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Abstract

Visual communications have played an important part in our daily life as a non-verbal way of

conveying information using symbols, gestures and images. With the advances of technology, people can

visually communicate with each other in a number of forms via digital communications. Recently Image

Super-Resolution (ISR) with Deep Learning (DL) has been developed to reproduce the original image

from its low-resolution version, which allows us to reduce the image size for saving transmission band-

width. Although many benefits can be realised, the image transmission over wireless media experiences

inevitable loss due to environment noise and inherent hardware issues. Moreover, data privacy is of vital

importance, especially when the eavesdropper can easily overhear the communications over the air. To

this end, this paper proposes a secure ISR protocol, namely Deep-NC, for the image communications

based on the DL and Network Coding (NC). Specifically, two schemes, namely Per-Image Coding

(PIC) and Per-Pixel Coding (PPC), are designed so as to protect the sharing of private image from the

eavesdropper. Although the PPC scheme achieves a better performance than the PIC scheme for the

entire image, it requires a higher computational complexity on every pixel of the image. In the proposed

Deep-NC, the intended user can easily recover the original image achieving a much higher performance

in terms of Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM) than

those at the eavesdropper. Simulation results show that an improvement of up to 32 dB in the PSNR can

be obtained when the eavesdropper does not have any knowledge of the parameters and the reference

image used in the mixing schemes. Furthermore, the original image can be downscaled to a much lower

resolution for saving significantly the transmission bandwidth with negligible performance loss.

Q.-T. Vien and H. X. Nguyen are with the Faculty of Science and Technology, Middlesex University, United Kingdom.

Email: {Q.Vien; H.Nguyen}@mdx.ac.uk.

T. T. Nguyen is with the School of Computing and Mathematical Sciences, University of Greenwich, United Kingdom.

Email: Tuan.Nguyen@greenwich.ac.uk.



2

Index Terms

Image communication; Deep learning; Super-resolution; Network coding

I. INTRODUCTION

Nowadays, personal digital images are widely exchanged over internet. In order to save the

transmission bandwidth, an original high-resolution (HR) image can be converted into a low-

resolution (LR) image prior to transmission, while image super resolution (ISR) can be employed

at the receiver to recover the HR image from the LR image [1]. There is a need to protect these

images due to privacy and essential information. Various methods have been developed to protect

them such as stenography, encryption and watermarking. Stenography is a method to hide data

inside an image, while in the encryption method, one image is converted into an encrypted image

by using the secret key. On the other hand, watermarking techniques are to embed the signature

into an image to visualise or hide the ownership of the image. In the following sections, we

discuss several methods in this theme.

In general, the approaches of steganography and encryption are different, but they serve one

purpose, protecting necessary data from irrelevant people. Encryption is more flexible and secure.

Human, however, is always curious and tries to see what messages when they receive encrypted

information. In such cases, steganography is a better option because it does not draw attention.

Network coding (NC) concept [2] has been well exploited in a vast number of research work

from networking and communications perspective aiming to increase the system throughput by

allowing the intermediate nodes to perform encoding the incoming data rather than operating

simply as store-and-forward switches. Specifically, an algebraic approach of NC, namely random

linear NC (RLNC), was developed in [3] where the intermediate nodes can perform random

linear operations on the incoming data packets from different transmission source nodes. The

sink nodes with a sufficient number of mixed data packets along with all RLNC coefficients can

recover the data of all source nodes. The RLNC with its advantage in providing a dramatically

enhanced throughput has been applied in a variety of network models, such as relaying [4]–[6],

multicasting [7]–[9], broadcasting [10] and multimedia streaming [11].

Considering data transfer over the wireless networks, several issues encounter during trans-

mission such as data privacy and the amount of data transferred to reduce the time it takes to

complete data transfer. Inspired by NC techniques, this work extends the work in [12] to develop
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a simple yet efficient method to conceal and reduce the file size whilst transferring image data

through network. The main contributions of the paper can be summarised as follows:

i) A secure ISR using both deep learning (DL) and NC, namely Deep-NC, is proposed for

image communications between Alice and Bob. In the proposed scheme, an LR version

of the original HR image is firstly generated at Alice using a simple bicubic interpolation.

This downscaled image is then incorporated with the reference image by RLNC encoding

prior to transmitting to Bob. Over noisy channel, the received image at Bob is denoised,

followed by RLNC decoding using the shared reference image. Finally, ISR is applied to

recover the original HR image. The novelty of the proposed scheme lies in the fact that it

effectively utilises and links the strength of the NC and ISR into an unified framework to

encode and decode the LR images at Alice and Bob, respectively.

ii) Two schemes, namely per-image coding (PIC) and per-pixel coding (PPC), are proposed.

Specifically, the RLNC is applied in the PIC scheme for the entire image and the PPC

scheme employs the RLNC on individual pixels of the image. Extensive experiments show

that the PPC scheme, with the RLNC encoding and decoding at pixel level, achieves a

better quality than the PIC scheme, while the PIC scheme requires a lower computational

complexity with a lower bandwidth to process the whole image with only an RLNC

coefficient.

iii) The performance of the proposed Deep-NC is evaluated taking into account two noise

models including additive Gaussian noise and salt-and-pepper impulse noise as a typical

non-Gaussian noise model. Simulation results show that Bob achieves a far better perfor-

mance than Eve with the employment of Deep-NC, especially when Eve has no knowledge

of the reference image shared between Alice and Bob. Additionally, both ISR and bicubic

interpolation are shown to provide a better performance at Bob compared to Eve over both

noise models. Furthermore, the proposed Deep-NC allows the image to be downscaled to

a much lower resolution to save the transmission bandwidth, while still maintaining a

significantly higher performance than Eve.

The rest of this paper is organised as follows: Section II firstly presents the background of DL

and ISR. The related works of ISR techniques and secure image communications is then reviewed

in Section III. Section IV describes the system model of a typical secure image communication

over a noisy channel experiencing either additive Gaussian noise or salt-and-pepper noise. The
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proposed Deep-NC for secure ISR is presented in Section V, followed by the discussion of

evaluation method in Section VI. Simulation results are presented in Section VII to validate the

performance of the proposed Deep-NC. Section VIII finally concludes this paper summarising

its main contributions with proposal of future works.

II. BACKGROUND

A. Deep learning

Machine learning (ML) methods are algorithms that can extract information and learn patterns

from data and then apply what have learned to make predictions. Neural network algorithm is one

of advanced techniques of the ML. Deep Learning (DL) has recently received increasing attention

and achieves impressive results across a spectrum of domains such as medicine, automation,

transportation, security, and so forth. It is a specific subfield of the ML that uses neural network

consisting of multiple layers, each of which represents a deeper level of knowledge. The DL

learns from data through successive layers to increase their meaningful representations.

The reasons for the success of DL can be attributed to two folds: first, the feature learning

capacity of its hierarchical architecture allows for automatically extracting meaningful features

from data [13], in which lower layers identify basic features and deeper layers synthesize higher-

level features in terms of learned lower-level ones; second, the development of high-performance

computers with Graphic Processing Units and Tensor Processing Units enable us to perform a

large number of operations in reduced CPU time. Moreover, with the increasing digitisation

transformation, the applicability of the DL is more pronounced as the bigger data becomes, the

larger DL architecture is expected; and vice versa, to capture the underlying patterns better.

Figure. 1 illustrates the training and testing in DL which consist of the following steps:

i) Data collection: this step is to identify and collect relevant data such as images contain

cats and images contain dogs. Each data is assigned by a specific label.

ii) Data pre-processing:

– Data collected might be noisy, missing data, extremely large values, unorganized text

data. For example, images can contain other objects other than “cat”. Cropping steps

are needed to remove these artefacts.

– Data augmentation step might be needed to increase numbers of data. In term of images,

it increases the number of images in the dataset by various transformations like rotation,

flipping, colour variation, etc.
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Fig. 1: Training and Testing stages in Deep learning.

– The dataset is then splitted into the training and testing dataset.

iii) Building a DL architecture: creates a structure of the DL structure such as number of

layers, how many nodes per layer.

iv) Training & Validating the model:

– The training dataset is further splitted into actual training dataset and validation dataset.

The actual training dataset is fitted into the DL architecture to perform the training part.

– The validation set treated as unseen data is used to tune the hyper-parameters of the

architecture. Hyper-parameters are specific values that are initialised before training the

model.

– Features are automatically extracted from DL training. Whilst in traditional machine

learning, features of data has to be specified manually for the algorithms.

v) Evaluating the model: the testing data is only used once a model is completely trained.

The DL trained model extracted features from the testing data and then pass them through

several layers to give the final prediction at the last layer.

B. Super Resolution for Image Processing

Image Super Resolution (ISR) is the process of recovering a high-resolution (HR) image from

a given low-resolution (LR) image. The LR image is an image which has a reduced dimension

or contains noise or blurring regions. The relationship between an HR and an LR image can

be represented by a function HR = F (LR, γ) whereas F is the function used to invert the LR

image back the HR image and γ is the parameter for the inversion process.
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If we know function F , the HR image can be easily reconstructed from the LR image. In

reality, this is, however, not the case. Research has proven that DL is one of effective techniques

for ISR tasks.

The core problem of ISR is to create a mapping between the LR and HR images. In order to

do so, multiple DL based architectures have been developed. These architectures can be grouped

into four main architecture types as shown in Fig. 2 [1] including:

i) Pre-upsampling super resolution: As visualised in Fig. 2(a), the LR image is firstly

upsampled by traditional upsampling methods, e.g. bicubic [14] and bilinear interpolation

[15]. Thus, a Super-Resolution Convolutional Neural Network (SRCNN) was proposed in

[16] to learn an end-to-end mapping from interpolated LR images to HR images. This type

of method can produce blurring regions due to the predefined upsampling.

ii) Post-upsampling: This approach performs upsampling at the last learnable layer as shown

in Fig. 2(b). With this strategy, the feature extraction is performed in the lower dimensional

spaces. Hence, it reduces the complexity.

iii) Progressive Upsampling: The above two techniques are using one upsampling convo-

lution which makes difficulty in learning for larger scales. To address this, a progressive

upsampling architecture adopted from Laplacian pyramid SR framework, namely LapSRN,

was introduced in [17]. As shown in Fig. 2(c), images are upsampled to higher resolution

at each stage. Models for these frameworks are in general complex due to multiple stages.

iv) Iterative Up and Down Sampling: In order to capture coherence between LR and

HR image pair, the back-projection [18] was exploited and utilised in ISR to iteratively

refine intensity of the HR image as shown in Fig. 2(d). Several methods, e.g. Deep Back-

Projection Networks (DBPN) [19] and Super-Resolution FeedBack Network (SRFBN) [20],

were introduced. These models can provide high quality reconstruction results but designing

criteria for back-projection still needs further exploration.

III. RELATED WORKS

A. Super Resolution

Kim et al. [21] proposed a very deep convolutional network, namely Very Deep Super Resolu-

tion (VDSR), for generating an HR image given its LR variants which achieve high benchmark

scores with relatively high speed against other top-performing methods. Fig. 3 shows an overview
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(a)

(b)

(c)

(d)

Fig. 2: Super resolution architectures [1]: (a) Pre-upsampling; (b) Post-upsampling; (c) Progres-
sive Upsampling; and (d) Iterative Up and Down Sampling
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Fig. 3: VDSR framework [21]

of DL architecture, in which each convolutional layer contains 64 filters and the rectified linear

units (ReLu) are utilised as an activate function.

By leveraging the residual learning strategy and batch normalisation on top of a very deep

Convolutional Neural Network (CNN) architecture the method achieves competitive results in

denoising with appealing run time. That is why since its introduction, it has been adopted in

various fields, such as seismic [22], machinery [23], as well as network security [24].

B. Encryption

Guerrini et al. [25] investigated a secure image hash-based geometric transformation procedure

for transmitting an image with low information knowable to ensure security purposes. In addition,

the method showed to be robust to some degrees of transformations such as rotation, shifting,

and scaling. Peng et al. [26] utilised the optimised semi tensor product CS algorithm coupling

with the digital watermarking algorithm for ensuring security and effectiveness of Telemedicine

Image transmission. The experimental results can achieve reconstructed imaged with high quality

up to around 33 dB PSNR; moreover, good visual images still obtained with the presence of

different noises including Gaussian white noise, Salt and Pepper noise, and Poisson noise. Xie

et al. [27] explored an n × n secret image sharing scheme, which ensures the security during

transmission based on the principle that the host images can be retrieved perfectly if and only

if n shares work together. In 2017, Zhang et al. [22] proposed a denoising approach based on
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CNNs, a.k.a DnCNNs, effectively coping with the presence of unknown level Gaussian noises

in concerned images.

C. Stenography

Stenography can be applied into different types of file formats, such as text, image, video, and

audio. Images are most suitable for stenography as they consist of large amount of redundant

bits. A stego image is obtained when a message is embedded into a cover image. The stego

image is sent through a public channel. Audio and video files consist of similar techniques as

for image files. In this section, several methods for image stenography will be reviewed.

A popular and easy technique is the Least Significant Bit (LSB) used in [28], [29]. It uses the

last bit of each pixel to store the secret message’s data bit. This method is simple yet less robust.

The hidden data can be lost easily when the image is manipulated. In other hand, Discrete Cosine

Transform (DCT) and Discrete Wavelet Transform (DWT), used in [30] and [31] respectively,

transform an image from the spatial domain to the frequency domain. They, then, separate the

image into low, middle and high frequency. The high frequency is normally removed through

compression and the low frequency contains the most important visual parts of the image. The

hidden message is embedded by modifying the middle frequency so that the change of image

will not be noticed. The problem with this technique is that the hidden message must have

smaller size than the cover image, which means that hiding an image into another image is not

easy to be achieved.

Inspired by these methods, our work combines them into a unified framework to secure images

transmitted in the network. It is discussed in the next section.

IV. SYSTEM MODEL

Figure 4 illustrates a typical secure image communication model where Alice (A) wants to

send a private image to Bob (B) in the existence of Eve (E) who is trying to eavesdrop the

image.

Let IA denote the original image of size M ×N that Alice wants to send. Considering typical

colour images with three channels, i.e. red, green and blue, IA can be defined as an M ×N × 3

array, i.e.

IA : f(xA, yA)→ R3, (1)

where f(xA, yA) ∈ R is the intensity of the image pixel at point (xA, yA).
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Fig. 4: System model of secure image transmission.

Over the transmission media, the noise is inevitable, which causes image degradation. Gen-

erally, Gaussian noise model has been regarded as the best fit in representing the additive noise

in the undesired signal at the receiver in most of communication systems due to its simplicity

with dominant central limit theorem. However, there are some other non-Gaussian noise models,

such as impulse noise and Cauchy noise, which are used to model image degradation caused

by malfunction of the image detector or other hardware issues. Specifically, in this paper, two

types of noise model are considered, including Gaussian noise and impulse noise in the form of

salt-and-pepper noise.

A. Additive Gaussian Noise

Considering additive noise model, the image received at node X , X ∈ {B, E}, is given by

I
(G)
X = IA +N

(G)
X , (2)

where N (G)
X , X ∈ {B,E}, is additive white Gaussian noise (AWGN) at X having mean of µX

and variance of σ2
X .

In order to denoise an image with AWGN, deep neural network can be employed using a

pretrained DnCNN network [22].

B. Salt-and-Pepper Noise

The salt-and-pepper noise is represented by noise density which is defined as the probability

of having noise in the received image. Let d, 0 ≤ d ≤ 1, and I
(SP )
X denote the salt-and-pepper
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noise density and the received image at node X , X ∈ {B, E}, respectively. The probability of

receiving the original image at node X is thus Pr[I
(SP )
X = IA] = 1 − d. In other words, I(SP )

X

can be written by

I
(SP )
X =

N
(SP )
X with probability d,

IA with probability (1− d),
(3)

where N (SP )
X is the salt-and-pepper noise at node X .

The salt-and-pepper noise can be effectively treated by applying median filter which is widely

used as a non-linear approach to remove impulse noise in the image [32].

V. PROPOSED SECURE IMAGE SUPER-RESOLUTION WITH DEEP NETWORK CODING

In the proposed secure ISR, the original HR image at Alice is firstly downscaled to an LR

image. Then, RLNC is employed to encode this downscaled image prior to transmitting to Bob

over the noisy channel which can be overheard by Eve.

At Bob, the received image is firstly denoised, and then it is decoded with RLNC decoding.

The original image can be recovered using ISR. A similar image processing is employed at

Eve, apart from the RLNC decoding which needs to be estimated since Eve does not have any

knowledge of the RLNC encoding scheme at Alice.

The flowchart of the proposed secure ISR is shown in Fig. 5, which consists of the following

main steps:1

A. Downscaling at Alice

In order to save the transmission bandwidth, an LR version of the original image is firstly

generated using bicubic interpolation. The bicubic filter is employed for downscaling due to its

low computational complexity, while preserving image details with smooth interpolated surface.2

After downscaling the original image, i.e. IA, from Alice, we have an LR image I ′A having

size dM/δe×dN/δe×3 where δ denotes the scaling factor and dxe denotes the ceiling function

of x.

1Note that the common blocks at Bob and Eve to represent the same steps are combined in the following discussion.
2There exist different downscaling methods, e.g. Box sampling, Nearest-neighbour interpolation, Lanczos Filtering [33], or

CNN based downscaling like [34]; however, we do not need a sophisticated downscaling method in this work.
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Fig. 5: Proposed Deep-NC for secure image super-resolution
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Fig. 6: RLNC encoding at Alice

B. RLNC Encoding at Alice

Following the concept of RLNC [3], in the proposed scheme, the downscaled image at Alice is

linearly mixed with a reference image using random scalar coefficients, a.k.a. RLNC coefficients.

As shown in Fig. 5, the reference image is acquired from an image datastore which is assumed

to be shared between users as a common image dataset.3

In order to mix two images, the shared image is first downscaled to the same size of the

original image. Let IS and I ′S denote the HR and LR versions of the shared image, respectively.

I ′S should have the same size of I ′A, i.e. an dM/δe × dN/δe × 3 array.

The mixing of the original image and the shared image can be realised via either per-image

coding (PIC) or per-pixel coding (PPC) scheme as follows:

1) Proposed Per-Image Coding (PIC): In the PIC scheme, the RLNC is applied for the entire

images with the same RLNC coefficients for all pixels of the original and shared images. As

illustrated in Fig. 6, the transmitted image at Alice, denoted by I(PIC)
T , can be written by

I
(PIC)
T = αAI

′
A + αSI

′
S, (4)

3Notice that only the RLNC coeffients and the index of the reference image are shared between Alice and Bob prior to
transmission as private keys in key-agreement protocols.
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where αA and αS are RLNC coefficients having αA > 0, αS ≥ 0 and αA + αS = 1. Here, αA

and αS represent the fractions of original image and shared image, respectively, in the mixed

image.

2) Proposed Per-Pixel Coding (PPC): Instead of considering the whole image, the mixed

image at Alice in the PPC scheme is generated by treating the pixels in both original and shared

images as

I
(PPC)
T = MA ◦ I ′A +MS ◦ I ′S, (5)

where MA and MS are matrices of RLNC coefficients having size dM/δe × dN/δe × 3, and ◦

denotes the Hadamard product of two matrices. Similar to the condition of the RLNC coefficients

in the PIC scheme, the random matrices MA and MS are also required to be MA > 0, MS ≥ 0

and MA +MS = 1.

Remark 1 (Image Decodability-Security Tradeoff). In the PIC scheme, a higher αA results in
a better performance at Bob with an enhanced image decodability, while a higher αS helps
secure the original image from Eve. In fact, a higher αA means more information of the original
image in the mixed image, and thus Bob can recover the desired image with higher decodability.
However, Eve also overhears the same amount of information to be able to extract the original
image, which means more information at the same time is leaked to Eve. On the other hand, a
higher αS , i.e. a lower αA, causes degradation of the image decodability at Bob, but it helps
improve the secrecy of the image communications due to less information of the original image
in the image mixture. Therefore, it is crucial to find αA (or αS) to balance the tradeoff between
the image decodability and security. The impacts of RLNC coefficients on the performance of
the proposed scheme are discussed in Subsection VI-B.

Remark 2 (Comparison of PIC and PPC Schemes). It can be noticed that the PIC is a special
case of the PPC scheme when all RLNC coefficients in matrices MA and MS are identical.
Although the PIC is shown to be much simpler than the PPC scheme, they both have their own
merits and demerits as follows:
• PIC scheme: requires low computational complexity with low bandwidth to share only an

RLNC coefficient, i.e. αA or αS . However, Eve can easily estimate this RLNC coefficient in
the range between 0 and 1.

• PPC scheme: involves matrix computation at both transceivers, and thus it requires a high
computational complexity. Also, in the PPC scheme, a high bandwidth is required to share
the matrix of RLNC coefficients, i.e. MA (or MS), especially when the size of the original
image is large. However, in return for this, an enhanced performance is obtained due to
the fact that all pixels of the original image are encrypted with different RLNC coefficients.

C. Denoise at Bob and Eve

Over the noisy channel, the image transmitted from Alice is deteriorated, which is caused by

either Gaussian or non-Gaussian noises. In this subsection, Gaussian noise and salt-and-pepper
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noise models are sequentially presented, followed by the introduction of denoising techniques

employed at Bob and Eve with the assumption that Eve experiences the same noisy environment

as Bob.

1) Gaussian Noise: The images received at B and E over Gaussian noise model can be

obtained as in (2), i.e.

I
(G)
X = IT +N

(G)
X , (6)

where X ∈ {B,E} and IT is the transmitted image at Alice given by (2). Both B and E then

remove the Gaussian noise using the same pretrained DnCNN network.

2) Salt-and-Pepper Noise: As shown in (3), the images received at B and E caused by salt-

and-pepper noise can be given by

I
(SP )
X =

N
(SP )
X with probability d,

IT with probability (1− d),
(7)

where X ∈ {B,E} and d is salt-and-pepper noise density. The salt-and-pepper noise can be

filtered out by employing median filter.

For brevity, let us denote the denoised images at B and E after filtering by ĨB and ĨE ,

respectively.

D. RLNC Decoding at Bob

The RLNC decoding at Bob can be carried out with respect to two RLNC encoding schemes

(see Subsection V-B) as follows:

1) PIC Decoding: Given the index of the reference image in the shared image datastore and

RLNC coefficients, i.e. αA or αS , Bob can recover the image transmitted from Alice as

Î
′(PIC)
B =

1

αA

(
ĨB − αSI ′S

)
, (8)

where I ′S is the LR version of the shared image and Î
′(PIC)
B is the decoded image at B in the

PIC scheme.

2) PPC Decoding: For PPC decoding, a matrix of RLNC coefficients, i.e. MA or MS , is

required at Bob. The original image transmitted from Alice can be decoded as

Î
′(PPC)
B =

(
ĨB −MS ◦ I ′S

)
�MA, (9)

where � denotes the Hadamard division of two matrices and Î ′(PPC)
B denotes the decoded image

at B in the PPC scheme.
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For clarity, the RLNC encoding at Alice and decoding at Bob are summarised in Algorithms

1 and 2, respectively.

Algorithm 1 RLNC encoding at Alice

Input: A reference image IS , downscaled original image I ′A, and scaling factor δ
1: Downscale IS → I ′S having the same size of I ′A, i.e. dM/δe × dN/δe × 3
2: Generate a random coefficient αA (PIC scheme) or a random matrix MA (PPC scheme)
3: Mix the downscaled original image I ′A and I ′S using RLNC encoding:

PIC scheme: I(PIC)
T = αAI

′
A + αSI

′
S

PPC scheme: I(PPC)
T = MA ◦ I ′A +MS ◦ I ′S

Output: Transmitted image: I(PIC)
T or I(PPC)

T

Algorithm 2 RLNC decoding at Bob

Input: A reference image IS , denoised image ĨB, and RLNC coefficients αA (PIC scheme) or
RLNC coefficient matrix MA (PPC scheme)

1: Downscale IS → I ′S having the same size of ĨB
2: Separate the received image ĨB using RLNC decoding:

PIC scheme: Î ′(PIC)
B = 1

αA

(
ĨB − αSI ′S

)
PPC scheme: Î ′(PPC)

B =
(
ĨB −MS ◦ I ′S

)
�MA

Output: Decoded image: Î ′(PIC)
B or Î ′(PPC)

B

E. RLNC Estimation at Eve

Trying to decode the image shared from Alice, Eve however does not know the RLNC

coefficients, i.e. αA and αS , and the index of the image in the shared datastore, i.e. IS , which

was used at Alice for mixing it with the original image. Therefore, Eve has to estimate the

RLNC parameters and select the right image in the datastore to recover the image.

The RLNC coefficients estimated at Eve can be written by

α̂A = αA ± εA, (10)

α̂S = 1− α̂A, (11)

where α̂A and α̂S are estimated RLNC coefficients of αA and αS , respectively, and εA denotes

the estimation error of αA at Eve knowing the fact that α̂A + α̂S = 1.

In addition to the RLNC coefficients, Eve needs to predict the image in the shared datastore

that was used for encoding at Alice. Letting Î ′S denote the predicted image, Eve can decode the

image following the same method at Bob in Subsection V-D for either PIC or PPC decoding.
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F. ISR at Bob and Eve

To be able to recover original images from decoded images by RLNC, the ISR framework,

mentioned in Subsection III-A, was implemented. The ISR was trained with a public available

IAPR TC-12 Benchmark dataset [35]. The training used batches of size 64 with 100 epochs.

The learning rate is initially set as 0.1 and decreased by a factor of 10 in every 10 epochs. The

ISR was trained with a scaling factor δ = 4. The hyper-parameters used for training are similar

to those reported in [21] for single-ISR.

Then, the decoded images by RLNC decoding at Bob, Î ′(PIC)
B or Î ′(PPC)

B , and at Eve, Î ′(PIC)
E

or Î ′(PPC)
E are fed into ISR model to obtain the upscaled images at Bob and Eve, denoted by

ÎB and ÎE . respectively. The upscaled images can be written by

ÎB = ISR(Î
′(PIC)
B ), (12)

ÎE = ISR(Î
′(PIC)
E ), (13)

where ISR(·) can be thought as a function to reconstruct the images using ISR with the scaling

factor δ.

VI. EVALUATION METHOD OF THE PROPOSED DEEP NC

In order to evaluate the effectiveness of the proposed Deep-NC for a secure ISR, Peak

Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM) are sequentially

presented in this section as two performance metrics to compare the quality of the recovered

image at Bob and Eve, i.e. ÎB and ÎE , with the original HR image transmitted from Alice, i.e.

IA.

A. Peak Signal-to-Noise Ratio

The peak signal-to-noise ratio (PSNR) is the ratio between a signal’s maximum power and

the power of the signal’s noise. Engineers commonly use the PSNR to measure the quality of

reconstructed images that have been compressed. Each picture element (pixel) has a color value

that can change when an image is compressed and then uncompressed. Signals can have a wide

dynamic range, so PSNR is usually expressed in decibels, which is a logarithmic scale.

As a well-known image comparison metric, the PSNR is considered to evaluate the loss of

the image quality. In the proposed secure ISR, the loss is due to not only the noise at Bob, but

also the lack of details in the LR image and the training loss in the ISR network.
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The PSNR, in dB, of the recovered image ÎB at Bob with respect to the original image IA is

defined as4

PSNR , 10 log10
1

MSE
, (14)

where MSE is the mean square error between ÎB and IA given by

MSE , E

[(
IA − ÎB

)2]
. (15)

Here, E[·] denotes the expectation operator.

Considering RGB colour images having size M × N with three RGB values per pixel, the

MSE can be calculated by

MSE =
1

3MN

M∑
x=1

N∑
y=1

3∑
z=1

(
IA(x, y, z)− ÎB(x, y, z)

)2
. (16)

Note that the PSNR at Eve is also evaluated using (14). However, the quality of the recovered

image is further degraded due to the unknown reference image and the lack of the information

of RLNC coefficients which are only shared between Alice and Bob.

B. Structural Similarity Index Measure

The SSIM is an image metric which is used to measure the similarity between two images

based on their visible structure [36]. The SSIM, unlike the PSNR, evaluates the image distortion

through the perceived quality difference between the two images, which is represented by a

multiplicative combination of three factors of the images including luminance distortion, contrast

distortion and structural correlation loss.

The per-pixel SSIM of the recovered image ÎB at Bob with respect to the original image IA

at a pixel (x, y), 1 ≤ x ≤M , 1 ≤ y ≤ N , is defined as

SSIM(x, y) , [lA,B(x, y)]
α[cA,B(x, y)]

β[sA,B(x, y)]
γ, (17)

where lA,B(x, y), cA,B(x, y) and sA,B(x, y) denote the luminance, contrast and structure com-

ponents, respectively, at the pixel (x, y), and α, β and γ denote the weighted combination of

these three components correspondingly. For simplicity, it is generally assumed the luminance,

4In this work, the image is in double-precision floating-point data type having maximum possible pixel value of 1.



19

contrast and structure components have equal influence on the image, i.e. α = β = γ = 1. Here,

lA,B(x, y), cA,B(x, y) and sA,B(x, y) are computed by [36]

lA,B(x, y) =
2µAµB + C1

µ2
A + µ2

B + C1

, (18)

cA,B(x, y) =
2σAσB + C2

σ2
A + σ2

B + C2

, (19)

sA,B(x, y) =
σAB + C3

σAσB + C3

, (20)

respectively, where µA and µB are local mean; σA and σB are standard deviations; σAB is

covariance of images IA and ÎB; and C1, C2 and C3 are regularization constants for the lumi-

nance, contrast, and structural components, respectively. Considering images of double-precision

floating-point data type with pixel intensity in [0, 1], the constants C1, C2 and C3 are set as

C1 = 0.012, C2 = 0.032 and C3 = C2/2.

The mean SSIM (MSSIM) of the entire image ÎB is therefore computed by

MSSIM = E [SSIM] =
1

MN

M∑
x=1

N∑
y=1

SSIM(x, y). (21)

VII. SIMULATION RESULTS

In this section, we present the simulation results of the proposed Deep-NC for secure ISR. Two

performance metrics, i.e. PSNR and SSIM, are considered to validate the effectiveness of the two

proposed PIC and PPC schemes. We first compare the performance at Bob with that at Eve when

employing either bicubic interpolation or VDSR for converting the received LR images to the

original HR images. The impacts of RLNC coefficients, shared image dataset, Gaussian noise,

salt-and-pepper noise and scaling factor on the performance are then sequentially evaluated to

show the enhancement of the proposed scheme in securing the private image from the Eve. The

results are obtained by simulation in MATLAB. The training is performed on an image dataset

of the IAPR TC-12 benchmark [35]5. For validation of the proposed scheme, 20 undistorted

images of the Image Processing Toolbox in MATLAB are used as shown in Fig. 7 in which the

last image is selected as a reference image6.

5The image dataset of the IAPR TC-12 benchmark consists of 20,000 still natural images which are available free of charge
and without copyright restrictions.

6During our experiments, we notice that if Alice uses a reference image which contains a plain background and less clutter
like the 2nd image from the datastore (see Fig. 7), the mixed image can show small amount of the original image. Those artefacts
are not clear enough to be spotted without a proper glimpse.
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Fig. 7: Images for evaluation of the proposed Deep-NC.

It is worth to reinforce that below experiments to demonstrate effectiveness of our proposed

methods. To the best of our knowledge, our work is the fist approach which combining NC and

ISR to enhance data privacy and reduce the data transmission via network. Each component of

our framework, mentioned in Fig. 5, can be replaced by sophisticated methods to increase the

quality. The ISR component, for instance, can be replaced by RDN [37].

A. PIC versus PPC Schemes

Evaluating the performance of the proposed PIC and PPC schemes, Figs. 8 and 9 sequentially

plot the PSNR and SSIM against the noise variance in Gaussian noise model. Two upscaling

schemes, i.e. bicubic interpolation and VDSR, are considered at Bob and Eve. For a fair

comparison, it is assumed that the AWGN at Bob and Eve has the same noise variance, i.e.

σ2
B = σ2

E = σ2. For RLNC encoding, the coefficients of the original image, i.e. elements in the

RLNC coefficient matrix MA, are randomly selected in the range of [0.3, 0.5]. It is assumed that
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Eve is also aware of the reference image used at Alice. As shown in Fig. 8, Bob achieves a

higher PSNR than Eve of up to 11 dB in both PIC and PPC schemes with VDSR upscaling

in case of no noise. This is attained as a result of the secure RLNC encoding at Alice. It can

be further observed that the PPC scheme helps not only increase the PSNR and SSIM at Bob,

but also degrade the performance at Eve compared to the PIC scheme. This accordingly verifies

the observations in Remark 2 regarding the outperformance of the PPC over the PIC scheme in

exchange for a higher computational complexity. Moreover, an enhanced performance is achieved

with the VDSR compared to the bicubic interpolation. Such enhancement can be clearly noticed

at Eve when the VDSR is employed, though its performance is still lower than Bob. For instance,

12 dB in PSNR can be enhanced at Eve with the VDSR upscaling.

B. Impacts of RLNC coefficients

Investigating the impacts of RLNC coefficients on the performance of the proposed scheme,

Fig. 10 plots the PSNR of the PIC scheme versus the RLNC coefficient of the original image, i.e.
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αA, with respect to different noise variances at Bob and Eve. Specifically, two noise variances,

i.e. σ2
B = σ2

E = σ2 = {0.1, 0.2}, are considered. It can be seen that Bob achieves a better

performance than Eve for all RLNC coefficients. Also, the PSNR at both Bob and Eve increases

as αA increases. This is due to the fact that there is more information of the original image in the

mixed image. As noted in Remark 1, the RLNC coefficients should be selected so as to restrict

Eve from recovering the original image, while maintaining the higher image decodability at Bob.

For instance, αA should be less than 0.5 to limit the PSNR at Eve by 14 dB when σ2 = 0.1.

The PSNR coefficients should be thus selected depending also on the noise variance. As shown

in Fig. 10, with the same requirement of the maximal PSNR at Eve by 14 dB, αA should not

be greater than 0.5 and 0.7 when σ2 = 0.1 and σ2 = 0.2, respectively.

C. Impacts of Shared Image Dataset

In order to decode the original image, apart from the RLNC coefficients, the reference image

in the datastore is required to be known at the receiver. Considering the scenario when Eve may
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not know the reference image used at Alice or may use the incorrect image, Figs. 11 and 12

sequentially plot the PSNR and SSIM of the proposed scheme as functions of the noise variance

with respect to different shared images at Eve including the 15th, 16th and 20th reference images

(see Fig. 7). Here, the 20th image is used for the RLNC encoding at Alice with PPC scheme.

The other parameters are similarly set as in Figs. 8 and 9 with bicubic interpolation and VDSR

for upscaling. It can be observed in both Figs. 11 and 12 that the PSNR and SSIM at Eve are

considerably degraded when the wrong reference image is selected for decoding. For instance,

in the noise-free environment with VDSR upscaling, the PSNR at Eve decreases by 7 dB when

using the 15th or 16th image instead of the 20th image. A further notice is the fact that, without

knowledge of the RLNC coefficient matrix, Eve can only achieve a close performance to Bob

even with the right reference image. This accordingly reflects the effectiveness of the proposed

scheme in securing the original image. Furthermore, as shown in Fig. 11, Bob achieves a much

better performance than Eve of up to 32 dB when Eve implements only bicubic interpolation.

This is due to the fact that no ISR is involved in the image processing at Eve in this case along

with estimation error of RLNC coefficient matrix and the unknown reference image.

D. Impacts of Gaussian Noise

Considering AWGN model in image communication over wireless medium, Figs. 13 and 14

plot the PSNR and SSIM of the proposed PPC scheme versus noise variance, i.e. σ2 with the

assumption that Bob and Eve experience the same noise model. Two upscaling schemes, i.e.

bicubic interpolation and VDSR, are employed at Bob and Eve. The reference image shared to

Bob is also leaked to Eve. Intuitively, it can be seen that both the PSNR and SSIM decrease as the

noise variance increases. Over the wireless medium, the VDSR is also shown to be beneficial
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providing higher PSNR and SSIM than the bicubic interpolation. Similarly, Bob is shown to

achieve a better performance than Eve over the whole range of noise variance with both bicubic

interpolation and VDSR, though the performance gap is smaller in the more lossy environment.

For instance, with the VDSR upscaling, the PSNR at Bob is 3 dB and 2 dB higher than that at

Eve, while a considerable enhancement of 14 dB and 13 dB can be achieved with the bicubic

interpolation when σ2 = 0.1 and σ2 = 0.2, respectively.

E. Impacts of Salt-and-Pepper Noise

Besides Gaussian noise in wireless medium, there exists impulse noise, typically salt-and-

pepper noise, which is caused by hardware failure in image detection. The impacts of salt-and-

pepper noise are depicted in Figs. 15 and 16 where the PSNR and SSIM of the proposed PPC

scheme are respectively plotted as functions of the salt-and-pepper noise density, i.e. d. The other

simulation parameters are similarly set as in Fig. 13 for both VDSR and bicubic interpolation.

It can be seen that the increase of noise density causes significant performance degradation.
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Specifically, the PSRN is reduced about 1 dB for every 10% increase in noise density. Also, the

VDSR is shown to outperform the bicubic interpolation, especially when the noise density is

high. For instance, with VDSR and d = 0.5, Bob can achieve 3 dB higher in PSNR than bicubic

interpolation. As shown in Figs. 15 and 16, much higher PSNR and SSIM are achieved at Bob

compared to those at Eve.

F. Impacts of Scaling Factor

The impacts of scaling factor are shown in Fig. 17 where the PSNR at Bob and Eve of the

proposed PPC scheme are plotted against noise variance in AWGN model, i.e. σ2, with different

scaling factors, i.e. δ = 4 and δ = 10. VDSR is considered with the same settings as in Fig. 13.

It can be seen in Fig. 17, the PSNR at Bob decreases considerably in the noiseless environment

as the scale increases, while there is not much difference in the PSNR in the noisy environment.

For instance, 4 dB is reduced when σ2 = 0, while less than 1 dB when σ2 > 0.1. This means
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that over the noisy medium, the image can be downscaled with a higher scaling factor to save

the bandwidth with negligible performance loss.

VIII. CONCLUSIONS

In this paper, we have proposed a Deep-NC protocol for secure ISR communication between

Alice and Bob taking into account two noise models including Gaussian noise and non-Gaussian

or impulse noise in the form of salt-and-pepper noise. Specifically, two RLNC based schemes,

i.e. PIC and PPC, have been devised to protect the secret image from Eve. It has been shown that

Bob achieves a much higher PSNR than Eve up to 32 dB with the proposed Deep-NC protocol.

The PPC, although outperforms the PIC scheme, requires a higher computation complexity to

process all image pixels. Additionally, an enhanced performance has been shown to achieve

at Bob in both noise models over the whole range of noise variance in Gaussian model and

salt-and-pepper noise density. Furthermore, the Deep-NC protocol enables the original image

to be downscaled to a much lower resolution prior to transmitting over the lossy environment,

which accordingly implies the effectiveness of the proposed scheme in saving the transmission

bandwidth. The future work would be the investigation of different image processing techniques

for downscaling and upscaling incorporating in the Deep-NC protocol.
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