachers’ ways of thinking and practising. Meyer and Land (2003) explained the

term threshold concept as a portal that opens up a new, formerly inaccessible way of

thinking. Students must incorporate all of their prior knowledge on the concept, recognise

any constraints of the discipline and significantly modify their views so that they cannot

be misinterpreted or disappear (Meyer and Land, 2005).

These concepts signify the gateways that the students must pass to achieve their

academic goals. These gateways are the threshold concepts, explicitly identified by these

five characteristics: transformative, integrative, bounded, troublesome and irreversible

(Figure 8) (Meyer and Land, 2003).

46

Figure 8: Five characteristics of threshold concepts (Hamm, 2016)

The two most significant are the transformative and troublesome attributes. Troublesome

concepts must be perceived as far more complicated than difficult concepts. These are

associated with misunderstandings, incomplete cognitive models and the failure to shift

and apply knowledge from one application to another. Moreover, troublesome concepts

generate confusion with current perceptions and implicit ideas (Perkins, 2006). Going

through the learning process, the students ultimately grasp new ideas and acquire

knowledge for the troublesome concepts of the discipline. Significantly, students obtain

knowledge, but they also transform as individuals by the new knowledge acquisition

(Meyer and Land, 2006).

According to their attributes, threshold concepts are challenging to understand, but they

are necessary for students’ progression in their disciplines. Perkins (2006) indicates that

the troubling nature of threshold concepts does not derive from the actual concepts but

instead from other concepts joining to create an underlying game. The underlying game

improves the comprehension of the concepts at a higher level. In CS, control statements,

iterations, or data structures are not complicated or transformative topics. What novice

programmers find complicated and transformative is how the previous topics are used

concurrently for solving a more complex task (Land et al., 2005).

47

Meyer and Land (2005) have defined the ways threshold concepts can be applied in both

course design and curriculum development. The emphasis on the course design must be

on encouraging students to overcome threshold concepts without getting stuck (Meyer

and Land, 2005). When students get stuck on a concept, they often exhibit partial instead

of deep learning (Laevers, 2000; Dolmans et al., 2016). Stuck students have no

recollection of the course content other than the course requirements. These students do

not reveal any critical thinking abilities and cannot accurately interpret the threshold

concept (Meyer and Land, 2005).

In contrast, students who can conquer the threshold concept become familiar with an

unconventional way of thinking that supports their abstractions and applications of the

concepts. This enhancement is not only cognitive but also epistemological and ontological.

Therefore, it is a permanent transformation (Meyer and Land, 2005). When students

negotiate the threshold concept successfully, they claim ways of knowing and begin to

think like computer scientists as they progressively obtain a new identity within a

community of learning and practice (Rountree and Rountree, 2009).

The threshold concepts are essential, but not every concept in a curriculum can be

identified as one. Choosing topics arbitrarily from the IOI syllabus, dynamic programming

(DP) can be identified as a threshold concept. However, arrays3, even though they are

introduced in every introductory course as an essential data structure, must not be

identified as a threshold concept. Arrays present new notions that require relative effort

to be comprehended, but they are neither transformative nor troublesome for most

students. DP is a technique for solving complex tasks by breaking the task into a group of

smaller subproblems. Each subproblem can then be solved separately, and the prompted

values are stored so that they do not have to be computed again. DP can be identified as

a threshold concept as it encompasses all characteristics. Accordingly, when it is presented

to students, they are unable to understand it and as Skiena indicated: ‘Until you

understand dynamic programming, it seems like magic’ (2008, p. 273).

3 A set of elements stored under the same name.

48

Sooner or later, as students recognise DP capabilities, they exhibit a fundamental

transformation in their learning trajectories. The students can identify the base case of a

DP programming task and create a recursive function that can repeatedly calculate and

save the outcomes. Accordingly, students start to acknowledge that they do not have to

recalculate results, and they produce source code to check and store rather than re-

evaluate previously estimated results. This demonstration is an initial indication of

students making magic (Skiena, 2008). The students start to apply the DP approach with

other notions and in other circumstances; therefore, it is integrative. When the approach

is used successfully, it is practically impossible to be unlearned; thus, DP is irreversible.

DP is beneficial in the discipline of competitive programming. Simultaneously, it is an

abstract concept that defines what can be calculated; thus, DP is a solid threshold concept

as it has been identified through this research. I have used the concept of DP to reflect

on several pedagogical inferences of threshold concepts in competitive programming.

Exploring students' liminal space as they come to terms with DP will provide valuable

insight into what constitutes an effective novice programmer.

A significant interpretation arising from the threshold concepts’ theory is the liminal space.

The notion of liminality was adopted from Turner (1969) from the Latin word ‘limen’,

which translates into threshold or boundary. In his ethnographic studies on social rituals,

namely rites of passage, he relates to adolescents' initiation into adulthood. Turner

suggested that liminality helps to categorise the intermediate states of an individual and

understand the reactions to liminal experiences by the way the identity is formed and the

merge of thought and experience (Turner, 1969). Turner conceptualised the notion of

liminality as both an inter-structural situation, betwixt and between identified roles, as

well as an identity limbo, in which individuals are suspended in social space. Within an

educational setting, the liminal space can be perceived as the inability of students to

achieve the transformed state where they will acquire the new knowledge, and so they

become stuck. The students’ ability to cross the liminal space can be investigated to

measure effectiveness to deal with liminality.

Meyer and Land (2005) introduce the term liminal space for the transitional period

between beginning to learn a threshold concept and fully grasping it. Sometimes students

49

can learn threshold concepts quickly and efficiently. However, on most occasions, they

require an extended amount of time. The states of liminality are transformative and

usually change an individual from one state to another. Consequently, individuals obtain

new knowledge and a new identity inside the community. However, this shift is

troublesome as individuals experience strong, frequently negative emotions and to be

successful, the individual needs to forget the old identity. The transformation can occur

over an extended period and often involves oscillation between old and new states, like

adolescence and adulthood. Moreover, the liminal space may involve a form of mimicry of

the new state by attempting to imitate the actions of other individuals whom they perceive

as having negotiated the threshold concept successfully (Turner, 1969).

Threshold concepts bring theoretical complexity but also methodological challenges. A

significant issue in the identification process of threshold concepts is understanding what

a threshold concept is and what makes it so. Does a threshold concept need to have all

of the characteristics to be considered a threshold concept? If troublesome is the most

prominent feature, what separates a threshold concept from other concepts students may

have trouble with? Does the concept need to be perceived in the same manner by every

student to be considered a threshold concept? If threshold concepts are defined by how

knowledge is acquired and experienced by students, why are they identified mostly by

teachers who have taught the concepts? Suppose any work on threshold concepts is to

have real value and impact on student learning. In that case, I must initially establish

what a threshold concept is, what constitutes it and the methodological implications for

their identifications.

Multiple disciplines have adopted the theory of threshold concepts since their initial

discovery by Meyer and Land (2003) (Taylor, 2006; Lucas and Mladenovic, 2007;

Carstensen and Bernhard, 2008; Zander et al., 2008). The methodological approaches for

the identification of the concepts in these disciplines included surveys, questionnaires, and

reviews of previous examinations (Davies and Mangan, 2005; Holloway et al., 2009), semi-

structured interviews (Zander et al., 2008; Akerlind et al., 2010) and observation of

classroom behaviour (Carstensen and Bernard, 2008). Barradell argues that most of the

literature concerning the identification of threshold concepts focuses on teachers’ beliefs

50

and suggests that a consensus technique is critical to the identification process of

threshold concepts (Barradell, 2012).

In Computer Science, Kallia and Sentance (2017) used a three-round Delphi approach

with CS teachers to identify threshold concepts in secondary education programming until

consensus and steadiness were achieved for each suggested concept. The study reported

that most teachers based their suggestions on the troublesome characteristic and less on

the integrative and transformative characteristics. However, the authors admit that it is

unlikely that all the concepts proposed in the study are threshold concepts. However,

teachers suggested that students’ conceptual difficulties in programming could be

explained with the theory of threshold concepts and acknowledged that recognising a

threshold concept impacted their teaching (Kallia and Sentance, 2017).

Sanders and McCartney (2016) reviewed the threshold concepts identified in Computer

Science and the approaches used to identify them. Rountree and Rountree (2009)

suggested that the Threshold Concepts theory presents a disciplinary situated learning

framework, a welcome change in perspective, away from the checkbox aspect of learning

outcomes. They summarise the following proposed threshold concept examples: state,

abstraction, pointers, classes/objects/instances, recursion, induction, procedural

abstraction, and polymorphism (Rountree and Rountree, 2009).

A study by Khalife (2006) attempted to identify potential threshold concepts in

introductory programming courses and propose solutions to support students’

understanding. The author presented some universally accepted conceptual difficulties,

such as lack of problem-solving strategies, and suggested that the first threshold concept

students must learn is to create a simple yet concrete mental model of the computer and

how it functions during programme execution. A computer model for teaching purposes

is proposed, along with the results of an empirical evaluation of the model (Khalife, 2006).

Boustedt et al. (2007) gathered data from both teachers (informal interviews and surveys)

and students (semi-structured interviews) to discover evidence that threshold concepts

exist in Computer Science. Particularly, two out of 33 concepts satisfy the criteria for

threshold concepts: object-oriented programming and pointers.

51

In a follow-up study by Eckerdal et al. (2007), the authors used the data from the semi-

structured interviews of students nearing graduation from the study of Boustedt et al.

(2007). They investigated how the idea of a liminal space related to the threshold concepts

identified as it provided a valuable metaphor for the concept learning process. The study

supported that the students were identified as being stuck with partial or limited

understanding. Moreover, all of the characteristics of liminality were present: extended

time commitment, the oscillation of states, confusion, nervousness and mimicry of the

new state (Eckerdal et al., 2007). Another crucial finding from this study was that students

took their unique routes through liminality and got stuck multiple times at multiple places.

The multiple learning paths propose that no predefined order of assignments or tasks can

benefit all students. Flexibility should be considered to care for individual students’ needs.

No work other than the study by Eckerdal et al. (2007) has specifically addressed the

liminal space in Computer Science. Moreover, while the liminal space is highly applicable

to programming education, few researchers have attempted to measure threshold concept

acquisition empirically by assessing students’ code.

Davies (2006) argues that threshold concepts offer the means of describing the way of

thinking as a distinctive characteristic of the discipline itself. Additionally, the report

suggests that identifying threshold concepts is problematic due to their tacit nature as

they are not often made explicit. Davies proposes two distinct methods for identifying

threshold concepts within a discipline. The first method states that threshold concepts can

be identified by studying how two distinct disciplines examine similar situations. The

second method is by examining differences between individuals within a community of

learning and those outside the community. More specifically, the distinctive approaches

of novice programmers and programming experts to solve the same programming task.

The second method is very suitable for teachers in any discipline to study their students.

Most research for identifying threshold concepts within CS has focused on the second

method by analysing students' feedback on where they became stuck while studying

(Rountree and Rountree, 2009).

Land et al. (2016) suggested that threshold concepts should be perceived as an alternative

to studying learners’ experiences and satisfaction within a course of study. However,

52

identifying threshold concepts requires much more than a Likert-scale survey where

students rate their difficulty level while studying each subject. Furthermore, current

students are likely incapable of remembering a single standout moment in their learning,

even when they can eventually understand something they previously could not (Shinners-

Kennedy, 2016). They cannot mention specific details such as the circumstances or the

context in which the ‘learning’ occurred. In situations where I deal with new learners, I

can justify their difficulties based on their incomplete knowledge structures, but the

outcome of the threshold identification will be inefficient. Nevertheless, the knowledge

structures and meta-learning capabilities of alumni or postgraduate students are

appropriate to support identifying and analysing the characteristics of threshold concepts

(Shinners-Kennedy, 2016).

Knowing what constitutes a threshold concept can provide the instructor with a context

in which the concept might effectively be taught. Savin-Baden (2005) proposed the notion

of ‘disjunction’ in problem-based learning approaches. Disjunction can be identified as

analogous to the notion of threshold concepts. It indicates becoming stuck in the learning

process, but it can empower or restrict its effect on learning. Disjunction can be perceived

as the state students find themselves in after unsuccessfully negotiating with a threshold

concept. Savin-Baden points out that disjunction occurs predominantly in learning

environments where problem-based learning is used because PBL requires students to

assess knowledge earlier than in more traditional teaching settings. However, this is not

necessarily problematic as PBL motivates students to move away from linear problem-

solving methods and use more advanced strategies that require students to engage in the

learning process actively. Disjunction may consequently be viewed as the troublesome

state that arises when methods that require active learning such as PBL are employed,

encouraging students to engage with conceptual knowledge to successfully navigate

through the troublesome state (Savin-Baden, 2005).

2.10 Strategies of competitive programmers

Understanding what makes a student effective in traversing liminal space allows specific

strategies and ways of thinking to be targeted. The competitive programming knowledge

to deal with threshold concepts must be paired with the appropriate strategies and skills

53

needed to apply it. Students should understand how to use their programming knowledge

to solve complex tasks. Programmers' strategies are essential in every stage of the

programming process, from designing the algorithm and code-writing to evaluating and

debugging the code. Code writing involves problem-solving strategies such as complete

search, greedy algorithms, divide and conquer, bottom-up or top-down, which are easier

to identify by the teacher. Code evaluation requires additional strategies such as code-

tracing, testing, and debugging, which are not possible without using appropriate tools.

Many authors have emphasised the significance of programming strategies for successful

learning outcomes (Perkins et al., 1989; Davies, 1993; Robins et al., 2003). Similar reports

distinguish between expert and novice programmers using different strategies (Widowski

and Eyferth, 1986). Both programming knowledge and strategies can be absent, learned

but not applied, or learned but not applied appropriately, as most novice programmers

tend to use insufficient problem-solving strategies (Perkins et al., 1989). Eckerdal (2009)

suggests that programming concepts and practising these concepts are equally essential

aspects of the learning process, and there is a mutually dependent relationship between

them.

Davies's (1993) review on programming strategies argues that future research should not

attempt to categorise strategies but instead focus on their origins and how they relate to

their domain, associated tasks, programming language, and available tools. Moreover,

research must investigate the connection between developing structured interpretations

of programming knowledge and the implementation of specific strategies (Davies, 1993).

Rist (2004) argues that programmers use optimal coding strategies when acquiring an

appropriate schema/model. When a suitable model is not present, programmers will turn

to their familiar strategies and try to create new mental models and solutions in the case

of an unknown or complex task. As they become efficient programmers, students will use

these strategies based on the acquired schemata/models to tackle known or unknown

programming tasks. Learning technologies can monitor and assess students’ programming

strategies through their source code.

54

The acquisition of effective mental models and, therefore, successful improvement is not

possible without the necessary programming strategies for accessing the knowledge and

applying it to solving the programming task (Robins, 2019). Arguably, an effective

programmer who utilises suitable strategies can improve by employing the correct mental

models as needed. Therefore, if I can identify and exploit the strategies used by effective

programmers, I can relate them with their knowledge and their acquired viable mental

models and use them to instruct novice and ineffective programmers.

2.11 Mental models

Constructivism interprets student learning as creating individual knowledge structures that

are constantly redefined. According to constructivist theories, learners must actively

construct knowledge rather than storing it from lectures and create their unique self-

constructed alternative structures (Ben-Ari, 2001). Learning something new builds upon

previous knowledge in a constructivist environment, which is essential to construct new

knowledge through interactions with new experiences (Howe and Berv, 2000). When

students learn, they expand their knowledge structures to accommodate new knowledge,

and these alternative structures occur naturally. There are instances of the application of

constructivism within computer science since the development of Logo (Papert, 1980) and

for the teaching of programming (Pullen, 2001; Van Gorp and Grissom, 2001).

Ben-Ari argues that we must consider two attributes to make constructivism applicable to

programming education and to bring together cognitive structures with the outside world:

• A programming student has no useful model for a computer. Students can utilise

a model, which is a cognitive structure, to create knowledge based on sensory

activities such as working with computers and attending lectures.

• A computer is an accessible ontological reality, meaning that an accurate solution

is available and effective execution necessitates the creation of a model depicting

this reality (Ben-Ari, 2001).

Mental models are critical to knowledge acquisition. Models of control structures,

iterations, data structures and programme design are equally essential. Ben-Ari (2001)

suggests that the lack of mental models plays an important part in why students find it

55

challenging to learn how to programme. He argues that programmers are forced to

construct their mental models from scratch with no previous models to build on. Similarly,

Yehezkel et al. (2005) describe the importance of forming a mental model of a system to

understand it. Wiedenbeck et al. (2004) suggested that forming mental models is a

predictor for learning outcomes.

In the absence of an accurate understanding of a mental model, novices can develop

peculiar theories about how programmes are executed (Du Boulay, 1986, Winslow, 1996).

Mayer (1989) reported that students supplied with an accurate mental model were better

at solving specific types of problems than students without the model. Derri and Pachta

(2007) suggested that students must be presented with an appropriate mental model to

follow, sufficient time to train with the model and meaningful feedback related to the

model. Mayer (1985) suggests that specific types of mental models can be successfully

taught and that such training enhances students’ problem-solving skills.

One crucial mental model that programming students need to obtain is the notional

machine (Du Boulay et al., 1981). A notional machine is a cognitive model of programme

execution, and its goal is to provide a context for understanding the behaviour of

programmes (Du Boulay et al., 1981, Mayer, 1989). In other words, a notional machine

is a computer’s depiction as the facilitator of a computer programme. The notional

machine can be a simple description or the optimal code, and the mental model is the

students’ understanding of this notional machine.

Du Boulay et al. (1981) argue that we can present different characteristics of the notional

machine when we use different programming languages. These characteristics can be

used to identify the outcome of programme execution, and they should be supported by

a reliable tool that will enable the notional machine to be observed. Sorva (2013) reviews

the notional machine concept in the context of broader theoretical frameworks such as

constructivism, mental models, and threshold concepts. He suggests teachers should

acknowledge the notional machine as a specific learning objective and include it in their

teaching process (Sorva, 2013). However, in Schulte and Bennedsen's (2006) survey, only

29% of the teachers reported that they use notional machines in their teaching practice

56

even though the importance of notional machines’ aspects was rated highly. Consistent

with fragile learning, Ma et al. (2008) reported that students with viable mental models

performed significantly better than students with non-viable models.

Caspersen and Bennedsen (2007) stress the significance of worked examples as notional

machines with scaffolding and feedback to support the model creation and improve

learning. This review of studies points out a shift to instruction, from emphasising

language syntax to developing general problem-solving skills based on a model-based

approach (Caspersen and Bennedsen, 2007). Creating mental models requires conscious

abstractions, assumes the confrontation with programming tasks and their optimal

solutions, and propels ensuing performance for solving unknown concepts of new

programming tasks (Van Merrienboer and Paas, 1990). Worked examples, as instructional

instances, are accessible sources of information but the strategies used to create them

are harder to make explicit. These factors underline the importance of actively creating

programmes and explicitly identifying the strategies involved.

A notional machine can be a description of the code, such as a variable is like a box or a

LIFO stack is like a stack of plates. They can also be representations of source code at a

higher level of abstraction. Any programme is a written representation of how the

programmer believes the programme is supposed to work as it contains instructions for

the computer. It also contains signs and indications of the programmer's way of thinking.

In the case of a good programme, the programmer has a clear concept of how the

programme is supposed to work, has represented it well, and has solved the task.

Conceptual clarity is a sign of a good mental model. Therefore, the programme ideally

contains precise representations of these mental models.

A collection of worked examples can support the direction of independent learning

activities, the creation of valid mental models, and the adaption of a supportive notional

machine. From my experience in teaching competitive programming for the last decade,

I have discovered that worked examples serving as reference points to a particular

programming concept are invaluable to learning outcomes and student learning

trajectories. An example of a segment tree design can help students create a correct

57

model if they are guided through the creation process. During the creation process, the

students are presented simultaneously with the visualisation of the segment tree (Figure

9) and the actual code used to build it.

Figure 9: Visualisation of a segment tree build function

void build(int node, int left, int right){
 if(left==right){
 tree[node] = arr[left];
 }
 else {
 int mid = (left+right)/2;
 build(2*node, left, mid);
 build(2*node+1, mid+1, right);
 tree[node] = tree[2*node] + tree[2*node+1];
 }
}

Students can adapt and meet the course requirements faster and more accurately when

the worked examples are sufficiently supplied before, during, and after the concepts.

Based on the build function, the students are asked to create the update function of a

segment tree, which is also recursive:

58

void update(int node,int left, int right, int idx, int val){
 if(left==right){
 arr[idx]+=val;
 tree[node] = val;
 }
 else {
 int mid = (left+right)/2;
 if(idx>=left && idx<=mid)
 update(2*node, left, mid, idx, val);
 else
 update(2*node+1, mid+1, right, idx, val);
 tree[node] = tree[2*node] + tree[2*node+1];
 }
}

From then on, the students are supported to solve an initial programming task for finding

the Range Minimum Query4 (RMQ) of an array of integers. The size of the array is initially

manageable so that students can use prior knowledge (loops, arrays) to solve the

problem. As the size of the array increases with a more advanced data set, the need to

build and use a segment tree is made obvious, and the students comprehend the rationale

and application of a crucial concept by solving a programming task as an example. The

students are then assigned to find the Range Maximum Query and the Range Sum Query.

I have created similar worked examples for all of the syllabus concepts.

Worked examples are an essential component of the COI framework, and they are used

as a repository made available by the author for both teachers and students of the COI

course. For students, the worked examples can be used as notional machines to support

the creation of valid mental models and manage the learning activities. For teachers, the

worked examples repository can guide the design and alignment of the instructions of the

concept. The repository is dynamically reinforced throughout an academic year with the

support of the learning community.

4 A range minimum query solves the problem of finding the minimal value in a sub-array of an array of
comparable objects.

59

2.12 Motivation for competitive programming

The students’ inclination to participate and thrive in the learning procedure can be

identified as student motivation (Bomia et al., 1997). Even though students might be

equally motivated for solving a complex problem, the roots of their motivation could

probably differ. One motivated student will attempt to solve a complex task for the

satisfaction it produces upon completion, the development of knowledge it promotes, and

the emotions of accomplishment it generates (Lumsden, 2004). The students’ motivation

is an essential aspect of learning irrespective of the discipline. Programming contests and

practical programming tasks can motivate students to learn how to programme (Dagiene

and Skupiene, 2004). Garcia-Mateos et al. (2009) reported that competitions could make

the learning process stimulating and inspiring; thus, improving motivation.

Competitive programming is best learned by practice, and if students are to learn

effectively, most of this practice must be self-motivated and self-directed. A teacher’s

critical role is to encourage and motivate students to engage with the learning activities

appropriately. Biggs and Tang (2011) define a teacher’s motivational role as making the

students agree that proper task engagement is a good idea. In a programming course, a

teacher has to motivate the students to improve their skills by engaging in writing

programmes and participating in competitions. In competitive programming, students

must be motivated to spend hours practising and competing, even when there is no

assessment credit available. Therefore, an understanding of the students' pre-existing

motivation is critical if the teacher wants to thrive in this.

Unfortunately, motivation is an abstract concept that is tough to measure in any

meaningful way (Ball, 1977). It is possible to examine a student’s behaviour to understand

the type of motivation, but it is challenging to be precise. Some general types of motivation

have been identified to describe why a student might value learning. Entwisle (1998)

describes three generic types of motivation:

• Extrinsic - the desire to participate for attaining an expected reward

• Intrinsic - deriving from a personal interest in the subject

• Achievement - competitive, based on performing better than others.

60

From personal experience, students who are motivated mainly in one of these three types

will have different approaches to the course. Extrinsically motivated students will not

attempt a complex task without any cumulative assessment credit. Students with intrinsic

motivation can be expected to learn the subject, even when there is no assessment, act

more on their initiative, and form their views on the instructed material. If achievement is

the primary motivator, the students will adopt the optimal strategy to achieve the best

possible results in competitions.

Since the COI is a voluntary, extra-curricular course, I have identified very few extrinsically

motivated students through the years. Most of the students who take the course want to

learn competitive programming for the intellectual challenge of problem-solving and

honing their skills, independently of any awards that may be involved. The aspiration for

a future benefit for these students is perhaps in the form of a financially rewarding career

in Computer Science as the most common factor, closely followed by their desire to learn.

Intrinsic motivation drives deep learning, improved performance and increases with

continuing engagement with assigned programming tasks.

Achievement motivation requires competitive conditions to work where students compete

against each other. The ultimate achievement within the COI learning community is

competing and qualifying for the national delegations. Biggs and Tang (2011) argue that

achievement motivation eliminates collaborative learning as students become competitors

and not collaborators. They also claim that actions are taken to gain an advantage over

peers, such as key concepts are hidden or miscommunicated, hints are not disclosed,

misleading advice being offered (Biggs and Tang, 2011).

From experience, in a supportive and collaborative learning environment where peer

tutoring and social negotiations are cultivated from the initial introduction, these

phenomena are infrequent. An instructional strategy that supports interactions among

students allows them to maximise their own and each other’s learning. Social negotiation

is a vital component of collaborative learning as it promotes the sharing of different ideas

and cooperation on problem-solving and knowledge building tasks (Duffy and

Cunningham, 1996).

61

Effective teaching leads to improved learning which leads to increased motivation.

Motivation is a direct result of quality learning. Therefore, the focus should be on designing

such an effective teaching practice rather than simply motivating students. However,

effective teaching is not achieved by applying general teaching rules but adapting to the

teacher’s potential and teaching context (Biggs and Tang, 2011). The effectiveness heavily

depends on the teachers’ willingness to reflect on student feedback to improve their

teaching (Dunkin and Precians, 1992). Recognising and dealing with setbacks in teaching

involves reflecting on the issues using a framework that offers a perspective on the

teaching that helps plan interventions and make improvements. An established and

efficient method for doing this is action research (Kember and Kelly, 1993), presented

more extensively in chapter 3.

The key to motivation is to ensure that the teaching process is effective and that the

learning activities are meaningful and valuable. This can be accomplished in problem-

based learning, where meticulously designed programming tasks become the context in

which students learn complex concepts and develop professional skills.

2.13 Problem-Based Learning (PBL)

Problem-Based Learning (PBL) is an established learning pedagogy that demonstrates

numerous constructivist principles (Savery and Duffy, 1995; Ambrosio, 2010). PBL consists

of real-life tasks attempted by students with limited support from the teacher. Explanation

on how to solve the tasks is not provided, but resources are accessible to support students

in dealing with the problems. Students can work cooperatively, and the teacher can help

to facilitate the learning process (Kay et al., 2000). PBL tries to engage students’ prior

knowledge in the quest to find solutions to the tasks at hand, promote the sharing of

understanding between students, clarify partial solutions, and advance self-directed

learning abilities (Norman and Schmidt, 1992). Numerous reports of successful

applications of PBL have been revealed in a variety of disciplines such as mathematics and

sciences (Kay et al., 2000; Greening, 1999; Nuutila, 2005; Hickey et al., 2001; Simons

and Klein, 2007). Moreover, new instructional methods have required a paradigm shift in

how knowledge acquisition should occur in a programming course (Looi and Seyal, 2014).

62

Programming involves practical problem-solving and algorithm learning activities

(Bennedsen and Caspersen, 2006). The subject aims to refine students’ problem-solving

skills (Palumbo, 1990; Apiola and Tedre, 2012) and develop their higher-order thinking

skills (Ersoy and Baser, 2014). Problem-solving skills are considered one of the most

crucial attributes, mainly to prepare CS graduates to enter the ICT workforce. Problem-

solving skill is a cognitive process that involves exploration, analysis, and assessment

(Kotovsky, 2003). Moreover, the problem-solving activity in programming requires

systematic skills to synthesise a solution (Mudgett, 2014). This skill can be developed

through continuous practice. Therefore, teachers must employ an appropriate teaching

method to support skill development.

A student-centred approach to teaching programming using Problem-Based Learning

(PBL) should be employed to allow students to deal with this new reality (Barrows and

Tamblyn, 1980). PBL is a teaching strategy that is used to promote active learning. PBL

originates from the theory of constructivism. Constructivism guides the teaching process

with the notion that learning is a process in which the student actively constructs

knowledge. Learning results from the student’s actions and instruction enable and

cultivate constructive activities. Instead of simply listening to lectures about the concepts,

the students are presented with the assigned problem that initiates their inquiry and

learning process (Hmelo and Ferrari, 1997). Learning occurs when students associate new

information with prior knowledge and experiences (Duffy and Jonassen, 1992). Teachers

can design meaningful problems corresponding to the course concepts and allow the

students to solve them. During the process, teachers can provide guidance and organise

students to discuss and collaborate. The teachers must modify their role from a

knowledge-transmitter to a facilitator of knowledge. The role of the facilitator is to support

and motivate students during the PBL course (Savery, 2006).

PBL provides authentic opportunities to encourage active learning, foster critical thinking,

support knowledge construction, and relate the learning to real-life problems. PBL makes

the problem the learning core to initiate the learning process (Bawamohiddin and Razali,

2017). The starting point for learning a concept should be a task that the students must

solve (Boud, 1985). The task, or the set of tasks, is where learning starts and, in

63

attempting to solve these tasks, the students seek the knowledge of programming

techniques and algorithms required to solve them. The disciplines do not define what is

to be learned; the tasks do. However, the purpose is not only to solve those specific tasks,

but in doing so, the student acquires knowledge, skills, attitudes, and know-how

(Bawamohiddin and Razali, 2017). This means the tasks have to be carefully designed

and have specific characteristics.

The tasks involved in PBL must be ill-structured, real-world simulated, complex, and open-

ended (Duch et al., 2001; Torp and Sage, 2002; Hmelo-Silver, 2004). An empirical study

by Sockalingam and Schmidt (2011) reported that the most quoted problems involved

learning the outcome and generating interest. The problems were designed with an

appropriate format, stimulated individual learning, and provided sufficient time for solving.

Moreover, they were applicable, related to prior knowledge, and stimulated collaborative

work among students (Sockalingam and Schmidt, 2011). PBL has been found to make a

positive difference to the students in collaborative learning, increasing motivation,

availability of peer support and problem-solving skills development (Looi and Seyal, 2014).

In the study by Looi and Seyal (2014), students identified peer support as the most

valuable benefit of the PBL learning environment, followed by constructing collaborative

learning and learning from others.

Numerous studies support that PBL is suitable for implementation in programming courses

(Kay et al., 2000; Oliveira et al., 2013). Additionally, PBL has been found to have a positive

impact on students’ professional careers in programming and data mining (Walker and

Leary, 2009), increased motivation and reduced course dropout rate (Nuutila and Malmi,

2005), and also improved students’ qualities (Cheong, 2013). For programming courses,

the problems are perceived as learning essentials (Peng, 2010); therefore, the problems

must have specific characteristics to initiate the learning process (Nuutila et al., 2008)

Bellstrom and Kilbrink, 2009). The learning process involves a scenario related to learning

outcomes, it is complex, challenging, and ill-structured, and problems require activation

of prior knowledge, integration of theory and practice, and increased complexity (Nuutila

et al., 2008; Fee and Holland-Minkley, 2010; Peng, 2010; Pereira et al., 2010; O’Grady,

2012).

64

Researchers also underlined the role and characteristics that facilitators in PBL should

have. Facilitators must have problem-designing skills, develop, and distribute the tasks,

deliver the concepts by intervening during facilitation, evaluate students’ performance and

perform reflection (Nuutila et al., 2008; Peng, 2010; O’Grady, 2012). The facilitator must

also administer the learning environment (Fee and Holland-Minkley, 2010). The pedagogy

and course design of a PBL approach must effectively establish a community to support

student learning. In a rush to implement new technologies and online education, the

notion of a learning community has often been neglected (Brodie and Gibbings, 2007).

PBL has become an integral component of programming education. However, to assign

the programming tasks to students and support the learning process, I must integrate the

appropriate strategies into the teaching process. Therefore, encouraging students’

collaborations and providing structured scaffolding for supporting progress should be a

fundamental part of every programming course.

2.14 Scaffolding and collaboration

The notion of instructional scaffolding originates from Wood, Bruner, and Ross (1976) and

for producing positive learning outcomes, an appropriate social interactive framework

must be provided (Bruner, 1978; Foley, 1994). Scaffolding describes the type of support

offered by a teacher to support learning and, appropriately, the teacher offers guidance

only with the skills that are beyond the students’ capabilities. (Wood et al., 1976). It is an

instructional strategy to help students with a learning task or concept beyond their

competence level. As the students’ understanding increases, the scaffolding is gradually

removed until students are capable of solving tasks autonomously and generalising to

similar situations (Foley, 1994).

Scaffolding is not limited to interactions between teachers and students. In problem-based

learning environments, the notion of scaffolding is increasingly used to describe the hints

and prompts from tools and learning technologies to support the learning process

(Puntambeker et al., 2005). According to the literature, the integration of problem-based

learning environments and scaffolding strategies increased the students' problem-solving

skills (Hung et al., 2012). Resources such as compilers, online judges, and code-evaluation

65

platforms can themselves be used as scaffolds. Vihavainen et al. (2013) propose using an

assessment system that enables the building of scaffolding into programming tasks. As

the system provides some scaffolding for the programming students, it has allowed better

allocation of resources (Vihavainen et al., 2013).

Dabbagh (2005) suggests a layered structured approach to scaffolding. Within a learning

community, the required support level of each student may vary. For example, novice

students with limited prior knowledge and effective programmers with a substantial

knowledge base require a different level of support for the same programming task.

Dabbagh proposes a layered structure to scaffolding to push these students to perform at

their potential development zone (Dabbagh, 2003). Novice students receive the advice

and support they require to confidently engage the task, while advanced students are not

provided with analogous assistance. In this way, the layered approach can prevent novice

students from slowing down the progress of the advanced students.

Examples of how scaffolding can be enacted in a programming course using learning

technologies include:

• Online one-on-one mentoring and guidance

• Worked examples of similar or previous programming tasks

• Links to embedded cognitive tools that can reduce the complexity of the task, such

as visualisation or simulation tools

• A discussion section for each task where students can seek advice on how to solve

the task

In its simplest form, a collaborative strategy can be described as a teaching approach that

encourages collaboration among two or more students to maximise their own and each

other’s understanding. From a situated cognition perspective, collaborative learning can

be defined as a collection of tasks that emphasise joint construction of knowledge, joint

negotiations of alternatives through debate and dependence on teachers and students as

learning resources (Dabbagh, 2005). Duffy and Cunningham (1996) view social

negotiation as an integral collaboration component. They suggest that in collaboration

and social negotiation, the objective is to share different views and ideas and collaborate

66

on problem-solving and knowledge constructing activities (Duffy and Cunningham, 1996).

Different groups can be formed to provide variation in social negotiations and promote

peer support.

Programming tasks can engage students in online discussions to articulate their

understanding of the task and make the tacit knowledge explicit by answering questions

and explaining to others. In a collaborative workplace, these discussion sections can be

revisited. They enable reflections on particular tasks, assessments of the learning

trajectory, and performance of individual students. Peer support in evaluating another

student’s code can promote reflective thinking and support the understanding of threshold

concepts.

Studies have found that the adoption of collaborative learning environments can improve

work quality and increase the students’ knowledge and programming skills (Kavitha et al.,

2018). Furthermore, collaborative learning can positively impact student learning

experiences (Bipp et al., 2008). A different study shows that students who use

collaborative learning strategies benefit from the information and knowledge transfer

process (Kavitha et al., 2017). The collaborative learning environments have been

evaluated by measuring student engagement, participation, and achievement of learning

goals (Dyson et al., 2003). Kavitha et al. (2018) further suggest that collaborative learning

can be used as a pedagogy in programming education.

2.15 Assessment of programming code

Another critical issue that has drawn attention as a response to the issues of poor

programming performance concerns how programming efficiency is assessed. Several

methods exist for assessing programming efficiency, making it challenging to determine

which method is the most appropriate for a specific course (Chamillard and Braun, 2000).

Each assessment method has its advantages and disadvantages and is also associated

with a projected learning outcome (Chamillard and Joiner 2001; Biggs, 2003). According

to previous studies, the methods that are most commonly used in programming courses

are written exams, assignments on computers (Chamillard and Braun, 2000; Jacobson,

2000; Chamillard and Joiner, 2001; Daly and Waldron 2004) and the use of online judges

67

(Cheang et al., 2003; Felter et al. 2015; Tang et al., 2016; Zhao et al., 2018; Jiang et al.,

2019). Even though written exams are frequently used, many studies indicate that it is

arguably not the best approach to assess a student’s programming efficiency (Daly and

Waldron, 2004; Rajala et al., 2016; Sheard et al., 2013).

According to Biggs (2003), the type of learning associated with written exams relates to

memorisation and the skill to successfully create a written answer. The process of code-

writing by hand is similar to writing an essay. The ability to structure a written answer

depends on the students’ ability to focus rather than their problem-solving ability.

Although written exams are considered an inappropriate way of measuring programming

ability among students, they can still be used to evaluate the basic understanding of

programming concepts (Sheard et al., 2013).

Alternatives to written exams have introduced a computerised examination where

students can use compilers to verify their solutions (Chamillard and Joiner, 2001; Haghighi

et al., 2005; Rajala et al., 2016). Haghighi et al. (2005) used a computerised examination,

which was considered one of the most valuable aspects of the study as it offered the

students access to compiling and debugging facilities. Another study reported that

students were likely more comfortable writing code on a computer with a proper editor,

and coding on paper was a slow and tedious process (Rajala et al., 2016). Using a

computer for the examination might considerably affect performance, as it removes the

pressure of possible syntax errors. Students found testing their solutions on a computer

before the final submission to be the most useful feature (Haghighi et al., 2005).

An effective tool for accessing and assessing student code is an online judge. Kurnia

(2001) originally introduced the term online judge as an online platform that supports the

automatic evaluation and assessment of source code submitted by users for a specific

programming challenge. Most contemporary online judges have initially appeared as basic

web applications introduced by universities to support programming education and

students for training and participating in programming competitions. However, companies

have recently used them for the recruiting/hiring processes of the world’s most capable

programmers and software developers.

68

The popularity of online judges is increasing rapidly in multiple settings and disciplines.

They are systems that can provide a dependable assessment of source code submitted by

the users. The source code is then compiled and verified in a homogeneous environment

(Wasik et al., 2016). Their classification is vital to examine the features of each system

according to its objective, whether it supports the organisation of competitive

programming competitions, improving programming teaching or assisting the recruiting

procedure for ICT professionals.

A crucial aspect of the design of online judges is the accuracy in measuring the execution

time of programme submissions. The execution time for each test case is calculated in

milliseconds. Therefore, the assessment session must be precise to differentiate minor

segments of time variations and guarantee exact measurements of successive

performances of identical source code for the specific test case. Numerous methods are

used to estimate the execution time of submissions, such as using command-line

functionalities, evaluation of hardware performing counters, code sampling and

equipment. These methods offer several advantages, but some have disadvantages

regarding measuring precision and accessible assimilation techniques (Ilsche et al., 2015).

The assessment process of an online judge aiming to provide a web-based evaluation of

source code consists of three significant phases: submission, evaluation and scoring. In

the submission phase, the source code is compiled to ensure successful execution, free of

any syntax or compilation errors in the code. The evaluation phase safeguards that the

memory and time constraints have not been surpassed. Moreover, the output produced

by the source code complies with the specifications depicted in the task statement.

Ultimately, during the scoring phase, the accumulated score is estimated based on the

point distribution of each subtask and each associated test case.

The total points awarded for a specific task usually range from 0 to 100. The feedback is

immediate and concise for the user submitting source code on the Michanicos platform,

providing details for every specific test case as illustrated in Figure 10.

69

Figure 10: Scoring phase of the Michanicos platform

In general, the status message of the programme execution can be each of these:

• Accepted (AC): A submission receives an AC when it executes successfully, no

compilation errors exist, the output is correct according to the task description,

and the time and memory limits are not exceeded. An accepted solution can

receive the maximum number of points for specific subtasks.

• Wrong Answer (WA): A submission that receives a WA produced output that does

not comply with the task’s description or match the expected result. In simple

words, for a programming task requesting the square value of an integer, for an

input test case containing number 4, the associated output test case must have

the value of 16. If for any reason, the submission’s output for this specific test

case produces a different numeric value, it will receive a WA.

• Time Limit Exceeded (TLE): A submission that receives a TLE has exceeded the

maximum time limit allowed for the specific task. The time complexity of

algorithms on making programmes run faster is essential, and it is a skill that

students need to master.

• Memory Limit Exceeded (MLE): A submission that receives an MLE exceeds the

maximum memory limit allowed for the specific task. The space complexity of

algorithms on how to make programmes run more efficiently by using fewer

resources is also important, and it is a skill that students need to master as well.

70

• Runtime Error (RE): A submission that receives a RE indicates that a runtime error

has been detected during the execution of the source code.

Within the literature, there have been numerous attempts to classify online judges in

distinct settings and environments (Pohl, 2006; Combefis and Wautelet, 2014; Nemeth

and Laszlo, 2015; Wasik et al., 2016). Based on the results from the literature, I have

considered a classification of online judges with the main emphasis on their distinctive

features and their possible utilisation from the teacher/student perspective (Table 2).

From an educator’s perspective, the primary benefit of utilising an online judge in a

programming course is the ability to evaluate students’ work automatically. Initially, the

source code is verified and assessed by the online judge with the maximum possible

accuracy and precision. Then, possible errors caused by manual evaluation are eliminated.

The teacher’s responsibility is to prepare the appropriate tasks and the corresponding set

of test cases originating from the problem definition. If the test cases have been

adequately prepared and tested, the possibility of an incorrect solution passing all tests is

negligible.

Table 2: Online judge systems surveyed. The columns include system name, the languages supported
by the graphical user interface, the number of supported compilers, the number of programming

tasks available, the number of users and contest availability

71

Secondly, the total time for assessing all submissions is minimal, and it allows the teacher

to use the extra time to prepare additional tasks. Lastly, the feedback for the students is

immediate, and it provides a detailed explanation of whether their solution is correct.

There is strong evidence in the literature for the successful integration of online judges in

programming courses (Cheang et al., 2003; Ala-Mutka, 2005; Ihantola et al., 2010; Fonte

et al., 2013; Danic et al., 2013) and how this type of integration can substantially improve

the students’ learning procedure (Wang et al., 2016).

2.16 Predicting success

Given the amount of research on programming novices, it is fair to assume that we can

focus on specific factors influencing success at learning programming. However, several

attempts for predicting programming aptitude had limited success (Webster, 1996; Lister,

2010; Robins, 2010) as no combination of factors has been found. The most studied

factors include mathematical capability and high IQ. However, these factors have

produced better scores in other subjects (Pea and Kurland, 1984). Other influencing

factors such as positive attitude to learning, motivation and high self-efficacy have been

found to correlate with programming success (White and Sivitanides, 2002). Once again,

these factors can predict success in many disciplines and not just programming. Arguably,

programming students are similar to students in other STEM disciplines, and their

success/failure is idiosyncratic and multifaceted. Is it possible to predict success if I focus

on particular aspects of the learning process, particularly the threshold concepts of the

discipline?

Meyer and Land (2005) suggest that epistemological and ontological factors affect the

understanding of threshold concepts. They identify the pre-liminal variation as a

‘potentially important means of opening up our understanding of why some students will

productively negotiate the liminal space, and others find difficulty in doing so’ (2005, p.

384). Studies reported that the pre-liminal variation has a critical role in negotiating

liminality (Shanahan and Meyer, 2006; Shanahan et al., 2010). The pre-liminal variation

of a threshold concept plays a significant role as it reveals the students’ viewpoints and

epistemological beliefs. The variation can also help distinguish why some students manage

to cross liminality effectively while others fail and give up (Meyer and Land, 2006).

72

Meyer and Land suggest that we must go beyond the academic prerequisite checklist for

investigating the pre-liminal space. We must investigate the students’ epistemological

beliefs in acquiring knowledge and whether they want to gain knowledge the way we want

them to. Moreover, we need to check on their willingness to undergo a possibly lengthy

period of confusion without any warranty that they will be successful. Teachers must not

neglect but further explore students’ pre-liminal variation considering the apparent effects

for the ensuing students’ progress or retention (Meyer and Shanahan, 2003).

Prior tacit knowledge and experience can provide knowledge segments, supporting

students to engage with new concepts for required scaffolding and meaningful learning

(Davies, 2006; Meyer and Land, 2006; Savin-Baden, 2008). The pre-liminal variation can

be combined with students’ acknowledgement of learning identity (Perkins, 2006; Savin-

Baden, 2008). The learning identity is intrinsic in the sense of a student’s attitudes, beliefs

or dispositions towards particular contexts or experiences (Savin-Baden, 2008).

Kinchin et al. (2010) argue that determining prior knowledge is critical to understanding

how students may approach a particular threshold concept as the trajectory of approach

will be affected by what they already know. Therefore, identifying necessary previous

knowledge for students’ scaffolding learning can help them effectively inhabit, negotiate,

and cross liminal spaces (Meyer and Land, 2003; Savin-Baden, 2008). The variation can

also affect students’ sense of knowing and self-confidence, which were found to be vital

in moving through liminal spaces based on their preparedness or willingness (Savin-

Baden, 2008; Shanahan and Meyer, 2006).

Understanding threshold concepts can help students obtain deeper disciplinary

understanding that involves performance and signifies their distinctive ways of thinking

and practicing (Meyer and Land, 2003; Perkins, 2006; Davies and Mangan, 2007).

Moreover, studies have highlighted that pre-liminal variation can affect students’ ways of

thinking and practising during learning (Perkins, 1999; Meyer and Land, 2005; Davies,

2006). In this regard, if I want to have an accurate indication of student success, I must

first identify and assess background factors, such as prior knowledge and attitudes

towards learning, that are crucial for competitive programming learning.

73

2.17 Chapter summary

The literature review was critical for developing a framework for competitive programming

education. Investigating all critical components of the COI framework has given me

valuable insights for designing and implementing it. I have identified the context where I

developed the project and established the theoretical background to formulate the

learning environment. I have investigated the learning theory of constructivism and the

Problem-Based Learning approach and how they can be applied in competitive

programming. I have explored existing pedagogical models to identify the essential

framework features.

The threshold concepts theory was crucial for stimulating transformations and promoting

new ways of thinking. I have developed the Michanicos platform with similar or identical

characteristics to those identified on equivalent systems worldwide. I have investigated

methods to support the creation of mental models, optimise students’ strategies, and

discover threshold concepts with the involvement of the COI community. The literature

review was critical in the overall progression of the study. It has been the point of

reference that allowed me to see where distinctive contributions could be identified and

facilitated.

74

CHAPTER 3: Methodology

3.1 Introduction

The research study introduces and evaluates a practical framework for competitive

programming education and measures its impact on teaching and learning procedures.

The framework utilises a code-evaluation platform for increasing the students’

engagement and encourages innovative ways of thinking by utilising a constructivist

approach. I have integrated the Michanicos platform into a competitive, problem-solving

learning environment, and students became active learners through the learning process.

To assess the framework's impact on students’ learning and teachers’ practice, selecting

an appropriate methodology was critical. Such a methodology should have supported the

collection of multiple forms of data to measure the impact on the teaching/learning

processes and, accordingly, bring forth the ideas that the research has produced.

The case for combining mixed methods with action research is not new. Multiple studies

have advocated the necessity of employing mixed methods in action research studies

(Thota et al., 2012; Ivankova, 2014). Mixed methods can deliver a robust framework for

action research because it produces reliable and accurate evidence. Furthermore, in a

study such as this one where the empirical data and conclusions require performance

improvements, there is a justification for action research to utilise effective plans for

action, reflection and intervention (Lyons and DeFranco, 2010; McNiff and Whitehead,

2011; Mills, 2011). When mixed methods are applied into action research, a consistent

initial appraisal of the problem can be produced, a reliable plan of action is delivered, and

a thorough assessment of the process is conducted through an informed combination of

multiple qualitative and quantitative data sources (Ivankova and Wingo, 2018).

The combination of action research and mixed methods can support teachers/researchers

to improve their current practices by understanding a data-driven decision-making

procedure (Lyons and DeFranco, 2010). Also, mixed methods can support the

transferability of the action research results in distinctive contexts and settings (Ivankova,

2014).

75

I have used action research as a methodology for two main reasons. First, with action

research, I can improve learning and enhance the teaching and learning procedures

because it provides a systematic and reflective process to investigate problematic issues

within my discipline (Hine, 2013). Second, I can create new knowledge and theories,

generate new ideas, and justify my actions. As McNiff and Whitehead (2006) point out, a

key point here is that most literature in action research reports about improving practice

but much less for facilitating and increasing learning based on enhanced practice.

Appropriately, this can be perceived as new theories and significant contributions to the

world of ideas (McNiff and Whitehead, 2006).

I have generated theories about learning and practice to validate my claims to knowledge

(Wenger, 1998). With action research, I have developed and evaluated the framework

and made it available to the scrutiny of others within the IOI community. I was able to

communicate with other countries what I have discovered from my experiences and what

they can understand from what I have developed at the COI with the help of my learning

community. I have presented the significance of my learning and invited other team

leaders to learn from us and give us feedback by utilising the framework in their context

and learning in their distinctive ways.

3.2 Action Research approach

To determine my research paradigm, I had to examine the sorts of data I had to gather.

To evaluate the framework, I needed to analyse all of its critical elements and how they

affected my practice, and the experiences of my peers and students. Initially, I identified

the threshold concepts and embedded them in the programming tasks, which I made

publicly accessible through the Michanicos platform. I developed the platform explicitly

for this study and measured how it supported the teaching/learning processes and the

students’ progression. Moreover, I investigated the teaching practices and the

instructional tools used in other programming courses and compared them with the

framework’s components. Lastly, I wanted to assess the level of improvement in students’

ways of thinking, more precisely their strategies, by qualitatively studying their source

code. The empirical data had to be a mixture of qualitative and quantitative information

for building on their complementary strengths (Morgan, 2014). With action research, I

76

wanted to evaluate the framework's impact on teaching and learning, examine the

outcomes and community feedback and make modifications when required as creating

knowledge is a collaborative procedure (McNiff and Whitehead, 2006).

To combine qualitative and quantitative methods, I embraced the pragmatist philosophy

(Peirce, 1868; James, 1907; Dewey, 1948) and adopted the pragmatic ideas of Dewey

and his instrumental approach to finding meaning (Dewey, 1903). Pragmatism focuses on

the research results, identifying the importance of ideas, and it is a fitting theoretical

cohort for modern mixed-methods research (Johnson and Onwuegbuzie, 2004). A

pragmatist researcher can reject the concept of inconsistency amongst research practices

and systematically merge different techniques to meet the research objectives (Maxcy,

2003; Johnson and Onwuegbuzie, 2004). Multiple reports in the literature have instructed

teachers/researchers in CS to embrace the pragmatic philosophy, to use mixed methods

and to collect data from various sources such as students’ performance data and feedback

from both teachers and students (Clear, 2001; Creswell and Clark, 2011; Morgan, 2014).

Furthermore, numerous research reports asserted that the pragmatic paradigm was

favoured between researchers who studied programming ability and knowledge

acquisition and individuals engaged with the teaching and learning procedures and the

suitability of teaching tools (Sheard et al., 2009). Accordingly, the research objectives and

the pragmatic and theoretical alignment of the study aimed to improve my knowledge,

bring about change, evaluate the impact of the proposed framework and bring forth the

ideas of combining the COI framework’s key components.

Thota et al. (2012) used a multiple-paradigm methodology for research by combining

mixed methods with action research, and I firmly believe this approach fits perfectly for

my study. The study reported that the pragmatic paradigm must be adopted by

researchers who want to determine how combining paradigms and employing mixed

methods can be very supportive for action research in programming education (Thota et

al., 2012). In another report, Mackenzie and Knipe (2006) suggested using quantitative

data in supporting ways for expanding upon qualitative data. Additionally, it might be

feasible to use mixed methods in every research paradigm instead of being confined to

only a single method or paradigm. The issue above may undermine the strength of a

77

research study. I am involved in an active, dynamic and continuously evolving discipline.

The ontology of pragmatism indicates that reality is constantly scrutinised, analysed,

understood and, subsequently, the best approach to implement is the approach that gets

the job done (Iaydjiev, 2012). The notion of pragmatism encompasses the use of a

research methodology that is built on value (Johnson and Onwuegbuzie, 2004), and it

focuses on resolving real-life problems (Denscombe, 2010; Feilzer, 2010). Since all of the

research objectives could be met using qualitative and quantitative data, I am positive

that the pragmatist paradigm was the most relevant research paradigm for this project's

scope, enabling me to combine mixed methods with action research.

Although action research is typically associated with the constructivism paradigm because

of qualitative methods (Stringer, 2007), the methodology merges both empirical and

rational procedures that require multiple sources of evidence (Greenwood and Lewin,

2007). Thus, whenever action research requires a mixture of approaches, the pragmatic

paradigm can also be considered (Thota et al., 2012). In literature and theory, the action

research methodology is stereotypically situated within the qualitative research

approaches. However, multiple action research reports advocated using qualitative and

quantitative approaches, often combining them within the same research, comparable to

the mixed methods methodology (Creswell, 2012).

Moreover, action research reports highlight the application of mixed methods in action

research (Mills, 2011). There seems to be a consensus in the literature that researchers

must be comfortable with quantitative and qualitative research techniques and effectively

use both when engaging in action research. By using experimental and confirmatory data

evaluation in a single study, I can benefit from creating and verifying knowledge (Teddlie

and Tashakkori, 2009). When researchers want to assess performance, subjective

interpretations and qualitative explanations, they must combine quantitative and

qualitative techniques in the same research (Mills, 2011). Furthermore, the objective of

action research is to generate a special kind of knowledge and to support researchers to

gain an elaborated understanding of their learning environments and to be able to find

answers for troublesome issues (McKernan, 1991).

78

Action research is a methodology that combines alternative methodologies of research

that call for a significant level of researcher involvement while the research is performed.

The methodology is a repetitive cycle of the following processes: planning, acting,

examining and reflecting on the outcomes generated by the research (Zuber-Skerritt,

1992). Action research can be applied in educational settings to explore a particular issue

and to enhance the quality of the teaching practice (Johnson, 2005). Additionally, action

research offers teachers the required knowledge to reach new levels of understanding

and resolve any setbacks in their practice. The objective of action research is to enhance

the quality of life of teachers and their students by improving the teaching procedure

(Mills, 2011).

Action researchers are considered insider researchers, and they see themselves as an

integral part of the environment under investigation, often questioning collectively and

individually. ‘Is my work producing as I hope? How do I enhance it even further?’. A

tentative action plan (Figure 13) would identify and consider issues, think of possible

solutions, try them out, monitor action by collecting data, evaluate progress by making

modifications, test the legitimacy of claims to knowledge and adjust practice based on the

evaluation (McNiff and Whitehead, 2006).

Figure 11: Action research involves continuous cycles of action and reflection (Coghlan and Brannick, 2005 p.24)

I did not wish for my work to be considered an applied theory based on the work and

ideas of others but to be a knowledge creator myself. Thus, I used action research to

demonstrate how I gained an understanding to improve and validate how my practice

could contribute to new knowledge and new educational theories. Action research

empowered me to not perceive the research process as a means of professional

79

development that would simply improve my students’ performance. Firstly, it enabled me

to demonstrate innovative practices. Secondly, it allowed me to bring forth the

transforming and unique ideas within a collaborative framework. Lastly, it enabled me to

offer an original contribution by presenting the theory and findings of my practice (McNiff

and Whitehead, 2006). As Furlong et al. (2000) point out, teachers do not necessarily

consider themselves practical theorists. To do so, I must learn how to access evidence,

consider alternative courses of action and utilise such knowledge to improve practical

judgement (Furlong et al., 2000). To be considered a practical theorist, I had to engage

in the above processes.

Action research permits the inquiry of a troublesome issue and simultaneously enables

the integration of detailed adjustments to improve the course of the research. Likewise,

it provides the researcher with an increased level of flexibility which is essential when

investigating an issue or a problem with incomplete or non-existent research data (Zuber-

Skerritt, 1992). For this project, the literature findings of new-found frameworks or

systems of training were inconclusive and primarily adapted to the requirements of other

participating countries. Additionally, the identification of threshold concepts in competitive

programming was absent from the literature compared to the volume of identified

threshold concepts in introductory programming courses. Therefore, before the initial AR

research cycle, I investigated the pre-liminal variation of students, the threshold concepts

in competitive programming and certified the selected methodology. Upon the conclusion

of a cycle, when the assessment reported the degree of change, I made necessary

modifications before commencing the next cycle. These modifications usually involved

adding new tasks on the platform, modifying existing ones, reflecting on the discussions

between students and teachers and making modifications in students’ learning

trajectories.

Lewin (1946) defined a set of processes for an action research cycle: initial reflection,

planning, action, observation, reflection. McNiff and Whitehead (2006) introduced a

slightly modified version of Lewin’s cycle: observe, reflect, act, evaluate, modify and

proceed. In practice, this means identifying a specific concern with my practice, trying

alternative approaches for getting things done, reflecting upon the results, discussing any

80

new understandings with colleagues, and trying another approach based on reflections.

The process is cyclical, and it can be referred to as an Action-Reflection cycle. A single

cycle as it was conducted for the study is illustrated below (Figure 14):

As mentioned in my research proposal, for Stages 1 and 2, the pre-liminal variation, the

threshold concepts detection and integration with programming tasks occurred. In Stage

3, I used the Michanicos platform to measure students’ engagement with the associated

material. The context of the platform included the course’s modules and associated

programming tasks designed to offer a stable trajectory of learning. In Stage 4, the

collected performance data and the students’ submissions on Michanicos served as a

measurement for their progression. The scores and submissions on the platform enabled

the teachers to indicate the liminal variation and how students negotiated each threshold

concept. When assessing the performance data, there were no pass-fail criteria but rather

a comparison of earlier performance data with the associated tasks. For Stage 5, the

Stage 1
Pre-liminal
variation.
Threshold
concept
identification.
Classification
of tasks.

Stage 2
Integration of
tasks with the
code evaluation
platform.
Establish
framework
focus.

Stage 3
Assigning tasks through the
teaching process and
observing the level of
interaction with the code
evaluation platform.

Stage 4
Evaluating students’
engagement, motivation,
and experiences with the
platform. Assess colleagues’
and students’ reflections.
Determine the learning
trajectory of students based
on the liminal variation.
Report to stakeholders.

Stage 5
Methods
adjustments and
modifications for the
upcoming cycle.
Revise threshold
concepts and task
set accordingly.

Figure 12: Action research cycle activity

81

necessary modifications occurred, increasingly I added more tasks embedded with

identified threshold concepts, and the upcoming AR cycle followed.

In my study, an action learning set brought together the COI community and acted as a

support group for the entire research project. I conducted four full action research cycles,

and before each cycle, there was an analysis session of the learning set. Stakeholder

representatives, COI teachers, alumni and students met and reflected on the teaching and

learning processes, assessed the intermediate results and provided feedback on the

teachers’/students’ experience with the learning environment. Some of these sessions

took place before and after the delegations had been selected. I separated the action

research cycles from the year-round competition process. However, several action

learning set sessions were completed during the selection process, as this was imperative

for making the necessary adjustments through interventions.

The main goal of the set was to ensure that the learning produced through the framework

was as authentic as possible, and reflection was the key. The students’ feedback was

necessary to recognise their engagement with the framework. I used the feedback from

teachers for modifications and improvements on the framework and the course. Before

the start of the upcoming cycle, I considered the suggestions of the learning community,

and the required adjustments occurred. Students and teachers offered additional feedback

via the Slack social workplace (Slack, 2019) with discussion sections for each competition

round and assigned task. Students could communicate publicly through the channels

created according to their programming level or privately with educators. The latter

introduced the elaborated social component of the platform and proved the importance

of collaborative learning and continuous quality feedback during this research study.

Educational tools and innovations have empowered teachers to accumulate and distribute

an unprecedented amount of course-related data in the past decade. However, the

amount of data collected does not automatically ensure that researchers use it efficiently

to design or improve educational programmes and procedures. Action research provides

a productive methodology that guarantees that critical information will be used to

implement data-based interferences for constant academic development. Furthermore,

82

action research enables researchers to dismiss the role of data collectors to take on the

role of facilitators of critical educational change (Hansen and Borden, 2006).

A comprehensive evaluation of the framework was essential to determine if it could

accomplish its proposed educational outcomes for competitive programming education

with the following issues taken under consideration:

1. Framework scope

During the initial phase of the research, COI teachers, alumni and stakeholder

representatives met to define the desired outcomes of the framework and the practice.

The energetic involvement of the stakeholders was crucial for defining attainable goals

that would have a considerable impact on future educational changes. Furthermore, it

was also crucial to receive feedback from the alumni as former course participants.

2. Data collection

I used quantitative and qualitative methods to gain a clear understanding of the effects

of the framework. To respond to the study’s research objectives, I needed to properly

interpret the pre-liminal, liminal, and post-liminal variation and the threshold concepts

involved. I collected qualitative data by using interviews and discussions with colleagues

and students. Stringer (2007) provides a detailed introduction for conducting interviews,

specifically on the type of questions used in action research. I found valuable the type of

interviews that Stringer suggests undertaking in qualitative and action research. Moreover,

the type of questions and methods needed to make the most of the information and the

record-keeping process of an interview simplify the data analysis (Stringer, 2007).

I collected quantitative data using online and on-site questionnaires. Questionnaires are

data collection tools that enable the researcher to collect specific data from participants,

such as mindsets or knowledge (Taylor-Powell, 1998). What is crucial in questionnaire

design is determining its purpose and how the information will be used to answer the

research objectives. One of my initial concerns for questionnaire design was to include

open-ended rather than closed-ended questions. I have used open-ended questions to

gather qualitative data, enabling the participants to answer more elaboratively. However,

this type of questions was more time-consuming to analyse.

83

3. Data analysis

It is unusual to discover how researchers analysed their data in most published research.

Kirk and Miller (1986) claim that validity in qualitative research is based on what the

researchers think they see in the data, indicating signs that determine how they are

interpreted. Qualitative analysis has been regarded as impression analysis based on the

absence of detail on how the analysis is carried out (Kirk and Miller, 1986). By using

computer software in the data evaluation process, some reports claim that it can add

precision to qualitative data research (Richards and Richards, 1991).

The quantitative research analysis identified the correlation between the data from a 5-

point Likert scale on students’ perceived coding efficiency on threshold concepts and the

students’ average scores from the associated programming tasks on the platform. I have

used Kendall’s rank correlation (Kendall, 1955) to find the strength of the relationship

between the two variables. This type of correlation estimates the level of similarity

between two sets of ranks, and it is more suitable to use with discrete data (Kendall,

1955). The students’ perceived and actual coding efficiency were statistically analysed

using the Python programming language and the statistical package SciPy (SciPy, 2019).

The SciPy package can generate descriptive statistical data such as frequency

distributions.

Moreover, it can also create graphical representations and provide efficient numerical

practices such as routines for numerical integration and optimisation. I installed the SciPy

package on a machine with Ubuntu 18.04 and used Python 3.6.1 to run the scripts that

produced the results (Section 5.4). I used quantitative analysis for assessing the pre-

liminal and liminal variation, evaluating the students’ interactions and the overall students’

experience with the framework.

4. Results Presentation and Dissemination

I have introduced the COI framework to the IOI community through the IOI 2019

conference (Eracleous et al., 2019). I have used the results from this research project to

consider future framework modifications and deal with the tendencies found in the

empirical data. The COI community will continue to work towards evaluation, data

gathering and analysis to monitor the framework’s impact and distribute information on

84

how the platform addresses the scientific standards of my colleagues and the needs of

our students. Consequently, the evaluation and improvement of the framework will turn

into a continuing, reflective, cyclic procedure in the following years.

3.3 Action Research design

My research aimed to incorporate and evaluate a framework within my learning

community at the Cyprus Olympiad in Informatics for enhancing competitive programming

education. The objective was to gather data through action research primarily to measure

the impact of the framework, the growth of learning and how that improved learning could

influence future learning and teaching procedures. The real issue here was how to

accurately measure complex cognitive phenomena such as knowledge, mental models,

strategies and students’ levels of motivation and engagement from simple numbers and

variables.

Building on notions from Greening (1999), I considered Constructivism to support the

validity of the multiple viewpoints on knowledge data since it involves a significantly more

subjective view on knowledge. By gathering appropriate data, the researcher can produce

the kind of evidence that will enable the results to validate their claims to knowledge

(Whitehead and McNiff, 2006). Overall, the triptych: theory, empirical data and research

findings, was used to meet the research objectives.

Though the research examined the integration of a practical framework for teaching

competitive programming, it can potentially have broader application to every level of

programming education since I addressed it both from educational and technical

standpoints. Accordingly, the research measured performance data and the levels of

engagement and motivation with the learning environment by integrating the Michanicos

platform within the framework. Furthermore, I used action research to support the

successful passage through liminality, when it was apparent that interventions to the

students’ learning trajectories were critical. The research design I used in the study is

illustrated in Figure 13.

85

Figure 13: Research design Illustration

I scheduled the data collection at the beginning of the study because I had to use multiple

data sources. The action research methodology was crucial to assess the parameters and

the complexities associated with the teaching and learning processes with the support of

my learning community. I have used multiple research instruments for this research study

as part of the action research activity. I felt they fitted better with the corresponding

methodology, so I included them here rather than in the next chapter.

86

The research instruments supported me in gathering the empirical data, and the following

diagram presents the data provided by each group of people.

 Action Learning Set

Author

• Lead researcher and coordinator

• Data collection and analysis

• Course and curriculum developer

• Developer of Michanicos

• Administrator of CMS

• Organiser of local competitions

• Competitions’ task-setter

• Team leader of IOI delegations

• Research issues

Bebras students

• 78 participants (52 boys-26 girls)

• Recruits of COI

• Pre-liminal data

COI students

• 15 participants (13 boys-2 girls)

• Qualified for final round

• Liminal data (Michanicos)

• Perceived/Actual coding

efficiency data

• Engagement with platform

• Performance data

• Competitions’ data

• Code optimisation/Strategies

• Feedback

Focus Group

• IOI 2019 delegation (4 boys)

• Post-liminal data

• IOI results

COI colleagues

• 4 participants from other districts

• Task setters for competitions

• Lecturers for COI

IOI colleagues

• Training systems for IOI

• Training methodology

• Tools’ applicability

• Appendix 13

Alumni

• 13 participants (13 boys)

• Threshold concepts identification

• Task-setters

Stakeholders

• Two representatives from the

Ministry of Education and Cyprus

Computer Society

• Rules and regulations of COI contest

• Dissemination of results from COI

competitions and IOI participation

87

1. I used an extensive literature review on concepts such as learning theories, pedagogical

models, threshold concepts, research methods and statistics, action research, mental

models, strategies, conceptual difficulties, educational tools, online judges, learning

programming by competitions, teaching methods, IOI tasks from the past twenty years,

approaches and tools for competitive programming education, specific IOI training

methods from scientific journals and IOI countries’ reports.

2. I used a qualitative analysis of questionnaires (Appendix 2) before the initial action

research cycle. The COI alumni have been energetically engaged with the learning

community. An expert group of thirteen individuals, all above 18, consisting of past IOI

contestants, provided the documentation and analysis of the threshold concepts and

assessment of the liminal variation. Additionally, they clarified the students’ requirements

regarding preparation, feedback provision, task complexity, ways to increase motivation

levels and shared their experiences with code-evaluation platforms for solving

programming tasks. Predominantly qualitative information from open-ended questions

was gathered (Appendix 2). I wanted to understand specific concerns, explicitly identifying

and examining threshold concepts, as their views were of exceptional value and

significance.

Two groups consisting of seventy-eight recruits and fifteen COI current students between

11 and 17 years of age, the participants in the competitions, were given a pre-course

(Appendix 1) and a post-course questionnaire (Appendix 3), respectively. The pre-course

questionnaire for the recruits was primarily focused on understanding the pre-liminal

variation in the learning engagement. I investigated general information and computer

literacy to identify prior knowledge and individual work ethic and initiative. I used the

post-course questionnaire with current COI students to identify the liminal variation. It

collected student views regarding their perceived coding efficiency and their overall

experience with the learning environment using the Michanicos platform. The design of

the post-course questionnaire was equivalent to the pre-course. However, I used more

open-ended questions with the post-course questionnaire to receive quality feedback

regarding the learning experience.

88

With the questionnaires, I intended to discover unique ideas of how students perceived

the framework and its essential components and gather feedback on the learning

environment. Additionally, I wanted to identify the distinctive ways students perceived the

learning procedure. The questionnaires revealed the concerns related to student

commitment, enthusiasm, performance, and setbacks in learning threshold concepts.

They also focused on the interactions with the Michanicos platform, the programming

tasks, the simplicity of the interface, and, lastly, the framework’s limitations and potentials

in general. Both questionnaires were administered on-site, and they were anonymous so

that the responses would be as elaborated as possible.

3. I used a qualitative analysis of the discussions with other IOI participating countries

(Appendix 13). I was concerned with gathering expert knowledge on methods of IOI

training, and I wanted to investigate how these methods affected the students’

programming strategies and negotiations with the threshold concepts, as they were

introduced in the programming curricula of other countries. I focused on verifying the

identified threshold concepts and the training methods used for IOI preparation. The

support and guidance of the IOI community throughout the years had a tremendous

impact on the development and establishment of the COI framework.

I used interviews with a focus group of four COI students (Appendix 4), namely the Cypriot

IOI delegation of 2019, to understand why some students face reasonably fewer

difficulties in understanding specific threshold concepts. I did these interviews separately

from the competition process, and only a small sample of students participated. As these

students interacted with the learning environment, they demonstrated increased

receptiveness in engaging with the competition rounds, the programming tasks and the

course context. The IOI 2019 delegation provided information on the pre-liminal, the

liminal and most importantly, the post-liminal variation. I used these semi-structured

interviews to identify different aspects of motivation for externalising the discrepancies in

learning engagement. These students showed performance improvements and

demonstrated optimal programming strategies. These improvements indicated a

potentially transformative experience, and it was critical to identify how these four

students negotiated liminality successfully. Therefore, I had to identify the qualitative

89

nuances and details of the students’ effective negotiation using the selected methodology.

Accordingly, the epistemological views from the students’ pre-liminal and post-liminal

variations were evaluated and analysed.

4. I used the action research methodology for integrating the framework into the COI

course and investigating the features of the framework. With the support of my learning

community acting as an action learning set, I have utilised the framework in the five

districts of Cyprus, and I introduced the Michanicos platform to enhance my teaching

practice. I have assigned complex programming tasks with identified threshold concepts

and evaluated students' performance data throughout the COI course and local and

international competitions.

I have been actively involved with a community of practitioners through IOI competitions

as the team leader of Cyprus in IOI for the past five years. Moreover, I have been a

member of the scientific committees of BOI 2016, BOI 2019, and JBOI 2020. I was able

to explore the methods used by other countries, mainly in conferences and workshops

organised during international events. By being energetically involved in a worldwide

community of individuals striving to empower the next generations of computer scientists,

I obtained valuable knowledge on programming education, contest organisation and

technological innovations. Furthermore, my participation in the IOI community allowed

me to appraise the influence of an international community on the teaching and learning

processes of competitive programming globally.

Within this research, being a teacher and researcher was difficult. I was situated within

the educational setting under scrutiny and, simultaneously, I was also responsible for

organising and supervising the research study. I was determined to engage the research

objectively and efficiently, so it was critical to differentiate between the two

responsibilities. To be a productive teacher and a researcher, I have a duty to myself, my

peers and my students to participate in significant educational research. I will discuss my

positionality more extensively in Section 3.5.

90

The research findings will improve my knowledge and significantly impact what will take

place in my learning community and my discipline. I have shared my research experiences

to help my peers with their own research goals alongside this journey of fulfilment. I am

positive that upcoming directives of educational improvements and curriculum

enhancements will be affected by the ideas I have produced through the inquiries and

comprehensive investigation of my research project, as well as through my practice

initiatives. Engaging in educational research significantly impacted me as an individual and

educator. Additionally, it demanded a considerable amount of gratification for participating

in a research project that had a considerable effect on the teaching and learning

procedures and the lives of the students involved.

This project has contributed to the IOI community providing a sustainable framework for

competitive programming education. Furthermore, the selected methodology for this

research study has enabled me to accurately measure the benefits of integrating the

framework into my practice and authenticate its enhancements in the COI community.

Verifiably, combining mixed methods with action research can deliver more substantial

and manageable outcomes by incorporating qualitative and quantitative results to

facilitate planning, implementation, assessment and adjustment (Ivankova and Wingo,

2018). Understandably, the selected research methodology has been vital for generating

all of the unique ideas of this research project and successfully combining all of the

framework’s components into a process of action and reflection.

The project study lasted one year, the same time required for the delegations’ selection

process through competition rounds. Before the study, I informed the MOEC (employer

and policymaker) about the research objectives, time frame, and study subjects.

Additionally, I have received written permission from the CCS to comply with the MORE

form, as with all of the research projects carried out under the MOEC’s authority. I will

present more details regarding the ethical considerations of the study in the following

section.

91

3.4 Ethical Considerations

Ethical considerations have initially been presented in my research proposal and are of

critical importance for researchers in education. Academic research is focused on the

knowledge and performance of humans. Therefore, I must enforce that it will not

embarrass, disturb, startle, force and undesirably influence the people participating in the

research. To address this issue, I have carefully followed the ethical guidelines from the

MORE form and the governing authority of the CCS for conducting this research.

Upon registration at COI, I have received initial consent from the parents of students as

they have signed a document (MORE form) stating that students' scores can be exploited

only for statistical analysis during the programming competitions. The competitions’ scores

are publicly announced for sharing the results of the qualification rounds without releasing

any personal data. The CCS only discloses students' data on reports declaring the national

delegations, award invitations and congratulating team members for their success.

Educational researchers confirm that educational research can help students boost their

academic performances (Gbollie and Keamu, 2017; Razak et al., 2019). Hence, it must

continue to be an essential aspect of social and educational practice. If I acknowledge

that research can impact knowledge acquisition and, eventually, human development, it

is critical to contemplate the ethical requirements to prevent interference with human

rights (Tuckman and Harper, 2012). To get approval to research within the educational

system of Cyprus, I have applied for permission to the Cyprus Computer Society (CCS)

and the principal of Palouriotissa Lyceum (MORE form) and established specific

regulations. I formally informed the CCS about my project scope, research methodology,

time frame and a rigorous ethics checklist. I prepared formal consent documents with the

cooperation of the CCS to notify participants and the MOEC about the research (MORE

form). When I earn my degree, I must present the study's outcomes to the CCS and the

MOEC.

The study involved examining the methods of teachers and opinions of students using

interviews, so it was essential to maintain confidentiality and ethical guidelines. From the

beginning, my peers were aware of their commitment to the project regarding the

92

interviews. Peers and students trusted me to investigate their methods and responses

through their qualitative feedback. It was also critical to confirm that individuals

acknowledged that the research was conducted anonymously so that the trust was not

negotiated. I established the consent of the participants by signing the consent document

using Middlesex University’s ethical standards from the consent document templates

(Research Ethics, 2019), the framework for research ethics (ESRC, 2015) and the MORE

form. In addition, I ensured the parental written consent for interviewing students and

informed the parents regarding the nature and the scope of the interviews (MORE form).

I carried out the study with thirteen alumni students that competed in IOI and BOI

competitions in previous years, but they are currently not eligible to participate. The

alumni filled out online questionnaires (Appendix 2). Another group of seventy-eight

recruits (11-15 years of age) and fifteen current COI students, including the Cypriot

delegations of IOI 2018 and IOI 2019, were also asked to complete questionnaires

(Appendixes 1 and 3). I was granted parental written consent, and the deputy leader was

present during the research, especially when underage students were involved.

With action research, I had to investigate within my practice by assessing the introduced

framework in collaboration with my learning community. I investigated how the framework

impacts the teaching and learning procedures as the COI students used the Michanicos

platform to solve programming tasks associated with the identified threshold concepts. If

there are ethical concerns about principles, discretion and anonymity, they can make

individuals tentative to complete a questionnaire or participate in an interview. However,

I have taken all the necessary precautions to establish ethical standards with my research

study.

The consent documents for the alumni participants and the parents of students had to be

written in Greek. The CCS established the rule as the participants were under the authority

of the MOEC. I have uploaded the translated versions of the consent documents to the

MORE form. Additionally, I used consent documents to obtain the students’ data for the

necessary travel information and acquire the parents’ permission to escort them abroad

93

to participate in international programming competitions (Appendix 5 and 8). Each host

country required an additional letter of permission (Appendix 6).

Overall, I have addressed all the primary requirements for performing ethical educational

research as requested by the MORE form. Specific guidelines guaranteed no misconduct

occurred, no harm was caused to participants, no absence of participant consent, no

misconduct occurred, and no fraud was implicated. The initial authorisation I obtained

from the CCS (Appendix 10) approving me to complete my research verifies that I

addressed every required ethical standard.

3.5 Positionality in research

Positionality reflects the stance that the researcher has decided to adopt within a research

study. It affects both how research is conducted, its outcomes, and conclusions. Savin-

Baden and Major (2013) classify three fundamental ways a researcher can recognise and

develop their positionality. First, locate themselves in the subject and acknowledge

personal views that may affect the research. Second, locate themselves about the

participants and consider how they view themselves, as well as how others view them.

Third, locate themselves about the research context and acknowledge that the research

will be affected by themselves and the research context (Baden and Major, 2013).

However, no matter how reflective a researcher is, there will always be some form of

subjectivity. Therefore, while exploring positionality, researchers gradually need to identify

areas with potential bias and consider them (Richie et al., 2013).

For my research, I have undertaken the dual role of a teacher-researcher. I have a

fundamental understanding of the epistemology of the insider action researcher (Costley

et al., 2010). One mistake I wanted to avoid was considering my research role as an

outsider rather than an insider, committed to the students' success in the study. It is

misleading to separate a teacher’s practice from the study of the action research outcomes

in a setting (Herr and Anderson, 2005). When researchers authentically view themselves

as insiders engaging in action research, they focus more on individual and collective

change derived from actions within the educational setting (Anderson and Jones, 2000).

These studies are more likely to engage in the traditional action research cycle of planning,

94

acting, observing, and reflecting (Lewin, 1948). The elaborated understanding of the

practice and settings that result from these studies represents the outcomes of self-

reflective research (Herr and Anderson, 2005).

Nevertheless, the type of thinking required for action research sits awkwardly between

the intuitive decisions of the teacher and the rational and explicit analysis of the

researcher. Atkinson (1994) suggests that the two parts of action research tend to work

against each other. The roles of the teacher and the researcher are distinctly different and

can be predisposed to be in conflict and create tensions (McNiff, 1988). McNiff (1988)

suggests switching focus while engaged in a systematic and disciplined inquiry to deal

with these tensions. To establish a balance between the two roles, I had to adopt the

logical thinking of the teacher-researcher engaged in action research and always maintain

my focus on the research objectives.

The tacit knowledge I have acquired over the past decades of teaching competitive

programming raised some epistemological issues. My tacit knowledge enabled me to ask

insightful questions and produce more accurate descriptions based on the understanding

of the community. However, biased and impressionistic tacit knowledge, which is apparent

to the insider researcher, may not be well articulated or clarified in the research and,

consequently, the thesis. Moreover, as a true believer in my study and practice, I

acknowledge that I have to establish procedures for dealing with bias and prejudice.

I am currently the teacher with the longest tenure in COI. My relationship with colleagues

and students has been productive and supportive throughout the years. Working with

other insiders has multiple benefits for a learning community with a common goal.

Although this was my research from framework design to course integration and data

analysis, my colleagues supported me throughout the study. Their feedback was

invaluable because I was able to discuss the issues presented, consider their suggestions

regarding the teaching and the research process, and use their consultation to decide the

course of action.

95

My primary concern was conducting my research with the same students I had to prepare

for the International Olympiad of Informatics. Understandably, I was concerned about

possible dual role conflicts resulting in poor performance at the students’ expense. At the

same time, I was concerned that my focus on the students’ success at IOI would lower

the quality of the research. Balancing the two roles was one of the most challenging

responsibilities of the study. I had to dedicate my time efficiently to review performance

data, make critical adjustments for my students, colleagues, and myself, and gather

qualitative and quantitative data to reach my research objectives.

Methodologically, I decided to use the IOI competition to evaluate student progress and

framework effectiveness. When it comes to high-school programming standards, nothing

is more complex than the tasks students have to solve in the yearly IOI competition.

Therefore, my research and specifically the COI framework was not only assessed to

identify whether students liked it or not. The empirical data included a significant amount

of performance and contest data to measure the students’ progression and the

framework’s impact.

As part of the research process, I have paid particular attention to my multiple tasks as

an insider action researcher and a teacher to the participants and the learning community

I conducted the research. I acknowledge that there may be several implications where

my role and power of influence within the COI community can potentially affect the

research process regarding data gathering and interpretation. I have made it my conscious

and continuous effort to engage in a reflective approach with my action research set and

my supervisor to develop and introduce the new COI framework. I had to ensure that my

positionality could not affect the research findings and not impose my ideas on the

participants. I believe that as a teacher-researcher, I have a moral directive to secure

integrity. Moreover, I have an obligation to the participants who have consented to allow

me to explore their views and ideas, treat them respectfully and guarantee that I

appropriately disseminate the outcomes of my research.

96

3.6 Chapter summary

Within this chapter, I offered a justification for the selected research methodology. With

the combination of action research and mixed methods being at the centre of the research

design, I presented the main reasons for selecting and adopting this specific research

methodology. I have used a wide range of data collection techniques and detailed data

analysis to align with the pragmatic paradigm. Ethical considerations were critical in the

investigation to safeguard that no unethical conduct occurred and no participant was

made to feel awkward for the duration of the research process. I acknowledged my dual

role as a teacher-researcher, how I recognised and dealt with tensions, and clarified my

positionality in the research.

97

CHAPTER 4: Project Activity

4.1 Introduction

In chapter four, I present the main activities of the research project. I adopted the action

research methodology to evaluate the impact of the proposed framework, facilitate the

interventions used to promote student engagement, support ways of inquiring liminality

and identify the distinctive programming strategies involved. The framework’s learning

environment was grounded on the educational theory of constructivism that provided the

theoretical foundation of situated cognition. I developed the framework based on four

fundamental pillars as discussed in earlier chapters: the pedagogical model of a learning

community, the instructional strategy of the problem-based learning approach, the online

technologies of Michanicos and CMS, and the worked examples. A productive learning

environment must introduce real-life problem-based settings for learning and support

knowledge construction, with special teacher assistance and peer support, within a

learning community. I have evaluated all of the above features with the support of

colleagues, alumni, and students.

Michanicos provided a valuable asset for implementing the constructivist approach using

problem-based learning (PBL) with scaffolding to support problem-solving. Based on the

literature, I anticipated that PBL would have helped students engage deeply and

demonstrate much more efficient problem-solving abilities (Hmelo-Silver, 2004; Brush and

Saye, 2008). Therefore, I chose the PBL approach due to its straightforwardness,

composed form, and the disposition to require extended teacher supervision and feedback

provision (Hmelo-Silver et al., 2007).

Two crucial components of a constructivist learning system are the teaching/learning

component and the learning outcomes assessment. The continuous assessment of the

acquired knowledge regarding the threshold concepts for individual students was essential

to keep track of whether the learning was moving in the right direction. The COI

framework incorporated both of these components to provide scaffolding in an authentic

context, engage students with the complexity of the programming tasks, initiate social

negotiations, and achieve a greater understanding of the concepts.

98

4.2 Research study activity: The COI framework design and focus

I have undertaken this research study as a teacher at Cyprus Olympiad in Informatics

(COI) and the team leader of the Cypriot delegations in international programming

competitions. My goal was to design and evaluate the COI competitive programming

framework utilising a code-evaluation platform to improve my learning, teaching practice

and students’ performance. The research study was conducted cooperatively with 125

participants of the COI community, students, alumni and colleagues from the five districts

of Cyprus.

I was initially concerned with several setbacks from the previous teaching methods at COI

and the potential of the new framework. Students stuck in liminality demonstrated poor

coding behaviours and tended to memorise large code patterns without having any

interpretation of the code's rationality. Other students failed to write correct solutions,

which led to their disappointment and irritation. I designed the proposed framework to

support students in developing the required programming skills and improving the learning

process. It was developed to encourage powerful ways of thinking, and all of the elements

were thoughtfully constructed for that specific reason. The framework’s components were

essential, and the way I integrated them into the study determined the level of

effectiveness the framework produced. I gave particular attention to the design of each

component and their merging to create the learning environment. The framework’s

elements are presented in the table below:

Components Procedures

Methodology

It adopted a constructivist, problem-solving, competitive
environment on a code-evaluation platform. The platform was
utilised as a repository for programming tasks and associated
performance data for each student.

Programming tasks
The programming tasks were connected to identified
threshold concepts and IOI concepts of equivalent complexity.

Computers
It promoted the personal use of a computer with installed
compilers and access to the framework’s components. Sample
code was readily accessible to students.

Lectures
Teachers introduced a programming task, assigned the
associated task set, evaluated the students’ performance data
and intervened when needed.

99

Collaboration
It encouraged interactions between teachers and students
through a social workplace and the public discussions sections
associated with each task.

Ways of thinking
It supported students until they reached a level of
competence to solve complex tasks on their own using
optimal strategies.

Table 3: Framework outline for competitive programming education

I divided the research project activity into three sections: the framework’s development

and integration, the course material and the programming tasks development/distribution

and the assessment of the students’ performance and experience. The research evaluated

the performance data, competitions results, and students’ feedback, behaviour and

learning involved. The following is a justification for designing the framework based on

the context and the limiting issues of the previous teaching methods and provides a

rationale for action research.

Based on the action learning set, one troublesome concern with previous teaching

approaches was the constrained association of computer usage and weekly lectures,

maintaining practice and theory divided into distinct procedures. By integrating the

Michanicos platform, the framework’s most vital component into the teaching process,

theory and practice merged. The lectures’ notes were accessible within the platform and

provided the scientific background for the identified threshold concepts and support for

negotiating with the associated tasks. The merging led to establishing a distinct learning

trajectory for all students, certifying that the post-liminal space (Meyer and Land, 2003)

was within reach.

Another requirement of the proposed framework was a determined personal effort as

relying solely on talent was inadequate. Talented students have been unsuccessful in

former Olympiads as they have exhibited effortlessness throughout their training. I

designed Michanicos to stimulate students to solve problems and accumulate points with

code writing and promote self-development as students were ranked accordingly. Many

programming tools were accessible through the internet (Malmi and Helminen, 2010;

Cutts et al., 2011). However, none was appropriate for the competitive programming

teaching and learning processes since they would arguably fail to engage and motivate

students over an extended period.

100

An additional crucial component of the framework was the Contest Management System

(CMS, 2019), a distributed system for organising and administering programming

contests. The CMS promoted knowledge acquisition via the organisation of programming

contests by establishing learning objectives for all the participants. The programming tasks

used in the competitions were associated with the identified threshold concepts and

assessed the innovative abilities of the contestants. The tasks were complex and unknown

and required an optimisation of known algorithms and approaches to be solved optimally.

Each task’s complexity was defined by its time and memory constraints and the quality of

the associated test cases, so these were addressed appropriately.

I used flexible time constraints and trivial test cases to reduce the complexity and make

an IOI task solvable for novice and inexperienced programmers. However, a partial

solution attained only a small percentage of the total points available. Contrary to the

optimal solution, a partial solution only solved the trivial test cases for the manageable

subtasks and generated incomplete results for the remaining subtasks. Optimising code

and, consequently, improving ways of thinking are essential requirements of the

framework. The students’ determination to complete partial solutions, and increase their

performance scores, establishes the degree of self-development and defines the direction

of their learning trajectories.

Another challenge the COI instructors had to face was the assessment of source code.

The process of assessing the students’ programmes was time-consuming for COI

educators in the past as it was done manually on a personal computer. To resolve the

issue above, I have considered including online judges in the training procedure (Combefis

and le Clement de Saint-Marcq, 2012). The advantages that online judges offer are the

automatic examination and assessment of source code and providing feedback to the

users. Irrespective of the vast availability of online judges, multiple concerns were raised

by the COI colleagues about the scope, usability, and appropriateness of the included

programming tasks. Developing the code-evaluation platform with a suitable set of

programming tasks and the capability to deliver real-time assessment and feedback was

a challenging project. However, the Michanicos platform made students’ learning

experience much more meaningful. The platform supported the teachers and

101

administrators in their daily responsibilities, such as creating and assigning tasks,

assessing learning trajectories and cooperating with students. Consequently, the

framework has reportedly supported both the teaching and the learning processes for the

COI community.

To summarise, the framework’s integration, intended to improve the following areas of

the teaching and learning processes and the students’ accomplishments were used as

means of measurement:

• Students’ engagement: Students’ level of engagement with programming concepts

can be measured and allows students to demonstrate their skills more efficiently.

For defining the students’ achievements and their degree of engagement, the

teachers have to assess the frequency, the time frame and the accuracy of the

submissions for the assigned tasks sets.

• Students’ strategies: When students solve complex programming tasks, they verify

what they know, and within the framework’s requirements, they have to find the

optimal solution with limited or no help at all. The method begins with discovering

the algorithm, writing the source code and testing and adjusting the result upon

submission. Students’ achievements are identified when they demonstrate the

application of empirical knowledge with innovative approaches for solving an

unfamiliar and complicated programming task with an unknown and challenging

set of test cases.

• Technology: The interaction with the technical aspects of the learning environment

enables students to increase their proficiency with the usage and understanding

of modern technology. Students’ achievement is their ability to navigate the

platform’s interface and test their programmes effortlessly. Additionally, through

the platform, they become accustomed to retrieving and analysing the task

statement, creating a programme, identifying and correcting syntax errors and

submitting their source code.

• Programming tasks: The framework contains a meticulously designed task set of

distinctive difficulties embedded with the identified threshold concepts. Students’

achievements are the accumulated scores for the assigned set of tasks and the

individual effort for a systematic improvement of performing on every set.

102

• Transformations: The framework supports the students’ induction into the learning

community and initiates their transformations. Most former COI students will use

their knowledge and abilities to solve real-life problems, engage in scientific

research, achieve individual and academic advancements and flourish as new

computer scientists.

4.3 Research study activity: Course context and format

I created the COI course design, which involved weekly lectures in computer laboratories,

programming tasks assignments, interactions with the Michanicos platform and the social

negotiations with the Slack social platform. I separated the lectures into three phases,

and at the end of each phase, there was a programming competition. The first and second

competition rounds had a qualifying purpose, while the third competition determined

Cyprus’ delegations for international competitions.

For the requirements of this research study and for effectively integrating the framework

into the COI course, I organised the syllabus for 36 weeks between September 2018 and

May 2019. The curricula included concepts regularly contested in IOI and the threshold

concepts that I have identified in the study. The course was not an introduction to

programming. Some prior programming knowledge was required as most topics are not

included in any local high school curriculum. However, I recruited several students with

no prior programming knowledge. They were assigned a slightly easier task set and

received additional scaffolding for phase one. Each week, I taught two-hour lectures for

three programming levels (juniors, sophomores, seniors), and I assigned associated tasks

to students. The lectures focused on introducing a programming task, providing a worked

example, and discussing and assessing potential solving strategies with students.

I used the C++ programming language for providing worked examples to students

through lectures but encouraged students to use different programming languages if tasks

were more manageable using Python or Java. Students were expected to solve the tasks

assigned on the Michanicos platform and communicate any issues they faced through

Slack with me, their teachers, or their assigned peers to promote collaborations for solving

the tasks. Slack is a social workplace that enables users to communicate and share files

103

and other material with other students and teachers. I prepared the lecture notes, and

the worked examples through an extensive literature review. I used many visualisations

and code-snippets to make them more comprehensible and more natural to grasp by

novice students. Each week I introduced a new topic, provided worked examples and

assigned new and unknown tasks. The number of tasks associated with each topic was

continually increasing, and I adjusted the task set to the programming level of individual

students. Additionally, I created new tasks and added them to the platform to adjust to

the needs of students who qualified and tackle possible stuck points of students who did

not qualify to competitions rounds. The course material and resources are publicly

available on the COI website (2019).

I used scaffolding to support the PBL approach in all phases of the curriculum. Scaffolding

in the first phase was introduced at the code-implementation level, where students were

given partial code and asked to complete it. This implementation-level scaffolding was

essential for novice programmers because they lacked sufficient programming experience

and knowledge to construct an optimal solution independently. Scaffolding in phase two

was at the design level, where students were guided through the design steps for the

programme solution and were required to optimise their code and improve their strategies.

This design-level scaffolding was necessary for effective programmers to become expert

programmers. For phase three, scaffolding was limited and was confined to discussions

with peers.

The thought process I used to create the programming tasks continuously affected the

students’ programming capability. The process provided scaffolding for discovering good

programming strategies, as students’ work was constantly guided by the performed

subtask classification, particularly for phase three. The programming tasks were as

informative as possible. They always included sample input/output explanations or

examples with expected outcomes, which provided further support for verifying the

correctness of a created programme. Moreover, the Michanicos platform provided basic

scaffolding with customised messages depending on the quality of the submissions. The

platform provided some scaffolding for the programming tasks. It allowed better allocation

of resources as teachers spent more time on more demanding scaffolding and had more

104

time to reflect on the outcomes. The following table shows the generalised scaffold design

that I used in the course:

1. Programming Assignment: Task statement

• General information: topic, category, level, C++ worked-example

• Background: Scenario, additional info (formula, graph, visualisation)

• Task (categorised)

• Input (format and sample): Time/Memory constraints and examples

• Output (format and sample): Time/Memory constraints and examples

2. Scaffolding

A. Worked-example

Worked-example (Time/Memory complexities)

I. Task statement

• Task characteristics

II. Solution

• Spoiler

• Algorithm

• Programme structure

• Required strategy

• Optimal solution

B. Support

• Task concept (Teacher)

• Programming concept (Teacher)

• Solution description and support (Teacher, Peers)

• Programming design [Michanicos)

• Social negotiations (Slack)

105

For this research study, the weekly schedule below was scaffolded in the following three

phases of increased difficulty. The topics assigned with each phase are based on IOI

standards and represent the programming thresholds associated with different age

groups. Scaffolding was gradually reduced as students progressed through the phases:

Phase One:

Topic Duration Tasks

Programming structures Weeks 1-4 25-30

Basic algorithms complexity (Big O notation) Week 5 2-4

Arrays (1D/2D) Weeks 6-7 8-10

Basic Data Structures: Vectors, Stacks, Queues Weeks 8-9 8-12

Sorting algorithms: O(N2) Bubble sort,
Insertion sort, Quicksort

Week 10 6-8

Searching algorithms: Complete, Binary Search Week 11 4-6

Basic string manipulation Week 12 4-6

Phase Two:

Topic Duration Tasks

Functions and Recursion Weeks 13-14 4-6

C++ STL: Maps, Sets, Pairs, Priority queues Week 15 8-12

Graph theory (Adjacency matrix/list) Weeks 16 4-6

Graph traversal (BFS, DFS) Weeks 17-18 8-12

Shortest Paths (Dijkstra, Floyd-Warshall) Week 19-20 6-8

Minimum Spanning Trees (Prim, Kruskal) Week 21-22 4-6

Problem-solving paradigms Week 23 4-8

Intro to dynamic programming (Fibonacci, coin
change, subset-sum, LIS, Knapsack)

Weeks 24-25 10-12

Phase Three:

Topic Duration Tasks

Advanced graph theory (DAG, Topological
Sort, Strongly Connected Components)

Weeks 26-27 2-4

Trees (Segment trees, Binary Indexed Trees) Week 28-29 8-10

Number Theory (Prime numbers, Modulo
arithmetic, Big Integer)

Weeks 30 4-6

Advanced string algorithms (Knuth Morris
Pratt, Rabin-Karp, Suffix trees)

Week 31-32 6-8

Computational Geometry (Convex Hull, area of
a polygon, line intersections, closest pair of
points)

Week 33-34 4-6

Dynamic Programming Optimisations (Convex
Hull, Divide and Conquer, Knuth)

Weeks 35-36 8-10

Table 4: Three phases of COI programming curriculum

106

Between each phase, I organised an on-site programming competition. The following

competition format was followed to determine the final delegations:

• Preliminary round: Just before the Christmas holidays, four preliminary problems

were publicly announced on the Michanicos platform, and students were granted

two weeks for submitting solutions. The student scores were not accumulated to

the first-round results.

• First round (four problems - three hours): The tasks were based on the topics from

phase one, and students who scored 50% of the total points of the first round

qualified for the second round.

• Second round (four problems - four hours): The tasks were based on the topics

from phase two. Students who qualified from the first round could compete, and

the top twenty students qualified for the third round.

• Third round (IOI/BOI Selection) (four problems - five hours): The tasks were based

on the topics from phase three. Based on the third round results, the IOI

(Azerbaijan) and the BOI (Greece) delegations were formed.

• JBOI/EJOI selection round (four problems - four hours): The selection of the

JBOI/EJOI team (Slovenia) was based on the topics from phase two. Students who

competed in the first round and were eligible with JBOI/EJOI age requirements

could compete (up to 15 years).

I used the latest version (1.4) of the Contest Management System (Maggiolo and

Mascellani, 2012; CMS, 2019) as the official contest environment for all of the competition

rounds. CMS is a free and open-source grading system initially used in IOI 2012 in Italy

and, except for IOI 2016 in Russia, every IOI ever since. CMS was developed to provide

a scoring system that served the demands of a large-scale programming competition, with

particular attention on security and adaptability.

Perhaps the most valuable quality of CMS was that it was built for the IOI community and,

accordingly, several countries have used it in their local competitions. We began using the

CMS (Figure 14) with our local programming competitions in 2014. This innovation has

offered our delegations a critical advantage as they were getting familiar with the

programming environment through the COI framework before taking part in the IOI. In a

107

recent development, the CMS now contains the IOI tasks from previous competitions so

students can practice by selecting the contest of a specific year.

Figure 14: The interface of the Contest Management System with the third-round tasks

I completed the setup of CMS for local competitions on a single server machine that was

running the services and handled the submissions. In BOI 2016, the technical committee

utilised version 1.3 of CMS, and the arrangement was on three different machines. The

first machine was executing only the necessary services, and the remaining two machines

were processing the submissions. There were four workers (software that executes the

jobs) on every machine for twelve workers. The technical specifications for the machine

are as described below: processor: Intel i5-3470 3.2Ghz, main memory: 4 GB, secondary

memory: 256 GB, SSD drives (128GB x2). As soon as each contest was finished, the

programming tasks were migrated to Michanicos and became accessible for practice.

4.4 Research study activity: Integration of the Michanicos platform

The Michanicos platform has fulfilled an essential requirement for the COI community and

its instructors, who required more effective ways of sharing and assessing tasks and

running monthly programming contests. With the platform, I provided a localised online

judge with an interface that supports the Greek language. It is an open-source project

built upon CMS and the CMSocial engine (CMSocial, 2019). The platform’s server machine

108

has the same technical characteristics and specifications as the CMS machine. The CMS

and Michanicos are currently located in the server room at my school, Palouriotissa

Lyceum (Figure 15), and I am responsible for their year-round administration, monitoring

and maintenance.

Figure 15: The Michanicos platform and the CMS

The need to integrate an online judge into effective programming education originated

from my desire to offer students a unique educational tool, improve the academic and

technological competence of my community, and promote the ongoing success of Cypriot

delegations in international programming contests. As a result, I integrated the Michanicos

platform into the learning environment of the COI community in 2018.

Michanicos has established itself as an active competitive system publicly available to

aspiring programmers and secondary and tertiary education teachers and students. The

platform was a considerable addition to the COI. As reported (Appendix 13), not many

countries participating in IOI have their own localised code-evaluation platform due to a

lack of expertise or time to administer it year-round. The administration and management

of the Michanicos platform are equally demanding as its development and implementation.

109

I set the following objectives during the platform’s course integration phase:

• To improve the availability and usability of algorithmic/programming tasks and to

create a vast, remote task repository. The tasks were easily accessible to the COI

community, and reuse and sharing resources were encouraged.

• To offer a more significant pedagogical character to the learning environment by

developing an intelligent system with real-time evaluation of tasks categorised into

different tags and increasing difficulty levels.

• To decentralise the course management and allow each COI teacher to easily

create, select and assign different tasks and assignments through the platform.

• To be utilised as a source code database, student scores and communication

repository so that all data could be analysed and evaluated at any point.

• To offer an interactive, multilingual user interface so that other countries and non-

native students could easily use it.

• To organise monthly programming competitions to challenge students, promote

competitive programming learning and instruction and support the formation of a

practical learning framework for all programming levels.

• To establish a community of educators and students at the local and international

level for sharing experiences and knowledge.

• To examine the possibility of working with a distributed system supporting

automatic evaluation so that the field of application of the code-evaluation

platform can be extended to other programming courses.

For the successful utilisation of the Michanicos platform, the following areas of attention

were revised continuously and were evaluated comprehensively:

1. Development and implementation of the task repository: The programming tasks of the

repository were assigned to the learning objectives. The threshold concepts identified and

analysed with the action research methodology were embedded and associated with

specific tasks of increasing level of difficulty. Each task was explicitly tagged with the

associated threshold concept and the corresponding level of complexity.

2. Improvement of the evaluation engine: The responsiveness and evaluation times of the

platform were continuously evaluated as it was essential to provide students with prompt

110

and valuable feedback upon submission. I collected feedback from students regarding the

pedagogical and technical functionalities of the platform.

3. Integration of the code-evaluation platform: Integrating the platform into the learning

environment for assigning tasks and automatically evaluating and assessing the students’

submissions provided numerous advantages for teachers and students. One of the most

significant advantages was that I managed to identify the liminal variation for each

threshold concept for each student based upon the way they interacted and negotiated

with each task.

4. Platform evaluation and promotion: To determine the platform’s effectiveness on the

teaching/learning processes, I collected qualitative and quantitative data from the

teachers/administrators and students/users. The monitoring and assessment of the

platform were performed both from the teachers’ and the students’ perspectives. Further

promotion of the platform was supported by CCS conferences, COI workshops, book

publications with associated tasks on the platform and local programming competitions at

all levels of education.

After two years of development and testing (2016-2018), the Michanicos platform was

available online. It was introduced successfully during the Easter training camp in April

2018 at the University of Cyprus. The initial responses and reactions from the

approximately forty students and colleagues actively using it during the camp were very

enthusiastic and encouraging. Multiple tools and online systems have been introduced for

supporting programming education (Laakso et al., 2005; Crescenzi and Nocentini, 2007;

Kaila et al., 2009). Regardless of their effectiveness, all available tools and systems will

produce authentic results and have genuine scientific significance if employed and utilised

correctly. Several measures have improved the platform’s efficiency, like the initial

introduction to students, the support during the first attempts to write and submit source

code, and the noticeable improvement of students’ strategies. It is evident that when

debating which instrument or system of training to use, it is also imperative to reflect on

how to utilise it effectively to impact learning outcomes substantially.

111

Preliminary analysis with the original prototype Ariadne (2015) indicated that students

were fascinated and welcomed the competitive aspect of an online judge in the learning

process. The competitive aspect was transparent, especially when there was a

leaderboard present that revealed the progress of everyone. The task development was

essential for establishing student engagement with the framework.

4.5 Research study activity: Task development

Any programming competition needs to have a unique set of programming tasks to

succeed. The sheer volume of tasks available through online competitions makes it

challenging for teachers to discover innovative ideas for new tasks that can be both

interesting and educational. The real question here is how to create appropriate tasks and

what are some essential characteristics to consider when designing new tasks.

Furthermore, how to deal with IOI and BOI contestants when I have to challenge arguably

some of the next generation's brightest minds, considering the impact of the identified

threshold concepts? Some essential characteristics of a proper IOI task were defined by

Burton and Hiron (2008). However, they report that the outcome may differ depending

on the target group and the objectives of the competition. Diks (2007) also suggests some

similar characteristics that I have applied for the framework:

• The task statement must be unambiguous and easy to understand.

• There must be several solutions of different complexity that solve the task correctly

to allow the students to use different approaches.

• The solution should not involve the reproduction of a well-known algorithm but

rather a modification of that algorithm or even the combination of variations of

two algorithms.

• The proposed solution should be optimal or very similar to it, and it should be

extremely concise.

• For skilled students, it is suggested to have tasks that do not fall under a specified

category (ad-hoc), and the appropriate algorithm is not entirely distinct.

The most challenging part of creating programming tasks is the conception of the initial

idea. Inspiration for new tasks can be found in real-life problems, and even people

112

unfamiliar with CS can come up with interesting ideas. The real challenge here is that the

author must create the solution(s) and the problem concurrently. One setback is that task

creation from scratch can be very time-consuming, particularly when there are multiple

solutions for the task that I must consider. However, new tasks do not have to be

developed from scratch. Combining tasks to create new tasks can also be very effective

(Burton and Hiron, 2008). In their report, Burton and Hiron (2008) state that the

combination of ideas from previous tasks can be used together to form ideas that have

not yet been explored.

Pankov (2008) supports the claim that real-life situations can be used for inspiration when

creating new tasks. Real-life situations can yield original context that can be formulated

elegantly and provide an equal advantage to novice and experienced student

programmers. He suggested that natural sciences contain numerous fascinating laws and

theorems that are highly appropriate for programming tasks. For Pankov, three possible

task types can be considered if all of the characteristics are known: optimisation,

combinatory and interaction. For example, Pankov demonstrates how conservation laws5

can be used as the foundation of a programming task where the contestants need to

discover the minimum possible speed of combined pointwise objects (Pankov, 2008).

Forisek (2006) presented tasks used in former IOI competitions that include alternative

areas instead of standard tasks that focus on creating cost-effective algorithms. Forisek’s

study suggests that there is an opportunity for learning about various other qualities, and

the scope can be situated on other notions than algorithms’ effectiveness (Forisek, 2006).

Many data structures that are used in programming tasks can be compared to situations

in real life. Accordingly, students do not have to be familiarised with the principles of these

structures. Graphs (Figure 16) are used extensively in programming tasks for every

complexity level. They are easy to understand as they can be used for modelling cities

(vertices) and roads (edges), and they are relatively trivial to represent in code. Therefore,

tasks with simple graphs become accessible to younger students (Manev, 2008).

5 Specific quantifiable properties of a physical system do not change over time, regardless of the system’s evolution.

113

Figure 16: Example of a graph depicting cities and distances

The initial idea for a programming task is only the beginning, and much more work is

required. Diks (2007) proposed best practices to be considered in the task development

process for any programming contest. The main idea for the proposed practices is the

rigorous application of the task development process so that the quality of the tasks is

assured and possible errors are detected before the contest. When these errors occur

during the contest, it would be practically impossible to correct them (Diks et al., 2007).

Verhoeff (1990) has also reported detailed rules for developing a task set for a

programming competition. These rules emphasised ACM (Association for Computing

Machinery) programming competitions and proposed that every task should have its

setter/author directly assigned to it.

For reviewing the initial task ideas, several questions must be answered: Is the task

formulation comprehensive and unambiguous? If the information in the task needs to be

explained extensively and explicitly, then the task is not appropriate. Is it a textbook task?

If the task solution is trivial and tests only a particular algorithm or a technique instead of

the students’ ways of thinking, the task is not appropriate. Is the solution to the task

running in polynomial time? Otherwise, it is impossible to calculate the results in a

reasonable amount of time within a contested environment. How many possible solutions

exist for the specific task? If multiple solutions with ranging difficulty and different time

complexities exist, then it is a highly appropriate contest task. However, special attention

should be given to ensure that no trivial solution to the task exists. Lastly but not least,

114

can the task be solved by a high school student? As the boundaries of programming

education for IOI participants are extending, it is compulsory to keep in mind that the

expected programming knowledge of high school students is covered in the IOI syllabus

(IOI Syllabus, 2017). However, the knowledge and programming strategies involved in

solving such tasks go way beyond their school programming education.

Diks (2007) also suggests that task analysis should be the most time-consuming part of

task development. Therefore, several solutions should be included in the evaluation report

with different approaches, at least two programming languages, including the optimal and

one or two sub-optimal solutions. The task spoiler, a detailed explanation of the proposed

optimal solution, is critical in analysing the evaluation report. The spoiler explains the

author’s approach in solving the task but by no means should it be limited to only the

proposed solution.

For task development in this research study, in the case of batch tasks (input-output

tasks), the COI teachers and alumni created a set of 10-50 test cases. In simple words, if

the programme received the data from the input file input1.txt, the expected output

precisely matched the contents of the output file output1.txt. Otherwise, the submitted

solution was wrong. The objective of test cases was to differentiate between correct,

partially correct and wrong solutions. The differentiation was extremely complicated as

partially correct solutions could be separated mainly through time and memory

constraints. Explicitly for time constraints, the test cases were set to put a strain on the

asymptotic time cost and not on the actual running time of the programmes. In general,

solutions that were twice as slow as the optimal solution could score 100 points. Slower

or partially correct solution solutions could receive up to 50% of total points, and 100

points were awarded for efficiency. This level of meticulousness on the test cases was

tough to accomplish. A quick solution was to increase the data sizes of tasks, but the

computers’ RAM availability and testing times were often restrictive.

A more appropriate strategy that the action learning set decided to utilise was to group

the test cases into subtasks for most tasks. A submitted solution was awarded the number

of points associated with a specific subtask only if it solved all the test cases in the given

115

subtask. Furthermore, I used subtasks to achieve optimal point distribution among

contestants. The first subtasks were usually the easiest and less demanding. However,

they awarded fewer points, usually less than 10%, and the last subtask was the hardest

but awarded the most points, usually more than 50%. I included approximately 3-5

subtasks in every task, and each could be solved using a different strategy. For formulating

a task, I combined all of its elements. The task description was a short story explaining

the task in detail. Input and output formats were precise and difficult to misinterpret.

Specifically, the sample output was not just a yes/no answer but a numeric value quickly

determined by the sample input. For reference, consider the tasks ‘Icarus’ and ‘Lefkaritika’

that I have created for the Balkan Olympiad in Informatics in 2019 and 2016, respectively

(Appendix 7 and 11).

4.6 Research study activity: Task assessment and evaluation

For publishing a task online on the platform and assigning it to students, it was necessary

for the COI teachers to initially prepare all of the components discussed in Section 4.5:

task statement, test cases and proposed solution. Then, I used the platform’s

administrator panel to upload the task statement and the test cases (with subtasks if

applicable), set the time and memory limits and test the correctness of the solution by

submitting my source code. Establishing the task correctness is critical, and task testing

before assigning is mandatory as it determines the validity of the contest, especially in a

live competition setting. In the past, I have witnessed multiple incorrect test cases, even

in IOI competitions, created with wrong solutions. These mistakes were corrected during

the live contest causing delays and uncertainty among contestants.

To enforce the validity of the tasks, specifically the ones used in the competitions during

this study, each task published on Michanicos had a task setter and at least one task

tester. Both of them were either COI instructors or alumni. The task setter was responsible

for creating the task statement, the test cases, the proposed solution(s), and uploading

the task on the platform. The task tester was responsible for proofreading the task,

correcting any errors in the task statement, or even simplifying the terminology and

vigorously testing the task with multiple solutions, preferably one for each subtask. For

116

each solution submitted, I verified the points and test cases awarded for each subtask. If

the task tester gave the final approval, I published it and assigned it to the students.

Even when a task gets approval and is published on the platform or within a competition,

another form of assessment takes place after the students have attempted to solve the

task. The assessment needs to provide a thorough analysis of the task's appropriateness

to serve its scientific purpose. The complexity level within a set of tasks needs to vary

from one task to the next. Not all tasks can be trivial, and not all can be highly complicated.

As a general unwritten rule among task setters, an optimal point distribution among

contestants is preferred. Task setters try to avoid giving away too many full scores (100)

and, at the same time, avoid having too many zeros on the same task. In IOI 2018, the

task ‘Combo’ on the first day of competition had a record of 185 full scores and only seven

zeros out of 336 contestants (IOI Statistics, 2019). This issue was resolved on the second

day of competition with the addition of two tasks, ‘Tolls’ and ‘Meetings’, where the

corresponding numbers were 1/142 and 0/60. The total full scores of the remaining tasks,

not counting ‘Combo’, were a mere 55 (Table 5).

 Combo Seats Werewolf Doll Tolls Meetings Total

Average 73.83 14.08 30.48 31.19 15.34 21.56 186.48

Total 100s 185 1 17 36 1 0 240

Total 0s 7 93 87 66 142 60 455

Ratio 26.43 0.01 0.20 0.55 0.01 0.00 0.53
Table 5: Statistics of IOI 2018 tasks

What can be deducted from these statistics is that I must prepare more tasks in every

competition than needed. Also, I should always consider reasonably straightforward and

incredibly complex tasks, but these should be used cautiously and not in abundance.

Thankfully, the second day’s tasks can be switched in IOI competitions if a better point

distribution is required. However, this is very hard to predict in competitions that run in a

single day. An overall proper point distribution in an IOI competition means avoiding many

ties, making the classification and the awarded medals clear. There should only be one or

two maximum scores of 600 points and as few zero total points as possible.

Understandably, this is the optimal strategy for the local single-day competitions.

117

However, this is not always the case. There is always the possibility that a meticulously

prepared and tested task does not produce the expected results. The nature of

competitive programming tasks and the dynamic format of the IOI curriculum

continuously requires more innovative and complex tasks. As a result, the most

challenging assignment is predicting how the students will perform with a given task

regardless of its complexity. A reasonably simple complete-search (aka brute force)

solution examining all possible outcomes should not be allowed to score more than 20%

of the total points. On the other hand, no task should restrict contestants from scoring at

least 20% on average total points. The ideal shape of the scores’ histogram should be a

reverse J-shaped of distribution. An example of a highly complicated task is illustrated in

Figure 17 below:

Figure 17: Task Seats point distribution (IOI 2018)

With the study’s action research methodology, one measure of controlling this type of

uncertainty as much as possible was an exclusive analysis session where the proposed

tasks’ setters and testers solved and critically assessed all of the tasks and made critical

recommendations for the action learning set. The primary goal was to investigate if there

was any partially correct solution that was easy to implement, notably easier than the

proposed solution, which scored a relatively high number of points with the actual test

cases used in the competition. Additionally, several more manageable subtasks were

considered for difficult tasks to help contestants get some points even on the hardest

118

tasks. Collectively attempting to predict students’ results for any competitive programming

competition has a higher possibility of making better decisions, avoiding unfitting tasks or

test cases, and ensuring the required point distribution. In the next section, the levels of

interaction with the platform are discussed.

4.7 Research study activity: Michanicos interactions

The Michanicos platform has two access levels set by the action learning set. The first

level is for students, and the second level is for teachers and alumni. Students can register,

submit solutions, view feedback and statistics and track their submissions and scores. The

teachers have all of the students’ privileges, and, additionally, they can add course

material to the platform, review all submissions, add/modify programming tasks and

evaluate students’ progress.

4.7.1 Student-level interactions

I introduced navigation through the Michanicos platform to students in the first week of

lectures. The menu (Figure 18) includes the following items: Home, task archive, ranking,

sign-up, login/user and language selection. The platform’s interface supports both English

and Greek, but other languages can be added.

Figure 18: Michanicos platform menu

Under the task archive selection, the students can view all tasks, tasks arranged by

technique/category and tasks arranged by events. Registration is not required to view the

tasks’ statements, but only registered users can submit a solution for a task. I asked

students to register (Figure 19) on the platform and submit their solutions to a sample

task during the first lecture. Each user’s credentials were saved on the server and retrieved

by administrators upon request for password changes or updates.

119

Figure 19: Michanicos registration form

I organised the tasks in specific tags. Each tag represents one particular topic from the

IOI/COI syllabus (IOI Syllabus, 2017). For selecting the tasks associated with one tag, the

students were required to follow the tag’s URL. Tags can be created for each competition

round as well. Currently, there are fifteen topic related tags and thirteen contest related

tags (Figure 20). Topic related tags on the Michanicos platform include the following topics

in alphabetical order: Ad-hoc, binary search, complete search, data structures, dynamic

programming, geometry, graphs, greedy, implementation, MST, number theory, shortest

paths, STL, strings and trees. These tags cover all of the topics that are found in IOI tasks.

Some tasks can be found under two tags. General-purpose tasks that do not fall under

any category are included under the ad-hoc tag.

Figure 20: Tags on Michanicos

By selecting a tag, the students are presented with all the tasks under this topic. The

students are informed about how many points they have been awarded for each task they

have solved (Figure 21).

120

Figure 21: Tasks under implementation tag

By selecting a task, students are presented with the task statement and the task menu

(Figure 22). The statement is in pdf format and can be downloaded on the computer.

Figure 22: Task statement for task Wasawa

The task menu includes the following options:

Statistics: Students can view the statistics for the selected task. Statistics include the total

number of users who have solved the task correctly, the total number of users who have

tried to solve the problem, the total number of correct submissions and the total number

of submissions. Moreover, a list of users with the fastest solutions is presented. These

statistics are an initial indication of the task’s complexity level (Figure 23).

121

Figure 23: Statistics for a selected task

Submissions: Students can submit a solution only if they log in using their credentials.

They have the option of loading a file they have previously written and tested on a local

compiler, or they can use the platform’s online code editor to write their source code. The

code editor highlights language commands and improves code visibility (Figure 24).

Figure 24: Code editor and previous submissions

122

The students can submit their solutions and view their current/previous submissions and

scores. When submitting a solution, the students are presented with their total score for

the task. Students can review detailed feedback on how their solution handled each test

input data associated with the selected task if they require additional information. Each

submission is stored on the server with a timestamp containing submission data. Students

and teachers can download solutions through the administrator panel (Figure 25).

Figure 25: Previous submissions for a selected task

The students can view their results in detail if they wish. The feedback for each test case

is presented along with the awarded score and the corresponding execution time and

memory usage (Figure 26). Teachers have the option to change the level of feedback the

platform provides, especially when the task involves subtasks. For each subtask, teachers

can choose to show students only the correct test cases and keep the incorrect information

hidden. Hidden data can prevent students from guessing input sizes of test cases which

would be possible if they could view all the related information.

Figure 26: Full feedback for a task

123

Tags: The tags associated with the selected tasks. With the corresponding tags, each task

is categorised under specific topics. Several tasks can be found under two tags.

Time limit: The time limit for the selected task for the execution of a single test case

measured in seconds.

Memory limit: The memory limit for the selected task for the execution of a single test

case measured in megabytes (Figure 27).

Figure 27: Task tags, time and memory limits

One of the platform’s main advantages is the ability to accept multiple submissions from

multiple users in a contested environment for an extended period without lengthy

response times or delays in submissions. The evaluation and scoring engines have been

implemented and tested with a simultaneous massive volume of submissions at the final

stage of development. The platform’s submissions database was able to hold the stress

test quite easily. All of the process management of the platform can be done through the

teacher/administrator panel.

4.7.2 Teacher-level interactions

I can perform the platform administration on two levels. On the first level, the other

teachers and I can perform various tasks from within the platform itself. In this way, a

teacher can use the platform as a regular user and simultaneously add course material.

Course material includes lesson notes, additional notes (images, scripts, visuals) and

quizzes for a specific course topic (Figure 28).

Figure 28: Administrator menu on platform

124

The platform has enabled the other COI teachers and me to keep the course content

decentralised and categorised, which was never achieved within the five districts. The

course content was distributed and accessed, and it was crucial for students’ progression

throughout the course curriculum within a single school year.

There is a separate administration panel for creating and handling the programming tasks,

which is the second and more advanced level of the platform’s administration. The

administrator’s panel is identical to the CMS panel, and it permits specific users

(teachers/administrators) to perform the administrative processes and tasks. These tasks

include monitoring the platform’s status and managing the platform’s contests, tasks,

users and teams.

Monitoring includes three separate categories: queues, workers and logs. During a

competition, specifically through the last stages, the students’ submissions are continuous

and frequent. An administrator must keep track of the submissions queue and ensure that

the system evaluates all submissions even after the contest is over. Monitoring workers is

a crucial task. The workers are responsible for running the compilation and evaluation of

the submissions in a robust setting. I used a setup of four workers for the Michanicos

platform and fifteen workers for the CMS server. This particular setup has enabled all of

the local competitions to run smoothly. For supporting the monitoring, I supervised system

logs to enable administrators to keep track of the current status of the workers and the

system services and perform necessary actions whenever the circumstances required.

The administration panel allows total control over contests, tasks and user management.

Multiple contests can be run and administered simultaneously. The administrators can

control contest specifications such as the contest public URL, contest tasks, programming

languages allowed, eligible users, contest duration, scoring format and the maximum

number of submissions per user. They can create and add tasks for each contest through

the panel effortlessly and efficiently. The administrators have to prepare and upload the

task statement in pdf format for each task. Then the task type is selected, which defines

the scoring format.

125

In competitive programming, the task type can be one of the following distinct types:

1. Batch tasks:

Batch tasks are the most common task types in programming competitions. The

programme reads its input from the keyboard (standard input) and outputs the results on

the screen (standard output). For a batch task, all of the input data is accessible from the

beginning of the programme execution, and it is independent of the programme’s

performance. For this specific type in IOI competitions, a grader function is used, which

receives all of the input data in function arguments and returns all of the output data.

2. Interactive tasks:

In an interactive task, some data must be generated before new data becomes accessible.

Accordingly, the data input may be dependable on the previous data output. The

programme has an exchange with the grading system, which may behave like a

challenger. The task is interactive when the input is predefined but not entirely accessible

at the beginning of the execution.

3. Output-only tasks:

In output-only tasks, the participants are not required to submit source code but only the

output files corresponding to specific input files. Indeed, the construction of these output

files involves the use of strategies and, in almost all cases, requires substantial volumes

of code. The evaluation of the submissions for this type of task does not include

programming languages or programme compilation and execution. Nevertheless, there is

no evidence of the algorithms or strategies the contestants have created.

126

Figure 29: Task setting

After selecting the task type, the administrator must set the time and memory limits and

select the scoring format. In the simplest type of scoring, a value parameter is set for

each test case, and the cumulative score is the addition of the scores of the correct test

cases. In tasks that include multiple subtasks, the scoring format is arranged in groups

(Figure 29). For example, if there are five test cases in the first subtask and the points

allocated with the subtask are fifteen, the student must solve all five test cases correctly

to be awarded the fifteen points. For solving correctly four or fewer test cases, no points

are awarded.

The final step in the task setting process is the addition of the test cases. The test cases

need to be checked for consistency before adding them to the platform, but additional

checks can be performed after uploading the data. Multiple solutions can be submitted for

testing purposes to verify the validity of the test cases, and any inconsistent data must be

removed and replaced. The ideal number of test cases for a programming task is between

10 to 50. However, several IOI tasks require up to one hundred test cases. The platform’s

panel supports uploading multiple test cases in the form of a zip file which is convenient

and efficient when there are numerous tasks to be uploaded simultaneously (Figure 30).

127

Figure 30: Adding test cases to a task

The administrator has complete control over the users’ profiles and submissions. There

are multiple advantages to keeping all of the submissions on the server. For checking each

student's progress and keeping track of their learning trajectories on the platform, special

attention was given to the correct setup of the backup system on a separate drive. The

teachers have the option of retrieving all the submissions for a contest, for one specific

task, or all the submissions of individual users (Figure 31).

Figure 31: Viewing all submissions on the platform

The source code for each submitted solution can be viewed on the screen or downloaded

on a local machine for testing purposes. For each user’s submission, there is a timestamp

128

indicating the specific date and time of the submission. Thus, the teachers can estimate

the time frame between the initial and the final submission, scoring 100 points. In case

of an error in the test cases, the administrator can re-evaluate and re-assess all the

submissions for one specific task.

For each separate contest during the specified contest time frame, users can submit

questions through the platform requesting clarifications for the tasks (Figure 32). Through

the panel, the administrator can reply privately to each user using a set of predefined

answers: Yes / No / No comment / Answer is in task description / Invalid question.

Moreover, the panel offers an additional announcement feature that provides real-time

public messages to all users during contest time.

Figure 32: Q&A feature during a contest

4.8 Research study activity: Slack interactions

I promoted and encouraged communication among students and teachers using the Slack

workspace. Students were encouraged to discuss their progress or stuck points with their

teachers and other students. The Slack platform enables users to communicate privately

or through groups (channels). Slack was used in parallel with the platform while the

platform’s forum component was under construction. Slack offered the COI teachers a

variety of tools to use when sharing information with students or peers. It has been an

129

inseparable component that has successfully complemented the Michanicos platform

interactions most effectively (Figure 33).

Figure 33: Slack workplace interactions

Slack enabled teachers to organise students into channels (groups of students) according

to their programming level and share information and material accordingly. I created five

separate channels during the study: jboi2020, juniors, seniors, minutes and teachers. I

created the ‘seniors’ channel specifically for the IOI/BOI delegations and third-round

contestants. In this channel, previous IOI tasks and the most advanced programming

tasks on Michanicos were discussed and analysed. The feedback from the

teachers/instructors was as minimal as possible. In most cases, only one hint per task was

given. I created the ‘juniors’ and the ‘jboi2020’ channels for the EJOI/JBOI delegations

and second-round contestants. In these channels, the tasks that appeared in previous

EJOI and JBOI competitions were discussed among students and teachers. The feedback

from teachers was more elaborated than the advanced group. Usually, two or three hints

per task were given. In some situations, students who successfully solved a task were

encouraged to offer hints to other students.

130

The ‘minutes’ and ‘teachers’ channels were created for teachers and alumni to keep the

action learning set connected throughout the study. In these channels, I presented the

agendas from the analysis sessions and discussions with colleagues aimed for

interventions to align the curriculum and tasks’ assignments among all districts. Finally,

the general channel was the default channel where all users had unlimited access. It was

used for discussing the introductory material covered during the first and second rounds.

In this channel, the feedback was maximal. In some cases, the full spoiler was given to

students. At different times, collaborations between two students struggling with the same

task were also encouraged. Most of the additional material was shared in this channel so

that everybody could access it. The additional material shared among students and

teachers included visualisations, images and files.

To ensure that all communication was monitored and to safeguard the proper interactions

among students, I set the following rules:

1. No spamming of the channels was permitted. To maintain communication similar to the

competitions’, the student requests had to be as accurate as possible. Requests such as

‘How do I solve this task?’ were requested to be rephrased in detail: ‘Is the Dijkstra’s

algorithm (Dijkstra, 1968) appropriate to solve this shortest path task?’.

2. No code sharing was allowed between students. This was secured through the

platform’s settings. Students could discuss their approach to solving a task but not share

their source code. On some occasions, only in the general channel, students were

requested to privately share their code with their instructors to offer guidance or help

them locate the errors.

3. Students were encouraged to install the Slack application on their smartphones for the

entire course. All communication between teachers and students was accomplished

securely through the Cyprus Olympiad in Informatics workplace, available at

coinformatics.slack.com.

131

Slack was one of the few applications without restriction rules in any country recently

organising the IOI. However, there were several issues with Facebook, Messenger,

Twitter, and Google platforms. Using these applications was strictly prohibited in some

host countries, and communication with students and teachers was limited.

4. Usernames (handles) were requested to be identical between the Michanicos platform

and the Slack workspace so that all code submissions could be easily associated with the

help requests.

Collaboration among students supported maximising their own and others’ learning and

established COI as a truly collaborative learning environment. Social negotiation enabled

students to share their experiences in liminality and deal with tension.

4.9 Chapter summary

The purpose of this chapter was to present the main activities of the project study. The

emphasis was on the interactions of teachers and students with the framework’s

components. The Michanicos platform has been integrated into the learning environment

and was established as a competitive learning environment for students and a powerful

tool for creating, assigning and assessing tasks for teachers within the COI community.

The most significant capabilities of the platform are presented and analysed in this

chapter.

132

CHAPTER 5: Project Findings

5.1 Introduction

With this research project, I have made three distinctive contributions to knowledge. I

identified threshold concepts for competitive programming, presented a methodology for

their identification, and introduced the COI framework. The COI framework is a system of

training that encompasses four critical components for improving the teaching and

learning processes and providing structured context management in a competitive

learning environment. I have acquired substantial evidence for the authenticity of the

framework by inquiring about the positive and negative aspects of a collaborative

environment. I have used action research to successfully integrate the COI framework

into the programming course and evaluate its impact on learning. Due to their nature, the

four research objectives were better addressed using a combination of action research

and mixed methods approach. As a result, I have adopted a pragmatic perspective on

scientific research (Creswell and Clark, 2011; Morgan, 2014). Qualitative and quantitative

methods were crucial for proving tentative claims of knowledge acquisition. I consider the

selected research methodology highly appropriate, and I am confident that the study’s

results are valid within the context they were produced and how they were thematically

interpreted.

Thematic analysis is a form of qualitative analysis that provides a detailed representation

of data not as a specific technique but as a means to use across different techniques

(Boyatzis, 1998). By utilising thematic analysis in action research, a researcher can

associate the notions and ideas of students and compare these with the empirical data

that has been collected in various situations at various times during the research project

(Ibrahim, 2012). In many research projects, there is a tendency to utilise available

software packages such as NVivo or SPSS for collecting, organising and analysing the

data. However, statistical software packages may not be beneficial, particularly when I

need to assess students’ programming knowledge in terms of qualitative improvements in

the creative manner in which these emerge within their programmes’ source code. In such

cases, it is more appropriate to use manual analysis rather than software-based methods

133

and evaluate computer programmes independently. Qualitative research must provide

explanations and be consistent with the evidence gathered. Given this, thematic analysis

can help identify variables that affect any notion raised by the students. Therefore, the

students’ interpretations are significant in providing appropriate explanations for their

ideas and actions. The last statement follows the ideas generated by the thematic analysis

process, which focuses on the interpretation of data and the theory that emerges

(Bryman, 2001).

Action research enables the researchers to join the actions taken within the research and

relate them to the methodology while using reflection to deliver a solid foundational base

for the research study (Coghlan and Brannick, 2005). Through action research, I have

evaluated the framework and its effects on learning from multiple perspectives. First, I

used empirical research tightly connected to the research objectives with a pragmatic

mixed-methods approach to produce accurate data regarding the framework’s validity.

Then, I produced quantitative and qualitative data to assess the students’ code-writing

ability and strategies, as well as their level of engagement. This chapter is an empirical

evaluation of the proposed framework and its integration into the learning environment

of the COI community specifically designed for this research study.

When considering new pedagogical approaches or new educational tools, many

parameters should be considered, such as educational context, teachers’ views and

stakeholders’ beliefs. Therefore, it is improbable to integrate all components into one

specific training method. Doing empirical research for improving the learning outcomes of

education is complex and demanding. I have studied multiple reports in the literature

about proposed pedagogical approaches that involved ‘students doing something and

loving it, and that is why everybody should try it’. Significantly, most education research

is evaluated in the context of our classrooms and our teaching. As expected, most of the

empirical data in these reports are predominantly positive, and the proposed approach is

considered to be effective. As a teacher/researcher, I must thoroughly analyse and

investigate how and in what way a proposed pedagogical approach or educational tool

works and precisely in what context before implementing it into my practice and expecting

miraculous results overnight.

134

The approach in which the action researcher reports on the findings can establish a level

of credibility for the research project. Losing credibility as a researcher might harm future

research projects (Coghlan and Brannick, 2005). The findings illustrate how the action

research project is relevant within the learning community and how it may relate to others

confronting the same issues. To present the findings, I have considered two approaches

reported by Denscombe (2010) to produce more efficient outcomes for qualitative data

analysis. One of the approaches suggests concisely compacting extensive and varied data

using graphs and tables. This approach enables the proper identification of the findings

upon which to emphasise. The other approach suggests making the connection between

the research objectives and the findings clear and concise so that the selected research

methodology is justified (Denscombe, 2010).

I have collected empirical data using action research cycles to improve my learning

community. Action research findings provided new ideas that directed action to enhance

the framework’s effectiveness and to impact the practice of the action learning set

participants. The findings are separated into four specific categories: the pre-liminal

variation, the threshold concepts identification, the level of engagement and the

programming strategies involved. I have considered the following:

• Students’ pre-liminal variation

• Threshold concepts in competitive programming

• Students’ perceived and actual coding efficiency with the course material and the

identified threshold concepts

• Students’ qualitative code optimisations and programming strategies

• Students’ feedback on the framework and its components

• Students’ level of engagement with the code-evaluation platform

• Statistical analysis of all competition rounds

• Performance assessment of delegations in international programming competitions

• Students’ post-liminal variation

The above findings are presented in the following sections, and they are thoroughly

interpreted and discussed in chapter 6.

135

5.2 The pre-liminal space

As previously discussed, investigating the pre-liminal space is critical to determine how

students successfully negotiate the liminal space of understanding (Meyer and Land,

2006). Moreover, student engagement is a very significant component of the framework

as it formulates the students’ learning trajectory. The first questionnaire (Appendix 1) was

administered to the Bebras competition top-ranked students to investigate the pre-liminal

space in terms of computer literacy, prior programming knowledge, competition

performance and willingness to participate in COI lectures and future programming

competitions. Students were required to specify their level of agreement on a five-point

Likert scale for each concept. A total of 78 questionnaires were completed (52 boys, 26

girls, ages 11-15). The empirical data had to provide insights not only on previous

programming knowledge but on the students’ epistemological stance and attitudes

towards learning. The Bebras competition is a prerequisite of Olympiad participation and

is the first step in the recruiting process. It involved a set of multiple-choice algorithmic

questions of increasing difficulty designed to challenge the students' ability for solving

problems. Evaluating the students’ performance was correlated with their disposition to

face even more challenging programming tasks in the future. Such tasks may seem

unsolvable at first but solvable after a substantial amount of effort and time. Accordingly,

the inclination to be physically present at the lectures and the asserted level of

engagement within the COI community of learning completed the formulation of an

indicative set of pre-liminal space data.

1. High computer literacy among students

Computer literacy refers to the level of

expertise and understanding of an

individual to operate a computer. The term

is concerned with the use of applications

rather than the individuals’ ability to

programme. 92% of the students who

participated in the survey reported high

computer literacy and the ability to use a

computer without the help of an adult.

92%

8%

Computer literacy

High capability (4-5) Low capability (1-3)

Figure 34: Computer Literacy

136

Computer usage is a necessity in their daily activities for completing their homework as

well as for leisure and entertainment. The European Commission’s statement has made it

evident that computer literacy has become a vital life proficiency. The incapacity to use

or access technology will eventually become a struggle for social integration and individual

development (EC, 2008). Cyprus has recognised the importance of computer literacy

through our schools, and government funds were used to ensure that every student in

secondary education owned a personal laptop computer by the age of 14. The laptop

acquisition was significant in ensuring high computer literacy among secondary education

students (Figure 34).

Computer literacy can play an important role in programming competitions. During a

programming contest, computer literacy regarding the software or the hardware can save

valuable contest time. In the unlikely event of a software or hardware failure, the technical

committee will assist the students in need. However, when there are frequent help

requests from a large number of contestants, the ones that are capable of identifying and

fixing the issue without having to wait for the technical committee have a definite time

advantage over contestants that rely only on their programming skills. Though computer

literacy was high among the COI newcomers, the framework provided additional

information about the contest environment and basic software/hardware troubleshooting

before each competition round.

2. Prior programming knowledge

Even though prior programming knowledge

is not required to attend the lectures at COI,

most of the newcomers (59%) have reported

knowing at least one programming language.

The students who reported having no prior

knowledge of programming are primarily

students from elementary schools in which

no programming curriculum is present. The

gymnasium curriculum introduces Scratch in

the first grade, a programming language

designed to help young students learn

59%
41%

Prior programming
knowledge

Yes No

Figure 35: Prior Programming Knowledge

137

algorithmic thinking. Moreover, the software Alice was introduced in the second grade.

Alice is also a block-based programming environment that enables students to design

interactive worlds and learn through creative exploration. There is also a mandatory

programming Pascal course in the third grade.

As a result, a percentage of 59% of students (Figure 35) reported having prior

programming knowledge, with the Pascal programming language ranked first. However,

23% of students reported knowledge of Python (Figure 36) even though this programming

language is not taught in gymnasium curricula. Most of these students are self-taught,

which is a significant advantage of Python. It is considered the most popular introductory

programming language because of its simplicity and the amount of available online

material. Young students who want to learn basic programming by themselves can do so

very easily by finding one of the hundreds of available Python tutorials online. The

popularity of Python has drawn the attention of the IOI International Committee, and

there have been initial discussions for introducing Python as one of the official languages

of future IOI competitions.

Prior programming knowledge can help newcomers adjust to the demanding COI

programming course faster and smoother. The transition from Pascal to C++ is effortless,

verified by the same language transition in our lyceums. However, the additional support

students without any prior programming knowledge received during the first month of

COI lectures was equally important as well. These students, most of them still in

elementary school, started their programming journeys with C++, and they were initially

0

4

1

18

22

1

0

5

10

15

20

25

C C++ Java Python Pascal Other

N
u

m
b

er
 o

f
st

u
d

en
ts

Programming languages

Figure 36: Programming languages identified

138

taught the most basic input-output programmes. By the fourth week of vigorous

introductory lectures, the newcomers with no prior programming knowledge attended the

same lectures as newcomers who reported having prior programming knowledge. The

additional support for the students continued for the entire year.

3. Bebras competition performance

The Bebras competition is an international competition organised in more than 40

countries, with more than two million participants (Bebras, 2019). The top-ranked

students of the Bebras competition in Cyprus are participating in a COI camp each year

where they are introduced to programming and are invited to the COI lectures. 86% of

these students reported that they had minimum difficulty when they solved the algorithmic

tasks of the Bebras competition. Only 3% of students reported having an increased level

of difficulty (Figure 37). The goal of the Bebras competition is to introduce students to the

algorithmic type of problems and promote the required levels of abstraction for

successfully solving these tasks. Carefully designed tasks are used in two competition

rounds, and student performance is evaluated through an online testing environment

implemented by the CCS.

Figure 37: Performance in Bebras competition

To illustrate the level of abstraction required for solving some of the tasks in the Bebras

competition, refer to the task ‘Spies’ (Appendix 12), which was included in the sample

tasks. Since most elementary and high school students are used to standardised multiple-

86%

11%
3%

Bebras Competition performance

No difficulty (4-5) Medium difficulty (3) High difficulty (1-2)

139

choice tests, this task can be perceived as a threshold concept from their perspective.

Clearly, from the images used in the task description, the students were introduced to

graphs without even knowing the term. Each spy was a vertex, and each interaction

between two vertices was an edge. Some students used paper and pencil to solve it, and

several lines were drawn while others used their mathematical background. However,

most students found the correct answer. The opportunity from using such problems was

to engage students and allow them to attempt to solve these tasks without necessarily

grasping their theoretical background. The focus of the competition was to examine the

interactions of students with the tasks and determine their reactions when they

encountered similar or even more complicated tasks of related nature. The majority of

students reported that they were intrigued by these problems. Moreover, they had very

few difficulties during the first round of the Bebras competition, and they were looking

forward to facing even more demanding challenges.

4. Participation in COI lectures

Participation in the weekly programming lectures is not mandatory to be eligible to

compete in the competition rounds. Students have successfully participated in the

qualification rounds in the past without attending a single COI lecture. However, the

students who qualified for the national delegations have been regular participants at the

lectures in all districts. Through lecture participation, students become actively involved

with the COI community of learning, and older students become mentors of younger

students. I measured students’ inclination to participate in the lectures to define their level

of determination to engage and give back to the COI community.

Students’ willingness to participate in the lectures is an initial indication of the students’

commitment to be part of the COI community and become actively engaged with the COI

framework. By voluntarily declaring their disposition to join the lectures, 93% of the

recruits have taken the initial step of their transformation journey (Figure 38). The first

step is often the most difficult one to take, and verifying the informal commitment of the

recruits from the five districts was essential for the pre-liminal space investigation.

140

Figure 38: Intention for lecture participation

5. Participation in programming competitions

Similar to the lectures, participation in competition rounds of the COI is not mandatory for

students. Newcomers in the past attended every lecture, but they were reluctant to

participate in the relatively easy first round of the competition. These students expressed

the desire to learn how to programme but did not feel confident participating in

competitions. The results of each round are publicly announced, some form of pressure

is applied to students to perform satisfactorily. The announcement of four preliminary

tasks addressed this issue. The preliminary tasks were announced before the first round,

and no score was added to the first-round results. Since one of the preliminary tasks was

included in the first-round tasks and the qualifying score was 50%, most hesitant

newcomers gained confidence by solving the preliminary tasks and participated in the

competition regardless of the outcome.

With the study, I measured the willingness of the top-ranked students of the Bebras

competition to participate in future COI programming competitions, eventually

representing Cyprus in international programming competitions. As mentioned earlier, the

conclusion of the competition rounds is the formation of the national delegations. This is

the epitome of our competitive spirit as a learning community, and I try to instil this into

my students before their first competition participation. The results for each of the five

districts were positive for the Bebras contestants, as 78% responded that they were willing

41

21

9

4 3

39

19

8

4
2

0

5

10

15

20

25

30

35

40

45

Nicosia Larnaca Limassol Pafos Famagusta

N
u

m
b

e
r

o
f

st
u

d
e

n
ts

Intention of participation in COI lectures

Total students Intent to participate

141

to participate in future COI competitions and represent Cyprus in international events

(Figure 39).

Figure 39: Intention of competition participation

The empirical data provided a promising indication regarding the learning attitudes and

epistemological stance of the recruits. The data delivered critical insights on why some

students negotiated liminality effectively while others faced more difficulties (Meyer and

Land, 2006). The results of the pre-liminal variation yield a significant observation that

was key for the following actions. Most of the students that succeeded in the Bebras

competition wanted to improve and keep learning. The pre-liminal investigation provided

solid indications on what might support or delay the negotiations with liminality.

For investigating the pre-liminal space, I must look beyond the pre-requisites in terms of

academic background and focus on the epistemological stance of my students (Rountree

and Rountree, 2009). Are they determined to learn the way I expect them to? Are they

willing to go through a probably long period of uncertainty and even alternation between

appearing to fully understand a concept and feeling as if it will always remain unclear?

The students’ epistemological stance plays an essential role in self-motivation for self-

improvement, which is a crucial element in this framework. Therefore, the pre-liminal

variation or acknowledging a student’s life stance with an arbitrary level of prior knowledge

can help me identify patterns in the liminal variation of students.

41

21

9

4 3

35

15

6
3 2

0

5

10

15

20

25

30

35

40

45

Nicosia Larnaca Limassol Pafos Famagusta

N
u

m
b

e
r

o
f

st
u

d
e

n
ts

Intention of participation in programming
competitions

Total students Intent to participate

142

5.3 Threshold concepts in competitive programming

As reported in chapter two, there is minimal data in the literature about threshold concepts

in competitive programming. Most of the threshold concepts identified within the existing

literature are for introductory programming courses, and these concepts are rarely used

in competitive programming competitions (Khalife, 2006; Boustedt et al., 2007; Eckerdal

et al., 2007; Sanders and McCartney, 2016; Kallia and Sentance, 2017). I used the second

method proposed by Davies (2006) to identify threshold concepts within my discipline.

Since my goal was to make students think like computer scientists, I had to determine

how computer scientists think. I had to study successful practitioners within the field. I

chose these practitioners to be past COI competitive programmers who participated

successfully in multiple programming competitions and have transformed into aspiring

computer scientists. Specifically, my focus was on the distinctive strategies employed by

novice students and accomplished alumni for solving the same task.

These comparisons drew upon the first method that Davies suggests for studying the ways

practitioners of different disciplines solve similar tasks (Davies, 2006). Admittedly, for an

accomplished student and a recruit, competitive programming feels like a completely

different discipline. Therefore, I selected the COI alumni as the expert group to identify

threshold concepts. Furthermore, after the initial identification of the concepts, my

colleagues from the action learning set and the students from the focus group confirmed

that the identified threshold concepts of this research were indeed the most challenging

to teach/learn.

The second questionnaire (Appendix 2) was administered online, as most alumni were

studying abroad to identify and authenticate threshold concepts. They have participated

in international programming competitions, and three have won medals. Eleven of them

have pursued a degree in CS and the other two in Mathematics. Due to the qualitative

nature of the questionnaire, the results were more time-consuming to analyse. A concern

was whether I would have attained similar data if I had retrieved their responses while

they were still negotiating liminality rather than after they had gained an understanding.

To address this issue, a third questionnaire (Appendix 3) was administered to fifteen COI

students who have qualified for the third round of the competition. To assess the threshold

143

concepts identified with formal measurements of achievement, I investigated the students’

perceptions about their coding efficiency and their negotiations with liminality and

identified threshold concepts along with their feedback and interactions with the

Michanicos platform.

The topic of dynamic programming (DP) is initially introduced in the second round of the

competition, with most of the competition tasks being straightforward (Coin change,

Minimum/Maximum Sum, Longest Increasing Subsequence, Knapsack). The topic gets

gradually more complicated, specifically when DP optimisations are introduced in the third

round of the competition. The concept of DP was ranked as the hardest to understand

from the alumni responses, and, accordingly, it produced the lowest reported perceived

coding efficiency (13%) among the current students (Section 5.4). From the initial alumni

responses, DP ranked first in the threshold concepts identified. In contrast to other topics,

it is a highly sophisticated technique and not an easily taught algorithm.

A notable 77% of the alumni reported DP as the single subject they faced the most

learning difficulties (Figure 40). Segment trees ranked second with 15%. DP tasks

regularly appear in both competition days in the International Olympiad in Informatics

and other international programming competitions. It is generally believed among IOI

team leaders that if students are well prepared on this specific subject, they will end up

winning a medal in the competition.

What makes DP a complex topic is that there is no simple way to learn it. It is not an

algorithm that can be memorised, so no predefined pattern can be followed to solve DP

tasks. Therefore, students need to discover new ways of approaching these tasks as prior

knowledge is insufficient. In all my years of teaching competitive programming, the first

indication of students successfully altering and improving their ways of thinking has always

been their understanding of the concept of dynamic programming.

144

Figure 40: Threshold concepts identified

As mentioned in chapter two, the concept of DP meets all of the threshold concepts

characteristics. When students are initially introduced to the notion of DP, they struggle

to grasp it, and they are unable to code any suitable DP implementation; therefore, DP is

troublesome. Moreover, once the students come to terms with the notion of DP, they

demonstrate a significant transformation in their mental process; therefore, DP is

transformative. Once the notion of DP is grasped, it cannot be unlearned; therefore, it is

irreversible. DP is integrative because it enables students to create new mental

connections and notice previously unfamiliar relationships with other programming

techniques such as recursion. Lastly, DP is bounded as it is exceedingly invaluable in

competitive programming education; nonetheless, it is a very significant theoretical

concept that defines what can be calculated. Similar characteristics can be found in the

other threshold concepts identified by the alumni.

Meyer and Land (2005) refer to the liminal space when dealing with a specific threshold

concept as problematic and humbling for the students. They also suggest that students

may experience frustration and anxiety while learning the threshold concepts (Meyer and

Land, 2005). I have studied some of the alumni responses from this viewpoint to find

evidence of emotionally loaded terms. Several questions on the questionnaire were

explicitly aimed at identifying the reactions, perceptions, emotions and attitudes when

77%

15%
8%

Which topic was difficult at first
but later became clearer?

Dynamic Programming

Segment trees

Other

145

dealing with threshold concepts. Several individuals repeatedly mentioned that the

learning of threshold concepts was frustrating and humbling.

Alumni 2: At first, I hated it and did not want anything to do with it… then I could

not do without it.

Alumni 4: It was challenging at first. I felt frustrated and disappointed. I struggled

to solve even the most trivial tasks.

Alumni 6: Initially, I solved the easy tasks, but after that, I could not use the same

technique for other similar tasks. It was disappointing and discouraging because

other students could solve these tasks without real effort.

Alumni 8: …very confusing first encounter but made sense after a while.

Alumni 9: My initial reaction was: I cannot write Chinese. Then I became ‘Chinese’.

Alumni 12: Learning this was very disheartening in the beginning. I have previously

won medals in Mathematical Olympiads, and I consider myself a good problem-

solver, but I could not even write two lines of code for this topic.

Alumni 13: I thought it was the most complicated thing I have ever encountered.

Nothing made any sense. I remember, at one point, I thought to myself: I cannot

do this. I will never be a good programmer.

It was interesting to discover how crossing liminality was experienced differently and

observe the particular emotions associated with the successful passage. The alumni’s

perceptions of having negotiated with liminality successfully were as if they were able to

visualise or ‘dreamt’ their solutions to complex tasks before writing a single line of code.

Alumni 2: I got stuck quite a lot… But later, as soon as I came across a task that

required this technique, I could create an image in my head that illustrated the

way to go. It was almost automatic after a while.

Alumni 4: Nothing made sense… My initial disappointment helped me try harder.

Then, I could ‘see’ the solution and write it down on paper before coding.

Alumni 8: Once, I struggled with a hard task for days. One day, after working on

it unsuccessfully until past midnight, I decided to go to sleep. When I woke up the

146

next day, I wrote the solution within the next five minutes. I must have dreamt

about the solution!

Alumni 9: I was able to draw the memo tables almost as soon as I read the task

description. It was as if the solution was stored in my memory.

Alumni 12: I knew most mathematical concepts from before, so I could just run

the heuristics of the algorithm in my head and figure out the occurring states.

The experience of the successful passage was relatively transformative and rewarding

when they finally understood a threshold concept.

Alumni 1: After I began coming to terms with dynamic programming, though I

initially did not attempt it at all, I could tell almost immediately where it was

needed or not.

Alumni 4: When I won my first medal by solving a complex task that I struggled

with for more than three hours, I felt like I could solve anything...

Alumni 7: I have been able to experience the ‘joy of code’ that my teacher always

mentioned. …the excitement I felt after solving a hard task was something

incredible.

I have also examined the time frame spent in the liminal space, the intermediate period

between starting to grasp a threshold concept and thoroughly understanding it. The

alumni responses for the time needed for the threshold concept to become clear ranged

from three weeks to an entire year. The short and extended periods have been explained

by Meyer and Land (2005) as the students can sometimes negotiate liminality and the

associated threshold concepts in a single ‘aha’ moment. Still, more often, it seems that

students require much longer. Correlation with the other questionnaire responses was

critical to determine what has worked more efficiently with students reporting less time

for grasping the concepts.

Alumni 5: It took me two months and a lot of individual work. Once I got the basic

idea, everything became clearer.

147

Alumni 7: I began feeling confident in solving tasks after about six months of

training.

Alumni 8: I have struggled for approximately three weeks… I spent almost six

hours a day coding.

Alumni 13: I spent almost an entire year solving the easiest tasks. Then, I solved

a medium difficulty task on Codeforces and then another. I was shocked!

The alumni also reported on ways that eventually helped them grasp the threshold

concept and successfully cross liminality. The previous statement is one of the reasons

the COI alumni were selected to provide information for the threshold concepts

identification. The selected alumni have participated in the COI lectures for a combined

57 years. They have competed in international programming competitions, and they have

won medals. Therefore, they are considered an expert group for competitive

programming. This group has faced its share of struggles with the threshold concepts and

has successfully negotiated with them. I was interested in looking into the approaches

they used to overcome the learning obstacles associated with the threshold concepts other

than the support of their teachers. Since their training occurred before the development

of the Michanicos platform, 53% of the alumni reported that what helped them cross

liminality was solving complex programming tasks using online judges. Camp participation

was second with 27% and studying the COI website’s material, among others, was third

with 20% (Figure 41).

Alumni 1: Lots and lots of practice. I solved more tasks than I can remember.

Alumni 3: It took a lot of training. Literally, more than 300 solved tasks for a

specific subject.

Alumni 4: …through camp participation and discussions with teachers and other

students.

Alumni 10: …websites such as Codeforces, Spoj, UVa and HackerRank provide tons

of material and practice tasks.

Alumni 12: Solving tasks on Hellenico and USACO was the way to go for me. I

have solved all of the corresponding Hellenico tasks within ten months.

148

Figure 41: Methods used for negotiating liminality

One of the questions was intended to discover possible other concepts that the alumni

needed to understand before negotiating a specific threshold concept. Acknowledging

which prerequisites are essential to gain a concrete understanding of an identified

threshold concept, particularly those regarding abstraction levels and the measurements

on these levels, is pivotal.

What is interesting is that 80% of the alumni that selected dynamic programming as the

hardest topic to grasp reported that understanding recursion was critical to understanding

the concept of DP. Recursion is a threshold concept identified in introductory CS

programming courses (Eckerdal et al., 2007; Rountree and Rountree, 2009; McCauley et

al., 2015; Kallia and Sentance, 2017). Therefore, even though only one alumnus selected

recursion over dynamic programming as the hardest concept to grasp, it can be safely

assumed that recursion is indeed a valid threshold concept in competitive programming

as well. Understanding dynamic programming requires a concrete understanding of the

rationale and application of recursion, not only why it is essential to know and use it but,

additionally, to understand how to apply it when solving new and unknown tasks.

When I asked the alumni to propose training methods they would use with students stuck

in the same threshold concept as them, they provided interesting data. Most of them

53%

27%

20%

What help you the most to gain
an understanding of this topic?

Solving more tasks

Camp participation

Website material

149

responded by following an algorithmic step by step approach and lots of examples. What

seems to be shared in the responses is that a required level of abstraction must be present

before starting to code. The level of abstraction obtained defines the ability to reach an

optimal solution quickly and effectively.

Alumni 1: …lots of visualisations will do it…

Alumni 3: …same way I learned it. Lots of gradually harder examples...

Alumni 9: …learning the optimal solution line by line and making the necessary

mappings when appropriate...

Alumni 10: …make them ‘see’ the solution in their head before they start typing…

Primarily they emphasised the rationale of the concept, explaining why you must know

this technique and why you should use it.

Alumni 5: To learn this technique, you must first understand why you need to use

it. Some tasks explicitly require it, and you cannot get an AC without it.

Alumni 8: …for DP, I would initially show them an example with coins. With coin

denominations of 1, 3, 4 cents, when you want to get 6 cents with the minimum

number of coins, the greedy approach will give 3 (4, 1, 1), which is wrong. The

correct answer is 2 (3, 3), which is only obtainable using dynamic programming.

Alumni 11: …you should use it every time you need to maximise or minimise a

value… the Knapsack problem is a good starting point…

Noticeably, the alumni’s ‘aha’ moment was expressed as connecting theory to practice.

Alumni 4: …to use the theoretical context of this concept and be able to apply it

in practical situations. In my opinion, this connection is the hardest thing to

achieve…

Alumni 12: …when you get to the point of recognising why and how to use it, you

realise you have reached a different level of knowledge on the subject…

150

The latter comment is crucial as it is a valid indication of the students’ successful

negotiation with liminality. When examining the experiences of crossing liminality, I must

acknowledge that they are not as trustworthy as they may seem at first. Some students

gain partial understanding and some abstract knowledge, so they believe they have

crossed liminality, and they do not seek to gain a better understanding. What if a student

is awarded 50 out of 100 points in a task embedded with an identified threshold concept?

Can this be considered as partial understanding or not? I had to align the students’

perceptions with their teachers’ beliefs of what is considered a concrete understanding of

a threshold concept. The learning set verified that the successful application of concepts

by consistently solving complex unknown tasks could be used as a reliable indication of

the successful negotiation with liminality.

Furthermore, these partial understandings probably justify why students get stuck at

different points even within the same threshold concept. Thus, it is evident that the path

through liminality cannot be considered as a simple linear progression. Additionally, the

distinctive partial understandings of not being capable of progressing from an abstract

understanding to a solid rationale and application of the concept may be specific to

competitive programming and require further investigation. One particular observation

from the investigation was the lengthy period of the liminal space negotiations. Even the

alumnus who reported the shortest time (3 weeks) stated that he trained for more than

six hours daily. Most of the alumni (85%) reported a very long (more than six months)

negotiation process with the specified threshold concept.

What was interesting is that the alumni recognised that learning these concepts is time-

consuming, and attempting to learn them without dedicating the required time frame can

lead to partial and not concrete understanding. The lengthy learning period is a burden

for the newcomers as they are not accustomed to dedicating more than a week to

understanding their school material. Within the proposed framework, the support for

newcomers starts with enforcing the idea that learning takes time, and it is normal for the

concepts to be elusive initially. There should be no deadlines, and there should be no

immediate pressure on students to deliver results. The learning path is different for each

151

student, and the support they should receive must be according to the struggles they

face.

Another observation was about the vast range of emotions experienced in the liminal

space, which is strongly related to the nature of the discipline. The threshold concepts of

competitive programming are considered highly complicated. It is common for students

to detest or even fear them at first. These initial stressful emotions turn into positive

emotions of triumph and accomplishment as students cross liminality. Within a supportive

learning environment, no emotion should be dismissed but instead handled and explained

(Eckerdal et al., 2007). Even the negative feelings are desirable as they constitute human

reactions, and students must navigate through them with the teachers’ support. Overall,

the initial findings on threshold concepts have helped structure the next steps of the

process. There were three threshold concepts identified by the alumni: dynamic

programming, segment trees and recursion. The identification of the concepts was

followed by communicating the initial findings with the action learning set and discussing

proposed approaches for successfully teaching the identified concepts.

The teaching strategy was decided unanimously: use these concepts in several

programming tasks within the competition rounds, create new and gradually more

complex practice tasks on these threshold concepts and upload them to the Michanicos

platform, collect data on students’ perceived coding efficiency for all the course material

and, finally, assign the tasks embedded with threshold concepts to students and

assess/correlate their performance data. The results were then evaluated and discussed

in the following action learning set sessions, and future actions were determined.

5.4 Students’ perceived/actual coding efficiency

The students who qualified for the third round answered the third questionnaire (Appendix

3). For each of the three rounds of competition, students were asked to provide feedback

regarding their perceived coding efficiency for each of the topics found in the course,

including the threshold concepts. The other course topics could not be neglected because

even if they were not identified as threshold concepts, they might have appeared in an

IOI/BOI task. The focus of the action learning set was on the students’ responses and

152

their corresponding interactions with the associated programming tasks on the platform,

as well as their performance scores. I coded the responses in the following format, with

five levels of perceived coding efficiency:

Your Response Level

Not able to code it at all 1

Not able to code it correctly 2

Able to code it with some help 3

Able to code it with minimal difficulty 4

Can code it efficiently in a competition round 5

Table 6: Perceived coding efficiency levels format

1. Perceived coding efficiency for the first-round material

For the topics found in the first round of competition, students reported an extremely high

perceived coding efficiency (Figure 42). This was anticipated as the first round material is

generally basic programming, and most of the topics can be found in the gymnasium and

lyceum programming curricula. There was no threshold concept identified within the first-

round material. Thus, the scores on tasks associated with the topics were exceptionally

high. For the first-round tasks on the Michanicos platform, COI students submitted 505

correct solutions with 1754 total submissions (29%) (Section 5.7 - Table 9).

The average number of users that correctly solved these tasks was 21.5, and the average

number of users that attempted the tasks was 24.7. Therefore, the success ratio was

87%. These are statistics from the platform regarding the tasks that appeared in the first

round of competition in the past, and they are associated with phase one material.

These results were retrieved in August 2019. A correct submission has been awarded 100

points. Submissions that scored less than 100 points are not accumulated in the correct

submissions total.

153

Figure 42: First round perceived coding efficiency

2. Perceived coding efficiency for the second-round material

For the topics found in the second round of competition, students reported a relatively

high coding efficiency (Figure 43) even though there were two identified threshold

concepts: dynamic programming and recursion. However, the DP tasks included in the

second round of competition are some of the classic DP problems such as coin change,

longest increasing subsequence and knapsack; therefore, solving them was not extremely

complicated. Students’ perceived coding efficiency for the topics found in the second

round was compared with their performances on associated tasks on the Michanicos

platform. For the second-round tasks, users submitted 72 correct solutions with 404 total

submissions (18%). The ratio for the average number of users that solved them to the

average number of users that attempted them was 67% (Section 5.7 - Table 10).

Figure 43: Second round perceived coding efficiency

1 0 3

18

68

0

10

20

30

40

50

60

70

80

1 2 3 4 5

TO
TA

L
R

ES
P

O
N

SE
S

PERCEIVED CODING EFFICIENCY

ROUND A CURRICULUM

1 1

16

42
45

0

10

20

30

40

50

1 2 3 4 5

TO
TA

L
R

ES
P

O
N

SE
S

PERCEIVED CODING EFFICIENCY

ROUND B CURRICULUM

154

3. Perceived coding efficiency for the third-round material

The third round traditionally has the most complex tasks, equivalent in complexity to IOI

tasks. There were two identified threshold concepts in the topics of this round: dynamic

programming optimisations and segment trees. Contrary to the classical DP problems, DP

optimisations require special techniques that further augment the complexity of DP

solutions. For segment trees, as with the DP optimisations, there is no single approach for

solving them either. These concepts were taught during the final lectures and the Easter

camp. Most of the students’ knowledge was theoretical, with many of them reporting an

inability to code the topics efficiently and with confidence. Hence, for the third-round

topics, the perceived coding efficiency reported was relatively moderate (Figure 44). For

the third-round tasks, users submitted 45 correct solutions with 391 total submissions

(12%). The ratio for the average number of users that solved them to the average number

of users that attempted them was 59% (Section 5.7 - Table 11).

Figure 44: Third round perceived coding efficiency

4. Perceived coding efficiency and actual coding efficiency

I studied the relationship between the students’ perceived coding efficiency and their

actual understanding of the identified threshold concepts. Specifically, I calculated the

students' average scores from ten corresponding programming tasks on the Michanicos

platform. I used the scores as a measurement of actual coding efficiency along with self-

reported measures of perceived coding efficiency using a Likert scale from 1 to 5 (see

Table 6). The perceived coding efficiency level (1-5) was correlated with the students’

rank (1-15) based on their average scores rankings. I compared the two datasets using

16
18

26
24

6

0

5

10

15

20

25

30

1 2 3 4 5

TO
TA

L
R

ES
P

O
N

SE
S

PERCEIVED CODING EFFICIENCY

ROUND C CURRICULUM

155

Kendall’s rank correlation (Kendall, 1955). Kendall’s Tau, as it is often called from the

Greek letter T, was calculated using the Python programming language and, more

specifically, the Kendall Tau function from the SciPy package (SciPy, 2019). I have written

the programming scripts in Python 3.6.1 that produced the following values for the

dynamic programming tasks (M = 63.15, rt = 0. 810965295015, p-value < 0.001) and for

the segment trees tasks (M = 59.88, rt= 0. 867398958024, p-value < 0.001). The Tau

coefficient was .81 for and .87, respectively, indicating a strong relationship between the

rankings for both threshold concepts. Interestingly, the perceived level of coding efficiency

for the threshold concepts was not always associated with their actual scores on the

corresponding tasks, as students have reported underestimating and overestimating their

coding capability.

From the analysis of the scatter graphs (Figures 45-46), it is clear that the levels of

perceived coding efficiency overlap with each other. Individually, students in the middle

level of perceived coding efficiency have acquired scores that span through the lower and

upper levels for both threshold concepts identified. The empirical data suggested that

there is a discrepancy between students’ perceived coding efficiency and their actual

understanding of the concepts. The discrepancy can be justified by linking to the partial

understandings of threshold concepts reported in Section 5.3. Partial understanding is the

time when students attempt to conquer a concept but have not yet succeeded, thus have

not yet progressed from an abstract understanding to a robust application and theoretical

appreciation of the concept. However, the averages from all of the actual students’ scores

reported a substantial differentiation of the perceived levels for the dynamic programming

associated tasks (L1: no data; L2: M=28.40, N=1; L3: M=49.49, N=7; L4: M=77.6, N=5;

L5: M=92.3, N=2) and the segment trees associated tasks (L1: M=18.20, N=1; L2:

M=28.60, N=1; L3: M=48.00, N=6; L4: M=76.28, N=5; L5: M=91.10, N=2).

For better illustration of the Likert-scale levels on the scatter graphs, I have distributed

the percentages as follows: level 1 (0%-20%), level 2 (21%-40%), level 3 (41%-60%),

level 4 (61%-80), level 5 (81%-100%). The distinct colours in the graphs represent each

associated programming task and the corresponding performance scores for the distinct

levels (Figures 45-46).

156

Figure 45: Perceived and actual understanding (Dynamic Programming)

Figure 46: Perceived and actual understanding (Segment Trees)

0

10

20

30

40

50

60

70

80

90

100

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Ta
sk

s
sc

o
re

s

Perceived coding efficiency levels

Dynamic Programming

coupons mitsiko longest tower gold

0

10

20

30

40

50

60

70

80

90

100

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Ta
sk

s
sc

o
re

s

Perceived coding efficiency levels

Segment Trees

crew bride rqs queries factions

157

5. Total solved tasks on the Michanicos platform

For the selected COI students, I made general queries to determine the level of

engagement with the Michanicos platform (Figure 47, Table 7). Since the platform was a

relatively new introduction to the lectures, the results are based only on the previous year

of study. These tasks were not solved in an arbitrary order but instead assigned to the

lectures during this research. These are only the solved tasks that awarded 100 points to

students for solving them optimally. Any submissions earning fewer points were not

included in the statistics.

Figure 47: Solved tasks on the Michanicos platform

Total Average Standard Deviation Minimum Maximum

128 8.53 4.79 3 20

Table 7: Statistics for solved tasks on Michanicos

The total number of solved tasks can be misleading when determining the actual level of

student engagement with the platform. For example, a student with only three successful

submissions may have more than two hundred submissions that scored fewer points. On

the other hand, students who managed to get a full score with only a few submissions

will not interact with the same task. They will do so only if they are asked to improve their

strategy or the time complexity of their code. Monitoring students’ progress through their

engagement should, therefore, not be based on just quantitative data. Some qualitative

data is required in the form of the students’ source code. The qualitative analysis of the

source code can help teachers offer improved and controlled advice. The platform offers

complete visibility for the students’ submissions. Although solving a problem is the

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
u

m
b

er
 o

f
so

lv
ed

 t
as

ks

Third-round students

Total solved tasks on Michanicos

158

ultimate goal, in some cases, several additional parameters must be considered. User

Dremix10 has optimally solved eight tasks on Michanicos but currently has more than one

hundred submissions. Working during the summer holidays and gradually improving the

scores on tasks is equally a sign of progress, engagement and dedication, which may not

always appear in the empirical data (Figure 48).

Figure 48: Submissions by user Dremix10

It is also significant to recognise the students’ level of commitment during every week of

lectures and throughout the year. The percentage of students attempting to solve two or

more tasks per week on the Michanicos platform is measured at 80% (Figure 49). This

number is promising as the tasks are not mandatory, and solving them is not explicitly

required by the COI students. Instead, it is a voluntary action that determines which

students want to perform well and become members of the national delegations. This

level of involvement and engagement is linked to the findings from the investigation of

the pre-liminal space from Section 5.2.

159

Figure 49: Tasks attempted per week on Michanicos

6. Total solved tasks on other platforms

Since the introduction of the Michanicos platform is relatively recent and since most of the

COI students are fluent English speakers, the use of the following online judges was highly

recommended: Codeforces, Spoj, UVa, HackerRank, Hellenico and Usaco. These platforms

served as extra-curricular material, and students could also choose to participate in online

competitions organised by these platforms. The main advantage was that online

programming competitions on these platforms were organised daily. Unfortunately, I

could not organise daily training contests on Michanicos during this research study

because of time constraints and lack of personnel.

COI students who chose to participate in these competitions encountered a much harder

international competition than local competitions. Most students have been assigned and

solved a relatively large number of tasks on these platforms. Monitoring students’

progression on these platforms was based on their ratings and statistics. The numbers

shown in Figure 50 and Table 8 are based on the students’ responses verified from the

rankings on these programming platforms. These statistics are indications of the students’

performance on a global stage with unknown programming tasks created by international

colleagues from around the world.

3

6

6

Tasks attempted on Michanicos
per week

One

Two

Three or more

160

Figure 50: Total solved tasks on other platforms

Total Average Standard Deviation Minimum Maximum

2541 169.40 140.55 29 600

Table 8: Statistics for solved tasks on other platforms

5.5 Code optimisations/Programming strategies

I found significant empirical data from the students’ submissions. I believe that every

programming study that wants to improve the students’ programming skills and,

subsequently, their strategies should focus on the students’ source code. The research’s

findings were not only based on the quantitative scores accumulated by the students

individually. The total score is not always a good indication of an improved programming

strategy. By examining the source code, teachers can recognise specific coding trends and

habits of individual students. Studying code is time-consuming and cannot always be

carried out by competitive programming instructors. Nevertheless, it is a critical process

as I can provide feedback, correct possible misperceptions and perhaps discover a whole

new approach for solving a task. Qualitative code analysis is arguably the best approach

for supporting the recruits. At the same time, I would expect the more experienced

students to develop methods for developing this aptitude.

There were some cases, even from the first-round tasks, that programme optimisation

was required to make the programme code run faster. Time and space complexities are

essential for improving the speed and memory requirements of a programme. They are

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
u

m
b

er
 o

f
so

lv
ed

 t
as

ks

Third-round students

Total solved tasks on other platforms

161

expressed using the big-O notation6. The time complexity of an algorithm (Figure 51) is

the most crucial factor that determines if a submission is accepted (AC) or receives a TLE

(Time Limit Error). It is realistic for most students to receive TLEs when they are still

inexperienced, and they commonly use the brute-force approach as it is the first idea that

comes to mind. The brute-force approach generates all possible solutions and determines

the correct one. This approach also produces the worst possible time complexity.

Figure 51: Big-O Complexities from O(1) to O(n!)

To define the students’ ability to improve the time complexity of their programmes, the

time limit of the task should be twice as much as the optimal solution. As a rule of thumb,

we presume modern computers can run 10,000,000 loops in one second. Therefore, for

a simple task such as finding a single integer in an array of 10,000,000 distinct integers,

a single loop to iterate all of the numbers until the target number is found has a linear

complexity of O(N) and can run in under one second. If we want to find all the pairs of

integers with difference K within the same array, we can iterate through two nested loops

and compare each element with all the other elements. If the maximum input size for the

task is 10,000,000 or 107, the solution has a quadratic time complexity of O(N2). The result

of 1014 dictates that the programme will require several minutes to run, and a TLE is

6 In Computer Science the Big O notation is used to define the performance of an algorithm.

162

unavoidable. If the students can improve the performance of their solutions to run in

linear time O(N) or even better in logarithmic time O(logN), they can reduce the execution

speed of their programmes. The time limit can easily be adjusted through the platform’s

administrator panel, permitting modifications even between consequent submissions

when testing is required.

There were many examples on the platform of students improving the time complexity of

their code. I pinpointed these examples and discussed them with the action learning set

during the action research cycles. The first example was from the relatively trivial task,

‘Coffee’: Find the smallest length between characters ‘K’ and ‘E’ that exist in a sequence of

characters of length N (1≤N≤1,000,000). If the character ‘B’ exists in the sequence, the length

is 0.

I set the time limit for this task to one second and included two subtasks. The first subtask

for 50 points had several sequences of characters of length N≤1,000, but for the second

subtask for 50 points, the length of the sequences was N≤106. Solutions with quadratic

time complexity O(N2) would pass the first subtask and fail on the second subtask.

However, solutions with linear time complexity O(N) would pass both subtasks and receive

a full score of 100 points. To illustrate this, the following initial submission of student TF7

received a TLE for the second subtask due to the two nested loops that yield a quadratic

time complexity of O(N2).

#include <iostream>
#include <algorithm>
using namespace std;

int main() {
 int T, N;
 cin >> T;
 string S;
 while (T--){
 cin >> N;
 int dist = N;
 cin >> S;
 for (int i=0; i<N; i++){
 if (S[i]=='B')
 dist = 0;

7 Students’ names are not disclosed in this project. Only their initials or usernames on the platform.

163

 else if (S[i]=='E') {
 for (int j=0; j<N; j++){
 if (S[j]=='K'){
 dist = min(dist, abs(i-j));
 }
 }
 }
 }
 cout << dist << endl;
 }
 return 0;
}

The feedback of the Michanicos platform was clear and revealed the reason for not

awarding points for the bottom five test cases. The execution time of the submission for

these test cases was above one second. Therefore, only 50 points were awarded (Figure

52).

Figure 52: Submission feedback for TLE

It took student TF two days to improve the complexity of the code. By the fourth

submission, he received a full score with the following submission that runs in linear time

O(N). The AC was achieved by keeping track of the previous occurrences of the two

characters in question. If the code detected a ‘K’ character, it calculated the distance from

the last occurrence of ‘E’ and vice-versa. Then the distance was compared to the minimum

distance calculated so far, and if it was a new minimum value, the distance was updated.

Hence, this is the optimal solution for this task as it is impossible to improve the O(N)

complexity. Student TF did not receive any help from his teachers or his peers during the

entire time of attempting to solve this task.

164

#include <iostream>
#include <algorithm>
using namespace std;

int main(){
 int T, N;
 cin >> T;
 while (T--){
 string S;
 cin >> N;
 cin >> S;
 int dist = N;
 int lastE = -N, lastK = -N;
 for (int i = 0; i < N; i++){
 if (S[i] == 'B'){
 dist = 0;
 break;
 }
 else if (S[i] == 'E'){
 dist = min(dist, i - lastK);
 lastE = i;
 }
 else if (S[i] == 'K'){
 dist = min(dist, i - lastE);
 lastK = i;
 }
 }
 cout << dist << endl;
 }
 return 0;
}

The results were better this time, earning student TF a full score (Figure 53).

Figure 53: Receiving a full score on a task

165

I observed the second example with student AP who was initially struggling with the

following task: Find the sum of the last digits of all the multiples of M in the range [M…N]

(1≤M, N≤1016). This task was particularly tricky because even a solution with linear time

complexity O(N) would not pass the largest test cases of 1016. Student AP initially tried to

iterate through all possible numbers and find all the multiples of M, then add their last

digits and output their sum. Noticeably, the following code by student AP would get a TLE

on the last subtask:

#include <iostream>
using namespace std;

int main() {
 long long int N, M, ans=0;
 cin >> N >> M;
 for (long long int i=M; i<=N; i++){
 if (i % M == 0)
 ans += i%10;
 }
 cout << ans << endl;
return 0;
}

Student AP struggled for a while to get a full score on this task. A hint from a peer helped

student AP realise that for every multiple of M, only ten digits were recurring. So, for M=2,

the first ten multiples would be 2, 4, 6, 8, 10, 12, 14, 16, 18 and 20; therefore, the last

digits of these numbers would produce a sum of 40. Similarly, for M=7, these digits would

be 7, 4, 1, 8, 5, 2, 9, 6, 3 and 0, producing a sum of 45. The following image is from the

Slack workplace interaction between the two students as student AP was trying to

calculate all the sums manually. Initially, he got most of these sums wrong (Figure 54).

Figure 54: Screenshot from Slack workspace interaction

166

After storing these digits in an array of ten elements and their sum in a different variable,

student AP managed to find the total number of multiples (X = N / M). Once number X

was obtained, the following was basic arithmetic. The sum of the first X modulo8 10 digits

had to be found and added to the original sum multiplied by X / 10. Finally, it was

straightforward for student AP to receive a full score with the following C++ code:

#include <iostream>
using namespace std;

int main() {

 long long int N, M, X, sum=0, ans=0, temp;
 int arr[10];
 cin >> N >> M;
 X = N / M;
 for (int i=0; i<=9; i++){
 arr[i] = ((i + 1) * M) % 10;
 sum += arr[i];
 }
 temp = X%10;
 for (int j=0; j<temp; j++)
 ans += arr[j];
 cout << ans + (X/10 * sum);

return 0;
}

In addition to the time complexity of programmes, there has been evidence of students

optimising the space complexity of their code. Space (or memory) complexity is a

measurement of the storage capacity a programme requires to run. Generally, in most

programming tasks in competitive settings, the memory limits are set higher than time

limits, but they are not infinite. In C++, it is not permitted to define a one-dimensional

array larger than ~108 of 32-bit integers. The storage requirements are proportional to

the number of elements in the array or any other data structure used in the programme.

Therefore, we can easily calculate the memory requirements of the programme. The

integer data type requires 4 bytes of memory, and the declaration of an array of 1,000,000

integers is made as follows:

int arr[1000000]; // declaring an array of integers

8 Finds the remainder for a division of two numbers.

167

For the above statement, the total requirement will be 4 x 1,000,000 bytes or 3,906.25

kilobytes of memory. When the memory requirements increase linearly with the increase

in the size of the array (N), we use the big-O notation as with the time complexity.

Therefore, we have linear space complexity symbolised as O(N). Students are encouraged

to write code efficiently to keep the space complexity to a minimum.

The third example is from a dynamic programming task called ‘Paths’: Find the number of

possible paths between points A and B, moving only to the right or down from the current

position, on a 2-D grid of dimensions N x M (2≤N, M≤1,000). For better illustration, I

included the following image in the task description (Figure 55).

Figure 55: How many possible paths exist from Times Square to the Empire State building?

For solving this task, students initially made one significant observation. To be able to

reach any other point on the same line going either right or down, there is only one way

to do so. To find the total paths to reach the point (i, j), we must add the paths from the

previous two points. Accordingly, if we want to reach point P[i, j], then we must calculate

the points P[i, j-1] and P[i-1, j] as this is the total number of paths to get to point P[i, j].

Figure 56: Calculating paths to reach point P

168

Most students were eager to use a two-dimensional array to solve this task. They used

the following equation to fill the first row and the first column with ones (1), indicating

that there was only one path to reach these points.

1. P[0, j] = 1 for every 0 ≤ j ≤ Μ-1 and P[i, 0] = 1 for every 0 ≤ i ≤ Ν-1

Then they used the following equation for filling the remaining squares of the 2-D array.

2. P[i, j] = P[i − 1, j] + P[i, j − 1] for every 1 < i ≤ Ν-1, 1 < j ≤ Μ-1

The following was the most common solution produced using a 2-D array:

#include <iostream>
using namespace std;

long long int paths[1000][1000];

int main() {
 int N,M;
 cin >> N >> M;

 for (int i=0; i<N; i++){
 for (int j=0; j<M; j++){
 if ((i==0) || (j==0))
 paths[i][j]=1;
 else
 paths[i][j] = (paths[i-1][j] + paths[i][j-1]);
 }
 }
 cout << paths[N-1][M-1] % 1000007<< endl;
 return 0;
}

A full score was awarded for the solution above, but a closer look by some students, as

in the case of student MP, produced a much better space complexity approach. A 2-D

array of 1000 x 1000 of long-long9 integer type requires 7,812.5 kilobytes of memory. For

the solution above, students managed to get a time complexity of O(N x M) and a space

complexity of also O(N x M) since a 2-D array was used.

When we discussed her solution, MP mentioned that she noticed that in the second

equation to calculate paths[i][j], the only values from the entire 2-D array needed were

paths[i-1][j] and paths[i][j-1]. She concluded that she needed only the results from the

previous row. Therefore, she switched her 2-D array to a 1-D array and stored the

intermediate values of paths[i–1] only. Though the time complexity of student MP’s

9 The ‘long long int’ data type allows values in the range -(263) to (263).

169

programme remained unchanged O(N x M) due to the nested loops, the space complexity

was improved to O(M). The following is MP’s solution using a 1-D array, obtaining a space

complexity of O(M):

#include <iostream>
using namespace std;

unsigned long long int paths[1000];

int main() {
 long long int N,M;
 cin >> N >> M;
 for (int i=0; i<M; i++)
 paths[i] = 1;

 for (long long int i=1; i<N; i++)
 for (long long int j=1; j<M; j++)
 paths[j] += paths[j-1];

 cout << paths[M-1] % 1000007<< endl;

 return 0;
}

In the fourth example, there was a similar approach by student CH. He was able to reduce

the space complexity of his programme to O(2 x N) from O(N2) by accumulating the total

needed using a similar dynamic programming technique.

Find the number of ways to remove as many characters as possible (0 or more) from a string

of characters of size N (1≤N≤20,000) so that the remaining string would be a palindrome10.

A 2-D array was initially used to store the calculated intermediate values, but the space

complexity of O(N2) resulted in the following outcome triggering memory limit violations:

Figure 57: Memory limit exceeded

10 A sequence of characters which reads the same forwards and backwards.

170

The observation of student CH enabled him to reduce the required 2-D array to only two

rows. He used a modulo operation to keep the intermediate values within the specific

constraints. Here is the submission of student CH that received a full score:

#include <iostream>
#define M 20130401
using namespace std;
int C[2][20000];

int main() {
 int N;
 string st;
 cin >> N;
 cin >> st;
 for (int i=N-1; i>=0; i--){
 C[i%2][i]=1;
 for (int j=i+1; j<N; j++)
 if (st[i]==st[j])
 C[i%2][j] = (1 + C[(i+1)%2][j] + C[i%2][j-1]) % M;
 else
 C[i%2][j] = (C[(i+1)%2][j] + C[i%2][j-1] - C[(i+1)%2][j-1]) % M;
 }
 cout << C[0][N-1] << endl;
return 0;
}

The above qualitative findings signify only a small percentage of the total number of

proven code optimisations that I was able to identify and analyse through the platform. I

used these optimisations with the action learning set for identifying the programming

strategies involved, engagement in the learning process and verification of the teachers’

meaningful and substantial support towards the students.

5.6 Student feedback on the framework and its components

In this section, I have reviewed the feedback on the framework’s components from the

COI students. As reported from the threshold concepts investigation, concrete learning is

frequently troublesome and uncomfortable as it requires the students to improve upon

their current ways of thinking. Nevertheless, the uncomfortable student in this situation

will probably make more progress than the comfortable student. Undoubtedly, students’

positive feedback and satisfaction with training methods cannot always be harmonised

with their learning progress and academic achievements. Moreover, students’ assessment

of their current knowledge has been occasionally reported to be undependable (Kruger

and Dunning, 1999).

171

As long as we acknowledge these issues, student feedback can be a valuable resource for

educators. Students’ views can help teachers identify the weaknesses and strengths of a

pedagogical tool and propose enhancements. The engaging factors are significant as they

affect student motivation. Consequently, if the students like the framework, it does not

necessarily prove its efficiency. Similarly, if they do not like it, it does not prove that the

framework is not working. What is imperative is to discover and reflect on the rationale

for the students’ feedback.

Overall, the Michanicos platform received high praise from almost all students and

teachers. In the questionnaire, students were requested to elaborate on the positives and

negatives of Michanicos and recommend upgrades. Some of the advantages reported

were the submissions’ evaluation speed and the interface’s simplicity and ease of use. The

most critical feature reported was the platform's capability to be used as a personal code

repository/portfolio for all the students’ solutions. Moreover, the speed of the evaluation

process and the appropriate selection of tasks were also mentioned (Figure 58).

Figure 58: Positive aspects of the Michanicos platform

On the negative side, the students mentioned that they would like to see more tasks

associated with each tag and a more extensive selection of tags (Figure 59). As for future

upgrades, the students requested a forum for comments and discussions on tasks,

availability of test cases for downloading and editorials for the more complex tasks after

a solution is reached. Most of the upgrades have been confirmed by the action learning

set, and the upcoming version of Michanicos will include the majority of these (Figure 60).

0 1 2 3 4 5 6 7 8

Use as code repository

Fast evaluation speed

Good selection of tasks

Easy to register and use

Number of students

Michanicos platform (pros)

172

Figure 59: Negative aspects of the Michanicos platform

Figure 60: Requests for future upgrades

The open-ended feedback of students highlighted the strengths, weaknesses and

enhancements of the platform. Furthermore, I collected student responses concerning

their interactions with the Michanicos platform using a 5-point Likert scale on the same

questionnaire. The action learning set wanted to have extensive feedback on students’

perspectives about the platform’s usability and simplicity, the suitability and clarity of

included tasks and lecture notes, the response time of the evaluation process, the

leaderboard component, the tasks’ statistics and the students’ level of improvement

(Figure 61).

0 1 2 3 4 5 6 7 8 9

No issues

Include more tags

Improve the interface

More task availability

Number of students

Michanicos platform (cons)

0 1 2 3 4 5 6 7

Other

Forum for disscussions

Download testcases

Editorials on tasks

Number of students

Michanicos platform (upgrades)

173

7%

93%

M1. The registration process is easy
and simple

Somewhat agree

Strongly agree

7% 13%

80%

M2. The navigation in the platform is
simple

Neither agree nor
disagree

Somewhat agree

Strongly agree

7% 13%

13%

67%

M3. The task tags were appropriate
and easy to select

Somewhat disagree

Neither agree nor
disagree

Somewhat agree

Strongly agree

13%

20%

67%

M4. The task selection for each tag is
appropriate

Neither agree nor
disagree

Somewhat agree

Strongly agree

6%

94%

M5. The task statements are easy to
read

Somewhat agree

Strongly agree

7% 13%

20%60%

M6. The lecture notes on the
platform are appropriate

Somewhat disagree

Neither agree nor
disagree

Somewhat agree

Strongly agree

174

The feedback from the students for the Michanicos platform was mainly positive, as most

students had the opportunity to use similar online judges in the past. Hence, any initial

concerns about the platform’s integration were quickly dismissed. Based on the responses,

the platform has established itself as an invaluable component within a year.

7% 13%

80%

M7. The submission process through
the code editor is simple to use

Neither agree nor
disagree

Somewhat agree

Strongly agree
100%

M8. The evaluation speed of my
submissions is fast

Strongly agree

13%
13%

7%67%

M9. The leaderboard motivates me to
accumulate points and improve my

ranking

Somewhat disagree

Neither agree nor
disagree

Somewhat agree

Strongly agree

13%
13%

20%

54%

M10. The statistics for each task
allowed me to evaluate the

complexity of tasks

Somewhat disagree

Neither agree nor
disagree

Somewhat agree

Strongly agree

7%

93%

M11. The platform has enabled me to
keep track of all my submissions

Somewhat agree

Strongly agree

33%

20%

47%

M12. The platform has helped me
improve as a competitive

programmer

Neither agree nor
disagree

Somewhat agree

Strongly agree

Figure 61: Student feedback on the Michanicos platform

175

The other framework components were also under review within the same questionnaire.

The CMS system received very positive feedback, with the most important feature (53%)

being the fact that it is the same one used in international programming competitions,

and the learning curve was minimal (34%) (Figure 62). As for the COI website that

contains all of the material and links for the CMS and the Michanicos platform, students

requested more implementations of well-known algorithms within the lecture notes. On

the question asking for suggested changes in the training process, 47% of students

answered with ‘Nothing’ and 40% requested ‘More material’ (Figure 63).

Figure 62: Reviews for the CMS

Figure 63: Recommended changes in the training process

34%

53%

13%

Contest Management System

Low learning curve

Same as IOI

Reliablility

47%

40%

13%

What changes you would recommend in
the training process?

Nothing

More material

Weekly contests

176

5.7 Student engagement with the Michanicos platform

Michanicos platform statistics (August 2018 - August 2019)

Total users: 164

Total submissions: 3615 (Updated in August 2021: Users 342, Submissions 10867)

Figure 64: Total user submissions on Michanicos

The level of student engagement with the platform has been steadily increasing during

the past year (Figure 64). Accordingly, the students’ interactions have also increased as

communication and collaboration within the Slack platform indicated. Inevitably, students

engaged in energetic methods of learning regardless of the increased required level of

cognitive involvement. Learning competitive programming requires a complex mix of

context, cognition, engagement and motivation, problem-solving, training and

participation. When these components can be combined successfully, it creates powerful

ways of thinking about competitive programming. The benefits from the platform usage

have been multiple. Arguably, one of the most significant benefits was the ability to use

a different approach with students by enforcing increased complexity with advanced

students and a step-by-step approach with newcomers. Interestingly, the two methods

can be joined by mixing graded level tasks and the proficient use of scaffolding. The

platform served its purpose as it offered a balance between freedom in learning and

learning management, appropriate for this specific discipline and context and thus

promoted the utmost success.

0

500

1000

1500

2000

2500

3000

3500

4000

Aug-18 Sep-18 Oct-18 Nov-18 Dec-18 Jan-19 Feb-19 Mar-19 Apr-19 May-19 Jun-19 Jul-19 Aug-19

Total users submissions on Michanicos

177

I have analysed the tasks associated with each of the three rounds of competitions to

determine engagement levels (Tables 9-11). The columns are defined as follows:

• Users who solved it: Number of users who submitted at least one correct solution.

• Users who tried it: Number of users who submitted at least one submission.

• Correct submissions: Number of submissions with a full score (100 points).

• Total submissions: Total number of submissions for the specific task.

 I evaluated the following tables have in Section 5.4.

Task Users who solved it Users who tried it Correct submissions Total submissions

Shopping 5 6 6 8

Reloaded 2 3 2 31

Email 3 3 3 4

Painter 5 5 5 6

Mission 6 6 7 17

Coffee 6 6 11 17

Couples 4 5 4 16

Caramels 17 17 19 38

Rules 9 11 10 27

Titanic 16 17 20 41

Think 11 14 14 31

Christmas 61 64 89 258

Numbers 58 67 119 455

Oracle 72 85 122 349

Pebbles 47 62 74 456

TOTALS 322 371 505 1754

Table 9: First-round tasks' statistics

Task Users who solved it Users who tried it Correct submissions Total submissions

Coupons 4 6 4 17

Robbery 3 3 3 5

Virus 6 6 7 11

Boxes 6 8 6 30

Tower 5 8 8 41

Froutopia 7 8 8 26

Followers 6 8 6 11

Magic 7 7 7 9

Metro 7 14 8 61

Travel 5 7 7 51

Money 4 8 4 86

Infinity 4 12 4 56

TOTALS 64 95 72 404

Table 10: Second-round tasks' statistics

178

Task Users who solved it Users who tried it Correct submissions Total submissions

Terbium 2 3 2 6

Cherry 2 5 2 28

Aokigahara 2 4 2 11

Suffix 5 9 6 139

Gold 4 6 4 12

Organization 2 4 6 34

Factions 2 5 2 14

Fence 5 7 5 37

Flow 1 3 1 6

Art 6 8 6 22

Ducks 4 6 5 57

Bacteria 3 4 4 25

TOTALS 38 64 45 391

Table 11: Third-round tasks' statistics

5.8 Statistical Analysis of COI Round A

I assessed student performance data from all of our competition rounds. The data

provided significant indications to the action learning set (teachers/alumni) about

students’ strategies, liminal negotiations and task suitability in correlation with the learning

objectives. The data is displayed in tables, and the tasks are analysed separately.

Michanicos link: http://81.4.170.42:8980/training/#/tasks/1?tag=COI2019A

Number of contestants: 89

Tasks
Average

Score
Standard
Deviation

Group A
(Top 33%)

Group B
(Middle 34%)

Group C
(Bottom 33%)

Complexity
Ratio

Α. Shopping 87.08 31.63 100.00 93.00 67.59 1.480

B. Think 47.42 47.48 98.50 40.67 1.55 63.478

C. Titanic 21.80 38.19 55.67 8.67 0.34 161.433

D. Strings 59.51 40.71 91.40 73.73 11.79 7.750

TOTAL 215.79 118.0 345.57 216.07 81.28 4.252

Table 12: Statistical analysis of the first round

The first round of competition was a reasonably non-trivial qualifying programming round

(Table 12). The complexity ratio11 reveals that the hardest task was ‘Titanic’ as group C,

the lowest-ranked 33% of contestants, got an average of 0.34 points while group A, the

11 The average score of the top 33% of student scores, divided by the average score of the bottom 33% of student scores

for the specific task. It is a measurement of task complexity and it has been used in our action learning set analysis sessions.
A value closer to zero shows that the task did not differentiate between the upper level and lower-level students. The higher
the complexity ratio value the better the differentiation but extreme values should be avoided.

http://81.4.170.42:8980/training/#/tasks/1?tag=COI2019A

179

top 33%, got an average of 21.80 points. Accordingly, the complexity ratio of task ‘Titanic’

was 161.433. As expected, the easiest task was ‘Shopping’ which was the known task

from the preliminary problems. Most students had the opportunity to solve it before the

contest and test the correctness of their solution. It produced a complexity ratio of 1.480.

Tasks analysis of the first round

Figure 65: Histogram for task Shopping

Abbreviated task statement: Given two arrays of integers (toys and banknotes), you must

calculate the number of toys Benjamin can purchase if the banknote value has to be larger

than the value of the next available toy. If not, he has to skip the toy and move to the next one.

The scores for this task produced the highest average score (87.08) as it was a relatively

trivial task using 1-D arrays to store the values and calculate the answer iteratively.

Figure 66: Histogram for task Think

9 6 3 3

68

0

10

20

30

40

50

60

70

80

[0-19] [20-39] [40-59] [60-79] [80-100]

N
U

M
B

ER
 O

F
ST

U
D

EN
TS

STUDENT SCORES

A. Shopping (Preliminary task)

29

12
7

2

39

0

10

20

30

40

50

[0-19] [20-39] [40-59] [60-79] [80-100]

N
U

M
B

ER
 O

F
ST

U
D

EN
TS

STUDENT SCORES

B. Think (Simulation)

180

Abbreviated task statement: Given an integer N (1≤Ν≤123,456,789), print all the digits that,

when multiplied by N, produce an anagram of N. For example, if N=1,246,878, the output

should be 6 and 7.

According to its complexity ratio, task ‘Think’ was the second hardest task of the first

round. The top 33% of students averaged 98.50 points, while the bottom 33% averaged

only 1.55. These results were presumably due to ambiguity in the meaning of an anagram

though it was clearly explained in the task statement. Additional remarks from the learning

set for some submissions was the difficulty to count the digits of each product and that

some submitted solutions had a time complexity of O(N2) that did not pass the one-second

time limit.

Figure 67: Histogram for task Titanic

Abbreviated task statement: Given the list of passengers and their status, you must output

the order of evacuation of Titanic according to the passengers’ status.

The number of passengers (N≤1,000,000), the significantly low time limit (0.9 seconds)

and 64 megabytes of the memory limit resulted in the fewest full scores of the contest

(12) among all tasks. Task ‘Titanic’ was the hardest task of the first round based on its

complexity ratio of 161.433. The average score from the top 33% was 55.67, which was

lower than the average score of the bottom 33% for the task ‘Shopping’. The average

score from the bottom 33% for task ‘Titanic’ was a mere 0.34. This average was lower

than all tasks, even from the second-round statistics.

58

6 5 6
14

0

10

20

30

40

50

60

70

[0-19] [20-39] [40-59] [60-79] [80-100]

N
U

M
B

ER
 O

F
ST

U
D

EN
TS

STUDENT SCORES

C. Titanic (Data Structures)

181

I included this task to serve as a tiebreaker. The considerable input size could not be

sorted with O(N2) algorithms such as bubble sort or insertion sort. Additionally, space

requirements were tested as submissions that used only two 1-D arrays to store the names

and statuses were able to pass. Solutions that included 2-D arrays and multiple arrays for

storing each status could not pass the memory limit. In general, this task has served its

purpose. Though its point average of 21.80 would be more appropriate for a third-round

task, I reached important conclusions such as the students’ inclination to use programme

memory in abundance and the struggle of some students to improve the time complexity

of their code.

Figure 68: Histogram for task Strings

Abbreviated task statement: You are given a string of characters containing only the

characters A, B and C and a set of three rules:

1. You can swap the consecutive characters AB to BA and vice versa.

2. You can swap the consecutive characters BC to CB and vice versa.

3. You cannot swap the consecutive characters AC or CA.

Find the smaller string, lexicographically, which can be produced by making an arbitrary

number of swaps (even zero).

For this task, I wanted students to demonstrate improved techniques with linear time

complexity rather than brute-force algorithms. From the scores, I concluded that there

was a proper distribution of points (top 33% - 91.40, middle 34% - 73.73, bottom 33% -

11.79), and the complexity ratio of 7.750 was the most suitable for this round. The

indicative complexity ratio decided in the learning set sessions was a value close to 10.

24

11 10
7

37

0

5

10

15

20

25

30

35

40

[0-19] [20-39] [40-59] [60-79] [80-100]

N
U

M
B

ER
 O

F
ST

U
D

EN
TS

STUDENT SCORES

D. Strings (ad-hoc)

182

5.9 Statistical Analysis of COI Round B

Michanicos link: http://81.4.170.42:8980/training/#/tasks/1?tag=COI2019B

Number of contestants: 31

Tasks
Average

Score
Standard
Deviation

Group A
(Top 33%)

Group B
(Middle 34%)

Group C
(Bottom 33%)

Complexity
Ratio

Α. Infinity 27.90 40.22 72.00 12.08 1.86 38.769

B. Metro 25.00 39.32 64.60 11.33 1.36 47.600

C. Money 7.10 20.40 19.40 6.50 0.36 54.320

D. Travel 5.10 8.57 10.80 5.08 2.00 5.400

TOTAL 65.10 86.32 166.80 35.00 5.57 29.939

Table 13: Statistical analysis of the second round

The second-round competition was comparatively more challenging than the first round

(Table 13). The overall complexity ratio spiked from 4.252 in the first round to 29.939 in

the second round. For this round, I have included a difficult task (Money) directly

associated with one of the identified threshold concepts (dynamic programming). As

expected, it resulted in the highest complexity ratio (54.320) and the second to last

average score (7.10). These numbers indicate that students with a good grasp of the

threshold concept could earn points, while students with partial or limited understanding

failed to do so. The learning set linked the scores for this task with the students’ perceived

coding efficiency from Section 5.4, and the results were consistent.

Tasks analysis of the second round

Figure 69: Histogram for task Infinity

19

5

0 0

7

0

5

10

15

20

[0-19] [20-39] [40-59] [60-79] [80-100]

N
U

M
B

ER
 O

F
ST

U
D

EN
TS

STUDENT SCORES

A. Infinity (Strings)

http://81.4.170.42:8980/training/#/tasks/1?tag=COI2019B

183

Abbreviated task statement: Using the first N (1≤N≤26) characters of the Latin alphabet, find

the character in position X of the string created by arranging in increasing order all the

possible strings of length one, then all the possible strings of length two and so on. For

example, for N=2 (a, b) and X=10, the string should be:

a b c aa ab ba bb

So, the character at position 10 is b.

I wanted to test the students’ ability to produce optimised programming code on a medium

difficulty task, so X was a huge number (0<X<1018). For the first subtask (13 points), the

length of the string was not bigger than three characters so that a brute-force solution

could pass. I used multiple test cases for the second subtask (X<200,000, N=2) and the

third subtask (no constraints). The output should have been multiple characters instead

of just one, making it impossible to guess the correct answer. For solving this task,

students had to calculate the length of the string in which the Xth character was found.

So, length L was calculated as follows L = X – i * iN. Then, integer Y was obtained by finding

X modulo L. Finally, finding the (L – Y)th digit of number X in base N and adding ‘a’ would

get the character in question.

The task was the easiest of the second round, with a complexity ratio of 38.769 and a

relatively low point average (27.90). The top 33% of students got an average of 72.00,

which ranked highest in the competition.

Figure 70: Histogram for task Metro

21

4

0 0

6

0

5

10

15

20

25

[0-19] [20-39] [40-59] [60-79] [80-100]

N
U

M
B

ER
 O

F
ST

U
D

EN
TS

STUDENT SCORES

B. Metro - Graphs(Prim, DFS)

184

Abbreviated task statement: Given N cities and M roads, you need to connect all the cities

with metro lines, so the total length of these lines is minimal. Then, you need to answer

several queries for finding the shortest distance between two cities.

Although task ‘Metro’ was a pretty straightforward task, it produced the highest complexity

ratio of the contest (54.320). Initially, students had to construct the Minimum Spanning

Tree12 (MST) using Prim’s or Kruskal’s algorithms and then run a DFS (Depth-First Search)

algorithm to determine the shortest distances among cities. Task ‘Metro’ could have been

approached in many ways. Between the task creator and testers, there were four different

solutions, each one scoring a different number of points.

The learning set determined that several students struggled to store the MST in a proper

data structure. Others created the MST but then attempted to find the minimum distances

using Floyd-Warshall and Dijkstra’s algorithms which did not get a full score because of

the time constraints. The average for the top 33% was 64.60.

Figure 71: Histogram for task Money

Abbreviated task statement: Given N banknotes help Yuki and Nazima split the money

equally. If there is any money left after the initial sharing, they can invest and double the

remaining amount and then split it again. How much money will each one make?

I introduced this dynamic programming task to assess the students’ knowledge of the

identified threshold concept. The basic idea was to use dynamic programming to distribute

the banknotes evenly among two persons. Moreover, they needed to distribute the N

12 A subset of a graph that connects all its vertices without cycles and with the minimum total weight.

26

3
1 0 1

0

5

10

15

20

25

30

[0-19] [20-39] [40-59] [60-79] [80-100]

N
U

M
B

ER
 O

F
ST

U
D

EN
TS

STUDENT SCORES

C. Money (Dynamic Programming)

185

banknotes into two equal parts and the remaining sum of the unused banknotes to be the

minimum possible.

A brute-force algorithm could receive 47 points (N≤50, sum of banknotes≤1000) by trying

out every possible combination of sharing the banknotes. Since there were three possible

ways a banknote could have been distributed (for Yugi, for Nazima, for none of the two),

the time complexity of the brute-force algorithm was O(3n).

From the learning set discussions, it appeared that to improve the previous algorithm,

students went through each of the banknotes and gave them to either Yugi, Nazima, or

nobody. In every step of this algorithm, they needed to know the current banknote and

the amount of money Yugi and Nazima have collected so far. We let function F(K, Y, Z)

return the largest possible sum of money that Yugi and Nazima can collect. After we have

distributed K-1 banknotes, Yugi’s amount of money is Y, and Nazima’s amount is Z. Then

we can write the following function:

F(K, Y, Z) = max[F(K + 1, Y, N), F(K + 1, Y + val[K], Z), F(K + 1, Y, Z + val[K])]

Where val[K] represents the value of the Kth banknote, and function F(K + 1, Y, Z) will be

0 if Y is not equal to Z. This dynamic programming algorithm has a time complexity of

O(N x T2) where T denotes the sum of all of the banknotes.

Some students noticed that it was adequate to keep track of the difference (D) of the

amount of money Yugi and Nazima have collected so far. The progression goes from state

F(K, D) to the states F(K + 1, D), F(K + 1, D + val[K]) and F(K, |D − val[K]|). These denote

not giving the banknote, giving the banknote to the person having more money and giving

the banknote to the person having less money, correspondingly. Since there are O(N x T)

states, we can conclude that the algorithm has a time complexity O(N x T) which is

satisfactory to receive a full score.

The space complexity of the task was 32 megabytes forcing students to use more efficient

data structures for storing the intermediate values.

Student CG managed to get a full score for this task with the following code implementing

the previous algorithm:

186

#include<iostream>
#include<vector>
#include<string.h>
#include<stdio.h>
#define ll long
#define rep(i,a,b) for(int i=a; i<b; i++)
#define N 504
#define MAXVAL 200004
#define INF 1e9+7
using namespace std;
int n, val[N],x;
int dp[N][MAXVAL], sum;

int main() {

 ios_base::sync_with_stdio(false);
 scanf("%d",&n);
 rep(i,0,n) {
 scanf("%d",&x);
 val[i] = x;
 sum += val[i];
 }

 rep(j,0,sum*2+1)
 dp[0][j] = INF;
 dp[0][sum] = val[0];
 dp[0][val[0]+sum] = dp[0][sum-val[0]] = 0;
 rep(i,1,n) {
 rep(j,0,sum*2) {
 dp[i][j] = val[i]+dp[i-1][j];

 if(j + val[i] <= sum*2)
 dp[i][j] = min(dp[i][j],dp[i-1][j+val[i]]);
 if(j -val[i] >= 0)
 dp[i][j] = min(dp[i][j],dp[i-1][j-val[i]]);
 }
 }

 ll ans = dp[n-1][sum];
 ans = ans + (sum - ans)/2;
 printf("%d", ans);

 return 0;
}

Overall, 21 out of 31 students (67.74%) managed to solve at least one subtask correctly,

even if the task’s complexity ratio was 54.32, the highest in the contest for an identified

threshold concept (dynamic programming).

187

Figure 72: Histogram for task Travel

Abbreviated task statement: Given N cities that are either exciting or boring, connected with

N-1 roads, arrange a minimal possible route for Maria so she can visit exactly M exciting cities.

This task was the hardest of the competition, with an average score of 5.10. Moreover, it

was the only task in the contest in which none of the contestants earned a full score. This

graph task required running a BFS (Breadth-First Search) from every city until M exciting

cities were reached. Then, use the DFS algorithm to find the furthest city out of the M

exciting cities since the graph was a tree. The learning set session offered meaningful

feedback, and five students solved the task on Michanicos.

5.10 Statistical Analysis of COI Round C

Michanicos link: http://81.4.170.42:8980/training/#/tasks/1?tag=COI2019C

Number of contestants: 19

Tasks
Average

Score
Standard
Deviation

Group A
(Top 33%)

Group B
(Middle 34%)

Group C
(Bottom 33%)

Complexity
ratio

A. Bacteria 13.32 22.65 30.83 7.29 2.83 10.882

B. Ducks 21.05 24.24 42.50 15.71 5.83 7.286

C. Art 26.32 40.58 76.67 5.71 0.00 nan

D. Flow 27.53 15.56 33.83 31.43 16.67 2.030

TOTAL 88.21 80.61 183.83 60.14 25.33 7.257

Table 14: Statistical analysis of the third round

The tasks of the third round were the hardest of all rounds. This decisive round formed

our delegations for the IOI and BOI competitions (Table 14). The tasks were similar to

IOI tasks in terms of overall complexity and subtasks’ distribution of points. The overall

30

0 1 0 0
0

5

10

15

20

25

30

35

[0-19] [20-39] [40-59] [60-79] [80-100]

N
U

M
B

ER
 O

F
ST

U
D

EN
TS

STUDENT SCORES

D. Travel (ad-hoc)

http://81.4.170.42:8980/training/%23/tasks/1?tag=COI2019C

188

complexity ratio was relatively low (7.257), and the highest point average for all tasks was

less than 50%. For this round, I also included a task (Bacteria) that was associated with

an identified threshold concept (segment trees). Additionally, two subtasks required a

dynamic programming technique, so I included and tested two identified threshold

concepts within one programming task.

The overall average score for the third round was 88.21, while the corresponding number

from the second round was 65.10 (Table 15). To compare all rounds, these are the total

averages calculated from the three rounds of competition:

ROUND
Average

Score
Group A

(Top 33%)
Group B

(Middle 34%)
Group C

(Bottom 33%)
Complexity

ratio

A 215.79 345.57 216.07 81.28 4.252

B 65.10 166.80 35.00 5.57 29.939

C 88.21 183.83 60.14 25.33 7.257

Table 15: Statistical analysis of all rounds

Even though the third-round tasks were the hardest, the students were able to solve more

subtasks and get a much better distribution of points for all the group levels.

Tasks analysis of the third round

Figure 73: Histogram of task Bacteria

Abbreviated task statement: Help Benjamin maximise the profit of his company which sells

bacteria to pharmaceutical research labs within the next N years if he can change the values

of X – growth ratio of the bacteria population and Y – selling price of the bacteria on each day.

18

0 0 0
1

0

5

10

15

20

[0-19] [20-39] [40-59] [60-79] [80-100]

N
U

M
B

ER
 O

F
ST

U
D

EN
TS

STUDENT SCORES

A. Bacteria

189

Task ‘Bacteria’ was the equivalent of an IOI task. To solve the first two subtasks, the

students had to use dynamic programming to calculate the maximum profit after i-1 days

if they had j bacteria. Then they could get j * X bacteria and j * Y money for that day before

moving on to the next day.

The first observation is to consider the profit for two days (i and j) and check which day

we have the most profit. The profit for the first day would be X1 * X2 ... Xi * Yi and for the

other day X1 * X2 ... Xi+1 * Yi+1 * ... Xj * Yj. Then we must check the equation max(Yi, Xi+1 * ... Xj

* Yj), which yields the day that gives the most profit so we can sell the bacteria on that

day. The time complexity for this solution is O(N).

The second observation is the following: if all of Xi ≥ 2 then after the first 30 days we will

get a value of Xi * Xi+1 * Xi+2 *...* Xi+29 ≥ 230 > 109. So, for all values less than or equal to N-

30, we can never have an optimal solution because if YN-30 = 109 and YN = 1, then 230 * YN

> YN-30. We conclude that it is adequate to check only the last 30 values.

For receiving a full score with the third observation, we can merge consecutive values

with Xi = 1. After merging, we get the maximum Yi. It is sufficient to check the last 60

values because it is impossible to have more than 30 merged 1s within the last 30 values,

where Xi≥2. We can use segment trees as the data structure, and we can add information

about the current merged values. We can then run RMQ13 (Range Minimum/Maximum

Queries) within the structure to find the answer. So, for a total of Q queries, the time

complexity of this algorithm would be O(Q * log(N) * log(109)) which would receive a full

score.

In general, the complexity ratio of the task was ideal (10.882), and the point average of

the top 33% of students was 30.83, which was a lot more than the expectations of the

learning set. Overall, one student received a full score and 12 out of 19 students (63.2%)

solved at least one subtask correctly.

13 A technique for finding the minimum/maximum value in a data structure of comparable elements.

190

Figure 74: Histogram of task Ducks

Abbreviated task statement:

Benjamin is watching the ducks swimming in circles in the pond. This task has several

requests:

• Find if the given sequence of N (N<105) ducks is valid. Since the ducks go in circles,

the sequences (2, 3, 4, 5, 1) and (4, 5, 1, 2, 3) are valid, but the sequence (4, 3, 2, 5, 1)

is not.

• Create a replacement sequence to produce the initial sequence of ducks. If we have

the valid duck sequence (1, 2, 3, 4, 5) and duck 1 gets tired, we can replace duck 1

with duck 6. Then a valid sequence of the ducks would be (6, 2, 3, 4, 5).

• Count the number of replacements in the replacement sequence that produces the

initial sequence.

Task ‘Ducks’ could have been solved using three different implementations tackling each

subtask. First, the students had to decide what a valid duck sequence was. For all the

subtasks of this task, there can only be two options. If we observe any of the numbers

from 1 to N, then the sequence is fixed, and we can use it to find the original duck for all

of the positions. Otherwise, we have the following two constraints: every duck that

appears must be in the correct position, and two ducks cannot have the same number.

To consider how to create a replacement sequence and count the number of replacements

if the sequence is not fixed, we can choose it arbitrarily. Then the new ducks available will

be from N+1 up to the largest possible number. So, to find a valid replacement sequence,

10

6

1 1 1

0

2

4

6

8

10

12

[0-19] [20-39] [40-59] [60-79] [80-100]

N
U

M
B

ER
 O

F
ST

U
D

EN
TS

STUDENT SCORES

B. Ducks

191

we must decide which new duck must replace each tired duck. Each new duck larger than

N can be assigned to a position where the number of the final duck is bigger, which can

determine the order of replacements. For the last subtask with too many new ducks to be

replaced in the sequence, we can handle these in groups using fast exponentiation14.

Overall, task ‘Ducks’ produced a great distribution of points (top 33% - 42.50, middle 34%

- 15.71 and bottom 33% - 5.83). In total, 15 out of 19 students solved at least one subtask

(78.95%), which was the highest percentage in the contest even though other tasks had

a higher point average.

Figure 75: Histogram of task Art

Abbreviated task statement: Given two images of circles with N (1≤N≤105) radiuses drawn

in each circle, determine if the two images are the same. For example, in Figure 76, if we rotate

the image on the left by 45 degrees clockwise, we will get the image on the right.

Figure 76: Task Art circle images

For solving this task, students had to check if the two sets of radiuses from the images

could be matched with a rotation of either image. Since the radiuses were represented as

14 A technique for fast calculation of large integer powers of a number.

12

3

0 0

4

0

2

4

6

8

10

12

14

[0-19] [20-39] [40-59] [60-79] [80-100]

N
U

M
B

ER
 O

F
ST

U
D

EN
TS

STUDENT SCORES

C. Art

192

numbers (R≤360,000), we could sort the radiuses in increasing order and find the

differences. To determine if we could get the same image by rotating one of the two

images, we could check if sequence S1 was a substring of S2. The KMP (Knuth-Morris-

Platt) algorithm can perform this operation in the time complexity of O(N). Task ‘Art’

created a statistical paradox. Only 8 out of 19 students (42.10%) solved at least one

subtask. Four students who knew how to implement the KMP algorithm earned a full

score. Eleven students got zero points as they could not implement a brute-force solution

to get the first subtask (N<100). Therefore, the point averages for this task were: top

33% - 76.67, middle 34% - 5.71 and bottom 33% - 0.00.

Even though only eight students received points on this task, the point average ranked

second in the competition with 26.32. The standard deviation was the highest in the

contest, with 40.58. Interestingly, when I analysed the students’ code with the action

learning set, there were four submissions in which the students did not receive points

simply because they failed to check the global rotation correctly. Student CK was positive

that his brute-force solution should have received at least 10 points for the first subtask.

A closer look at his submission in the analysis session revealed that he failed to check on

the radiuses’ rotations correctly. He later managed to solve it correctly on Michanicos.

Figure 77: Histogram of task Flow

Abbreviated task statement: This is an output-only task. You need to simulate the game of

‘Flow’ (Figure 78). In this game, you have to connect the two dots of the same colour with a

line without overlapping with any other lines of a different colour. You should not submit any

1

14

4

0 0
0

2

4

6

8

10

12

14

16

[0-19] [20-39] [40-59] [60-79] [80-100]

N
U

M
B

ER
 O

F
ST

U
D

EN
TS

STUDENT SCORES

D. Flow

193

code with this task. Only submit the output files that correspond to the given input files. You

are given three integers with each input file: the dimensions of the grid (N x M) and the

number of dots present (K).

Figure 78: The game Flow

The action learning set suggested including an output-only task as there was a task of

this type in previous IOI competitions. I have also included a lecture on output-only tasks

in the Easter camp, along with the additional lectures on the threshold concepts. The

scoring format was as follows: each output file could get up to 10 points with the scoring

format of ceil (10 * (S/K)2), where S was the number of correctly connected dots.

To better illustrate what the students had to do, this is the input file 1:

6 6 4

0 0 0 0 2 4

0 0 0 0 0 0

2 0 0 0 0 0

4 0 0 0 3 1

0 0 0 0 0 0

3 0 0 1 0 0

Due to its small size, it could have been solved by hand to give an easy 10 points:

0 0 0 0 2 4

0 0 2 2 2 4

2 2 2 4 4 4

4 4 4 4 3 1

0 0 3 3 3 1

3 3 3 1 1 1

The task ‘Flow’ awarded the most points in total in the contest (523), which was 31.2%

of the total points awarded. The point average of the bottom 33% of students (16.67)

194

was the second-highest from all tasks, not only in the third round but in all rounds. It

ranked second only to the preliminary task. Overall, student performance increased in

local competitions due to the COI framework’s integration into the training course.

Performance data from international competitions are presented next.

5.11 International contest participation

In August 2019, we travelled to Baku, Azerbaijan, to compete in the IOI 2019.

Unfortunately, we had to travel with only three contestants instead of four due to the

illness of one of the students. These are the results of the Cypriot delegation:

Rank Username Total Rect Shoes Split Line Vision Walk

185 CYP1 229.91 37 100 18 19.91 55 0

213 CYP2 204.6 25 85 40 2.6 52 0

230 CYP3 186 8 100 11 12 55 0

 TOTALS 620.51 70 285 69 34.51 162 0

Table 16: Cyprus results from IOI 2019

The following table shows the results of the Cypriot delegation in IOI 2018 in Japan:

Rank Username Total Combo Seats Werewolf Doll Highway Meetings

176 CYP1 176 100 0 34 16 5 21

223 CYP2 132 100 11 15 6 0 0

284 CYP3 52 30 0 0 6 12 4

313 CYP4 15 10 5 0 0 0 0

 TOTALS 375 240 16 49 28 17 25

Table 17: Cyprus results from IOI 2018

Unfortunately, in both of these contests, Cyprus failed to win a medal, but the comparisons

of the performance data from both competitions provided very significant findings:

• IOI 2019: Gold medals: 28 (≥ 414.75 points), Silver medals: 54 (≥ 329.18 points),

Bronze medals: 81 (≥ 250.19 points).

• IOI 2018: Gold medals: 29 (≥ 336 points), Silver medals: 55 (≥ 272 points),

Bronze medals: 83 (≥ 187 points).

• The total points for Cyprus from IOI 2019 had a 65.47% increase from the previous

year, even with one less contestant.

• The user CYP4 from IOI 2018 was user CYP1 in IOI 2019. He produced a

remarkable total point increase percentage of 1432.73%.

195

• Our highest-ranked contestant in IOI 2019, although he scored 53 points more

than our highest-ranked contestant in IOI 2018, ranked 185th out of 327

contestants while the other ranked 176th out of 335 contestants.

Arguably, the most accurate depiction of threshold concept acquisition by the COI

students was when our team encountered the task ‘Arranging Shoes’ on the first day of

IOI 2019. The task was optimally solved by using segment trees, one of the identified

threshold concepts of the study. This is the abbreviated task statement:

Arranging shoes

Adnan wants to rearrange N shoes into a valid arrangement. For this purpose, Adnan can

make a series of swaps. In each swap, he selects two adjacent shoes at that moment and

exchanges them. Determine the minimum number of swaps that Adnan needs to perform to

get a valid arrangement of the shoes.

For obtaining a valid shoe arrangement, the greedy approach is optimal since the pair of

shoes handled in this way will not interfere with any further swaps. The process can be

repeated until the arrangement of the shoes becomes valid. This can be modelled naively

in quadratic time, which solves most of the subtasks, or more efficiently in O(NlogN) using

a segment tree. Segment trees have been given particular attention since I have identified

them as a threshold concept of competitive programming. The Cypriot delegation scored

285 out of 300 maximum points available. The point average for our team on ‘Arranging

Shoes’ was 95, while the IOI average on the same task was 74.47. In the following tables,

the results of the Cypriot delegations are compared to different groups of IOI contestants.

Specifically, students who won a gold, silver, or bronze medal and non-medallists.

Username Totals Shoes

CYP3 229.91 100

CYP2 204.60 85

CYP1 186 100

CYP total 620.51 285

CYP average 206.84 95.00

IOI average 245.20 74.47

Group Average

Gold medallists 98.93

Silver medallists 98.52

Bronze medallists 90.74

Non-medallists 54.82

All 74.47

Table 18: Task 'Shoes' results (IOI)

Table 19: Task 'Shoes' results (CYP)

196

In August 2019, Cyprus participated in EJOI/JBOI in Maribor, Slovenia. We travelled to

Slovenia with five contestants, all under 15. The reason for taking an extra contestant was

to better prepare our teams for 2020. Moreover, to allow one of our most promising

contestants (Student CYP5 is only thirteen years old and already has the most submissions

on Michanicos) to participate in an international programming competition as early as

possible. We won four bronze medals in the JBOI competition but what was very

reassuring for the future of the COI learning community was that student CYP5 scored

the most points.

Rank Username Total Xoranges Rank Covering Tower Colouring Adventure

55 CYP5 (unof) 107.1 12 40 5 6.1 10 34

56 CYP1 103 30 40 5 6 0 22

58 CYP2 96 12 40 0 10 0 34

61 CYP3 84 12 40 0 10 0 22

65 CYP4 68 0 40 0 6 0 22

 TOTAL 458.1 66 200 10 38.1 10 134

Table 20: Cyprus results from EJOI/JBOI 2019

In September 2019, a Cypriot delegation travelled to Athens, Greece, for BOI 2019. I had

the honour of being selected for the scientific committee of the competition, and the task

I proposed (Icarus - Appendix 7) was used on the first day of the competition. Even

though two of our students were participating for the first time, we managed to win a

bronze medal (CYP1) in this competition as well. Here are the full results of our delegation:

Rank Username Total Icarus Fishermen Dictionary Memory Roadtrip Tennis

27 CYP1 160 59 11 26 46 7 11

35 CYP2 69 7 11 26 18 7 0

39 CYP3 44 0 11 8 18 7 0

41 CYP4 39 0 0 8 7 0 24

 TOTAL 312 66 33 68 89 21 35

Table 21: Cyprus results from BOI 2019

The final action learning set session verified that the COI framework’s integration into the

programming course directly prompted the improved students’ results in international

competitions (Chapter 6).

197

5.12 Training systems from IOI participating countries

The goal of the discussions with IOI colleagues was to share ideas on how each country

trains its contestants and focused on three aspects:

• What content and resources are available for IOI preparation, and which ones do

countries use/recommend?

• What process is the most effective for selecting and training students?

• What other tools are available?

I compared the findings with the COI framework standards to reflect on positive and

negative features. The findings (Appendix 13) can be synopsised in the following:

• Public-schools’ Computer Science curricula are not appropriate and do not

emphasise programming. Clearly, this is a global issue, and it requires much more

attention. In most countries, private schools are responsible for IOI participation.

• IOI past contestants (alumni) have been a crucial component in the training

systems of most countries. Their duties involve task setting, preparing lectures and

leading the delegations.

• Localised online judges have been implemented where possible. Wherever this is

not possible, the use of platforms such as Codeforces, Spoj and Usaco, is highly

recommended.

• The earlier the students begin to learn competitive programming, the better. If

students can be recruited at an early age and assigned a more accessible and

easier task set, they will have more experience and, therefore, better chances for

success at IOI.

5.13 Reaching the post-liminal space

I interviewed the IOI 2019 delegation (focus group) after their participation in Azerbaijan

to investigate the post-liminal space. These four students, including the one who did not

travel due to sickness, had succeeded in the local competitions and were selected to

represent Cyprus at the highest level. I wanted to determine the connection with the pre-

liminal space and how liminality was negotiated. The data from the semi-structured

interviews (Appendix 4) was supportive in understanding how the students, particularly

the two that have participated in IOI for the last time, have made the transformation and

198

acquired the qualities reported in the literature. Students who reach the post-liminal space

are expected to be accustomed to an alternative way of thinking. This transformation is

lasting since it is not just cognitive but also epistemological and ontological (Meyer and

Land, 2005; Mostrom et al., 2009). Reaching the post-liminal space implies they have

acquired new methods of knowing and can think like computer scientists and

accomplished competitive programmers.

The responses from the IOI delegation provided significant indications for their successful

transformation to complement their performances. The most natural feature to identify

was a noticeable ontological shift, evident in their ability to explain the threshold concepts

they once struggled with to their youngest and more inexperienced peers. The methods

they suggested using to teach the concepts to students who were stuck in their learning

process were the same ones they have used to navigate liminality effectively. Their

determination and work ethic proved the connection with the pre-liminal space, reinforcing

the importance of active engagement in the learning process. What stood out was their

predisposition that whatever was not clear initially would eventually become clear after

time. Based on the feedback of these students, the relationship between the pre-liminal

variation and the implications of the proposed framework structure and its methods of

engagement is undoubtedly affecting the students’ cognitive development.

Students’ and teachers’ perceptions for mastering the threshold concepts tend to agree

when students reach the post-liminal space, as I verified with the action learning set. The

IOI 2019 team reported that for students to reach a transformative state, they must

demonstrate not only a quantitative improvement in terms of points accumulated but also

a qualitative trend to solve IOI tasks with recurrently optimal approaches. The emphasis,

once again, is on the significance of the quality of programming tasks. The students

confirmed that when a specific set of tasks is used as a form of engagement and an

appropriate method of assessment is utilised for understanding the conceptual struggles

students face, we can verify the effects of the successful transformation.

Furthermore, the IOI delegation made suggestions on how to improve the framework’s

effectiveness with suggestions for efficient threshold concepts’ training, future

199

programming tasks, lecture topics selection and competition rounds format. They have

volunteered as task setters and deputy leaders in future IOIs and expressed a genuine

desire to give back to the community. No longer as students but as expert collaborators,

ensuring that the community that has allowed them to reach an otherwise unreachable

destination will continue to do so for future generations of competitive programmers. This

is a solid confirmation of the students’ transformation as the COI framework challenges

them to discover their new identities within their learning community.

5.14 Issues under consideration and research limitations

Several issues surfaced with the framework’s implementation in the teaching practice, and

they are presented here:

1. As this was a project combining action research and mixed methods within an

educational programme, there is an absence of control vs experimental group data. My

main objective was to prepare all COI students for IOI participation while completing this

project. If I used a control group, it would have been unethical, and I would have been

under scrutiny for not giving my students equal opportunities for successfully competing

in the competition rounds. A proposed scenario where a control group was selected and

asked to participate without using the Michanicos code-evaluation platform was quickly

rejected. This scenario would presumably not allow several students to pass the first round

of the competition, and it would have given a definite advantage to the experimental

group.

The nature of the produced data was such that no control group was required to provide

the corresponding data. In effect, I had the data from previous IOI participation to

compare. This data was a very accurate and valid comparison as the IOI tasks are the

most advanced measurement of progress. Therefore, the absence of a control group has

not affected the study's validity on what was intended to be measured and analysed and

enabled me to provide my students with an equal opportunity to make the delegations.

200

2. The framework requires frequent testing and feedback provision from both students

and teachers to provide additional data sources in the future for considering

improvements. It is imperative to continue critically evaluating all aspects of the

framework even after this study is concluded. The most important attribute that needs to

be addressed is the feedback and communication processes. The Slack social workspace

that I used for communication was extremely valuable but not the most appropriate as it

was separated from the Michanicos platform. The feedback was vital for helping me

understand where the students were located in liminality to reflect and intervene

accordingly. In that sense, the imminent upgrade of the platform should include a forum

component that would allow the coexistence of lecture notes, programming tasks and

discussions/editorials on tasks within the same repository.

3. The focus of feature research for competitive programming frameworks should consider

several additional modifications. Comparing students’ average scores with a relatively

narrow 5-point Likert scale on perceived coding efficiency could easily be applied to more

extensive data samples. More expanded self-evaluation data and a larger selection group

could test more accurately whether very high or low extreme students’ scores could be

detrimental to their performances and overall progression’s overestimation or

underestimation. Moreover, additional methods for data correlation should be considered,

especially when conducting a regression analysis, and the proper statistical software

package should be used to produce accurate results.

4. The framework was designed with the purpose to support teachers to help their

students to develop a genuine understanding of competitive programming topics that

included identified threshold concepts. The framework requires active student

engagement and structured management of the theoretical material. Therefore, the

students must demonstrate the ability to explain a concept to others, to approach it with

new ways of thinking and to be able to apply it where applicable, such as in new and

unknown programming tasks. Correspondingly, the framework can be perceived as a

framework of engagement within the course of study. The students are encouraged not

to focus on the memorisation of known patterns but challenged to demonstrate

satisfactory progression through new achievements. The methods of engagement are

201

incorporated within the platform, the associated programming tasks and course material.

Future inquiries are needed to ensure that these methods continue to produce

epistemological and ontological transformations for the next generations, depending on

the educational context.

5. The extent to which the research’s findings can be generalised can be confirmed when

the framework is used in a similar setting for a different country, preferably one that has

never won a medal in IOI. According to Maxwell (2005), the findings of qualitative

research regularly face generalisability as there is no justification to support that they

cannot be applied more generally. Additionally, the findings can lead to similar theories

transferred to other disciplines (Maxwell, 2005).

5.15 Chapter summary

In this chapter, the findings of this research study are presented. Based on the findings,

the COI framework has been found to have a considerable and multi-level impact on

students’ learning. In reply to the research objectives, the way programming tasks on the

Michanicos platform engage students with their projected learning objectives, whether

they were identified as a threshold concept or not, is of critical importance. The real

educational value of the proposed framework can be specified by its effects on the

teaching/learning processes and learning acquisition within a single year. It would be

critical to examine the long-term effects as well. The research findings are only the

beginning towards a greater understanding of the framework's impact on competitive

programming education in Cyprus and internationally.

202

CHAPTER 6: Conclusions

6.1 Introduction

In this chapter, I present the main conclusions of the research and define how the study’s

findings correspond to the research objectives. Each research objective has been

addressed with references to the research findings and my reflections. This research study

makes distinctive contributions to Computer Science Education research and particularly

to competitive programming education by generating a theory about learning and

practice. These contributions include the threshold concepts of competitive programming,

a methodology for identifying threshold concepts, and the COI framework built on the

framework of Meyer and Land (2003), using elements of framework design by Dabbagh

(2005). The empirical data support that the COI framework has the potential to inform

theory and practice in competitive programming education and introduces a method that

can produce consistent results in IOI. By evaluating student performance in liminality on

programming tasks embedded with the identified threshold concepts, the Michanicos

code-evaluation platform offers methods of inquiry for assessing submissions and provides

accurate depictions of students’ strategies.

As the lead researcher, with the support of a community of practitioners, including my

colleagues from other districts, the COI alumni and current students, I have designed and

evaluated the framework and provided a theoretical and practical outline. The COI

framework can be perceived as a system of training that contains several crucial

components. It aims to empower students to comprehend threshold and other complex

programming concepts and support their teachers to communicate them more effectively.

As part of an extended action learning set, the COI alumni were used as an expert group

to identify the threshold concepts and support the refinement and adjustment of the

framework’s components. Based on the empirical data, the framework improved students’

learning in transformative ways (Section 5.13), qualitatively increased their coding

efficiency and programming strategies (Sections 5.4-5.5) and successfully prepared them

for IOI participation (Section 5.11). I have shared the COI framework with the IOI

community with my presentation at the IOI conference in August 2019 in Baku, Azerbaijan

(Eracleous et al., 2019).

203

6.2 Main conclusions

The purpose of the study is to empower the next generation of Computer Science experts

by helping students comprehend complex programming concepts. The research aims to

enhance the pedagogy and the teaching practice for the Cyprus Olympiad in Informatics

by developing and evaluating a practical framework for competitive programming

education and introducing the Michanicos platform under the authority of the Ministry of

Education of Cyprus. The proposed framework intends to redefine the teaching and

learning processes within the context of its discipline and to become a distinctive

contribution to knowledge. The four research objectives provided the outline for aligning

all of the framework’s components and supported their validity. I will analyse the

conclusions reached with each research objective separately.

RO 1: Investigate and identify threshold concepts in competitive programming and how

they relate to the pre-liminal and liminal variations of students’ learning.

I discovered the theoretical and pedagogical value of the theory of threshold concepts in

classifying essential knowledge within my discipline and how it supported me in managing

what was essential. Threshold concepts represent the essence of competitive

programming as each one holds its own system of ideas or ways of thinking that enable

students to acquire knowledge. In other words, threshold concepts represent a way to

define critical moments in the learning trajectory, moving a student forward into a new

area of understanding.

Using the threshold concept theory in the empirical study made it possible to identify

conceptual knowledge that represented learning portals. It also created a depth of

meaning and clarified potential implications for how I teach the concepts of dynamic

programming, segment trees and recursion. Because one of the research’s research

objectives was to investigate the process of integrating a framework by the Cyprus

Olympiad in Informatics, these implications not only created new knowledge for

competitive programming but also developed a solid theoretical foundation on which to

base further studies. For example, the empirical study elicited evidence of threshold

204

concepts negotiations to develop knowledge, mental models and strategies by exploring

the learning experiences of highly efficient competitive programmers.

The conceptual difficulties of programming students indicate troublesome knowledge, and

the possibility of transforming the students’ perspective holds excellent potential for

teachers. My task was to identify the source of these epistemological barriers and

subsequently free up the blocked spaces. This was accomplished by redesigning the

curriculum and programming tasks through scaffolding, providing worked examples and

support materials, and peer collaboration.

The Threshold Concepts model (Meyer and Land, 2003) is a valid model for competitive

programming education and deserves much more attention across disciplines because it

can turn our attention on the topics that will probably obstruct our students’ learning.

Moreover, the Threshold Concepts model makes inquiries such as ‘What do you find hard

to understand?’ rather than ‘Am I a good teacher?’. Therefore, teachers should carefully

consider the feedback and insights of their students as learners. Meyer and Land synopsise

the most significant impact of the model:

‘...the theoretical significance of this proposed conceptual framework lies

in its explanatory potential to locate troublesome aspects of disciplinary

knowledge within transitions across conceptual thresholds and hence to

assist teachers in identifying appropriate ways of modifying or redesigning

curricula to enable their students to negotiate such epistemological

transitions and ontological transformations, in a more satisfying fashion

for all concerned’ (2005, p. 386).

Furthermore, the threshold concepts cannot be taught using traditional ways. We must

develop methods of inquiry that will allow us to investigate the variation in students’

negotiations with the threshold concepts in somewhat distinct ways (Meyer and Land,

2005). Students should find themselves in situations where they must demonstrate a new

way of thinking to solve a complex problem. Knowing the notions that constitute a

particular threshold concept can provide the teacher with a framework to be taught

205

effectively. Our goal must be to accurately measure the students’ level of understanding

of these concepts, specifically during their negotiation with liminality.

The Threshold Concepts model has enabled the COI educators to look at the threshold

concepts through the students’ eyes and navigate liminality with each of them, not in the

typical teacher/student relationship but in a more cooperative manner using action

research. During the study, the discussions and interventions were performed daily and

even though, for some students, it was a prolonged and troublesome period, in a way, it

empowered them for later success. Not all students have managed to cross liminality

within the one year of the study. Some students failed to qualify, and they reported that

they had not reached a level of understanding where they felt comfortable with the

threshold concepts.

Students who failed to create a dynamic perception of their source code and the notional

machine representing its essence got stuck in the liminal space, powerless to advance and

develop new ways of thinking about the concepts. For these students, an analysis of the

statistics from the platform reported 37% fewer solved tasks on average compared to the

students who demonstrated a solid understanding of the concepts (Section 5.4). It will be

interesting to monitor the students’ scores and attitudes in future years of participation.

The maximum troublesome period of liminality reported in the study might be extended

to new levels.

The pre-liminal and liminal variations are two of the most crucial notions of the Threshold

Concepts model. They are critical in answering the question: Why do some students

negotiate liminality successfully, and others do not?. Meyer and Land (2005) consider the

pre-liminal variation as potentially essential for improving our understanding of this

matter. Both epistemological and/or ontological influences may affect the pre-liminal

space. Land (2005) suggested that to improve our ability to understand threshold

concepts from the perspectives of teachers and students, we must develop procedures of

inquiry that will empower us to examine the variations in the negotiations of students in

particular and distinctive ways. As I analysed throughout this project, these variations

exist in all three states (pre-liminal, liminal and post-liminal).

206

A critical aspect of the pre-liminal variation, as evident from the empirical data, was the

willingness of the students to endure a troublesome period of learning and have the

opportunity to represent their country in international programming competitions (Section

5.2). Additionally, the IOI delegation reported traits such as willingness to succeed,

attitudes on learning, determination and perseverance, which appear to affect the

negotiations with liminality (Section 5.13). Therefore, even though the results are not

convincingly overwhelming, these traits indicate what needs to be investigated within the

pre-liminal variation to make predictions.

Based on the study's empirical data, there were strong indications for the liminal variation,

and the Michanicos platform provided the means for measuring (Section 5.4).

Performance data and scores from competitions, the number of tasks that students have

solved associated with threshold concepts and the corresponding time frame and slack

interactions constituted relatively dependable indications of the liminal variation for a

possible successful negotiation of the concepts (Section 5.4). Three out of four students

who solved more than the average number of solved tasks made the IOI 2019 delegation

(Section 5.13). The remaining one solved less than half of the average mark but still made

the team. However, the qualitative analysis of the student’s submitted source code

indicated an elaborated optimal code on most occasions (Section 5.5).

In collaboration with the COI community, I used this information to adjust the curriculum

to emphasise the threshold concepts and create the associated programming tasks

through the action learning set. However, I kept in mind that not all IOI tasks in future

competitions will include the threshold concepts identified in this study. In essence, special

attention was given to the identification and the negotiation of the threshold concepts,

but, at the same time, the other topics not identified as threshold concepts were not

neglected. In conclusion, my goal was to identify the troublesome aspects of disciplinary

knowledge and, through the provision of material, technology, support and collaboration,

empower successful negotiations through liminality, stipulate the ontological shift in

students and the perspective shift in teachers.

207

To summarise, there are three valuable aspects that the Threshold Concept theory

provides for competitive programming. First, theory offers a suitable description of what

constitutes a successful competitive programming student. Second, the epistemological

concepts of pre-liminal and liminal spaces can support research on the qualities of a

successful student. Last, the research is done within a learning community, giving

deference to the teacher’s disciplinary knowledge where any issues are continuously

evaluated and resolved within specific disciplinary settings (Meyer and Land, 2007).

The theoretical value of the Threshold Concepts model can be found within the process

of discovering complex topics of disciplinary knowledge, identifying and embedding the

specific threshold concepts within the teaching process and, therefore, empowering

educators to redesign or modify their curricula and enhance their teaching methods.

Educators must inform the students about liminality and threshold concepts, increase their

understanding of their current liminal states and, most importantly, enable them to deal

with the negative emotions associated with the transformative journey (Meyer and Land,

2003). Students must be capable of defining their current ways of thinking and practising

and be driven to change those ways. Students must be actively and consciously engaged

when negotiating each threshold concept to master it completely.

Both the pre-liminal and liminal variations are crucial for students’ engagement in learning.

Educators can be benefitted by identifying the origins of confusion, places where students

get stuck and issues with epistemological beliefs. If all of the above can be accommodated

within the context and time constraints of course design, they can greatly impact student

learning.

RO 2: Investigate the process of integrating a framework by the Cyprus Olympiad in

Informatics for preparing students for the International Olympiad in Informatics

participation and the practical context of this decision.

I investigated the integration of the COI framework in the programming course

responsible for forming the national delegations. The COI framework is based on the

transformative interactions between the pedagogical model of a learning community

208

driven by situated cognition and constructivist views of learning, the instructional strategy

of PBL that supports collaboration, and the online learning technologies. Moreover, a

fourth component was the worked examples used to initiate the process of scaffolding. I

evaluated the framework's impact on student learning using the action research

methodology. Since the alumni identified the threshold concepts, special attention was

given to assessing the students’ negotiations with liminality, particularly with the

Michanicos programming tasks embedded with the identified threshold concepts. One of

the most critical findings from the threshold concept inquiry was that each student takes

a distinct path to learning and possibly struggles in different places (Section 5.4). These

findings propose that there should be no standardised order of topics or assignments, but

rather the progression should be flexible enough to facilitate individual students’ needs.

Action research has been a practical way of meeting the individual needs of my students

when they negotiate the liminal space. Whenever I engaged with action research, I moved

through two authentic liminal spaces: action and research. When I used the action

research cycle, I could identify what the effect of my teaching was by connecting the two

states above. The liminal space of research allowed me to observe and reflect by

questioning, analysing and synthesising. In contrast, the liminal space of action allowed

me to plan and act by reaching conclusions, adjusting, designing, implementing and

administering.

Most importantly, action research has enabled me to discover what kind of knowledge

(deep or superficial) could be created from this framework. How to acknowledge the

significant changes in students’ learning trajectories, and what could be known about

these changes by anyone other than the students? These were relevant concerns, but an

even more relevant question was: What was the impact on learning within this type of

framework for my students within this specific context?

With the action research methodology, I adjusted the teaching strategy accordingly

throughout the study. The way my students learned was unique, and their learning

trajectories within the liminal space varied as they would get stuck at different places. The

students’ disposition to engage with the threshold concepts and negotiate the related

209

liminal space equally differed. For advocating action research, yet once more, how was I

supposed to make any sense of how knowledge was gained through liminality if I based

the notions of knowledge acquisition only on established pedagogical approaches or

literature review on the work of others? Therefore, the triptych: theory, empirical data

and research findings, which fitted perfectly with the action research methodology, was

used to meet the underlying research objectives.

I have used the investigated pedagogical models, the IOI training systems and my

previous knowledge and merged them with the relational and experiential knowledge

produced by the action research. Concurrently, I was considering how the teaching and

learning processes could be improved within the course of study. The quality of the action

research outcomes is certified when the study did as much as possible, considering the

context and the specific circumstances under which it was conducted. Additionally, when

action research was combined with mixed methods, it produced scientifically sound and

reliable results based on the provision of quality student/peer feedback from the action

learning set and the focus group. The results reported are only based on the previous

year. It will be of great interest to further investigate the framework’s contributions in the

years to come and strengthen the study’s validity even more with sustained involvement.

After all, cycles in educational action research should never really end but rather continue

with new cycles of action each school year to improve my teaching practice even more.

The conclusion that I was able to reach concerning the applicability of the framework and

its components was that it needs to be utilised in a competitive environment with clear

goals and objectives for different age levels (Section 5.6, 5.12). The framework has been

built on a solid theoretical basis (Meyer and Land, 2003; Dabbagh, 2005), and it must not

be perceived as a standard teaching approach. Solving multiple programming tasks and

participating in numerous programming competitions might be suitable for the university

level. The former is an adequate enhancement to the university lectures but not

appropriate with younger and novice programmers. With high school students, the goal

must be to develop their problem-solving ability by challenging their desire to compete

and succeed within a learning community.

210

The instructional strategy of PBL offered authentic opportunities to the students to foster

active learning, provided scaffolding, supported knowledge construction and associated

the learning with worked examples and programming tasks. The design of PBL with

scaffolding in a collaborative learning environment to develop problem-solving skills was

feasible with the use of online technologies. Worked examples as notional machines have

supported the mental model acquisition, assisted by a range of tools, visualisations and

features of the rich programming environment.

One of my framework’s most significant characteristics is the transfer from an exclusively

teaching method to a method of learning and progression within a community of learning.

This is an irreplaceable effect of a collaborative process for teachers and students as they

both support the growth of the potential of others. The framework supports different age

groups to reach their estimated upper bound of learning (a programming threshold) using

different levels of scaffolding through three phases of the curriculum.

For students to reach a new level in their stages of progression within the framework,

they must successfully go through each of the programming phases and meet the

associated programming thresholds of their age group. This achievement will allow the

systematic development of students, continually expanding their abilities by solving

complex tasks and challenging their unique aptitudes to apply their knowledge in practice.

Scaffolding was adjusted as the students demonstrated their achievements and,

consequently, when they reached the required levels of understanding, their programming

threshold became a threshold concept. The progression for each student must be at an

individual pace as programming concepts associated with different age groups can be

challenging to negotiate, just like threshold concepts. The teachers supported the students

with their progression by assigning programming tasks, providing scaffolding, and

assessing progress on the Michanicos platform. These programming tasks were

considered progressing tasks, and the associated competition rounds represented the

programming threshold for each age group.

As a training system, the COI framework can be applied to the learning process as early

as possible. The programming threshold for elementary school students (ages 8-12) was

211

the first-round competition and the associated phase-one material. They received

maximum support from the community during their interactions with the course material

and programming tasks. The focus was on improving their algorithmic thinking and their

ability to use the computer to solve problems and implement new ideas. For gymnasium

students (ages 12-15), the programming threshold was the second-round competition and

the associated phase-two material where they were initially introduced to an identified

threshold concept (dynamic programming). The focus was on their preparation for

competing in the European/Junior Olympiad in Informatics. Lastly, for lyceum students

(ages 15-18), the programming threshold was the third-round competition and the

associated phase-three material. The programming threshold for this age group was the

identified threshold concepts, and the focus was on their preparation for the IOI

competition.

RO 3: Evaluate the teaching and learning processes of competitive programming using a

code-evaluation platform with competition-type programming tasks embedded with

identified threshold concepts and measure the effect on students’ strategies.

Although there are not many programming courses explicitly for competitive

programming, similar to the CS3233 module taught at the University of Singapore (Halim

and Halim, 2009), the use of online judges in universities has increased rapidly over the

years. An online judge allows the students to submit their computer programmes and

automatically assesses their source code without a human presence. The literature

revealed that this approach enhanced the contestants’ ability for self-assessment (Garcia-

Mateos and Fernandez-Aleman, 2009; Dagiene and Skupas, 2011).

The Michanicos platform has been the cornerstone of the framework all along. It has been

the most significant component that my community has expected for quite some time.

Indeed, there were many other commercial options available that have always been

helpful in the programming course. Nevertheless, using a platform designed and

implemented within the community was undoubtedly a breakthrough for my teaching

procedure and a valuable resource for secondary and tertiary education.

212

The most critical role of the platform in the teaching and learning processes was the

establishment of the COI as a decentralised and competitive learning community. It

brought the teachers and students from the five districts together and allowed them to

share their knowledge and accomplishments. The platform enabled teachers to create

programming tasks, share them with the COI community, assign them to students and

analyse the results of the automated evaluation process in a timely and efficient manner.

From a teacher’s perspective, this was a critical update from previous methods. I was now

able to truly focus on each student’s learning trajectory as I monitored students’ progress

through a single point of reference. The real-time automatic evaluation of tasks has

received positive feedback from teachers and students. Teachers were able to utilise a

much more efficient assigning and grading process, and students were able to view the

results of their programmes with full feedback for each task. The task setting procedure,

which used to be a significant burden for my colleagues and me, has become much more

effective. Moreover, the feedback from students classified the platform as their personal

code repository/portfolio. Students’ engagement with the platform has been steadily

increasing from the first month of deployment. It has reached a level of weekly interaction

for more than 80% of COI students who reported attempting to solve two or more tasks

(Section 5.4). By using the platform, as discussed in RO1, I was able to use distinct

methods of inquiry to measure the level of understanding of threshold concepts from the

evaluation of student engagement and negotiations with the concepts.

Additionally, I have been able to assess the effects on students’ programming strategies.

The platform has provided quantitative data with the students’ achievements and

accumulated scores and qualitative data from the easily accessible programme

submissions with the associated timestamps (Sections 5.4, 5.5, 5.8-5.10). This feature

has been another crucial development as all of the users’ submissions are stored within a

single repository. Using the repository, I tracked students’ progress from their initial

submission to their final one and identified the strategies used by both novices and

effective student programmers. These strategies revealed the existence of viable mental

models and successful negotiations with liminality. Optimal strategies were communicated

to novices through the Slack social workplace.

213

Though it measured only the previous year’s progress, the empirical data from the study

has been very indicative of the learning environment. Using the learner-centred approach,

the students have demonstrated a profound involvement with the course context and the

corresponding programming tasks. The students were able to perceive threshold concepts

from different perspectives; they were eager to interact/share their knowledge and

achievements as well as their struggles/inquiries with their peers/teachers and were adept

at producing optimal solutions. Empirically, with the platform interactions, they have

improved their programming skills, learning attitudes, and strategies (Section 5.5).

What is equally important is that though most countries have advocated using a localised

online-judge system for IOI preparation, less than 10% of the participating countries have

developed and implemented one for their training courses (Appendix 13). This percentage

proves the complexity of utilising and administering such a system as most countries lack

the personnel or expert knowledge for successfully doing so. The Michanicos platform can

be integrated into any level programming course. It offers an accessible multi-language

interface, can run multiple contests simultaneously and allows multiple administrators to

create and assign tasks in multiple languages. Accordingly, using technology in a

pedagogical framework that relies on active learning suggests that we need a situated

understanding of how students become critical consumers of all the information that

technology puts at their disposal. Situated cognition is consistent with the epistemological

assumptions of constructivism, which specify that meaning is a function of how students

create meaning from their experiences and actions. Deliberate practice is a critical aspect

in acquiring programming skills, and deliberate practice generates experience (Scott and

Ghinea, 2013).

RO 4: Determine if the degree of related student engagement and motivation with the

learning process can improve the learning outcomes within the Cyprus Olympiad in

Informatics.

Reynolds (2010) noted that bringing a spirit of play to work and the feeling of exploration

and discovery that it instils at the moment improves learning and stimulates improved

ways of thinking. Programming students must be motivated so that they will engage

214

appropriately. Motivation for a programming student includes two key factors: The first is

exploring a field that is engaging and stimulating to the individual. The second is doing

this in a social environment that encourages social negotiation. The framework

incorporates these factors into the COI course by using PBL as the instructional strategy,

providing scaffolding and utilising a code-evaluation platform to create a truly collaborative

learning environment.

The COI framework became a framework of engagement that promoted collaboration

between students to reach the same goal. It has enabled students to reach interpretations

of the methods of experts as those think and practice in a community of learning. Active

student engagement in the learning process was essential as it enabled students to

interpret how computer scientists think and to start to think like computer scientists. The

forms of engagement for producing the required transformations in understanding were

incorporated within the framework with the associated programming tasks on Michanicos

and the collaborations in the Slack social workplace. Carefully designed programming

tasks required students to explore complex programming concepts found in university

curricula and reach new levels of understanding.

After identifying the threshold concepts, the following step was to make the concepts

cognitively challenging for the students. The process included designing programming

tasks, embedding the concepts and making these tasks accessible to students through

online programming contests. Contests do not immediately guarantee the successful

negotiation of concepts or the improvement of the contestants’ problem-solving abilities

and strategies. The competition's success is highly correlated to the quality of tasks and

the value of the feedback the contestants will receive upon contest completion (Combefis

and Wautelet, 2014). If the students’ engagement involves mere contest participation,

the results will not be as expected, and motivation will be affected. Each task must have

distinctive characteristics that will retract the student’s previous knowledge and generate

innovative and optimal strategies to help the student solve it.

The qualitative assessment of the code submitted by the contestants was critical for the

learning process. Quantitative assessment in the form of points accumulated cannot be

215

the only evidence of students’ improvement (Ala-Mutka, 2005), specifically for the

students stuck in liminality. Forisek (2013) reported that the standardised programming

competitions emphasise the application of practical algorithms, and the qualitative

feedback presented for a proposed solution is either very limited or missing. To integrate

online programming contests in the framework, I used appropriate methods to

communicate the qualitative feedback associated with each task after contestants tried to

solve it.

The engaging factors of the learning process were critical, and they have been found to

affect student motivation. However, this had to be confirmed based on student data and

the open-ended feedback on the effects of the platform usage. The feedback from the

students for the platform interactions was predominantly positive, but the subjects were

competitive programmers in an advanced programming course. Therefore, it will be

interesting to investigate the impact of the Michanicos platform with an introductory

programming course with novice programming students and a relatively easier set of

tasks.

In terms of feedback, students reported having a positive experience within the COI

community, and the individual components received high praise from most students and

teachers (Section 5.6). To ensure the authenticity of the data, I collected data from

students from all districts, most of whom I have never personally met. Therefore, my

positioning in the COI community could not have affected the students in any way.

Feedback from both teachers and students was helpful to adjust the components for

enhancing the learning process and make interventions in the teaching process. The

positive experience corresponds to the epistemological stance of the students, as I have

determined from their pre-liminal investigation (Section 5.2). Most of the students that

participated in the study had a unique level of self-motivation which positively affected

their engagement with the learning process and their results. The research showed that

student motivation originated from the single and most central outcome of COI

participation: learning and representing their country. Their self-drive to be the best

student programmers in Cyprus and compete with peers from other countries significantly

impacted their negotiations with liminality and the threshold concepts. From the

216

conclusions of RO1, it was clear that the pre-liminal variation (Section 5.2) was critical in

terms of prior subject knowledge and willingness to succeed and navigate through a

lengthy learning journey through liminality.

In terms of the learning outcomes, the results of the COI students in local competitions

(Sections 5.8-5.10) and the performance of the Cypriot delegations in international

programming competitions (Section 5.11) have improved significantly. The 820 total

points accumulated by the delegation of Cyprus in IOI 2020 was the highest total we have

achieved as a country in thirty years of IOI participation:

Rank Username Total Plants Supertrees Tickets Biscuits Mushrooms Stations Award

97 CYP2 316.94 27 100 11 21 92.62 65.32 Bronze

180 CYP4 225.32 19 96 11 9 25 65.32

236 CYP1 165 5 100 11 0 10 39

266 CYP3 112.64 5 40 11 0 56.64 0

 TOTALS 819.9 56 336 44 30 184.26 169.64

Table 22: Cyprus results from IOI 2020

Regarding the learning outcomes in terms of student understanding, most of the literature

involving introductory programming courses has reported that most programming

students cannot write code in a meaningful way (Carter and Jenkins, 1999; McCracken et

al., 2001; Guzdial, 2011). The former issue has not been explained yet (Robins, 2010).

Accordingly, teaching students how to write code, assessing learning outcomes and levels

of understanding is equally challenging as well. My research was inspired by exploring the

usefulness of liminality to meet these challenges. Linking back to the literature review,

since the liminal space of a programming concept is the time frame when a student is

actively trying to understand the concept but has not yet succeeded, it can be described

as a partial understanding of the concept.

Learning to code at the IOI level requires a deep understanding of programming code. At

this level, students can demonstrate deep and conceptual understanding rather than

superficial understanding (Hattie, 2012). The optimisations of students’ code, evident in

their strategies, have provided sufficient evidence for a deep and conceptual

understanding of the assigned challenging tasks. However, as the instruction aims towards

217

the students reaching this level of understanding by themselves, it is vital that scaffolding

is eventually faded, and the teacher perceives the concepts through the students’ eyes.

With the qualitative data gathered from the action research (Sections 5.4-5.5), I have

identified three levels of understanding throughout this study aligning with the findings

from the literature. In the first level, I have encountered a form of mimicry of the new

state. Meyer and Land (2005) identify mimicry as a form of understanding and troubled

or limited misunderstanding. Mimicry is a non-intentional attempt to reproduce known

information.

The first level is a theoretical (abstract) understanding where code replication is usually

the only trait present when students get stuck in the liminal space. In the second level,

there is evidence of partial understanding (Section 5.4). Still, the partial ways of

understanding usually contain an acquisition of several relations between aspects but not

all of them. The second level describes numerous practical ways of understanding, but

without a theoretical understanding. Lastly, the third level describes a deep and

conceptual level of understanding, where a connection is made between learning about

code behaviour and understanding competitive programming. In other words, two aspects

of understanding a concept are: knowing its rationale (why you want to know and use the

concept) and its application (knowing how to use the concept in unknown tasks). I have

verified that meticulously designed programming tasks have supported students to reach

this level of understanding. The focus group confirmed the quality of the programming

tasks for fostering cognitive development and engagement (Section 5.14).

The teacher’s role in the process was crucial as I was the facilitator of students’

progression through the levels of understanding by providing different levels of scaffolding

with varying methods of task support. By helping the students look into and reflect on

their source code, they were able to progress through the levels. Therefore, as a teacher,

I often found myself focusing on the outcomes, revealing my inclination to remain with

the action instead of the research. However, what was fundamentally important for me

as a teacher-researcher was to remain with the action, engage with the theorising, and

focus on the research objectives. Consequently, reaching the deep and conceptual level

218

of understanding was established as a reliable indication of a successful negotiation with

liminality and threshold concepts. The latter demonstrated how students’ performance

qualitatively increased in complexity while mastering associated complicated programming

tasks (Sections 5.5, 5.13).

Another important aspect was the measurement of the learning outcomes. The learning

outcomes are problematic to measure as there is uncertainty on what constitutes credible

means of measuring students’ learning (Breslow et al., 2007). Research methodologies

used to measure student learning can be subject to bias. Therefore, the best possible

practices include the triangulation of the data. Triangulation instructs using a mixture of

data sources and inquiring methods to achieve a broader interpretation of the investigated

outcomes. Simultaneously, triangulation lowers the probability of systematic bias and

chance associations due to a particular method (Maxwell, 2005). In this research,

triangulation was an ongoing negotiation between the researcher, the empirical data, and

the liminal space described by Meyer and Land (2003).

When there are numerous distinct data sources, it dramatically raises the possibility that

the outcomes are precise. The best practices depend on a combination of indirect and

direct assessments. The indirect assessments of this study involved feedback from the

alumni and educators (Sections 5.3, 5.6), which is not a direct indication of what the

students have learned but rather to infer the benefits from COI participation and the

training system in general. The direct assessments involved the students’ interactions with

the Michanicos platform and the assigned programming tasks (Section 5.7).

The accumulated scores for each task set, specifically the ones embedded with the

threshold concepts identified, have provided a much better indication of the improved

learning and the increase in students’ knowledge and skills over time (Section 5.4, 5.8,

5.9, 5.10). Overall, the platform’s support and impact on student learning have been

measurable and critical. Still, special attention is required for the context and the learning

environment intended to be applied within.

219

To summarise and make the evidence base explicit, the following table (Table 23) presents

how the empirical data contributed to the research findings, which group of people

provided the data and how they supported the associated research objectives.

RO1

• Students’ pre-liminal variation (5.2 – Bebras Students)
• Threshold concepts in competitive programming (5.3 - Alumni)
• Perceived/Actual coding efficiency with threshold concepts (5.4 – COI

Students)

• Students’ post-liminal variation (5.13 – IOI 2019 delegation)

RO2

• Student feedback on the framework (5.6 – COI students)
• Training systems from IOI participating countries (5.12 – Appendix 13, IOI

peers)

• Issues under consideration and research limitations (5.14)

RO3

• Student feedback on the platform (5.6 – COI students)
• Perceived/Actual coding efficiency (5.4 – COI students)
• Students’ code optimisations and programming strategies (5.5 – COI students)

• Performance data from competition rounds (5.8-5.10 – COI students)

RO4

• Student feedback on the framework (5.6 – COI students)
• Data on students’ engagement (5.7 – COI students)
• Performance assessment in international programming competitions (5.11)

• Feedback from the IOI 2019 delegation (5.13 – IOI 2019 delegation)

Table 23: Association of empirical data with research findings and research objectives

6.3 Chapter summary

In this chapter, I presented the project’s main conclusions specifying how they addressed

the research objectives. I evaluated the framework within the COI learning community

and the empirical data collected provided valuable insights regarding students’ feedback

and improved performance in international competitions.

220

CHAPTER 7: Self Reflection

I completed this research project within the context of my professional role as a CS

instructor for the Cyprus Olympiad in Informatics (COI). COI is the organisation

responsible for preparing the delegations of Cyprus to participate in the annual IOI, BOI

and EJOI/JBOI competitions. As one of the COI teachers since 2011 and the team leader

of the Cypriot delegations since 2015, my inspiration for this project was developing,

implementing, and evaluating a practical framework to improve competitive programming

education.

My studies at Middlesex began in 2002 when I applied for my MProf. About the same time,

I started teaching CS in secondary education. As a CS teacher for the past twenty years,

I have participated in several research projects in secondary education and the COI

community. In 2004, I earned my MProf from Middlesex University with my ‘Proposal for

the development of a three-year curriculum programme in CS for the secondary schools

of Cyprus’ (Eracleous, 2004), which initiated the switch of the programming language

from Pascal to C++. Like every significant curriculum reform, this shift was delayed

substantially, but the ministry finally adopted it in 2016.

To prove the validity of the shift, in the IOI 2019, C++ was used by 97% of the

contestants, which validates the importance of using the most appropriate programming

language for a competition setting (IOI, 2019). After earning my MProf, my following goal

was to pursue a Doctorate in Professional Studies to accomplish my primary academic

objective: to teach at the university level. Nonetheless, being part of the COI and the IOI

communities with their university equivalent curricula and complex programming tasks

gives me a strong belief that I have already reached that level.

Since the IOI topics are extraordinarily challenging and do not exist in any high school CS

curricula, the critical question was ‘how can I teach these topics to students that are not

supposed to learn them?’. These are unapproachable topics based on the age threshold

of the students. I had an initial theory on how to achieve this. I have developed the

framework and used action research to test it, and I designed the instrument (Michanicos

221

platform) to communicate it. Based on empirical data, I have successfully managed to

improve the quality of the teaching procedure and the students’ results at all levels with

my teaching practice.

I have always collaborated with peers, alumni, and students within my learning community

to improve my teaching practice and student performance, engagement, and motivation.

In recent years, an appreciation for programming and its applications has increased

steadily. As a technological society, our advancements rely heavily on our capability to

educate students in Computer Science. Understanding programming will expand the

students’ perception of the world and support them in creating new ways of thinking. I

have used my knowledge to confront the challenges presented by this study. I did not

make this project merely to increase students’ performance within a programming course.

Instead, the primary goal was to support my colleagues and me in transforming our

students and developing their ways of thinking. Moreover, to help them become

competent and productive within the academic and technological sectors upon

employment and, ultimately, improve the quality of their lives.

My quest for academic and professional development is becoming increasingly important.

The ongoing changes in my discipline indicate that what I have studied in the past will

probably become unrelated in the following years. Moreover, the volume of knowledge,

technological innovations and the quantity of available data continue to grow. In this

modern world, I cannot understand everything there is to know, yet access to all of this

information is easily accessible online. A great professional has gained more significant

and exchangeable knowledge and can apply it much more effectively than a bad one

(Moore, 2007). Determining how to communicate the acquired knowledge and make it

relevant to others is what I need to accomplish to avoid becoming insignificant.

Presuming that my qualifications will last a lifetime will not progress me on the path of

academic and professional development and will make me redundant. Innovative and

improved online judges are launched every year, new programming languages are built,

and more effective algorithms are created. As an IOI instructor, I must try to keep up with

these advances. If I fail to do so, then my competitive learning environment will ultimately

222

fail to provide the desired level of teaching, causing a decrease in students’ performance

and motivational levels. Thus, I must learn from my practice, which involves a particular

set of competencies. Competencies that I need to preserve and be able to transfer to my

students for their future development. Correspondingly, the proposed framework has

been in progress ever since I earned my MProf. My work for both my MProf and DProf

programmes is tightly connected because the curricula reforms were essential before

designing the framework's layout.

My research study has allowed me to reflect on the knowledge and abilities obtained

throughout my career. My scientific background has provided me with the knowledge and

expertise to design and evaluate a framework to increase students’ learning.

My skills have been used throughout the study and can be synopsises as follows:

• I am continuously striving for individual and academic development and keeping

informed with innovative scientific developments in education.

• I have achieved profound knowledge of programming concepts in the university

curriculum, well above my current academic status.

• I am continually evaluating and adjusting my practices to meet my students’ needs

and provide them with the knowledge and future they deserve.

• I can design and test educational projects and software.

• I am competent to plan and conduct advanced research projects within my

learning communities.

• I am knowledgeable about establishing and following an ethical code of conduct

throughout my research to protect the integrity of participants.

As a computer scientist and an educator, I decided to use the pragmatic paradigm

(Creswell and Clark, 2011; Morgan, 2014). I believe that no paradigm suggests or forbids

either methodological approach. So, since I needed to collect numeric data (student

scores) and other forms of data such as source code, feedback, recommendations and

views, I have decided to use qualitative and quantitative approaches in supporting ways.

My investigation on research reports verified that CS researchers favoured the pragmatic

paradigm for assessing programming competence and students' level of understanding.

223

Furthermore, pragmatism was used by researchers interested in the development of

teaching and learning processes and the appropriate use of programming tools in the

teaching process (Sheard et al., 2009).

From a constructivist viewpoint, the real issue of programming education is not merely to

understand the syntax and the semantics of programming languages. Instead, I want my

students to view programming as an ongoing quest that involves the skills of problem-

solving and optimal programming strategies. The quest defines an authentic programming

genius capable of solving complex and unfamiliar tasks in educational settings. Such

settings include the IOI, where students encounter an unknown set of complex tasks

every year. Furthermore, the constructivist paradigm offers a solid foundation to build

upon as it is continuously supported in Computing Education Research (CER). My priority

was to help my students gain a significant amount of knowledge to participate at the

highest level of high school programming education and compete successfully against the

world’s best student programmers. Optimistically, I hoped my students could win medals

and receive scholarships from top universities. However, if I had rejected the active role

my students played in constructing their knowledge to debate the applicability of a

different epistemological paradigm for research purposes, it would have been a

treacherous path that I had no intention of taking.

This project study has enabled me to review my knowledge of competitive programming

education. Through the research, I have identified threshold concepts in competitive

programming that I needed to consider for the COI advanced programming course. I have

identified several issues to consider before applying the Threshold Concepts model in my

discipline. To use this model, teachers must acknowledge the limitations and the

possibilities that the students have. Throughout my academic career, teaching students

of all ages has allowed me to recognise the struggles they face, both as novices and as

experienced programmers. I can identify particular reappearances of related problems as

I have encountered the majority of these through my practice. My work experiences and

DProf studies have drastically improved my critical thinking skills and expertise in

gathering and investigating data. Manually assessing the performance of source code and

224

instructing students has enhanced my ability to support them in producing optimal code

and navigating through the stuck points in the liminal space.

I am positive that I have contributed to the discipline of competitive programming by

introducing the COI framework (Figure 79) and evaluating its impact on learning and the

performance of students within my learning community. During this study, I have

investigated the training systems and methods of other participating countries, and I have

gained valuable knowledge on how the COI framework corresponds to the positive and

even negative aspects of existing training modules. I have used the feedback from my

fellow team leaders to adjust several components of the framework during the study, and

I will continue to do so in future years.

To improve the effectiveness of the COI framework, I have researched the IOI tasks from

the previous twenty years to understand the setters’ tendencies and cultivate a clear

blueprint for task setting. I have authored four programming books (Appendix 9) and

multiple programming tasks for international programming competitions such as the

Balkan Olympiad in Informatics (Appendices 8 and 12) and the IEEExtreme (IEEExtreme,

2019). I have written thousands of training tasks used for practice at every level of

programming education that I have shared on Michanicos, HackerRank and other

platforms so that my peers and students can benefit from assigning and solving,

respectively. The art of creating appropriate programming tasks to challenge some of the

worlds’ best student programmers is a whole new independent study on its own.

With the Michanicos platform, I have contributed to the academic and scientific fields by

designing the localised online judge. Apart from the COI community, Michanicos can be

utilised in secondary and tertiary education. The platform can be integrated into the course

of study of any programming course and support teachers and students by providing full

feedback on submissions and promoting powerful ways of thinking.

225

Figure 79: COI framework layout

226

Additionally, it reinforces the assigning and evaluation of tasks by automatically assessing

them with real-time evaluation of submissions to both teachers and students.

Moreover, Michanicos provided the COI community with a competitive aspect. For

students, this was established with the organisation of multiple programming

competitions. The collaborative element for teachers was reinforced by coming together

to create or assess tasks and design or modify the students’ learning trajectory.

Furthermore, I utilised the platform to evaluate students’ performance. Michanicos has

provided me with vital information for assessing the negotiations with liminality and

identifying the places where students tend to get stuck.

To bring forth the ideas of putting together the critical components of the proposed

framework and for successfully measuring the students’ engagement and motivation with

the learning process, I have used action research within the competition-type setting.

Looking back, I cannot think of a more appropriate methodology applicable to this type

of research project. The action research methodology has enabled me to navigate through

liminality with my students, understand their struggles and range of emotions,

acknowledge their feedback and make interventions where possible. The liminal space

demands the introduction of adjustments explicitly as there is no universal order of topics

or tasks that can guarantee the successful negotiation of the threshold concepts involved.

The methodology has allowed me to collaborate with my colleagues and students in the

most flexible way possible and explore their ideas and recommendations for improving

the framework and its key components. We collectively tried to reach the same

educational goals.

The action research methodology was very supportive since I was researching a situation

with minimal data on new frameworks for competitive programming education. There is

no universal proposal in the literature for a method or a system that has produced

consistent results in IOI. Moreover, there has been inadequate data on identified threshold

concepts in competitive programming compared to the number of studies for identifying

threshold concepts in introductory programming courses. I believe that action research

enhanced the educational/scientific consistency and the applicability factor of the COI

227

framework. This consistency is absent from many problem-solving methods and academic

research studies in education today.

Furthermore, I have examined how the framework substantially impacted student

performance by using the empirical data collected by the code-evaluation platform. I used

the Python programming language and the SciPy package to analyse the correlation

between perceived coding efficiency and actual performance on the threshold concept

tasks. Additionally, I have measured the results from participating in local and

international competitions with the threshold concepts embedded in programming tasks

to provide a more accurate and impartial testament for the framework’s validity. The

progress has been evident from the improved performance in IOI competitions (Figure

80). Based on the total accumulated points and their average, COI students have

demonstrated significant individual development between Japan and Azerbaijan (Tables

16-17). Expectantly, the constant improvement of the COI framework’s components based

on the collective feedback of both the COI and IOI communities can lead my country even

higher.

Figure 80: Performance of Cyprus teams in IOI competitions

337

601

317.45

643
603.9

375

620.51

819.9

84.25

150.25

79.36

160.75 150.98
93.75

206.84 204.98

0

100

200

300

400

500

600

700

800

900

2013 2014 2015 2016 2017 2018 2019 2020

IO
I p

o
in

ts

Cyprus performance in IOI

Total points Average points

228

Every teacher needs to improve their students’ learning and quality of life. IOI medal

winners can be admitted to the University of Cyprus without an entry exam as this is a

directive of the MOEC to motivate the delegations. They also receive scholarships from

top universities worldwide and job offers to work for global software companies. The

Massachusetts Institute of Technology (MIT) is considered the 'holy grail' for every

aspiring CS student. For some of my students, this is a dream that I have helped them

turn into reality.

Since 2017, only four Cypriots have enrolled in MIT, all with a full scholarship. These four

students have been a part of the COI community since they were 13 years old, and they

have represented their country in numerous programming contests. One original

contribution of this research is that it provides the stakeholders of my learning community

with a theoretical and practical outline for competitive programming education and for

preparing students for international competitions. To ensure continuation, I will continue

to engage in research and evaluation, as I must guarantee that other students can

accomplish similar achievements in the future.

Figure 81: Medals won by COI students

Programming educators can discover additional research contributions in the code written

for developing and testing the Michanicos platform, the complexity of the programming

tasks created to challenge students, and lecture notes corresponding to university level

IOI, 5

BOI, 13

EJOI/JBOI,
13

MEDALS WON BY COI STUDENTS

229

concepts. The exact degree of complexity of the proposed framework can be verified and

confirmed upon implementation by IOI team leaders around the world.

The entire journey of my DProf studies was troublesome and lengthy. Looking back, I can

identify all of the characteristics of a threshold concept within the research project itself.

First, the project has been transformative as it provided me with a new way of viewing

and describing it, and it has undoubtedly changed my perception of myself and the world

around me. Second, the project has been irreversible as what I have learned and

experienced cannot be unlearned or forgotten. Third, it has been integrative as it enabled

me to bring together concepts and ideas that were previously unknown and unrelated.

Fourth, it has been bounded as it clarified the scope of the community of learning and the

field of practice. And last but not least, it has been very troublesome.

Troublesome not only in the sense of difficult to complete. I sometimes felt that the project

study and my current mental schema were incompatible. I had experienced similar

emotions of frustration and desperation as my students when they had to grasp the

notions of dynamic programming and segment trees.

Furthermore, the duration of my negotiation with liminality seemed to be endless as one

failure led to another. At times, the extent was overwhelming because I did not consider

this as simply a DProf project. It was my life’s work and a true testament to my

contributions to learning and the lives of my students. Watching it get rejected repeatedly

as a proposal made me feel that my work was not good enough and what I initially thought

was a valid contribution to my field came crumbling down.

My perseverance and determination to finish what I started, a small indication of my pre-

liminal space, allowed me to push through the negative aspects and concentrate on the

positive. There were ups and downs during this study, and reflecting upon them reveals

that the struggles were significantly more than the cheers. Completing this journey is as

exhilarating as mastering a threshold concept, and the fact that I contributed to my

community of learning makes it even more gratifying.

230

This empirical study introduced and assessed the COI framework that I have built based

on the threshold concepts theory, the theory-based framework design by Dabbagh (2005),

and investigated its potential implications for competitive programming. The research

project has the potential to inform theory and practice for competitive programming

education and offers a method that can produce consistent results in IOI (Figure 79). The

study delivers three significant contributions to knowledge: the competitive programming

threshold concepts, the methodology for identifying threshold concepts and assessing

student performance in liminality, and the COI framework. The research findings are

valuable for competitive programming educators, threshold concept researchers, and

competitive programmers in secondary and tertiary education. At the end of this long

journey, I am positive that I have contributed positively to my discipline and to the lives

of my students, which makes this research worthwhile and fulfilling.

231

References

ACM/IEEE–CS Joint Task Force on Computing Curricula. (2013). Computer Science

Curricula. USA: ACM Press and IEEE Computer Society Press.

Adjule Online Judge (2019). Available at: https://adjule.it/ (Accessed: 11 March 2019).

Akerlind, G., McKenzie, J., and Lupton, M. (2011). A threshold concepts focus to

curriculum design: Supporting student learning through application of variation theory.

Australian Learning and Teaching Council. Available at:

http://www.olt.gov.au/system/files/resources/PP8_885_Final_Report_Akerlind_2011.pdf

Ala-Mutka, K.M. (2005). A survey of automated assessment approaches for

programming assignments, Computer Science Education, 15(2), pp. 83-102.

doi:10.1080/08993400500150747.

Ambrosio, A.P.L., and Costa, F.M. (2010). Evaluating the impact of PBL and tablet PCs in

an algorithms and computer programming course. Proceedings of the 41st ACM

Technical Symposium on Computer Science Education, SIGCSE 10.

doi:10.1145/1734263.1734431.

Anderson, G. L., and Jones, F. (2000). Knowledge generation in educational

administration from the inside-out: The promise and perils of site-based, administrator

research. Educational Administration Quarterly, 36(3), pp. 428–464.

Apiola, M., and Tedre, M. (2012). New perspectives on the pedagogy of programming in

a developing country context. Computer Science Education. 22, pp. 285-313.

Ariadne (2015). Available at: http://81.4.171.172/ariadni/login.php/ (Accessed: 7

November 2015).

Ashwin, A. (2008). What do students’ examination answers reveal about threshold

concept acquisition in the 14-19 age groups? In R. Land, J. H. F. Meyer, & J. Smith

(eds.), Threshold concepts within the disciplines (pp. 173-184). Rotterdam: Sense

Publications.

Atkinson, S. (1994). Rethinking the Principles and Practice of Action Research: The

tensions for the teacher-researcher. Educational Action Research, 2(3), 383–401.

https://doi.org/10.1080/0965079940020306.

Audrito, G., Demo, G., and Giovannetti, E. (2012). The role of contests in changing

Informatics education: A local view, Olympiads in Informatics, 6.

Baldwin, L., and Kuljis, J. (2001). Learning Programming Using Program Visualization

Techniques. Proceedings of the 34th Annual Hawaii International Conference on System

Sciences, 1, pp. 1051-1058

Balkan Olympiad in Informatics (2019). Available at: https://boi2019.epy.gr/ (Accessed:

30 September 2019).

232

Ball, S. (1977). Motivation in Education. Academic Press.

Barradell, S. (2012). The identification of threshold concepts: A review of theoretical

complexities and methodological challenges. Higher Education, 65, pp. 265-276.

Barrows, H.S., and Tamblyn, R.M. (1980). Problem-based learning: An approach to

medical education. Problem-Based Learning An Approach to Medical Education, pp. 1–

17. Springer Publishing.

Bawamohiddin, A.B., and Razali, R. (2017). Problem-based Learning for Programming

Education. International Journal on Advanced Science, Engineering and Information

Technology, 7(6), pp. 2035–2050. doi:10.18517/ijaseit.7.6.2232.

Bebras Competition (2019). Available at: https://www.bebras.org/ (Accessed: 10

February 2019).

Bednar, A.K., Cunningham, D., Duffy, T.M., and Perry, J.D. (1991). Theory into practice:

How do we link? In G. J. Anglin (Ed.), Instructional Technology: Past, present and

future. Englewood, CO: Libraries Unlimited.

Bellman, R. (1954). The theory of dynamic programming. Bulletin of the American

Mathematical Society, 60(6), pp. 503-516. doi:10.1090/s0002-9904-1954-09848-8.

Bellstrom, P., and Kilbrink, N. (2009). Problem-Based Learning in a Programming

Context–Planning and Executing a Pilot Survey on Database Access in a Programming

Language. In Information Systems Development, pp. 867-875. doi:10.1007/b137171.

Ben-Ari, M. (2001). Constructivism in Computer Science Education. Journal of Computers

in Mathematics and Science Teaching, 20(1), pp. 45-73.

Bennedsen, J., and Caspersen, M. E. (2007). Failure rates in introductory programming.

ACM SIGCSE Bulletin, 39(2), pp. 32–36.

Bergin, S., and Reilly, R. (2005). The influence of motivation and comfort-level on

learning to program. Proceedings of the 17th Annual Workshop on the Psychology of

Programming Interest Group. pp. 293-304,

Biggs, J. (2003). Aligning teaching and assessing to course objectives. Teaching and

learning in higher education: New trends and innovations, 2, pp. 13-17.

Biggs, J.B., and Collis, K.F. (1982). Origin and description of the SOLO taxonomy.

Evaluating the Quality of Learning. pp. 17-31. doi:10.1016/b978-0-12-097552-5.50007-

7.

Biggs, J.B., and Tang, C.S. (2011). Teaching for quality learning at university: What the

student does. Maidenhead: McGraw-Hill, Society for Research into Higher Education and

Open University Press.

Bipp, T., Lepper, A., and Schmedding, D. (2008). Pair programming in software

development teams – An empirical study of its benefits. Information and Software

Technology, 50, 231–240. doi:10.1016/j.infsof.2007.05.006.

233

Bomia, L., Beluzo, L., Demeester, D., Elander, K., Johnson, M., and Sheldon, B. (1997)

The impact of teaching strategies on intrinsic motivation. Champaign, IL: ERIC

Clearinghouse on Elementary and Early Childhood Education.

Borzovs, J., Niedrite, L., and Solodovnikova, D. (2015). Computer Programming Aptitude

Test as a Tool for Reducing Student Attrition. Environment. Technology. Resources.

Proceedings of the International Scientific and Practical Conference, 3, 29.

doi:10.17770/etr2015vol3.175.

Boud, D. (ed.) (1985). Problem-based Learning in Education/or the Professions. Sydney:

Higher Education Research and Development Society of Australasia.

Boustedt, J., Eckerdal, A., Mccartney, R., Mostrom, J., Sanders, K., and Zander, C.

(2007). Threshold concepts in Computer Science: Do they exist and are they useful?

SIGCSE Bulletin, pp. 504-508. doi:10.1145/1227504.1227482.

Boyatzis, R.E. (1998). Transforming qualitative information: Thematic analysis and code

development. Thousand Oaks, CA: Sage.

Breslow, L., Faye, A., Snover, L., and Masi, B. (2007). Methods of measuring learning

outcomes and value added. Teaching and Learning Laboratory, Massachusetts Institute

of Technology. Available at: https://tll.mit.edu/sites/default/files/guidelines/a-e-tools-

methods-of-measuring-learning-outcomes-grid-2.pdf/ (Accessed: 6 May 2018).

Brodie, L., and Gibbings, P. (2007). Developing problem-based learning communities in

virtual space. In R. Zehner & C. Reidsema (eds.), ConnectED 2007: International

Conference on Design Education. University of New South Wales.

Brooks, R.E. (1990). Categories of programming knowledge and their

application.International Journal of Man-Machine Studies, 33, pp. 241–246.

Brown, J., Collins, A., and Duguid, P. (1989). Situated cognition culture of learning.

Educational Researcher, 18(1), 32.

Bruner, J. (1978). The Child's Concept of Language. New York Springer-Verlag.

Brush, T., and Saye, J. (2008). The effects of multimedia-supported Problem-based

Inquiry on student engagement, empathy, and assumptions about History.

Interdisciplinary Journal of Problem-Based Learning, 2(1). doi:10.7771/1541-5015.1052.

Bryman, A. (2001). Social Research Methods. New York: Oxford University Press.

Burton, B., and Hiron, M. (2008). Creating Informatics Olympiad tasks: Exploring the

black art. Olympiads in Informatics, 2.

Butler, M., and Morgan, M. (2007). Learning challenges faced by novice programming

students studying high level and low feedback concepts. In ICT: Providing choices for

learners and learning. Available at:

http://www.ascilite.org.au/conferences/singapore07/procs/butler.pdf

C++ shell (2019). Available at: http://cpp.sh/ (Accessed: 17 October 2019).

234

Carstensen, A.K., and Bernhard, J. (2008). Threshold concepts and keys to the portal of

understanding: Some examples from electrical engineering. In R. Land, J. H. F. Meyer, &

J. Smith (eds.), Threshold concepts within the disciplines (pp. 143-154). Rotterdam:

Sense Publications.

Carter, J., and Jenkins, T. (1999). Gender and programming. ACM SIGCSE Bulletin,

31(3), pp. 1-4. doi:10.1145/384267.305824.

Caspersen, M. E., and Bennedsen, J. (2007). Instructional design of a programming

course: A learning theoretic approach. Proceedings of the Third International Workshop

on Computing Education Research, pp. 111–122. doi:10.1145/1288580.1288595

Chamillard, A., and Braun, K.A. (2000). Evaluating programming ability in an

introductory computer science course. ACM SIGCSE Bulletin, 32(1), pp. 212–216.

Chamillard, A., and Joiner, J.K. (2001). Using lab practica to evaluate programming

ability. ACM SIGCSE Bulletin, 33(1), pp. 159–163.

Cheang, B., Kurnia, A., Lim, A., and Oon, W. (2003). On automated grading of

programming assignments in an academic institution. Computers and Education, 41, pp.

121-131.

Clear, T. (2001). Research paradigms and the nature of meaning and truth. ACM

SIGCSE Bulletin, 33(2), pp. 9-10. doi:10.1145/571922.571930.

CMSocial (2019). Available at: https://github.com/algorithm-ninja/cmsocial/ (Accessed:

17 October 2019).

CodeBlocks (2019). Available at: http://www.codeblocks.org/ (Accessed: 17 October

2019).

Codeforces (2019). Available at: https://www.codeforces.com/ (Accessed: 17 October

2019).

Codility (2019). Available at: https://www.codility.com/ (Accessed: 17 October 2019).

Coghlan, D., and Brannick, T. (2005). Doing Action Research in your own organization.

London: Sage.

Coleman, S. D., Perry, J. D., and Schwen, T. M. (1997). Constructivist instructional

development: Reflecting on practice from an alternative paradigm. In Charles R. Dills

and Alexander J. Romiszowski (eds.), Instructional Development Paradigms (pp. 269-

282). Englewood Cliffs, NJ: Educational Technology Publications.

Collis, B., and Margaryan, A. (2005). Design criteria for work-based learning: Merrill’s

First Principles of Instruction expanded. British Journal of Educational Technology,

36(5), pp. 725–738. doi:10.1111/j.1467-8535.2005.00507.x

Combefis, S., and le Clement de Saint-Marcq, V. (2012). Teaching programming and

algorithm design with Pythia, a web-based learning platform. Olympiads in Informatics,

6.

235

Combefis, S., and Wautelet, J. (2014). Programming training and Informatics teaching

through online contests. Olympiads in Informatics, 8.

Connolly, T.M., and Begg, C.E. (2006). A Constructivist-Based Approach to Teaching

Database Analysis and Design. Journal of Information Systems Education, 17(1).

Conole, G. (2008). Capturing practice: the role of mediating artefacts in learning design.

In Handbook of Research on Learning Design and Learning Objects: Issues, Applications

and Technologies, in L. Lockyer, S. Bennett, S. Agostinho, and B. Harper (eds), pp. 187-

207, Hersey PA: IGI Global.

Conole, G. (2010). Review of pedagogical models and their use in e-learning. Computers

and Education.

Costley, C., Elliott, G., & Gibbs, P. (2010). Doing work-based research: Approaches to

enquiry for insider-researchers. SAGE. https://www.doi.org/10.4135/9781446287880.

Crescenzi, P., and Nocentini, C. (2007). Fully integrating algorithm visualization into a

cs2 course.: a two-year experience. ACM SIGCSE Bulletin, 39(3), pp. 296-300. doi:

10.1145/1269900.1268869.

Creswell, J.W. (2012). Educational research: Planning, conducting, and evaluating

quantitative and qualitative research. Boston: Pearson.

Creswell, J.W., and Plano Clark, V.L. (2011). Designing and conducting mixed methods

research. Los Angeles: SAGE Publications.

Cutts, Q., Esper, S., and Simon, B. (2011). Computing as the 4th “R”: a general

education approach to computing education. In Sanders, K. (ed.) Proceedings of the

Seventh International Workshop on Computing Education Research, pp. 133-138.

doi:10.1145/2016911.2016938.

Cyprus Computer Society (2019). Available at: https://www.ccs.org.cy/ (Accessed: 10

July 2019)

Cyprus Olympiad in Informatics (2019). Available at: http://www.coinformatics.org/

(Accessed: 2 January 2019).

Dabbagh, N. (2005). Pedagogical models for E-Learning: A theory-based design

framework. International Journal of Technology in Teaching and Learning, 1(1), pp. 25-

44.

Dabbagh, N., and Bannan-Ritland, B. (2005). Online learning: Concepts, strategies, and

application. Upper Saddle River, N.J.: Pearson, Merrill Prentice Hall.

Dagiene, V. (2005). Teaching Information Technology in general education: Challenges

and perspectives. In Mittermeir R.T. (ed.) From computer literacy to Informatics

fundamentals, pp. 53-64. doi:10.1007/978-3-540-31958-0_7.

236

Dagiene, V., and Skupas, B. (2011). Semi-automatic testing of program codes in the

high school student maturity exam. Proceedings of the 12th International Conference on

Computer Systems and Technologies, pp. 564-569. doi:10.1145/2023607.2023701.

Dagiene, V., and Skupiene, J. (2004). Learning by competitions: Olympiads in

Informatics as a tool for training high-grade skills in programming. 2nd International

Conference Information Technology: Research and Education ITRE, pp. 79-83.

doi:10.1109/ITRE.2004.1393650.

Daly, C., and Waldron, J. (2004). Assessing the assessment of programming ability. ACM

SIGCSE Bulletin, 36, pp. 210–213.

Daly, T. (2011). Minimizing to maximize: An initial attempt at teaching introductory

programming using Alice. Journal of Computing Sciences in Colleges, 26(5), pp. 23-30.

Danic, M., Radosevic, D., and Orehovacki, T. (2011). Evaluation of student programming

assignments in an online environment. Proceedings of the 22nd Center European

Conference on Information and Intelligent Systems, Faculty of Organization and

Informatics. Available at:

https://www.academia.edu/1262203/Evaluation_of_Student_Programming_Assignments

_in_Online_Environments (Accessed: 4 April 2018).

Davies, P. (2006). Threshold concepts: How can we recognise them? In (Meyer and

Land, 2006).

Davies, P., and Mangan, J. (2008). Embedding threshold concepts: From theory to

pedagogical principles to learning activities. In R. Land, J. H. F. Meyer, & J. Smith (eds.),

Threshold concepts within the disciplines. Rotterdam: Sense.

Davies, S. (2008). The effects of emphasizing computational thinking in an introductory

programming course. 38th Annual Frontiers in Education Conference, T2C-3-T2C-8.

doi:10.1109/FIE.2008.4720362.

Davies, S.P. (1993). Models and theories of programming strategy. International Journal

of Man-Machine Studies, 39(2), pp. 237–267. doi:10.1006/imms.1993.1061.

Davis, E.A., and Linn, M.C. (2000). Scaffolding students’ knowledge integration: Prompts

for reflection in KIE. International Journal of Science Education, 22, pp. 819–837.

Davis, G.A., and Rimm, S.B. (2004). Education of the gifted and talented. Boston, MA:

Pearson.

Denscombe, M. (2010). The good research guide: for small-scale social research

projects. New York: Open University Press.

Derri, V., and Pachta, M. (2007). Motor Skills and concepts acquisition and retention: A

comparison between two styles of teaching. International Journal of Sport Science, 3(3),

pp. 37-47.

Dewey, J. (1900). The school and society. Chicago: University of Chicago Press.

237

Dewey, J. (1903). Studies in logical theory. Chicago: University of Chicago Press.

Dewey, J. (1916). Democracy and education: An introduction to the philosophy of

education. New York: MacMillan.

Dewey, J. (1929). The quest for certainty. New York: Minton.

Dewey, J. (1948). Education and the philosophic mind. New York: MacMillan.

Dijkstra, E.W. (1968). A constructive approach to the problem of programme

correctness. BIT Numerical Mathematics, 8, pp. 174-186. doi:10.1007/BF01933419.

Diks, K., Kubica, M., and Stencel, K. (2007). Polish Olympiad in Informatics - 14 years of

experience. Olympiads in Informatics, 1.

Dolmans, D.H.J.M., Loyens, S.M.M., Marcq, H., and Gijbels, D. (2016). Deep and surface

learning in problem-based learning: A review of the literature. Advances in Health

Sciences Education, 21(5), pp. 1087–1112. doi:10.1007/s10459-015-9645-6.

Driscoll, M.P. (1994). Psychology of learning for instruction. MA: Allyn and Bacon.

Du Boulay, B. (1986). Some difficulties of learning to program. Journal of Educational

Computing Research, 2(1), pp. 57–73.

Du Boulay, B., O’ Shea, T., and Monk, J. (1981). The black box inside the glass box:

Presenting computing concepts to novices. International Journal of Man-Machine

Studies, 14(3), pp. 237-249. doi:10.1016/S0020-7373(81)80056-9.

Duch, B.J., Groh, S.E., and Allen, D.E. (2001). The power of problem-based learning.

Sterling, VA: Stylus Publishing, Inc.

Duffy, T.M., and Cunningham, D.J. (1996). Constructivism: Implications for the design

and delivery of instruction. In D.H. Jonassen (Ed.), Handbook of educational

communications and technology (pp. 170-198). New York: Simon & Schuster Macmillan.

Duffy, T.M., and Jonassen, D.H. (1992). Constructivism and the Technology of

Instruction: A Conversion. Hillsdale, NJ: Erlbaum.

Dunkin, M., and Precians, R. (1992). Award-winning university teachers’ concepts

Dyson, M., and Barreto-Campello, S. (2003). Evaluating Virtual Learning Environments:

What are we measuring. Electronic Journal of E-Learning, 1, pp. 11–20.

Eckerdal, A. (2009). Novice Programming Students’ Learning of Concepts and Practice.

Doctoral dissertation, Acta Universitatis Upsaliensis.

Eckerdal, A., McCartney, R., Mostrom, J.E., Sanders, K., Thomas, L., and Zander, C.

(2007) From limen to lumen: Computing students in liminal spaces. New York: ICER.

Edmodo. (2019). Available at: https://new.edmodo.com/ (Accessed: 15 December

2019).

238

Entwisle, N. (1998). Motivation and Approaches to Learning: Motivating and Conceptions

of Teaching. In Motivating Students, S. Brown et al. (eds.), Kogan Page.

Eracleous, P. (2004). A proposal for the development of a three-year curriculum

programme on Computer Science for secondary schools (Lyceums) of Cyprus.

Assignment for MProf in Work-Based Learning Studies. Middlesex University.

Eracleous, P., Pavlikas, P., Ttofari, A., and Charalampous, A. (2019). Cyprus Olympiad in

Informatics’, Olympiads in Informatics. 13.

Ersoy, E., and Baser, N. (2014). The Effects of Problem-based Learning Method in

Higher Education on Creative Thinking, Procedia-Social and Behavioral Sciences, pp.

3494-3498.

ESRC (2015) Framework for Research Ethics. Available at:

https://unihub.mdx.ac.uk/__data/assets/pdf_file/0016/222730/framework-for-research-

ethics_tcm8-33470.pdf/ (Accessed: 5 October 2018).

European Commission (2008). Digital Literacy European Commission working paper and

recommendations from Digital Literacy High-Level Expert Group. Available at:

https://www.ifap.ru/library/book386.pdf/ (Accessed: 5 June 2018).

European Commission (2013). Survey of Schools: ICT in Education. Available at:

https://euc.ac.cy/https://ec.europa.eu/newsroom/dae/document.cfm?doc_id=1813/

(Accessed: 15 February 2018).

European Junior Olympiad in Informatics (2019). Available at: https://www.ejoi2019.si/

(Accessed: 5 September 2019).

European University of Cyprus (2019). Available at: https://euc.ac.cy/ (Accessed: 10

February 2019).

Evans, G.E., and Simkin, M.G. (1989). What best predicts computer proficiency?

Communications of the ACM, 32(11), pp. 1322–1327. doi:10.1145/68814.68817.

Fee, S.B., and Holland-Minkley, A.M. (2010). Teaching computer science through

problems, not solutions. Computer Science Education, 20, pp. 129-144.

Feilzer, M.Y. (2010). Doing mixed methods research pragmatically: Implications for the

rediscovery of pragmatism as a research paradigm. Journal of Mixed Methods Research,

4(1), pp. 6-16. doi:10.1177/1558689809349691.

Felter, W., Ferreira, A., Rajamony, R., and Rubio, J.C. (2015). An updated performance

comparison of virtual machines and Linux containers. IEEE International Symposium on

Performance Analysis of Systems and Software, pp. 171-172.

doi:10.1109/ispass.2015.7095802.

Firdyiwek, Y. (1999). Web-based courseware tools: Where is the pedagogy? Educational

Technology, 39(1), pp. 29-34.

239

Foley, J. (1994). Key concepts in ELT: Scaffolding. ELT Journal, 48(1), pp. 101–102.

doi:10.1093/elt/48.1.101.

Fonte, D., da Cruz, D., Gancarski, A.L., and Henriques, P.R. (2013). A flexible, dynamic

system for automatic grading of programming exercises. In 2nd Symposium on

Languages, Applications and Technologies, pp. 129-144.

Forisek, M. (2006). On the suitability of programming tasks for automated evaluation.

Informatics in Education, 5(1), pp. 63-76.

Forisek, M. (2013). Pushing the boundary of programming contests. Olympiads in

Informatics, 7.

Furlong, J., Barton, L., Miles, S., Whiting, C., and Whitty, G. (2000). Teacher Education

in transition: Re-forming professionalism? Buckingham: Open University Press.

Gagne, R. M. (1973). Learning and Instructional Sequence. Review of Research in

Education, 1(1), pp. 3–33. doi:10.3102/0091732X001001003.

Gance, S. (2002). Are constructivism and computer-based learning environments

incompatible? Journal of the Association for History and Computing, 1.

Garcia-Mateos, G., and Fernandez-Aleman, J.L. (2009). Make learning fun with

programming contests. In Z. Pan, A.D. Cheok, W. Muller, and A.E. Rhalibi (eds.),

Transactions on Edutainment II, pp. 246-257. doi:10.1007/978-3-642-03270-7_17.

Garner, S. (2009). A quantitative study of a software tool that supports a part-complete

solution method on learning outcomes. Journal of Information Technology Education, 8,

pp. 285-310.

Garner, S., Haden, P., and Robins, A. (2005). My Program is Correct But it Doesn’t Run:

A Preliminary Investigation of Novice Programmers Problems. 42, pp. 173–180.

Gbollie, C., and Keamu, H.P. (2017). Student Academic Performance: The Role of

Motivation, Strategies, and Perceived Factors Hindering Liberian Junior and Senior High

School Students Learning. Education Research International, 2017, 1789084.

doi:10.1155/2017/1789084.

Gentner, D. (2002). Mental Models, Psychology of. In N. Smelser & P.B. Bates (eds.),

International Encyclopedia of the Social and Behavioral Sciences. Amsterdam: Elsevier

Science, pp. 9683–9687.

Golan, R., Kyza, E.A., Reiser, B.J., and Edelson, D.C. (2002). Scaffolding the task of

analyzing animal behavior with the Animal Landlord software. Paper presented at the

Annual Meeting of the American Educational Research Association, New Orleans, LA.

Gomes, A., and Mendes, A.J. (2007). An environment to improve programming

education. Proceedings of the 2007 International Conference on Computer Systems and

Technologies, Rachev, B., Smrikarov, A. & Dimov, D. (eds.), 88, pp. 1-6.

240

Greening, T. (1999). Emerging constructivist forces in Computer Science education:

Shaping a new future? In Computer Science Education in the 21st Century. doi:

10.1007/978-1-4612-1298-0_5.

Greeno, J. G. (2006). Learning in activity. In R. K. Sawyer (Ed.), The Cambridge

handbook of the learning sciences (pp. 79-96). New York: Cambridge.

Greenwood, D.J., and Levin, M. (2007). Introduction to Action Research: Social

Research for Social Change. California: Sage.

Guzdial, M. (2011). From Science to Engineering - Exploring the dual nature of

Computing Education Research. Communications of the ACM, 54, pp. 37-39.

doi:10.1145/1897816.1897831.

HackerEarth (2019). Available at: https://www.hackerearth.com/ (Accessed: 5

September 2019).

HackerRank (2019). Available at: https://www.hackerrank.com/ (Accessed: 5 September

2019).

Hadjerrouit, S. (2008). Towards a Blended Learning Model for Teaching and Learning

Computer Programming: A Case Study. Informatics in Education.

Hagan, D., and Markham, S. (2000). Does it help to have some programming experience

before beginning a computing degree program? ACM SIGCSE Bulletin, 32, pp. 25-28.

doi:10.1145/353519.343063.

Hagan, D., Sheard, J., and Macdonald, I. (1997). Monitoring and evaluating a

redesigned first-year programming course. ACM SIGCSE Bulletin, 29(3), pp. 37–39.

doi:10.1145/268809.268832.

Haghighi, P. D., Sheard, J., Looi, C.K., Jonassen, D., and Ikeda, M. (2005). Summative

computer programming assessment using both paper and computer. In ICCE, pp. 67–

75.

Halim, S., and Halim, F. (2009). Competitive programming at the National University of

Singapore. Department of Computer Science, The National University of Singapore.

Available at:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.458.8600&rep=rep1&type=p

df/ (Accessed: 21 July 2018).

Hamm, S. B. (2016). A Foundation for Spatial Thinking: Towards a Threshold Concept

Framework in GIScience and its Implications for STEM Education. The University of

Waterloo.

Hanks, B., McDowell, C., Draper, D., and Krnjajic, M. (2004). Program quality with pair

programming in CS1. Proceedings of the 9th Annual SIGCSE Conference on Innovation

and Technology in Computer Science Education. pp. 176-180.

Hannafin, M.J. (1992). Emerging technologies, ISD, and learning environments: Critical

perspectives. Educational Technology Research and Development, 40(1), pp. 49-63.

241

Hansen, M., and Borden, V. (2006). Using Action Research to support academic program

improvement. New Directions for Institutional Research, 130, pp. 47-62.

doi:10.1002/ir.179.

Hattie, J.A.C. (2012) Visible learning for teachers. London, UK: Routledge.

Hellenic Computing Olympiad (2019). Available at: http://hellenico.gr/ (Accessed 7 June

2019).

Helminen, J., Malmi, L., and Korhonen, A. (2009). Quick introduction to programming

with an integrated code editor, automatic assessment and visual debugging tool - work

in progress. In Proceedings of the 9th International Conference on Computing Education

Research, Koli Calling, pp. 59-62.

Herr, K., and Anderson, G. (2005). The Action Research Dissertation: A Guide for

Students and Faculty. Sage Publications, Inc. doi:10.4135/9781452226644.

Hickey, D.T., Moore, A.L., and Pellegrino, J.W. (2001). The motivational and academic

consequences of elementary Mathematics environments: Do constructivist innovations

and reforms make a difference? American Educational Research Journal, 38(3), pp. 611-

652. doi:10.3102/00028312038003611.

Hill, G. J. (2016). Review of a problems–first approach to first-year undergraduate

programming. In S. Kassel & B. Wu (eds.), Software Engineering Education Going Agile.

Switzerland: Springer International Publishing, pp. 73–80.

Hine, G.S.C. (2013). The importance of Action Research in teacher education programs.

In Teaching and learning in higher education: Western Australia’s TL Forum, Issues in

Educational Research, 23(2), pp. 151-163.

Hmelo-Silver, C.E. (2004). Problem-Based Learning: What and how do students learn?

Educational Psychology Review, 16(3), pp. 235-266.

doi:10.1023/B:EDPR.0000034022.16470.f3.

Hmelo-Silver, C.E. (2012). International Perspectives on Problem-based Learning:

Contexts, Cultures, Challenges, and Adaptations. Interdisciplinary Journal of Problem-

Based Learning, 6, pp.10-15.

Hmelo-Silver, C.E., and Ferrari, M. (1997). The problem-based learning tutorial:

Cultivating higher-order thinking skills. Journal of the education of the gifted, 20(4), pp.

40l-422.

Hmelo-Silver, C.E., Duncan, R., and Chinn, C. (2007). Scaffolding and Achievement in

Problem-Based and Inquiry Learning: A response to Kirschner, Sweller, and Clark.

Educational Psychologist, 42(2), pp. 99-107. doi:10.1080/00461520701263368.

Holloway, M., Alpay, E., & Bull, A. (2010). A quantitative approach to identifying

threshold concepts in engineering education. Engineering Education 2010: Inspiring the

Next Generation of Engineers, EE 2010. Available at:

https://epubs.surrey.ac.uk/837616/

242

Howe, K., and Berv, J. (2000). Constructing constructivism, epistemological and

pedagogical. In D. C. Philips (Ed.), Constructivism in education: Opinions and second

opinions on controversial issues. pp. 19-40: Chicago: The National Society for the study

of Education.

Hung, C.Y., Chang, T. W., Yu, P.T., and Cheng, P.J. (2012). The Problem-Solving Skills

and Learning Performance in Learning Multi-Touch Interactive Jigsaw Game using Digital

Scaffolds. Los Alamitos, CA: IEEE Computer Society.

Iaydjiev, I. (2013). A pragmatic approach to social science. E-International Relations

Students. Available at: http://www.e-ir.info/2013/03/01/a-pragmatic-approach-to-social-

science/ (Accessed: 10 November 10, 2018).

Ibrahim, M. (2012). Thematic Analysis: A critical review of its process and evaluation.

West East Journal of Social Sciences, 1(1), 9, pp. 39-47.

Ideone (2019). Available at: https://ideone.com/ (Accessed: 10 February 2019).

IEEEXtreme (2019). 24-hour Programming Competition. Available at:

https://ieeextreme.org/ (Accessed: 19 November 2019).

Ihantola, P., Vihavainen, A., Ahadi, A., Butler, M., Borstle, J., Edwards, S.H., Isohanni,

E., Korhonen, A., Petersen, A., Rivers, K., Rubio, M.A., Sheard, J., Skupas, B., Spacco,

J., Szabo, C., and Toll, D. (2015). Educational data mining and learning analytics in

programming: Literature review and case studies. ITiCSE-WGR.

doi:10.1145/2858796.2858798.

Ilsche, T., Schuchart, J., Schone, R., and Hackenberg, D. (2015). Combining

instrumentation and sampling for trace-based application performance analysis. In C.

Niethammer, J. Gracia, A. Knupfer, M.M. Resch, and W.E. Nagel (eds.), Tools for high

performance computing, pp. 123-136. doi:10.1007/978-3-319-16012-2_6.

International Olympiad in Informatics (2019). Available at: https://ioinformatics.org/

(Accessed: 5 September 2019).

International Olympiad in Informatics (2019). Task: Arranging Shoes. Available at:

https://ioi2019.az/source/Tasks/Day1/Shoes/NGA.pdf

IOI Statistics (2019). Available at: http://stats.ioinformatics.org/ (Accessed: 8 October

2019).

IOI Syllabus (2017). Available at: http://ioi2017.org/files/ioi-syllabus-2017.pdf/

(Accessed: 15 May 2017).

ISSEP (2019) 12th International Conference on Informatics in Schools Situation,

Evolution and Perspectives (ISSEP). Available at:

http://cyprusconferences.org/issep2019/ (Accessed: 6 December 2019).

Ivala, E. , Gachago, D. , Condy, J., and Chigona, A. (2013). Enhancing Student

Engagement with Their Studies: A Digital Storytelling Approach. Creative Education, 4,

pp. 82-89. doi: 10.4236/ce.2013.410A012.

243

Ivankova, N. (2014). Mixed Methods Applications in Action Research: From Methods to

Community Action. Thousand Oaks, California: SAGE Publications, Inc.

Ivankova, N.V., and Wingo, N. (2018). Applying Mixed Methods in Action Research:

Methodological Potentials and Advantages. American Behavioral Scientist, 62(7), pp 978-

997. doi:10.1177/0002764218772673.

Jacobson, N. (2000). Using on-computer exams to ensure beginning students'

programming competency. ACM SIGCSE Bulletin, 32(4), pp. 53–56.

James, W. (1907). Pragmatism: A new name for some old ways of thinking. Cambridge,

MA: Harvard University Press.

Jenkins, T. (2002). On the difficulty of learning to program. Proceedings of the 3rd

Annual Conference of the LTSN Centre for Information and Computer Sciences, pp. 53-

58.

Jiang, Z., and Xu, X. (2019). Design and Implementation of Fill-in-the-blank Questions

based on Open-Source Online Judge System. doi:10.2991/iccia-19.2019.10

Johnson, A.P. (2005). A short guide to Action Research. Boston, MA: Pearson.

Johnson, R.B., and Onwuegbuzie, A.J. (2004). Mixed methods research: A research

paradigm whose time has come. Educational Researcher, 33(7), pp. 14-26.

Johnson-Laird, P.N. (1983). Mental models: Towards a cognitive science of language,

inference, and consciousness. Cambridge, MA: Harvard University Press. Available at:

https://hal.archives-ouvertes.fr/hal-00702919

Jonassen, D. (1999). Constructivist learning environments on the web: Engaging

students in meaningful learning. EdTech, Educational Technology Conference and

Exhibition: Thinking Schools, Learning Nation. Singapore: Ministry of Education.

Jonassen, D. (1999). Designing constructivist learning environments. In C. Reigeluth,

(Ed.), Instructional-design theories and models: A new paradigm of instructional theory

(pp. 215-239). University Park: Pennsylvania State University.

Jonassen, D. H., Howland, J. L., Moore, J. L., and Marra, R. M. (2003). Learning to Solve

Problems with Technology: A Constructivist Perspective. Upper Saddle River, New

Jersey: Merrill Prentice Hall.

Jonassen, D.H. (1991). Objectivism versus constructivism: Do we need a new

philosophical paradigm? Educational Technology Research and Development, 39(3), pp.

5-14.

Jonassen, D.H., Grabinger, R.S., and Harris, N.D.C. (1991). Instructional strategies and

tactics. Performance Improvement Quarterly, 3(2), pp. 29-47.

Kaila, E., Rajala, T., Laakso, M.J., and Salakoski, T. (2009). Effects, experiences and

feedback from studies of a program visualization tool. Informatics in Education, 3.

244

Kallia, M., and Sentance, S. (2017). Computing teachers’ perspectives on threshold

concepts: Functions and procedural abstraction. In Proceedings of the 12th Workshop in

Primary and Secondary Computing Education, pp. 15-24.

doi:10.1145/3137065.3137085.

Karzunina, D., West, J., Maschiao da Costa, G., Philippou, G., and Gordon, S. (2019).

The global skills gap in the 21st century. QS Quacquarelli Symonds. Available at:

http://info.qs.com/rs/335-VIN-

535/images/The%20Global%20Skills%20Gap%2021st%20Century.pdf/ (Accessed: 29

October 2019).

Kavitha, D.R.K., JalajaJayalakshmi, V., and Rassika, R. (2018). Collaborative learning in

Computer Programming Courses using E-Learning Environments. International Journal

of Pure and Applied Mathematics, 118(8), pp. 183-189.

Kavitha, R.K., JalajaJayalakshmi. V., and Kaarthiekheyan, V. (2017). Adoption of

Knowledge Management Framework in Academic Setting. International Journal of Pure

and Applied Mathematics, 116(12), pp. 77-85.

Kay, J., Barg, M., Fekete, A., Greening, T., Hollands, O., Kingston, J.H., and Crawford, K.

(2000). Problem-Based Learning for foundation Computer Science courses. Computer

Science Education, 10(2), pp. 109-128. doi:10.1076/0899-3408(200008)10%3A2%3B1-

C%3BFT109.

Kember, D., and Kelly, M. (1993). Improving Teaching through Action Research. Green

Guide No. 14. Campbelltown, NSW: Higher Education Research and Development

Society of Australasia.

Kendall, M.G. (1955). Rank Correlation Methods. New York: Hafner Publishing.

Khalife, J.T. (2006). Threshold for the introduction of programming: Providing learners

with a simple computer model. 28th International Conference on Information

Technology Interfaces, pp. 71-76. doi:10.1109/ITI.2006.1708454.

Kirk, J., and Miller, L. (1986). Reliability and validity in qualitative research. London:

Sage.

Knuth, D.E. (1974). Computer programming as an art. ACM 17, 12, pp. 667–673.

doi:10.1145/361604.361612.

Koehler, M.J., Mishra, P., Kereluik, K., Shin, T.S., and Graham, C.R. (2014). The

Technological Pedagogical Content Knowledge Framework. In J. M. Spector, M. D.

Merrill, J. Elen, & M.J. Bishop (eds.), Handbook of Research on Educational

Communications and Technology (pp. 101–111). Springer New York. doi:10.1007/978-1-

4614-3185-5_9.

Konecki, M. (2014). Problems in Programming Education and Means of Their

Improvement. In B. Katalinic (Ed.), DAAAM International Scientific Book, 1(13), pp. 459-

470. doi:10.2507/daaam.scibook.2014.37.

245

Kotovsky, K. (2003). Problem Solving-large/small, hard/easy, conscious/nonconscious,

problem-space/problem-solver: The issue of dichotomization. The Psychology of Problem

Solving (pp. 374-384). UK: Cambridge University Press.

Koulouri, T., Lauria, S., and Macredie, R.D. (2014). Teaching Introductory Programming:

A Quantitative Evaluation of Different Approaches. ACM Transactions on Computing

Education (TOCE), 14(4).

Kruger, J., and Dunning, D. (1999). Unskilled and unaware of it: How difficulties in

recognizing one’s own incompetence lead to inflated self-assessments. Journal of

Personality and Social Psychology, 77(6), pp. 1121-1134. doi:10.1037//0022-

3514.77.6.1121.

Kurland, D.M., and Pea, R.D. (1985). Children's mental models of recursive LOGO

programs. Journal of Educational Computing Research, 1(2), pp. 235-243.

Kurnia, A. (2001). Online Judge. School of Computing. The National University of

Singapore.

Kurnia, A., Lim, A., and Cheang, B. (2001). Online Judge. Computers and Education,

36(4), pp. 299-315. doi:10.1016/S0360-1315(01)00018-5.

Laakso, M.J., Salakoski, T., Grandell, L., Qiu, X., Korhonen, A., and Malmi, L. (2005).

Multi-perspective study of novice learners adopting the visual algorithm simulation

exercise system TRAKLA2, Informatics in Education, 4.

Laevers, F. (2000). Forward to Basics! Deep-Level-Learning and the Experiential

Approach. Early Years, 20(2), pp. 20-29. doi:10.1080/0957514000200203.

Lahtinen, E., Ala-Mutka, K., and Jarvinen, H.M. (2005). A study of the difficulties of

novice programmers. ACM SIGCSE Bulletin, 37(3), pp. 14-18.

doi:10.1145/1151954.1067453.

Lampert, M. (2001). Teaching problems and the problems of teaching. New Haven CT:

Yale University Press.

Land, R., Cousin, G., Meyer, J.H.F., and Davies, P. (2005). Threshold concepts and

troublesome knowledge: Implications for course design and evaluation. In Rust, C. (ed.)

Improving student learning diversity and inclusivity. Oxford: OCSLD.

Land, R., Meyer, J.H.F., and Flanagan, M.T. (2016). Threshold concepts in practice.

Rotterdam Boston Taipei: Sense Publishers.

Lave J., and Wenger E. (1991). Situated Learning - Legitimate Peripheral Participation,

Cambridge: Cambridge University Press.

Lewin, K. (1946). Action research and minority problems. In Lewin, G.W. (ed.) Resolving

social conflicts. New York: Harper and Row.

Lewin, K. (1948). Resolving social conflicts. New York: Harper and Rowe.

246

Linn, M.C., and Dalbey, J. (1989). Cognitive Consequences of Programming Instruction.

In E. Soloway & J.C. Spohrer (eds.), Studying the Novice Programmer, pp. 57-81.

Hillsdale, NJ: Lawrence Erlbaum.

Lisewski, B., and Joyce, P. (2003). Examining the five-stage e-moderating model: design

and emergent practice in the learning technology profession. ALT-J 11(2), pp. 55-66.

Lister, R. (2010). Geek genes and bimodal grades. ACM Inroads, 1(3), pp. 16-17.

Lister, R., Adams, E.S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M., McCartney, R.,

Mostrom, J.E., Sanders, K., Seppala, O., and Simon, B. (2004). A multinational study of

reading and tracing skills in novice programmers. ACM SIGCSE Bulletin, 36(4), pp. 119-

150.

Looi, H.C., and Seyal, A. (2014). Problem-based Learning: An Analysis of its Application

to the Teaching of Programming. IPEDR, 70, pp. 69-75.

Lucas, U., and Mladenovic, R. (2006). Developing new ‘world views’: Threshold concepts

in introductory accounting. In J. H. F. Meyer, & R. Land (eds.), Overcoming barriers to

student understanding: Threshold concepts and troublesome knowledge (pp. 148-159).

London: Routledge.

Lyons, A., and DeFranco, J. (2010). A Mixed-Methods Model for Educational Evaluation.

The Humanistic Psychologist, 38(2), pp. 146-158. doi:10.1080/08873267.2010.485912.

Ma, L., Ferguson, J.D., Roper, M., Ross, I., and Wood, M. (2008). Using cognitive

conflict and visualisation to improve mental models held by novice programmers.

Proceedings of the 39th SIGCSE Technical Symposium on Computer Science Education,

pp. 342-346. doi:10.1145/1352135.1352253.

MacGregor, J., Smith, B.L., Tinto, V., and Levine, J. H. (1999). Learning about learning

communities: Taking student learning seriously. Materials prepared for the National

Resource Center for The First-Year Experience and Students in Transition

Teleconference, Columbia, South Carolina.

Mackenzie, N., and Knipe, S. (2006). Research dilemmas: Paradigms, methods and

methodology. Issues in Educational Research. Available at:

http://www.iier.org.au/iier16/mackenzie.html/ (Accessed: 17 October 2017).

Maggiolo, S., and Mascellani, G. (2012). Introducing CMS: A Contest Management

System. Olympiads in Informatics, 6.

Malmi, L., and Helminen, J. (2010). Jype - A program visualization and programming

exercise tool for Python. Proceedings of the 5th International Symposium on Software

Visualization, pp. 153-162. doi:10.1145/1879211.1879234.

Manev, K. (2008). Tasks on graphs. Olympiads in Informatics, 2.

Maxcy, S. (2003). Pragmatic threads in mixed methods research in the social sciences:

The search for multiple modes of inquiry and the end of the philosophy of formalism. In

247

A. Tashakkori, and C. Teddlie (eds.), Handbook of mixed methods in social and

behavioral research. Thousand Oaks, CA: Sage, pp. 51-89.

Maxwell, J. (2005). Qualitative research design: An interactive approach. London: Sage.

Mayer R.E. (1989). The psychology of how novices learn computer programming. In E.

Soloway & J. C. Spohrer (eds.), Studying the Novice Programmer. pp. 129–159.

Hillsdale, NJ: Lawrence Erlbaum.

Mayer R.E. (1989). The psychology of how novices learn computer programming. In E.

Soloway & J. C. Spohrer (eds.), Studying the Novice Programmer (pp. 129–159).

Hillsdale, NJ: Lawrence Erlbaum.

Mayer, R.E. (1985). Learning in complex domains: A cognitive analysis of computer

programming. Psychology of learning and motivation, 19, pp. 89–130.

Mayes, T., and Freitas, S. (2004). Review of e-learning theories, frameworks and

models. JISC e-learning models study report.

Mazlack, L.J. (1980). Identifying potential to acquire programming skill. Communications

of the ACM, 23(1), pp. 14–17. doi:10.1145/358808.358811.

McCartney, R., Boustedt, J., Eckerdal, A., Mostrom, J.E., Sanders, K., Thomas, L., and

Zander, C. (2009). Liminal spaces and learning computing’, European Journal of

Engineering Education. 34(4), pp. 383-391. doi:10.1080/03043790902989580.

McCauley, R., Grissom, S., Fitzgerald, S., and Murphy, L. (2015). Teaching and learning

recursive programming: A review of the research literature. Computer Science

Education, 25(1), pp. 37-66. doi:10.1080/08993408.2015.1033205.

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y., Laxer, C.,

Thomas, L., Utting, I., and Wilusz, T. (2001). A multi-national, multi-institutional study

of assessment of programming skills of first-year CS students. In working group reports

from ITiCSE on Innovation and technology in Computer Science Education, pp. 125-180.

doi:10.1145/572133.572137.

McGettrick, A., Boyle, R., Ibbett, R., Lloyd, J., Lovegrove, L., and Mander, K. (2005).

Grand challenges in computing education - A summary. The Computer Journal, 48, pp.

42-48. doi:10.1093/comjnl/bxh064.

McGowan, I. (2016). Towards a Theory-Based Design Framework for an Effective E-

Learning Computer Programming Course. International Association for Development of

the Information Society.

McKernan, J. (1991). Curriculum Action Research: a handbook of methods and

resources for the reflective practitioner. London: Kogan Page.

McLean, J. (2009). Triggering engagement in SoTL through threshold concepts.

International Journal for the Scholarship of Teaching and Learning, 3(2), pp. 1–5.

248

McLoughlin, C., and Oliver, R. (1999). Pedagogic roles and dynamics in telematics

environments. In M. Selinger and J. Pearson (eds.), Telematics in Education: Trends and

Issues (pp. 32-50). Kidlington, Oxford: Pergamon.

McNiff, J. (1988) Action Research: principles and practice. London: Macmillan.

McNiff, J., and Whitehead, J. (2006). All you need to know about Action Research.

Thousand Oaks. CA: Sage Publications.

Mendes, A. J., Paquete, L., Cardoso, A., and Gomes, A. (2012). Increasing student

commitment in introductory programming learning. In Frontiers in Education

Conference. pp. 1–6. New York, NY: IEEE.

MENDO (2019). Available at: https://mendo.mk/ (Accessed: 5 September 2019)

Merrill, M. D. (2002). First principles of instruction. Educational Technology Research

and Development. 50(3), pp. 43-59.

Meyer, J.H.F., and Land, R. (2003) ‘Threshold concepts and troublesome knowledge:

Linkages to ways of thinking and practising within the disciplines’, Improving Student

Learning - Ten Years On, pp. 412-424.

Meyer, J.H.F., and Land, R. (2005). Threshold concepts and troublesome knowledge (2):

Epistemological considerations and a conceptual framework for teaching and learning.

Higher Education, 49, pp. 373-388. doi:10.1007/s10734-004-6779-5.

Meyer, J.H.F., and Land, R. (2006). Overcoming barriers to student understanding:

threshold concepts and troublesome knowledge. Routledge: London and New York.

Meyer, J.H.F., and Land, R. (2007). Stop the conveyor belt, I want to get off. Times

Higher Education Supplement. Available at:

https://www.timeshighereducation.com/news/stop-the-conveyor-belt-i-want-to-get-

off/90288.article/ (Accessed: 10 November 2018).

Meyer, J.H.F., and Shanahan, M. (2003). The troublesome nature of a threshold concept

in Economics’, in Meyer, J.H.F., and Land, R. (eds.), Overcoming barriers to student

understanding: Threshold concepts and troublesome knowledge. Routledge: London and

New York.

Michanicos Code-Evaluation Platform (2019). Available at:

http://81.4.170.42:8980/training/ (Accessed: 1 October 2019).

Mills, G.E. (2011). Action Research: A guide for the teacher researcher. Boston: Pearson.

Moore, D.T. (2007). Analyzing learning at work: an interdisciplinary framework. Learning

Inquiry, 1(3), pp. 175-188.

Morelock, M.J., and Feldman, D.H. (2003). Extreme precocity: Prodigies, savants and

children of extraordinarily high IQ. In Colangelo, N., and Davis, G. (eds.), Handbook of

gifted education. Needham Heights, MA: Allyn and Bacon, pp. 455-469.

249

Morgan, D. (2014). Integrating qualitative and quantitative methods: A pragmatic

approach. London: SAGE Publications. doi:10.4135/9781544304533.

Mostrom, J.E., Boustedt, J., Eckerdal, A., McCartney, R., Sanders, K., Thomas, L., and

Zander, C. (2009). Computer Science student transformations: Changes and causes.

Proceedings of the 14th Annual ACM SIGCSE Conference on Innovation and Technology

in Computer Science Education, pp. 181-185. doi:10.1145/1562877.1562935.

Mudgett, D.R. (2014). Teaching and Learning in Technical IT Courses: Innovative

Practices in Teaching Information Sciences and Technology: Experience Reports and

Reflections, J.M. Carroll. Cham: Springer International Publishing.

Mwanza, D. (2002). Conceptualising work activity for CAL systems design. Journal of

Computer Assisted Learning, 18(1), pp. 84-92.

Nemeth, A., and Laszlo, E. (2015). Online training and contests for Informatics

contestants of secondary school age. Edukacja-Technika-Informatyka, 6(1), pp. 273-

280.

Nikula, U., Gotel, O., and Kasurinen, J. (2011). A motivation guided holistic rehabilitation

of the first programming course. ACM Transactions on Computing Education (TOCE),

11(4).

Norman, G.R., and Schmidt, H.G. (1992). The psychological basis of Problem-Based

Learning: A review of the evidence. Academic Medicine: Journal of the Association of

American Medical Colleges, 67(9), pp. 557-565. doi:10.1097/00001888-199209000-

00002.

Nowicki, M., Matuszak, M., Kwiatkowska, A., Sysło, M., and Bała, P. (2013). Teaching

secondary school students programming using distance learning: a case study. Available

at:

https://www.academia.edu/18581423/Teaching_secondary_school_students_programmi

ng_using_distance_learning_a_case_study/ (Accessed: 12 May 2018).

Nuutila, E., and Malmi, L. (2005). PBL and computer programming - seven steps method

with adaptations. Computer Science Education, 15, pp. 123-142.

Nuutila, E., Torma, S., Kinnunen, P., and Malmi, L. (2008). Learning Programming with

the PBL Method - Experiences on PBL Cases and Tutoring. In J. Bennedsen (ed.), Issues

in Introductory Programming Courses (pp. 47–67). Berlin Heidelberg: Springer-Verlag.

O’Donnell, R. (2010). A critique of the threshold concept hypothesis and an application

in economics. 164. Available at: http://www.finance.uts.edu.au/research/

wpapers/wp164.pdf.

O’Grady, M. (2012). Practical Problem-Based Learning in Computing Education. ACM

Transactions on Computing Education (TOCE), 12, p. 10.

Oliveira, A.M.C.A., Santos, S.C.D., and Garcia, V.C. (2013). PBL in Teaching Computing:

An Overview of the last 15 years. Frontiers in Education Conference, pp. 123-142.

250

Osmond, J., Turner, A., and Land, R. (2008). Threshold concepts and spatial awareness

in transport and product design. In R. Land, J. H. F. Meyer, & J. Smith (eds.), Threshold

concepts within the disciplines (pp. 243-260). Rotterdam: Sense Publications.

Palumbo, D. (1990). Programming language/problem–solving research: A review of

relevant issues. Review of Educational Research, 60(1), pp. 65-89.

PAME (2019). Available at: https://github.com/samartzidis/PAME/ (Accessed: 7 July

2019).

Pankov, P. (2008). Naturalness in tasks for Olympiads in Informatics. Olympiads in

Informatics, 2.

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York,

USA: Basic Books, Inc.

Parker, V., Lieschke, G., and Giles, M. (2017). Ground-up-top down: A mixed method

action research study aimed at normalising research in practice for nurses and midwives.

BMC Nursing, 16. doi:10.1186/s12912-017-0249-8.

Pea, R.D., and Kurland, D.M. (1984). On the Cognitive Prerequisites of Learning

Computer Programming. Technical Report No.18. New York, NY: Bank Street College of

Education.

Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams, E., Bennedsen, J., Devlin, M., and

Paterson, J. (2007). A survey of literature on the teaching of introductory programming.

ACM SIGCSE Bull, 39(4), pp. 204-223.

Peirce C.S. (1868). Some consequences of four incapacities. Journal of Speculative

Philosophy, 2, pp. 140-157.

Peng, W. (2010). Practice and Experience in the Application of Problem-Based Learning

in Computer Programming Course. International Conference on Educational and

Information Technology.

Pereira, H.B. de B., Zebende, G. F., and Moret, M. A. (2010). Learning computer

programming: Implementing a fractal in a Turing Machine. Computers & Education,

55(2), pp. 767-776. doi:10.1016/j.compedu.2010.03.009.

Perkins, D. (1999). The many faces of constructivism. Educational Leadership, 57(3), pp.

6-11.

Perkins, D. (2006). Constructivism and troublesome knowledge. In Meyer, J.H.F., and

Land, R. (eds.), Overcoming barriers to student understanding: Threshold concepts and

troublesome knowledge. Routledge: London and New York.

PKU online judge (2019). Available at: http://poj.org/ (Accessed: 5 September 2019).

Pohl, W. (2006). Computer Science contests for secondary school students: Approaches

to classification. Informatics in Education, 5(1), pp. 125-132.

251

Preece, J. (2001). Sociability and usability in online communities: Determining and

measuring success. Behaviour & Information Technology, 20(5), pp. 347-356.

doi:10.1080/01449290110084683.

Pullen, M. (2001). The Network Workbench and Constructivism: Learning Protocols by

Programming. Computer Science Education, 11(3), pp. 189–202.

Puntambekar, S., and Kolodner, J.L. (2005). Toward Implementing Distributed

Scaffolding: Helping Students Learn Science from Design. Journal of Research in Science

Teaching, 42(2), pp. 185–217. doi:10.1002/tea.20048.

Quinnell, R., and Thompson, R. (2010). Conceptual intersections: Re-viewing academic

numeracy in the tertiary education sector as a threshold concept. In J. H. F. Meyer, R.

Land, & C. Baillie (eds.), Threshold concepts and transformational learning (pp. 147-

163). Rotterdam: Sense Publishers.

Rajala, T., Kaila, E., Linden, R., Kurvinen, E., Lokkila, E., and Laakso, M.J. (2016).

Automatically assessed electronic exams in programming courses. In Proceedings of the

Australasian computer science week multiconference (p. 11). ACM.

Razak, W.M.W.A., Baharom, S.A.S., Abdullah, Z., Hamdan, H., Aziz, N.U.A., and Anuar,

A.I.M. (2019). Academic Performance of University Students: A Case in a Higher

Learning Institution. KnE Social Sciences, pp. 1294-1304. doi:10.18502/kss.v3i13.4285.

Research Ethics (2019). Available at:

https://unihub.mdx.ac.uk/study/spotlights/types/research-at-middlesex/research-ethics/

(Accessed: 17 September 2019).

Reynolds, G. (2010). The secret to great work is great play. Available at:

https://www.presentationzen.com/presentationzen/2010/03/we-were-born-to-play-play-

is-how-we-learn-and-develop-our-minds-and-our-bodies-and-its-also-how-we-express-

ourselves-play.html

Richards, L., and Richards, T. (1991). The transformation of qualitative method:

Computational paradigms and research processes. In Fielding N.G., and Lee R.M. (eds.),

Using computers in qualitative research. London, UK: Sage, pp. 38-53.

Rist, R. S. (2004). Learning to Program: Schema Creation, Application, and Evaluation.

In Fincher, S. & Petre, M., (eds.), Computer Science Education Research. London, UK:

Taylor & Francis, pp. 175-195.

Ritchie, J., Lewis, J., Nicholls, C., and Ormston, R. (2013). Qualitative Research Practice:

A Guide for Social Science Students and Researchers. Sage Publications, Inc.

Robins, A.V. (2010). Learning edge momentum: A new account of outcomes in CS1.

Computer Science Education, 20(1), pp. 37-71. doi:10.1080/08993401003612167.

Robins, A. (2019). Novice Programmers and Introductory Programming. In S. Fincher &

A. Robins (eds.), The Cambridge Handbook of Computing Education Research.

252

Cambridge Handbooks in Psychology, pp. 327-376. Cambridge: Cambridge University

Press. doi:10.1017/9781108654555.013.

Robins, A.V., Haden, P., and Garner, S. (2006). Problem distributions in a CS1 course. In

Proceedings of the Eighth Australasian Computing Education Conference, CRPIT, 52, pp.

165-173.

Robins, A.V., Rountree, J., and Rountree, N. (2003). Learning and teaching

programming: A review and discussion. Computer Science Education, 13(2), pp. 137-

172.

Rogoff, B. (1994). Developing understanding of the idea of communities of learners.

Mind, Culture, and Activity, 4, pp. 209-229.

Rountree, J., and Rountree, N. (2009). Issues regarding threshold concepts in Computer

Science. Proceedings of the Eleventh Australasian Conference on Computing Education,

95, pp. 139-146. Available at:

http://crpit.scem.westernsydney.edu.au/confpapers/CRPITV95Rountree.pdf/ (Accessed:

5 June 2018).

Rowbottom, D.P. (2007). Demystifying Threshold Concepts. Journal of Philosophy of

Education, 41(2), pp. 263-270. doi:10.1111/j.1467-9752.2007.00554.x.

Salleh, S.M., Shukur, Z., and Judi, H.M. (2013). Analysis of research in programming

teaching tools: An initial review. Procedia, Social and Behavioral Sciences, 103, pp. 127-

135. doi:10.1016/j.sbspro.2013.10.317.

Sanders, K., and McCartney, R. (2016). Threshold concepts in computing: past, present,

and future. Proceedings of the 16th Koli Calling International Conference on Computing

Education Research, pp. 91-100. doi:10.1145/2999541.2999546.

Sarjoughian, H.S., and Zeigler, B.P. (1996). Abstraction mechanisms in discrete-event

inductive modelling. Proceedings of the Winter Simulation Conference, pp. 748-755.

doi:10.1145/256562.256803.

Savery, J.R. (2006). Overview of Problem-Based Learning: Definitions and distinctions’,

The Interdisciplinary Journal of Problem-based Learning, 1(1). pp. 9-20.

doi:10.7771/1541-5015.1002.

Savery, J.R., and Duffy, T.M. (1995). Problem Based Learning: An instructional model

and its constructivist framework. Educational Technology Publications, 35(5), pp. 31-37.

Savin-Baden, M. (2008). Liquid learning and troublesome spaces: Journeys from the

threshold? In J.H.F. Meyer, & R. Land (eds.), Threshold concepts within the disciplines

(pp. 75-88). Rotterdam: Sense Publishers.

Savin-Baden, M., and Major, C. (2013). Qualitative research: The essential guide to

theory and practice. Routledge, London.

253

Scheja, M., and Pettersson, K. (2010). Transformation and contextualisation:

Conceptualising students’ conceptual understandings of threshold concepts in calculus.

Higher Education, 59, pp. 221–241.

Schmidt, H. G., DeGrave, W. S., DeVolder, M. L., Moust, J. H. C., and Patel, V. L. (1989).

Explanatory models in the processing of science text: The role of prior knowledge

activation through small group discussion. Journal of Educational Psychology, 81, pp.

610-619.

Schulte, C., and Bennedsen, J. (2006). What do teachers teach in introductory

programming? Proceedings of the Second International Workshop on Computing

Education Research, pp. 17-28. doi:10.1145/1151588.1151593.

SciPy (2019). Available at: https://docs.scipy.org/ (Accessed: 5 September 2019).

Scott, M.J., and Ghinea, G. (2013). Educating programmers: A reflection on barriers to

deliberate practice. The Higher Education Academy.

Shaffer, D. W., and Resnick, M. (1999). "Thick" authenticity: New media and authentic

learning. Journal of Interactive Learning Research, 10(2), pp. 195-215.

Shanahan, M.P., and Meyer, J.H.F. (2006). The troublesome nature of a threshold

concept in economics. In J.H.F. Meyer, & R. Land (eds.), Overcoming barriers to student

understanding: Threshold concepts and troublesome knowledge (pp. 100-114). London:

Routledge.

Shanahan, M.P., Foster, G., and Meyer, J.H.F. (2006). Operationalising a threshold

concept in ergonomics: A pilot study using multiple-choice questions on opportunity

cost. International Review of Economics Education, 2, pp. 29–57.

Shanahan, M.P., Foster, G., and Meyer, J.H.F. (2010). Threshold concepts and attrition

in first-year economics. In J.H.F. Meyer, R. Land, & C. Baillie (eds.), Threshold concepts

and transformational learning (pp. 207-226). Rotterdam: Sense Publishers.

Sheard, J., Carbone, A., D’Souza, D., and Hamilton, M. (2013). Assessment of

programming: pedagogical foundations of exams. In Proceedings of the 18th ACM

conference on innovation and technology in computer science education. ACM, pp. 141–

146.

Sheard, J., Simon, Hamilton, M., and Lonnberg, J. (2009). Analysis of research into the

teaching and learning of programming. Proceedings of the Fifth International Workshop

on Computing Education Research Workshop, pp. 93-104.

doi:10.1145/1584322.1584334.

Shinners-Kennedy, D. (2016). How not to identify threshold concepts. In Land R., Meyer

J.H.F., and Flanagan M.T. (eds.), Threshold concepts in practice. Rotterdam Boston

Taipei: Sense Publishers, pp. 253-267.

Shinners-Kennedy, D., and Fincher, S.A. (2013). Identifying Threshold Concepts: From

Dead End to a New Direction. In Proceedings of the Ninth Annual International ACM

254

Conference on International Computing Education Research. ACM, pp. 9–18.

doi:10.1145/2493394.2493396

Shuell, T.J. (1980). Learning theory, instructional theory, and adaptation. In R.E. Snow,

P.A. Federico, & W.E. Montague (eds.), Aptitude, Learning and Instruction (vol. 1, pp.

277-301). Hillsdale, NJ: Lawrence Erlbaum.

Simons, K., and Klein, J. (2007). The impact of scaffolding and student achievement

levels in a problem-based learning environment. Instructional Science, 35(1), pp. 41-72.

doi:10.1007/s11251-006-9002-5.

Skiena, S.S. (2008). The algorithm design manual. London: Springer.

Slack (2019). Available at: https://slack.com/ (Accessed: 5 September 2019).

Slinger, J. (2011). Threshold concepts in secondary geography education. Paper

presented at The Geographical Association Annual Conference, Surrey, UK.

Sockalingam, N., and Schmidt, H.G. (2011). Characteristics of Problems for Problem-

Based Learning: The Students’ Perspective. Interdisciplinary Journal of Problem-Based

Learning, 5, pp. 3-16.

Soloway, E. (1986). Learning to program = Learning to construct mechanisms and

explanations. Communications of the ACM, 29(9), pp. 850-858. doi:10.1145/6592.6594.

Soloway, E., and Spohrer, J.C. (1989). Studying the Novice Programmer, Hillsdale, NJ:

Lawrence Erlbaum.

Soloway, E., Ehrlich, K., Bonar, J., and Greenspan, J. (1983). What do novices know

about programming? In B. Shneiderman & A. Badre (eds.), Directions in Human-

Computer Interactions. Norwood NJ: Ablex, pp. 27-54.

Sorva, J. (2012). Visual program simulation in introductory programming education.

Department of Computer Science and Engineering, Aalto University. Available at:

http://lib.tkk.fi/Diss/2012/isbn9789526046266/ (Accessed: 20 April 2017).

Sorva, J., Karavirta, V., and Malmi, L. (2013). A review of generic program visualization

systems for introductory programming education. ACM: Transactions on Computing

Education, 13(4), pp. 1-64. doi:10.1145/2490822.

Sphere Online Judge (2019). Available at: https://www.spoj.com/ (Accessed: 28 March

2019).

Spohrer, J.C., and Soloway, E. (1986). Alternatives to Construct-Based Programming

Misconceptions. Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems, pp. 183-191. doi:10.1145/22627.22369.

Stringer, E. (2007). Action Research. London: Sage Publications.

Tang, S., Zou, L., and Liao, X. (2016). A Research on Online Judge Technology Based on

MOOC Platform. DEStech Transactions on Engineering and Technology Research.

255

Taylor, C. E. (2008). Threshold concepts, troublesome knowledge and ways of thinking

and practicing: Can we tell the difference in biology? In R. Land, J. H. F. Meyer, & J.

Smith (eds.), Threshold concepts within the disciplines (pp. 185-195). Rotterdam: Sense

Publishers.

Taylor-Powell, E. (1998). Questionnaire Design: Asking questions with a purpose. The

University of Wisconsin, Cooperative Extension. Available at:

http://www.wcasa.org/file_open.php?id=933/ (Accessed: 6 February 2017).

Teddlie, C., and Tashakkori, A. (2009). Foundations of mixed methods research.

Thousand Oaks, California: Sage.

Thota, N., Berglund, A., and Clear, T. (2012). Illustration of paradigm pluralism in

computing education research. Proceedings of the Fourteenth Australasian Computing

Education Conference, pp. 103-112.

Timmermans, J. A. (2014). Identifying threshold concepts in the careers of educational

developers. International Journal for Academic Development, 19(4), pp. 305-317.

doi:10.1080/1360144X.2014.895731.

Timus Online Judge (2019). Available at: https://acm.timus.ru/ (Accessed: 10 February

2019).

Torp, L., and Sage, S. (2002). Problems as possibilities. Alexandria, VA: ASCD.

Tuckman, B.W., and Harper, B.E. (2012). Conducting Educational Research. Lanham,

Md: Rowman and Littlefield Publishers.

Turner, V. (1969). The Ritual Process: Structure and Anti-Structure. New York: Aladine

De Gruyter.

USA Computing Olympiad (2019). Available at: http://www.usaco.org/ (Accessed: 14

June 2019).

Utting, I., Tew, A. E., McCracken, M., Thomas, L., Bouvier, D., Frye, R., Paterson, J.,

Caspersen, M., Kolikant, Y., Sorva, J., and Wilusz, T. (2013). A fresh look at novice

programmers’ performance and their teachers’ expectations. In Proceedings of the

ITICSE Working Group Reports Conference on Innovation and Technology in Computer

Science Education (pp. 15–32). New York, NY: ACM.

UVa Online Judge (2019). Available at: https://onlinejudge.org/ (Accessed: 21 January

2019).

Van Gorp, M.J., and Grissom, S. (2001). An Empirical Evaluation of Using Constructive

Classroom Activities to Teach Introductory Programming. Computer Science Education,

11(3), pp. 247-260.

Van Merrienboer, J.J., and Paas, F. G. (1990). Automation and schema acquisition in

learning elementary computer programming: Implications for the design of practice.

Computers in Human Behavior, 6(3), pp. 273–289. doi:10.1016/0747-5632(90)90023-A

256

Verhoeff, T. (1990). Guidelines for producing a programming-contest problem set.

Available at: https://www.win.tue.nl/~wstomv/publications/guidelines.html/ (Accessed:

24 September 2018).

Verhoeff, T. (1997). The role of competitions in education. Available at:

https://www.researchgate.net/profile/Tom_Verhoeff/publication/228714944_The_role_o

f_competitions_in_education/links/00463519f239c9e9af000000/The-role-of-

competitions-in-education.pdf/ (Accessed: 2 May 2016).

Verhoeff, T. (2013). Informatics everywhere: information and computation in society,

science and technology. Olympiads in Informatics, 7.

Vihavainen, A., Vikberg, T., Luukkainen, M., and Partel, M. (2013). Scaffolding Students’

Learning using Test My Code. ITiCSE 13, pp. 117-122.

Voigt, J., Bell, T., and Aspvall, B. (2010). Competition-style programming problems for

computer science unplugged activities. Available at:

http://www.cosc.canterbury.ac.nz/tim.bell/cseducation/papers/Voigt%20Bell%20Aspvall

%202009%20CEDETEL.pdf/ (Accessed: 18 August 2018).

Walker, A., and Leary, H. (2009). A Problem Based Learning Meta Analysis: Differences

Across Problem Types, Implementation Types, Disciplines, and Assessment Levels.

Interdisciplinary Journal of Problem-Based Learning, 3, pp. 3-24.

Walker, G. (2013). A cognitive approach to threshold concepts. High Educ 65, 247–263

(2013). doi:10.1007/s10734-012-9541-4.

Wang, Y., Wang, X., Jiang, Y., Liang, Y., and Liu, Y. (2016). A code reviewer assignment

model incorporating the competence differences and participant preferences.

Foundations of Computing and Decision Sciences, 41(1), pp. 77-91. doi:10.1515/fcds-

2016-0004.

Wasik, S., Antczak, M., Badura, J., Laskowski, A., and Sternal, T. (2016). A survey on

online judge systems and their applications. ACM Computing Surveys, 51(1), pp. 1-34.

doi:10.1145/3143560.

Watson, C., and Li, F.W. (2014). Failure rates in introductory programming revisited. In

Proceedings of the 2014 Conference on Innovation & Technology in Computer Science

Education. pp. 39–44. New York, NY: ACM.

Webster, B.F. (1996). The real software crisis: The shortage of top-notch programmers

threatens to become the limiting factor in software development. Byte Magazine, 21, p.

218.

Wenger, E. (1998). Communities of Practice: Learning, Meaning, Identity. Cambridge:

Cambridge University Press.

West, R.E., and Williams, G. (2018). I don’t think that word means what you think it

means: A proposed framework for defining learning communities. Educational

257

Technology Research and Development. Available at:

https://link.springer.com/article/10.1007/s11423-017-9535-0/ (Accessed: 11 April 2019).

White, G., and Sivitanides, M. (2002). A theory of the relationships between cognitive

requirements of computer programming languages and programmers' cognitive

characteristics. Journal of Information Systems Education, 13(1), pp. 59-66.

Whitehead, J., and McNiff, J. (2006) Action Research: Living theory. London: Sage.

Widowski, D., and Eyferth, K. (1986). Comprehending and recalling computer programs

of different structural and semantic complexity by experts and novices. In H. P.

Willumeit, ed., Human Decision Making and Manual control. Amsterdam: North-Holland,

Elsevier, pp. 267-275.

Wiedenbeck, S., LaBelle, D., and Kain, V.N.R. (2004) Factors affecting course outcomes

in introductory programming. Proceedings of 16th Workshop of the Psychology of

Programming Interest Group. Carlow, Ireland, pp. 97-110.

Wilson, B. (1996). Constructivist learning environments: Case studies in instructional

design. Educational Technology Publications: New Jersey.

Wilson, B., and Ryder, M. (1996). Dynamic Learning Communities: An Alternative to

Designed Instructional Systems. Available at: https://eric.ed.gov/?id=ED397847

Winslow, L.E. (1996). Programming pedagogy - A psychological overview. ACM SIGCSE

Bulletin, 28(3), pp. 17-22.

Wood, D., Bruner, J., and Ross, G. (1976). The role of tutoring in problem-solving.

Journal of Child Psychology and Psychiatry, 17, pp. 89-100.

World Economic Forum (2018). The Future of Jobs Report. Centre for the New Economy

and Society. Available at:

http://www3.weforum.org/docs/WEF_Future_of_Jobs_2018.pdf/ (Accessed: 18 April

2018).

Yacob, A., Saman, M.Y., and Yusoff, M.H. (2012). Constructivism learning theory for

programming through an e-learning. In 6th International Conference on New Trends in

Information Science and Service Science and Data Mining (ISSDM), pp. 639-643.

Yehezkel, C., Ben-Ari, M., and Dreyfus, T. (2005). Computer architecture and mental

models. ACM Sigcse Bulletin. 37. pp. 101-105. doi:10.1145/1047344.1047390.

Zander, C., Boustedt, J., Eckerdal, A., McCartney, R., Mostrοm, J. E., Ratcliffe, M., and

Sanders, K., (2008). Threshold concepts in computer science: a multi-national

investigation. In: R. Land, J.H.F.Meyer, and J. Smith (eds.), Threshold Concepts within

the Disciplines. Rotterdam: Sense Publishers, pp. 105-118.

Zhao, C.M., and Kuh, G.D. (2004). Adding value: Learning communities and student

engagement. Research in Higher Education, 45(2), pp. 115-138.

doi:10.1023/B:RIHE.0000015692.88534.de.CrossRefGoogle Scholar.

258

Zhao, W., Zhang, W., He, Y., Xie, X., and Wen, J.R. (2018). Automatically Learning

Topics and Difficulty Levels of Problems in Online Judge Systems. ACM Transactions on

Information Systems, 36, pp. 1–33. doi:10.1145/3158670.

Zuber-Skerritt, O. (1992). Action Research in higher education: Examples and

reflections. London: Kogan Page.

259

Appendices

1. Questionnaire 1: Bebras students

2. Questionnaire 2: COI Alumni

3. Questionnaire 3: COI Students

4. Interviews: IOI 2019 delegation

5. Power of Attorney

6. Parents Letter of Permission (EJOI 2019)

7. BOI 2019 task (Icarus)

8. Parent/Guardian Consent Form

9. Programming books I authored currently used in lyceum courses

10. Approval for research from Cyprus Computer Society

11. BOI 2016 task (Lefkaritika)

12. Bebras 2019 task (Spies)

13. Training systems from IOI participating countries

14. Certificate of participation in ISSEP / CSERC 2019

15. Organisation of seminars for the C++ programming language

