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Abstract 

The empirical mean-variance evidence comparing the performance of socially responsible 
investments (SRI) and conventional investments suggests that there is no significant 
difference between the two. This paper re-examines the problem in the context of Marginal 
Conditional Stochastic Dominance (MCSD), which can accommodate any return distribution 
or concave utility function. Our results provide strong evidence that there is a financial price 
to be paid for socially responsible investing. Indices composed of socially responsible firms 
are MCSD dominated by trademarked indices composed of conventional firms as well as by 
indices carefully matched by size and industry with the firms in the SRI indices. Zero cost 
portfolios created by shorting the SRI index and using the proceeds to invest in the 
conventional index generate higher average returns, lower variance and higher skewness than 
either of the two indices standing alone. They also MCSD dominate the SRI and conventional 
indices standing alone.  
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1. Introduction 

Socially Responsible Investments (SRI), have a long and noble history, but have only 

grown to prominence in the recent past. In the beginning, SRI was treated as a fad by the 

wider finance community, a fad that would either disappear or confine itself to the fringes 

(Renneboog et. al., 2008a). As of 2014, however, SRI investments account for 11% ($3.74 

trillion out of $33.7 trillion) of assets under management in the US4, and 27% (£1.235 

trillion5 out of £4.5 trillion6) of assets under management in the UK. Such widespread 

prominence puts it in a position that warrants closer scrutiny. 

 Given the importance of the sector and its implications for resource allocation, the 

question we ask in this paper is whether there is a price to be paid for restricting investment 

opportunities to the SRI subset of the overall investment opportunity universe. Mean-variance 

theory suggests that reduced diversification opportunities should be reflected in inferior 

investment performance. But, a close look at the literature, which is reviewed in the 

following section, shows that there is no conclusive evidence that this is the case. These 

studies, however, are subject to serious shortcomings in how performance has been measured 

and tested.  

Some studies have compared the performance of SRI funds with conventional funds 

(for example: Hamilton et. al. 1993 and Bauer et. al., 2005). This approach ignores the fact 

that the difference in performance may arise due to other factors like fund size, age, 

investment universe, etc. To overcome these problems, others, such as Mallin et. al. (1995), 

Gregory et. al. (1997), and Kreander et. al. (2005), used a matched pair approach, i.e. they 

first matched the SRI funds with similar conventional funds using the criteria of size, age, 

                                                
4 US Social Investment Forum (2014) 
5 UK Social Investment Forum (2014) 
6 Investment Management Association (2014) 
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investment universe and country. This approach, although an improvement, ignores the fact 

that differences in performance may be due to differences in the ability of fund managers 

rather than the nature of the investments (SRI vs conventional). Statman (2000, 2006) and 

Schroder (2007) provide a solution to this issue by comparing the performance of SRI indices 

with conventional indices based on the argument that indices are immune to biases associated 

with specific funds, such as management quality, operating costs, size, age, etc. and hence 

serve to isolate the impact of the SRI factor on performance.  

All of the foregoing studies suffer from a common weakness. Performance 

measurement has been limited to the first two moments of equity return distributions and 

testing has concentrated on differences in first moments (equity returns) or some form of the 

Mean-Variance (MV) framework, often, but not always, based on the capital asset pricing 

model (CAPM). Although it is intuitively attractive and widely accepted throughout the 

financial profession, the MV framework is only a special case of expected utility 

maximization, which lies at the heart of modern investment theory and practice and, in its 

most general form, considers all moments of return distributions. By neglecting higher 

moments of return distributions, potentially pertinent information on performance is being 

eliminated, while tests of performance based on specific asset pricing models may have more 

to say about the models themselves than about performance. There are no studies that 

generalize the measurement of performance by considering all the moments of the 

distributions of equity returns and test the effects directly, that is, outside the context of a 

specific asset pricing model. This paper is a first step to fill this gap. 

We argue that besides mean and variance, performance measures should reflect the 

third and higher moments of equity return distributions. There are strong reasons to believe 

that third moments and higher are important determinants of performance. First of all, it is 

well known that the first and second moments are only appropriate for quadratic utility 
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maximisers or normally distributed returns. It is also well known that quadratic utility 

functions have many shortcomings7 and it is a well documented fact since Mandelbrot (1963) 

that asset returns are generally not normally distributed. More importantly, it has been shown 

that the third and the fourth moments of return distributions – skewness and kurtosis 

respectively – do matter to investors, who show a preference for positive skewness and an 

aversion to kurtosis (see, Kraus and Litzenberger 1976; Fang and Lai 1997; Dittmar 2002; 

Post et. al. 2008). Clark and Kassimatis (2013) show that diversification opportunities 

increase significantly when all moments of return distributions are considered. 

With this in mind, we use indices and an innovative performance measure to compare 

SRI and conventional investments. More specifically, we use the FTSE4Good Index Series as 

the SRI investment universe and the concept of Marginal Conditional Stochastic Dominance 

(MCSD) developed by Shalit and Yitzhaki (1994) to estimate investment performance. Under 

the general assumption that investors are risk averse, MCSD provides the probabilistic 

conditions under which all risk-averse investors prefer one risky asset over another. In the 

terminology of stochastic dominance, MCSD provides the tools to assess the “dominance” or 

superiority of one asset over another. Dominance means that the utility of all risk averse 

investors can be improved by increasing the share of the dominant asset at the expense of the 

dominated asset8. 

There are no assumptions regarding the efficiency of the global market portfolio or 

the distributions of equity returns. The only assumption is that investors are risk averse and 

that part of their investment decision process is to improve the return distribution of their 

portfolios, i.e. they diversify but do not necessarily aim to create efficient portfolios in the 

                                                
7 For example, third derivatives and higher are equal to zero or do not exist, which rules out prudent and 
temperant behaviour. For a discussion of prudence and temperance see Eeckhoudt and Schlesinger (2006) 
8 The size of the diversification adjustment can also be calculated (see: Clark and Jokung 1999). Shalit and 
Yitzakhi (2010) show how MCSD rules can be easily applied for portfolio choices. In this paper we are only 
interested in identifying dominance. 
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sense of Markowitz portfolio optimization. MCSD tells us if investors will prefer an index 

because it can improve their portfolio’s characteristics, or if they avoid it because it affects 

their portfolio negatively.  

In this paper we compare the four socially responsible FTSE4Good indices with other 

trademarked conventional indices as well as with indices composed of conventional firms 

carefully matched to the firms in the FTSE4Good indices.  In the major contribution of this 

paper, our results show that although there is nothing to be gained or lost from socially 

responsible investing in terms of mean and variance, there is a high price to be paid in 

investor utility when the higher moments of the return distributions are taken into 

consideration. In four of six comparisons with trademarked conventional indices, the 

FTSE4Good indices are MCSD dominated by the trademarked conventional indices. 

Importantly, they are also dominated in all four of the comparisons with indices composed of 

conventional firms carefully matched to the firms in the FTSE4Good indices. These results 

are evidence that any risk averse investor can improve his utility by reducing his holdings of 

FTSE4Good indices and purchasing conventional ones. We test this proposition by 

constructing zero cost portfolios created by shorting the SRI index and using the proceeds to 

invest in the conventional index. In all cases, these zero cost portfolios generate higher 

average returns, lower variance and higher skewness than either of the two indices standing 

alone. Most importantly, they also MCSD dominate the SRI and conventional indices 

standing alone, which confirms the proposition that any risk averse investor can improve his 

expected utility by reducing his holdings of SR firms and purchasing conventional stocks. 

We proceed as follows. Section 2 discusses the relevant literature. Section 3 describes 

the data. Section 4 presents the MCSD and MV methodology used in the testing. Section 5 

presents the results and section 6 concludes. 
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2. Previous related work 

 There is a stream of research that compares the performance of SRI stocks with 

conventional stocks. Some of this research provides evidence that investors in stocks with 

high SRI ratings are at an advantage. For example, Kempf and Osthoff (2007) using the 

Carhart (1997) four factor model find that a strategy of buying stocks with high SRI scores 

and selling those with low SRI scores produces an abnormal return of up to 8.7% per year. 

Chan and Walter (2014), who also use the Carhart (1997) four factor model, report a “green 

premium” of 7% for environmentally “friendly” firms. However, Statman and Glushkov 

(2009) using a similar approach find that the performance of SRI stocks is not statistically 

different from conventional ones. On the other hand, Hong and Kacperczyk (2009), also 

using the Carhart four factor model find that a portfolio comprised of “sin stocks” i.e. 

alcohol, tobacco and gaming, significantly outperforms similar comparable stocks, thus 

implying that investors in SRI stocks seem to be at a disadvantage. However, after controlling 

for managerial skills, transaction costs and fees, Humphrey and Tan (2013) find no 

outperformance of portfolios that include “sin” stocks9.  

 A number of other studies have compared the performance of SRI funds with 

conventional funds. Some of these used only the CAPM to compare performance (for 

example: Hamilton et. al., 1993; Mallin et. al., 1995; Goldreyer et. al., 1999) while others 

have used multifactor models (for example: Amenc and Sourd, 2008; Bauer et. al., 2005; 

Fernandez and Matallin, 2008; Geczy et. al., 2003; Gregory et. al., 1997; Kreander et. al., 

2005; Renneboog et. al., 2008b, Munoz et al., 2013). However, none of these studies found 

                                                
9 See Derwall et. al. (2011) for an excellent and detailed review of SRI stock performance studies. See Malik 

(2014) for a review of the literature on corporate social responsibility and firm value. 
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any statistically significant difference in performance between the SRI and conventional 

funds.  

 Recognizing that differences in performance may be due to differences in the 

portfolio construction process or in the ability of fund managers rather than the nature of the 

investments themselves, some authors have compared the performance of indices. Two of the 

first studies by Sauer (1997) and Statman (2000) compared the performance of the Domini 

Social Index (an SRI or screened version of the conventional S&P 500) with the S&P 500. 

They used the Sharpe ratio and the CAPM to estimate Jensen’s alpha for the comparison and 

found no significant difference in the performance of the two indices. Statman (2006) 

extended his earlier (2000) study and compared the performance of four popular SRI indices 

with the S&P500 index. The four SRI indices used were: Domini Social Index, Calvert’s 

Social Index, Citizen’s Index and Dow Jones Sustainability US Index. This study also had a 

larger time horizon extending up to 2004, but, as with his previous paper, was limited to the 

US. He found evidence that the returns of the SRI indices exceeded the returns of the 

S&P500, but the results were not statistically significant. Schroder (2007) was the first study 

on this topic to look outside the US. He studied the performance of 29 SRI indices 

worldwide. Using the simple CAPM to estimate alpha as the performance parameter, he 

found no significant evidence of under/over performance10. 

The upshot of all this is that there is no conclusive evidence that there is anything to 

be gained or lost from socially responsible investing.  

3. Data and Sample Description 

                                                
10 Schroder (2007) argued against the need to use multi-factor models since indices do not follow specific 

investment styles and are closely related to the market index. 
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 The FTSE4Good series covers four geographical regions: US, UK, Europe and 

Global. It has one tradable index for each region. The FTSE4Good advisory committee 

decides whether a company is “responsible” enough to be included in the index series. 

Broadly speaking they look at the following issues: corporate social responsibility, non-

discriminatory labour policies, fair stakeholder practices, environmental sustainability and 

transparent management. These SRI indices contain the largest 50 or 100 companies in the 

region and are thus basically “SRI screened” versions of the more popular conventional 

indices like the FTSE100. 

Following Sauer (1997) and Statman (2000, 2006) we compare the performance of 

the FTSE4Good series with a similar conventional index and use relevant benchmarks to 

represent the parent market portfolio for both the SRI as well as conventional indices11. All 

the trademarked indices used in this study are listed in Table 1. Since we will be making pair 

wise comparisons, the indices are grouped together with each group consisting of one market 

index, one SRI index and one conventional index. The FTSE4Good index series has 4 

tradable indices. We compare these SRI indices with similar conventional ones. This gives us 

6 groups and in all 14 individual indices. The market index is used as the market portfolio in 

the MV approach and for wealth ranking in the MCSD approach12. 

 [PLEASE INSERT TABLE 1 HERE] 

 

                                                
11 It is worthwhile noting that some prior studies have compared directly SRI indices with their relevant 
benchmarks (e.g., Schroder, 2007). We believe that this approach is somehow flawed because it compares two 
indices, one of which is far more diversified than the other, thereby violating the canon of likewise comparisons. 
For example, comparing the performance of the FTSE4Good-UK-50 which is an SRI index comprised of 50 
stocks with that of the FTSE-Allshare which is composed of almost all listed stocks in the UK. It would make 
for a fairer comparison if one were to use the FTSE-Allshare to represent the market index/portfolio while 
comparing the performance of the SRI FTSE4Good-UK-50 with the conventional FTSE-100 or the FTSE-250. 
 
12 Following the original empirical implementation of MCSD by Shalit and Yitzhaki (1994), we use the index as 
a proxy for daily changes in individual wealth. Since there is no need to specify utility functions, any monotone 
transformation of individual wealth is appropriate. 
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We collect weekly data from DataStream for all the indices. We also collect weekly 

data for the risk-free rates in the currency that matches the currency of the indices in each of 

the 6 groups. Within each group we ensure that weekly values for all 3 indices are collected 

in the same currency. The study period starts from July 2001, i.e. when the FTSE4Good 

index series was launched, and ends at November 2010. This gives us almost 10 years of 

weekly data amounting to 488 observations. We then calculate the weekly returns for each 

index using the following formula: 

��,� = � ��,		
��,	��
 − 	1             (1) 

Where ��,� = Return for index i in week t; ��,� = Closing value for index i in week t; ��,���  = 

Closing value for index i in week t-1. 

Table 2 shows descriptive statistics of the weekly return series for all the indices included in 

this study. 

 [PLEASE INSERT TABLE 2 HERE] 

Looking at the raw mean returns in Table 2, we find that the FTSE4Good indices 

underperform their conventional counterparts in all six cases. In five out of those six cases the 

FTSE4Good indices also have higher risk as estimated using standard deviation. All the 

indices in the sample have negative skewness and excess kurtosis that are significant at the 

5% level. We note again that skewness and kurtosis respectively do matter to risk averse 

investors, who show a preference for positive skewness and an aversion to kurtosis (see, 

Kraus and Litzenberger 1976; Athayde and Flôres 1999; Fang and Lai 1997; Dittmar 2002; 

Post et. al. 2008). With this in mind, we perform the Shapiro-Wilk test on the return series of 

all the indices. We find that none of the returns are normally distributed. This provides 

further evidence that MV analysis is ill-suited for this data set. It has also been argued that 



10 
 

stock return data is more likely to be log-normally distributed than normally distributed 

because stock prices cannot be negative. Hence, we test to see if the data is log-normally 

distributed using the Shapiro-Wilk test. We reject normality in all cases13.  

It is important to note that none of the previous studies have discussed the issue of 

normality nor presented any tests to show that the returns were normally distributed. Given 

the importance of normality for the MV paradigm they employ, this is an oversight that casts 

a shadow of doubt on their results. 

As a first comparison, we test the homogeneity of means and variances of the two 

indices in each set. The t-test and Levene’s F test are commonly used to compare means and 

variances respectively. Both of these tests assume normally distributed data but are robust to 

minor deviations from normality. Therefore, as a first step we use these tests. However, since 

our data is significantly non-normal we also compare means and variances using tests that are 

specially designed to be robust for non-normally distributed data. Thus, in the next step, for 

comparing means we use the Mann-Whitney U test and for comparing variances we use the 

Brown & Forsythe (1974) test14.  

Table 3 lists results of the comparison of means and variances tests. We find no 

statistically significant difference at the 5% level between the means and variances of the SRI 

vs conventional indices return series. Thus, based on MV analysis our results are insignificant 

                                                
13 We list here only the results for the arithmetic returns series since that is the one used in our study. 
 
14 The Mann-Whitney U test is defined as follows: � = ���� + ��������

� − ∑ ����������  .Where: �� = sample size 

of the first sample; ��= sample size of the second sample; ��  = pooled ranks. U can be thought of as the number 
of times observations in one sample precede observations in the other sample within the pooled ranks.  
The Brown and Forsythe (1974) test is run in two steps. In the first step a new time series �� = | � −!�| is 

calculated, where !�  is the median for group i. The new time series is the distance of each observation in the 
original times series from the median of the original series. Step 1 is then repeated for the other index as well. In 
Step 2 ANOVA is used to test if the means of these two new series are equal. As per ANOVA, if the two means 
are equal then we can say that variances of the original series are equal as well. 
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and we proceed to the next stage of comparison using marginal conditional stochastic 

dominance (MCSD). 

[PLEASE INSERT TABLE 3 HERE] 

4.Methodology 

4.1 MCSD and Absolute Concentration Curves  

Under the general assumption that investors are risk averse, MCSD provides the 

probabilistic conditions under which all risk-averse investors prefer one risky asset over 

another. In the terminology of stochastic dominance, MCSD provides the tools to assess the 

“dominance” or superiority of one asset over another. Dominance means that the utility of all 

risk averse investors can be improved by increasing the share of the dominant asset at the 

expense of the dominated asset. Thus, in our case with respect to the matched pair of SRI and 

conventional indices, we use MCSD for performance evaluation. If dominance exists, the 

dominating index outperforms the dominated index. In the absence of dominance, 

performance is deemed equivalent.   

According to the MCSD theorem, given a portfolio α, asset k dominates asset j for all 

concave utility functions if and only if:  

ACC (k) ≥ ACC (j) with at least one strong inequality     (2) 

Where:  

ACC = Absolute Concentration Curves 

More simply, asset k dominates asset j if the ACC of asset k lies above the ACC of asset j. 

We follow Shalit and Yitzhaki (1994) to calculate the said ACCs as follows. 
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 In each set we have 3 indices: one SRI, one conventional and one market. We take the 

weekly returns for the 3 indices where the number of observations (N) = 487 in each series. 

We use the market index as the wealth index and sort (or rank) the returns on this index from 

lowest to highest15. The returns of each index are then matched to the return on the wealth 

index. For example, if the lowest return on the wealth index was for the 10th week of 

observations, we match the returns of each index for the 10th week of observations. Next, 

each of the terms in the two index return series (SRI and conventional) is multiplied by 1/N 

to obtain equally weighted returns. We now take the cumulative sum of this weighted return 

series for each index i.e. each term in the cumulative sum series is the sum of all previous 

terms of the weighted return series. For example, the 3rd term of the cumulative return series 

of index A is the sum of the 1st, 2nd and 3rd terms from the weighted return series for index A. 

This cumulative return series for index A is known as the ACC for index A. Similarly we 

calculate the ACC for the other index. Next we compare the two ACCs calculated above at 

each of the 487 points. According to the MCSD criteria, one index dominates the other if its 

ACC is either equal to or greater than the ACC of the other at all the points. The results of the 

MCSD tests for the six sets of indices are reported in Table 4. 

4.2 Mean-variance testing 

To allow for comparison with previous studies and to check the robustness of our 

results, we also perform the MV analysis implemented by earlier studies. We calculate & 

compare the Sharpe Ratios, Treynor Ratios, Jensen’s Alphas and four factor alphas for each 

pair of indices.  

The Sharpe Ratio (Sharpe, 1966) is defined as the excess return of a portfolio per unit 

of risk, which is measured as the standard deviation of the return.  

                                                
15 As mentioned above, since there is no need to specify utility functions, any monotone transformation of 
individual wealth is an appropriate wealth proxy. 
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Sharpe Ratio =  
"��"#
$�                            (3) 

Where:  %�  = mean return of index i; %& = risk free rate for the given period in the respective 

currency; '� = standard deviation of the index i returns. 

The Treynor Ratio (Treynor, 1965) is similar to the Sharpe Ratio. It calculates the 

excess return of a portfolio per unit of risk which is measured as the Beta of the portfolio.  

Treynor Ratio =  
"��"#
(�                                (4) 

Where: %�  = mean return of index; %&  = risk free rate for the given period in the respective 

currency; )� = Beta of the index relative to the market portfolio. 

 Jensen’s alpha (Jensen, 1968) is used to calculate the excess return of a portfolio. 

Simply speaking, this is the constant in the CAPM regression:   

%�,� − %&,� = *� + )�+%,,� − %&,�- + .�,�                  (5) 

Where: 

%�,� = return of index at time t; %&,� = risk free rate at time t; *� = excess return or Jensen’s 

alpha for index i; )� = beta for index i; %,,�  = return of the market at time t; .�,� = random 

error term at time t. 

 A similar approach, proposed by Carhart (1997), is used for the four factor model. In 

addition to the market index, it includes three other risk factors: value, size and momentum. 
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Thus the alpha of this model “risk adjusts” the excess returns for 4 factors in the following 

model16. 

%�,� − %&,� = *� + )�,,/�+%,,� − %&,�- + )�,012345� + )�,6�789:�;� + )�,,<,=>=� +	.�,�            

(6) 

Where: %�,� = return of index at time t; %&,�  = risk free rate at time t;  %,,�  = return of the 

market at time t; 	*? = excess return or 4 factor alpha for index i; 	)�,,/� = market beta for 

index i; )�,012 = value factor beta for index i; )�,6�78 = size factor beta for index i; 	)�,,<, = 

beta for the momentum factor; .�,� = random error term at time t. 

 If these alphas are positive and significant then the asset is said to outperform. 

Negative and significant alphas indicate poor performance. We test both types of alphas 

(Jensen’s and 4 factor) to see if they are statistically significant using the t-test and the White 

and Newey-West standard errors which are robust to heteroskedasticity and serial 

correlation17.  

 

[PLEASE INSERT TABLE 4 HERE] 

5. Empirical Results   

5.1 Performance comparison and analysis 

 Table 4 presents the results of both MCSD and MV tests. We find that the Jensen 

alpha pairs are significant in only 1 out of 6 cases. Similarly, 4 factor alphas provide 

                                                
16 In our case, the four factors for US, Europe and Global portfolios were obtained from the Kenneth French 
website (2013). The four factors for UK were obtained from Gregory et. al. (2013). 
 
17 In order to ensure the robustness of our regressions, we also test all the index return series for stationarity 
using the Augmented Dickey-Fuller (ADF) test. The return series are stationary in all cases. For brevity we do 
not report the ADF tests, but are available on request.  
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conclusive results in only 1 case. The Sharpe and Treynor Ratios are negative, which renders 

them meaningless. This is because the Sharpe and Treynor Ratios calculate the excess return 

over the risk free rate per unit of risk. Other things being equal, when excess returns are 

positive, a higher level of risk will render a smaller value of the Sharpe/Treynor Ratio. Thus, 

if two investments have identical excess returns, the investment with the lower risk will have 

a higher Sharpe/Treynor ratio. However, if two investments have identical negative excess 

returns, a higher level of risk produces a smaller negative number and thus the investment 

with the higher risk comes out on top. This is antithetical to the concept of performance for a 

risk averse investor. Thus, negative excess return ratios are misleading. These results are 

consistent with Statman, (2004, 2006) and Schroder (2007). 

 The MCSD approach paints a different picture. The FTSE4Good-US-100 SRI index is 

dominated by the similar conventional S&P 100 index as well as by the Dow Jones Industrial 

Average. The FTSE4Good-Global-100 SRI index is dominated by the conventional S&P-

Global-100 index and the FTSE4Good-UK-50 is dominated by the FTSE-250 but not the 

FTSE-100. Over all we find that conventional indices outperformed the SRI indices in the 

UK, the US and the Global context. In the European context the conventional and SRI indices 

performed equally. These results suggest a clear pattern of inferior performance of SRI 

indices with respect to the conventional indices. 

As outlined above, dominance signifies outperformance. The insignificant MV results 

suggest that the mean and the variance alone cannot explain the outperformance. Thus, we 

look at skewness and kurtosis, moments three and four, to examine whether SRI investors 

pay a price in the higher moments by way of lesser skewness and higher kurtosis. We find 

that this is indeed the case. Table 5 shows the cost of SRI in terms of skewness and kurtosis 
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for the 4 cases where MCSD dominance has been established18. We find that SRI investors 

can improve both the skewness and kurtosis of their portfolios by choosing to invest in the 

conventional index as opposed to the SRI index. Investors can increase, on average, their 

skewness by 27% and reduce their kurtosis by 15% by choosing not to invest responsibly. 

[PLEASE INSERT TABLE 5 HERE] 

As a further robustness test we construct arbitrage portfolios to see whether investor 

utility can be improved by exploiting the dominance. To this end we create a zero cost 

portfolio by selling the SRI index short and using the proceeds to invest in the conventional 

index19. We do this for all the cases where the conventional index MCSD dominates the SRI 

index. We then compare the returns on this portfolio with those of the conventional and SRI 

indices. The results in table 6 show that in all four cases the mean of the arbitrage portfolio is 

higher than the means of both the conventional and SRI indices, the standard deviation is 

lower and the skewness is higher. In fact, the skewness is positive for all four arbitrage 

returns while it is negative for the conventional and SRI indices. Finally, kurtosis is lower for 

all but three cases. This is strong evidence that selling the SRI and purchasing the 

conventional improves the return distribution. A test for MCSD confirms that this is indeed 

the case and that the improvement increases investor utility. The arbitrage portfolios MCSD 

dominate both the SRI and conventional indices in all four cases.   

 [PLEASE INSERT TABLE 6 HERE] 

5.2 Further analysis with carefully matched samples of firms 

 To confirm the foregoing results we control for potential bias due to size. If SRI 

indices are mainly made up of large sized stocks while conventional indices contain small 

                                                
18 In the other 2 cases since there is no MCSD dominance we cannot reject the hypothesis of equal performance. 
19 This procedure follows Clark & Kassimatis (2012). 
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sized stocks, the difference in performance between the two may arise due to the size factor20. 

There is a hint of this in Table 4 where the FTSE4Good UK-50 index is not dominated by the 

FTSE-100 index but is dominated by the FTSE-250 index, where the latter contains smaller 

sized stocks21. Table 7 shows descriptive statistics on size i.e. market capitalisations of stocks 

that comprise the indices in this study. We find that in 5 out of 6 cases there is a statistically 

significant difference in size. In 2 out of those 5 cases the conventional index has smaller 

sized stocks while in the other 3 cases the SRI index has smaller sized stocks. In the four 

cases where MCSD was observed, the conventional index has larger firms in three cases and 

smaller firms in one case. Thus, the size effect is not supported by this preliminary testing.  

[PLEASE INSERT TABLE 7 HERE] 

To pursue the analysis and control for a potential industry effect along with a size 

effect, we construct carefully matched samples of non-SRI firms based on industry and size 

for each SRI index. In so doing, all firms which are not included in SRI indices are classified 

as non-SRI firms. Since we have four SRI indices we construct four carefully matched 

samples. The matching procedure used is as follows. We consider a non-SRI firm as 

matching an SRI firm if the former has the same 4-digit industrial classification number and 

its market capitalisation is between 70% and 130% of the SRI firm. Table 8 reports the 

descriptive statistics for the matched indices. 

[PLEASE INSERT TABLE 8 ABOUT HERE] 

Finally, we run the MCSD test on these pairs of matched indices in order to compare 

performance. The results in table 9 show that in all four cases the FTSE4Good indices are 

dominated by a conventional index composed of firms matched to the firms in FTSE4Good 

                                                
20 We thank an anonymous referee for this insight. 
21 We ran the MCSD test between the FTSE100 and FTSE250 and find that the latter dominates the former. 
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indices by size and industry. Thus, neither size nor industry seems to account for the 

underperformance of the SRI indices and is further evidence that there is a price to be paid by 

risk averse investors for socially responsible investing.  

[PLEASE INSERT TABLE 9 HERE] 

7. Conclusion 

Previous research on the comparative performance of SRI vs conventional 

investments has used the MV framework, which is a special case of expected utility 

maximization based on normal returns or quadratic utility functions, and generally found no 

conclusive evidence of a significant advantage or disadvantage to socially responsible 

investing. Given that all the return series in our sample are significantly non-normally 

distributed and that investors do not necessarily have quadratic utility functions, we abandon 

mean-variance in favour of marginal conditional stochastic dominance, which can 

accommodate any return distribution or concave utility function.  

Our results show that although there is nothing to be gained or lost from socially 

responsible investing in terms of mean and variance, there is a price to be paid in the higher 

moments of the return distributions. For example, on average conventional indices have 27% 

higher skewness and 15% lower kurtosis than their SRI counterparts. More specifically, we 

show that indices composed of socially responsible firms are dominated by indices composed 

of conventional firms in trademarked indices as well as in indices carefully matched with the 

firms in the SRI indices. This means that any risk averse investor can improve his expected 

utility by reducing his holdings of SR firms and purchasing conventional ones. We test this 

proposition by constructing zero cost portfolios created by shorting the SRI index and using 

the proceeds to invest in the conventional index. These zero cost portfolios generate higher 

average returns, lower variance and higher skewness than either of the two indices standing 
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alone. Most importantly, they also MCSD dominate the SRI and conventional indices 

standing alone, which confirms the proposition that any risk averse investor can improve his 

expected utility by reducing his holdings of SR firms and purchasing conventional stocks.    

Our results provide strong evidence that there is a financial price to be paid for 

socially responsible investing. The loss in financial utility is presumably compensated by the 

non-financial utility that SRI investors derive from the responsible nature of their 

investments. Integrating the role of non-financial utility into the investment paradigm looks 

like a fruitful prospect for future research.  
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Table 1 – List of indices used in this study. 

Index Type Index Names Country Currency 

SRI (S) FTSE4GOOD-UK-50 UK £ 

CONVENTIONAL (C) FTSE-100 UK £ 

MARKET (M) FTSE-ALL SHARE UK £ 

SRI (S) FTSE4GOOD-UK-50 UK £ 

CONVENTIONAL (C) FTSE-250 UK £ 

MARKET (M) FTSE-ALL SHARE UK £ 

SRI (S) FTSE4GOOD-US-100 US $ 

CONVENTIONAL (C) S&P-100 US $ 

MARKET (M) D J Total Stock Market Index US US $ 

SRI (S) FTSE4GOOD-US-100 US $ 

CONVENTIONAL (C) DJ Ind. Average  US $ 

MARKET (M) D J Total Stock Market Index US US $ 

SRI (S) FTSE4GOOD-EU-50 EU € 

CONVENTIONAL (C) STOXX-50 EU € 

MARKET (M) STOXX-TM EU € 

SRI (S) FTSE4GOOD-GLOBAL-100 GLOBAL $ 

CONVENTIONAL (C) S&P-GLOBAL-100 GLOBAL $ 

MARKET (M) FTSE-ALL WORLD GLOBAL $ 
The indices are grouped as follows: 1 SRI index, 1 conventional index and 1 market index within each set. 
The market index is used as the market portfolio in the MV approach and for wealth ranking in the MCSD 
approach. Within each group we ensure that weekly values for all the 3 indices included are collected in 
the same currency. 
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Table 2 – Descriptive statistics of the index return series. 

Type  Index Name Min Max Mean SD Skewness 

Excess 

Kurtosis 

Shapiro Wilk 

Test Statistic 

Shapiro Wilk  

P-value 

S FTSE4GOOD-UK-50 -0.12978 0.16798 -0.00015 0.02709 -0.23246 6.24343 0.909 0.00 

C FTSE-100 -0.12532 0.16689 0.00000 0.02665 -0.25559 5.96409 0.916 0.00 

M FTSE-ALL SHARE -0.11853 0.16581 0.00015 0.02602 -0.25487 5.76553 0.921 0.00 

  

S FTSE4GOOD-UK-50 -0.12978 0.16798 -0.00015 0.02709 -0.23246 6.24343 0.909 0.00 

C FTSE-250 -0.12268 0.17345 0.00114 0.02794 -0.14800 4.29900 0.947 0.00 

M FTSE-ALL SHARE -0.11853 0.16581 0.00015 0.02602 -0.25487 5.76553 0.921 0.00 

  

S FTSE4GOOD-US-100 -0.15863 0.11603 -0.00039 0.02709 -0.62937 5.35700 0.931 0.00 

C S&P-100 -0.13991 0.13236 -0.00033 0.02599 -0.44257 5.01291 0.936 0.00 

M DJ-TSMI-US -0.16620 0.11907 0.00022 0.02663 -0.72910 5.45943 0.937 0.00 

        

  

S FTSE4GOOD-US-100 -0.15863 0.11603 -0.00039 0.02709 -0.62937 5.35700 0.931 0.00 

C DJIA -0.13852 0.11950 0.00009 0.02479 -0.47110 4.54216 0.941 0.00 

M DJ-TSMI-US -0.16620 0.11907 0.00022 0.02663 -0.72910 5.45943 0.937 0.00 

        

  

S FTSE4GOOD-EU-50 -0.15164 0.13536 -0.00110 0.03027 -0.46256 4.68550 0.926 0.00 

C STOXX-50 -0.14877 0.14565 -0.00089 0.03340 -0.44893 3.45514 0.942 0.00 

M STOXX-TM -0.14273 0.16196 -0.00055 0.03152 -0.38910 3.60632 0.942 0.00 

        

  

S FTSE4GOOD-GLOBAL-100 -0.11813 0.11368 -0.00044 0.02775 -0.33170 2.97959 0.954 0.00 

C S&P-GLOBAL-100 -0.10980 0.11253 -0.00014 0.02665 -0.27752 2.77667 0.959 0.00 

M FTSE-ALL WORLD ($) -0.13127 0.13044 0.00045 0.02674 -0.46875 3.37907 0.951 0.00 

The indices are grouped as follows: 1 SRI index, 1 conventional index and 1 market index within each set. All the skewness and 
excess kurtosis values are significant at the 5% level. The Shapiro-Wilk test for normality found that none of the return series 
were normally distributed; test results are listed above with P-values. S = SRI, C = Conventional, M = Market and SD = 
Standard Deviation 
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Table 3 – Results of the homogeneity of means and variances tests.  

Type Index Name t-test 

Mann-

Whitney U 

Levene's 

F test 

Brown-

Forsythe 

S FTSE4GOOD-UK-50 -0.078 117789 0.001 0.003 

C FTSE-100 (0.937) (0.860) (0.981) (0.955) 

S FTSE4GOOD-UK-50 -0.747 113143 2.298 2.189 

C FTSE-250 (0.455) (0.220) (0.130) (0.139) 

S FTSE4GOOD-US-100 -0.021 118314 0.357 0.295 

C S&P-100 (0.983) (0.950) (0.550) (0.587) 

S FTSE4GOOD-US-100 -0.259 117326 1.343 1.303 

C DJIA (0.796) (0.770) (0.247) (0.254) 

S FTSE4GOOD-EU-50 0.154 116537 3.270 2.754 

C STOXX-50 (0.878) (0.640) (0.071) (0.097) 

S FTSE4GOOD-GLOBAL-100 -0.159 117917 0.169 0.170 

C S&P-GLOBAL-100 (0.874) (0.880) (0.681) (0.680) 

To compare means we use an independent sample t-test and the Mann-Whitney U test. To compare 
variances we use the Levene’s F test and the Brown & Forsythe test. The Mann-Whitney U and Brown & 
Forsythe tests are robust for non-normally distributed data. For more details on these tests please see 
pages 9 & 10. In all cases we find no statistically significant difference at the 5% level between the 
means and variances of the SRI vs conventional indices return series. S = SRI, C = Conventional. P-
values are in parentheses. 

.  
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Table 4 – Results of the performance tests.  

Type  Index Name Sharpe Treynor Jensen's 4 Factor  MCSD 

    Ratio Ratio Alpha  Alpha Test 

S FTSE4GOOD-UK-50 -0.032 -0.0008 -0.0003 -0.0026 No 
Dominance C FTSE-100 -0.027 -0.0007 -0.0001 -0.0005* 

M FTSE-ALL SHARE -0.022 -0.0006 NA NA 

S FTSE4GOOD-UK-50 -0.032 -0.0008 -0.0003 -0.0026 Conventional 
Dominates 
SRI 

C FTSE-250  0.015  0.0005  0.0010 0.0043* 

M FTSE-ALL SHARE -0.022 -0.0006 NA NA 

S FTSE4GOOD-US-100 -0.030 -0.00083 -0.00061* -0.0068* Conventional 
Dominates 
SRI 

C S&P-100 -0.029 -0.00079 -0.00056* -0.0013 

M DJ-TSMI-US -0.008 -0.0002 NA NA 

S FTSE4GOOD-US-100 -0.030 -0.0008 -0.0006* -0.0068* Conventional 
Dominates 
SRI 

C DJIA -0.014 -0.0004 -0.0001 -0.0002 

M DJ-TSMI-US -0.008 -0.0002 NA NA 

S FTSE4GOOD-EU-50 -0.052 -0.0017 -0.0006 -0.0022 No 
Dominance C STOXX-50 -0.041 -0.0013 -0.0003 -0.0017* 

M STOXX-TM -0.033 -0.0009 NA NA 

S 
FTSE4GOOD-
GLOBAL-100 

-0.031 
-0.0009 -0.0009* 

-0.00172* Conventional 
Dominates 
SRI C S&P-GLOBAL-100 -0.021 -0.0006 -0.0006 -0.00173* 

M FTSE-ALL WORLD ($)  0.001  0.0000 NA NA 

Table 4 shows summary of results of all the tests carried out to compare performance of the SRI indices 
with the conventional ones. If an index dominates the other according to the MCSD criterion then the 
dominant index will be preferred by all risk averse investors and hence it has outperformed the dominated 
index. S = SRI, C = Conventional and M = Market. The market index is used as the market portfolio in the 
MV approach and for wealth ranking in the MCSD approach. Indicates significance at the 5% level. 
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Table 5 – Performance improvements in skewness and kurtosis.  

Type  Index Name Skewness Kurtosis 

∆ Skewness* 

(increase in 

Skewness) 

∆ Kurtosis 

(decrease in 

Kurtosis) 

S FTSE4GOOD-UK-50 -0.2325 6.2434 36.33% 31.14% 

C FTSE-250 -0.1480 4.2990   

S FTSE4GOOD-US-100 -0.6294 5.3570 29.68% 6.42% 

C S&P-100 -0.4426 5.0129   

S FTSE4GOOD-US-100 -0.6294 5.3570 25.15% 15.21% 

C DJIA -0.4711 4.5422   

S FTSE4GOOD-GLOBAL-100 -0.3317 2.9796 16.33% 6.81% 

C S&P-GLOBAL-100 -0.2775 2.7767   

    

** Average ∆ =>   26.87% 14.90% 

 

Table 5 shows performance improvements in skewness and kurtosis for MCSD dominant indices, when investors move their 
investment from the SRI index to the conventional one. 

∆ Skewness = @A/8B�866�C��	A/8B�866�D�
A/8B�866�C� E 	F	100%  ; ∆ Kurtosis = @IJ"�<6�6�C��	IJ"�<6�6�D�IJ"�<6�6�C� E 	F	100% 

* Since we are dealing here with negative skewness in all cases, improvement/increase in skewness implies that the conventional 
index has lesser negative skewness than the SRI one. 

** On average, investors can improve both skewness and kurtosis of their portfolios by choosing not to invest responsibly, they 
can increase their skewness by 27% and reduce their kurtosis by 15%. 
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Table 6 – Arbitrage portfolio results 

Type  Index Name Mean SD Skewness 

Excess 

Kurtosis 

MCSD Test 

S FTSE4GOOD-UK-50 -0.00015 0.02709 -0.23246 6.24343 A dominates S 

C FTSE-250 0.00114 0.02794 -0.14800 4.29900 A dominates C 

A Long C and Short S 0.00132 0.01767 0.80200 4.78900  

 

S FTSE4GOOD-US-100 -0.00039 0.02709 -0.62937 5.35700 A dominates S 

C S&P-100 -0.00033 0.02599 -0.44257 5.01291 A dominates C 

A Long C and Short S 0.00003 0.00469 0.17100 1.60200  

 

S FTSE4GOOD-US-100 -0.00039 0.02709 -0.62937 5.35700 A dominates S 

C DJIA 0.00009 0.02479 -0.47110 4.54216 A dominates C 

A Long C and Short S 0.00050 0.00758 0.02500 3.31800  

 

S FTSE4GOOD-GLOBAL-100 -0.00044 0.02775 -0.33170 2.97959 A dominates S 

C S&P-GLOBAL-100 -0.00014 0.02665 -0.27752 2.77667 A dominates C 

A Long C and Short S 0.00028 0.00476 0.13200 9.38300  

S = SRI, C = Conventional, A = Arbitrage Portfolio and SD = Standard Deviation. Table 6 shows performance 
results for arbitrage portfolios. Arbitrage portfolios (A) are zero cost portfolios constructed by selling the 
dominated SRI index (S) short and using the proceeds to buy the dominant conventional index (C). In all four 
cases the arbitrage portfolios MCSD dominate both the SRI and conventional indices 
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Table 7 – Mean comparison of firm size 

Type  Index Name Mean Min Max T statistic Currency 

    (millions) (millions) (millions) 

S FTSE4GOOD-UK-50 20531 1677 131853 -1.34 £ 
£ C FTSE-100 13680 68 131173 (0.18) 

S FTSE4GOOD-UK-50 20531 1677 131853 -4.47* £ 
£ C FTSE-250 1458 97 4441 (0.00) 

S FTSE4GOOD-US-100 41809 9010 354472 2.42* $ 
$ C S&P-100 64620 814 432166 (0.02) 

S FTSE4GOOD-US-100 41809 9010 354472 3.98* $ 
$ C DJIA 124427 8089 432166 (0.00) 

S FTSE4GOOD-EU-50 59067 15208 214894 -2.72* € 
€ C STOXX-50 38705 2903 120400 (0.01) 

S FTSE4GOOD-GLOBAL-100 62887 16786 354472 2.26* $ 
$ C S&P-GLOBAL-100 844586 7054 28676640 (0.03) 

Table 7 shows descriptive statistics of market capitalisation of the stocks which comprise the indices used in this 

study. Mean is the average firm size. Min is the smallest stock in the index. Max is the largest stock in the index. A 

T test was performed to compare if the differences in size are statistically significant. We find that in 5 out of 6 

cases there is a statistically significant difference in size. In 2 out of those 5 cases the conventional index has 

smaller sized stocks while in the other 3 cases the SRI index has smaller sized stocks. S = SRI and C = 

Conventional. P-values in parentheses. * Indicates significance at the 5% level. 
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Table 8 – Descriptive statistics of carefully matched index return series  

Index match Min Max Mean SD Skewness 

Excess 

Kurtosis 

Shapiro 

Wilk 

Statistic 

Shapiro 

Wilk  

P-Value 

UK matched -0.12498 0.14257 0.00026 0.02604 -0.070 4.094 0.947 0.00 

US matched -0.09417 0.09259 0.00018 0.01801 -0.168 3.886 0.957 0.00 

EU matched -0.12761 0.17041 -0.00016 0.02867 -0.041 5.577 0.916 0.00 

Global matched -0.09098 0.11367 0.00026 0.02458 -0.019 3.128 0.951 0.00 

Table 8 shows descriptive statistics of the return series for the carefully matched indices. The Shapiro-Wilk test 
for normality found that none of the return series were normally distributed; test results are listed above with P-

values. SD = Standard Deviation.  
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Table 9 – MCSD test results for FTSE4Good and matched indices 

Index Name # of firms Mean T-test MCSD Test 

FTSE4GOOD-UK-50 (S) 50 20531 0.80 CM dominates S
 UK Matched (CM) 55 16117 (0.43) 

   

FTSE4GOOD-US-100 (S) 100 41809 1.32 CM dominates S 

US Matched (CM) 124 34130 (0.19) 

   

FTSE4GOOD-EU-50 (S) 50 59067 -0.48 CM dominates S

EU Matched (CM) 48 63417 (0.63) 

   

FTSE4GOOD-GLOBAL-100 (S) 100 62887 -1.39 CM dominates S

Global Matched (CM) 447 70738 (0.17) 

Table 8 lists results of the MCSD tests between the FTSE4Good and Matched indices. We find that in all 
4 cases the matched indices dominate the FTSE4Good indices. If an index dominates the other according 
to the MCSD criterion then the dominant index will be preferred by all risk averse investors and hence it 
has outperformed the dominated index. Table 9 also reports the number of firms that constitute each 
index. In addition, it also provides descriptive statistics for the size of firms included in the indices and 
results of the T test which was used to compare if the differences in size of index constituent firms were 
statistically significant. We find that in all four cases there is no statistically significant difference in firm 
size at the 5% level. S = SRI and CM = Carefully Matched. P-values in parentheses. 
 


