
Modelchecking Non-Functional Requirements for
Interface Specifications

Florian Kammüller1 and Sören Preibusch2

1 Technische Universität Berlin
Fakultät IV: Elektrotechnik und Informatik

Franklinstraße 28-29, 10587 Berlin
flokam@cs.tu-berlin.de

2 German Institute for Economic Research
Mohrenstraße 58, 10117 Berlin

spreibusch@diw.de

Abstract. In this paper we present a combination of formal specifica-
tion and mechanical analysis enabling a simple and flexible development
process for interface specifications from requirements. Using the potential
of temporal logic for describing non-functional requirements we derive an
analysis model from functional requirements. Slightly abusing its origi-
nal object-oriented incentives we employ the precision and modularity of
formal specification in Object-Z for representing interface descriptions. A
structure preserving translation of Object-Z specifications to the model
checker SMV unifies the temporal logic specification of requirements with
the analysis model. The automated verification in SMV supports a feed-
back loop for a stepwise improvement of the requirement specification
and its analysis model. We illustrate this technique on the case study of
the safety-critical TWIN elevator system.

1 Introduction

One of the major obstacles for the seemless integration of rigorous specifica-
tion into the development process of embedded systems is the gap between
natural language requirements and formal notations. Engineering starts with
requirements elicitation from stakeholders, i.e. customers and development team
members. Requirements are continuously refined in iterations of the global devel-
opment process. For the communication between stakeholders natural language
is still the ad hoc standard because not everyone necessarily understands math-
ematics and specialized formal notations. One cannot deny the importance of
informal communication channels (such as coffee breaks or grapevine) that sub-
stantially rely on natural language (NL). For precision in system specification
mathematics and logics are preferable, in particular in safety-critical applica-
tions.

Practically, requirements engineering must be performed in an iterated pro-
cess in order to guarantee systems adequate to the stakeholders’ wishes, possi-
bilities, and needs. An ideal development scenario is rapid prototyping, where

II

requirements are immediately verified against a prototypical system implemen-
tation. However, in industrial contexts rapid prototyping, not unlike other agile
techniques, like Extreme Programming, never had a chance to catch on. The
feedback loops of such processes stretch out too far over distinct phases in the
software development process to scale up to large enterprises. They work well
only for very small teams with a tight integration from requirements through to
implementation and maintenance. Feedback loops that need to reach far back
into the early phases are costly and therefore need to be minimized.

In our view, it is the development of valid interface specifications that is the
immediate goal for a formalization of requirements. Interfaces implement the
idea of locality and information hiding. Eventually, they allow concurrent en-
gineering in distributed teams. Interfaces allow reliability from early stages on
and preserve flexibility in implementation up to late stages. During the transition
from requirements to system models in the analysis phase of classical software
engineering one of the main results is a first description of system interfaces.
In object-oriented software development, usually relying on UML, interfaces are
initially described by use-cases and class diagrams. Use-cases capture the exter-
nally visible functionality. They provide the interface description towards the
user. Class diagrams specify internal interfaces between implementation compo-
nents.

Only in the design phase, much later in the software development process, we
add behavioural descriptions to those interfaces when defining system internal
interactions, say by interaction diagrams, or collaborations. However, this is
much too late for large scale developments: insufficiencies or inconsistencies arise
that could have been easily avoided if simple checks had been used in the initial
interface model. As such, good interface specifications are paramount to the
success of the software development project.

We strongly believe, based on our interaction with industrial partners, that
an early verification of requirements is imperative for good developments. Most
requirements analysis tools merely support management and tracing of require-
ments. It is obviously not possible to verify requirements, unless a system model
is available. To this end we suggest the use of Object-Z to prototype analysis
models during the transition from requirements to interface design. Object-Z is a
suitable language as it is sufficiently abstract, yet offers enough structuring facili-
ties to formalize interfaces of system components. Object-Z augments the formal
specification language Z thereby entailing full predicate calculus. For the natural
expression of requirements we suggest the use of temporal logics. These logics are
most suitable for the expression of many non-functional constraints very often in-
cluding statements about reactive behaviour: non-functional constraints usually
involve the system’s environment and its reaction to environmental changes.

The Quality Feedback Loop that we present in this paper (Figures 1 and 2)
produces an interface description in Object-Z that is additionally adorned with
temporal logic specification. The system specification in Object-Z is iteratively
improved (“specification progress”). Each of these stepwise improvements relies
on an execution of the quality feedback loop. The Object-Z specification, present

III

at a given time t + 1 (i.e. in given version) is translated mechanically into an
SMV program, that is checked against the requirements expressed in temporal
logics. In case an error is detected in the model checking results, it can be traced
back to the original Object-Z specification where this error is then eliminated,
leading to an improved version t + 2.

OZ
spec

t

OZ
spec

t+1

OZ
spec

t+2

OZ
spec

t+3

OZ
spec

t+4

specification
progress

Object-Z
spec

t+1

checking

translation
Require-

ments

error
trace backObject-Z

spec

t+2

SMV
program

t+1

Model
Checking

results
t+1

error elimination

Quality Feedback Loop

Fig. 1. Quality feedback loop and its integration in the formal model development

The possibility for a cyclic use of our quality feedback loop guarantees that
requirements are precise and verified against a formal interface model that is
produced as a by-product. The feedback loop is strongly supported by the auto-
mated verification with the model checker SMV and the automated translation
process between Object-Z and SMV. The latter step is necessary to enable cor-
rect verification of requirements on the system model.

The requirements against which the specification is checked derive from a
collection and consolidation of formal and natural language requirements (Figure
2). Latter are translated into temporal logic beforehand.

The necessity for a tool-supported quality feedback loop, as presented here,
derives from our experiences in our initial TWIN elevator system case study [6].

IV

Require-
ments

SMV
program

Requirement
Enhancement and Validation

initial requirements

formal requirements:

non-functional

functional

NL requirements:

non-functional

functional

Require-
ments

formalization and
enhancement

collection

Require-
ments

consolidated

formalization
checking

requirement
validation

Fig. 2. Quality feedback loop, collection, formalization, and consolidation of require-
ments.

Though we were able to verify the system’s correct behaviour and to demon-
strate the scalability of formal verification methods, using SMV as an original
specification revealed to be cumbersome and errorprone. The translation from
Object-Z to SMV avoids these pitfalls, while the original, manually crafted SMV
program remains a benchmark in terms of efficiency.

The idea to modelcheck requirements has already been used by Bharadwaj
and Heitmeyer [1]. Their work differs from ours as it is tailored to the software
cost reduction model. For the formal specification of interfaces the work by Canal
et al. [2] on formal Interface Definition Languages (IDL) using the π-calculus for
the definition of component behaviour is relevant. In future work we plan to
investigate the alternative use of Canal’s formalism in our quality feedback loop.

V

In this paper we first present an example for a requirements specification of
an industrial case study in Section 2. We then summarize the technical setup
of our feedback loop by explaining the translation between Object-Z and SMV
in Section 3. Finally, we illustrate in Section 4 our quality feedback loop on an
excerpt of the TWIN elevator case study.

2 The TWIN Elevator

The idea of having an elevator with two independent cabins operating in the same
shaft dates back to the 1930s. However, first attempts to realize this efficient
transportation system failed and the engineering of a control system has been
an unsolved problem for almost a century. Only in 2002 ThyssenKrupp installed
the first TWIN elevator system at Stuttgart University. The history of TWIN
proves the importance of computer science as an engineering discipline.

Fig. 3. Minimal
TWIN installation
(schematic view): a
TWIN shaft with two
cabins on the left and
conventional shaft on
the right

In a TWIN elevator system, two cabins are arranged
one above the other; they run independently in the
same TWIN shaft – also at different speeds. A safety
distance is kept, depending on the speeds involved. The
cabins can move in different directions, which means
that they can also move towards each other [13]. Be-
cause the TWIN cabins cannot sidestep, each TWIN
installation comprises at least one conventional shaft
to serve routes that would result in a crossing of the
TWIN cabins (Fig. 3).

A prospective passenger communicates his destina-
tion level no longer within the elevator cabin, but in-
stead by Destination Selection Control (DSC) termi-
nals mounted on each floor. The control system then
selects one of the cabins capable to serve the call.

The informal specification of safety requirements of
ThyssenKrupp is the basis for the formal expression by
means of formal specification and model checking.

2.1 Informal Requirements Specification

A system like the TWIN elevator is per se safety crit-
ical and requirements are amplified in comparison to
traditional elevator systems. Henceforth, a four-level
safety concept has been implemented; it constitutes the
core of the original safety specification as published by
ThyssenKrupp [12]. Four safety levels express an escalating strategy of electronic
and mechanical measures targeted to prevent a shaft’s two cabins from colliding.

The TWIN-specific requirements are built on top of general safety consid-
erations applying to any multi-storey passenger elevator. We pool latter in the
zeroth safety level.

VI

– 0th level: Generic elevator safety requirements
Cabin movements are bound by the shaft’s limits. The cabin’s door is closed
when the cabin is moving and only opens after the cabin is stationary, and
has reached its target level. To assure timely call processing, a cabin starts
moving in the right direction as soon as it gets assigned a call. A given call
must be finalised prior to processing the next one. To prevent damage from
the drives, the direction of travel must not change abruptly. Call processing
is closely related to fairness requirements: a call will be processed and not
remain unprocessed for an infinite time; once begun, the call will be finished
and the passenger will reach his target level.

– 1st level: Distance-based dispatching
In the first safety level, calls are allocated in such a way that the two cars of
the TWIN cannot hinder each other and a minimum safety distance of one
storey is maintained. The safety distance varies depending on system speed:
the higher the speed, the greater the safety distance.

– 2nd level: Monitoring of safety distances
The second safety level uses communication software to control the distance
between the two elevator control units. Each controller is fed with the lo-
cation and speed of both cars and uses this information to calculate the
distance between them. When the TWIN cars approach each other inadmis-
sibly (warning distance is breached), they are slowed to a speed at which they
can be stopped at any time without breaching the required safety distance.

– 3rd level: Emergency stop
The third safety level triggers the emergency stop. If the safety distance is
breached, the drives are automatically stopped and the brakes activated. Cal-
culation of the safety distances and activation of the brakes is done by robust
safety controllers (PLCs) operating independently of the elevator controllers.
Programmable Logic Controllers are components packaged and designed to
be functional under hostile conditions. Their functionality is provided by
special purpose microprocessors whose well-functioning can be verified inde-
pendently of the overall system.

– 4th level: Engagement of mechanical brakes
If the three preceeding safety levels fail to slow the cars, the fourth-level
safety controller automatically engages the mechanical brakes of both cars.
The brake on the upper car works in downward direction and that of the
lower car in upward direction. This means that the cars cannot collide even
if they are unfavourably loaded or the brake system fails. It is therefore
impossible for the cars to collide.

We were able to formalize these natural language requirements into temporal
logics for all safety levels.

2.2 Passenger Call Allocation

The allocation of the passenger calls to the cars – essential for the first safety
level – is a key requisite for the TWIN system. The Destination Selection Con-
trol (DSC) system can optimize traffic flows and help passengers reach their

VII

Fig. 4. Destination Selection Control (DSC). The photo (c©ThyssenKrupp) shows the
indication of the elevator to be taken.

destinations faster and more safely. In the past, passengers were only able to
communicate to the elevator control system that they were waiting on a cer-
tain floor to go up or down. Not until they entered the car and pressed the
appropriate button could they indicate the desired target level.

The DSC controls are aware of both items of information in advance via a
touch screen terminal located at a central point – normally in the hall. Passengers
can enter their destination with a single touch. In contrast to traditional elevator
systems, a passenger on a certain level simply enters her desired target level. The
system selects the most appropriate elevator; the passenger is informed via the
DSC display which door to go to (Figure 4). The DSC reduces both the number
of stops at other floors and journeys without passengers. The time to destination
is shorter, which in turn improves capacity. Allocation of pending calls can be
optimized; passengers with similar routes may be grouped and conducted to the
same door.

The call dispatching is governed by the impossibility of one cabin overtaking
the other cabin in the same shaft. The resulting processing guidelines can be
formalized by the following algorithm, also depicted in Figure 5, that explicits the
call dispatching. It hereby realizes the 1st safety level. Note that the algorithm
is symmetric with regard to the travel direction; that’s why we provide the
alternative reading in brackets. Sometimes, several cabins may be able to serve
a call.

– (a) Cross-over routes, i.e. routes where the lower [upper] TWIN car’s target
level is above [below] the other car’s target level, cannot be served by the
TWIN system as the cars would collide.

– (b) Calls involving transits from the downmost to the upmost level or vice
versa cannot be handled by the TWIN elevator, as the cars cannot sidestep.
These routes are served by a conventional elevator, present in every TWIN
installation.

– (c) The upper [lower (d)] TWIN cabin handles all routes whose end-point is
above [below] the other car’s position.

VIII

(a) cross-over routes

t1

L

U

(b) extreme level routes

t1

L

U

(c) upper region routes

t1

L

U

(d) lower region routes

t1

L

U

t2

L’

U’

t2

L’

L’

t2

U’

t2

L’

U’ U’

Fig. 5. Call assignment to TWIN cabins. The state transitions for routes (a) and (b)
are dotted, as those cannot be served by TWIN cabins: route end-points must be
located in the reachable zone (in the figure).

Call assignment to cabins must take into account the future position of the
other TWIN cabin in the same shaft. Evaluation of the safety distances occurs
at a given time, implying that the present positions are compared to present
positions and future positions to future positions, respectively.

Moreover, call processing involves two phases: In the first phase, the assigned
car heads for the level where the passenger is waiting to be picked up; in the
second phase, the car moves with the passenger to his destination level. As the
same cabin must be moved in both stages, no reassignment of a given cabin must
take place between phase one and two, and neither within each of the phases.
Calls may only be assigned to a cabin if the cabin is vacant and not processing
another call. Only if the same cabin can execute both phases, it can be assigned
the call. Newly placed calls must not perturbate call processing even if all cabins
are currently busy.

3 Translating Object-Z to SMV

3.1 Using Object-Z for specifying industrial software

Advantages compared to other specification languages Object-Z [4] is
an object-oriented extension of the standardized specification language Z [5].
It has well understood semantics [11] and benefits from tool support [3]. Using
Object-Z as a specification language for industrial systems has several advantages
compared to alternative approaches, such as pure Z specifications or semi-formal
techniques.

Whereas a Z specification defines a single state space, Object-Z’s classes
with their separate namespaces are especially handy for specifying medium- to
large-scale software systems [10]. The object-oriented specification paradigm is
well adapted to distributed and embedded systems; communicating objects re-
flect the spatial separation of different components. Unlike Z, Object-Z supports

IX

specifying concurrent systems. Multiple instantiation of the same class provides
for easy scalability where Z would have required a manual enumeration of each
instance.

In comparison to semi-formal specification languages such as UML (that can
be used complementarily), Object-Z provides formal rigour. Object-Z’s number
of graphical constructs is manageable and each of them is well understood. Even-
tually, translating a semi-formal language to a formal language would leave space
for interpretation. This is undesirable for reliable and deterministic results.

One of the objections against formal techniques that are articulated in an
industrial environment, is that they are intellectually more demanding than semi-
formal techniques. Undoubtedly, UML is widespread by now, and therefore it
is part of acedemic curricula; considerable secondary literature with numerous
guidebooks exists. Yet, adequate tool support can alleviate the cognitive burden
and make formal languages like Object-Z more accessible.

Key concepts of Object-Z In Object-Z, graphical schema notation enables
the concise structuring of state and operation specifications and modularizes
them into classes. Any schema consists of a declaration part and a predicate part
enabling abstract specification of invariants, pre-conditions and post-conditions.
Classes in Object-Z encapsulate a state and an initial schema, as well as oper-
ation schemas specifying the methods of an object oriented class. In addition,
Object-Z features specific class constructs for visibility, constant declarations,
polymorphism, and inheritance.

The idea of instantiation of an object o of a class C is naturally represented
by the declaration of a variable o : C where o then denotes the identity of an
object. Object-Z has a reference semantics [11] and the common object-oriented
dot notation, e.g. o.m to annotate the invocation of an object’s feature.

The so-called schema calculus comprises operators enabling composition of
operations to create new operations, especially in the context of modular sys-
tems. In Object-Z operations are composed by conjunction, non-deterministic
choice, sequential composition, and parallel composition.

Advantages of translating Object-Z to SMV Translating Object-Z to SMV
brings together the advantages from both Object-Z and SMV while surmount-
ing their respective difficulties. On one hand, this is a powerful specification
language with inherent structuring concepts; on the other hand, this is an auto-
mated model checker. General-purpose model checking tools profit from a larger
community and ongoing research resulting in performance enhancements com-
pared to niche tools.

3.2 Translation procedure and characteristics

The translation from Object-Z to SMV is realized by a set of general translation
rules that exhaustively cover the industrially relevant constructs of Object-Z.
That are, as basic constructs – with the restriction to finite sets – data types,

X

variables and constant, classes, and instantiation of latter. For objects, state
transitions by operations, object communication, and operation composition are
covered. The resulting translation rules are intuitively sound and their formal
correctness can be proven.

Our translation is direct in that it identifies concepts of Object-Z, like propo-
sitional logic, basic types, and the class concept, with almost directly correspond-
ing features of SMV. Where appropriate, the missing semantics is added in the
translation process using additional definitions, constraints, or other construc-
tions.

The striking advantage of this direct translation is that it is quite obviously
structure preserving, i.e. the structure of the Object-Z classes and SMV modules
correspond one to one and the initial and state schemas of Object-Z have distinct
representations in SMV code chunks. Although the granularity of the operations
cannot be preserved, one can show that the translation distributes over the
constructs of SMV used for operation representation. The translation rules do
not flatten the specification.

4 The Quality Feedback Loop in Practice

This section illustrates how our quality feedback loop can be applied rewardingly.
Based on an excerpt from the TWIN Elevator case-study [6] (see Section 2),
we emphasize on how the feedback loops between the formal specification of
interfaces and the requirements verification techniques.

The System Specification in Object-Z. The sub-system we consider is an
elevator cabin, as it can be found in a conventional or in the TWIN elevator.
For the sake of clarity, we specify the system in a very concise manner.

First, the cabin’s specification in Object-Z declares two constants, the lowest
(LevelGround) and the highest level (LevelTop) of the shaft in which the cabin
is running. Moreover, the data type Level is declared as an integer subrange.
These declarations of a global scope are accessible to the environment.

Second, the cabin is specified as an Object-Z class. The cabin’s state is rep-
resented by the value of its state variable curr level of type Level. This state
variable is accessible from the environment, as it is included in the visibility
list (� (curr level)). Initially, as specified in the INIT-schema, the cabin’s current
level is the ground level.

The Cabin class comprises an operation MoveUp. (A MoveDown operation
would be included as well, but we can abstain from it here as it does not
contribute to the illustration of the feedback loop.) The operation’s delta-list
(∆(. . .)) includes all state variables that will be changed by the operation, here
it is only curr level. In the operation’s predicate part, the pre-condition and the
post-condition are noted. Here, the post-condition is formed by curr level ’s value
after the execution of the operation. Note the primed notation to reference to
the post-state. No restriction is imposed on the pre-state.

XI

Level ::= (0 . . 200) LevelGround = 1
LevelTop = 12

Cabin

� (curr level)

curr level : Level
INIT

curr level = LevelGround

MoveUp
∆(curr level)

curr level ′ = curr level + 1

The System Specification translated to SMV. Following the principles
and translation rules [7], we are able to translate the specification of the cabin
from Object-Z to the SMV input language.

First, the declared data type Level and the two constants LevelGround and
LevelTop are translated. Definitions for the boolean constants are automatically
added.

typedef Level 0..200;

#define LevelGround 1

#define LevelTop 12

#define true 1

#define false 0

Second, the Object-Z class is translated to an SMV module. It contains the
type state variable curr level.

module Cabin()

{

curr level : Level;

For each operation in the Object-Z class, two additional boolean variables
are introduced: operationname pre is defined by the expression of the op-
eration’s pre-condition. If the latter is missing, the variable’s value is true.
operationname stimulus indicates whether the execution of the operation
has been stimulated. According to the semantics of Object-Z, the system offers
several operations that may or may not be invoked by the environment. Not
each operation is always executed.

XII

/* operation MoveUp */

MoveUp pre : boolean;

MoveUp pre := true;

MoveUp stimulus : boolean;

Finally, the state transitions are grouped by state variable. In SMV, the con-
struct next(variablename) := expression; assigns expression to variable
if the state transition happens. We use a conditional construct inside the state
transition, that spans over all operations susceptible to change the variable con-
sidered. The state transition is guarded by the operation’s pre-condition (here:
MoveUp pre) and by the operation’s stimulus (here: MoveUp stimulus). A fall-
back case default: variablename; is always added providing for the variable
value to remain unchanged in case none of the operations is executed.

next(curr level) := case{

MoveUp pre & MoveUp stimulus : curr level + 1;

default : curr level; };

}

SMV requires one main module in each program. All top-level modules are
instantiated once in this module (here, only the module Cabin). Also, the stim-
ulus for all operations not used to construct any other operation inside the
Object-Z specification is set to true to assure that a ‘running’ system is checked.
Here, the Object-Z operation MoveUp is stimulated: system.MoveUp stimulus
:= true;.

module main()

{

system : Cabin();

system.MoveUp stimulus := true;

}

The resulting complete SMV program can be loaded in SMV. In an integrated
development environment, SMV can also be called from the command-line.

Formulating Requirements in Temporal Logic. Based on the interface of
the system formed by the global scope definitions and exposed state variables
(cf. the visibility lists in Object-Z), a stakeholder will naturally formulate system
requirements in temporal logic.

As an example, consider the following requirement, that the cabin’s move-
ments are restricted by the boundaries of its shaft:

LevelGround 6 system.curr level 6 LevelTop

The state variable curr level is in the visibility list of the Cabin class; the
constants LevelGround and LevelTop are defined system-wide.

After a syntactical rewriting, we have this requirement as a temporal logic
formula in the SMV input language, where “assertions” can optionally be named
(here: CabinStaysInShaft).

XIII

CabinStaysInShaft: assert

G (LevelGround <= system.curr level) & (system.curr level <= LevelTop);

SMV automatically checks the assertion on the specified system. On standard
desktop hardware, the verification results are available instantaneously.

In our case, SMV has detected a violation of the formulated assertion. The
verification result is “false” (Fig. 6). In an interactive use of SMV, the detected
error is reported. A trace leading to the error is calculated and output as a coun-
terexample. During the verification process, SMV also creates a more verbose
log, that may be parsed for further analysis.

Fig. 6. The property ‘CabinStaysInShaft’ could not be verified; SMV computes a
counter-example and outputs the trace leading to the violation of the property.

Using the generated trace, one is able to discern the state variables, whose
changes caused the error. In our example, the state variable system.curr level
is changing. Based on this information, the system’s operations’ delta-lists are
examined. This way, we are able to determine those operations in the (Object-Z)
specification that are responsible for state transitions in the concerned variables.
Here, we locate the operation MoveUp.

MoveUp
∆(curr level)

curr level ′ = curr level + 1

← name of operation concerned

← delta-list of changed state variables

XIV

After a thorough analysis, the system engineer identifies a missing precondi-
tion as causing the error. A guard must be added to the operation, so that the
cabin is no longer able to move up when it is already on the top-most level:

MoveUp
∆(curr level)

curr level ′ = curr level + 1
curr level < LevelTop ← additional pre-condition to be inserted

After having added the precondition, a new quality feedback loop is initiated
as a change has occured. This time, verification succeeds and the requirement is
fulfilled.

5 Conclusions

We have introduced our quality feedback loop based on a closed iteration looping
over requirements and interface models expressed in Object-Z. We presented the
requirements specification of the TWIN elevator and the systematic translation
process from Object-Z to the model checker SMV. We then illustrated our feed-
back loop in practice by showing how an insufficiently modelled interface spec-
ification is detected: when checking the automatically translated requirement
on the system model SMV produces an error message plus a trace indicating
the error. The responsible operation in the interface specification can be sytem-
atically located and corrected. In general, this feedback could have produced
inconsistencies in the requirements as well.

Using this systematic translation we have translated the entire TWIN re-
quirements specification as presented in Section 2 into Object-Z and sucessfully
verified all safety properties on the mechanically generated SMV representation
[6, 7].

References

1. Ramesh Bharadwaj and Constance L. Heitmeyer. Model Checking Require-
ments Specifications Using Abstractions. Automated Software Engineering 6(37–68),
Kluwer 1999.

2. C. Canal, L. Fuentes, A. Vallecillo Extending IDLs with p-calculus for Protocol Com-
patibility ECOOP’99 Workshop on Object Interoperability Lisbon (Portugal), June
1999 Object Interoperability, Selected Papers, pp. 13-24, Universidad de Málaga,
1999, ISBN: 84-699-0520-1.

3. The Community Z Tools project, 2006. http://czt.sourceforge.net/
4. Roger Duke and Gordon Rose. Formal Object-Oriented Specification Using Object-

Z. Cornerstones of Computing. MacMillan, 2000.

XV

5. International Organization for Standardization: ISO/IEC 13568:2002: Information
technology – Z formal specification notation – Syntax, type system and semantics.
http://www.iso.ch/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=21573

6. Florian Kammüller and Sören Preibusch. An Industrial Application of Symbolic
Model Checking – The TWIN-Elevator Case Study. Accepted for publication in In-
formatik Forschung und Entwicklung. Springer, 2007.

7. S. Preibusch and F. Kammüller. Checking the TWIN Elevator System by Trans-
lating Object-Z to SMV. Formal Methods for Industrially Critical Systems, FMICS
2007. Vol. 4916, LNCS, Springer.

8. Sören Preibusch. TWIN Elevator System, Concise Object-Z Specification, 2007
http://preibusch.de/projects/TWIN/Concise OZ

9. Sören Preibusch. TWIN Elevator System, Concise Object-Z Specification
(Translation to SMV), 2007
http://preibusch.de/projects/TWIN/Concise OZ Translation SMV

10. Graeme Smith. The Object-Z Specification Language. Advances in Formal Methods,
Kluwer Academic Publishers, 2000.

11. Graeme Smith and Florian Kammüller, Thomas Santen. Encoding Object-Z in
Isabelle/HOL. ZB 2002: Formal Specification and Development in Z and BSpringer
LNCS 2272, 2002.

12. ThyssenKrupp (2005) Safe distance - Four-level safety concept.
http://twin-elevator.com/Safe distance .353.0.html?L=1

13. ThyssenKrupp Elevator. TWIN Report, 2005
http://www.twin.thyssenkrupp-elevator.de/?&L=1

