
MPhil – Automated Cinematography for Games

Automated Cinematography for Games

a thesis submitted to Middlesex University
in partial fulfilment of the requirements
for the degree of Master of Philosophy

Laurent Cozic
Lansdown Centre for Electronic Arts, School of Arts
Middlesex University

London, June 2007

Middlesex University January 2007 1

MPhil – Automated Cinematography for Games

Acknowledgements

I would like to thanks my supervisors Stephen Boyd Davis, Magnus Moar and Gordon Davies for their
support and advice through this MPhil.

Middlesex University January 2007 2

MPhil – Automated Cinematography for Games

Contents

I. Introduction ___ 5
1. Methodology ___ 6
2. Rationale__ 7

II. Background __ 15
1. Existing approaches__ 15
2. Camera Systems in Games __ 18
3. Current Issues __ 20

III. Camera System Description__ 22
1. Proposed Camera System ___ 22
2. Constraint Generator __ 25
3. Constraint Solver __ 28

IV. Camera System Development __ 29
1. Software Used___ 29
2. Story Engine __ 31
3. Camera System ___ 33

V. Conclusion ___ 48

VI. Bibliography__ 50
1. Literature __ 50
2. Websites ___ 51

VII. Games ___ 52

VIII. Source Code __ 53
1. Story Engine __ 53
2. Camera System ___ 53
3. Knowledge Base Sample __ 64

IX. Glossary of Cinematographic Terms_______________________________________ 68

X. The Intruder – Expressive Cinematography in Videogames ______________________ 70

Middlesex University January 2007 3

MPhil – Automated Cinematography for Games

Abstract

This thesis deals with the issue of automated cinematography for games. In 3D videogames, the system
must continuously provide the player with a view of the virtual world and its characters. The difficulty is
that contrary to the cinema the actors are unpredictable. In particular the player continuously modifies the
virtual environment by moving objects or by interacting with the other non-playable characters. The
latter, because of their more and more sophisticated artificial intelligence, can have behaviours that were
not predicted by the developers themselves (such as the complex behaviours that emerge from the
combination of basic behaviours).

Some games have solved the problem by predefining the possible positions of the camera during the game
development while some others give control of the camera system to the player, so that he can find by
himself the best possible view. I aim however at finding an intermediate solution, where the camera
system would automatically generate both engaging and usable views. The camera system should be able
to adapt to every situation of the virtual world without user intervention, and should allow the player to
interact with his surrounding in the most efficient way. Such a camera system could be of interest for the
game industry. Currently, in many games, the camera movements, positions, etc. are set using scripts
manually written by the developers. Having a fully automated system could potentially save hours of
work. This system could also be used for the 3D virtual worlds or “3D chats” on the Internet. For
example, the avatars – the characters played by the users – could be “filmed” in a different way
depending on the mood of the users. I aim to develop techniques which can be generalised to these and
other areas of application.

Existing approaches to automated cinematography will be reviewed – focusing on the constraint-based
and idiom-based ones – in order to highlight the strength and limitations of each one. A solution to the
problems found will be proposed in the form of a camera system implemented using Adobe Director. It
will be based on “rules” derived from existing cinematographic knowledge. One of my aims will also be
to show that using generic rules can give results close to the idiom-based approaches with the
convenience of being able to adapt to any type of scene.

Middlesex University January 2007 4

MPhil – Automated Cinematography for Games

I. Introduction

This thesis comprises the following main parts:

I. Introduction
II. Background
III. Camera System Description
IV. Camera System Development
V. Conclusion

In this thesis, I will focus on finding solutions to reconcile the dramatic potential of cinematography with
the demand of an unpredictable interactive experience. Most camera systems attempt either to create
cinematographic shots or to create playable shots but never both at the same time. It appears that to deal
with one of these two aspects the other has to be somewhat neglected. It will be demonstrated through this
thesis that it is possible to deal with both aspects simultaneously. The idea will also be presented that it is
possible to create a game that seems “fairer” to the player by using cinematographic shots.

In the first part of this thesis, I explain the overall aims, namely reconciling the dramatic potential of
cinematography with the demands of an unpredictable interactive experience. The film-maker’s
achievement will be defined, and the aspects of it that will be used for that camera system will be
highlighted. The control of the camera in videogames will then be discussed, and show why it should be
the task of the game engine and not the player. On one hand, my argument will be based on the fact that
the less controls there are to handle, the more playable the game is. On the other hand, the game can be
improved if the game designer can have a rhetorical control over the generated shots.

In the following part, the existing approaches to automated cinematography will be reviewed and the
strengths and limitations of each one will be outlined. In particular, the focus will be on the two most
important types of techniques: the constraint-based and the idiom-based. I will also describe the different
existing camera systems in third-person games and show clearly the different degrees of freedom they
give to the player. To conclude this first part, the main issues that are shared by most of these systems
will be outlined: the fact that they often lack the flexibility to adapt to the vast virtual worlds of modern
games and the difficulties they have to conciliate playability and cinematographic viewpoints.

The solutions that have been found to these problems will then be described. Especially I propose that the
camera system should be more connected to the story engine, in such a way that it “knows” what should
be in view and what could be ignored. The strength of such a system and the way it can be implemented
will be outlined. Some parts of it will be described in more details, especially the type of cinematographic
rules that will be used and how the constraint generator and the constraint solver will work.

The next part of this thesis will describe how the camera system has been implemented. It has been
developed using 3D Studio Max and Adobe Director. Each of them will be briefly reviewed in
introduction. The structure of the story engine will also be described as it is strongly connected to the
camera system. The different parts of the camera system will be detailed: the structure of the knowledge
base and the different steps followed by the camera systems when creating a new shot. Finally, the system
behaviour will be analyzed using a specifically designed test bed. An account of the strengths and
weaknesses of it in each situation will be given.

Middlesex University January 2007 5

MPhil – Automated Cinematography for Games

1. Methodology

In order to gather information during this thesis, I have made a review of existing camera systems by
studying various games. I considered mainly third person view adventure and action games. Examples of
what I would call an adventure game include Resident Evil (1996) or the Monkey Island series (1990).
Typically, these games are mainly based on the resolution of puzzles and on an elaborated plot. What I
will call action games by contrast appeal to the player's dexterity and reflexes. The main character has
many more possible movements. The plot is poor or nonexistent as it is not the main concern of the game.
Typical examples include Super Mario Sunshine (2002) or Tomb Raider (1996). Some games also belong
to both genres such as The Legend of Zelda: The Wind Waker (2002) which alternates between action and
adventure sequences.

I have also studied the various papers that have been written on automated cinematography. They will be
fully(!) reviewed in II. Existing approaches below. As part of my investigation, I have also contacted a
few other researchers that have been or that are still involved in automated cinematography. Alexander
Hornung and Doron Friedman have given me additional details on their research and have pointed me out
to some useful papers that I had missed. To design the camera system, I have also relied on a number of
texts on film-making. This MPhil being a continuation of work originally intended for an MA, part of it
will also be based on previously written material that will be referred back to. It includes a review where I
had listed a number of editing techniques and the way they can be applied to video games. These ideas
have been used to develop the camera system rules and the logic behind them.

I have also read a few texts on basic artificial intelligence techniques. Among others, I had a close look at
the Artificial Intelligence Markup Language (AIML), which I ended up adapting to make the camera
system knowledge base (See IV. AIML for a description of the language).

In order to experiment with some of the concepts used in my camera system, I have also made two test
programs. One of them to experiment with visual constraint solving: the program outputs camera
coordinates (its rotation and position) depending on the requested visual constraints (The program is
described in IV. Camera System Development: Constraint solver implementation). To experiment with
decision-making algorithms, I have also made a simple expert system that advices on which jacket should
be worn depending on various factors.

Middlesex University January 2007 6

MPhil – Automated Cinematography for Games

2. Rationale

Virtual cameras can do a number of things that physical cameras cannot. Thus, one might wonder why we
should try to reproduce techniques that are limited by physical world constraints. After all, there is
technically no limit to what can be done with a virtual camera – it can move at any speed, go through the
walls or be positioned anywhere and with any angle.

Despite this, it is still worthwhile to try implementing existing cinematographic techniques in game
camera systems. The reason is that, over more than a hundred years, film-makers have developed
techniques to present and articulate drama. We can therefore assume that it is worthwhile to try to bring
together this knowledge and the demand of interactive games. Additionally the goal of most modern
games is to appear more and more convincing. To achieve that goal the experience of film-makers is also
valuable.

The system I wish to develop will be influenced mainly by mainstream fiction film tradition. These films
usually try to appear naturalistic. In other words, the viewer can experience the whole movie without
having his attention drawn to the fact that it is only a representation. In these films it is considered as
undesirable to break the suspension of disbelief.

To achieve that apparent naturalness, filmmakers use various means. At a simple level, sticking to rules of
cinematography, such as those described by Roy Thompson (1993), will ensure that the story will be
followed smoothly by the viewer. For example, one of the rules is that the camera should not cross the
“line of action” during an edit (Please refer to the glossary in section IX for a definition of each
cinematographic term used in this thesis) in order for the viewer not to notice the cut between two shots.

In general, strictly following these rules will allow a film editor to achieve good continuity. Thus Karel
Reisz argues that “the main purpose of assembling a rough cut is to work out a continuity which will be
understandable and smooth. […] Making a smooth cut means joining two shots in such a way that the
transition does not create a noticeable jerk and the spectator’s illusion of seeing a continuous piece of
action is not interrupted.”

 The apparent naturalness of a movie also depends on cultural factors. A technique that has been used for
one-hundred years is less likely to be noticed that a brand new visual effect. For example, Boyd Davis
(2002) mentions that the close-up shot used to be shocking for the audience when it was first used. Today
it is such a common technique that the viewer will not notice it as such.

However, it is important to notice that the choice of a close-up over for example a long shot will have a
different psychological effect on the viewer. It will for example give a clue on the emotional state of the
character and therefore psychologically affect us. Thus a shot is not only used to inform but also to
influence the viewer, which is why it has been called by Harrington (1973) a form of rhetoric. Even if the
film seems natural to the viewer and the techniques used per se are not noticed, it will still have a
psychological impact on him.

- Definition of a playable / usable view

In this thesis, I will consider that a playable view is one that is fair to the player. The idea is one can play
the game without risk of losing the game through an ill-positioned camera – for example, one that hinders
a hazard he should logically have seen. Thus a playable view allows making informed decisions in that it

Middlesex University January 2007 7

MPhil – Automated Cinematography for Games

limits the number of random actions needed to complete the game (such as having to jump in the direction
of a platform that is not yet visible on screen). Eventually it should make the game more engaging as it
allows the player finishing it out of his own ability and not out of luck.

Strictly speaking, this fairness is only meant to assess the playability of a shot or a series of shots. It is
possible to get to get a good estimate of it by playing through the game and considering the two following
criteria:

1) Can the player lose the game because the camera moved by itself at the wrong moment? This is
sometime a problem in platform games. For example, the player’s character might fall if the camera
rotates around him at the very moment he is jumping from one platform to another.

2) Can the player lose the game because an enemy that he/she should have seen was occluded by another
object? This frequently occurs in the Resident Evil games, where the zombies are often occluded by the
corners of the corridors. Obviously, in some games, the enemies might hide themselves on purpose. For
example, in most recent “doom like” games, the enemies behave like normal soldiers and hide themselves
in order to avoid being shot. However we only deal with more obvious failures of the camera system such
as not showing an enemy that is right in front of the character. Basically, we can say that there is a
problem if the player cannot see something that his/her character can clearly see.

Comparing these two criteria to the total number of times the player’s character has been hit should give a
relatively good idea of the fairness of a camera system

Finally, it is worth mentioning that in some instances, it might be good to have “unfair” shots on purpose
in order for example to increase the difficulty of a game. It is undeniable that the mood and tension of the
early Resident Evil games own a lot to the fact that nearby enemies are often hindered because of a
“wrongly” positioned camera. It might seem unfair but it adds a lot to the feeling of being in danger.
However, in this thesis I will only deal with fair shots as defined here, noting that if a perfectly fair
camera system was to be done it would also be possible to set it so that it creates, if needed, “unfair”
shots.

- Scope of the cinematography aspect of the camera system

Cinematography refers to a number of choices such lighting, lens choice, filtering, etc. In other words, it
refers to all the aspects that might affect the appearance of an image. However, the camera system
presented in this thesis deals only with two aspects of cinematography. It deals with shot composition –
for example, which characters should be on screen and under which angle they should be filmed. It is a
task similar to the work of a cameraman. Secondly the camera deals with shot selection – as a film editor,
the system decides which shots should be selected among the many possible ones. For the sake of
simplification, when I use the terms “cinematographic shot” in this thesis, I will mean shots that deal with
these two aspects of cinematography.

• Composition

Middlesex University January 2007 8

MPhil – Automated Cinematography for Games

According to Gessner, a “shot is composed of frames […] and
should aim to express a single cinematic emotion or idea.”
Film-makers compose each shot in such a way as to allow the
viewer to make sense of the film space. Scenes are sometime
introduced by an establishing shot – a shot that shows
everything, characters and scenery included, in the current
scene. The way each shot is composed is driven by the
narrative. The camera angle, its distance to the characters will
depend on what the director wants to say about them. For
example, the shot in Figure I.2 from The Shining (Kubrick
1980) introduces the viewer with the main hall, where a good
part of the film will take place – thus giving the viewer the
necessary spatial information to make sense of the subsequent
scenes. By playing on the relation between the size of the big
room and the comparatively small size on screen of the character, the shot may also aim at highlighting
the central character isolation. In other words, the filmmaker knows where the things that matter in the
diegetic world are, and therefore knows what the best way to show them is. In a similar way, a video
game camera system needs to have access and need to make good use of the available narrative
information to make a good shot composition. One of my aims in this dissertation will be to show how to
achieve this task.

The composition of a shot can be described using seven variables listed in the table below.

Fig. I.2. Stanley Kubrick: The Shining, 1980.
Introduction shot showing the main hall.

Variable Static Dynamic
Location of camera Location Track, dolly, pan, etc
Target What is centre-screen Changes of target
Lens size Wide angle or long, etc. Zoom
Focus What is in focus Pulling focus
Depth of field How much is in focus Altering depth of field
Optical Filters, film stock etc Altering say colour to b/w
Tilt Tilted shot Altering camera tilt

Table 1. Variables of cinematography.

• Shot Selection

A film-maker constantly has to choose shots among many possible ones. All of them might be interesting
in terms of composition or in terms of the information they give to the viewer. Which shot will eventually
be selected depends on the following factors:

In the first place, a film-maker will choose a particular shot depending on where he wants the narrative to
go. In other words, through the selected shots he will show the viewer what he needs to see or know to be
able to understand easily the movie. Carroll notes that “the movie spectator is always looking where he or
she should be looking, always attending to the right details and thereby comprehending, nearly
effortlessly, the ongoing action precisely in the way it is meant to be understood.”

A shot usually needs to be shown in context to have the intended effect; therefore, the previous shot(s)
will have an influence on the selection of the current shot. For example, after an important event occurs,
the film-maker might choose to show a reaction shot of a one of the witnesses to heighten the effect of the
scene. The reaction shot in itself would be irrelevant – it has only been selected because of the context.

Middlesex University January 2007 9

MPhil – Automated Cinematography for Games

Choosing a proper sequence of shots also helps the viewer to build a clear mental picture of the diegetic
space. This is true both in cinema and videogames. For example in Fig. I.3 below, each shot has been
chosen in such a way as to help the player to make sense of the police station room more easily. Among
other things, this is achieved by having elements shared between shots (i.e. elements such as the door
from shot I to shot II, then the ventilator from shot II to shot III help to link mentally the shots) and also
by respecting rules of cinematography. For example, in this sequence the camera is kept on the same side
of the “line of action” in order not to break the continuity of shots.

Fig. I.3 (Shot I, II, III). Capcom: Resident Evil 2, 1997. The camera stays on the side of the “line of action” in order not to confuse the player.

Middlesex University January 2007 10

MPhil – Automated Cinematography for Games

A motivation for showing a new shot can also be to avoid monotony and to create visual diversity.
Technically a conversation could often be filmed with a single long shot of the characters involved. It
would provide the viewer with the necessary information about the topic discussed. However most film-
maker will avoid this and make the scene more dynamic by alternating with long shots, close-up, etc. or
by cutting to other events happening in the surrounding. However, although the first motivation for this
visual diversity might be to make less monotonous scene, each shot will rarely be selected completely
randomly. Whether a shot shows the reaction of a character, or the scene surrounding in order to set the
mood, the selection is still largely driven by the narrative.

When dealing with shot selection in this thesis, I use the concept of the “optimal view”. Boyd Davis
(2002) describes it as the view that is the most expressive in terms of information and affect. For example,
a close-up might be expressive in terms of information, as it allows the viewer seeing necessary details,
such as what is the character’s frame of mind. In terms of affect, the shot might also startle, alarm or
engage emotionally the viewer. By selecting only optimal views, the film-maker will ensure that his story
will be well understood as the viewer will always have all the necessary information, and all the
significant events will always be in view.

However, Boyd Davis also demonstrates that
there are limits to the optimal view: a film-
maker might deny it on purpose in order for
example to hold the suspense. In this series of
shot from The Shining (Fig. I.4), the boy moves
towards a room that has been mentioned several
times before during the movie, and which is
now mysteriously opened. At the precise
moment when the boy is about to enter it, the
film suddenly cuts to a new, apparently
unrelated shot. By denying the optimal view, the
film-maker holds the suspense – and leaves
room for interpretation as we will never know
what actually happened there – thus creating a
more engaging story.

 Fig. I.4 (Shot I, II, III, IV). Stanley Kubrick: The Shining, 1980.
Although the viewer wants to know why the room 237 is suddenly
opened and what is going to happen next (Shot I, II and III), the film
suddenly cuts to something unrelated in shot IV.

• Camera control in video
games

All camera systems in games include some sort of automation, in that none would fully allow the player
to control the six degrees of freedom of the camera (Its three X, Y and Z coordinates and its rotation
around the X, Y and Z axes). The camera movements will usually be at least restricted to a number of
sensible positions or orientations. For example, in Super Mario 64 (Nintendo 1996), the camera
automatically points at the player's avatar and can only be rotated around it. The level of control usually
depends directly on the level of precision required by the game play. In Super Mario 64, the player has
four buttons to control the camera, to allow precise positioning. Pressing the Up and Down buttons will
move the camera towards and away from the character, while pressing the Left and Right buttons will
rotate it by 45° increments. The game can indeed require great precision to avoid obstacles or to jump
from one platform to another. In comparison, only one button is used to control the camera in The Legend
of Zelda: Ocarina of Time (1998): it resets its position so that it points in the same direction as the

Middlesex University January 2007 11

MPhil – Automated Cinematography for Games

character. Indeed, it is not a fast-paced game and therefore precision is less of an issue. Additionally only
a few movements are irreversible so that a wrong camera position will not have a crucial impact on the
game progress. It may temporarily confuse the player but eventually he will not lose the game because of
it.

For the camera system I wish to achieve, player input will be kept to a minimum. Ideally the camera will
be able to track the player with no input at all. There are two reasons for which I would like to limit the
control of the camera: the first is playability, the second is because of the loss of rhetorical control from
the designer:

- Playability

Games can quickly become very complex due to the number of possible interactions they offer. The
DualShock controller (Sony 1997) has eight main buttons (The Triangle, Square, Circle and Cross
buttons, as well as the four shoulder buttons), all of which are sometime used to control the playable
character. If the player also has to control the camera on top of it, it can lead to too much complexity – to
the point where one has to focus more on the camera control than on the game itself. This issue appears
for example in Super Mario Sunshine (2002). In this game, both the button to jump and the joystick to
orientate the camera are controlled by the same finger (the right thumb). However to be able to go
through some passages, it would be necessary to both jump and control the camera at the exact same time,
which is physically impossible (Fig. I.5). It is still possible to go through these passages but only by
knowing them by heart and by jumping “blindly”, as the camera will not show automatically what the
player needs to see. These instances being quite rare in the game, we can assume that it is not done by
design (the control of the camera was not meant to be a part of the challenge) but a problem arising from
the fact that the camera is not fully automated.

Fig. I.5. (a) Nintendo: GameCube controller, 2001 and (b) Super Mario Sunshine, 2002. The “A” button is used to jump and the
yellow joystick to control the camera in Super Mario Sunshine. Both are controlled with the right thumb. It leads to odd
situations when the game requires the player to jump from platform to platform while simultaneously controlling the camera in
order to make sense of the surrounding.

Therefore, one of the motivations to fully automate the camera is to simplify the player’s task. Having
less buttons to consider, the player can then concentrate on the gameplay itself and “forget” about the
controller he is holding. Allard (2005) stated at the 2005 Game Developers' Conference that “controllers
are incredibly important, and the important thing about control, is that it becomes invisible.” The
forthcoming Nintendo controller (Fig. I.6) also follows that direction. It only has four main buttons and
can simply be held with one hand.

Middlesex University January 2007 12

MPhil – Automated Cinematography for Games

Fig. I.6. The controller of the forthcoming Nintendo Revolution in 2006. The current tendency in the game industry
seems to be to simplify to the maximum the controller. It comes from the assumption that the less the player has to
think about the controller he is holding, the more he can focus on the gameplay. To that respect, removing the need
for camera control will allow simplifying the game control even more.

- Rhetorical control from the designer

The game designer knows what the player needs to see to play the game; he is therefore able to set the
behaviour of the camera in such a way as to show the most playable view at any given time. This is for
example subtly done in a few levels of Super Mario 64 (1996). In the first level (Fig. I.7), the camera
follows the character from behind but also automatically rotates around him to show the main path. This
feature allows the player to complete the level without having to control the camera at all. The designer
knowledge of the level has been applied to the camera in order to lighten the player’s task.

Fig. I.7. Nintendo: Super Mario 64, 1996. The camera automatically shows the recommended path without any player
input in the first level of Super Mario 64.

If a game designer has a rhetorical control over the camera, he is also able to create views that are more
engaging. This is obvious in games such as Resident Evil (1996) where the predefined views serve the
narrative. Views are often chosen to heighten the game tension (by purposely giving bizarre camera
angles for example) or to highlight certain important objects. Establishing shots are also used when the
player enters a new place, such as the very first view in Resident Evil, which shows the main stairs and
most of the important places the player has to explore at the beginning.

Middlesex University January 2007 13

MPhil – Automated Cinematography for Games

• Virtual Camera

Most if not all of the aspect of a real camera can be emulated in today’s game engines. However, I only
aim at dealing with the camera location, target, tilt and lens variables. In a game engine, the location of
the camera is determined by its X, Y and Z coordinates. The target of the camera will usually be
determined by its rotation around its X and Y axis, and the tilt by its rotation around its Z axis. In
photography, the field of view depends on the lens size; however, in this thesis I will deal directly with
the more explicit field of view. The table below shows the variables of cinematography (cf. Table 2) I am
dealing with and how they relate to a virtual camera. All these variables can be used statically or
dynamically. In the coordinate convention I am using, Y is up and Z across the camera plan.

Variable Determined by
X, Y, Z position Location
X, Y rotation Target

Tilt Z rotation
Field of view (FOV) value in degrees1Lens size

Table 2. Real world camera variables (left) and their equivalents for a virtual camera (right).

1 The aspect of a shot will also depend on the pixel aspect ratio. In this thesis, it is assumed that the screen pixels are
square.

Middlesex University January 2007 14

MPhil – Automated Cinematography for Games

II. Background

1. Existing approaches

Different approaches have been used to automate the camera movements in virtual environments. Drucker
and Zeltzer (1995) argue that in a virtual environment the user should not have to control the six degrees
of freedom of the camera because it would prevent him from concentrating on his task. In order to avoid
that they have encapsulated all the camera tasks into “camera modules”, which comprise all the
information required to make a shot. The system expresses these modules as visual constraints such as:
which size should each character be on screen, and under which angle should they be visible. For
example, in order to make a close-up shot, they would simply ask the system to show the head of a
character and to ensure it fills 90% of the screen. From this request a constraint solver outputs the
parameters for the camera (The X, Y, Z position and rotation). Bares et al. (2000) use a similar constraint-
based approach in their multi-shot visualization interfaces. They also propose alternate solutions when the
constraints cannot be satisfied whether by decomposing viewing goals into multiple shots or by relaxing
weak constraints. They illustrate this technique using a simulation in which several policemen have to
catch a thief. The user has to choose which characters he wants to see and in which way. When all the
characters are relatively close to each other, a single shot showing all of them is used. However when
such a shot is not possible, the system displays a sequence of shots or a composite view of all the shots,
depending on the user’s preferences. The composite view is made of an overview showing the whole
simulation and one or two inset shots. The shot sequence alternates between shots showing one or several
of the user selected characters. This technique has the advantage of giving the user an exhaustive view of
the virtual world and therefore could be particularly suitable for games such as Populous (Bullfrog 1989)
or Sim City (Maxis 1989) where the user must be aware of everything to be able to play. However it
would be less relevant in games more concerned with scenario and character identification, as the “god
view” creates feeling a detachment between the player and the virtual world. Additionally as it is the
system does not deal with playability. As a result, some of the visual solutions, especially the shot
sequences, would not be acceptable for a game as they may prevent the player from seeing his avatar for
too long a time.

He et al. (1996) use “idioms” to describe the behaviour of the camera for each given type of scene. The
rules of cinematography “are codified as a hierarchical finite state machine” which “controls camera
placements and shot transitions automatically”. The system also uses a library of camera modules, which
contains information such as the position of the characters on screen and the shot scale. In its current
state, the system can successfully capture specific scenes such as a conversation between two or three
actors; however the authors mention that the system can fail due to unexpected occlusions. The other
noteworthy limitation is that it can only deal with forecast situations thus making it difficult to adapt it to
complex virtual environments. Amerson et al. describe a similar model of interactive cinematography
called FILM (for Film Idiom Language and Model). They use a tree to encode the knowledge about film
idioms with five levels: Generic shot, Shot type, Number of subjects, Emotional effect and some Optional
keywords for finest shot selection. The scene is then expressed as a series of constraints, “each constraint
[having] a weight, indicating its relative importance to the shot, so that constraints can be appropriately
relaxed if all constraints cannot be satisfied simultaneously.” The system then uses a pipeline of three
software objects to generate the final shots: the Translator, the Director and the Cinematographer. The
Translator takes its input from the virtual world and converts it into data intelligible by the Director. The
later uses this information to perform a depth search to select the best scene from the tree and send the
constraints to the Cinematographer, which output the parameters for the camera.

Middlesex University January 2007 15

MPhil – Automated Cinematography for Games

The idioms are a convenient and straightforward way to encode cinematographic knowledge. In He et al.
system they can be thought of as functions that take one or more characters as an input, and output a shot
solution (for example, the “conversation” script will take two or more characters as an input). I shall
review in detail its strength and weaknesses in the Current Issues part below.

Halper et al. (2001) discuss the importance of having a good balance between constraint satisfaction and
frame coherence in order to have smooth camera movements. When a new event changes the current shot,
their system ensures that the camera does not jump but smoothly moves to its new location. To deal with
camera occlusion they propose a new method based on a projective shadow casting algorithm. From each
point of interest in the scene, they cast a light and render the result in a temporary image buffer. They
compose a final buffer from all of them in which the lightest parts (in which no object has cast a shadow)
are the positions where the camera is less likely to be occluded. With this technique, the camera performs
remarkably well when it comes to avoid occlusion and collision. On their website, they show a video
demonstration of a teapot flying in a cluttered attic. The camera manages to follow it with little occlusion
and with no jerky movement. However, the lack of narrative goal to drive the system sometime prevents
it from computing the shot most needed by the player. For example, one of their videos shows a typical
medieval adventure game. As in the teapot demo, the camera follows the character without any occlusion.
However, when the character enters the house the camera stays outside failing to show the inside of the
room. A film-maker would have for example shown a shot of the character entering through the door,
followed by a longer shot of the whole room to recontextualise the story. Halper’s system however does
not as it is only designed to follow the character but does not consider the narrative to compute each shot.

Tomlinson et al. (2000) describe a system in which the camera – like all the characters in their virtual
environment – is an autonomous agent. A sensor gathers information about the emotions and motivations
of the characters. This is combined with the emotional state of the camera and its motivations, which will
have an effect on the camera style and motion style. They describe for example the behaviour of happy
cameras, which “cut more frequently, spend more time in close-up shots, move with a bouncy, swooping
motion, and brightly illuminate the scene”. All the possible behaviours compete with each other and an
action-selection mechanism will select which one should become active in order to generate the best
possible shot. One of the problems of this system is that it is designed to work with their specific
autonomous agents, which makes it difficult to adapt it to another virtual environment. However it
includes a number of noteworthy features such as the possibility for a character to request a shot and the
fact that the camera is not always focused on the user’s character. Indeed when an event is important
enough, the camera system can insert a shot of it that will not necessarily include the user’s character.

Hornung et al. (2003) have designed a camera system that improves Half Life cut-scenes by choosing
cinematographically appropriate shots. Narrative events are sent to the camera module, which chooses an
active event for visualization based on the history of the narrative. They applied this technique to the first
dialogue sequence of the game. In the original game, the player can only see it in the default first person
view; however, their system turns it into a cinematographic scene. It shows for example a long shot of the
two scientists talking to each other, then a close-up of one of them and so on. The system automatically
creates more appealing cut-scenes for the game; however, it cannot be used in an interactive context

Hawkins (2003) in Creating an Event-Driven Cinematic Camera proposes a possible (non-implemented)
camera system where he translates the key roles of film industry into entities in the computer (C++
classes). He thus defines a director, a shot, a scene and an editor object. The Director role is to provide the
Editor with an up to date list of Shots. Shots are removed from this list when their priority falls under zero
or when they are chosen by the Editor object. A problem of this system, as it is described, is that it only
uses the position of the actors and the line of action to generate the shots. However this may be

Middlesex University January 2007 16

MPhil – Automated Cinematography for Games

insufficient to generate a good shot: a cinematographer would usually need more information, such as the
dramatic character of the scene and the surrounding of the characters.

Friedman et al. (2004) made a system called Mario that automatically generates animated 3D movies
from a screenplay and a floor plan. It uses the multi-layered reasoning system Cake to formalize the
cinematographic rules. The system is flexible and allows inputting rules such as “if an actor is speaking,
she is displayed in a frontal medium shot”; “if an actor is walking, she is displayed in a long shot”. In case
of conflicts between the rules, the system uses three types of premises to make a decision: defaults,
assumptions and preferences. Defaults are assumed to be true and are the first to be retracted in the case
of a contradiction; assumptions are assumed to be true but they do not get retracted automatically by
Cake; preferences are similar to default with the difference that they are the last to be retracted. The
system seems to perform particularly well for most screenplays. In some cases it automatically generates
movies with consistent styles that can be related to particular filmmakers. However the use of a
screenplay – a chronological description of past events – makes the system usable only for non-interactive
scenes.

Giors (2004) describes the “autolook” function developed for The Full Spectrum Warrior (2004) Camera
System. Using a ray casting technique, the autolook function determines which part of the view is
unobstructed. It then rotates the camera in the direction of the unobstructed part to compose a more
playable view. For example in Figure II.1a below, a large part of the view shows a wall against which the
soldier is. However, this information should be of little importance for the player. On Figure II.1b,
however the camera has rotated to the right, thus “bringing more of the playable area into view”.

Fig. II.1 (a-b). THQ: The Full Spectrum
Warrior, 2004. The camera rotates toward the
non-obstructed part of the view.

Christie and Normand (2005) argue that "the description of a cinematic shot can possibly yield different
visual solutions". They therefore designed a system that generates a set of possible solutions instead of a
unique one. The virtual space is partitioned into "semantic volumes" within which all the possible camera
locations will produce "semantically equivalent shots." The system performs as expected, however it is
currently too slow to be adapted to a real-time environment. Besides as it produces a set of solutions,
some additional processing is still required to find the best unique solution within that set.

O. Bourne and A. Sattar (2005) developed a constraint-based camera system. They encapsulate the sets of
constraints into "camera profiles", which are comparable to He's "idioms". In order to find the best
profiles they evolve them using a genetic algorithm. The latter "takes in a set of example animation traces,
and evolves specific camera profiles to replicate the movement patterns". The main benefit of this tool is
that it can assist the game designer in finding the set of constraints that will the most closely matches the
kind of camera style he has in mind.

Middlesex University January 2007 17

MPhil – Automated Cinematography for Games

2. Camera Systems in Games

Since the development of the first 3D games, different ways of showing the action to the player have been
experimented with. Some types of camera systems seem to have been definitely abandoned, while many
do not have a definite form and keep evolving from one game to another. Below we will review the state
of the arts in game camera systems:

• Fixed Camera Views

To track the character, some games use a set of predefined cameras whose position and orientation have
been set during the making of the game. The concept of multiple cameras is simply a convenient
metaphor for the game developer. Indeed, during the development, predefining a view consists in
positioning a camera object in the desired spot. The concept is equivalent to instantly moving one camera
to a new location. The camera may rotate or pan but always within a predefined range. When the
character goes off camera or is too far from it, the system switches to a new camera. The main advantage
of this technique is that it allows precisely describing each scene by showing the player what he is
supposed to see under an angle that is coherent with the story. In Cozic (2003), I describe in details the
first encounter between the player character and one of the creatures in Resident Evil 2 (1997).

Fig. II.2 (Shot I, II, III, IV). Capcom: Resident Evil 2, 1997. A series of shots leading to the first encounter between the main character and
one of the creatures.

The encounter is prepared by a series of shots carefully chosen that aim at creating suspense. First, as the
player moves towards the place where the creature is located, a shot shows a window that looks onto the
outside. Through it the player can briefly see an undefined form passing by (Fig. II.2, Shot I). Once the
player has opened the door (in Shot I), the next shot shows the character through a window in a subjective
view (as being through the eyes of the creature). The window is at a few centimetres from the character
(Shot II). As it is made of wood and can obviously be broken easily, the shot highlights the dangerous
situation the character is in. Finally, the character passes a dead policeman lying on the floor (Shot III).
The shot IV just before the encounter shows some blood drops falling from the ceiling and forming a
puddle on the floor in the foreground. This series of shot hold the suspense until the actual encounter and
shows that predefined viewpoints can be used to create a dramatic impact in games without the use of cut
scenes. The game designer, conceived as a kind of filmmaker, has the possibility with this system to
select meaningful shots that are both expressive in terms of affect and information. In Alone in the Dark
(1992), the developers also freely use this possibility in the game introduction to set up the scene and the
game mood (Fig. II.3).

Middlesex University January 2007 18

MPhil – Automated Cinematography for Games

Fig. II.3. Infogrames: Alone in the Dark, 1992. Left: Derceto where the action will take place. Right: View showing the character from within
the house.

However, it is often difficult with this technique to make views that are both playable and dramatically
relevant. In this kind of system, a viewpoint should not hinder the player's actions because, as he does not
control the camera, he will not be able to choose a better one. The risk is of making the game artificially
difficult by masking a hazard he should have seen. Thus, the narrow shots of Resident Evil sometimes do
not show the player the enemies that can nevertheless be very close; thus forcing the player to shoot
randomly in every direction.

• Fully Interactive Camera Systems

Another solution found in some games is to give the player complete control over the six degrees of
freedom of the camera. It has been done in The Legend of Zelda: The Wind Waker and Super Mario
Sunshine where the player can rotate and dolly the camera using a small joystick. This could be
considered as a universal camera system as it could theoretically fit any situation. Indeed the player can
always translate and rotate the camera to find a better view. However, I think that this solution should be
avoided because it forces the player to consider too many parameters at the same time which can lead him
to lose concentration on the game-play itself. Besides the task of controlling the camera is arguably not as
entertaining as controlling the character.

• Tracking Camera and Semi-interactive Camera Systems

At the most simple level, the tracking camera is the one that
follows the character from behind and points at the same
direction as him. However this can make the game
particularly tricky in some situations where the player needs a
greater sense of depth or needs to estimate distances – for
example to jump from one platform to another. In Crash
Bandicoot (1996), jumps between platforms are often
haphazardly as the player may have difficulties to evaluate the
distance between platforms in the view from behind (Fig.
II.4). As the camera angle is always the same, it can also
make the game monotonous.
 Fig. II.4. Naughty Dog: Crash Bandicoot, 1996. The

view from behind makes it difficult to evaluate the
distance between platforms.

Middlesex University January 2007 19

MPhil – Automated Cinematography for Games

In order to deal with these issues, some systems offer in addition to the default following mode the
possibility for the player to dolly or rotate the camera around the character within a predefined range. This
type of partly user-controllable camera system solves some of the problems noticed for the fixed camera
views. Especially here if the default view does not suit the player, he has the possibility to change it for a
better one. It is also more user friendly than the fully interactive systems described above as the possible
locations of the camera are usually limited to the most useful ones. For example in Super Mario 64, each
press of the rotation button will rotate the camera by 45 degrees (Fig. II.5). That way one press of a button
is usually enough to go from an uncomfortable view from behind to a side view without having to deal
with the six degrees of freedom of the camera.

Fig. II.5. Nintendo: Super Mario
64, 1996. In terms of gameplay, a
simple 45 degree rotation of the
camera is often enough for the
player to make better sense of his
avatar’s surrounding.

Although giving a lot of freedom to the player, this type of camera has the disadvantage of being difficult
to control in narrow spaces. It tends to “knock” against the walls or to be obstructed by objects of the
scene and, finally, it may not allow seeing the scene with as much efficiency as with predefined views.
Currently none of these systems would be able to reproduce automatically the Resident Evil 2 scene
described above because the camera is only driven by the player's movement and never by the plot or by
the characters’ emotions. As a result this type of camera system only provides dramatically neutral
viewpoints.

3. Current Issues

Through the previous reviews, two main issues have been outlined: on one hand the structure of these
camera systems does not allow achieving good shot composition, and on the other hand they encounter
difficulties when trying to find a balance between gameplay and cinematographic viewpoints.

Firstly, the scripts (or “idioms”) can only be a partial solution to automated cinematography. They can be
used to compute quickly a shot or a sequence of shots for specific situations such as a conversation
between two characters, a character opening a door, etc. but they do not scale well to more complex
virtual worlds. This is because an idiom has to make assumption on the relative positions of the objects:
for example in a two character conversation, each character is expected to face each other and to be
relatively close to each other; when the character opens a door, he is expected to be facing the door and so
on. However this principle cannot be applied to complex scenes where the number of possible character /
object configurations is infinite – such as a scene where a character is walking randomly in a forest or in a
crowd. As a result, in this kind of situation most camera systems, including the idiom-based ones, will fail
to achieve good composition or to show the player what he most needs to see to progress in the game
(typically, the camera will be right behind the character, pointing at the same direction as the character).

Middlesex University January 2007 20

MPhil – Automated Cinematography for Games

One of the possible reasons is that the camera systems only consider the geometric data of the 3D world
to compose the shot. These geometric data however only carry a very limited meaning. For example, the
only thing that can be said using it is that a tree is bigger and geometrically more complex than a treasure
chest, but there will be no way to know which one is the most interesting for the player. The fact that the
camera system has an insufficient knowledge of the virtual world prevents it from achieving good
composition. As seen earlier, it happens for example in Halper system: when the character enters the
room in the medieval demo, the camera does not show the inside of the room.

Another problem is that the shots generated through the idioms lack diversity. Indeed currently this type
of system processes each new scene by matching it to a database of scene templates and by outputting the
camera parameters based on the template. The problem is that two rather different scenes may be
categorized as belonging to the same scene template and thus the same camera parameters will be
generated. Katz (1991) describes around ten different ways to film a conversation between two characters.
Thus two characters in conflict are filmed under significantly different angles than two characters talking
casually. However in an idiom-based systems both situations are likely to be assigned to the category
“Two character conversations” and be filmed in the exact same way. Although it is possible that this
problem could be solved by making a large database of scene templates that would cover any possible
situation (in much the same way as some AIML chatterbots use database of millions of categories), we
are looking for a more flexible approach with a system that could adapt to situations that have not been
forecast.

The second main issue is that existing systems have not fully addressed the problem of finding a balance
between gameplay and cinematic viewpoints. Existing camera systems usually only deal with one of these
problems instead of conciliating both. Hornung et al. and Friedman et al.'s systems only deal with non-
interactive stories; some others only handle specific situations via the use of idioms such as the systems
developed by Amerson et al. and He et al. (at the moment they have been used mainly for dialogue
scenes). Halper et al., Hawkins and Giors' systems allow the same degree of interactivity as in a real game
but do not attempt to make dramaturgically relevant viewpoints.

Finally games such as Resident Evil conciliate playability and cinematographic viewpoints but with the
drawbacks described above: the camera system often hinders the player’s actions by not showing him
what he needs to see to be able to play; it can create disturbing continuity problems; and it always shows
the same scene using the same shots. It is also a system that could not be used in some games: for
example those with unpredictable virtual worlds (such as an online role playing game) or those with such
a large virtual world that it would be impossible to entirely cover it with predefined camera shots (such as
the 3D versions of The Legend of Zelda). Finally, today many games, such as Morrowind (2002) or
Neverwinter Nights (2002), can be modified by the addition of user-created plugins. The user can easily
add new objects and constructions to the existing game virtual world. In these cases, the camera systems
with predefined views will also lack flexibility: indeed a plugin could place an object or a building that
could invalidate all the surrounding pre-calculated viewpoints.

Middlesex University January 2007 21

MPhil – Automated Cinematography for Games

III. Camera System Description

1. Proposed Camera System
- Specifications and Requirements

I have outlined in the rationale the overall objectives of the camera system and shown to what extent other
people’s systems achieve those objectives. From this enquiry, I deduced the following camera system
specification and its matching requirements:

Specification Example Matching requirements

I. To show the character whilst
avoiding occlusion.

To move the camera to the left or
the right when the view becomes
occluded by a tree.

To use ray-casting techniques or
a “projective shadow casting
algorithm” (Halper et al.) to
avoid occlusion.

II. To show the relevant parts of
the current scene.

To make an establishing shot
when a new scene starts. To
show the interior of the room the
player has entered.

To make the camera system
aware of what is important in the
virtual world.

III. To make sure the player
cannot lose the game because of
an ill-positioned camera.

To focus on the hazards which
are close to the player character.

To give the objects a priority and
to be able to alter it depending on
the context (for example an
enemy close to the player will
have higher chances to be
included into the shot than an
enemy that is far away).

IV. To do both specification I
and II in a way related to the
narrative.

To show a character that is meant
to be dangerous or threatening
with a low angle shot.

To have the camera to be driven
by the narrative (This
requirement requires the
implementation of II and III)

V. To consistently handle the
camera behaviour when a new
event occurs or a new scene
starts.

When the player character starts
a conversation, to dolly the
camera back in order to show
both characters in the same shot.

To consider the context when
creating a new shot (i.e. what are
the previous shots, how long did
they last, etc.) in order to be able
to adapt to unexpected scenes or
events.

VI. When the camera is moving,
to handle its collisions with the
virtual world.

To have the camera to slide along
the wall when it is about to go
through it.

To use ray-casting techniques to
detect when the camera is about
to collide.

Table 3: Camera system specification and requirements.

Middlesex University January 2007 22

MPhil – Automated Cinematography for Games

Most of these requirements are dealt with – at some level – by my system. However, I have decided not to
focus on the collision and occlusion detection, which are already well handled by today’s camera systems.
It would be possible to combine the strengths of my system with these standard techniques. I have chosen
instead to focus on the requirements IV and V, which are detailed below:

- Requirement IV: Narrative Driven Camera System

The camera system should have the ability to answer narrative related questions such as “Does the player
have to take this object to progress in the game?” or “Is this non-playable character important with regard
to the plot”, etc. That way it will know what is important enough in the current scene, which in turn will
help to select which objects should appear in each shot in order to achieve more relevant shot
compositions.

- Requirement V: Adaptability to Unexpected Scenes or Events

The system should be kept as flexible as possible to be able to adapt smoothly to unexpected situations.
For that reason the system should not use a database of possible situations (and their corresponding sets of
shots) as in idiom-based approaches. Instead it would be preferable to use as generic as possible
cinematographic rules which will be only expressed in terms of Events, Objects and Player character (In
other words no knowledge about specific situations will be encoded). An Event is anything new that may
happen in the current scene and an Object refers to a non-playable character or to an actual physical
object. While designing the structure of this system, one of our expectations was that behaviours similar
to those of idiom-based camera systems will naturally emerge from the interaction between a complete
enough set of these generic rules.

A system that would include these specifications would need to have this kind of organisation (Fig. III.1):

Fig. III.1. Camera System structure.

Story, Character and World are objects which provide in real-time the camera system with information
about their current state. In my system, the Story module sends events to the camera system when

Middlesex University January 2007 23

MPhil – Automated Cinematography for Games

something new happens in the scene, it can also provide information regarding the player’s progress
(what he has already seen or done). The Character module gives information such as the position and
direction of the player character, while the World module provides the geometric data and metadata of the
object in the virtual world. Both data and metadata can be static or dynamic.

The constraint generator aims at generating dynamically the visual constraints. In order for the narrative
to have an influence on the generation of the shots, the Constraint Generator takes its input from the Story
module. The latter will provide narrative information about the virtual world such as the plot and the
progress of the player and will allow the camera system to generate the right kind of atmosphere. By
having the constraints decided by the plot and the progress of the player, a scene that has already been
seen will be shot in a new, different way if the plot has changed.

The Character module provides the position, the orientation, the motion, etc. of the character in the
current scene. When generating the visual constraints, the World module only provides the camera
system with the metadata of the objects. These are additional data about the objects which allow
answering the above questions. Technically, the metadata can be for example a marker indicating the
degree of importance of the object with regard to the plot. It can be set during the game development and
latter be modified at runtime. By taking into account simultaneously the character data and the metadata
of the virtual world, it is possible, at a simple level, to guess the player's intentions. If the player has
moved inside a room, the system will know that the player probably wants to see the inside of the room
and thus will move the camera inside of it. This is possible because the room will not be considered only
as a set of 3D points.

Anticipation should also be made easier by allowing the camera system to know what the player is more
likely to be interested in in the next few seconds. For example if the player is about to arrive at an
intersection with something on the left and nothing on the right, the camera starts looking toward the left
(Fig. III.2a).

Fig. III.2 (a-b). Improved anticipation and composition.

Composition should also be improved as the camera system would be able to select the important objects
that should be included into the shot (Fig. III.2b). By highlighting these important elements, the player
will also be able to make sense of the virtual world more quickly. The importance of each object, named
Story Contribution in my system, is described in more details below in the Story Engine section.

Once the constraints have been generated, they are sent to the Constraint Solver which will attempt to find
a visual solution. The constraint solver is similar to those of Drucker, Halper or Bares and uses the
geometric data of the World module as well as the character information to find a solution. Additional

Middlesex University January 2007 24

MPhil – Automated Cinematography for Games

constraints that should always be solved in all cases are also sent to the constraint solver (for example, the
Occlusion constraint on the main character or the Collision constraint on the camera).

Once the shot to display has been selected, the system can use two different types of transitions. On one
hand, if the old position and rotation of the camera are not too different from the new ones, the system
will smoothly moves the camera from one spot to another. Otherwise it will instantaneously switch from
one position to another, thus generating a cut.

2. Constraint Generator

The constraint generator analyzes the surrounding of the player’s avatar and decides what is important
enough to be into the next shot. This shot is then expressed in term of visual constraints which are sent to
the constraint solver.

• Shot Contribution

The constraint generator starts by finding out which objects are interesting for the player according for
example to their importance with regard to the story. Once these important objects are found, the system
decides how to compose the next shot according to cinematographic rules.

Each object is assigned a Shot Contribution (SC) value, which can be set up by a game designer and/or
updated according to the plot. The value represents the probability of an object to be included in the next
shot. The way the SC is assigned to each object depends on the type of game and on the game designers’
goals. For example in a fast pace game, the game designers may just want to show the surrounding of the
avatar in a way that will allow the player to make fast decisions. In this case, every object with which the
player can interact could be given a high SC value in order to ensure that only “optimal views” are
generated.

In an adventure game, where exploration is in itself a part of the enjoyment, the SC value of some object
may be lowered in order to avoid on purpose some optimal views. In a game such as Ocarina of Time for
example, the game designers may want to give the highest Shot Contribution value to Link’s enemies
during the fight scenes, and a lower or null value to some hidden places or even important characters so
that the player still has to find them by himself.

Finally, the probability of the object to be in the next shot depends on the number of times (and for how
long) it has already been seen in the previous shots. Roughly, as soon as it is assumed that the player
knows where the object is, the constraint generator will be less likely to include it into the following
shots.

Middlesex University January 2007 25

MPhil – Automated Cinematography for Games

Fig. III.3. The complete
process to calculate the
probability of an object to
appear in the next shot.

• Rules for Shot Selection

Once the system has selected the objects,
many different shots may be possible so
some rules are used to find the best possible
one. As mentioned above, the system uses
atomic rules which express simple ideas (as
opposed to the more complex idioms
described by He et al.). However complex
behaviours can emerge from the
combination of these rules (Fig. III.4).

The rules can be guessed by going through
the idioms and finding out what are the
underlying rules used by each line of each
idiom. In the dialogue idiom decomposition below, the rules came out by asking for example “why do we
need reaction shots?” (Shot I) or “why do we need a long shot of the actors when a dialogue starts?” (Shot
II). Within an idiom-based system, two rules would be necessary to generate Shot I and II such as:

(1) A shot should not last for “too long” or “too short” a
time.
(2) If something new happens in the current scene, the
viewer should be informed.
(3) Avoid jump cut.
(4) Do not cross the 180° line during an edit.
(5) The character should not look directly at the camera
(6) If the subjects are in an adversarial relationship, prefer
the use of low-angle shots
(7) If the subjects are emotionally involved, prefer the use of
close-up

Fig. III.4. Some example of generic rules.

- If character A stops talking, show the expression of character B;
- If a dialog starts, display a long shot of the two characters.

The problem of these rules is that they only apply to very specific situations. It is the reason why I tried to
use generic rules that are not tied to anything specific. As demonstrated in the dialog example below, the
rules (1) and (2) combined with the Shot Contribution system are enough to generates Shots A and B.
Beside, because these rules are generic, they could also apply to other – possibly very different –
situations.

Middlesex University January 2007 26

MPhil – Automated Cinematography for Games

Decomposing in such a way the idioms can yield interesting results. As the rules are affected by dynamic
information (such as the objects’ metadata), two similar scenes will always be filmed into different ways.
For example a conversation between two characters will be affected by the relationship between them
according to the rules (6) and (7).

The fact that the system uses small building blocks also allows a greater degree of customisation. The
camera system could be taught to prefer camera movements to cuts, to privilege low camera angles or
wide shots, or to ignore the “180º rule”. That way a game designer could give the game its own
cinematographic style.

To illustrate these ideas, the following example takes an idiom (in bold) from the Virtual
Cinematographer and shows how the Shot Composition value and the atomic rules will automatically
recreate the idiom (in italic):

- When the dialogue scene starts, make a two-shot including the two actors.

When a character initiates a dialog (in a game it is usually done by pressing the “action” button when
being near another character), the two characters update their SC to the maximum (in this example, it is
assumed that the object with which the player wants to interact will automatically have a high SC value,
as this object is logically the player’s centre of interest). As it makes a significant difference with their
previous SC values, the system detects a new scene and therefore triggers the rule (2). A shot of the two
characters is generated.
As the player has now seen the two characters and has an idea of their spatial relationship to each other,
their SC values starts to decrease.

- When A talks, make a shot of A

If A talks, it instantaneously increases its SC. As a result it becomes higher than B’s (which is still
decreasing), and thus triggers again the rule (2) with a long shot or a close-up of A. The selection of the
shot size may depend on additional rules such as (6) or (7) for example.

- When B talks, make a shot of B

(Ditto)

- If an actor has been in the same shot for more than two seconds, get a reaction shot from the other
actor.

Here the atomic rules should make the shot selection both more unpredictable and more consistent. On
one hand, the system, via the rule (1) (A shot should not last for “too long” or “too short” a time), will
check on each iteration for how long the current shot has lasted and generate a new one if necessary. If
this happens, the other actor is likely to be included in the next shot as his SC value is still relatively high,
thus automatically generating a reaction shot.
The moment the system switches to a reaction shot should also be more consistent thanks to the rule (2).
Indeed it will make the system switch the view to the other actor whenever something new happens with
him (and not only after an arbitrarily set time). For example, if one of the characters suddenly changes its
mood because of what the other said, its SC value will change significantly and thus a reaction shot will
automatically be generated via the rule (2).

Middlesex University January 2007 27

MPhil – Automated Cinematography for Games

• Requesting a Shot

As in Tomlinson’s system, the possibility to request a shot could easily be implemented by allowing the
objects (via the game editor) to temporarily update their own metadata. For example, a fisherman sitting
quietly by the river would have little importance in term of game play or with regard to the story. Now if
he suddenly falls into the water, his importance would raise accordingly (for example because now the
player can choose to rescue him). In this case if the avatar is close enough, the camera will automatically
compose a new shot including the fisherman (whether by moving the camera or by quickly inserting a
long shot of the scene) in the same way a viewer would look in the direction of the splash noise.

Finally the constraint generator sends the visual constraints (the list of objects and the shot size) to the
constraint solver.

3. Constraint Solver

The aim of the constraint solver is to set the camera parameters given the requested shot and the
geometric and visual constraints. It iterates through all the rules and tries to find a single shot that would
satisfy all of them. If no solution can be found, it iterates a second time (and up to eighteen times in the
current system) with relaxed parameters. The system being object-oriented, the rules are designed to be
self-contained and thus to be able to relax their own constraints depending on the number of iterations
already done. For example, the “Object visibility” rule aims at keeping as many of the objects requested
by the constraint generator as possible in view. However if no solution showing all of them can be found
during the first iteration, the rule will ignore the less important objects during the following ones.

Middlesex University January 2007 28

MPhil – Automated Cinematography for Games

IV. Camera System Development

The last chapter of this thesis will describe how the camera system has been implemented.

1. Software Used

Below is reviewed the main software programs used to develop the camera systems and to test it.

• Discreet 3D Studio Max 6.0

3D Studio Max is a 3D modelling and animation tool, which comes with features made to simplify game
design, including low-polygon modelling tools and character animation tools, and a scripting language. It
also supports exporting to Shockwave 3D format, a convenient and small format used by Adobe Director.
In this project 3D Studio Max has been used to create the 3D virtual world as well as to author the game
story and the interaction between the objects via The Intruder game editor.

• Adobe Director

Adobe Director is an authoring tool for creating multimedia interactive content. Its recent versions
include a 3D module which supports all the necessary features to make simple games or any kind of 3D
interactive virtual worlds. It is easy-to-use thanks to Lingo scripting language and can be used to import
W3D file from 3D Studio Max thus allowing rapid prototyping of our camera system.

• AIML

The knowledge base of my system is based on AIML, which stands for “Artificial Intelligence Markup
Language”. It is a programming language developed by Dr. Richard Wallace and used to design natural
language software agents. Its structure includes several elements among which the categories, patterns
and template are the most important. The Category is the fundamental unit of knowledge and it is
composed of Patterns and Templates. The Pattern element contains the pattern that will be searched for
within the user’s input. If it matches it, the Template will output the answer of the agent. This simple
logic can also be used in a similar way to write rules of cinematography. In my system, the knowledge
base rules request the current state of the virtual world (such as the position of the characters or the
direction of the player avatar). If this state matches the rule statements contained in the Condition element
(equivalent to the Pattern element in AIML), it will run the additional statements contained in the Action
element (equivalent to the Template element). Please see Camera System: Knowledge Base below for
more details on the knowledge base.

• Choice of the game engine

Different game engines have been considered to implement the camera system. Neverwinter Nights
provides a game editor to create new stories. It allows editing any aspect of the game, whether it is the
plot, the graphic or the interactions. It also has a large collection of online mods, which would have been
very convenient to easily test the camera system in various scenarii. However the game editor only allows

Middlesex University January 2007 29

MPhil – Automated Cinematography for Games

a very limited control of the camera. It is locked on the main character and can only rotate or zoom
around him. The fact that the character always has to be in the centre of the screen makes it unusable to
develop our system as one of our assumption is that the player’s centre of interest is not only his avatar
but a composition of his surrounding.

At some point, the Renderware game engine, which has been developed by Electronic Arts and Criterion
Software, has also been considered to develop the camera system. It is a complete tool, which includes
everything that may be needed by a game developer. However it has been decided not to use it as it would
have been necessary to develop a whole game prototype before being able to start developing the actual
camera system. Learning to use the engine may also have been too time-consuming.

The Intruder game engine appeared to be a good compromise between the easy game editing capabilities
of Neverwinter Nights and the flexibility of RenderWare, without the cost of having to learn a new
system. I developed this engine for a game adventure demo originally intended for an MA (Cf. The
Intruder - Expressive Cinematography in Videogames in appendix). It is developed using Lingo object
oriented programming and is organized in a hierarchical structure which made it relatively easy to
integrate the new camera system. It also includes an event based engine: any object can received a
message (such as #userAction, #pushed, etc.) and react using the script that is attached to them. This
system allows the creation of a simple story line that is suitable to test the camera system in various
situations.

• The Intruder game editor

The game editor of The Intruder runs under 3D Studio Max and is developed using Max Script. 3D
models and animations are designed using traditional Max tools and reaction scripts, interactions and
metadata are assigned to the objects using the editor. Finally, the whole scene is exported as a set of XML
files and W3D files. For example, in the demo, a character sets up to follow the player’s avatar is made of
two custom states: an #idle state, and a #followCharacter state. When the character is idle, he waits for the
player avatar to be 400 units away from him (Fig. IV.1a). When it happens, it changes its state to
#followCharacter (Fig. IV.1b). This state automatically sets the Story Contribution value (described
below in the Story Engine part) of the character to 1.0 so that all objects are notified that a narrative event
happened. The character will then start following the avatar. Below are the two Lingo scripts used in 3D
Studio Max.

Fig. IV.1 (a-b): the #idle (a) and #followCharacter (b) states of an object sets up to follow the avatar, in 3D Studio Max.

Middlesex University January 2007 30

MPhil – Automated Cinematography for Games

• Editing process

The diagram below shows the editing process and the various file formats used by the game
engine, as well as the software used to create them:

Fig. IV.2: Diagram showing the editing process.

2. Story Engine

The story engine has been added to the structure of The Intruder in order to be able to fully test the
camera system. It consists of a single class that gathers and computes narrative information about the
virtual world and passes it to other objects when necessary.

In our case the story engine has two main functions. On one hand it is used to set the narrative importance
of each object. Via the game editor, a storyContribution value is assigned to each object so that the story
engine is able to know which object is important with regard to the plot. Its value goes from 0.0 to 1.0
(the sum of all the SC values in the scene does not need to add up to 1) and has a meaning that depends on
the type of game. For example in The Intruder, which is an adventure game demo, the storyContribution

Middlesex University January 2007 31

MPhil – Automated Cinematography for Games

value has three thresholds – 0 is used for objects or characters that belong to the décor such as a painting
on the wall or a passer-by. Not noticing these objects will not have an impact on the storyline. On the
other hand, objects with a 1.0 are essential for the progress of the plot and cannot be ignored – it can be a
character to whom the player has to talk to or a house to which the player has to go. Although it is not
currently used, an optional 0.5 storyContribution value could also be assigned to other important objects.
It can be used for example for a character that gives the player a sub quest to complete or an object that
gives information on the story background – in general anything that can be interesting in terms of
gameplay. Whether the player notices these objects or not however will not have an influence on the main
plot. The storyContribution value can also be changed dynamically during the game in order to reflect the
plot progress. Thus, a character whose role is to give an important object to the player’s avatar will have a
1.0 value but once it gives the object, its value will be set back to 0.0. The story engine notifies the
camera system of any similar change in the story so that it can react by computing new shots if necessary.
For the same reason, it also informs the camera system whenever an important object is near the player’s
avatar.

The following table describes the story engine class:

cStoryManager PROPERTIES
Name Type Default Example Description

Scene Instance N/A N/A A reference to the current scene and its
objects.

Camera System Instance N/A N/A A reference to the camera system to
which the story engine can send messages
when a new event occurs.

Character Instance N/A N/A An instance of the player character.

METHODS
Name Input Output Description

New Scene A reference to the
new object.

Initializes the story engine and assigns it the scene it is going to
monitor.

Set Story Contribution Object, State ID,
Story Contribution

N/A Sets or updates the story contribution value for the given state of
the given object.

Update N/A N/A Updates the internal state of the story engine. It checks if
anything has changed since the last update and if so notifies the
relevant objects.

Table 4: Story engine class.

Middlesex University January 2007 32

MPhil – Automated Cinematography for Games

3. Camera System

• Constraint Solver Implementation

Drucker and Zeltzer (1994) argue that it is more efficient to express
the characteristic of a shot in terms of visual constraints than using
the six degrees of freedom of the camera. This indeed would be the
equivalent of a film maker positioning his camera using a story
board. In order to implement and test these type of visual constraints
for my system, I developed a small program (Fig. IV.2). A set of
functions and a small interface has been build in order to test them
with various parameters. The three functions allow me to express a
shot in terms of:

- the size on screen of the objects. The function takes as an input

the percentage of the vertical screen space a given object should
fill. It then outputs how far away from the character the camera
should be for it to happen.

Fig. IV.2. Constraint solver interface.

- the angle under which the object should be shown. It takes as an input the angle between the screen

plane and a character, and outputs the corresponding rotation for the camera.

- the position on screen of the object. It takes as an input the X and Y position (expressed as a

percentage) that the object should have on screen and outputs the position for the camera.

The three functions demonstrated in this small program are:

METHODS
Name Input Output Description

ModelSizeToCameraDistance Camera,
Model,
Percentage

Distance between
the camera and the
model.

Given a camera and 3D object, this function returns the distance
between the object and the camera so that the object appears to
take the given percentage of the total screen space.

ModelAngleToCameraRotation Camera, Model,
RotationX,
RotationY

Camera rotation
angle.

RotationX and RotationY are the angle between the screen
plane and the 3D object. Given these parameters, the function
outputs the corresponding rotation of the camera.

ModelPositionToCameraPosition Camera, Model,
PositionX,
PositionY

Position of the
camera.

PositionX and PositionY define the position on screen of the
given object. From these parameters, the function outputs the
corresponding position of the camera.

• Knowledge Base

The aim of the camera system is to generate in real time the best possible shot for the current situation. As
described above it is composed of two main parts: the constraint generator, which generates a list of
possible shots for the scene; and the constraint solver, which selects the best shot among them and
outputs the parameters for the camera. Each part uses its own set of rules grouped in a knowledge base.

- Camera System Rules

Middlesex University January 2007 33

MPhil – Automated Cinematography for Games

The constraint generator and the constraint solver each use a different set of rules. As one of the aims of
this camera system is to conciliate dramatic camera views and playability, the rules derive both from
cinematographic knowledge and from gameplay considerations. They are encoded as an external XML
file, the structure of which is inspired by AIML. This structure of this language can conveniently be used
to model my knowledge base. As described below, the elements have been renamed but their function is
similar:

- Knowledge Base Structure

<XML version="1.0">

<INITIALIZATION>
 (Lingo script)
</INITIALIZATION>

<RULE name="Rule Name" appliesTo="(Objects or Shots)">

 <CONDITION>

(Lingo script)
 </CONDITION>

 <ACTION>

(Lingo script)
 </ACTION>

</RULE>

<RULE name="Another Rule"...

etc...

</XML>

Fig. IV.3. Knowledge base structure

As for AIML, there are three main elements: the Rule is the fundamental unit of knowledge. It includes a
Condition, which checks if the rule is triggered by the current scene. If it is, the optional Action part is
executed. There are two different types of rules, those that are used by the constraint generator and that
apply to objects and those that are used by the constraint solver and that apply to shots. The first type of
rule helps to find out which shots would be ideal for the current situation, and the second one checks if it
is indeed possible to generate such shots within given constraints (such as gameplay constraints, visibility
constraints, etc.). Finally an Initialization element has been added – here can be put anything that needs to
be initialized before the camera system starts. For example, the field of view of the camera or the
minimum shot duration.

The Condition, Action and Initialization tags include a Lingo script which is imported and compiled at
runtime by the game engine. Within these tags, it is possible to access properties and methods of the
camera system via the predefined variable “CS”. It is also possible to access the functions that were
primarily built for the game editor. This includes functions to create dynamically global variables of the
game engine, which can then allow the different rules to communicate between them. In our knowledge

Middlesex University January 2007 34

MPhil – Automated Cinematography for Games

base, this is used for example by the “character visibility” rule to tell the other rules whether the character
is currently visible or not.

The Condition script always returns a value which tells whether or not the rule applies to the current
scene. It is only when it returns “true” that the Action script is executed. The Action script for the Object
rules always contains statements to generate and queue a new shot.

Each rule used by the system is described in detail in VIII. Source Code: Knowledge Base.

• Camera System Integration and Generic Entity

Generic Entity

Standard Object Circular Area

Door Clock

Exit Stairs Close up Area

Camera System

Character

Fig. IV.4: OOP class inheritance diagram of the game engine. The camera system class inherits from the Generic Entity class.

The camera system inherits from the generic entity class (Fig. IV.4). It is the basic class of the camera
engine and it encapsulates all the low level game mechanisms. This includes especially the object state
management: any object can be set to have a certain number of possible states and the generic entity class
will create and set all the properties assigned to each state as well as the transition between two states.
Additionally the class handles the messages sent to the object by the player or by other objects. Thus the
camera system receives messages from the story engine when something new happens in the scene. The
state mechanism is not used by the camera system but would allow flexibility in the case we would like to
extend it. For example using two different states, we could create a specific camera behaviour for the
external scenes and another one for the interior scenes (Cf. The Intruder - Expressive Cinematography in
Videogames for a detailed description of the generic entity class).

• Camera System Implementation

The camera system is made of two main parts: the constraint generator and the constraint solver. The first
one aims at generating a list of possible shots for the current scene. A large part of this work is done via
the story engine (which maintains a list of relevant objects with regard to the story) and the Object rules
in the knowledge base. The constraint solver aims at calculating the camera parameters from the current
shot information and checks if the new camera position and orientation do not break any of the Shot rules.

Middlesex University January 2007 35

MPhil – Automated Cinematography for Games

Below are described the characteristics of a shot and the steps followed by the system when updating the
camera parameters:

- Character control

The character’s control in a 3D game can be implemented in two different ways:

- In one model, when the player presses the “up” button, the character moves towards the direction he

is facing. Pressing the “left” or “right” buttons will rotate the character left or right. This is for
example the case in the Resident Evil series.

- In the other model, when the player moves the joystick forward, the character moves away from the

camera and not necessarily towards the direction he was facing. Some examples of games include
Super Mario 64 or The Legend of Zelda: Ocarina of Time.

The second type of character control is particularly suitable when the controller is analogue (i.e. a
joystick). Usually, the speed of the character will depends on how far the joystick is pressed, which
allows for precise controlling. The main disadvantage is that quick camera movements can make the
game confusing. For example, if the player presses the joystick forward and if the camera quickly rotates
by 90° around the character, the character will no longer move forward but will instead turn left. In some
games, this issue is dealt with by letting the character move in the direction he was already facing until
the player releases the joystick. When he/she moves it again, the character starts walking again away from
the camera.

The first type of character control does not have this problem; however it also does not have the flexibility
and precision that an analogue system would offer. For example, to move the character in a different
direction, it is necessary to rotate him using the “left” or “right” button, wait until he is facing the required
direction and then press “up” to move forward. On the other hand, with an analogue control, moving in
another direction is done instantaneously by moving the joystick in the required direction.

In order to keep it simple, and to focus on the camera system rather than the character’s control system, I
decided to use the first model, where the player uses the keyboard arrows to move the character. However
with some additional work on the control system, it would be possible to use an analogue stick with this
camera system. It would be necessary to implement the aforementioned technique where the character
keeps moving in the same direction for as long as the player keeps the joystick down, even when the
camera angle changes.

- Shot Characteristics

A shot object can be thought of as a frame from a story board, as it holds all the information in terms of
composition (and movement) of the objects over an interval of time. This information includes: the
objects that should be visible (cf. “Shot queue and Shot selection” below), the size on screen of the
objects, the time when the shot should start, the type of transition between this shot and the previous one,
and a priority value.

Below is a complete description of the shot class:

Shot Properties
Name Type Default Description

ID Integer N/A Shot unique ID

Middlesex University January 2007 36

MPhil – Automated Cinematography for Games

Objects List An empty List List of objects to be included in the view
Priority Float 0.0 From 0.0 to 1.0. The priority of the shot
Start Time Integer N/A The time at which the shot is going to start
Can Change Boolean TRUE A flag to indicate whether or not the shot can be changed. It can be used for example

to specify that the shot cannot be changed if it has not lasted for the minimum shot
duration.

PC Visible Boolean TRUE A flag to indicate if the player character has to be visible in this shot. It can be useful
if we want for example to make an insert shot of some object. If the shot does not
last for too long, the player character does not necessarily have to be visible.

Transition #cut or #move #move The type of transition between this shot and the previous one.
Shot Size List An empty list A list containing the size of the objects as they should appear on screen.

Table 5: Shot class

- Step 1: Shot Queue and Shot Selection

The shot queue contains a list of the most relevant shots for the current scene and situation. Each shot is
added to the list by the “Object” rules in the knowledge base, which also assign them a priority rate. The
selection of shots is then straightforward; the camera system simply goes through the list and selects the
shot with the highest priority rate. Once it is done the queue is discarded.

- Step 2: Calculating the Camera Parameters

The second step is to calculate the camera parameters from the
shot information. The system ensures first that all the required
objects are in view. This is achieved by adding to the virtual world
an invisible circle that includes all the objects (Fig. IV.5). The
camera then points at this object and is moved in such a way as to
show the entire circle using the functions described above in
“Visual Constraint Implementation”.

At this stage, the generated view may be wrong: some objects may
be occluded or the camera can be incorrectly positioned inside
another object.

Fig. IV.5: as a first step, the camera is
positioned in such a way as to show the circle
that includes all the important objects.- Step 3: Checking the Shot Validity

This step ensures that the previously generated view is valid using once again the knowledge base. The
camera parameters are sent to the “Shot” rules, which check their validity and modify them if necessary.
The decision made is then sent back to the camera system. The rule checking process is repeated as long
as not all the rules return a positive result. On each new iteration the constraints are slightly relaxed (here
this is done by removing from the shot the less important objects) in order to find an alternate solution. If
after a number of times the constraints are still not satisfied, and in order not to slow down the game, the
system will stop iterating and keep the last camera parameters. In this case, the view is likely not to
include all the characters or to have some of them entirely occluded. However, the movement of the
characters will usually naturally solve the problem on the next camera system update.

This step of checking the shot validity also manages to give a more dynamic feel to the game. By
constantly trying to find a more suitable view, the system cuts from one shot to another or moves and
rotates the camera around the characters, thus giving more pleasing and varied visuals (Fig. IV.6a-b). As
the basic rules of cinematography are respected, the result is usually not disturbing.

Middlesex University January 2007 37

MPhil – Automated Cinematography for Games

Fig. IV.6a-b: the constraint specification are
the same in these two shots (which is to
show in one shot all the important (yellow)
objects in the scene), however the resulting
camera parameters are significantly
different. In the second case, the system has
to compose a new view when the character
moves behind the pillar.

- Step 4: Deciding on the Type of Transition

Currently the type of transition between two shots is chosen by comparing the previous camera
parameters and the new camera parameters (generated by the previous step). If the distance between the
two shots is not too important and if the angle between them is greater than 180 degrees (the rules are
likely to prevent this case anyway) the camera will move. Otherwise the system will cut from one shot to
another.

- Step 5: Shot Contribution Update

The shot contribution value of each object in the current shot is decreased on each update of the camera
system. Once it reaches zero, the object is removed from the shot. This ensures that objects that have
already been seen by the player do not keep appearing in subsequent shots (they can still appear in the
view but the system will not attempt to compose a specific view for them). This behaviour comes from
the assumption that an object that has been visible long enough becomes less important in terms of
information: once the player knows its location, it is not necessary to show it anymore.

- Step 6: Shot History

The shot history simply keeps a list of the most recent shots (the last thirty shots) that have been selected
by the camera system. It does not have a specific function inside the camera system but it can be used by
the rules to generate new shots based on the previous shots. Thus in our system the “Establishing Shot”
rule checks how many times each object has already been seen – if none has been, it considers that a new
scene has just started and suggests the creation of an establishing shot (The way previous shots influence
the choice of current shots is discussed in more detail on page 41, Player’s Knowledge Consideration).

- Properties and Methods

Below is the complete list of properties and methods used by the camera system. See also VIII. Code
Source: Camera System for more details on the camera system implementation.

cCameraSystem PROPERTIES
Name Type Default Example Description

Ancestor Instance N/A N/A A reference to the generic entity ancestor.
World Shockwave 3D N/A N/A A reference to the 3D virtual world
Player character Instance N/A Character(“Victor”) A reference to the player’s avatar
Camera Camera Camera(1) Camera(1) The 3D world primary camera
Shot Contribution List List of Objects [] N/A The list of important objects in the

current scene and their associated shot

Middlesex University January 2007 38

MPhil – Automated Cinematography for Games

contribution value.
Current Shot Shot Empty Shot Cf. Shot Characteristics

above
The current shot properties

Influence Area Model VOID Model(“cylinder”) If enabled the camera system will only
consider the objects inside this area.

Max Iteration Integer 18 The maximum number of iterations
allowed to solve the constraints.

Iteration Count Integer 0 5 The number of iterations since the
beginning of the update

Model To Look At Model VOID Model(“cs_modelToLoo
kAt”)

Invisible model to which the camera
points at.

Save Camera Rotation Vector VOID Vector(70, 0, -120) Camera rotation value at the beginning of
the system update.

Knowledge Base Property List [#shotRules:[],
#objectRules:[]]

[#shotRules: [<offspring
"Object Visibility" 1
a31e8a8>, <offspring
"Character Visibility" 1
a363cd4>], #objectRules:
[<offspring "Establishing
Shot" 1 2909118>]]

A reference to the knowledge base with
the shot rules and the object rules in two
different lists.

Shot History List of Shots [] N/A List of the shots that have recently been
selected by the camera system.

Shot Queue List of Shots [] N/A List of possible shots for the current
scene.

Start Transform
Target Transform

Transform VOID N/A Used to smoothly move the camera from
the first transform to the second
transform over a given duration

Maximum Shot Duration Integer 8000 5000 Maximum shot duration in milliseconds
Minimum Shot Duration Integer 1000 1500 Minimum shot duration in milliseconds

cCameraSystem METHODS

Name Input Output Description
New 3D Member,

Camera ID
A reference to the
new object.

Initializes the camera system and its properties.

Track Character Character VOID Tells the camera to track the given character.
Set Influence Area Character, Radius VOID Sets up the (optional) influence area of the camera system. The

system will ignore all objects that are not in the circle defined
by the given character position and radius.

Make Script Script Name, Script
Text

Script Reference Creates a new script and returns an instance to it. Used to import
the knowledge base scripts.

Import Rule Set File Name VOID Imports the external knowledge base (an XML file) into the
system.

New Shot Objects, Priority,
Character Visibility

Shot Creates a new shot with the given objects and priority.
Optionally it is possible to specify whether the player character
has to be visible or not (by default it will be)

Get Camera VOID Camera Returns an instance to the primary camera.
New Event Object, Event

Name, Parameters.
 Notifies the camera system that a new event has happened in the

current scene. The system will accordingly update its shot
contribution list. This method is mainly used by the story
engine.

Monitor Object Object, State, Shot
Contribution

VOID Notifies the camera system that the given object is important in
the current scene, and should be included in some of the next
shots.

Compare Shots Shot1, Shot2 Difference between
the two shots.

Compares the two given shots and returns the difference as an
integer value. The higher the value, the bigger the difference
between the shots.

Print Shot Shot String Returns as a string various properties of the given shot.
Update VOID VOID The main method of the camera system. It attempts to find the

best shot for the current scene.
Get Iteration Count VOID Integer Returns the number of iterations since the beginning of the

system update.
Get Max Iteration VOID Integer Returns the maximum number of iterations.
Which Transition Transform1,

Transform2
#cut or #move Given two camera transforms, finds out which type of transition

should be applied between the two associated shots.
Remember Shot Shot VOID Saves the shot in the history list.
Get Relevant Objects VOID List of Objects Returns the shot contribution value list
Count Number of Time on VOID Integer Using the history list, returns the number of time an object has

Middlesex University January 2007 39

MPhil – Automated Cinematography for Games

Screen been on screen.
Queue Shot Shot VOID Adds a shot to the shot queue.
Get Shot Queue VOID List of Shots Returns a reference to the shot queue.

Table 6 and 7: Camera system class

• Camera System Behaviour Analysis

Below is analysed the behaviour of the camera system in different situations using the knowledge base
provided in VIII. Source Code: Knowledge Base. I will outline the strengths and weaknesses of the
camera system and I will put forward possible solutions to some of the problems encountered.

- Test bed

I built a small but relatively complex virtual world (Fig. IV.7a) in order to test the camera system in
various situations. In the first part of the scene, two large objects (one very high and one very large) have
been placed in order to assess the ability of the system to avoid occlusions. Characters (Fig. IV.7b) have
also been positioned in non-trivial configurations in such a way that they can often be occluded by the
surrounding buildings or by other characters. Some characters are categorized as “important” with regard
to the plot and some not. One of the characters will follow the player’s avatar in order to check the ability
of the camera to track two characters at the same time. Finally some corridors have been built in order to
check how the system performs in narrow places.

Fig. IV.7: test bed for the camera system
(left). For testing purpose, this object
represents a non-playable character (right).

- Anticipation

As expected the system allows the camerawork to better anticipate the player’s movements by showing
the most important objects near him. In the example below, the character is approaching an intersection
with nothing of importance on the left and a door on the right. In this situation, the camera slightly rotates
in order to compose a shot showing the door and the character (Fig. IV.8a-c).

The feature however does not conflict with the demands of playability. Indeed if the player still wants to
see what is on corner on the left, the camera system will generate the appropriate view (Fig. IV.8d) as
soon as the character turns toward it (as is also described below in “Player’s knowledge consideration”)

Middlesex University January 2007 40

MPhil – Automated Cinematography for Games

Fig. IV.8a-c: The camera slightly pans to the right to show the door. IV.8d: However, it still allows the player to see what he wants to see.

- Plot Driven System

The system also correctly reacts to the event messages that are sent to it by the story module. Whenever
an event occurs in the virtual world the camera system generates a new shot including the event (if it is
appropriate). For example, at some point a character is sets up to start following the player’s avatar as
soon as it moves nearby. The character changes its state from #idle to #follow, which is detected as a new
event by the story engine, which in turn notifies the camera system:

Fig. IV.9a-b: The change of state of the
object is detected as a new event. The
camera system is notified and therefore
generates a shot of the object.

- Player’s knowledge consideration

The system keeps an historic record of all the shots thus allowing the system to consider what the player
has already seen to generate the shots. This feature is used in particular to avoid making useless shots that
include objects that have already been seen by the player. When the “New Event Shot” rule is notified by
the Story Engine that a new plot event occurred, it will first generate a temporary shot and compare it to
the previous shots. If the shot is completely new it will be queued as usual, however if it is not, it will
only be queued if the player is facing the scene. In other words, if the player character is turning his back
to an already seen event, the system assumes that he is not interested in it for the time being and therefore
does not queue the shot. This mean for example that if a non-playable character keeps trying to get the
player’s attention (by sending events via the story engine) and if for some reason the player decides to
ignore it, the camera system will stop generating shots specifically for this character.

This feature was not there initially but it became necessary after the addition to the virtual world of an
object that was following the main character everywhere. The camera kept on showing this object despite
the fact that it had already been clearly shown the first time the player encountered it. However if the
player decides to ignore it or if he is simply aware that the object is still following him, there is no need to
keep including the object in subsequent shots.

Middlesex University January 2007 41

MPhil – Automated Cinematography for Games

The fact that the shot history only keeps the most recent shots means that the event will still be shown to
the player from time to time even if he is not facing it. Although the size of the history is limited for
performance reasons, the results of this emerging feature seem acceptable as it is quite similar to a
filmmaker showing an already seen shot (with possibly a slightly different angle) in order to refresh the
audience memory.

- Automatic Shot Composition

“The Intruder” does not currently support conversation between characters. However, for demonstration
purposes, it is somewhat simulated using the Shot Contribution value: if a character can be talked to, its
SC value is greater than zero, thus making it an object of interest for the camera system.

As expected the camera system usually composes the shot in a relevant way. If the avatar moves near a
character he can talk to, the system switches from the default following mode to a shot of the two
characters (Fig. IV.10a). Additionally, thanks to the event-based system, the transition between two types
of scenes is also automatically handled. For example, should a third character joins the conversation, an
event is sent and the camera will either dolly in or back to smoothly include the character into the shot or
will cut to a new shot showing the thee actors (Fig. IV.10b).

Fig. IV.10a-b. The camera zooms in when
the player’s avatar has the possibility to talk
to another character; and it automatically
composes a new shot if a third character
joins the conversation.

If “The Intruder” game engine did support conversation between characters, the rendering of these scenes
would be significantly improved without having to modify anything to the current camera system. Indeed
each time a character would start talking, the camera system will receive a new event from the story
engine and therefore will generate a new shot according to the new situation. Concretely, because the
character who is talking has a higher shot contribution value, the camera system is likely to make a long
shot of him. Additionally, as the character to whom he is talking is likely to occlude the view, the camera
will slightly rotate in order to get the shot right (Fig. IV.11). The result will be an over-the-shoulder shot
of the character. And the camera system will do the same each time a character will start speaking thus
automatically generating a simple conversation scene with alternate over-the-shoulder shots. This partly
demonstrates that the interaction of generic rules (here the “Character Occlusion” and the “New Event”
rule), which are not associated with any specific type of scene, can automatically recreate the behaviour
of some of the “idioms”.

Middlesex University January 2007 42

MPhil – Automated Cinematography for Games

Fig. IV.11. (not implemented) As it is the system can potentially capture a conversation
between two characters with automatically generated over-the-shoulder shots.

- Camera Collision Detection

In order not to have the camera going through the walls, a simple collision detection solution has been
implemented. Once the camera parameters have been set up using the knowledge base, the system checks
if the camera is going to collide with an object or a wall. If the camera is below a given distance from any
object, it is simply moved away from it by the same distance (Fig. IV.12a-b).

Fig. IV.12a-b. camera collision detection.

- Handling of Complex Scenes

In complex scenes involving many objects and especially when a lot of occlusions occur, the camera also
tends to jump abruptly from one position to another in an attempt to avoid occlusion. Although it is not a
desirable effect, it is an expected behaviour because, as described above, at each attempt to resolve
occlusions the constraints are a bit more relaxed which can therefore give less natural shots or camera
movements (as the cinematographic rules are less strictly followed).

However in some situations when the camera is only temporarily occluded it would be preferable to keep
the current shot as it is. For example when a character quickly passes in front of an important object, there
is no need for the camera to suddenly move to show everything. It may be possible to solve this problem
relatively easily by using the direction of the objects as a clue to guess their next position and by applying
the rules to it. Here the system will generate a temporary shot of the objects with the moving character as
it should be in the next few seconds. Then the current shot will be changed only if the camera is still
occluded in this forecast shot.

- System Latency and Minimum Shot Duration

Middlesex University January 2007 43

MPhil – Automated Cinematography for Games

The system also tends to be “stuck” for too long on some scenes, which means that when the character
goes away from it, the camera exaggeratedly dollies in order to keep everything in view (Fig. IV.13).
However as written above, this is often useless: if the player decides to go away from a scene (such as a
conversation) he is probably not interested in it anymore, which means that the system could already start
looking for a new interesting scene or switch to a default tracking shot of the character. This problem is
due to the combination of the minimum duration shot and the shot contribution decay rate. Modifying
these variables may partly solve the problem but also create new ones. Indeed if the minimum duration is
too low, the system may cut and move the camera too often without letting the player grasp each
individual shot. In the same way, if the shot contribution decreases too quickly, some important objects
may be subsequently ignored by the system. Although not perfect, the current balance between the two
parameters seems relatively acceptable in most situations.

Fig. IV.13. The camera may dolly back too much in an attempt to keep everything in
view.

Again due to the minimum shot duration requirements, the system occasionally takes too long before
taking into consideration a new event. The result is that the player character may have time to pass near
an important object and go away without giving the system time to generate a shot of it. For the same
reasons mentioned above this problem is relatively tricky to fix as the minimum shot duration has to be
kept reasonably high.

A solution could be to give the possibility to some events to ignore the minimum shot duration
requirement and to force the creation of a new shot. But then again this could give strange results where a
shot is shown for a few milliseconds before being replaced by the requested one. An alternative solution
would be again to try to forecast this kind of situation. By considering the character direction and his
speed, we can make an assumption on the important events that are likely to happen in the next few
seconds. The length of the shot preceding the possible events could then be adjusted accordingly.

• Example scenario

Below is an example scenario meant to illustrate the behaviour of the camera system. It is based on the
current demo.

- Establishing Shot

The game starts. The system checks if the current scene triggers some of the rules. Each rule can add a
shot (with a priority) to the shot list. Once all the rules have been checked, the system selects the shot that
has the highest priority.

Middlesex University January 2007 44

MPhil – Automated Cinematography for Games

The first rule is the Establishing Shot rule: it checks if the "important" objects of the scene (those with a
SC value greater than zero) have been on screen previously. If none of them has been, it considers that a
new scene is starting and queues an establishing shot with a high priority (0.9). In our example, this rule
is triggered because, as the game is starting, none of the objects have been seen before.

Additionally, the Default Shot rule is always triggered in case none of the other rules apply to the current
situation. It has a low priority (0.0).

Therefore at this stage, there are two potential shots in the shot list, the default shot and the establishing
shot. The latter, which has the highest priority, is selected and sent to the constraint solver. Its task will be
to find a shot where all the "important" object in the scene are visible.

The resulting shot shows all the objects in the scene.

- Default shot

The establishing shot will last for at least one second and for up to ten seconds. After the first second is
elapsed, if a new event happens in the scene, the system might end the establishing shot to show the new
event. Otherwise it will last for the full ten seconds before switching to the default shot, which shows the
character from behind.

- New event shot

Later in the demo, the player’s character (PC) must meet a non-player character (NPC) to progress in the
game. To attract the player's attention on that character, the camera system switches from the default shot
to a shot showing the PC and the NPC. At the game editor level, this is done by raising the SC value of
the character when the player's character is close to it. The camera system detects the change (through the
"New Event" rule of the knowledge base) and therefore triggers a shot that includes the new character
(Figure IV.14-abc).

Fig. IV.14a. The NPC waits for the PC to be close enough. Its SC is 0.0.
Fig. IV.14b. The PC is now close enough. The NPC raise its Shot Contribution value to 1.0
Fig. IV.14c. The camera system, through the “New Event” rule, detects the change and switches to a
shot of the two characters.

In most videogames, the game designer usually attracts the player's attention by putting the important
objects or character in a visible spot (i.e. on the middle of the path, on the player's way). Our system

Middlesex University January 2007 45

MPhil – Automated Cinematography for Games

allows alternatives to this. We can put the NPC on the side or even mixed up in a crowd and still manage
to attract the player's attention through camerawork.

• Further work

Although the camera system is already functional, it can still be improved in several different ways. Some
user testing could also be done in order to evaluate the system.

- Predicting the next shot

Currently, the camera system computes each shot based on the current and previous states of the virtual
world. With some extra work it should also be possible to predict what the world state will be in the next
one or two seconds. For example, by using the velocity of an object and its direction, it is possible to
know where it will be in the next few seconds. Therefore it should be possible to generate future shots
based on these predictions.

This could lead to interesting shots being generated automatically. For example, if the character is outside
a house at "t1" and the camera system predicts that he will be inside the house at "t2", it would be
possible to already start displaying a shot with the camera inside the room showing the character outside.
Even if the player decides not to go inside, it would still be an interesting shot as it would give some
variations to the default tracking shot.

One another area that would be improved by this kind of predictive camera system is that the shot
transitions should be smoother and the shot durations more balanced. For example, the camera could be
moved half way between its current position and its next predicted position, so as to smooth the camera
movement.

- Dealing with uneven surfaces

With a few adjustments, the current camera system should be able to deal with uneven surfaces (at the
moment all the characters are on the same horizontal plane). For instance, we could have a conversation
between a character on a balcony and another one downstairs, and the camera would still capture the
scene. This would demonstrate that the generic rules can adapt to any kind of scene without having to
tailor them to a specific scene.

- User testing

Finally, some user testing could be done to evaluate the system. Each test could be divided into two parts.
First we simply ask the user to play through a game demo without telling him/her what it is about. The
camera system will be doing things that are not usual in most games. If the user is able to play through the
game without being distracted by the camerawork, it would already mean that at some levels the camera
system was successful. It would prove that it is possible to have a more unconventional cinematography
without compromising on the gameplay.

A second test could then be performed, this time informing the user that the demo is about testing a
camera system and ask him/her to pay attention to the camerawork. This second test could tell us if the
user felt he could not see what he needed to see, or if he would have preferred certain shots to be
different.

Middlesex University January 2007 46

MPhil – Automated Cinematography for Games

A final test could be done to establish the fairness of the camera system based on the criteria described in
this thesis. According to the definition, the user would have to play through the game and count the
number of times he/she loses the game because the camera moved at the wrong moment or because one
important threat was occluded by another object. Dividing the total of these two types of occurrence by
the total number of times the player lost the game and subtracting it from 1.0 would give a clear fairness
score that would make it easy to compare one system to another. The higher this score, the better the
system in terms of fairness.

Middlesex University January 2007 47

MPhil – Automated Cinematography for Games

V. Conclusion

Through this thesis, various approaches to automated cinematography have been reviewed. The idiom-
based approach provides a way to film efficiently certain types of scenes such as a conversation between
characters. The results usually adhere to cinematic conventions and allow the user to follow the scene
easily. However it has been noted that the fact that idioms can only capture specific types of scenes makes
it difficult to adapt the system to complex virtual environments. For example a scene showing a character
randomly walking in a crowd cannot be described using this system. The alternatives are to create a
database large enough to comprise any possible scene or to devise a system that is not dependent on any
particular type of scene.

Different games have also been reviewed and it has been outlined that the two main types of camera
systems – the predefined views and the free camera – seem to have characteristics that are mutually
exclusive. The predefined views allow the game designer to set up the mood of the game and to select the
shots in order to create a specific atmosphere; however these objectives occasionally conflict with
gameplay. A view that is good in terms of cinematography will not necessarily give the player the best
angle to play. The free camera system solves this problem by giving a partial control of the camera to the
player, so that he can adjust the view if necessary. However it has been noted that this type of system
currently cannot have the emotional expressivity of the predefined views.

I therefore proposed a camera system that attempts to deal with this conflict. One of the main
characteristics of this system is that it is driven by the narrative in order to generate shots that are relevant
to the plot and/or to the character emotions. To that end, the system has been linked to the story engine,
which notifies when something new happen in the scene. The camera system is then able to film the
scenes in a more relevant way by selecting what should be in view and what could be ignored.

I have also looked for a more flexible approach than the idiom-based one. My system indeed makes use
of rules that are not associated with any specific type of scene. In order to keep them as general as
possible, they are only expressed in terms of Objects, Events and Player character. Occlusion detection
and resolution is also implemented so that the camera system is able to film any scene.

The main benefit of this system is that it demonstrates that it is possible for a camera system to reconcile
the dramatic potential of cinematography with the demand of an interactive experience. The proposed
camera system often creates shots that would be unusual in most video games: the camera is not always
right behind the character, it is sometime moving around him in order to capture other elements of the
scene. For example, when a non-playable character is nearby the main character, the camera adjusts the
shot composition in order to include the new character. This is done smoothly, in such a way that the
gameplay is not interrupted by the camera movement.

Another benefit is that the system demonstrates that it is possible to create a “smarter” camera that is
more aware of its surrounding. Indeed, as the camera is linked to the story engine, it is able to create shots
that are relevant to the story. For example, in a virtual city, the camera system will focus on the doors that
the player can open and ignore the doors that are part of the décor (with which the player cannot interact
or open). This can offer the game designer a new way to highlight objects in the scene. In most games,
this is done by putting the object on the player’s path or on a visible spot. This system however allows
more flexibility: the designer can put the object anywhere and still manage to attract the player’s attention
through camerawork.

Middlesex University January 2007 48

MPhil – Automated Cinematography for Games

The benefits of this system have been outlined in the last part of this thesis. The system allows better
anticipation: as the camera rotates towards the interesting parts of the scene, the player can know in
advance where he can go. This feature may not be particularly useful in an adventure game as the player
may enjoy exploring the virtual environment without this kind of help. However it can be more relevant
in a fast paced game where the player has to make quick decisions. For example, in a game such as Super
Mario Sunshine¸ if the player can have an optimal view of Mario’s surrounding after each jump, he will
no longer have to control the camera to look for the closest platform.

The fact that the system is linked to the story engine also allows it to quickly react when something new
happen in the scene. For example, if a character moves towards the player character or wants to get his
attention, the system automatically creates a new shot including the involved characters. The system also
attempts to guess what the player is not interested in by using the character’s movement and orientation as
a clue. For example it has been assumed that if the character turns his back to a scene the player has
already seen, it is likely that he is not interested in it anymore. This allows the system to ignore some
possible shots to the benefit of other, possibly better, ones.

As it is, my camera system could be adapted to a slow-paced game. For example, it could be used for an
adventure game such as a 3D version of Monkey Island. However, the system being flexible, it could also
be adapted to fast-paced game by modifying the rules. For example in a fighting game, it would be
possible to write a single rule that tells the system to focus mainly on the enemies. This will ensure that
the fighting scenes are never confusing and are always given the highest priority when generating a shot
solution. Then other rules, with lower priorities, could be used to have a camera behaviour similar to the
existing one – with a camera showing the avatar’s surrounding and the avatar himself – but only when no
enemies are nearby.

In the last part of this thesis, it has been noted that one of the features that would enhance the rendering of
the scene would be the ability of the system to anticipate the scene in the next few seconds. The current
movements of the characters and their speed could allow forecasting the scene relatively precisely in the
next few seconds. It would allow smoother transitions between shots by setting the characteristics of the
current shots based on those of the forecast one. It would also avoid unnecessary cuts or camera
movements when the current shot is similar to the forecast one. The system could also be extended to
make it deal with uneven surfaces.

Middlesex University January 2007 49

MPhil – Automated Cinematography for Games

VI. Bibliography

1. Literature

Amerson, Daniel; Kime, Shaun, 2000, Real-time Cinematic Camera Control for Interactive Narratives,
American Association for Artificial Intelligence, California

Armes R., 1994, Action and Image: dramatic structure in cinema, Manchester University Press,
Manchester, UK

Bares, W. H.; Thainimit, S.; McDermott S., 2000, A model for constraint-based camera planning,
Papers from the 2000 AAAI Spring Symposium, Stanford, p84-91

Bares, William H.; Lester James C., 1997, Cinematographic User Models for Automated Realtime
Camera Control in Dynamic 3D Environments, Proceedings of the sixth International Conference on User
Modeling, Sardinia, Italy

Bourne Owen, Satta Abdul, 2005, Evolving Behaviours for a RealTime Autonomous Camera,
Australasian Conference on Interactive Entertainment, Sydney

Boyd Davis, Stephen; Jones, Huw, 2002, Screen Space: Depiction and the Space of Interactive Media,
in J.A. Jorge, N.M. Correia, H. Jones and M.B. Kannegai (eds.), Multimedia 2001, Springer, Vienna,
p165-176

Boyd Davis, Stephen, 2002, Media Space: an analysis of spatial practices in planar pictorial media.
PhD Thesis, Middlesex University.

Carroll, Noël, 1996, Theorizing the Moving Image, Cambridge University Press

Christie Marc, Normand Jean-Marie, 2005, A Semantic Space Partitionning Approach to Virtual
Camera Control, Proceedings of the Annual Eurographics Conference, Computer Graphics Forum,
Volume 24-3, pp 247-256, Grenoble, France

Cozic, Laurent, 2003, The Intruder, Expressive Cinematography in Video Games, working paper,
Middlesex University, UK

Drucker, Steven M.; Zelter, David, 1994, Intelligent Camera Control in a Virtual Environment,
Proceedings of Graphics Interface '94, Alberta, Canada, p190-199

Drucker, S. M., Zeltzer, D., 1995, CamDroid: A system for implementing intelligent camera control,
Symposium on Interactive 3D Graphics, Monterey, California, p139-144

Friedman, Doron; Feldman, Yishai A., 2004, Knowledge-Based Cinematography and its Applications,
Proc. 16th European Conf. Artificial Intelligence, Valencia, Spain

Middlesex University January 2007 50

MPhil – Automated Cinematography for Games

Friedman, Doron; Feldman, Yishai A.; Shamir, Ariel; Dagan, Tsvi, 2004, Automated Creation of
Movie Summaries in Interactive Virtual Environments, Virtual Reality Conference, Chicago

Gessner, Robert, 1968, The Moving Image, Cassel & Company Ltd., London

Halper, N.; Helbing, R.; Strothotte, T., 2001, Computer games: A camera engine for computer games,
Computer Graphics Forum 20

He, Li-wei; Cohen, Michael F.; Salesin, David H., 1996, The Virtual Cinematographer: A Paradigm
for Automatic Real-Time Camera Control and Directing, Proc. 23rd Int'l. Conf. on Computer Graphics
and Interactive Techniques, New York, p217-224

Hornung, Alexander; Lakemeyer, Gerhard; Trogemann, Georg, 2003, An Autonomous Real-Time
Camera Agent for Interactive Narratives and Games, Proceedings. Lecture Notes in Computer Science
2792 Springer, Germany

Katz, Steven D., 1991, Film Directing: Shot by Shot. Visualizing from Concept to Screen, Michael Wiese
Productions

Negnevitski, Michael, 2002, Artificial Intelligence, A Guide to Intelligent Systems, Personal Education

Poole, S., 2000, Trigger Happy, Fourth Estate, London

Reisz, Karel, 1953, The Technique of Film Editing, The Focal Press

Tomlinson, Bill; Blumberg, Bruce; Nain, Delphine, 2000, Expressive Autonomous Cinematography for
Interactive Virtual Environments, Proceedings of the fourth international conference on Autonomous
agents, Barcelona, Spain

2. Websites

Chandler, Daniel, 1994, The 'Grammar' of Television and Film, The University of Wales Aberystwyth,
http://www.aber.ac.uk/media/Documents/short/gramtv.html

Giors, John, 2004, The Full Spectrum Warrior Camera System, Gamasutra,
http://www.gamasutra.com/gdc2004/features/20040325/giors_02.shtml

Hawkins, Brian, 2003, Creating an Event-Driven Cinematic Camera (Part 1 & 2), Gamasutra,
http://www.gamasutra.com/features/20030108/hawkins_01.htm

Perez , Anthony, 2005, Nintendo Revolution Controller Reaction, Amped IGO,
http://igo.ampednews.com/features/142/5/

AIML: Artificial Intelligence Markup Language, The A. L. I. C. E. Artificial Intelligence Foundation,
http://www.alicebot.org/aiml.html

Media Glossary, British Film Institute,
http://www.bfi.org.uk/education/teaching/disability/further/mediaglossary.html

Middlesex University January 2007 51

MPhil – Automated Cinematography for Games

VII. Games

Alone in the Dark, 1992, PC game, Infogrames, France

Crash Bandicoot, 1996, Playstation game, Naughty Dog, USA

Fear Effect 2, 2001, Playstation game, Kronos Digital Entertainment, USA

Final Fantasy IX, 2001, Playstation game, Square, Japan

Full Spectrum Warrior, 2004, Xbox game, THQ, USA

Half-Life, 1998, PC game, Sierra, USA

Legend of Zelda: Ocarina of Time, The, 1998, Nintendo 64 game, Nintendo, Japan

Legend of Zelda: The Wind Waker, The, 2002, GameCube game, Nintendo, Japan

Morrowind, 2002, PC game, Bethesda Softworks, USA

Neverwinter Nights, 2002, PC game, Bioware Corp., Canada

Populous, 1989, PC game, Bullfrog, UK

Resident Evil 2, 1997, Playstation game, Capcom, Japan

Secret of Monkey Island, The, 1990, PC game, Lucasfilm Games, USA

Sim City, 1989, PC game, Maxis, USA

Super Mario 64, 1996, Nintendo 64 game, Nintendo, Japan

Super Mario Sunshine, 2002, GameCube game, Nintendo, Japan

Middlesex University January 2007 52

MPhil – Automated Cinematography for Games

VIII. Source Code

1. Story Engine

global gChar -- reference to the player character
global gCamera -- reference to the camera system

property pScene -- reference to the current scene

-- [NEW] --
-- Creates a new instance of the story engine
-- and initializes its properties
on new me, iScene
 pScene = iScene

 return me
end

-- [SET STORY CONTRIBUTION] --
-- Sets the story contribution value for the given state
-- of the given object
on setStoryContribution me, iObject, iStateID, iSCValue
 iObject.setProperty(iStateID, #storyContribution, iSCValue)
end

-- [UPDATE] --
-- Updates the story engine (on each frame)
on update me
 -- for each object in the scene
 repeat with o in pScene.pList
 activeState = o.getActiveState()

 -- if the object is important enought
 if activeState[#storyContribution] > 0.0 then
 -- if the object is close enought to the character,
 -- informs the camera system of the object proximity
 if activeState.model.worldPosition.distanceTo(gChar.getModel().worldPosition) <= 300 then
 gCamera.newEvent(o, #relevantObjectProximity)
 end if
 end if

 end repeat
end

2. Camera System

global gGraphicEffects -- graphic library used here for debugging purpose
global gClock

property ancestor -- a reference to the generic entity ancestor

-- PUBLIC
property w -- a reference to the 3D world
property pPC -- a reference to the player's avatar
property pCamera -- the 3D world main camera
property pSCList -- list used to manage the shot contribution value of the important objects
property pCurrentShot -- the current shot properties
property pUniqueID -- a unique ID to identify the shots and other objects
property pInfluenceArea -- if enabled the camera system will only consider the objects inside
this influence area
property pMaxIteration -- Maximum number of iterations allowed to update the camera system (see
#update handler)
property pIterationCount -- Number of iterations since the beginning of the update
property pModelToLookAt -- Invisible model to which the camera is looking at
property pSaveCameraRotation -- Rotation value of the camera at the beginning of the camera
system update
property pCameraProximity -- Specifies how close the camera should be filming the scene
property pCameraCollisionEnabled -- Enables / disables the camera collision detection

Middlesex University January 2007 53

MPhil – Automated Cinematography for Games

-- CONSTANTS
property MAX_SHOT_DURATION -- passed this duration, the camera system creates a new shot even if
nothing
-- has changed in the scene
property MIN_SHOT_DURATION -- a shot must last at least for this duration (in order to avoid
-- shots of a few milliseconds when many things are simultaneously occurring in the scene)
property SC_DECAY_RATE -- Specifies how fast is going to decrease the shot contribution value of
each object
-- (the decay rate is expressed as the value decremented from the SC per second)
property SHOT_HISTORY_SIZE

-- PRIVATE
property _knowledgeBase -- the camera system knowledge base containing all the cinematographic
rules
property _shotHistory -- history of the recent shots that have been selected
property _shotQueue -- list of possible shots for the current scene
property _startTransform -- used for camera movement - the camera moves and rotates from
_startTransform
property _targetTransform -- to _targetTransform over a given duration

-- [NEW] --
-- Creates a new instance of the camera system and initializes its properties
on new me, i3DMember, iCameraID
 -- Creates the generic entity from which the camera system inherits
 -- allowing it to receive messages from other objects,
 -- and to benefit (if necessary) from the multiple state mechanism.
 ancestor = script("cGenericEntity").new()
 me.setID(1)
 me.setName("Camera System")
 me.setType(#cameraSystem)

 pCameraProximity = 80.0
 pCameraCollisionEnabled = FALSE

 -- Sets the min and max duration for the shots
 -- The minimum shot duration is variable as it depends on the number
 -- of relevant objects included in the current shot (please see below)
 MIN_SHOT_DURATION = 1000
 MAX_SHOT_DURATION = 5000
 SC_DECAY_RATE = 0.8
 SHOT_HISTORY_SIZE = 30

 pUniqueID = 0
 w = i3DMember
 pPC = VOID
 pSCList = []

 -- Sets the camera properties
 pCamera = w.camera(iCameraID)
 pCamera.fieldofView = 70

 -- Initializes the current shot
 pCurrentShot = me.newShot([])
 pCurrentShot.startTime = 0

 -- Initializes the influence area (a circle)
 pInfluenceArea = [#center:VOID, #radius:0]

 -- Initializes the knowledge base, the shot history and the shot queue
 _knowledgeBase = [#shotRules:[], #objectRules:[]]
 _shotHistory = []
 _shotQueue = []

 return me
end

-- [TRACK CHARACTER] --
-- Tells the camera to track the given character
on trackCharacter me, iCharacter
 pPC = iCharacter
end

-- [SET INFLUENCE AREA] --
-- Sets the influence area
-- It's a circle centered on the given character
-- with a radius iRadius
on setInfluenceArea me, iCharacter, iRadius
 pInfluenceArea.center = iCharacter
 pInfluenceArea.radius = iRadius
end

Middlesex University January 2007 54

MPhil – Automated Cinematography for Games

-- [MAKE SCRIPT] --
-- Creates a new lingo script
-- * iScriptName: Name of the new script
-- * iScriptText: Text of the script in Lingo
on makeScript me, iScriptName, iScriptText
 ruleCastName = "Camera System"

 cm = new(#script, castLib(ruleCastName))
 cm.name = iScriptName
 cm.scriptType = #parent
 cm.preload()
 cm.scriptText = iScriptText

 return cm
end

-- [IMPORT RULE SET] --
-- Import a set of rules into the knowledge base
-- * iFileName: XML containing the rules
on importRuleSet me, iFileName

 -- Deletes any existing rule scripts (for authoring only)
 ruleCastName = "Camera System"

 i = 1
 m = member(i, ruleCastName)
 repeat while m.name <> EMPTY
 m.erase()
 i = i + 1
 m = member(i, ruleCastName)
 end repeat

 -- Reads the XML file
 xmlFile = xtra("fileIO").new()
 xmlFile.openFile(iFileName, 1)
 stringToParse = xmlFile.readFile()

 if voidP(stringToParse) then
 return FALSE
 end if

 xmlFile.closeFile()
 xmlFile = VOID

 -- Parses the XML data
 xmlObject = xtra("XMLParser").new()
 xmlObject.parseString(stringToParse)
 xmlList = xmlObject.makeList()

 xmlList = xmlList["ROOT OF XML DOCUMENT"]["XML"]

 -- For each tag in the XML file
 repeat with listIndex = 1 to xmlList.count

 propName = xmlList.getPropAt(listIndex)

 -- <INITIALIZATION>
 -- Section of the XML file related to the
 -- initialization of the camera system
 if propName = "INITIALIZATION" then
 -- [Read the script]
 initScriptText = xmlList[propName]["!CHARDATA"]

 s = ""

 s = s & "property cs" & RETURN

 s = s & "on new me, iCameraSystemInstance" & RETURN
 s = s & " cs = iCameraSystemInstance" & RETURN
 s = s & initScriptText & RETURN
 s = s & " return me" & RETURN
 s = s & "end" & RETURN

 -- [Makes the script]
 scriptName = "cs" & me.getUniqueID() && "Initialization"
 me.makeScript(scriptName, s)

 -- [Run the script]
 initScript = script(scriptName).new(me)
 initScript = VOID
 end if

Middlesex University January 2007 55

MPhil – Automated Cinematography for Games

 -- <RULE>
 -- Section containing the definition of
 -- a cinematographic rule
 if propName = "RULE" then
 ruleData = xmlList[listIndex]

 -- [Reads the rule properties]
 repeat with attributeIndex = 1 to ruleData["!ATTRIBUTES"].count

 attributeName = symbol(ruleData["!ATTRIBUTES"].getPropAt(attributeIndex))
 attributeValue = ruleData["!ATTRIBUTES"][attributeIndex]

 case attributeName of

 #name: ruleName = attributeValue -- Gets the rule name
 #appliesTo: ruleAppliesTo = attributeValue -- Checks whether the rule applies to
objects or to camera shots

 end case

 end repeat

 if voidP(ruleName) then ruleName = "Unnamed"
 -- Checks if the rule applies to something valid
 if voidP(ruleAppliesTo) then
 alert("Error: Unspecified type for rule <" & ruleName & ">")
 halt()
 end if
 -- Reads the condition script
 ruleConditionScript = ruleData["CONDITION"]["!CHARDATA"]
 -- Read the action script
 ruleActionScript = ruleData["ACTION"]["!CHARDATA"]

 -- [Prepares the rule script]
 s = ""

 s = s & "property cs" & RETURN
 s = s & "property name" & RETURN
 s = s & "property appliesTo" & RETURN

 s = s & "on new me, iCameraSystemInstance" & RETURN
 s = s & " cs = iCameraSystemInstance" & RETURN
 s = s & " name =" && QUOTE & ruleName & QUOTE & RETURN
 s = s & " appliesTo = #" & ruleAppliesTo & RETURN
 s = s & " return me" & RETURN
 s = s & "end" & RETURN

 s = s & "on checkCondition me" & RETURN
 s = s & ruleConditionScript & RETURN
 s = s & "end" & RETURN

 s = s & "on checkRule me" & RETURN
 s = s & " if me.checkCondition() then" & RETURN
 s = s & ruleActionScript & RETURN
 s = s & " return TRUE" & RETURN
 s = s & " end if" & RETURN
 s = s & "return FALSE" & RETURN
 s = s & "end" & RETURN

 -- [Makes the script]
 scriptName = "cs" & me.getUniqueID() && ruleName
 me.makeScript(scriptName, s)

 -- [Compiles the script and adds it to the knowledge base]
 newRule = script(scriptName).new(me)
 case newRule.appliesTo of
 #objects: _knowledgeBase.objectRules.add(newRule)
 #shots: _knowledgeBase.shotRules.add(newRule)
 end case
 end if
 end repeat

 return TRUE
end

-- [NEW SHOT] --
-- Creates a new shot description (The shot won't necessarily be selected as the current shot)
-- * iObjects: the objects that should be included in the view (if possible)
-- * iPCVisible: tells whether the player's avatar should be visible or not
on newShot me, iObjects, iPriority, iPCVisible

Middlesex University January 2007 56

MPhil – Automated Cinematography for Games

 -- the player character is always visible unless specified otherwise
 if voidP(iPCVisible) then iPCVisible = TRUE
 -- the priority is optional and is set to 0.5 by default
 if voidP(iPriority) then iPriority = 0.5

 -- creates the new shot
 s = [:]
 s.addProp(#ID, me.getUniqueID()) -- shot unique ID
 s.addProp(#objects, iObjects) -- objects that should be included into the view
 s.addProp(#startTime, the milliseconds) -- the time at which the shot started
 s.addProp(#canChange, TRUE) -- a flag to indicates whether the shot can be changed or not
 s.addProp(#PCVisible, iPCVisible)
 s.addProp(#transition, VOID) -- type of transition between the current shot and this shot
 s.addProp(#shotSize, []) -- (test) the size of each objects on screen
 s.addProp(#priority, iPriority)
 s.addProp(#cameraTransform, VOID)
 s.addProp(#lookAtTransform, VOID)

 repeat with obj in s.objects
 s.shotSize.add(#long)
 end repeat

 return s
end

-- [GET CAMERA] --
-- Returns a reference to the camera
on getCamera() me
 return pCamera
end

-- [NEW EVENT] --
-- Informs the camera system that something new has happened in the current scene
-- * iObject: the object involved in the event
-- * iEventName: the name of the event
-- * iParameters: the event parameters (property list)
on newEvent me, iObject, iEventName, iParameters
 -- gets the active state of the object
 activeState = iObject.getActiveState()
 if not voidP(activeState) then
 -- list of the events that should be ignored by the camera system
 ignoreEvents = [#sceneLoaded]

 if not ignoreEvents.getOne(iEventName) then

 case iEventName of

 #storyContributionUpdate:

 -- if the story contribution has been changed,
 -- changes the shot contribution accordingly
 shotContribution = iParameters.newValue

 -- the camera system will monitor the object if
 -- its shot contribution is greater than 0
 if shotContribution > 0.0 then
 me.monitorObject(iObject, activeState, shotContribution)
 end if

 #relevantObjectProximity:

 -- for now if there's an important object near the character
 -- the camera system monitors it and assigns it a SC of 1.0
 -- Additional checks could be added to assign a more accurate
 -- SC value and to decide whether or not it's actually
 -- useful to monitor the object.
 me.monitorObject(iObject, activeState, 1.0)

 end case

 end if

 end if

end

-- [MONITOR OBJECT]
-- Tells the camera system to monitor the given object
-- effectively adding it to the list of important objects in the current scene
on monitorObject me, iObject, iState, iShotContribution
 addToList = TRUE

Middlesex University January 2007 57

MPhil – Automated Cinematography for Games

 -- Updates the SC value if the object is already monitored,
 -- if not adds it to the list
 repeat with scData in pSCList
 if iObject = scData.object then -- just updates the shot contribution
 scData.shotContribution = iShotContribution
 addToList = FALSE
 exit repeat
 end if
 end repeat

 if addToList then
 pSCList.add([#object:iObject, #state:iState, #shotContribution:iShotContribution])
 end if

end

-- [COMPARE SHOTS --
-- Compares two shots and returns a number which represents the difference
-- between both. The higher the number the greater the difference.
-- At the moment the function computes the number only by comparing the
-- objects included into the two shots. It may be useful to develop the function
-- to make it consider the position and orientation of the camera and objects as well
on compareShots me, iShot1, iShot2
 objList1 = iShot1.objects
 objList2 = iShot2.objects
 objCount1 = objList1.count
 objCount2 = objList2.count
 output = 0

 if objCount1 = 0 and objCount2 > 0 then
 output = objCount2
 end if

 -- Compares the objects of the first shot...
 repeat with shotIndex1 = 1 to objCount1
 obj1 = objList1[shotIndex1]
 objectID1 = obj1.object.getID()
 diff = 1
 -- ...with those of the second one
 repeat with shotIndex2 = 1 to objCount2
 obj2 = objList2[shotIndex2]
 if obj2.object.getID() = objectID1 then
 diff = 0
 exit repeat
 end if
 end repeat
 -- Updates the difference between the two shots
 output = output + diff
 end repeat

 return output
end

-- [GET CHARACTER ANGLE TO SCENE]
-- Returns the angle between the character and
-- the scene associated with iShot
on getCharAngleToScene me, iShot
 if iShot.objects.count > 0 then
 positionToLookAt = vector(0,0,0)
 objectCenter = 0
 nbObjects = iShot.objects.count
 repeat with i = 1 to nbObjects
 positionToLookAt = positiontoLookAt + iShot.objects[i].state.model.worldPosition
 end repeat

 positionToLookAt = positionToLookAt / nbObjects

 v = positionToLookAt - pPC.getModel().worldPosition

 return v.angleBetween(pPC.getDirectionVector())
 else
 return 0
 end if
end

-- [PRINT SHOT] --
-- Returns various properties of the camera as a string
on printShot me, iShot
 s = s & "Objects:" && iShot.objects.count
 s = s & ", Transition:" && iShot.transition

Middlesex University January 2007 58

MPhil – Automated Cinematography for Games

 return s
end

-- [UPDATE] --
-- Updates the camera system
on update me

 saveCameraTransform = pCamera.transform.duplicate()

 pCameraCollisionEnabled = member("cameraCollisions").hilite

 -- [SHOT CONTRIBUTION UPDATE]
 -- Decreases the shot contribution value of each
 -- object in the current shot so that objects that have been long enough
 -- on screen can be ignored in subsequent shots if necessary
 objectCount = pSCList.count
 if objectCount > 0 then

 repeat with objectIndex = objectCount down to 1
 -- Gets the shot contribution data
 scData = pSCList[objectIndex]

 -- Decrease the SC value of the object
 scData.shotContribution = scData.shotContribution - SC_DECAY_RATE * gClock.get()
 if scData.shotContribution < 0.0 then scData.shotContribution = 0.0

 if scData.shotContribution <= 0.0 then -- remove the object from the list
 pSCList.deleteAt(objectIndex)
 end if

 end repeat

 end if

 -- [CURRENT SHOT UPDATE]
 -- Only updates the system if the current shot has lasted for at least
 -- minimumShotDuration * number of relevant objects in the shot
 newShotCreated = FALSE

 if the milliseconds - pCurrentShot.startTime > MIN_SHOT_DURATION * (pCurrentShot.objects.count
+ 1) then
 -- Adds the shot to the shot history
 -- for further reference
 pCurrentShot.cameraTransform = pCamera.transform.duplicate()

 me.rememberShot(pCurrentShot)

 -- Empties the shot queue
 _shotQueue = []

 -- [OBJECT RULES]
 -- Finds out which objects are important enough to be
 -- included in the next shot using the knowledge base
 -- cf. the XML file "cs_knowledge_base.txt"
 triggeredRules = []
 repeat with objectRule in _knowledgeBase.objectRules
 r = objectRule.checkRule()
 if r then
 triggeredRules.add(objectRule)
 log("Rule" && QUOTE & objectRule.name & QUOTE && "triggered")
 end if
 end repeat

 -- Selects one of the shot in the shot queue using
 -- the priority value
 if _shotQueue.count > 0 then
 newShotIndex = 0
 repeat with i = 1 to _shotQueue.count
 if newShotIndex = 0 then
 newShotIndex = i
 else
 if _shotQueue[i].priority > _shotQueue[newShotIndex] then newShotIndex = i
 end if
 end repeat

 log("->" && triggeredRules[newShotIndex].name && "selected.")

 pCurrentShot = _shotQueue[1]

 newShotCreated = TRUE
 end if

Middlesex University January 2007 59

MPhil – Automated Cinematography for Games

 end if

 -- [CALCULATES THE CAMERA PARAMETERS ACCORDING TO THE CURRENT SHOT DATA]
 -- Calculates the position to which the camera should point at
 -- Currently it is the mean of all the important object positions
 -- including the player character

 positionToLookAt = pPC.getModel().worldPosition
 objectCenter = 0
 nbObjects = pCurrentShot.objects.count
 repeat with i = 1 to nbObjects
 positionToLookAt = positiontoLookAt + pCurrentShot.objects[i].state.model.worldPosition
 objectCenter = objectCenter+ pCurrentShot.objects[i].state.model.worldPosition
 end repeat

 if nbObjects > 0 then
 objectCenter = objectCenter / nbObjects
 end if

 positionToLookAt = positionToLookAt / (1.0 + nbObjects)

 -- Creates the cylinder model resource to which the camera should point at
 -- or rotate around
 n = "cs_positionToLookAt"
 if voidP(w.modelResource(n)) then
 mr = w.newModelResource(n, #cylinder)
 mr.height = 1
 mr.resolution = 32
 else
 mr = w.modelResource(n)
 end if

 -- Sets its radius so that the circle includes all the shot objects
 -- including the player character
 r = 0
 repeat with obj in pCurrentShot.objects
 d = obj.state.model.worldPosition.distanceTo(positiontoLookAt)
 if d > r then r = d
 end repeat

 d = pPC.getModel().worldPosition.distanceTo(positionToLookAt)
 if d > r then r = d

 if r <= 40 then r = 40

 mr.bottomRadius = r
 mr.topRadius = r

 -- Creates the model
 if voidP(w.model(n)) then
 m = w.newModel(n, mr)
 m.visibility = #front
 m.rotate(90, 0, 0)
 m.worldPosition.z = 1

 m.shaderList.blend = 50
 else
 m = w.model(n)
 end if

 pModelToLookAt = m

 if nbObjects > 0 then
 pModelToLookAt.pointAt(objectCenter, vector(0,0,1))
 end if

 m.worldPosition = positionToLookAt.duplicate()

 -- Sets the camera position and rotation
 saveTransform = pCamera.transform.duplicate()

 if pCurrentShot.objects.count = 0 then
 -- if there are no important objects around the character
 -- the camera simply tracks the character from behind

 pCamera.transform = pPC.getModel().transform.duplicate()
 r = pCamera.transform.rotation
 pCamera.transform.rotation = vector(r.x,20,r.z)
 pCamera.rotate(90, 0, 0)
 pCamera.rotate(0, -90, 0)

Middlesex University January 2007 60

MPhil – Automated Cinematography for Games

 pCamera.worldPosition = positionToLookAt.duplicate()
 pCamera.translate(0,0,100)
 pCamera.translate(0, 50, 0)
 else
 -- if there are important objects to include in the
 -- current shot:

 if member("CB_cameraLock").hilite then
 pCamera.transform = pModelToLookAt.transform.duplicate()
 else
 pCamera.worldPosition = positionToLookAt.duplicate()
 end if

 r = pCamera.transform.rotation
 end if

 -- Determines how far must be the camera to include all
 -- the objects and characters
 d = me.modelSizeToCameraDistance(pCamera, m, pCameraProximity)

 -- and moves the camera by this amount
 pCamera.translate(0, 0, d)

 -- Saves the initial camera transform which is used later
 -- to smoothly move the camera from its current position
 -- to the new one (when the transition type is #move)
 _startTransform = saveTransform

 m.removeFromWorld()

 -- [SHOT RULES]
 -- Sets the maximum number of iterations
 pMaxIteration = 18
 pIterationCount = 0

 allVisible = FALSE
 iterationCount = 0
 maxIteration = 18
 saveCameraRotation = pCamera.transform.rotation.duplicate()
 pSaveCameraRotation = saveCameraRotation

 -- Checks if the current shot is valid according to the
 -- knowledge base.
 -- Rules may adjust the camera parameters in order to find a better position
 -- if necessary. Objects can also be removed from the shot if the rules
 -- can't be satisfied.
 -- In general, in order not to slow down the game too much, the more iterations
 -- has been made, the less tolerant are the rules, which mean that more objects are
 -- removed and the position of the camera may be significantly changed. Thus the
 -- rules are more likely to be all resolved in the following iteration.

 -- If no solution can be found after maxIteration, the camera system will use the
 -- last generated solution. It should be an unlikely situation but it can happen for
 -- example in narrow corridors where it's difficult to get all the objects into view.
 -- However movements of the objects and characters are likely to change this situation
 -- on the next update.

 -- The number of allowed iteration also determines the resolution of the system.
 -- If the number is high enough (here 18 seems to give acceptable results), the transition
 -- between two shots will be visually smoother. On the other hand, with a too low value, the
 -- system lacks subtlety when looking for a solution (in some case this is due to the fact that
many
 -- important objects are removed from the shots from the first iteration). The transitions
 -- are more abrupt and the camera also tends to shake more frequently.

 allResolved = FALSE
 repeat while not allResolved

 allResolved = TRUE
 -- Checks each rule
 repeat with shotRule in _knowledgeBase.shotRules

 if not shotRule.checkRule() then
 log("Checking" && QUOTE & shotRule.name & QUOTE & "...")
 allResolved = FALSE
 end if
 pCurrentShot.cameraTransform = pCamera.transform.duplicate()

 end repeat

 pIterationCount = pIterationCount + 1

Middlesex University January 2007 61

MPhil – Automated Cinematography for Games

 if pIterationCount > pMaxIteration then
 allResolved = TRUE
 end if

 end repeat

 -- Finds out which type of transition should be used between the previous shot
 -- and the new shot
 _targetTransform = pCamera.transform.duplicate()

 if voidP(pCurrentShot.transition) then
 shotTransition = me.whichTransition(_targetTransform, saveTransform)
 end if

 pCamera.transform = _startTransform.duplicate()

 -- If it's a cut, move the camera to the new position
 if shotTransition = #cut then
 newTransform = _targetTransform.duplicate()
 log("Transition: #cut")
 else -- if it's a camera movement, interpolate its transform
 -- from the previous transform to the new transform
 newTransform = _startTransform.interpolate(_targetTransform, 10)
 end if

 pCurrentShot.transition = shotTransition

 pCamera.transform = newTransform

 -- For demonstration purpose, highlights the important objects in the current shot
 if member("objectHighlight").hilite then
 repeat with objectInfo in pCurrentShot.objects
 gGraphicEffects.apply(#glow, [#model:objectInfo.state.model, #restart:FALSE,
#duration:1000])
 end repeat
 gGraphicEffects.apply(#glow, [#model:pPC.getModel(), #restart:FALSE, #duration:1000])
 end if

 -- Solves the camera collisions
 if pCameraCollisionEnabled then
 newCameraTransform = pCamera.transform

 dv = newCameraTransform.position - saveCameraTransform.position
 dv.normalize()

 -- Finds out if the camera is at less than 20 units from a wall
 mr = w.modelsUnderRay(pCamera.worldPosition, dv, 1, #detailed)

 if mr.count > 0 then
 mr = mr[1]

 -- If so moves the camera back to a valid position
 if mr.distance <= 20 then
 pCamera.worldPosition = mr.isectPosition + mr.isectNormal * 20
 end if

 end if
 end if

end

-- [GET ITERATION COUNT]
-- Returns the number of iterations in the current camera system update
on getIterationCount me
 return pIterationCount
end

-- [GET MAX ITERATION]
on getMaxIteration me
 return pMaxIteration
end

-- [WHICH TRANSITION]
-- Compares two camera transforms and determines if
-- the system should cut or move the camera between
-- the two shots
on whichTransition me, t1, t2

 maxDistance = 200
 maxRotation = 180

Middlesex University January 2007 62

MPhil – Automated Cinematography for Games

 if (t1.position.distanceTo(t2.position) < maxDistance) or (t2.rotation - t1.rotation.z >
maxRotation) then
 return #move
 end if

 return #cut

end

-- [MODEL SIZE TO CAMERA DISTANCE]
-- Determines how far the camera should be from the given model
-- for it to take iPercentage% of the screen
on modelSizeToCameraDistance me, iCamera, iModel, iPercentage
 d = iModel.boundingSphere[2] / (sin(degreeToRad(iCamera.fieldOfView / 2.0)))
 d = d / (float(iPercentage) / 100.0)

 return d
end

-- [REMEMBER SHOT]
-- Saves the shot in the shotHistory list
on rememberShot me, iShot
 shotDuplicate = iShot.duplicate()
 _shotHistory.add(shotDuplicate)

 if _shotHistory.count > SHOT_HISTORY_SIZE then _shotHistory.deleteAt(1)
end

-- [PRINT]
-- Returns as a string various information
-- about the system state
on print me
 s = ""

 repeat with scData in pSCList
 if s <> "" then s = s & RETURN
 s = s & scData.object.getName() & "," && scData.state.ID & ":" && scData.shotContribution
 end repeat

 s = s & RETURN & RETURN
 s = s & "Shot ID =" && pCurrentShot.ID & RETURN
 s = s & "Shot Duration =" && (the milliseconds - pCurrentShot.startTime) & RETURN
 sl = ""
 repeat with obj in pCurrentShot.objects
 if sl <> "" then sl = sl & ", "
 sl = sl & obj.object.getName()
 end repeat
 s = s & "Objects =" && sl

 return s
end

-- [GET RELEVANT OBJECTS]
-- Returns the list of relevant objects in the current scene
on getRelevantObjects me
 return pSCList.duplicate()
end

-- [COUNT NUMBER OF TIME ON SCREEN]
-- Counts how many times the object has been part of a shot.
-- It can be a useful indicator to solve the visual constraints: if an object
-- has already been seen many times on screen it may be possible
-- to remove it from the current shot in order to relax the constraints.
on countNumberOfTimesOnScreen me, iObject
 c = 0

 if _shotHistory.count <= 0 then

 else
 repeat with shot in _shotHistory
 shotObjects = shot.objects
 repeat with obj in shotObjects
 if obj.object.getID() = iObject.object.getID() then
 c = c + 1
 end if
 end repeat
 end repeat
 end if

 return c

Middlesex University January 2007 63

MPhil – Automated Cinematography for Games

end

-- [QUEUE SHOT]
-- Adds a shot to the shot queue
on queueShot me, iShot
 _shotQueue.add(iShot)
end

3. Knowledge Base Sample

Below is the current knowledge base of the camera system.

<XML version="1.0">

<INITIALIZATION>

 -- In this section goes everything that needs to be initialized
 -- before the camera system starts

 -- "cs" is a reference to the camera system

 -- Sets the minimum shot duration
 cs.MIN_SHOT_DURATION = 1000 -- one second
 -- Sets the maximum shot duration
 cs.MAX_SHOT_DURATION = 10000 -- ten seconds

</INITIALIZATION>

<RULE name="Establishing Shot" appliesTo="objects">

<CONDITION>

 -- This rule checks the number of time each object in the scene
 -- has been on screen before

 -- If no object has been on screen before, it means that
 -- it's a new scene - therefore an establishing shot
 -- would be suitable.

 -- Gets the list of relevant objects in the current scene
 relevantObjects = cs.getRelevantObjects()

 -- If there's no important object in the scene
 -- or near the character, don't trigger the establishing shot:
 if relevantObjects.count = 0 then return FALSE

 -- otherwise, checks if the scene has just started
 isNewScene = TRUE
 repeat with object in relevantObjects
 if cs.countNumberOfTimesOnScreen(object) > 0 then
 isNewScene = FALSE
 exit repeat
 end if
 end repeat

 return isNewScene

</CONDITION>

<ACTION>

 -- Gets all the relevant objects
 relevantObjects = cs.getRelevantObjects()

 -- composes a new shot with them
 -- and assigns the shot a high priority
 newShot = cs.newShot(relevantObjects, 0.9)

 -- and queue it
 cs.queueShot(newShot)

</ACTION>

</RULE>

Middlesex University January 2007 64

MPhil – Automated Cinematography for Games

<RULE name="New Event Shot" appliesTo="objects">

<CONDITION>

 -- This rule simply checks if something new has happened
 -- and if so creates a new shot with the objects involved
 -- in the new event.
 relevantObjects = cs.getRelevantObjects()

 return relevantObjects.count > 0

</CONDITION>

<ACTION>

 -- Creates a new shot with the objects involved in
 -- the new event
 newShot = cs.newShot(cs.getRelevantObjects(), 0.8)

 -- If the event has already been seen and if the player's
 -- character is not facing it, the system assumes
 -- that the player is not interested in it anymore
 -- and therefore does not queue the new shot.
 addShot = TRUE
 shotHistory = cs.getShotHistory()

 repeat with oldShot in shotHistory
 -- if the shot has already been generated:
 if cs.compareShots(oldShot, newShot) = 0 then
 -- Don't add the shot if the angle between the new event
 -- and the character is greater than 120
 if greaterThan(cs.getCharAngleToScene(newShot), 120) then
 addShot = FALSE
 exit repeat
 end if
 end if

 if not addShot then
 exit repeat
 end if
 end repeat

 if addShot then
 cs.queueShot(newShot)
 end if

</ACTION>

</RULE>

<RULE name="Default Shot" appliesTo="objects">

<CONDITION>

 -- The purpose of this rule is to provide the camera system
 -- with a default shot in case none of the other rules
 -- apply to the current situation.

 return TRUE

</CONDITION>

<ACTION>

 -- Creates a shot with no objects other than the character
 -- and assigns it a priority of 0 so that the shot will
 -- be selected only if no other shot is available.
 newShot = cs.newShot([], 0.0)

 cs.queueShot(newShot)

</ACTION>

</RULE>

<RULE name="Object Visibility" appliesTo="shots">

<CONDITION>

Middlesex University January 2007 65

MPhil – Automated Cinematography for Games

 -- This rule checks if all the objects are visible
 -- in the current shot. If not it will modify the shot
 -- in order to find a better solution. At the moment this
 -- is done by progressively removing on each iteration
 -- the less important objects from the shot.

 -- Sets a new global variable which will store the
 -- result of this rule, as it is used by other rules such
 -- as the "180 degree rule".
 setVar(#objectsVisible, FALSE)

 -- Gets the variables needed by the rule
 maxIteration = cs.getMaxIteration()
 iterationCount = cs.getIterationCount()
 currentShot = cs.getCurrentShot()
 objectCount = currentShot.objects.count
 iterationCount = 0
 camera = cs.getCamera()

 allVisible = TRUE

 -- For each object in the current shot (minus those that have been
 -- removed on the previous iterations)
 repeat with objIndex = 1 to objectCount
 --repeat with objIndex = 1 to objectCount - (iterationCount - 1) / maxIteration
 -- Gets the object from the shot
 obj = currentShot.objects[objIndex]

 -- Gets its 3D model
 objectModel = obj.state.model

 -- Casts a ray from the camera in the direction of the object
 -- and gets the list of objects that have been intersected.
 dv = objectModel.worldPosition - camera.worldPosition
 dv.normalize()
 ml = cs.w.modelsUnderRay(camera.worldPosition, dv, 1)

 -- Checks if there's at least one model among the intersected
 -- models and checks that it's the current object model
 if lowerThan(ml.count, 0) then
 allVisible = FALSE
 else
 allVisible = ml[1].name = objectModel.name
 end if

 -- If at any point one of the object is not visible,
 -- exit the rule. On the next iteration, one more object
 -- will be removed from the shot.
 if not allVisible then
 exit repeat
 end if
 end repeat

 return allVisible

</CONDITION>

<ACTION>

 -- Used to tell the other rules, that
 -- all objects are visibles.
 setVar(#objectsVisible, TRUE)

</ACTION>

</RULE>

<RULE name="Character Visibility" appliesTo="shots">

<CONDITION>

 -- This rule checks that the character is visible on
 -- the current shot.
 maxIteration = cs.getMaxIteration()
 iterationCount = cs.getIterationCount()
 currentShot = cs.getCurrentShot()
 objectCount = currentShot.objects.count
 iterationCount = 0
 camera = cs.getCamera()

Middlesex University January 2007 66

MPhil – Automated Cinematography for Games

 -- Sets a new global variable which will store the
 -- result of this rule for further reference.
 setVar(#characterVisible, FALSE)

 objectModel = cs.pPC.getModel()
 dv = objectModel.worldPosition - camera.worldPosition
 dv.normalize()
 ml = cs.w.modelsUnderRay(camera.worldPosition, dv, 1)

 if lowerThan(ml.count, 0) then
 charVisible = FALSE
 else
 charVisible = ml[1].name = objectModel.name
 end if

 return charVisible

</CONDITION>

<ACTION>

 setVar(#characterVisible, TRUE)

</ACTION>

</RULE>

<RULE name="180 Degree Line" appliesTo="shots">

<CONDITION>

 -- This rule ensures that the 180 Degree Line is not crossed
 -- between two successive shots.
 -- If first checks if everything is visible, and it not it moves the camera
 -- to a different position while respecting the 180 rule.

 -- (NB: It may be better to put the visibility constraints solving
 -- in the [action] section of the Character and Object visibility rules.)

 -- Gets the variables needed by the rule
 modelToLookAt = cs.pModelToLookAt
 iterationCount = cs.getIterationCount()
 maxIteration = cs.getMaxIteration()
 camera = cs.getCamera()
 previousCameraTransform = camera.transform.duplicate()

 -- First, the rules checks if all the objects and the character are visible
 -- if not the camera will rotate for up to 90 degree clockwise around
 -- the barycenter defined by the positions of the objects. If no solution
 -- can be found that way, it will do the same counterclockwise thus preserving
 -- in both cases the constraint integrity.
 if not var(#objectsVisible) or not var(#characterVisible) then
 modelToLookAt.addToWorld()

 if lowerThan(iterationCount, maxIteration / 2) then
 r = -180 / (maxIteration / 2)
 else
 if iterationCount = maxIteration / 2 + 1 then
 camera.transform.rotation = cs.pSaveCameraRotation
 end if
 r = +180 / (maxIteration / 2)
 end if

 camera.rotate(0,r,0, modelToLookAt)

 modelToLookAt.removeFromWorld()

 return FALSE
 else
 return TRUE
 end if

</CONDITION>

<ACTION>

</ACTION>

</RULE>

Middlesex University January 2007 67

MPhil – Automated Cinematography for Games

</XML>

IX. Glossary of Cinematographic Terms

The glossary in based on the British Film Institute Media Glossary and The 'Grammar' of
Television and Film by Daniel Chandler (1994). The definitions of Frame, Shot and Scene come
from The Moving Image by Robert Gessner (1968)

180º Line or Line of Action

An imaginary line used to help stage camera positions for shooting action. Typically 'drawn'
along the line of sight between two characters in a scene, or following the movement of
characters, cars etc.

Depth of Field

The distance between the objects nearest and furthest from the camera that will be in acceptably
sharp focus.

Dolly

When the camera is moved towards (dolly in) or away (dolly back) from the subject.

Frame

A single composition within a shot wherein space has been shaped and motion is implied.

Jump cut

Abrupt switch from one scene to another.

Low-angle shot

When the camera is below the character, exaggerating his or her importance.

Over-the-shoulder Shot

A shot framed by the side of the head and shoulders of a character in the extreme foreground,
who is looking at the same thing we are - usually another character in a dialogue sequence.

Pan

When the camera pivots on its vertical axis; the shot that results from this. From panorama or
panoramic.

Middlesex University January 2007 68

MPhil – Automated Cinematography for Games

Scene

In cinema the scene is composed of shots so arranged as to express a minor dramatic climax or
an expository statement.

Shot

Composed of frames, the result of a single camera operation, its length determined by editing.

Subjective View or Point of View shot

A shot where we appear to be looking through the character's eyes, from his or her point of view.

Tilt

When the camera pivots on the horizontal axis; the shot that results from this.

Zoom

The change of image size achieved when the focal length of the zoom lens is altered.

Middlesex University January 2007 69

MPhil – Automated Cinematography for Games

X. The Intruder – Expressive Cinematography in
Videogames

Middlesex University January 2007 70

	I. Introduction
	1. Methodology
	2. Rationale
	- Definition of a playable / usable view
	- Scope of the cinematography aspect of the camera system

	 Composition
	 Shot Selection
	 Camera control in video games
	- Playability
	- Rhetorical control from the designer

	 Virtual Camera

	II. Background
	1. Existing approaches
	2. Camera Systems in Games
	 Fixed Camera Views
	 Fully Interactive Camera Systems
	 Tracking Camera and Semi-interactive Camera Systems

	3. Current Issues

	III. Camera System Description
	1. Proposed Camera System
	- Specifications and Requirements
	- Requirement IV: Narrative Driven Camera System
	- Requirement V: Adaptability to Unexpected Scenes or Events

	2. Constraint Generator
	 Shot Contribution
	 Rules for Shot Selection
	 Requesting a Shot

	3. Constraint Solver

	IV. Camera System Development
	1. Software Used
	 Discreet 3D Studio Max 6.0
	 Adobe Director
	 AIML
	 Choice of the game engine
	 The Intruder game editor
	 Editing process

	2. Story Engine
	3. Camera System
	 Constraint Solver Implementation
	 Knowledge Base
	- Camera System Rules
	- Knowledge Base Structure

	 Camera System Integration and Generic Entity
	 Camera System Implementation
	- Character control
	- Shot Characteristics
	- Step 1: Shot Queue and Shot Selection
	- Step 2: Calculating the Camera Parameters
	- Step 3: Checking the Shot Validity
	- Step 4: Deciding on the Type of Transition
	- Step 5: Shot Contribution Update
	- Step 6: Shot History
	- Properties and Methods

	 Camera System Behaviour Analysis
	- Test bed
	- Anticipation
	- Plot Driven System
	- Player’s knowledge consideration
	- Automatic Shot Composition
	- Camera Collision Detection
	- Handling of Complex Scenes
	- System Latency and Minimum Shot Duration

	 Example scenario
	- Establishing Shot
	- Default shot
	- New event shot

	 Further work
	- Predicting the next shot
	- Dealing with uneven surfaces
	- User testing

	V. Conclusion
	VI. Bibliography
	1. Literature
	2. Websites

	VII. Games
	VIII. Source Code
	1. Story Engine
	2. Camera System
	3. Knowledge Base Sample

	IX. Glossary of Cinematographic Terms
	X. The Intruder – Expressive Cinematography in Videogames

