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A B S T R A C T   

Increasing pollution is causing adverse environmental effects, leading to increased interest in combating this 
issue. There has been a significant interest in minimizing the pollution caused by combustion engine vehicles, 
with high research and development investments in hybrid and electric vehicle (EV) batteries. The innovations in 
EVs have a high potential to contribute to an optimized transportation sector while also playing a crucial role in 
reducing greenhouse gas emissions. This study contributes to the EV industry by precisely predicting the power 
demand at a particular charging station and identifying the optimal charging station characteristics. We pro-
posed a modified business process based on digital technologies to maximize customer engagement and oper-
ational efficiency. Our research has incorporated technologies like artificial intelligence (AI) and machine 
learning (ML). This study addresses the issues of EV infrastructure facilities, the issues raised by the lack of 
service features for EVs, and the optimal power requirement for charging stations. The proposed framework has 
managerial and technological implications, suggesting that the system must promptly receive, store, and analyze 
substantial volumes of data and demonstrate adaptability in response to environmental factors, such as the 
availability of EVs and the utilization of renewable energy sources. Despite the challenges, there is potential 
promise in developing decision assistance systems for electric vehicle power demands based on AI and ML.   

1. Introduction 

Digital transformation represents a paradigm shift across industries, 
cultures, and businesses, leveraging innovative digital technologies to 
drive profound change and adaptation (Issa et al., 2022; Truong and 
Papagiannidis, 2022). Accordingly, companies are redefining their 
processes to align with the demands of the digital age, ushering in an era 
of digital transformation (Zhang et al., 2022; Pereira et al., 2022). This 
phenomenon extends across various domains, encompassing sales and 
marketing strategies, delivering exceptional customer service, and 
migrating towards digital platforms to accommodate the integration of 
innovative products and their applications (Bakhsh et al., 2017; 
Muhammad, 2019). The cornerstone elements of digital transformation 
comprise the reengineering of processes, operations, and client en-
gagements (Wu et al., 2020). 

Artificial intelligence (AI) integration into business processes ex-
emplifies digital transformation, as evidenced by various studies (Datta 
et al., 2023; Kashyap, 2021; Bag et al., 2021). This study explicitly 
employs AI as the cornerstone technology to drive digital transformation 
forward, particularly in predicting the demand requirements of charging 
stations. With the escalating consumption of vehicles, there has been a 
surge in global demand for fossil fuels (Van Steenbergen and Mes, 2020). 
Consequently, various sectors have intensified their focus on pollution 
reduction, driven by heightened concerns about combating the adverse 
impacts of environmental degradation (McCollum et al., 2017; Varga 
et al., 2019). One notable initiative in this regard is the development of 
efficient batteries for electric and hybrid vehicles. These innovative 
technologies have the potential to contribute to the optimization of the 
transportation sector and play a crucial role in climate change mitiga-
tion, given the reduction in greenhouse gas (GHG) emissions as well as 
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air and noise pollution when compared to combustion engine vehicles 
(Wiriyasart et al., 2020; Reinhardt et al., 2019). Despite the increasing 
demand for efficient batteries for electric and hybrid vehicles, a signif-
icant challenge persists: the lack of comprehensive information on 
establishing optimized charging stations and accurately forecasting 
power requirements across different timeframes. Researchers have 
introduced performance metrics to address this issue and enhance our 
understanding of the design prerequisites for optimized charging sta-
tions (Baars et al., 2021; Groenewald et al., 2017). 

The growing acceptance and production of electric vehicles (EVs) 
have positively impacted various aspects of building an EV ecosystem. 
Prior research has highlighted several improvements, including the 
expansion of public charging infrastructure, a notable rise in govern-
ment initiatives supporting EV projects, decreased production and 
maintenance costs of EVs, and increased awareness regarding the con-
sequences of global warming (Love et al., 2018; Karmaker et al., 2018; 
Adeyanju et al., 2018; Sankaran and Venkatesan, 2021). Car rental 
companies, such as Uber, Europcar, and Hertz, also contribute to EV 
market expansion by introducing zero-emission vehicles in their fleet 
(Khalfaoui et al., 2022). The transition from gasoline-powered vehicles 
to electric vehicles (EVs) has increased demand for EV batteries 
(Mohanty and Kotak, 2017; Singh et al., 2021). This rapid growth in the 
EV sector has spurred the development of a diverse range of custom-
izable EV battery products tailored for various vehicles, including 
trucks, buses, loaders, and excavators. Consequently, this expansion 
contributes to the increased demand for products within the trans-
portation and construction industries (Ghiassi-Farrokhfal et al., 2021; 
Zhdanov et al., 2022). Conventional energy sources, including wood, 
coal, charcoal, petroleum, gas, oil, and uranium, are employed to fulfill 
energy demands. 

Amid concerns regarding finite energy resources, endeavors are 
underway to optimize energy utilization, leading to a progressive 
reduction in reliance on fossil fuels. Concurrently, there is a notable 
uptick in demand for renewable energy sources like hydro, solar, 
biomass, and geothermal (Bakhsh et al., 2017; Muhammad, 2019). The 
shift towards renewable energy resources has led to compatibility and 
new applications in the automotive industry, particularly in the EV 
segment. Li-ion batteries have emerged as the most suitable substitute 
for fossil fuel energy, and a similar trend has been observed in the 
adoption by industrialists, government bodies, and others (Gao et al., 
2024; Yang et al., 2023a; Yang et al., 2023b; Sankaran and Venkatesan, 
2021). In addition, government initiatives to familiarize the market with 
EVs contribute to increased product demand (Pal et al., 2021; Kumar 
et al., 2021; Vidhi and Shrivastava, 2018). Moreover, purchasing EVs 
supports the government’s provision of various incentives and financial 
aid for the EV battery market. 

This study is driven by the objective of developing an AI and machine 
learning (ML) model aimed at identifying critical influencers in charging 
stations. The study proposes optimized parameters for establishing 
charging stations by government policies to achieve this goal. In the 
initial phase, data collection for ML techniques is conducted, followed 
by the sequencing of parameters to prioritize the most influential factors 
in charging station setup. The subsequent phase involves forecasting the 
demand for these charging stations. The study presents an optimized 
model incorporating essential parameters for setting up optimal 
charging stations through these steps. These parameters encompass 
factors such as frequency, recency, and the division of total costs 
incurred during unplanned outages by the number of occurrences. 
Additionally, the study utilizes a numerical example from the EV market 
to illustrate the proposed method for selecting the necessary charging 
station features and determining their optimal periods. 

After a thorough review of existing literature, it becomes evident that 
developing a decision-making model is crucial for configuring the fea-
tures of EV charging stations and accurately estimating the required 
power, all while considering environmental concerns. To bridge this 
gap, this study proposes a pioneering decision-making model to select 

optimal EV charging station features and predict the power needed to 
cater to consumers. More specifically, an optimization model was 
employed within the framework of the Indian EV charging station in-
dustry. The primary objectives of this study were as follows:  

• To propose a method that identifies the optimal features of EV 
charging stations while assigning customer segments using the RFM 
approach. This model integrates EV charging station features with 
customer preferences.  

• To integrate the research findings and forecasting techniques for 
timely delivery, eco-friendly standards, cost reduction, and 
improved recharging station efficiency.  

• To propose an innovative approach that accounts for multiple factors 
and obtain accurate predictive solutions by applying forecasting 
models. 

The paper is organized into six sections after the introduction. Sec-
tion 2 conducts a detailed literature review. Section 3 delineates the 
various challenges. Section 4 offers insights into model development and 
establishes the study’s framework. The applications of the model and 
resulting insights are presented in Section 5. Lastly, Section 6 concludes 
the study, addressing its limitations and proposing avenues for future 
research. 

2. Literature review 

The primary structure of this literature review is divided into four 
sections. 

2.1. Eco-friendly power requirement 

Over the years, traditional resources such as wood, coal, charcoal, 
petroleum, gas, oil, and uranium have been utilized to satisfy energy 
demands (Jauhar et al., 2022). Efforts have been made to optimize en-
ergy consumption to address concerns regarding insufficient energy 
resources and environmental degradation. As a result, over time, there 
has been a decline in the utilization of fossil fuels and an increase in 
demand for renewable energy sources, such as wind power, hydro-
power, solar power, biomass, and geothermal heat power (Bakhsh et al., 
2017; Muhammad, 2019). This development has fostered resource 
compatibility and facilitated the application of these resources in the 
automotive industry, particularly in the EV segment. The Li-ion battery 
segment has emerged as a promising alternative for substituting fossil 
fuel energy, presenting opportunities for optimal resource utilization. 
Similar trends have been observed in other sectors, including the 
manufacturing and agriculture industries (Gao et al., 2024; Yang et al., 
2023a; Yang et al., 2023b; Sankaran and Venkatesan, 2021). 

Replacement strategies for using eco-friendly fuels have begun in 
various industries, including the automotive sector. Li-ion batteries are 
among the best discoveries in the EV-based automobile segment (Deng, 
2015; Nitta et al., 2015). The current research studies have mainly 
focused on the adoption of EVs and the viability of recharge stations, not 
paying much attention to the characteristics of a battery charging station 
based on the needs of users (Van Steenbergen and Mes, 2020; Ghiassi- 
Farrokhfal et al., 2021). 

Since the introduction of EVs in India was delayed relative to other 
countries, there was a lack of awareness about electric mobility tech-
nology, resulting in a customer preference for fuel-based vehicles 
(Murugesan et al., 2021; Jauhar et al., 2022). Moreover, in India, cus-
tomers prefer cost-effective parameters, such as mileage, so the re-
searchers here are conducting numerous studies to increase the single- 
charge range of EVs (Pereira et al., 2022). 

Indian customers are becoming increasingly aware of the necessity to 
conserve energy and address climate change concerns. Consequently, 
Indian customers have begun to utilize green energy, reducing pollution 
levels (Jauhar et al., 2023; Pratap et al., 2022). Government agencies 
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have started implementing various plans in this direction because 
electric transportation results in zero-emission vehicles (Zhang et al., 
2022; Pereira et al., 2022). This study focuses on developing AI and ML 
models to identify critical factors for implementing charging stations. 
The model begins with creating a data mining model and ranking the 
influential parameters. The parameters are then used in time-series 
forecasting to predict the EV’s power requirement. 

2.2. EV adoption 

Numerous scenario-based studies have examined consumer behavior 
regarding EV adoption. Jaiswal et al. (2021) studies consumer behavior 
in the Indian market using the ‘Technology Acceptance Model’ (TAM). 
Attitude, usefulness, usability, and risk were examined with financial 
incentive policy as a moderator. The findings showed that attitude 
partially mitigated the influence of usefulness and usability on adoption 
intention. Moreover, the customer’s perspective is based on cost- 
effective parameters, such as fuel economy and cost-effectiveness, 
which is why Indian researchers are conducting numerous studies to 
increase the single-charge range of EVs (Wu et al., 2020; Ghiassi-Far-
rokhfal et al., 2021). 

Studies by Wang et al. (2017), Zhang et al. (2018), and Dong et al. 
(2020) found that various factors such as vehicle number plates, gov-
ernment subsidies, environmentalism, and social innovator symbolism 
can affect customer intention for EV adoption. They found that, in the 
current scenario, most of these parameters positively impact the 
increased use of EVs, with long-term forecasts indicating positive 
outcomes. 

Artificial intelligence and ML applications have proven effective in 
numerous fields. These techniques have been used to enhance and assess 
tasks in new applications (Van Steenbergen and Mes, 2020; Ghiassi- 
Farrokhfal et al., 2021). Numerous factors affect the performance of EV 
charging stations. The primary objective of this study was to apply AI 
and ML techniques in the context of customer development while 
considering environmental factors. Therefore, we focused on identifying 
the most influencing factors by employing AI and ML techniques, 
thereby determining the best practices for EV charging stations (Zhda-
nov et al., 2022; Zhang et al., 2022; Pereira et al., 2022). 

Many frameworks have been established to study EV adoption. The 
most common framework is the Theory of Planned Behavior (TPB) 
(Ajzen, 1991). This social psychological theory explains how people 
form intentions to accomplish something and how those intentions 
become actual conduct. The Diffusion of Innovation (DOI) theory ex-
plains how people and organizations adopt new items and technologies 
(Rogers, 2003). Value-belief-norm (VBN) theory explains how values, 
beliefs, and norms affect behavior (Venkatesh et al., 2003). 

TPB, DOI theory, VBN theory, and TAM are widely used to study EV 
adoption. The hypothesis based on these theories has a different focus 
and emphasizes different adoption aspects. The TPB proposes that atti-
tude, subjective norms, and perceived behavioral control affect purchase 
intentions. A person’s attitude towards the invention is either positive or 
negative. A subjective norm is an individual’s view of what others think 
is essential. Perceived behavioral control is a person’s confidence in 
accepting innovation. The DOI theory examines the adoption of social 
technologies. This approach divides adoption into five stages: knowl-
edge, persuasion, decision, implementation, and confirmation. The 
knowledge step involves discovering an invention. The persuasive stage 
occurs when someone forms an opinion about the idea. Individuals 
decide whether to accept innovation at the choice stage. Individuals 
evaluate their acceptance of innovation through confirmation (Khal-
faoui et al., 2022). 

The VBN theory examines values, beliefs, and norms. According to 
this notion, values are terminal, instrumental, and beliefs. Terminal 
values represent an individual’s ideal end-state. Individuals’ opinions on 
how to achieve their goals are called instrumental values. A person’s 
worldview reflects their beliefs. The TAM evaluates a person’s attitude 

towards new technology and its perceived ease of use. Individuals’ views 
on the technology’s usefulness and ease of use determine their attitudes. 
Ease to use is the person’s belief that they can easily use the technology. 

2.3. Use of AI and ML to identify the influencing factors 

The effective use of data provides diverse insights (Allal-Chérif, 
2022). With the increased number of charging stations, research is being 
conducted to determine their significant influence on power distribution 
demand and improve its dependability (Yusuf et al., 2019; Jahangir 
et al., 2019). Numerous studies have analyzed private and public 
charging station data to investigate their effects on power distribution. 
Consequently, these studies have utilized GPS monitoring systems, 
surveys, and other methods to collect user information. (Wang et al., 
2017; White and Sintov, 2017). 

Based on their findings, the studies predicted that the total energy 
demand would rise in areas with rising demand, such as residential areas 
(Li et al., 2020; Trappey et al., 2021). In addition, demand is anticipated 
based on the unique characteristics of charging stations. This model 
comprises two modules: classification and forecasting. These modules 
were used to forecast the daily EV charging-demand profile based on 
geography and client variables. Similarly, to predict the power 
requirement and meet the increasing demand of customers, it is neces-
sary to have a demand forecast so that the supply and demand cycle 
functions at the optimal rate throughout the period (Ghiassi-Farrokhfal 
et al., 2021; Zhang et al., 2022). 

The data mining process generates the EV charging demand profile, 
which can then be used for various purposes, including predicting or 
forecasting the demand for power for a given period and working on the 
influencing factors. Forecasting demand is a method of estimating the 
range of demand that may occur in the future. Forecasting models have 
been used in different sectors to predict demand, such as a highly ac-
curate deep learning method for AI-based tourism demand (Zhang et al., 
2022), forecasting the monthly water demand based on previous con-
sumption, and understanding passengers’ travel demand to improve 
taxicab utilization and reduce costs (Zhang et al., 2018). Table 1 high-
lights the most significant studies and contextualizes this work within 
the context of prior research. 

These studies have utilized historical and current data, sometimes 
complex, to estimate future demand and supply trends. Quantitative 
projective forecasting estimates future sales based on past data is the 
most common forecasting method (Gorji et al., 2021; Pillai et al., 2022; 
Baryannis et al., 2019). This method frequently employs moving 
average, exponential smoothing, auto-regressive integrated moving 
average, and the multiple aggregation prediction algorithm to obtain 
complex mathematical formulas (Díaz et al., 2018; Kohl and Gomes, 
2018). In this study, we used exponential smoothing to forecast values 
using weighted averages of historical data. As we advance over time, the 
weights are adjusted. This implies that more significant considerations 
are given to recent observations. 

2.4. Research contribution 

The Indian EV market is divided into four segments: passenger ve-
hicles, commercial vehicles, two-wheelers, and three-wheelers. The In-
dian government has launched several initiatives to promote the 
production and acceptance of EVs, to achieve reduced emissions 
following international treaties, and to develop e-mobility in the face of 
urbanization. The present study makes the following contributions.  

1. Reviewing the relevant literature, this study determines the eco- 
friendly power requirements in India and the possibility of using 
renewable resources for charging station energy consumption.  

2. Identify the current ideology behind EV adoption in India, observe 
trends that have impacted adoption, and determine the viability of 
various product variations within the R&D division. 
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3. Using AI and ML techniques, we introduced a novel and effective 
method for determining the best features of EV charging stations and 
then allocating customer segments based on the RFM strategy. This 
new model configuration combines the features of EV charging sta-
tions with customer preferences.  

4. With demand forecasting tools, we intend to pursue objectives such 
as on-time delivery rate, green model practices, cost reduction, and 
charging station efficiency optimization. 

Advancements in the EV sector have resulted in many EV charging 
stations. The attributes required for charging stations are currently not 
addressed efficiently; therefore, this study focuses on these issues, pre-
dicts the demand based on the optimized characteristics, and provides 
insights by employing forecasting models such as Exponential Smooth-
ing Models to obtain accurate predictive solutions. 

3. Problem identification 

According to a recent study, the automobile industry is a significant 
contributor to pollution, with this sector accounting for 27 %, crop 
burning for 17 %, and domestic cooking for 7 %, resulting in the deaths 
of over 2 million Indians due to air pollution (Zhang et al., 2022). In 
India, traffic congestion is a severe issue in Tier 1 cities and towns 
because of the large number of commercial vehicles on roads. 

India’s plan to reduce air pollution in the coming years includes 
using more electric buses and modernizing fossil fuel engines to meet the 
minimum requirements for a pollution-free environment. By 2023, EVs 
are projected to account for 25 % of Indian households and renewable 
energy is expected to be a primary power source. Vehicles older than 15 
years or without BS6 emission regulations are prohibited on city streets. 
Based on data from Huang et al. (2018), and Habib et al. (2015), we 
derive Fig. 1, depicting the primary factors driving the upward trend and 
growth of EVs. Consequently, an increase in the viability of each 
parameter leads to an increase in the number of EVs on the road. 

The adoption of EVs is rapidly increasing as governments and busi-
nesses worldwide attempt to lessen their reliance on fossil fuels. The 
worldwide EV fleet surpassed 10 million in 2020 and is expected to 
reach 145 million by 2030. More EVs are putting pressure on power 
systems (Liu et al., 2022). EVs require considerable power to charge 
their batteries. EV power requirements must be accurately predicted to 
minimize their impact on the power system. AI and machine-learning- 
based decision support systems make this possible. AI and ML decision 
support systems can forecast EV power requirements using historical 
and real-time data. These data can be used to optimize the electrical grid 
and ensure that the demand is satisfied (Ding et al., 2022). 

Several recent studies have focused on AI and ML decision support 
systems (DSS) for EV power forecasting. Wang et al. (2022) created a 
deep learning-based DSS for estimating EV power demand. The DSS 
predicted the demand for EV power to be within 5 %. Zhang et al. (2022) 
published a data-driven DSS for EV power usage forecasts to be within 3 

Table 1 
Previous research studies.  

Author(s) Methods Type of Product Multi- 
period 

Srinivasulu et al. 
(2009) DM IT industry – 

Asmatulu et al. 
(2013) Literature review Aircraft Industry – 

Goli et al. (2022) 
GAMS 22.9 software 
package – – 

Kisomi et al. (2016) Robust optimization – – 
Amin et al. (2017) MILP, decision tree Tire ✔ 
Chen et al. (2022) MILP Solar energy – 
Shahriar et al. 

(2021) ML EV – 
Tosarkani and Amin 

(2018) 
Fully fuzzy linear 
programming, fuzzy ANP Battery ✔ 

Díaz et al. (2018) 
Mechanical 
characterization Cable industry – 

Kohl and Gomes 
(2018) 

European Directive 2102/ 
19/EU Motherboards – 

Baryannis et al. 
(2019) ML, Prediction – ✔ 

Pillai et al. (2022) Literature review 
Automobile 
Industry – 

Zhang et al. (2022) DF 
Tourism 
Industry – 

Gorji et al. (2021) Game-theory Approach 
Automobile 
Industry ✔ 

Malinauskaite et al. 
(2021) Literature review 

Automobile 
Industry – 

Our Paper DF, ML EV ✔ 

Abbreviations: Mixed integer linear programming (MILP), Analytics network 
process (ANP), Demand Forecasting (DF), Data Mining (DM), Machine Learning 
(ML). 

Fig. 1. Factors for customer adoption of EV.  
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%. Liu et al. (2022) developed a deep learning-based DSS for EV 
charging schedules. According to the study, DSS lowered the peak power 
grid load by 10 %. Chen et al. (2022) developed a model to forecast the 
hybrid EV power consumption utilizing deep learning and the grey wolf 
optimizer. According to the study, this approach increased the EV power 
demand estimations by 10 %. 

Forecasting EV power consumption using AI and ML DSSs remains 
difficult despite recent advances. Among the difficulties is data avail-
ability; accurate forecasting necessitates a large amount of data on EV 
charging activity. Such data is difficult to obtain because it is rarely 
captured or stored centrally. The problem’s complication: Forecasting is 
challenging due to the large number of EVs on the road, the time of day, 
and the weather. AI and ML DSSs require real-time data like power grid 
conditions and weather forecasts. This information is difficult to obtain 
and process in real-time. 

AI and ML DSS research on EV power forecasting is promising. 
Addressing the challenges above can assist researchers in developing 
more accurate and efficient forecasting models to reduce the power grid 
impact of EVs. 

The present study focuses on developing a model that incorporates 
the influence of entities on the behavior of service/charging stations and 
forecasting demand based on the same entities of the predictive model. 
This study uses AI and ML models to characterize charging stations. The 
model commences with the development of AI and ML models, followed 
by the application of parameter ranking. The parameters are then uti-
lized in time-series forecasting to predict the optimization model for 
maximizing profit and implementing practices and technology for on- 
time delivery while minimizing cost factors and defective products. 

4. Research methodology 

Fig. 2 illustrates the methodology employed in this study, which 
introduces a novel and effective method for determining the most 
desirable characteristics of EV charging stations and then allocating 
customer segments based on the RFM strategy. This new model 
configuration combines the EV charging station characteristics with 
customer preferences. In the second phase, we combine the research 
findings with forecasting methodologies to achieve objectives such as 
on-time delivery rates, green model practices, cost reduction, and 
maximum charging station efficiency. This novel strategy considers 
several significant factors simultaneously. The outcome is used to 
generate insights by employing forecasting models such as Exponential 
Smoothing Models to produce predictive solutions. 

4.1. Problem identified 

Considering the government’s desire to preserve the environment, 
EVs must be widely adopted throughout India. Consequently, various 
measures for establishing charging stations have been implemented 
following different international practices. Typically, stations are erec-
ted without maintaining the necessary features, resulting in various is-
sues, such as the provision of delayed services and the maintenance of 
sufficient power across locations. Consequently, this study focused on 
the problems faced by customers. 

4.2. Data parameters 

Table 2 presents the data parameters extracted from the dataset. 
Based on the dataset parameters, we generated several graphs to 
comprehend the value distribution of the dataset. Fig. 3 demonstrates 
that weekdays require significantly more energy than weekends. 
Consequently, most EVs are used for transportation to and from offices, 
colleges, and other official activities. 

Fig. 4 shows that non-festival months have the highest power de-
mand compared to Festival months. As a result, most EV usage occurs 
during the working months, while people tend to travel less during the 

holiday season. Fig. 5 demonstrates that evening hours have the highest 
power demand compared with morning hours. Consequently, most EV 
usage occurs during work hours. 

Fig. 6 illustrates the power demand distribution based on weather 
conditions. Service centers, workplaces, and hotels have the highest 
energy demands compared to other locations, as shown in Fig. 7. As a 
result, most EV usage is for day-to-day activities such as commuting to 
and from the office, college, and other official activities. 

Fig. 8 depicts the annual distribution of electrical demand. The dis-
tribution of electrical demand for EVs has rapidly increased in recent 
years. The share of electric cars in total sales has significantly increased, 

Fig. 2. The proposed framework of the research.  

Table 2 
Parameters of the dataset obtained for the study.  

ID minutes available 

Connectedweekday User Management 
ConnectionDate Billing Speed 
Weather Certification Level 
kWhDelivered Services 
stationID Workforce level 
Location Costing 
userID App Usage 
WhPerMile Plugin 
kWhRequested Charging Speed 
milesRequested Location rating  
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reaching around 14 % in 2022 to approximately 4 % in 2020. Global 
sales of electric cars have been rising significantly, with 2 million sold in 
the first quarter of 2022, indicating a growth of 75 % compared to the 
same period in 2021. 

4.3. Data collection and cleaning 

The data used in this analysis were obtained from the ACN-Data 
source and Kaggle, which are publicly available data sources. The 
dataset contained 45,729 values from 2017 to 2021. The data cleansing 
process began by removing any uncertain data, such as negative 
charging times and booking dates, that were later than the arrival date. 
Additionally, any charging times less than 10 min and missing data 
values were eliminated as outliers. 

The meticulous accumulation and data purification is indispensable 
for constructing an accurate and efficient decision support system that 

predicts the power requirements of EVs using AI and ML. These actions 
are essential to guarantee the trustworthiness and exactness of the 
proposed model. The research involved a stringent and methodical 
strategy for collecting data, in which pertinent observations and mea-
surements were systematically gathered from various sources. Historical 
data on the power consumption of EVs and information on weather 
conditions, charging practices, and other relevant factors influencing 
power requirements were collected. The combination of qualitative and 
quantitative data was the foundation for this study’s analysis. 

A thorough data-cleaning procedure was implemented to improve 
the integrity of our dataset. The process encompasses six essential 
stages: Erroneous Data Removal refers to identifying and eliminating 
flaws and inconsistencies within a dataset, aiming to ensure the integrity 
and reliability of the results obtained from data analysis. By identifying 
and removing erroneous data, researchers can minimize the potential for 
skewed or biased outcomes arising from unreliable information. 

Fig. 3. Distribution of power demand according to weekdays.  

Fig. 4. Distribution of electrical demand by month.  
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Addressing Missing Values: Implementing strategies to handle missing 
data points while maintaining the integrity of the dataset. A consistency 
check refers to the process of ensuring uniformity in data presentation 
and the use of standardized units of measurement. Duplicate Removal: 
The process of identifying and eliminating duplicate records to mitigate 
data redundancy and outlier handling involves the application of several 
strategies aimed at mitigating the impact of outliers, which have the 
potential to introduce distortions in the study; normalization refers to 
the process of converting data onto a standardized scale to enable 
equitable comparison and analysis. 

The meticulous data cleansing procedure was crucial in preparing 
our dataset for analysis, enhancing predictive accuracy and reliable in-
sights. Through rigorous adherence to these procedures, we successfully 
generated a superior quality dataset, which formed the fundamental 
basis for our decision support system utilizing AI and ML techniques. 
Including references obtained from the search results, specifically those 
about data collection and cleaning, significantly enhanced our approach 
and comprehension, facilitating the successful execution of these pivotal 
stages. 

4.4. Machine learning methods 

Fig. 9 depicts how the model’s first phase establishes the correlation 
between several distinctive traits examined for feature selection. We 
uncovered a substantial relationship between all variables, but the most 
significant association was between the certification level and charging 
station parameters, such as charging speed and workforce. The corre-
lation quantifies the linear relationship between variables and aids in 
identifying the importance of the characteristics. The Pearson correla-
tion coefficient and heatmap visualization are two popular methods. 

Correlation-based feature-selection algorithms discover important 
traits by combining correlation measures with search heuristics. 
Advanced techniques use filter-based procedures to assess underlying 
data qualities, such as feature correlation. Feature selection requires 
selecting a subset of the most relevant features while removing redun-
dant or noisy features. Making correlation plots, for example, aids in 
determining the links between features. Finally, these approaches guide 
the selection of informative features in machine-learning applications to 
increase model performance and interpretability. Fig. 10 depicts how we 
used density plots to examine the distribution of a variable in a dataset 
and observed that the data points followed a continuous pattern. 

Fig. 5. Distribution of energy demand considering the time.  

Fig. 6. Distribution of required power according to weather conditions.  

S.K. Jauhar et al.                                                                                                                                                                                                                               



Technological Forecasting & Social Change 204 (2024) 123396

8

In supervised ML, classification is a common strategy for categoriz-
ing data points. It enables the organization of various datasets, including 
complex and massive datasets and small and fundamental datasets. The 
primary objective of an early classification strategy is to classify 
incomplete time series as quickly and precisely as possible. Numerous 
techniques for classifying early time series have been developed in 
recent years. Due to the diversity of approaches to the early classifica-
tion problem, a comprehensive examination of the existing solutions is 
necessary to determine the field’s status. Several potential applications 
of early categorization utilizing Univariate Time Series (UTS) or Multi-
variate Time Series (MTS) have been outlined in the literature (MTS). An 
MTS consists of numerous correlated time series collected for a partic-
ular event over a specific time. Several crucial application scenarios are 
listed below.  

• Early classification identifies ongoing activity before completion. 
This early classification enhances user experience by accelerating the 
system’s response time. The researchers used the MTS to characterize 

various human activities, such as walking, jogging, sitting, ascending 
stairs, and eating.  

• An electrocardiogram (ECG) is a time-lapse sequence of cardiac 
electrical impulses. Multiple electrodes were frequently placed on 
the patient’s chest to record an electrocardiogram time series. Early 
electrocardiographic classification (Ebrahimi et al., 2020) facilitated 
early detection of irregular heartbeats and lowered the risk of heart 
failure.  

• Modern vehicles are equipped with various sensors. Therefore, it is 
possible to monitor the driver’s demeanor, road surface condition, 
interior-exterior environment, and other parameters using sensory 
data. Shajalal et al. (2023) describe an early classification system 
that classifies the type of road surface using accelerometers, light, 
and temperature sensors. If the road surface could be of better 
quality, such as being bumpy or rough, a quick inspection can help 
choose an alternate route. 

This response aims to provide specific instances of the application of 

Fig. 7. Location-dependent distribution of power demand.  

Fig. 8. Distribution of electrical demand by the year.  
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univariate time series (UTS) and multivariate time series (MTS) in the 
academic literature concerning the EV charging station dataset. These 
studies primarily focused on using AI -and ML-based decision support 
systems to forecast EVs’ power requirements. 

In a study conducted by Dong et al. (2020), the power demand of an 
EV charging station was forecasted using a univariate ARIMA model. 
The model’s training involves utilizing past data about the power de-
mand exhibited by the charging station. The model successfully gener-
ated power demand forecasts, achieving accuracy with an error rate of 
less than 5 %. This study aimed to investigate the impact of social media 
on mental health. 

In a recent investigation conducted by Zhang et al. (2022), a 

multivariate long short-term memory (LSTM) model was employed to 
predict the power demand of an EV charging station. The model training 
utilized past data on the power requirement of the charging station, 
weather conditions, and the number of EVs present in the vicinity. The 
model successfully predicted the power demand with an accuracy rate of 
less than 3 %. Liu et al. (2022) employed a hybrid approach integrating a 
univariate autoregressive integrated moving average (ARIMA) model 
with a multivariate long short-term memory (LSTM) model to predict 
the power demand of an EV charging station. The predictive algorithm 
successfully projected the power demand with an accuracy rate of less 
than 2 %. 

The instances above illustrate the utilization of Univariate Time Se-
ries (UTS) and Multivariate Time Series (MTS) methodologies in the 
scholarly literature about the dataset of electric car charging stations. 
These studies aimed to investigate the efficacy of AI -and ML-based 
decision support systems in accurately predicting the power demands 
of EVs. Appropriate methodologies are selected based on the dataset’s 
characteristics and research inquiry. 

In addition to the studies above, several other investigations have 
employed Universal Time Series (UTS) and Multivariate Time Series 
(MTS) methodologies to predict the power demand of EV charging sta-
tions. These investigations have employed various methodologies, 
encompassing ARIMA, LSTM, SVM, and random forests. The findings of 
these investigations indicate that the UTS and MTS have the potential to 
yield accurate predictions regarding the power consumption re-
quirements of EV charging stations. However, the optimal approach 
depends on the dataset under consideration and the unique research 

Fig. 9. Correlation between various charging station parameters.  

Fig. 10. The variable distribution of EV charging stations.  
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inquiry. 
In ML, many classifiers, such as logistic regression, allow a model to 

predict the likelihood of a specific event or class. Logistic regression was 
used when the predicted variable was binary, all predictors were inde-
pendent, and there were no missing data values. Linear regression is a 
regression approach that employs supervised learning. Independent 
variables were used to model the prediction value. Its primary purpose is 
to establish the relationship between forecasting and variables. In data 
mining, a decision tree is the most reliable categorization tool. This is a 
flowchart of the tree shape. Each internal node in this diagram repre-
sents a conditional test, and each branch indicates the result of the 
conditional test (true or false). The leaf nodes of the decision tree were 
labeled with appropriate classes. Using a decision tree, we divided the 
data into multiple groups. The random forest classifier adapts decision 
trees to different subsamples from various datasets. The average was 
used to increase the forecast accuracy while avoiding overfitting. 

Using multiple regression, we determine the significant variables to 
be ‘Weather _Summer,’ ‘kWhRequested,’ ‘Services,’ ‘Location Hotels,’ 
‘userID,’ ‘Costing,’ ‘WhPerMile,” minutes Available,’ and ‘spaceID.’ 
However, because regression focuses on weather and location, we 
employ a different technique, such as classification. Because the location 
is the most critical parameter, we explored the location parameters to 
determine the other crucial parameters for establishing an EV charging 
station. In addition, we categorized the parameters according to three 
segments. 

parking = [“Workplace,” “Shopping Center,” “Super Markets,” 
“Hotels”]. 

specific = [“Charging Stations,” “Fuel Stations,” “Public Parking 
Lot”]. 

repairs = [“Service Centers”]. 
The classification distribution was plotted to determine whether it 

followed a normal distribution. As a result, we plotted graphs like 
Figs. 11, 12, and 13 for the various location-based classifications. The 
classification distribution is a graphical representation of the probability 
density function of a dataset. This tool facilitates the visualization of 
data distribution and enables the identification of trends or outliers. 

The normal distribution, or Gaussian distribution, is a symmetrical 
probability distribution frequently employed to represent the data dis-
tribution. A bell-shaped curve characterizes it. These two parameters 
were determined based on the mean and standard deviation. The mean 
represents the arithmetic average of the dataset, whereas the standard 
deviation serves as a metric for quantifying the dispersion or variability 
of the data. To visualize the distribution of the classification, it is 
necessary to compute the mean and standard deviation of the dataset. 
The distributions presented in this study were developed using the Py-
thon statistical software. 

After obtaining the values of the mean and standard deviation, it 
becomes possible to generate a graphical representation of the proba-
bility density function associated with the dataset. The probability 
density function (PDF) is a mathematical function that quantifies the 

likelihood of a specific value occurring within a given probability dis-
tribution. A Gaussian function is a mathematical function representing a 
normal distribution graphically. The Gaussian function, the normal 
distribution, is a symmetrical probability density function characterized 
by its bell-shaped curve. It is mathematically described by the mean and 
standard deviation, which determine the central tendency and spread of 
the data, respectively. 

As shown in Fig. 14, the features are ordered from the most to the 
least significant. We predicted the required power in these regions based 
on the significance of the parameters. The inclusion of location-based 
parameters is essential for the prediction of the power demand for 
EVs. These parameters can be classified into three distinct categories: 

Fig. 11. Parking parameter distribution of EV charging stations.  

Fig. 12. Distribution of specific charging station parameter.  

Fig. 13. Distribution of EV charging station repair parameter.  

Fig. 14. Location-dependent crucial parameters.  
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site-specific, regional, and national. The criteria specific to a particular 
site are contingent upon the precise geographical location of the EV 
charging station. The factors encompassed in this analysis include the 
projected quantity of EVs that will utilize the charging station, the mean 
charging capacity of the EVs, the customary time frame during which 
charging activities occur, and the prevailing meteorological 
circumstances. 

The geographical location of an electric car charging station de-
termines its regional dimensions, which are influenced by a range of 
factors. These factors include the mean power tariff in the area, the 
availability of renewable energy resources, and governmental regula-
tions applicable to EVs. The national specifications of EV charging sta-
tions are contingent on the country in which they are situated. Factors 
influencing the adoption of EVs in the nation encompass the aggregate 
demand for such vehicles, the government’s dedication to mitigating 
greenhouse gas emissions, and the accessibility of EV infrastructure in-
side the country. 

Through categorization, researchers can discern the most significant 
criteria in predicting EVs’ power demand within a particular 
geographical area. This can assist in the development of more precise 
and reliable forecasting models. 

The classification of the parameters should be determined by the 
following factors: the parameters’ specificity level. Specific character-
istics may exhibit varying levels of detail, with the average charging 
power of EVs as an example—accessibility of data on parameters. Spe-
cific characteristics may present challenges in acquiring data compared 
with others, such as the government policies concerning EVs—and the 
influence of parameters on power demand. Certain elements, such as the 
anticipated quantity of EVs charged at the station, may significantly 
influence power demand more than others. Through thoroughly exam-
ining these elements, researchers can construct a classification system 
for the characteristics pertinent to their research. 

4.5. Data forecasting methods 

Forecasting models are one of the many tools that businesses use to 
forecast sales, basic economics, consumer behavior, and other variables. 
Corporations employ various forecasting methods that produce varying 
degrees of knowledge. Exponential smoothing models are used for 
forecasting because they consider and weigh the most recent observa-
tions appropriately. Exponential smoothing is a fixed-model time series 
prediction approach. Robert G. Brown developed the exponential 
smoothing technique, which he termed “exponentially weighted moving 
average.” Exponential smoothing is a technique used to predict future 
values based on the weighted average of previous sequence observa-
tions. As more observations are added, the most recent observation is 
prioritized, and weight loss is organized (Mossali et al., 2020). 

Exponential smoothing involves smoothing the original sequence 
before forecasting the future values of the variable of interest using a 
smoothed sequence (Mossali et al., 2020). This method is beneficial 
when parameters related to the time series change over time. The 
exponential smoothing method predicts future values using the 
weighted average of previous observations. This method is helpful for 
forecasting series trends, seasonality, or both. The data in the study 
(Barrow et al., 2020) are unique in that they do not pertain to traditional 
restaurants but to United States-based congregate food programs for 
seniors. However, the estimation of lunch demand in this application is 
very similar to the estimation of restaurant demand. 

The exponential smoothing forecasts various time-series data and is 
thus simple. The exponential smoothing method predicts the sales, in-
ventory, and economic indices. It predicts the short- and long-term 
trends—simple, computationally efficient, versatile, and exponential 
smoothing benefits. The smoothing constant makes the procedure more 
sensitive and less accurate than more advanced forecasting algorithms. 
Exponential smoothing can quickly and effectively forecast time series 
data. This benefits Beginners and simple situations (Mossali et al., 2020). 

The recursive exponential smoothing method calculates the current 
forecast from the previous forecast. This technique is easy to implement 
and update—the smoothing constant powers exponential smoothing. 
Recent data weights rely on higher weights for recent data and lower 
weights for older data. Forecast accuracy requires constant smoothing 
selection. The time-series data quality determines the optimal a. The 
exponential smoothing method predicts short—and long-term trends. 
The exponential smoothing approach is inaccurate for non-stationary or 
outlier-containing data projections (Barrow et al., 2020). 

We examined the trends and seasonal components in Fig. 15 in 
detail. Until the arrival of the COVID-19 wave, we observed a rising 
trend and consistent seasonality. As depicted in Fig. 16, we searched for 
seasonality across months and determined whether any month exhibited 
significant repeating patterns over time. 

The seasonality revealed that November and December required the 
least energy, whereas April and March had high requirements. We used 
exponential smoothing to forecast values using weighted averages of 
previous observations. As we return to time, these weights decrease. 
This implies that more weight is given to recent observations. Expo-
nential Smoothing is used when there is no discernible trend or sea-
sonality in the data. Using this parameter, we attempt to smooth out the 
level of the series. The level is the definition of the local mean and is 
mathematically represented as follows: 

A0 = X0 (1)  

A(t) = ⍺x(t)+ (1 − ⍺) a (t − 1) (2)  

A(t+ 1) = ⍺A(t)+⍺(⍺ − 1) A(t − 1)+⍺(⍺ − 1)2* A(t − 2)+………. (3) 

As we travel back in time, the weights decrease, and this parameter 
can be set between 0 and 1 to control the smoothing effect. Fig. 17 
demonstrates that the RMSE was 4036.6416, indicating that the forecast 
could have been more accurate. Because simple exponential smoothing 
always generates a flat forecast, it should be used only to predict the next 
data point. 

Next, we applied Holt’s Model, or Double Exponential Smoothing, 
considering two properties, level, and trend, resulting in two smoothing 
parameters. This technique is utilized when there is a trend but no 
seasonality. 

Level : A(t) = (1 − ⍺) A(t − 1)+⍺x(t) (4)  

Trend :: P(t) = (1 − β) P (t − 1)+ β (x(t) − A(t − 1) ) (5)  

Model : Z(t) = A(t)+P(t) (6)  

Forecasting : Z(t+ n) = A(t)+ n.P(t) (7) 

Fig. 18 displays an RMSE value of 1,787,819, indicating that the 
power estimation forecasting performs better than the previous model, 
with a lower RMSE. 

Holt-Winter or Triple Exponential Smoothing method: Reclaim sea-
sonality. This model considers the series level, trend, and seasonality. 
The three smoothing parameters correspond to level, trend, and sea-
sonality. Because the decomposition diagram for our data included trend 
and seasonal components, we anticipate this model will be more accu-
rate. We also assumed that the model was additive. 

Level : A(t) = (1 − ⍺)A(t − 1)+⍺x(t) (8)  

Trend : P(t) = (1 − β)P(t − 1)+ β(x(t) − A(t − 1) ) (9)  

Seasonal : Q(t) = (1 − γ)Q(t − 1)+ γ(x(t) − A(t − 1) − P(t − 1) ) (10)  

Model : Z(t) = (A(t)+P(t) )Q(t) (11)  

Forecasting : Z(t+ n) = (A(t)+ n.P(t) )Q(t) − A+ 1+(n − 1)modA (12) 
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Determining the most suitable value for the smoothing parameter is 
contingent on the specific attributes and properties of the time-series 
data. The ideal value can be selected using several methodologies, 
such as trial and error, optimality criteria, and cross-validation. 

The smoothing parameter can have a substantial effect on forecasting 
accuracy. An increase in the value of the smoothing parameter is likely 
to result in forecasts that are more sensitive to current data, although 

this may also lead to increased volatility. A decrease in the value of the 
smoothing parameter is associated with a decrease in the responsiveness 
of forecasts to current data. However, this decrease in responsiveness 
may also result in a decrease in forecast accuracy. Determining the most 
suitable value for the smoothing parameter is contingent upon the 
specific attributes inherent in the power requirement data of EVs. 

Further investigation is warranted to examine the influence of the 

Fig. 15. Seasonal variation and trend over time.  

Fig. 16. Monthly Seasonality for electricity.  
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smoothing parameter on the prediction accuracy. Researchers can 
employ cross-validation to assess the influence of various smoothing 
parameter values on forecast accuracy. An increase in the value of the 
smoothing parameter is likely to result in forecasts that are more sen-
sitive to current data, although this may also lead to increased volatility. 
A decrease in the value of the smoothing parameter is associated with a 

decrease in the responsiveness of forecasts to current data. However, this 
decrease in responsiveness may also result in a decrease in forecast 
accuracy. 

Fig. 19 shows that the forecasted model with an RMSE of 982.64 
provides the best value. Nevertheless, we observe that seasonality and 
trends are not observed when classifying based solely on location; 

Fig. 17. Forecasting over simple exponential smoothing.  

Fig. 18. Forecasting using dual exponential smoothing.  
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therefore, we evaluate the customer data using the RTM method and 
then forecast the values. RTM - The term “customer recency” refers to 
the most recent purchase made by a customer. Frequency refers to the 
frequency with which a customer purchases something, whereas mon-
etary value refers to the monetary value of the purchase. Therefore, we 
plotted Fig. 19 to determine a customer’s proximity to a particular date, 
allowing us to determine how recently a consumer purchased an EV 
charging station. 

5. Result analysis 

The largest sector in the histogram shown in Fig. 20 shows that most 
customers visited the charging station within the first 50 days. Fig. 21 
illustrates the frequency with which customers visit the EV charging 
station. These findings suggest that customers frequently require power 
to charge their EVs. Additionally, it is worth noting that many customers 
visited the station between 50 and 100 days after their previous visit, as 
indicated by the second-largest sector in the histogram. 

Most customers in the primary sector typically visit the charging 
station within the first 0–100 days, suggesting a need for regular power. 
To better understand their financial contributions, Fig. 22 was plotted to 
represent their visits to charge their EVs at the station. 

The research indicates that most customers typically pay around 
75,000 Indian rupees at charging stations, suggesting a preference for 
lower-cost power at regular intervals. Additionally, the overall value of 
customers visiting the EV charging station is assessed by examining 
Fig. 23. 

In the current analysis, we utilized a hierarchical scoring system to 
categorize the overall score. A score greater than two is designated as 
“Mid-Value,” while a score greater than five is designated as “High- 
Value.” Conversely, a score less than two is designated as “Low-Value.” 
We aim to evaluate the dataset based on customer segments and forecast 
the power requirement considering seasonality and trends. To achieve 
this, we plotted the dataset shown in Fig. 24. 

In hierarchical score systems, the expressions “overall score” and 
“mid-value” denote varying levels of specificity within the grading 
framework. The overall score refers to the final assessment, which 
considers all aspects of the hierarchy. It serves as a comprehensive 
evaluation for decision-making and comparisons. However, the mid- 
value signifies the score at a mid-level within the hierarchy, encapsu-
lating a particular subcategory or group of factors contributing to the 
overall score. This can be likened to the scores for individual branches 
within a tree, whereas the overall score represents the entire tree. 

These mid-values offer valuable insights into the most critical factors 
in the final evaluation. The overall score depends on the allocation and 
consolidation of mid-values. The system may assign varying degrees of 
significance to different subcategories, which is evident in how mid- 
values are combined to arrive at the final score. Therefore, scruti-
nizing overall and mid-values provides a more refined perception of the 
hierarchical score system. This enables one to appreciate the bigger 
picture while examining each component’s health. 

The trends and seasonal components in Fig. 25 were analyzed in 
detail. A rising trend existed until the emergence of the COVID-19 wave, 
and consistent seasonality was observed throughout the timeframe. 
Fig. 26 demonstrates the methodical examination of seasonality across 
various months, revealing recurring patterns deviating from the norm. 

The findings of our analysis indicate that monthly power consump-
tion exhibits a consistent pattern, with a notable upward trend observed 
from June to August. This trend may be attributed to local festivals and 

Fig. 19. Prediction using triple exponential smoothing.  

Fig. 20. Customer’s recency using an EV charging station.  
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fairs in the area. Considering these findings, we proceeded to the fore-
casting stage, employing the previously described forecasting models for 
the location classification model. Furthermore, we endeavored to 
separate the data into test and training sets, as shown in Fig. 27. 

We show various exponential models in Figs. 28, 29, 30, and 31. 
Fig. 31 illustrates Forecasting over Triple Exponential Smoothing in 

greater detail. 

Before commencing our analysis, we would like to study seasonality 
analysis techniques. Additive and multiplicative methods are the most 
widely used techniques for examining the seasonality of Time Series. 
The seasonal pattern’s magnitude in the data depends on the data’s 
magnitude, indicating that seasonality follows multiplicative models. 
However, the additive model’s magnitude of seasonality remained 
constant over time. 

Fig. 21. Customer visitation frequency using an EV charging station.  

Fig. 22. The monetary value of using an EV charging station.  

Fig. 23. The customer’s overall value Visiting the Classified EV charging station based on ratings.  
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In the context of Random Forest, location, charging speed, minutes 
available, and power demanded all play a significant role in the pre-
diction. All features, except for app usage, cost, and plug type, signifi-
cantly impact the forecast. These results may result from the Random’s 
tendency to overfit or closely follow the training data. However, when 
we assigned the location to specific classes based on their intended use, 
we discovered that parking slots, such as charging stations, fuel stations, 
and public parking lots, substantially affected the prediction model. 
Variables such as billing speed, certification level, available minutes, 
workforce, and cost directly affect the prediction of the most efficient 
charging stations for customers. 

Furthermore, our findings indicate that most customers visited 
charging stations between 50 and 100 days, and this trend is also 

observed in the primary sector, suggesting a frequent need for power. 
Additionally, the average payment made by customers is approximately 
75,000 Indian rupees, which suggests that they require energy at a lower 
cost because of their regular power needs and fall within the mid-value 
category based on their overall scores. 

Our optimized character demand forecasting revealed that July 
(8750 kWh) and November (1105 kWh) had the lowest and highest 
power demand, respectively. Using a prediction-based method, charging 
stations can provide stable power. However, it is essential to note that 
our analysis assumes that charging stations do not contain batteries, and 
any excess electricity generated that is not used for recharging is sent to 
the grid. Implementing a local energy storage system could mitigate the 
impact of short-term output variability on charging times; however, 

Fig. 24. The initial power demand of the customer visiting the EV charging station.  

Fig. 25. Seasonality and trend graph for a customer segment over time.  

S.K. Jauhar et al.                                                                                                                                                                                                                               



Technological Forecasting & Social Change 204 (2024) 123396

17

further research is required in this area. 

6. Managerial implication 

The findings have significant implications for management. The 
study suggests that the advantage of market orientation may vary 
depending on the composition of a company’s supply- and demand-side 
power components. Additionally, this study identifies the crucial ele-
ments likely to encourage or deter the establishment of a charging sta-
tion within market customer orientation. Because managers have the 
authority to alter these variables, they can modify them to strengthen 
the market orientation of their companies. Ultimately, our findings 
provide managers with a comprehensive grasp of market orientation, 
including how to attain it and its anticipated consequences. 

However, firms that gather and act on market intelligence tend to 
surpass their competitors and achieve more excellent customer and 
employee satisfaction. They need more engagement in market-oriented 
activities to guarantee their success. Market intelligence may be of 
questionable quality, or marketing strategies developed in response to 
such intelligence may not be effectively executed. A market-driven 
approach may fail to produce desired operational results in such cases. 
Using AI- and ML-based decision support systems for EV power re-
quirements presents significant managerial considerations. 

The integration of advanced forecasting technology brings about 
significant advantages across various sectors. First, this sophisticated 

system accurately anticipates the electricity consumption patterns of 
EVs over diverse timeframes, spanning from days to years. Such fore-
sight empowers utilities to meticulously plan and schedule electricity 
generation and distribution, ensuring optimal resource allocation. 
Additionally, it enables utilities to identify peak demand periods and 
proactively manage electricity supply to meet the burgeoning needs of 
EV users during these critical times. Furthermore, this technology cat-
alyzes optimizing the placement and capacity of EV charging stations. 
Through meticulous data analysis, it identifies regions with substantial 
EV demand. It facilitates the strategic deployment of charging infra-
structure, ensuring convenient access for EV owners while alleviating 

Fig. 26. Seasonality every month for electricity.  

Fig. 27. Test and train for electricity consumption.  

Fig. 28. Forecasting over simple exponential smoothing.  

Fig. 29. Forecasting over double exponential smoothing.  
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strain on the grid. Moreover, adopting this framework translates into 
tangible cost savings by optimizing EV charging schedules to coincide 
with periods of lower electricity rates. Organizations can effectively 
mitigate grid maintenance and operation expenses by capitalizing on 
off-peak charging hours, enhancing financial efficiency. Beyond eco-
nomic benefits, implementing this method fortifies the reliability of 
electrical power grids. By proactively identifying and addressing po-
tential issues before they escalate into disruptive outages, the system 
enhances the resilience of critical infrastructure, ensuring uninterrupted 
access to electricity for consumers and bolstering overall grid stability. 

This method aims to enhance the electrical grid’s sustainability by 
minimizing fossil fuel utilization. This technique promotes the efficient 
use of clean energy by coordinating EV charging with renewable energy 
sources. Moreover, EVs can be charged using renewable energy sources, 
such as wind power at night and solar power during the day, contrib-
uting to grid stability and the proliferation of renewable energy. Using 
AI and ML to develop a decision support system for predicting EV power 
requirements can benefit electric car fleets. This system optimizes the 
planning, scheduling, and charging infrastructure to reduce costs, in-
crease reliability, and promote sustainability. 

Furthermore, this method also presents technological consequences. 
Specifically, the system must be capable of processing, storing, and 
analyzing vast amounts of data on time. In addition, the system must be 
adaptable to environmental shifts, such as an increase in EV availability 

and the integration of renewable energy sources. Despite these obsta-
cles, AI—and ML-based decision support systems for determining EV 
power requirements demonstrate great potential. These systems can 
enhance the efficiency and sustainability of electrical grids. 

7. Conclusion and future research direction 

This study has crafted a robust framework to discern the pivotal 
characteristics of EV charging demand. Through the innovative inte-
gration of artificial intelligence (AI) and machine learning (ML), the 
model unveils latent features crucial for precisely calculating EV 
charging demand. With this methodology in place, the Demand Fore-
casting module adeptly predicts power consumption across diverse lo-
cations and loads, spanning multiple timeframes. Implementing this 
model’s strategies in managerial contexts enables the creation of a 
feasible charging demand and load zone design. For instance, in areas 
with heightened charging demand, the model offers insights for opti-
mizing power distribution through strategies like swapping or 
augmentation. Its adaptable design lends itself well to various scales, 
from smaller neighborhoods to entire countries, requiring only minor 
adjustments to suit different case scenarios. 

It is crucial to recognize that the proposed model’s effectiveness is 
contingent upon various factors, such as the localized impact of weather 
conditions and the nuanced influence of marketing strategies on 
charging demand. These considerations and implications for alternative 
problem-solving methodologies like robust mathematical models and 
Deep Learning approaches warrant comprehensive exploration in future 
research endeavors. One significant limitation of AI- and ML-based de-
cision support systems in estimating EV power requirements is the 
critical dependence on data availability and quality. The fidelity and 
reliability of these models are inherently tied to the breadth and accu-
racy of the datasets they are trained on, necessitating careful attention to 
real-world representativeness. Moreover, the inherent complexity of AI 
and ML models poses challenges regarding interpretability and trans-
parency. Understanding the inner workings of these models is essential 
for ensuring the validity and reliability of their conclusions, necessi-
tating dedicated efforts to unravel their intricacies. Furthermore, the 
susceptibility of AI and machine-learning models to biases is a pressing 
concern. These biases, reflective of underlying biases in the training 
data, can lead to skewed or erroneous decision-making processes, 

Fig. 30. Forecasting over triple exponential smoothing.  

Fig. 31. Detailed forecasting using triple exponential smoothing.  
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highlighting the need for meticulous bias mitigation strategies. Addi-
tionally, security and privacy vulnerabilities represent significant risks 
associated with AI and ML systems. Threats such as unauthorized data 
access and system breaches underscore the imperative for robust secu-
rity measures and proactive risk mitigation strategies. 

A comprehensive focus on data gathering and preparation method-
ologies is paramount in charting future research trajectories. Efforts 
should be directed towards refining techniques for data cleaning, ano-
nymization, and handling missing data, ensuring the integrity and utility 
of datasets. Furthermore, pursuing accurate, robust, and interpretable AI 
and ML models demands exploring novel methodological approaches 
and a deeper understanding of their operational mechanisms. Trans-
parent and interpretable models are essential for fostering trust and 
confidence in their outputs. Moreover, advancing model evaluation and 
validation techniques is critical for ensuring the reliability and appli-
cability of AI and ML solutions. Developing comprehensive evaluation 
metrics and strategies for assessing accuracy and robustness is essential 
for effectively gauging model performance. Addressing security and 
privacy concerns necessitates a multi-faceted approach encompassing 
the development of stringent security protocols, proactive threat 
detection mechanisms, and user education initiatives. Safeguarding AI 
and ML systems against potential vulnerabilities is paramount for up-
holding data integrity and user privacy. 
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