
MIDDLESEX UNIVERSITY LONDON

DOCTORAL THESIS

A General Theory of Syntax with Bindings

Author:
Lorenzo GHERI

Supervisors:
Dr. Andrei POPESCU

Prof. Raja NAGARAJAN

Prof. Franco RAIMONDI

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

in the

Foundations of Computing Group
Department of Computer Science

April 23, 2019

https://www.mdx.ac.uk/
https://sites.google.com/view/lorgheri
http://andreipopescu.uk/
http://andreipopescu.uk/
http://andreipopescu.uk/
http://www.cs.mdx.ac.uk/foundations/
https://www.mdx.ac.uk/about-us/our-faculties/faculty-of-science-and-technology/computer-science

i

Declaration of Authorship
I certify that this thesis, and the research to which it refers, are the product of my own work,
and that any ideas or quotations from the work of other people, published or otherwise, are
fully acknowledged in accordance with the standard referencing practices of the discipline.

ii

“Death or glory becomes just another story”

The Clash

iii

MIDDLESEX UNIVERSITY LONDON

Abstract
Faculty of Science and Technology
Department of Computer Science

Doctor of Philosophy

A General Theory of Syntax with Bindings

by Lorenzo GHERI

In this thesis we give a general theory of syntax with bindings. We address the problem
from a mathematical point of view and at the same time we give a formalization, in the
Isabelle/HOL proof assistant.

Our theory uses explicit names for variables, and then deals with alpha-equivalence
classes, remaining intuitive and close to informal mathematics, although being fully for-
malized and sound in classical high-order logic. In this sense it can be regarded as a gen-
eralization of nominal logic. Our end product can be used to construct complex binding
patterns and binding-aware datatypes, including non-well-founded and infinitely branching
types, in a modular fashion. We provide definitions of the fundamental operators on terms
(free variables, alpha-equivalence, and capture-avoiding substitution) and reasoning and def-
inition principles, obeying Barendregt’s convention.

We present our work as a thinking process that starts from some desiderata, and then
evolves in different formalization stages for the general theory. We start by taking a “univer-
sal algebra” approach, modelling syntaxes via algebraic-style binding signatures, which we
employ in a substantial case study on formal reasoning: Church-Rosser and standardization
theorems for λ-calculus. This solution proves itself too restrictive, so we refine it into a more
flexible one, which constitutes the main original contribution of this thesis: We construct a
universe of functors on sets that handle bindings on a general, flexible and modular level.
Our functors do not commit to any a priori syntactic format, cater for codatatypes in addi-
tion to datatypes, and are supported by powerful definition and reasoning principles. They
generalize the bounded natural functors (BNFs), which have been previously implemented
in Isabelle/HOL to support (co)datatypes.

HTTPS://WWW.MDX.AC.UK/
https://www.mdx.ac.uk/about-us/our-faculties/faculty-of-science-and-technology
https://www.mdx.ac.uk/about-us/our-faculties/faculty-of-science-and-technology/computer-science

iv

Acknowledgements
I thank my supervisor Andrei Popescu. He has been serious about my project and passionate
about science. He has helped me with research and all the weirdness of the academic world.
He has supported me, he has had an unbelievable amount of patience and overall he has been
an excellent and pleasant person.

A special thank to the other members of my supervising team: Raja Nagarajan and Franco
Raimondi. They helped me a lot with the university issues. In particular, I have to say that,
during these PhD-in-London years, Franco has helped me to such an extent that I do not think
I could ever settle the score. Was this not enough, he has also proved to be a very good friend.

I thank Marco Maggesi, who has always been interested in my work and happy to discuss
science. He has never stopped welcoming me in his office in Florence and taking me to the
bar for a spuma.

I thank Pietro Gheri, for taking the time to discuss group theory with me and for all the
examples and clarifications he has provided.

I thank Christian Urban for the pleasant and motivating discussion and for the deep scientific
insights that he provided me during my dissertation.

I thank Nikos Gorogiannis for the challenging and encouraging role he took during my dis-
sertation and my whole period at Middlesex. He has been maybe the most stubborn person
in believing that I could change from a mathematician to a computer scientist.

Thank you to all the people who had lunch with me at the university: their friendship (which
goes from wine to cigars, from barbecues to rock concerts) helped me through my PhD more
than they know.

Thanks a lot to all my friends in London: these guys shared with me the city, a flat, a house,
some meal or, most likely, a couple of beers and a lot of thoughts.

Thanks a lot to all my friends in Florence, all the above holds for them as well (especially
the beers part), but in this case the city is my city. They have taken good care of it. Here my
honourable mention goes to the tenants of Casa Vandelli, maybe the most patient people of
this whole page.

Thanks a lot to all my friends that are now spread across Tuscany, Europe and wherever.
That these friendships are still alive means a lot.

The grand finale: my sincere thanks to Laura, Paolo, Pietro and Friedel. In no particular

v

order.

vi

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

1 Introduction 1
1.1 Problem Statement . 1
1.2 State of the Art . 3
1.3 Our Improvement on the State of Art . 5
1.4 Technical Goals of Our Theory . 5
1.5 Isabelle/HOL Formalization . 9
1.6 Relevant Publications and Drafts . 11
1.7 Structure of the Thesis . 12

2 Preliminaries 13
2.1 Higher-Order Logic . 13
2.2 Bounded Natural Functors . 14
2.3 (Co)datatypes from Bounded Natural Functors 15
2.4 Group Actions, Finite Support and Nominal Logic 16

3 A First Formalization: a Universal Algebra Approach 20
3.1 Design Decisions . 21

3.1.1 Standalone Abstractions . 21
3.1.2 Freshness, Substitution and Swapping 21
3.1.3 Advantages and Obligations from Working with Terms Modulo Alpha 22
3.1.4 Many-Sortedness . 22
3.1.5 Possibly Infinite Branching . 23

3.2 General Terms with Bindings . 23
3.2.1 Quasiterms . 24
3.2.2 Alpha-Equivalence . 25
3.2.3 Good Quasiterms and Regularity of Variables 26
3.2.4 Terms and Their Properties . 27

3.3 Operator-Sensitive Recursion . 31
3.3.1 Iteration . 31
3.3.2 Primitive Recursion . 34

vii

3.3.3 Iteration Example: the Skeleton of a Term 35
3.3.4 Interpretation of Syntax in Semantic Domains 37

3.4 Induction Principle . 39
3.5 Sorting the Terms . 40

3.5.1 Binding Signatures . 40
3.5.2 Well-Sorted Terms over a Signature 41
3.5.3 From Good to Well-Sorted . 42
3.5.4 Many-Sorted Recursion . 42
3.5.5 End Product . 43

4 A Formalization of the Church-Rosser and Standardization Theorems 45
4.1 Instantiation of the General Framework . 46

4.1.1 The Syntax of λ-Calculus . 46
4.1.2 The Two-Sorted Syntax of λ-Calculus with Values Emphasized . . . 52

4.2 Call-by-Name λ-Calculus . 53
4.2.1 Call-by-Name β-Reduction . 53
4.2.2 The Church-Rosser Theorem . 54
4.2.3 The Standardization Theorem . 56

4.3 Call-By-Value λ-Calculus . 61
4.4 Overview of the Formalization and Lessons Learned 63

5 Intermezzo: More Bindings to be Captured 65
5.1 Critique of the First Framework . 65
5.2 Towards an Abstract Notion of Binder . 67

5.2.1 Examples of Binders . 67
5.2.2 Abstract Binder Types . 68

6 Bindings are Functors 72
6.1 Constructing Nonrepetitive Map-Restricted BNFs 73
6.2 Defining Terms with Bindings via Map-Restricted BNFs 75

6.2.1 Free Variables . 77
6.2.2 Alpha-Equivalence . 78
6.2.3 Alpha-Quotiented Terms . 80
6.2.4 Infinitely Branching Terms . 81
6.2.5 Substitution . 81
6.2.6 Acquiring Enough Fresh Variables 82
6.2.7 Term-for-Variable Substitution . 83
6.2.8 Non-Well-Founded Terms . 84
6.2.9 Modularity Considerations . 85

6.3 Full Definition of Map-Restricted Bounded Natural Functors 87
6.4 Binding-Aware (Co)induction Proof Principles 89

6.4.1 Induction . 89
6.4.2 Coinduction . 90

viii

6.5 Binding-Aware (Co)recursive Definition Principles 91
6.5.1 Binding-Aware Recursor . 92
6.5.2 Binding-Aware Corecursor . 94

6.6 Useful Variations of the (Co)recursion Principles 96
6.6.1 A Fixed-Parameter Restriction . 96
6.6.2 The Full-Fledged Primitive (Co)recursor 97
6.6.3 A Constructor-Based Variation . 99

6.7 Formal Comparison with Recursors from the Literature 99
6.8 Isabelle Formalization and Implementation 106

7 Conclusion and Related Work 108
7.1 Literature Review . 108

7.1.1 Major Frameworks for Bindings . 108
7.1.2 Complex Bindings . 110
7.1.3 Reasoning and Definitional Infrastructure 110

7.2 Conclusion . 112
7.3 Future Work . 113

A Appendix 115
A.1 More Details About BNFs and BNF-based (Co)datatypes 115
A.2 More Details on the (Co)recursive Definition of Substitution 117

Bibliography 119

ix

List of Figures

1.1 Comparison of our formalization with nominal 10

2.1 mapF (left) and relF R (right) . 15

3.1 Alpha-Equivalence . 25
3.2 Constructors and operators on terms and abstractions 27
3.3 The freshness clauses . 32
3.4 The substitution and substitution-renaming clauses 32
3.5 The swapping and swapping-based congruence clauses 33

6.1 Alpha-equivalence . 80

A.1 Visualizing a datatype . 116

x

to Friedel and Pietro

1

Chapter 1

Introduction

This thesis focuses on developing a general theory of syntax with bindings, supported by a
mechanization in the Isabelle/HOL proof assistant.

1.1 Problem Statement
Syntax with bindings is an essential ingredient in the formal specification and implementa-
tion of logics and programming languages. Reasoning about bindings becomes necessary in
different contexts, such as when verifying properties of programming languages or when for-
malizing mathematics. In the first area a notable recent example is the CakeML project [43,
44]: in their huge verification effort, the team deals with different languages (hence with dif-
ferent syntaxes involving bindings) and translations from one to another. Another example,
this time from mathematical logic, is the Isabelle/HOL formalization of Gödel’s incomplete-
ness theorems, by Lawrence Paulson [55], where the relevance of bindings is highlighted
already in the abstract of the paper: “The Isabelle formalisation uses two separate treatments
of variable binding: the nominal package is shown to scale to a development of this com-
plexity, while de Bruijn indices turn out to be ideal for coding syntax.”

Correctly and formally specifying, assigning semantics to, and reasoning about bindings
is notoriously difficult and error-prone. This fact is widely recognized in the formal verifica-
tion community, witnessed by examples such as the above, and reflected in the presence of
manifestos and benchmarks such as the influential POPLmark challenge [7]. The origin of
this difficulty is that every time a syntax contains bindings, its terms are equated via alpha-

equivalence; namely the same syntactic objects may be written in several different ways. For
example, let us consider the following paradigmatic example of syntax with bindings, the
untyped lambda-calculus.

Example 1 (Syntax for the untyped λ-calculus). Every λ-term is either a variable x, the

application of the term t1 to the term t2 or a λ-abstraction:

t ::= x | t1t2 | λx. t

Every λ-term is obtained by a finite number of applications of the three constructs above.

Here the only binding construct is λx. t; it binds the variable x in the term t.

In this case alpha-equivalence is the equivalence relation that equates, e.g., λx. xy and
λz.zy (where x, y and z are variables); intuitively, we can think of the bound variable x in the
first term as something that can be renamed, because it falls under the scope of the λ; in other

Chapter 1. Introduction 2

words, “x” is just a name used as a placeholder inside the binding construct. Of course the
term λy.yy is not equivalent to the previous terms: in the former case y appears free, in the
latter case y appears bound; if we use y for the renaming of x in λx. xy, it gets captured by
the binder, which is wrong.

There are some fundamental operations that can be performed at the syntactic level; the
most notable one is the substitution of a term t′ for a variable y in a term t, written t[t′/y]. Let
us consider the previous term λx. xy. Since bound variables can be renamed, it only makes
sense to substitute a term t′ for y, but not for x. At a first glance the resulting term will be
(λx. xy)[t′/y] = λx. xt′. Of course this will hold if the term t′ does not contain x, but what if
it does? Let us take t′ to be xy, then we want to express (λx. xy)[xy/y]. The right way to do
this, in order to avoid capture, is to exploit another representation of λx. xy alpha-equivalent
to it, e.g. λz.zy with z /∈ {x,y}, and then substitute, thus obtaining λz.z(xy).

One typically wants more structure on the considered syntax, and in particular to be able
to define other operations and relations. Hence a general theory needs to be provided with
useful definition principles (recursion) and reasoning principles (induction), that acknowl-
edge the binding mechanism.

All the objects mentioned above are not peculiar to the λ-calculus, but are common

to many syntaxes. For example, let us consider the following syntax, as presented in the
POPLmark challenge [7] (in order to focus only on those elements of the syntax that are
relevant to this discussion, some objects are omitted and some other are replaced by ". . ."):

Example 2 (Simplified Syntax for System F<:).
T ::= . . . | types

t ::= . . . | terms

{li = ti i=1,...,n} | records

t.l projections

pattern-let p = s in t pattern binding

p ::= patterns

x : T | variable pattern

{li = pi
i=1,...,n} record pattern

where the pattern binding construct, pattern-let p = s in t, binds the pattern p in the term t.

The labels li∈{1,...,n}
i appearing in a certain record are assumed to be pairwise distinct.

System F<: extends the syntax of λ-calculus with record projections and pattern bind-
ing, and two other syntactic categories (types and patterns); these three distinct syntactic
categories are defined mutually recursively. Moreover the binders involved have now in-
creased complexity: the pattern p is an arbitrarily nested, recursively specified object, so
the pattern-let construct binds in a term a structure containing an arbitrary number of vari-
ables. The POPLmark challenge sets some goals for the formalization of, and reasoning
about this syntax. Here variable binding becomes a fundamental issue; in particular sub-
stitution needs to be well-defined in a capture-avoiding fashion, in order to obtain correctly

Chapter 1. Introduction 3

a set of inductively-defined rules regarding typing and evaluation, and to prove meaningful
theorems from these.

We believe that such problems should be addressed in one shot with a general theory of
syntax with bindings, that identifies the features common to such structures and provides a
rich (and sound) reasoning and definitional infrastructure. Such a theory should be expressive
enough to capture the wide variety of syntaxes belonging to the literature of mathematical
logic and theoretical computer science, of which the just introduced λ-calculus and System
F<: are fundamental instances. This is what we are set to achieve in this thesis. Binding
and alpha-equivalence will be treated uniformly for the generic syntax, independently of the
particular structures employed and of their complexity. In order to handle this complexity it is
often useful to be able to nest previously-defined syntaxes in new ones, in a modular fashion.
A rich theory of the main syntactic operators will be developed, in particular, substitution,
freshness (or equivalently free variables) and swapping (renaming variables). Reasoning
(induction) and definition (recursion) principles will be provided, and necessarily they will
be tailored to a smooth treatment of non-free constructors. Assigning semantics to the syntax
is an issue that can be covered to some extent by a general theory; this will engage our theory
in a “confrontation” with infinitary structures. As an additional outcome of our effort to deal
with infinitary structures, the theory will capture infinitely-branching terms and non-well-
founded syntaxes.

The natural environment to implement this feature is a proof assistant—for our work we
have chosen Isabelle/HOL. Once the formalization of the theory is instantiated, the user is
provided with operators and theorems for their syntax, already defined and proved sound at
the general level, once and for all.

1.2 State of the Art
The literature offers a variety of general frameworks that address the problem of modelling
correctly syntaxes with bindings in their specification and behaviour.

A first popular example is higher order abstract syntax (HOAS) [34, 56]; here a fixed
syntax is chosen as the metalanguage, then any other syntax is encoded using this privileged
language. In particular the variables of the object syntax are represented as metavariables
(variables in the metalogic) and the object binding structures are modelled exploiting the
binders of the metalanguage. The adequacy of the encoding of the object syntax in the
metalogic usually relies on pen and paper proofs. This approach has been shaped in different
frameworks, e.g., weak HOAS [26] and parametric HOAS [23] (formalized in Coq).

Another approach is to treat bound variables as nameless, pointer-like objects. In this
context many different frameworks have been developed, such as presheaf-based abstract
syntax [29, 38, 3], binding signatures based on modules over monads [1] (building on [36,
37]; results checked in the UniMath library in Coq), bindings embedded in nested datatypes
[11], bindings embedded in dependent types [2] (formalized in Agda), the locally nameless
representation [6, 21], Autosubst [66] (the last two formalized in Coq).

The arguably most successful approach is the one originating with nominal logic [59,

Chapter 1. Introduction 4

58]. Nominal logic offers a theoretical foundation and systematization of syntax with bind-
ing, as well as prolific formalization work. The main development has been conducted in
Isabelle/HOL (Nominal Isabelle [71] and Nominal2 [74, 75]). Prominent aspects of nominal
techniques, such as Barendregt’s variable convention, have been formalized in Coq [5] and
Agda [25].

We will write “nominal approach” to indicate those developments that adopt explicit
variable names and the native constructors of the syntax for specifying it. According to
this informal convention, anachronistically Barendregt’s work on λ-calculus [8] had already
adopted the nominal approach; of course Pitts’ work [59] was the real initiator. By compar-
ison with HOAS and the nameless (or locally nameless) approaches, the main advantage of
the nominal approach is the lack of encoding for constructors involving binding: using native
constructors for the specification of the syntax does not require adequacy proofs and helps
stating, proving and using reasoning and definition principles. Nominal formalizations have
been very prolific and they provide a rich collection of formalized and sound results that ease
reasoning about bindings. We can say, in the lax sense specified above, that our development
also takes the nominal approach.

A more detailed discussion of related work is postponed to the end of the thesis (Section
7.1, Chapter 7), but, overall, we believe that, when aiming at both theoretical generality and
practical usability, all these representations and systematizations have some features that can
be significantly improved. Namely, we identify some major limitations:

1 General Binders. Most of the aforementioned works are not able to capture complex
bindings with a general approach, however some techniques have been indeed deployed
to cover some of the most famous examples from literature. Considering the POPLmark
challenge as a significant instance, among the 15 solutions reported on the POPLmark web-
site, only three address Parts 1B and 2B of the challenge, which involve recursively defined
patterns (Example 2) and in each case, this is done through a low-level, ad hoc technical
effort that is not entirely satisfactory. A notable exception is the Nominal2 development,
which covers complex recursively specified bindings. Nominal2 does not feature primi-
tive recursion for complex bindings, relying instead on general recursion as supported by
Isabelle/HOL’s powerful infrastructure, the function package [20, 41, 42].

2 Modularity Features. Modularity has not been addressed often in the literature. More-
over, to our knowledge there is no formalized framework for the specification of syntax
with bindings, that allows to reuse a previously declared syntax in the specification of a
new one with a smooth treatment of bindings.

3 Infinitely Many Free Variables. Most of the developed theories and techniques for syn-
taxes with bindings are limited to finitely supported syntaxes, in the sense that the terms
of the syntax contain a finite number of free variables. Although these cover the majority
of instances from literature, problems arise when we want to assign denotational seman-
tics to the syntax, since often finite support is an unnecessary restriction for the semantic
domains picked for the interpretation. Moreover there are some important examples of
non-finitary syntaxes; in particular the same syntax specification, when interpreted in a

Chapter 1. Introduction 5

coinductive fashion, leads to the non-well-founded version of the syntax. For example,
non-well-founded λ-terms (also known in literature as Böhm trees [8]).

Recalling Example 1, we define its following non-well-founded version.

Example 3 (Syntax for the non-well-founded untyped λ-calculus). Every non-well-founded
λ-term is either a variable x, the application of the term t1 to the term t2 or a λ-abstraction:

t ::= x | t1t2 | λx. t

The only binding construct is λx. t; it binds the variable x in the term t. Interpreting this

specification coinductively, every λ-term is obtained by a possibly infinite number of appli-

cations of the three constructs above, namely not only terms as λx. xy are allowed, but also

terms as λx. xyxyxyxyx . . . (here the term is obtained by repeating infinitely the application

constructor).

1.3 Our Improvement on the State of Art
Here we briefly describe the contribution of our work. In synthesis, we develop a theory at
the same time general and expressive, for the specification of and reasoning about syntaxes
with bindings, together with its Isabelle/HOL formalization. We address all the features
described in Section 1.1—providing a rich infrastructure of operators (e.g. capture-avoiding
substitution), lemmas, definition and reasoning principles—and in particular:

1 We capture binding structures uniformly, covering different examples from the literature,
from fundamental ones (e.g., Example 1) to complex binders as the recursively specified
pattern-let from the POPLmark Challenge (Example 2).

2 It will be possible to nest syntaxes specified in our framework, with their binding struc-
tures, in the definition of new ones in a modular fashion. This also means that properties
and operators obtained about the nested syntax, will be still valid when ported to the wider
context of the newly specified one.

3 Thanks to an insight of cardinality theory, our development will move from finite sup-
port to terms with infinitely many variables, with two generalizations: it will allow for
infinitely branching syntaxes (e.g., calculus of communicating systems [51]) and for non-
well-founded ones, as in Example 3. Other approaches that go beyond finitary support can
be found in [22] and [30].

In the next section we give more details about the features that we consider fundamental
to a theory like ours.

1.4 Technical Goals of Our Theory
Our work aims at systematizing and simplifying the task of constructing and reasoning about
variable binding and variable substitution, namely the operations of binding variables into
terms and of replacing them with other variables or terms in a well-scoped fashion. These
mechanisms play a fundamental role in the metatheory of programming languages and logics.

Chapter 1. Introduction 6

The development of our theory has brought us to the development of two different frame-
works, formalized in Isabelle/HOL. The two formalizations will be presented in this thesis,
in a chronological order (Chapter 3 for the first one, and Chapters 5 and 6 for the second).
The need for a second framework arose from the limitations we could find in the first (and in
literature as well).

Below we give an overview of the desired features for a general theory of syntax with
bindings and how we address those.

Complex Bindings and Modularity
We aim at a widely general framework, capturing a multitude of different syntaxes with
bindings. We claim that all binding structures share the same fundamental mechanisms,
therefore we treat uniformly the different instances of the theory, both the classic fundamental
ones (for example λ-calculus, first order logic and π-calculi) and those that contain complex
binding structures (just like the aforementioned System F<: from the POPLmark challenge).
We address this via modularity: a complex (binding) structure can be defined as a syntax itself
and then nested inside the new syntax. Here we can think of the syntax of System F<: and its
pattern binding (Example 2): patterns can be defined as a standalone datatype (syntax, with
no bindings) in a first moment and secondarily used within the pattern-let binder. Another,
simpler, example is the following:

l ::= [] | t # l

t ::= x | F l

ϕ ::= t1 ≡ t2 | P l | ϕ∧ψ | ¬ϕ | ∀v.ϕ

The above is a common syntax specification for first order logic, with terms t and formulas ϕ,
where functions symbols F and predicate symbols P take a list l as arguments. Here lists are
mutually recursively defined together with terms and formulas, but we would like to simply
define:

t ::= x | F ts

ϕ ::= t1 ≡ t2 | P ts | ϕ∧ψ | ¬ϕ | ∀v.ϕ

and relying on the datatype construction built in the proof assistant to obtain ts as a simple list
of terms of type termFOL list. The advantage of this second definition is clear: we have at our
disposal an already existing datatype, with all its properties (lemmas) and functions (e.g., the
mapper map). To address this, we will introduce a class of functors to specify the constructors
of the syntax. Functors can be composed and so can their map-actions, which will serve as
the basic variable-renaming operators (we will expand on this in Section 5.2, Chapter 5). The
first formulation, with lists mutually recursively defined with the other syntactic categories,
is indeed equivalent to the second. In this case, however, we define a type of lists on terms
that is isomorphic to termFOL list, and therefore we will need to define a new mapper and
prove properties about these new objects absolutely identical to the ones already provided for
list. In our framework there is no need to do this, since, thanks to functor composition, the
datatype of list is one and its properties still hold when nested.

Chapter 1. Introduction 7

Let us elaborate a bit more on the example above and consider a slightly different syntax
for FOL but with one more constructor:

t ::= . . .

ϕ ::= . . . | conj ϕs

where conj represent the conjunction of a list of formulas ϕs : formulaFOL list. In this case a
recursive occurrence of the currently defined type of formulas (which can contain bindings)
appears nested in the list structure (a structure defined elsewhere). Our theory—thanks again
to the properties of a particular class of functors—captures this kind of modularity, by simply
enabling the user to freely nest any syntax with binders in any other during the specification
process. One can argue that, in the particular example, there is no need to add such a feature,
since FOL with conj is equivalent to FOL without it and with just the binary _∧ _. That is
true, but if we substitute lists of formulas with lazy lists (possibly infinite lists) of formulas,
formulaFOL llist, we are capturing infinitary logic, where binary conjunction is not enough
any more.

Basic Infrastructure and Substitution
We use explicit names for variables, we then work with terms as alpha-equivalence classes.
We define operators on terms that are fundamental to reasoning about the syntax, in particular
freshness (or equivalently free variables), swapping and substitution. Here we present them
in the context of λ-terms (Example 1):

• the freshness predicate: fresh x t states that x is fresh for (i.e., does not occur free in) t;
for example, it holds that fresh x (λx. x) and fresh x y (when x 6= y), but not that fresh x x;
note that, in place of the freshness predicate, we can equivalently work with the set of free
variables of a term, FVars, since it holds:

fresh x t iff x /∈ FVars t and FVars t = {x | ¬fresh x t}

• the swapping operator: t[x∧y] indicates the term t where every occurrence (free or bound,
indifferently) of the variable x has been replaced by an occurrence of y and vice versa; for
example if t is λx. xy and z 6∈ {x,y}

– t [x∧ y] = t [y∧ x] = λy.yx

– t [x∧ z] = t [z∧ x] = λz.zy

– t [y∧ z] = t [z∧ y] = λx. xz

• the substitution operator: t1 [t2/x] denotes the (capture-free) substitution of term t2 for (all
free occurrences of) variable x in term t1; e.g., if t is λx. xy and x 6∈ {y,z}, then:

– t [z/y] = λx. xz

– t [z/x] = t (since bound occurrences like those of x in t are not affected)

– t [x/y] = λz.zx (since after the substitution x becomes free in the term, the substitution
operator needs to make sure that x is not captured by the binder, hence the bound variable
must be renamed, e.g., to z which is available)

Chapter 1. Introduction 8

In particular the definition of substitution, mainly for its capture-avoiding behaviour, must
be taken particular care of. However it is possible to define it in the theory independently of
the syntax.

Beside substitution, freshness and swapping are pervasive in most logical systems and
formal semantics of programming languages. The basic properties of these three operators
lay at the core of important meta-theoretic results in these fields. Our theory provides a rich
collection of results about these operators, so that using them is made easy, as independent
of their formal definitions.

Beyond Finite Support
Extending the theory to infinitary syntaxes (namely, syntaxes with terms containing infinitely
many variables) can be done in two orthogonal directions:

• Infinitely Branching Syntaxes For example, calculus of communicating systems in-
cludes infinitary sums [51]: the construct ∑i∈I Pi models nondeterministic choice from
a collection (Pi)i∈I of processes indexed by a set I; it is important that I is allowed to be
infinite, for modelling different decisions based on different received inputs;

• Syntaxes Allowing Infinite Depth This is a generalization of finitary syntaxes concep-
tually much more demanding than the previous one, since it requires to take a step from
well-founded syntaxes, to non-well-founded ones (to this regard see Examples 1 and 3).
This process of interpreting the specification of the syntax in a coinductive fashion, thus
obtaining non-well-funded objects, can be done for all syntaxes and so it is a perfect can-
didate to be captured by a general theory.

Going beyond finite support in our development has been made possible by an insight of
cardinality theory and the identification of regularity as the correct property to go after. We
have developed the two theories, for well-founded and non-well-founded syntaxes, in parallel
and, when possible, we pursued the duality aspects between the two.

(Co)Induction and (Co)Recursion Principles
Besides specification expressiveness, another criterion for assessing a formal framework is
the amount of infrastructure built around the specification language, including reasoning and
definitional mechanisms. Nominal logic ([59, 58]) provides a significant example for reason-
ing in presence of bindings: in this context a strong induction principle is introduced, known
as “fresh induction”. Thanks to fresh induction, when proving a property on terms by induc-
tion, bound variables can be assumed fresh for some parameters from the statement of the
property. When defining functions on syntax, the situation is similar: particular care must be
used in the presence of bindings. It is not possible to apply simple recursion on the construc-
tors of the syntax, as it is commonly done where no bindings are involved. Let us consider
the substitution for lambda calculus (Example 1): the two notations λx. xy and λz.zy indicate
the same term, since they differ only in the name of the bound variable; hence (λx. xy)[x/y]

and (λz.zy)[x/y] must lead to the same result (λz.zx), but it is clear that in the first case a
renaming is needed in order to avoid capture. To this aim, recursion principles that behave
well with respect to binding must be provided. Moreover, there is the non-well-founded case

Chapter 1. Introduction 9

that needs to be taken care of: symmetrically, coinduction and corecursion principles are also
needed.

We formalize fresh induction and a recursion principles that work smoothly with bind-
ings, thanks to the properties of freshness and swapping. We also develop a different recur-
sor based on freshness and substitution (instead of swapping). When developing non-well-
founded syntaxes, we provide a coinduction principle and a freshness-swapping corecursion,
both adequate for dealing with bindings.

1.5 Isabelle/HOL Formalization
Informal techniques aimed at easing the reasoning tasks have turned out to be very difficult to
represent formally, partly due to their reliance on unstated assumptions without which they
would be unsound. For example, textbooks on λ-calculi employ the principle of primitive
recursion to define functions on λ-terms, after which they tacitly assume these functions to
be invariant under alpha-equivalence; as another example, the so-called Barendregt’s variable
convention assumes that, in a proof or definition context, the bound variables are fresh for all
the parameters located outside the scope of their binders. Both these principles are unsound in
general, that is, if employed without checking some sanity conditions on the defining clauses
or on the definition and proof context.

Formal reasoning frameworks are designed to recover such informal principles on a
sound basis. The approaches in literature range from a clever manipulation of the bound
variables as in nominal logic and the locally named representation [59, 71, 47, 61] to the
removal of the very notion of bound variable—by either encoding away bound variables as
numeric positions in terms as in de Bruijn-style and locally nameless representations [19,
29, 21] or by representing them using meta-variables as in Higher-Order Abstract Syntax
(HOAS) [34, 28].

In Section 1.1, we have seen the demand that comes for such frameworks to be efficient
and powerful, from both applications (in verification [43, 44] and in the formalization of
mathematics [55]) and explicit benchmarks (the POPLmark challenge [7]).

Therefore it was mandatory for our theory to be supported by a formalization. We have
chosen the Isabelle/HOL proof assistant for this duty. Our development has evolved over the
time span of this PhD and in this thesis it is presented in two frameworks. Although both
formalizations take a nominal-style approach, they differ from nominal logic in important
aspects, including operators-aware recursion principles, the presence of built-in substitution
and features regarding infinitary syntaxes and modularity.

The formalization of the first framework (presented in Chapter 3) is a perfected version,
which we have put to use with our case study from Chapter 4. The second formalization
(Chapters 5 and 6) is a significant generalization of the first, that came naturally to address
the limitations of the previous one. During the development for the second framework, its
features—e.g., modularity, infinite structures, reasoning and definition principles—were con-
stantly tested against Nominal Isabelle and Nominal2, in order to improve on these formal-
izations and on the state of the art in general. Our functors-based framework will form the

Chapter 1. Introduction 10

Nominal
Nominal2

Our Framework Our Framework
Isabelle I II

Complex Binders 7 3 7 3

Modularity 7 31 7 3

Built-In Substitution 7 7 3 3

Infinitely Branching Terms 7 7 3 3

Non-Well-Founded Terms 7 7 7 3

Reasoning Principles 3 3 3 3

Definition Principles 3 31 3 3

Automated User Interface 3 3 7 7

3: The feature has been formalized in the framework.
31: The feature has been partially formalized in the framework.
7: The feature has not been formalized in the framework.

FIGURE 1.1: Comparison of our formalization with nominal

basis of a proper Isabelle package, for the specification of and reasoning about syntax with
bindings, and it will be general enough to cover all the features that are aims of our work
(Section 1.4).

In Figure 1.1, we show a synthetic comparison between our frameworks and the two ex-
isting Isabelle nominal frameworks; this is just intended as a tool to help the reader, but it is
far from being exhaustive: further insights are needed. There are two fields marked with 31.
One of these is modularity, which the nominal formalization covers up to some extent: con-
sidering the Modularity paragraph from the previous Section 1.4, Nominal2 can handle the
first nesting example (nesting lists of terms in the definition of terms and formulas), but not
the second, where lists of formulas (a type with bindings) are nested in the specification of
formulas themselves. Concerning instead definition principles, Nominal2 covers some induc-
tive ones, but lacks the implementation of primitive recursion. The comparison with nominal
logic will be discussed throughout the whole thesis, given the importance of this theory, also
in relation to our development. A wider discussion about related work is postponed to the
conclusive Chapter 7.

Chapter 1. Introduction 11

1.6 Relevant Publications and Drafts
Lorenzo Gheri and Andrei Popescu. “A Formalized General Theory of Syntax with Bind-
ings.” In Interactive Theorem Proving - 8th International Conference, ITP 2017, Brasília,
Brazil, September 26-29, 2017, Proceedings, pages 241–261, 2017. https://doi.org/

10.1007/978-3-319-66107-0_16

An extended journal version of the paper has been accepted to Journal of Automated Rea-

soning (2019). https://doi.org/10.1007/s10817-019-09522-2

The paper presents the first formalization of our theory of syntax with bindings. It fea-
tures many-sortedness of the syntax, infinitely branching terms, a rich theory of substitution,
and induction and recursion principles tailored for a well behaviour in the presence of binders.
The content is described in detail in Chapter 3.

Lorenzo Gheri and Andrei Popescu. “A Case Study in Reasoning about Syntax with Bind-
ings: The Church-Rosser and Standardization Theorems.” Draft, submitted. Available at
https://sites.google.com/view/lorgheri/research

In the paper we instantiate the first framework for our general theory to the syntax of λ-
calculus and formalize the development leading to two main results: the Church-Rosser and
Standardization theorems. Our work covers both the call-by-name and call-by-value version
of the calculus, following a classic paper by Gordon Plotkin. This important case study will
be the object of Chapter 4 of the present dissertation.

Jasmin Christian Blanchette, Lorenzo Gheri, Andrei Popescu, and Dmitriy Traytel. “Bind-
ings As Bounded Natural Functors.” In Weirich, S. (ed.) 46th ACM SIGPLAN Sympo-

sium on Principles of Programming Languages (POPL 2019), ACM, 2019, Article 22, pp.
22:1–22:34. http://doi.acm.org/10.1145/3290335

In this paper we present our latest and most general framework for specifying and rea-
soning about syntax with bindings. Abstract binder types are modelled using a universe of
functors on sets, subject to a number of operations that can be used to construct complex bind-
ing patterns and binding-aware datatypes, including non-well-founded and infinitely branch-
ing types, in a modular fashion. Again we cover the theory of classic operators, such as
free-variables and capture-avoiding substitution, and we define binding-aware reasoning and
definition principles. Among these features, modularity, complex binding structures and non-
well-founded syntaxes are complete novelties with respect to our previous formalization. A
significant improvement has been made also for recursion principles: the swapping-based
principle developed in this work generalizes the general nominal recursor from the paper
[58], Norrish’s one [53] and our own from the first publication in this list. The process that
brought us to this second development is described in Chapter 5, while the framework itself
is presented in Chapter 6.

Formal Proof Developments

Lorenzo Gheri, Andrei Popescu. “A General Theory of Syntax with Bindings”
In Archive of Formal Proofs, 2019.

https://doi.org/10.1007/978-3-319-66107-0_16
https://doi.org/10.1007/978-3-319-66107-0_16
https://doi.org/10.1007/s10817-019-09522-2
https://sites.google.com/view/lorgheri/research
http://doi.acm.org/10.1145/3290335

Chapter 1. Introduction 12

1.7 Structure of the Thesis
In this document we present a general theory theory of syntax with bindings. Central to
the thesis will be the description of the two frameworks, with which we have formalized
it. Before we move to this, we dedicate Chapter 2 to the discussion of some technical
preliminaries.

In Chapter 3 we present in detail our first Isabelle/HOL framework, highlighting its main
achievements, such as a rich theory of substitution, a substitution-freshness based recursion
principle and a swapping based one, fresh induction and the interpretation of the generic
syntax in semantics domains. Furthermore, we exploit this chapter to formally introduce
all the main objects common to the different syntaxes with bindings, giving their formal
definitions and the properties holding for them.

Chapter 4 contains an instance of the framework from the previous chapter. We show the
benefits of a general theory of syntax with bindings when reasoning about a chosen syntax,
facing actual formalization problems. As our case study, we have picked the call-by-name
and call-by-value versions of the λ-calculus syntax, following a classic paper by Gordon
Plotkin [60]. We formalize for both syntaxes the development leading to two major results:
the Church-Rosser and Standardization theorems for β-reduction.

The time for meditation has come and in Chapter 5 we reflect upon what we have
achieved and the limitations of our formalization. We then start extending our theory to a
new framework, based on functors. The last sections of the chapter are dedicated to the
process we went through when modelling syntaxes with bindings by employing functors:
we identify a special class of functors that we call map restricted bounded natural functors

(MRBNFs).
Our second framework in its entirety is described in Chapter 6. Here we discuss the

novelties of this work, among which the uniform treatment of binding structures (indepen-
dently of their complexity), modularity features, non-well-founded syntaxes, and reasoning
and definition principles suitable for smoothly dealing with bindings. In the case of defini-
tion principles, we also provide a comparison with recursors from literature: in the section
we have dedicated to this, we choose and fix a simple syntax, so that we can focus on the
features of the recursion principles themselves and not on the formalization choices.

The last Chapter 7 is dedicated to literature review and a conclusive discussion about
the overall merits of this thesis.

13

Chapter 2

Preliminaries

Our work relies on HOL (Section 2.1) and on BNFs (Sections 2.2 and 2.3). Higher order
logic is simply the logic of our formalization environment, Isabelle/HOL, while bounded
natural functors are a category-theoretic approach to defining and reasoning about types in
a modular way. BNFs are the “ancestors” of MRBNFs, the class of functors on which our
second framework is based (Chapters 5 and 6).

We also recall some of the fundamental concepts of nominal logic [59, 58], since we take
an approach very close to the nominal one. We will need to refer to this important related
work in different sections of the thesis (Section 2.4).

2.1 Higher-Order Logic
We consider classical higher-order logic with Hilbert choice, the axiom of infinity, and rank-1
polymorphism. HOL is based on simple type theory [24]. It is the logic of the original HOL
system [33] and of HOL4, HOL Light, and Isabelle/HOL.

Primitive types are built from type variables α, β, . . . , a type bool of Booleans, and an
infinite type ind using the function type constructor; for example, (bool→ α)→ ind is a type.
Unlike in dependent type theory, all types are inhabited (nonempty). Primitive constants are
equality = : α→ α→ bool, the Hilbert choice operator, and 0 and Suc for ind. Terms are
built from constants and variables by means of typed λ-abstraction and application.

A polymorphic type is a type T that contains type variables. If T is polymorphic with
variables α = (α1, . . . ,αn), we sometimes write αT instead of T . An instance of a poly-
morphic type is obtained by replacing some of its type variables with other types. For
example, (α→ bool)→ α is a polymorphic type, and (ind → bool)→ ind is an instance
of it. A polymorphic function is a function that has a polymorphic type—for example,
Cons : α→ α list → α list. Semantically, we think of polymorphic functions as families
of functions, one for each type—for example, the α := bool instance of Cons has type
bool→ bool list→ bool list. Formulas are closed terms of type bool. Polymorphic formulas
are thought of as universally quantified over their type variables. For example, ∀x : α. x = x

really means ∀α. ∀x : α. x = x.
To keep the notation simple, we use type variables in two different ways: (1) as part of

polymorphic types; and (2) as arbitrary but fixed types. For example, we can write (1) “α list

is a polymorphic type” and (2) “given any type α and any function f : α→ α, such and such

Chapter 2. Preliminaries 14

holds.” These conventions allow us to express the concepts in a more “semantic” style, closer
to standard mathematical notation. The reader is free to think of types as nonempty sets.

Unlike dependent type theory, HOL does not have (co)datatypes as primitives. The only
primitive for defining new types in HOL is the typedef mechanism: which roughly corre-
sponds to set comprehension in set theory: For any given type αT and nonempty predicate
P : αT → bool, we can carve out a new type {x : αT | P x} consisting of all members of αT

satisfying P. (Co)datatypes are supported via derived specification mechanisms.

2.2 Bounded Natural Functors
Often it is useful to think not in terms of polymorphic types, but in terms of type constructors.
For example, list is a type constructor in one variable, whereas sum types (+) and product
types (×) are binary type constructors. Most type constructors are not only operators on
types but have a richer structure, that of bounded natural functors [70].

We write [n] for {1, . . . ,n} and α set for the powertype of α, consisting of sets of elements
of α.

Definition 4. Let F = (F,mapF, (seti
F)i∈[n],bdF), where

• F is an n-ary type constructor;

• mapF : (α1→ α′1)→ ··· → (αn→ α′n)→ αF→ α′F;

• seti
F : αF→ αi set for i ∈ [n];

• bdF is an infinite cardinal number

F’s action on relations relF : (α1→α′1→bool)→···→(αn→α′n→bool)→αF→α′F→bool

is defined by

(DefRel) relF R x y ⇐⇒
∃z. (∀i ∈ [n].seti

F z⊆ {(a,a′) | Ri a b}) ∧ mapF [fst]n z = x ∧mapF [snd]n z = y

(where fst and snd are the standard first and second projection functions on the product type
× and, e.g., mapF [fst]n denotes the application of mapF to n occurrences of fst). F is an
n-ary bounded natural functor if it satisfies the following properties:

(Fun) (F,mapF) is an n-ary functor—i.e., mapF commutes with function composition and
preserves the identities

(Nat) each seti
F is a natural transformation between the functor (F,mapF) and the powerset

functor (set, image), namely the following diagram commutes (for every f : α→ β):

α

f
��

αF setF //

mapF f
��

αset
image
��

β βF setF
//βset

(Cong) mapF only depends on the value of its argument functions on the elements of seti
F—

i.e., ∀i ∈ [n]. ∀a ∈ seti
F x. fi a = gi a−→mapF f x = mapF g x

Chapter 2. Preliminaries 15

F F

a
((
f a

F F

a
R

a′

FIGURE 2.1: mapF (left) and relF R (right)

(Bound) the elements of seti
F are bounded by bdF—i.e., ∀i ∈ [n]. ∀x : αF.

∣∣seti
F x
∣∣ < bdF

(Rel) (F, relF) is an n-ary relator—i.e., relF commutes with relation composition and pre-
serves the equality relations

Requiring that (F, relF) is a relator is equivalent to requiring that (F,mapF) preserves
weak pullbacks [65]. It follows from the BNF axioms that the relator structure is an extension
of the map function, in that mapping with a function f has the same effect as taking its graph
Gr f and relating through Gr f .

We regard the elements x of αF as containers filled with content, where the content is
provided by atoms in αi. The seti

F functions return the sets of αi-atoms (which are bounded
by bdF). Moreover, it is useful to think of the map function and the relator in the following
way:

• Applying mapF f to x keeps x’s container but updates its content as specified by f ,
substituting fi a for each a : αi.

• For all x : αF and y : βF, relF R x y if and only if x and y have the same containers and
their content atoms corresponding to the same position in the container are related by
Ri.

Consider a unary BNF F. For a fixed α, we represent a typical element of x : αF as
depicted in Fig. 2.1, where we indicate the container as a triangle and its content via a typical
atom a : α. The left-hand side of the figure shows how mapping f : α→ α′ amounts to
replacing each a with f a. The right-hand side shows how the relator applied to R : α→ α′→
bool states that each a is R-related to an a′ located at the same position in the container.

As an example, list is a unary BNF, where maplist is the standard map function, setlist

collects all the elements of a list, and bdlist is ℵ0, namely the cardinality of the natural num-
bers. Moreover, rellist R xs ys states that xs and ys have the same length and are elementwise
related by R.

2.3 (Co)datatypes from Bounded Natural Functors
A strong BNF is a BNF whose map preserves not only weak pullbacks but also strong pull-
backs. Strong BNFs include the basic type constructors of sum, product, and positive func-
tion space. Examples of BNFs that are not strong are the permutative (nonfree) type con-
structors, such as the finite powertype denoted α fset and the type of finite multisets (bags).
Both the BNFs and the strong BNFs are closed under composition and (least and greatest)
fixpoint definitions [70]. This enables us to mix and nest BNFs arbitrarily when defining
(co)datatypes.

Datatypes αT , where α is a tuple of type variables of length m, written len (α) = m, can
be defined recursively from (m+ 1)-ary BNFs (α,τ)F, by taking their least fixpoint (initial

Chapter 2. Preliminaries 16

algebra): the minimal solution up to isomorphism of the recursive equation αT ' (α,αT)F

If instead we interpret the equation maximally—which we will indicate with the superscript
∞—it yields the codatatype αT . In either case, the construction yields an α-polymorphic
bijection ctor : (α,αT)F→ αT .

Abstractly, the difference between datatypes and codatatypes lies in their reasoning and
definitional principles. For datatypes we have structural induction—which allows us to
prove a that predicate holds on all its elements—and recursion—which allows us to define
a function from the datatype to another type. Dually, for codatatypes we have structural

coinduction—which allows us to prove that a binary relation is included in equality—and
corecursion—which allows us to define functions from another type to the codatatype. Con-
cretely, the difference can be understood in terms of well-foundedness: A datatype contains
only well-founded entities, whereas a codatatype contains possibly non-well-founded ones.
For example, if we take (α,τ)F to be unit + α× τ (where unit is a fixed singleton type), the
datatype defined as α T ' (α,αT)F is α list, the type of (finite) lists. If instead we consider
the maximal interpretation, αT '∞ (α,αT)F, we obtain the codatatype of finite or infinite
(“lazy”) lists, α llist. A substantial benefit of BNFs is that fixpoints can be freely nested in a
modular fashion. Because α llist is itself a BNF, it can be used in further fixpoint definitions:
Taking (α,τ)F to be α + τ llist, the datatype αT defined as αT ' (α,αT)F is the type of
α-labeled well-founded infinitely branching rose trees.

2.4 Group Actions, Finite Support and Nominal Logic
Our work adopts an approach similar to the one of nominal logic [59, 58]. To help the discus-
sion with respect to this theory in this thesis, we introduce some basic concepts: nominal sets

are defined starting from the notion of finite support, itself based on actions of permutations,
a classical concept of group theory.

On the syntax of untyped λ-calculus (example 1, from subsection 1.1), the syntactic
operation of swapping is defined. By swapping in a term t the variables x and y, a term
t [x∧ y] is obtained where every occurrence (free or bound, indifferently) of the variable
x has been replaced by an occurrence of y and vice versa. For example if t is λx. xy and
z 6∈ {x,y}, then:

• t [x∧ y] = t [y∧ x] = λy.yx

• t [x∧ z] = t [z∧ x] = λz.zy

• t [y∧ z] = t [z∧ y] = λx. xz

(A formal and complete definition of this operator will be given for the generic syntax in
Chapter 3). Swapping takes a fundamental role for syntaxes with bindings: it embodies the
basic intuition of renaming variables in terms. As we have seen in the just above example,
in particular, when the variable z is not in the term swapping plugs it in, in place of another
chosen one.

Now let us change our point of view and notation, thus getting closer to group theory
and nominal logic [58]. For any given set S , we can consider the bijections S → S , or

Chapter 2. Preliminaries 17

permutations1 on S . The set of all permutations of any set S is a group, with respect to
function composition, having the identity function as the identity element of the group. This
is called the symmetric group of S , Sym(S).

Definition 1. An action of a group G on a set S is defined as a group homomorphism:

Φ : G→ Sym(S)

The defining properties of a group homomorphism (here we write them for Φ) are: (1)
Φ 1G = id, where 1G is the identity element for the group G and (2) Φ(g · h) = (Φ h) ◦
(Φ g), where _ · _ is the notation for the group operation of G. Since we deal only with
groups of permutations, we can write these properties considering G as such, namely its
group operation is the usual function composition and idG is the identity:

1. Φ idG = idSym(S);

2. Φ (h◦g) = (Φ h) ◦ (Φ g).

Note that now the order of g and h in h◦g is the opposite of their order in g ·h; this is because
in the most common notation in group theory, when we write g ·h, morally g comes first; just
like g comes first in h ◦ g since (h ◦ g) x = h(g x), namely we first apply g and then h. To
avoid all these contravariance issues, in group theory (h◦g) x is written x (g ·h) and it is said
that functions are applied “on the left”. We are dealing just with groups of bijections, so we
will not go deeper into this and from now on we stick to the common practice of “applying
functions on the right” and to the usual _◦_ notation for it. We will also drop the subscripts
in idG, idSym(S), . . . when it is clear which is the group we are considering.

For our group actions we can lighten a bit the notation and, for every s element of S and
g in G, write g.s instead of Φ g s. This brings us to the following equivalent definition of a
group action:

Definition 2. An action of a group G on a set S is defined as a function

G×S → S

(g, s) 7→ g.s
for which the following properties hold, for every s ∈ S and g,h ∈G:

1. id.s = s ;

2. (h◦g).s = h.(g.s) .

Let us consider now an infinite set A of variables (still ranged over by x,y,z, . . .), which
from now on we call atoms, as is done in nominal logic. If we consider any two atoms
x,y ∈ A, we note that the transposition of x and y, (x↔ y), defined by

(x↔ y) z =


y if z = x

x if z = y

z otherwise

is obviously a bijection, namely (x↔ y) ∈ Sym(A). Also it is uniquely identified by the
atoms x and y, since (x↔ y) = (y↔ x). Now, if we go back to the swapping operation on

1We will later call these “endobijections”, when we abandon the group theory terminology.

Chapter 2. Preliminaries 18

λ-terms (just from here to the end of this section we call their set L), we can see that for every
(x↔ y) as above (which is the same as saying “for every x and y”) we get an element of
Sym(L), since _[x∧ y] = _[y∧ x] is indeed a bijection.

We focus on well-founded λ-terms (obtained by a finite number of applications of the
syntax constructs), so every term contains a finite number of variables (and of variable occur-
rences). Also swapping is finitary, in the sense that it “moves” just a finite number (two) of
variables leaving all the other unchanged. These considerations suggest to restrict ourselves
to Sym f (A)—indeed a subgroup of Sym(A)—, namely finitely supported bijections of atoms,
where the support of a function f is defined as supp f = {x | f x 6= x}. This restriction to
finitary objects is exactly what nominal logic does (e.g. in [58]). An action

Sym f (A)×L→ L

is defined—where, according to our previous notation, nominal logic picks the group G as
S ym f (A) and the set on which it acts as L—by posing g.t equal to that term where every
occurrence (free or bound, indifferently) of the atom x has been replaced by an occurrence
of g(x), for all x simultaneously. Proving that the just-defined function is actually an action
is a routine check.

If g is the transposition (x↔ y), we have that g.t = (x↔ y).t = t [x∧ y], namely we
obtain the swapping operator. Noticing that a classic result of group theory is that Sym f (A)

is a group generated by transpositions, i.e., every finitely supported bijection is obtainable
from the composition of a finite number of transpositions, we understand how swapping
plays a central role with respect to this action and to the whole nominal theory.

Nominal logic is indeed a general theory of syntax with bindings: if we substitute the set
of λ-terms L with any set (or syntax) S , on which is defined an action of the finitely-supported
permutations of a set A of atoms (or variables), we automatically obtain on S the syntactic
operator of swapping. Below we present some fundamental definitions of nominal logic that
follow from this first idea. We fix a universe of atoms A.

Definition 3 (Nominal Support). Let A⊆A be any set of atoms, S any set equipped with an

action of Sym f (A) and s ∈ S .

• We say that A supports S if

∀ a a′. a,a′ /∈ A−→ (a↔ a′) s = s

• We say that s has finite support if there exist a set of atoms A such that A supports s and A

is finite.

Now we can define the key concepts of nominal logic.

Definition 4 (Nominal Set). We say that a set S is a nominal set if

1. S is equipped with an action of Sym f (A) and

2. every element s ∈ S is supported by some finite set of atoms.

Nominal logic deals exclusively with nominal sets and builds an expressive theory of
syntaxes with bindings that covers many instances and goes up to induction and recursion

Chapter 2. Preliminaries 19

principles. Moreover for nominal sets we can obtain for free a rigorous definition of the
freshness operator.

Definition 5 (Nominal Freshness). We say that an atom a ∈A is fresh for s ∈ S if there

exists some A⊆A such that A supports s and a /∈ A.

Note here that in nominal logic, if swapping is a primitive concept (we have to assume

an action of atom permutations on our objects), freshness is not, but as a matter of fact its
definition is derived from the one of swapping.

20

Chapter 3

A First Formalization: a Universal
Algebra Approach

In this chapter we present a first Isabelle/HOL formalization of a theory of syntax with bind-
ings. Terms are defined for an arbitrary number of constructors of varying numbers of inputs,
quotiented to alpha-equivalence and sorted according to a binding signature. The theory
includes a rich collection of properties of the standard operators on terms, including substitu-
tion, swapping and freshness—namely, there are lemmas showing how each of the operators
interacts with all the others and with the syntactic constructors. The theory also features
induction and recursion principles and support for semantic interpretation, all tailored for
smooth interaction with the bindings and the standard operators.

This framework has evolved through the years. Its initial development (from Popescu’s
thesis [62]) has been a fundamental background work for our thesis and the first material we
worked on ourselves. Starting from Chapter 5, until the end of this thesis, we will see a second
evolution of the framework: while retaining the overall approach, a different underlying
theory will be used to model complex bindings in a modular fashion.

The formalization in this chapter aims at mechanizing a form of universal algebra for

bindings. This universal algebra approach, namely statically modelling the generic syntax by
means of an instantiable signature, seemed to us the natural way to proceed in the first place.
This first development successfully captures most of the fundamental features of a generic
syntax with bindings and provides some original insights and principles, that are very useful
in themselves and have constituted the basis for future developments, e.g., substitution-aware
recursion (Section 3.3)—along with the formalization of Norrish’s swapping-aware principle
[52]—and the application of the theory of cardinality to infinitary syntaxes (Section 3.2.3).

The chapter is structured as follows. We start with an example-driven overview of our de-
sign decisions (Section 3.1). Then we present the general theory: terms as alpha-equivalence
classes of “quasiterms,” standard operators on terms and their basic properties (Section 3.2),
custom induction (Section 3.4) and recursion schemes (Section 3.3), including support for
the semantic interpretation of syntax, and the sorting of terms according to a signature (Sec-
tion 3.5). In the next chapter, Chapter 4, we present an extensive case study for the frame-
work, where we point out the usage of its various features.

Chapter 3. A First Formalization: a Universal Algebra Approach 21

3.1 Design Decisions
In this section, we present, via some examples, our design choices for the framework. We also
introduce conventions and notations that will be relevant throughout this and the following
chapter.

We start with the paradigmatic examples of λ-calculus [8]. We assume an infinite supply
of variables, x ∈ var. The λ-terms, X,Y ∈ termλ, are defined by the following standard
datatype grammar:

X ::= Var x | App X Y | Lm x X

Thus, a λ-term is either a variable, or an application, or a λ-abstraction. This grammar speci-
fication, while sufficient for first-order abstract syntax, is incomplete when it comes to syntax
with bindings—we also need to indicate which operators introduce bindings and in which of
their arguments. Here, Lm is the only binding operator: When applied to the variable x and
the term X, it binds x in X. After knowing the binders, the usual convention is to identify

terms modulo alpha-equivalence, i.e., to treat as equal terms that only differ in the names of
bound variables, such as, e.g., Lm x (App (Var x) (Var y)) and Lm z (App (Var z) (Var y)).
The end results of our theory will involve terms modulo alpha. We will call the raw terms
“quasiterms,” reserving the word “term” for alpha-equivalence classes.

3.1.1 Standalone Abstractions

To make the binding structure manifest, we will “quarantine” the bindings and their associ-
ated intricacies into the notion of abstraction, which is a pairing of a variable and a term,
again modulo alpha. For example, for the λ-calculus we will have

X ::= Var x | App X Y | Lam A A ::= Abs x X

where X are terms and A abstractions. Within Abs x X, we assume that x is bound in X. The
λ-abstractions Lm x X of the the original syntax are now written Lam (Abs x X).

Resorting to abstractions in order to isolate bindings has been our first means to clearly
identify which variable was bound in which term. After we formalized the general frame-
work and we moved to using it, instantiating it to particular instances, we had to hide those
to the user. Moreover in our new framework (Chapters 5 and 6) we will definitively drop ab-
stractions and just indicating explicitly the positions inside the constructor of which variables
are bound in which terms.

3.1.2 Freshness, Substitution and Swapping

The three most fundamental and most standard operators on λ-terms are:

• the freshness predicate, fresh : var→ termλ→ bool, where fresh x X states that x is fresh
for (i.e., does not occur free in) X; for example, it holds that fresh x (Lam (Abs x (Var x)))

and fresh x (Var y) (when x 6= y), but not that fresh x (Var x)

• the substitution operator, _[_/_] : termλ→ termλ→ var→ termλ, where Y [X/x] denotes
the (capture-free) substitution of term X for (all free occurrences of) variable x in term Y;
e.g., if Y is Lam (Abs x (App (Var x) (Var y))) and x 6∈ {y,z}, then:

Chapter 3. A First Formalization: a Universal Algebra Approach 22

– Y [(Var z)/y] = Lam (Abs x (App (Var x) (Var z)))

– Y [(Var z)/x] = Y (since bound occurrences like those of x in Y are not affected)

• the swapping operator _[_∧ _] : termλ → var→ var→ termλ, where Y [x∧ y] indicates
the term Y where every occurrence (free or bound, indifferently) of the variable x has been
replaced by an occurrence of y and vice versa; for example if Y is Lam (Abs x (App (Var x)

(Var y))) and z 6∈ {x,y}

– Y [x∧ y] = Y [y∧ x] = Lam (Abs y (App (Var y) (Var x)))

– Y [x∧ z] = Y [z∧ x] = Lam (Abs z (App (Var z) (Var y)))

– Y [y∧ z] = Y [z∧ y] = Lam (Abs x (App (Var x) (Var z)))

And there are corresponding operators for abstractions—e.g., freshAbs x (Abs x (Var x))

holds.

3.1.3 Advantages and Obligations from Working with Terms Modulo Alpha

In our theory, we start with defining quasiterms and quasiabstractions and their alpha-equiva-
lence. Then, after proving all the syntactic constructors and standard operators to be compati-
ble with alpha, we quotient to alpha, obtaining what we call terms and abstractions, and define
the versions of these operators on quotiented items. For example, let qtermλ and qabsλ be
the types of quasiterms and quasiabstractions in λ-calculus. Here, the quasiabstraction con-
structor, qAbs : var→ qtermλ→ qabsλ, is a free constructor, of the kind produced by standard
datatype specifications [10, 18]. The types termλ and absλ are qtermλ and qabsλ quotiented to
alpha. We prove compatibility of qAbs with alpha and then define Abs : var→ termλ→ absλ
by lifting qAbs to quotients.

The decisive advantages of working with quasiterms and quasiabstractions modulo alpha,
i.e., with terms and abstractions, are that (1) substitution behaves well (e.g., is compositional)
and (2) Barendregt’s variable convention [8] (of assuming, w.l.o.g., the bound variables fresh
for the parameters) can be invoked in proofs.

However, this choice brings the obligation to prove that all concepts on terms are com-
patible with alpha. Without employing suitable abstractions, this can become quite difficult
even in the most “banal” contexts. Due to nonfreeness, primitive recursion on terms requires
a proof that the definition is well formed, i.e., that the overlapping cases lead to the same
result. As for Barendregt’s convention, its rigorous usage in proofs needs a principle that
goes beyond the usual structural induction for free datatypes.

A framework that deals gracefully with these obligations can make an important differ-
ence in applications—enabling the formalizer to quickly leave behind low-level “bootstrap-
ping” issues and move to the interesting core of the results.

3.1.4 Many-Sortedness

While λ-calculus has only one syntactic category of terms (to which we added that of ab-
stractions for convenience), this is often not the case. FOL has two: terms and formulas. The
Edinburgh Logical Framework (LF) [34] has three: object families, type families and kinds.
More complex calculi can have many syntactic categories.

Chapter 3. A First Formalization: a Universal Algebra Approach 23

Our framework will capture these phenomena. We will call the syntactic categories sorts.
We will distinguish syntactic categories for terms (the sorts) from those for variables (the
varsorts). Indeed, e.g., in FOL we do not have variables ranging over formulas, in the π-
calculus [50] we have channel names but no process variables, etc.

Sortedness is important, but formally quite heavy. Here we present the core of the for-
malization, but at the same time we postpone dealing with sorts for as long as possible. We
introduce an intermediate notion of good term, for which we are able to build the bulk of
the theory—only as the very last step we introduce many-sorted signatures and transit from
“good” to “sorted.”

This is indeed how things have been formalized in the first framework: the notion of good
terms ensured a good behaviour of the syntax with respect to cardinality issues. But, once
we introduced it, all the theory was developed and just later organized according to sorts. In
our new framework (Chapters 5 and 6), thanks to functors and ideas from the BNFs’ theory
(Sections 2.2 and 2.3, Chapter 2), we did not need any more this concept of “goodness” and
hence dismissed it.

3.1.5 Possibly Infinite Branching

Nominal Logic’s [59, 76] notion of finite support has become central in state-of-the-art tech-
niques for reasoning about bindings. However, important developments step outside finite
support and here we first encounter with such syntaxes. We have already discussed this point
in Section 1.4 from Chapter 1 and how it is desirable to go in two orthogonal directions:
allowing for infinitely-branching terms and capturing non well-founded syntaxes. Our next
framework (Chapters 5 and 6) will cover both aspects while this formalization captures only
infinitely-branching objects, but the crucial means to go beyond finite support, is indeed the
understanding of regular cardinals we had for this first development.

We now consider a motivating example of infinitely-branching syntaxes: (a simplified
version of) CCS [51]. This syntax has the following syntactic categories of data expressions
E ∈ exp and processes P ∈ proc:

E ::= Var x | 0 | E +E P ::= Inp c x P | Out c E P | ∑i∈I Pi

Above, Inp c x P, usually written c(x). P, is an input prefix c(x) followed by a continuation
process P, with c being a channel and x a variable which is bound in P. Dually, Out c E P,
usually written c E. P, is an output-prefixed process with E an expression. The exotic con-
structor here is the sum ∑, which models nondeterministic choice from a collection (Pi)i∈I

of alternatives indexed by a set I. It is important that I is allowed to be infinite, for modelling
different decisions based on different received inputs. But then process terms may use in-
finitely many variables, i.e., may not be finitely supported. Similar issues arise in infinitary
FOL [40] and Hennessey-Milner logic [35].

3.2 General Terms with Bindings
We start the presentation of our formalized theory, in its journey from quasiterms (3.2.1)
to terms via alpha-equivalence (3.2.2). The journey is fuelled by the availability of fresh

Chapter 3. A First Formalization: a Universal Algebra Approach 24

variables, ensured by cardinality assumptions on constructor branching and variables (3.2.3).
It culminates with a systematic study of the standard term operators (3.2.4).

3.2.1 Quasiterms

The types qterm and qabs, of quasiterms and quasiabstractions, are defined as mutually re-
cursive datatypes polymorphic in the following type variables: index and bindex, of indexes
for free and bound arguments, varsort, of varsorts, i.e., sorts of variables, and opsym, of
(constructor) operation symbols. For readability, below we omit the occurrences of these
type variables as parameters to qterm and qabs:

datatype qterm = qVar varsort var |
qOp opsym ((index,qterm) input) ((bindex,qabs) input)

and qabs = qAbs varsort var qterm
Thus, any quasiabstraction has the form qAbs xs x X, putting together the variable x

of varsort xs with the quasiterm X, indicating the binding of x in X. On the other hand,
a quasiterm is either an injection qVar xs x, of a variable x of varsort xs, or has the form
qOp δ inp binp , i.e., consists of an operation symbol applied to some inputs that can be
either free, inp, or bound, binp.

We use (α,β) input as a type synonym for α→ β option, the type of partial functions from
α to β; such a function returns either None (representing “undefined”) or Some b for b : β,
namely:

datatype β option = None | Some β .

This type models inputs to the quasiterm constructors of varying number of arguments.
An operation symbol δ : opsym can be applied, via qOp, to: (1) a varying number of free
inputs, i.e., families of quasiterms modeled as members of (index,qterm) input and (2) a
varying number of bound inputs, i.e., families of quasiabstractions modeled as members of
(index,qabs) input. For example, taking index to be nat we capture n-ary operations for any
n (passing to qOp δ inputs defined only on {0, . . . ,n−1}), as well as as countably-infinitary
operations (passing to qOp δ inputs defined on the whole nat). Therefore in our framework,
for Milner’s CCS (see Section 3.1.5 above), e.g., we will have:

∑
i∈N

Pi represented as qOp ∑N f ,

where ∑N is an operation symbol and f is a partial function from natural numbers to pro-
cesses, with f (i) = Pi. In our just introduced notation f has type (index,qterm) input, where
we have taken index to be the type of natural numbers and qterm is the type of quasi-terms
for processes (for more details see Section 3.5.1, where sorting and binding signatures are
introduced).

Note that, so far, we consider sorts of variables but not sorts of terms. The latter will
come much later, in Section 3.5, when we introduce signatures. Then, we will gain control
(1) of which varsorts should be embedded in which term sorts and (2) of which operation
symbols are allowed to be applied to which sorts of terms. But, until then, we will develop
the interesting part of the theory of bindings without sorting the terms.

Chapter 3. A First Formalization: a Universal Algebra Approach 25

alpha (qVar xs x) (qVar xs′ x′) ⇐⇒ xs = xs′ ∧ x = x′

alpha (qOp δ inp binp) (qOp δ′ inp′ binp′) ⇐⇒ δ= δ′ ∧ ↑alpha inp inp′ ∧ ↑alphaAbs binp binp′

alpha (qVar xs x) (qOp δ′ inp′ binp′) ⇐⇒ False
alpha (qOp δ inp binp) (qVar xs′ x′) ⇐⇒ False

alphaAbs (qAbs xs x X) (qAbs xs′ x′ X′) ⇐⇒ xs = xs′ ∧ (∃y /∈ {x, x′}. qFresh xs y X ∧
qFresh xs y X′ ∧ alpha (X[y∧ x]xs) (X′[y∧ x′]xs))

FIGURE 3.1: Alpha-Equivalence
On quasiterms, we define freshness, qFresh : varsort→ var→ qterm→ bool, substitu-

tion, _[_/_]_ : qterm→ qterm→ var→ varsort→ qterm, parallel substitution, _[_] : qterm→
(varsort → var → qterm option) → qterm, swapping, _[_ ∧ _]_ : qterm → var → var →
varsort→ qterm, and alpha-equivalence, alpha : qterm→ qterm→ bool—and corresponding
operators on quasiabstractions: qFreshAbs, alphaAbs, etc.

The definitions proceed as expected, with picking suitable fresh variables in the case
of substitutions and alpha. For parallel substitution, given a (partial) variable-to-quasiterm
assignment ρ : varsort→ var→ qterm option, the quasiterm X[ρ] is obtained by substitut-
ing, for each free variable x of sort xs in X for which ρ is defined, the quasiterm Y where
ρ xs x = Some Y . We only show the formal definition of alpha-equivalence in the following
subsection. In Subsection 3.2.4 however we will show the lifted (and more significant) ver-
sions of these for terms, after the quotienting to alpha-equivalence has already happened. In
each case the standard (and quite tedious process) works like this: we define the operator on
quasi-terms, we prove that the defined concept respects alpha-equivalence classes, we lift it
to terms and prove lemmas that can be used as if the concept had been defined directly on
terms.

3.2.2 Alpha-Equivalence

We define the predicates alpha (on quasiterms) and alphaAbs (on quasiabstractions) mutually
recursively, as shown in Fig. 3.1. For variable quasiterms, we require equality on both the
variables and their sorts. For qOp quasiterms, we recurse through the components, inp and
binp. Given any predicate P : β2→ bool, we write ↑P for its lifting to (α,β) input2→ bool,
defined as
↑P inp inp′⇐⇒
∀i. case (inp i, inp′ i) of (None,None)⇒ True | (Some b, Some b′)⇒ P b b′ | _⇒ False

Thus, ↑P relates two inputs just in case they have the same domain and their results are
componentwise related.

Convention 5. Throughout this chapter, without further notice we write ↑ for the natural
lifting of the various operators from terms and abstractions to free or bound inputs.

In Fig. 3.1’s clause for quasiabstractions, we require that the bound variables are of the
same sort and there exists some fresh y such that alpha holds for the terms where y is swapped
with the bound variable. Following Nominal Logic, we prefer to use swapping instead of
substitution in alpha-equivalence, since this leads to simpler proofs [58].

Chapter 3. A First Formalization: a Universal Algebra Approach 26

3.2.3 Good Quasiterms and Regularity of Variables

In general, alpha will not be an equivalence, namely, will not be transitive: Due to the arbi-
trarily wide branching of the constructors, we may not always have fresh variables y avail-
able in an attempt to prove transitivity by induction. To remedy this, we restrict ourselves to
“good” quasiterms, whose constructors do not branch beyond the cardinality of var. Good-
ness is defined as the mutually recursive predicates qGood and qGoodAbs:

qGood (qVar xs x) ⇐⇒ True
qGood (qOp δ inp binp) ⇐⇒ ↑qGood inp ∧ ↑qGoodAbs binp ∧

|dom inp| < |var| ∧ |dom binp| < |var|
qGoodAbs (qAbs xs x X) ⇐⇒ qGood X

where, given a partial function f , we write dom f for its domain.
Thus, for good items, we hope to always have a supply of fresh variables. Namely, we

hope to prove qGood X =⇒ ∀xs. ∃x. qFresh xs x X. But goodness is not enough. We also
need a special property for the type var of variables. In the case of finitary syntax, it suffices
to take var to be countably infinite, since a finitely branching term will contain fewer than
|var| variables (here, meaning a finite number of them)—this can be proved by induction on
terms, using the fact that a finite union of finite sets is finite.

So let us attempt to prove the same in our general case. In the inductive qOp case,
we know from goodness that the branching is smaller than |var|, so to conclude we would
need the following: A union of sets smaller than |var| indexed by a set smaller than |var|
stays smaller than |var|. It turns out that this is a well-studied property of cardinals, called
regularity—with |nat| being the smallest regular cardinal. (In addition, we know that for
every cardinal k there exists a regular cardinal larger than k.) Thus, the desirable general-
ization of countability is regularity (which is available from Isabelle’s cardinal library [12]).
Henceforth, we will assume:

Assumption 6. |var| is a regular cardinal.

We will thus have not only one, but a |var| number of fresh variables:

Proposition 7. qGood X =⇒∀xs. |{x. qFresh xs x X}|= |var|

Now we can prove, for good items, the properties of alpha familiar from the λ-calculus,
including it being an equivalence and an alternative formulation of the abstraction case, where
“there exists a fresh y” is replaced with “for all fresh y.” While the “exists” variant is useful
when proving that two terms are alpha-equivalent, the “forall” variant gives stronger inversion
and induction rules for proving implications from alpha. (Such fruitful “exsist-fresh/forall-
fresh,” or “some-any” dychotomies have been previously discussed in the context of bindings,
e.g, in [54, 6, 48].)

Proposition 8. The following hold:
(1) alpha and alphaAbs are equivalences on good quasiterms and quasiabstractions
(2) The predicates defined by replacing, in Fig. 3.1’s definition, the abstraction case with

alphaAbs (qAbs xs x X) (qAbs xs′ x′ X′) ⇐⇒
xs = xs′∧ (∀y /∈ {x, x′}.qFreshxsy X∧qFreshxsy X′=⇒alpha(X[y∧ x]xs)(X′[y∧ x′]xs))

Chapter 3. A First Formalization: a Universal Algebra Approach 27

Constructors

Var : varsort→ var→ term
Op : opsym→ (index, term) input→ (bindex,abs) input→ term
Abs : varsort→ var→ term→ abs

Operators on terms and abstractions

Freshness terms fresh : varsort→ var→ term→ bool
abstractions freshAbs : varsort→ var→ abs→ bool

Substitution terms _[_/_]_ : term→ term→ var→ varsort→ term
abstractions _[_/_]_ : abs→ term→ var→ varsort→ abs

Parallel Substitution terms _[_] : term→ (varsort→ var→ term option)→ term
abstractions _[_] : abs→ (varsort→ var→ term option)→ abs

Swapping terms _[_∧_]_ : term→ var→ var→ varsort→ term
abstractions _[_∧_]_ : abs→ var→ var→ varsort→ abs

FIGURE 3.2: Constructors and operators on terms and abstractions

coincide with alpha and alphaAbs.

3.2.4 Terms and Their Properties

We define term and abs as collections of alpha- and alphaAbs- equivalence classes of qterm

and qabs. Since qGood and qGoodAbs are compatible with alpha and alphaAbs, we lift them
to corresponding predicates on terms and abstractions, good and goodAbs.

We also prove that all constructors and operators are alpha-compatible, which allows
lifting them to terms. Figure 3.2 shows the types of all these term constructors and operators.

To establish an abstraction barrier that sets terms free from their quasiterm origin, we
prove that the syntactic constructors mostly behave like free constructors, in that Var, Op and
Abs are exhaustive and Var and Op are injective and nonoverlapping. True to the quarantine
principle expressed in Subsection 3.1.1, the only nonfreeness incident occurs for Abs. Its
equality behavior is regulated by the “exists fresh” and “forall fresh” properties inferred from
the definition of alphaAbs and Prop. 8(2), respectively:

Proposition 9. Assume good X and good X′. Then the following are equivalent:
(1) Abs xs x X = Abs xs′ x′ X′

(2) xs = xs′ ∧ (∃y /∈ {x, x′}. fresh xs y X ∧ fresh xs y X′ ∧ X[y∧ x]xs = X′[y∧ x′]xs)

(3) xs = xs′ ∧ (∀y /∈ {x, x′}. fresh xs y X ∧ fresh xs y X′ =⇒ X[y∧ x]xs = X′[y∧ x′]xs)

Useful rules for abstraction equality also hold with substitution:

Proposition 10. Assume good X and good X′. Then the following hold:
(1) y /∈ {x, x′} ∧ fresh xs y X ∧ fresh xs y X′ ∧ X [(Var xs y)/ x]xs = X′ [(Var xs y)/ x′]xs =⇒
Abs xs x X = Abs xs x′ X′

(2) fresh xs y X =⇒ Abs xs x X = Abs xs y (X [(Var xs y)/ x]xs)

To completely seal the abstraction barrier, for all the standard operators we prove sim-
plification rules regarding their interaction with the constructors, which makes the former
behave as if they had been defined in terms of the latter.

Chapter 3. A First Formalization: a Universal Algebra Approach 28

The following facts resemble an inductive definition of freshness (as a predicate):

Proposition 11. Assume good X, ↑good inp, ↑good binp, |dom inp| < |var| and |dom binp|
< |var|. The following hold:
(1) (ys,y) 6= (xs, x) =⇒ fresh ys y (Var xs x)

(2) ↑ (fresh ys y) inp ∧ ↑ (freshAbs ys y) binp =⇒ fresh ys y (Op δ inp binp)

(3) (ys,y) = (xs, x) ∨ fresh ys y X =⇒ freshAbs ys y (Abs xs x X)

Here and elsewhere, when dealing with Op, we make cardinality assumptions on the
domains of the inputs to make sure the terms Op δ inp binp are good.

We can further improve on Prop. 11, obtaining “iff” facts that resemble a primitively
recursive definition of freshness (as a function):

Proposition 12. Prop. 11 stays true if the implications are replaced by equivalences (⇐⇒).

For the swapping and substitution operators, we prove the following simplification rules,
with a similar primitive recursion flavor.

Proposition 13. Assume good X, ↑good inp, ↑good binp, |dom inp| < |var| and |dom binp|
< |var|. The following hold:
(1) (Var xs x) [y∧ z]ys = Var (x [y∧ z]xs,ys)

(2) (Op δ inp binp) [y∧ z]ys = Op δ (↑ (_[y∧ z]ys) inp) (↑ (_[y∧ z]ys)binp)

(3) (Abs xs x X) [y∧ z]ys = Abs xs (x [y∧ z]xs,ys) (X [y∧ z]ys)

where x [y∧ z]xs,ys is the (sorted) swapping on variables, defined as

if (xs, x) = (ys,y) then y else if (xs, x) = (ys,z) then z else x

Proposition 14. Assume good X, good Y , ↑good inp, ↑good binp, |dom inp| < |var| and
|dom binp| < |var|. The following hold:
(1) (Var xs x) [Y/y]ys = (if (xs, x) = (ys,y) then Y else Var xs x)

(2) (Op δ inp binp) [Y/y]ys = Op δ (↑ (_[Y/y]ys) inp) (↑ (_[Y/y]ys)binp)

(3) (xs, x) 6= (ys,y) ∧ fresh xs x Y =⇒ (Abs xs x X) [Y/y]ys = Abs xs x (X [Y/y]ys)

Since unary substitution is a particular case of parallel substitution, the previous lemma
is a corollary of the following:

Proposition 15. Assume good X, ↑good inp, ↑good binp, ↑good ρ, |dom inp| < |var|, |dom
binp| < |var| and |dom ρ| < |var|. The following hold:
(1) (Var xs x) [ρ] = (if ρ xs x = Some Y then Y else Var xs x)

(2) (Op δ inp binp) [ρ] = Op δ (↑ (_[ρ]) inp) (↑ (_[ρ])binp)

(3) ↑(fresh xs x) ρ =⇒ (Abs xs x X) [ρ] = Abs xs x (X [ρ])

Above, the notation ↑(fresh xs x) ρ follows the spirit of Convention 5, in that it lifts the
freshness predicate from terms to environments for parallel substitution, i.e., partial variable-
to-term assignments ρ : varsort→ var→ term option. However, it must be noted that this is a
non-standard lifting process, referring not only to the freshness on ρ’s image terms, but also
to distinctness on ρ’s domain variables. Namely, ↑(fresh xs x) ρ is defined as

∀ ys,y,Y . ρ ys y = Some Y =⇒ (xs, x) 6= (ys,y) ∧ fresh xs x Y

Chapter 3. A First Formalization: a Universal Algebra Approach 29

Thus, (xs, x) must be fresh for the graph of (the uncurried version of) the partial function ρ.
Note that, when it comes to the interaction of freshness and substitution with Abs, the

simplification rules require freshness of the bound variable. Thus, freshAbs ys y (Abs xs x X)

is reducible to fresh ys y X only if (xs, x) is distinct from (ys,y). Moreover, (Abs xs x X)

[Y/y]ys is expressible in terms of X [Y/y]ys only if (xs, x) is distinct from (ys,y) and fresh
for Y . And similarly for parallel substitution. By contrast, swapping does not suffer from this
restriction, which makes it significantly more manageable in proofs.

In addition to the simplification rules, we prove a comprehensive collection of lemmas
describing the interaction between any pair of operators, including the interaction of each
operator with itself (the latter being typically a form of compositionality property). Below
we only list these properties for terms, omitting the corresponding ones for abstractions.

Proposition 16 (Properties of Swapping). Assume good X. The following hold:
(1) Swapping the same variable is identity:

X [x∧ x]xs = X

(2) Swapping is compositional:

(X [x1∧ x2]xs) [y1∧ y2]ys = (X [y1∧ y2]ys) [(x1 [y1∧ y2]xs,ys)∧ (x2 [y1∧ y2]xs,ys)]xs

(3) Swapping commutes if the variables are disjoint or the varsorts are different:

xs 6= ys ∨ {x1, x2}∩{y1,y2}= /0 =⇒ (X [x1∧ x2]xs) [y1∧y2]ys = (X [y1∧y2]ys) [x1∧ x2]xs

(4) Swapping is involutive:
(X [x∧ y]xs) [x∧ y]xs = X

(5) Swapping is symmetric:
X [x∧ y]xs = X [y∧ x]xs

Proposition 17 (Swapping versus Freshness). Assume good X. The following hold:
(1) Swapping preserves freshness:

xs 6= ys ∨ x /∈ {y1,y2} =⇒ fresh xs (x [y1∧ y2]xs,ys) (X [y1∧ y2]ys) = fresh xs x X

(2) Swapping fresh variables is identity:

fresh xs x1 X ∧ fresh xs x2 X =⇒ X [x1∧ x2]xs = X

(3) Swapping fresh variables composes:

fresh xs y X ∧ fresh xs z X =⇒ (X [y∧ x]xs) [z∧ y]xs = X [z∧ x]xs

The following lemmas describe the basic properties of substitution. The results for unary
substitution follow routinely from those of parallel substitution. However, to support concrete
formalizations it is useful to have both versions. Indeed, the majority of formalizations will
only need unary substitution—and, in such cases, the user should not be bothered with having
to work with the much heavier parallel substitution properties.

Proposition 18 (Swapping versus Substitution). Assume good X, good Y and ↑good ρ. The
following hold:
(1) (X [ρ]) [z1∧ z2]zs = (X [z1∧ z2]zs) [↑(_ [z1∧ z2]zs) ρ]

(2) Y [X/x]xs [z1∧ z2]zs = (Y [z1∧ z2]zs) [(X[z1∧ z2]zs)/ (x[z1∧ z2]xs,zs)]xs

Chapter 3. A First Formalization: a Universal Algebra Approach 30

Note that, at point (1) above, ↑(_ [z1 ∧ z2]zs) ρ is the lifting of the (z1,z2.zs)-swapping
operator (which swaps z1 with z2 on varsort zs) to parallel-substitution environments ρ :
varsort→ var→ term option. Point (2) follows easily from point (1).

Proposition 19 (Parallel Substitution versus Freshness). Assume good X and ↑good ρ. The
following hold:

fresh xs x (X [ρ]) ⇐⇒ (∀ ys y. fresh ys y X ∨
((ρ ys y = None∧ (ys,y) 6= (xs, x)) ∨ (∃ Y . ρ ys y = Some Y ∧ fresh xs x Y)))

In the unary case we obtain three separate properties:

Proposition 20 (Substitution versus Freshness). Assume good X and good Y . The following
hold:
(1) Freshness for a unary substitution decomposes into freshness for its participants:

fresh zs z (X[Y/y]ys)⇐⇒ ((zs,z) = (ys,y)∨ fresh zs z X) ∧ (fresh ys y X∨ fresh zs z Y)

(2) Substitution preserves freshness:

fresh zs z X∧ fresh zs z Y =⇒ fresh zs z (X [Y/y]ys)

(3) The substituted variable is fresh for the substitution:

fresh ys y Y =⇒ fresh ys y (X [Y/y]ys)

Proposition 21 (Properties of Substitution). Assume good X, good Y , ↑good ρ and ↑good ρ′.
The following hold:
(1) Parallel substitution in environment ρ only depends on ρ’s action on the free (non-fresh)
variables:

(∀ ys y. ¬ fresh ys y X =⇒ ρ ys y = ρ′ ys y) =⇒ X [ρ] = X [ρ′]

(2) Parallel substitution is the identity if the free variables of the environment ρ are disjoint
from those of the target term X:

(∀ zs z. ↑(fresh zs z) ρ ∨ fresh zs z X) =⇒ X [ρ] = X

(3) Unary substitution is the identity if the substituted variable is fresh for the target term
(corollary of point (2)):

fresh ys y X =⇒ (X [Y/y]ys) = X

As for compositionality of substitution we give different versions of the lemma, all of
which are consequences of the first, most general one.

Proposition 22 (Substitution Compositionality). Assume good X, good Y , ↑good ρ and
↑good ρ′. The following hold:
(1) Parallel substitution is compositional:

X [ρ] [ρ′] = X [ρ•ρ′]

where ρ•ρ′ is the monadic composition of ρ and ρ′, defined as

(ρ•ρ′)xs x = case ρ xs x of None⇒ ρ′ xs x | Some X⇒ X[ρ′]

(2) Parallel substitution distributes over unary substitution:

(X [Y/y]ys) [ρ] = X [ρ [y← Y [ρ]]ys]

Chapter 3. A First Formalization: a Universal Algebra Approach 31

where ρ[y← Y [ρ]]ys is the assignment ρ updated with value Some (Y [ρ]) for y

(3) Unary substitution composes with parallel substitution (via monadic composition)

(X [ρ]) [Y/y]ys = X [ρ• [Y/y]ys]

where we use the notation [Y/y]ys also for that environment that maps everything to None,
but (ys,y) which is instead mapped to Y

(4) Substitution of the same variable (and of the same varsort) distributes over itself:

X [Y1/y]ys [Y2/y]ys = X [(Y1 [Y2/y]ys)/y]ys

(5) Substitution of different variables distributes over itself, assuming freshness:

(ys 6= zs ∨ y 6= z) ∧ fresh ys y Z =⇒ X [Y/y]ys [Z/z]zs = (X [Z/z]zs) [(Y [Z/z]zs)/y]ys

In summary, we have formalized quite exhaustively the general-purpose properties of the
syntactic constructors and the standard operators. Some of these properties are subtle. During
the formalization of concrete results for particular syntaxes, they are likely to require a lot of
time to even formulate them correctly, let alone prove them—which would be wasteful, since
they are independent of the particular syntax.

3.3 Operator-Sensitive Recursion
In this section we present several definition principles for functions having terms and ab-
stractions as their domains. The principles we formalize are generalizations to an arbitrary
syntax of results that have been previously described for the particular syntax of λ-calculus
[63, 52]. The main characteristic of the principles will be that the functions they introduce
have defining clauses not only for the constructors (as customary in recursive definitions on
free datatypes), but also for the freshness, substitution and/or swapping operators.

In this section there is our very first approach to recursion in the presence of bindings.
In the context of this theory we have formalized definition principles in a style that we have
been able to reuse in later formalizations; in particular in Section 6.5 of Chapter 6 we have
transported the same in our most recent and general framework, based on functors.

We start with the simpler-structured iteration principles (3.3.1) followed by their exten-
sion to primitive recursion (3.3.2). We also show two examples of using our principles. The
first defines the skeleton of a term (a generalization of the notion of depth) using freshness-
swapping-based iteration (3.3.3). The second employs freshness-substitution-based itera-
tion to produce a whole class of instances: the interpretation of syntax in semantic domains
(3.3.4).

3.3.1 Iteration

A freshness-substitution (FSb) model consists of two collections of elements endowed with
term- and abstraction- like operators satisfying some characteristic properties of terms. More
precisely, it consists of:

• two types, T and A

• operations corresponding to the constructors:

Chapter 3. A First Formalization: a Universal Algebra Approach 32

F1: (ys,y) 6= (xs, x) =⇒ FRESH ys y (VAR xs x)
F2: ↑ (FRESH ys y) inp and ↑ (FRESHABS ys y) binp =⇒ FRESH ys y (OP δ inp binp)
F3: FRESHABS ys y (ABS ys y X)
F4: FRESH ys y X =⇒ FRESHABS ys y (ABS xs x X)

FIGURE 3.3: The freshness clauses

Sb1: SUBST (VAR zs z) Z z zs = Z
Sb2: (xs, x) 6= (zs,z) =⇒ SUBST (VAR xs x) Z z zs = VAR xs x
Sb3: SUBST (OP δ inp binp) Z z zs = OP δ (↑ (SUBST _ Z z zs) inp) (↑ (SUBSTABS _ Z z zs)binp)
Sb4: (xs, x) 6= (zs,z) ∧ FRESH xs x Z =⇒ SUBSTABS (ABS xs x X) Z z zs = ABS xs x (SUBST X Z z zs)
SbRn: FRESH xs y X =⇒ ABS xs x X = ABS xs y (SUBST (VAR xs y) x xs X)

FIGURE 3.4: The substitution and substitution-renaming clauses

VAR : varsort→ var→ T

OP : opsym→ (index,T) input→ (bindex,A) input→ T

ABS : varsort→ var→ T→ A

• operations corresponding to freshness and substitution:

FRESH : varsort→ var→ T→ bool

FRESHABS : varsort→ var→ A→ bool

SUBST : T→ T→ var→ varsort→ T

SUBSTABS : A→ T→ var→ varsort→ A

and it is required to satisfy:

• the freshness clauses F1–F5 shown in Figure 3.3 (analogous to the implicational sim-
plification rules for freshness in Prop. 11)

• substitution clauses Sb1–Sb4 shown in Figure 3.4 (analogous to the simplification rules
for substitution in Prop. 14)

• the substitution-renaming clause SbRn also shown in Figure 3.4 (analogous to the
substitution-based abstraction equality rule in Prop. 10(2))

Theorem 23. The good terms and abstractions form the initial FSb model. Namely, for any
FSb model as above, there exist the functions f : term→ T and fAbs : abs→ A that commute,
on good terms, with the constructors and with substitution and preserve freshness:

f (Var xs x) = VAR xs x

f (Op δ inp binp) = OP δ (↑ f inp) (↑ fAbs binp)

fAbs (Abs xs x X) = ABS xs x (f X)

f (X [Y/y]ys) = SUBST (f X) (f Y) y ys

fAbs (A [Y/y]ys) = SUBSTABS (fAbs A) (f Y) y ys

fresh xs x X =⇒ FRESH xs x (f X)

freshAbs xs x A =⇒ FRESHABS xs x (fAbs A)

Chapter 3. A First Formalization: a Universal Algebra Approach 33

Sw1: SWAP (VAR xs x) z1 z2 zs = VAR xs (x [z1∧ z2]xs,zs)
Sw2: SWAP (OP δ inp binp) z1 z2 zs = OP δ (↑ (SWAP _ z1 z2 zs) inp) (↑ (SWAPABS _ z1 z2 zs)binp)
Sw3: SWAPABS (ABS xs x X) z1 z2 zs = ABS xs (x [z1∧ z2]xs,zs) (SWAP X z1 z2 zs)
SwCong: FRESH xs y X ∧ FRESH xs y X′ ∧ SWAP X y x ys = SWAP X′ y x′ ys

=⇒ ABS xs x X = ABS xs x′ X′

FIGURE 3.5: The swapping and swapping-based congruence clauses

In addition, the two functions are uniquely determined on good terms and abstractions, in
that, for all other functions g : term→ T and gAbs : abs→ A satisfying the same commutation
and preservation properties, it holds that f and g are equal on good terms and fAbs and gAbs

are equal on good abstractions.

Like any initiality property, this theorem represents an iteration principle. To comprehend
the connection between initiality and iteration, let us first look at the simpler case of lists over
a type G, with constructors Nil : G list and Cons : G→G list→G list. To define, by iteration,
a function from lists, say, length : G list→ nat, we need to indicate what is Nil mapped to,
here length Nil = 0, and, recursively, what is Cons mapped to, here length (Cons a as) =

1+ length as. We can rephrase this by saying: If we define “list-like” operators on the target
domain— here, taking NIL : nat to be 0 and CONS : G→ nat→ nat to be λg,n. 1+ n—then
the iteration offers us a function length that commutes with the constructors: length Nil =
NIL= 0 and length (Cons a as) = CONS a (length as) = 1+ length as. For terms, we have
a similar situation, except that (1) substitution and freshness are considered in addition to the
constructors and (2) paying the price for lack of freeness, some conditions need to be verified
to deem the operations “term-like.”

The main feature of our iteration theorem is the ability to define functions in a manner
that is compatible with alpha-equivalence. A byproduct of the theorem is that the defined
functions also interact well with freshness and substitution, in that they map these concepts
to corresponding concepts on the target domains.

Michael Norrish has developed a similar principle that employs swapping instead of sub-
stitution [52]. We have also formalized this in our framework—in a slightly restricted form,
namely without factoring in fixed variables and parameters.

A freshness-swapping (FSw) model is a structure similar to a freshness-substitution model,
just that instead of the substitution-like operators, SUBST and SUBSTABS, it features swapping-
like operators:

SWAP : T→ var→ var→ varsort→ T

SWAPABS : A→ var→ var→ varsort→ A

assumed to satisfy the clauses Sw1–Sw3 corresponding to those for simplifying term swap-
ping and, instead of the substitution-based variable-renaming property, a swapping-based
congruence rule for abstractions SwCong—all shown in Figure 3.5.

Then a swapping-aware version of the iteration theorem holds:

Theorem 24. The good terms and abstractions form the initial FSw model. Namely, there
exists a pair of functions f : term→ T and fAbs : abs→ A that commute, on good terms, with

Chapter 3. A First Formalization: a Universal Algebra Approach 34

the constructors and preserves freshness—similarly to how it is described in Theorem 23,
the only difference being that they are not guaranteed to commute with substitution, but with
swapping, namely:

f (X [z1∧ z2]zs) = SWAP (f X) z1 z2 zs

fAbs (A [z1∧ z2]zs) = SWAPABS (fAbs A) z1 z2 zs
In addition, the two functions are uniquely determined on good terms and abstractions (just
like in Theorem 23).

Finally, we combine both notions, obtaining freshness-substitution-swapping (FSbSw)

models. These are required to have both substitution-like and swapping-like operators and
to satisfy the union of the FSb and FSw clauses, except for the swapping congruence clause
SwCong—namely, clauses F1-F4, Sb1-Sb4, Sw1-Sw3 and SbRn. (Interestingly, SwCong
was not needed for proving the iteration theorem; the proof needs either SbRn and SwCong,
i.e., only one of the two.)

Theorem 25. The good terms and abstractions form the initial FSbSw model. Namely,
there exists a pair of functions f : term→ T and fAbs : abs→ A that commute, on good
terms, with the constructors, substitution, swapping and preserves freshness, as described in
Theorems 23 and 24. In addition, the two functions are uniquely determined on good terms
and abstractions.

In summary, we have three variants of models (and iteration principles), corresponding
to three combinations of the fundamental term operations:

• freshness-substitution (FSb) models

• freshness-swapping (FSw) models

• freshness-substitution-swapping (FSbSw) models

Having formalized all these variants, the user can decide on the desired “contract:” With
more operators factored in, there are more proof obligations that need to be discharged for
the definition to succeed, but then the defined functions satisfy more desirable properties.

3.3.2 Primitive Recursion

Iteration is a simplified form of primitive recursion. The difference between the two is il-
lustrated by the following simple example:1 The predecessor function pred : nat→ nat is
defined by pred 0 = 0 and pred (Suc n) = n. This does not fit an iteration scheme, where
only the value of the function on smaller arguments, and not the arguments themselves, can
be used. In the example, iteration would allow pred (Suc n) to invoke recursively pred n, but
not n. Of course, we can simulate recursion by iteration if we are allowed an auxiliary output:
defining pred′ : nat→ nat×nat by iteration, pred′ 0 = (0,0) and pred′ (Suc n) = case pred′ n
of (n1,n2)⇒ (Suc n1,n1), and then taking pred n to be the second component of pred′ n.

In our framework, primitive recursion can also be reduced to iteration—see [62, §1.4.2]
for a description of this phenomenon for the general case of initial models in Horn theories.

1This is a contrived example, where no “real” recursion occurs—but it illustrates the point.

Chapter 3. A First Formalization: a Universal Algebra Approach 35

Initially, we had only formalized the iteration theorems. However, we soon realized that
several applications (for the particular syntaxes of λ-calculus and many-sorted first-order
logic) required the full power of primitive recursion, and it was very tedious to perform the
recursion-to-iteration encoding over and over again, with each new definition. We therefore
decided to formalize this reduction for an arbitrary syntax, obtaining primitive recursion
theorems in all three variants, that is, factoring in substitution, swapping or both. We only
show here the primitive recursion variant of Theorem 23, where we highlight the additions
compared to iteration. (The other two primitive recursion theorems are obtained similarly
from Theorems 24 and 25.)

A FSb recursion model has the same components as an FSb model, except that:

• OP takes term and abstraction inputs in addition to inputs from the model, i.e., has type
opsym → (index, term) input → (index,T) input → (bindex,abs) input → (bindex,A)
input→ T

• ABS takes an additional term argument, i.e., has type varsort→ var→ term → T→ A

• The freshness and substitution operators take additional term and/or abstraction arguments;
e.g., the types for the term versions of these are:

FRESH : varsort→ var→ term → T→ bool

SUBST : term → T→ term → T→ var→ varsort→ T

• The clauses F1–F4, Sb1–Sb4 and SbRn are updated to factor in the additional structure,
e.g., Sb4 becomes:

(xs, x) 6= (zs,z) ∧ fresh xs x Z′ ∧ FRESH xs x Z′ Z =⇒
SUBSTABS (Abs xs x X′) (ABS xs x X′ X) Z′ Z z zs =

ABS xs x (X′[Z′/z]zs) (SUBST X′ X Z′ Z z zs)

where X and Z are (as before) elements of T , whereas X′ and Z′ are terms.

Theorem 26. For any FSb recursion model as above, there exist the functions f : term→ T

and fAbs : abs→ A that commute, on good terms, with the constructors and with substitu-
tion and preserve freshness, in the same manner as in Theorem 23, mutatis mutandis. For
example:

• f (Var xs x) = VAR xs x

• f (Op δ inp binp) = OP δ inp (↑ f inp) binp (↑ fAbs binp)

• fresh xs x X =⇒ FRESH xs x X (f X)

• f (X [Y/y]ys) = SUBST X (f X) Y (f Y) y ys

3.3.3 Iteration Example: the Skeleton of a Term

Since terms are possibly infinitely branching, they have no notion of finite depth. While
we could generalize the depth to return a transfinite ordinal, we opt for a simpler solution:
Instead of depth, we use a slightly more informative entity, the “skeleton,” which models a
term’s bare-bones structure.

Chapter 3. A First Formalization: a Universal Algebra Approach 36

We define the (free) datatypes of trees and “abstraction trees” branching over the free
and bound indexes we use for terms. Unlike terms and abstractions, these store no operation
symbols or variables, but only placeholders indicating their presence.

datatype tree = tVar |
tOp ((index, tree) input) ((bindex,atree) input)

and atree = tAbs tree
Our aim is to introduce the skeleton of a term (or of an abstraction), as the tree ob-

tained from it by retaining only branching information and forgetting about the occurrences
of operation symbols and variables and their sorts. Namely, we wish to define skel : term→
(index,bindex) tree and skelAbs : abs→ (index,bindex) tree by the following mutually recur-
sive clauses:

skel (Var xs x) = tVar
skel (Op δ inp binp) = tOp (↑skel inp) (↑skelAbs binp)

skelAbs (Abs xs x X) = tAbs (skel X)
To this end, we wish to make use of one of our iteration/recursion principles to guarantee

that the above represents a valid definition, in that there exist the functions skel and skelAbs
satisfying the above equations. So we look into “completing” the above definition by indi-
cating how these presumptive functions are supposed to behave with respect to the standard
operators. In other words, we try to define tree versions of the standard term operators

• FRESH : varsort→ var→ tree→ bool

FRESHABS : varsort→ var→ atree→ bool

• SWAP : tree→ var→ var→ varsort→ tree

SWAPABS : atree→ var→ var→ varsort→ atree

and/or

• SUBST : tree→ tree→ var→ varsort→ tree

SUBSTABS : atree→ tree→ var→ varsort→ atree

while keeping in mind that skel and skelAbs must commute with these. Since trees have no
actual variables in them, the only sensible choices are the trivial ones:

• FRESH xs x X = True, FRESHABS xs x A = True

• SWAP X x1 x2 xs = X, SWAPABS A x1 x2 xs = A

• SUBST Y X x xs = Y , SUBSTABS A X x xs = A

Thus, commutation with the operators will mean the following (where we omit the prop-
erties for the abstraction versions of the operators, which are similar):

fresh xs x X =⇒ True
skel (X [x1∧ x2]xs) = skel X

skel (Y [X/x]xs) = skel Y
Of these, the intended freshness and swapping properties are clearly suitable: The former
is vacuously true, and the latter states that the skeleton does not change after swapping two

Chapter 3. A First Formalization: a Universal Algebra Approach 37

variables. However, the substitution property cannot work, since it states the wrong/undesired
property that the skeleton of a term Y does not change after substituting a term X for one of its
variables x—which contradicts our intuition that the skeleton may in fact grow (specifically,
at the tVar leaves that correspond to free occurrences of Var xs x in Y).

In summary, for making the skeleton definition work we must focus on freshness and
swapping rather than substitution. We thus employ the iteration Theorem 24, where the re-
quired FSw model is defined taking FRESH, FRESHABS, SWAP and SWAPABS as above
and taking VAR, OP, ABS to be given by tVar, tOp and tAbs, respectively. (Namely,
VAR xs x = tVar, OP δ= tOp and ABS xs x = tAbs.) That this indeed forms an FSw model,
i.e., satisfies the desired clauses, is immediate to check: F1–F4 hold trivially since FRESH
and FRESHABS are vacuously true, while Sw1–Sw4 and SwCong hold trivially since SWAP
and SWAPABS are the identity functions.

Thus, Theorem 24 gives us the functions skel and skelAbs that are uniquely characterized
by the following properties (where we omit the freshness preservation property, which in this
case is just a tautology):

skel (Var xs x) = tVar
skel (Op δ inp binp) = tOp (↑skel inp) (↑skelAbs binp)

skelAbs (Abs xs x X) = tAbs (skel X)

skel (X [x1∧ x2]xs) = skel X

skelAbs (A [x1∧ x2]xs) = skelAbs A
Besides offering a simple instance of freshness-swapping-based iteration, the skeleton

operator provides a generalization of depth that turned out to be sufficient for proving impor-
tant properties requiring renaming variables in terms—notably the fresh induction principle
we discuss in Section 3.4.

3.3.4 Interpretation of Syntax in Semantic Domains

Perhaps the most useful application of our iteration principles is the seamless interpretation
of syntax in semantic domains, in a manner that is guaranteed to be compatible with alpha,
substitution and freshness. This construction shows up commonly in the literature, for differ-
ent notions of semantic domain. However, the construction is essentially the same, and can be
expressed for an arbitrary syntax—for which reason we have formalized it in our framework.

A semantic domain consists of two collections of elements endowed with interpretations
of the Op and Abs constructors, the latter in a higher-order fashion—interpreting variable
binding as (meta-level) functional binding. Namely, it consists of:

• two types, Dt and Da

• a function op : opsym→ (index,Dt) input→ (bindex,Da) input→ Dt

• a function abs : varsort→ (Dt→ Dt)→ Da

Theorem 27. The terms and abstractions are interpretable in any semantic domain. Namely,
if val is the type of valuations of variables in the domain, varsort→ var→Dt, there exist the
functions sem : term→ val→ Dt and semAbs : abs→ val→ Da such that:

• sem (Var xs x)ρ= ρ xs x

Chapter 3. A First Formalization: a Universal Algebra Approach 38

• sem (Op δ inp binp)ρ= op δ (↑ (sem _ ρ) inp) (↑ (semAbs _ ρ)binp)

• semAbs (Abs xs x X)ρ= abs xs (λd. sem X (ρ[(xs, x)← d])),
where ρ[(xs, x)← d] is the function ρ updated at (xs, x) with d—which sends (xs, x) to d

and any other (ys,y) to ρ ys y.

In addition, the interpretation functions map syntactic substitution and freshness to se-
mantic versions of the concepts:

• sem (X[Y/y]ys)ρ= sem X (ρ[(ys,y)← sem Y ρ])

• fresh xs x X =⇒ (∀ρ,ρ′. ρ=(xs,x) ρ
′ =⇒ sem X ρ= sem X ρ′),

where “=(xs,x)” means “equal everywhere except perhaps on (xs, x)”—namely ρ=(xs,x) ρ
′

holds iff ρ ys y = ρ′ ys y for all (ys,y) 6= (xs, x).

Theorem 27 is the foundation for many particular semantic interpretations, including
that of λ-terms in Henkin models and that of FOL terms and formulas in FOL models. It
guarantees compatibility with alpha and proves, as bonuses, a freshness and a substitution
property. The freshness property is the familiar notion that the interpretation only depends
on the free variables, and the substitution property generalizes what is usually called the

substitution lemma, stating that interpreting a substituted term is the same as interpreting the
original term in a “substituted” environment. Both properties are essential lemmas in most
developments that involve semantics.

This theorem follows by an instantiation of the iteration Theorem 23: taking T and A to
be val→ Dt and val→ Da and taking the term/abstraction-like operations as prescribed by
the desired clauses for sem and semAbs (in the following we omit the abstraction versions of
the freshness and substitution operators):

• VAR xs x = λρ. ρ xs x

• OP δ inp binp = λρ. op δ (↑(_ ρ) inp) (↑(_ ρ) binp)

where (_ ρ) denotes the “application to ρ” operator λ u. u ρ

• ABS xs x X = λρ. abs xs (λd. X (ρ[(xs, x)← d]))

• FRESH xs x X = (∀ρ,ρ′. ρ=(xs,x) ρ
′ =⇒ X ρ= X ρ′)

• SUBST X Y y ys = λρ. X (ρ[(ys,y)← Y ρ])

Note that the above definitions are completely determined by the intended properties
listed in Theorem 27 (which we set out to prove). For example, FRESH was defined so that
the freshness property listed in Theorem 27 becomes the freshness commutation property
fresh xs x X =⇒ FRESH xs x (sem X). Thus, according to our freshness-substitution-based
iteration Theorem 23, what we are left to check in order to prove Theorem 27 is that the
above structure is an FSb model, i.e., satisfies the clauses F1-F4, Sb1-Sb4 and SbRn. This
amounts to checking the following:

F1: (xs, x) 6= (ys,y) ∧ ρ=(ys,y) ρ
′ =⇒ ρ xs x = ρ′ xs x

F2: A trivial implication, of the form “A implies A”

F3: If ρ=(ys,y) ρ
′ =⇒ ρ[(ys,y)← d] = ρ′[(ys,y)← d]

Chapter 3. A First Formalization: a Universal Algebra Approach 39

F4: If ρ=(ys,y) ρ
′ =⇒ ρ[(xs, x)← d] =(ys,y) ρ

′[(xs, x)← d]

Sb1: ρ[(xs, x)← d] xs x = d

Sb2: If (xs, x) 6= (ys,y) =⇒ ρ[(ys,y)← d] xs x = ρ xs x

Sb3: Some trivial equalities, of the form “A = A”

Sb4: ρ=(xs,x) ρ[(xs, x)← d] and
(xs, x) 6= (zs,z) =⇒ ρ[(zs,z)← d′][(xs, x)← d] = ρ[(xs, x)← d] [(zs,z)← d′]

SbRn: ρ[(xs,y)← d] [(xs, x)← d] =(xs,y) ρ[(xs, x)← d]

All the above are straightforward properties of function update. Indeed, Isabelle/HOL’s auto

method was able to prove all of them.

3.4 Induction Principle
We formalize a scheme for “fresh” induction in the style of Nominal Logic, which realizes
the Barendregt convention. We introduce and motivate this scheme by an example. To prove
Prop. 20(a), we use (mutual) structural induction over terms and abstractions, proving the
statement together with the corresponding statement for abstractions,

freshAbs zs z (A[Y/y]ys) ⇐⇒
((zs,z) = (ys,y) ∨ freshAbs zs z A) ∧ (freshAbs ys y A ∨ fresh zs z Y)

The proof’s only interesting case is the Abs case, say, for abstractions of the form Abs xs x

X. However, if we were able to assume freshness of (xs, x) for all the statement’s parameters,
namely Y , (ys,y) and (zs,z), this case would also become “uninteresting,” following auto-
matically from the induction hypothesis by mere simplification, as shown below (with the
freshness assumptions highlighted):

freshAbs zs z ((Abs xs x X) [Y/y]ys)

m (by Prop. 14(3), since (xs, x) 6= (ys,y) and fresh xs x Y)

freshAbs zs z (Abs xs x (X [Y/y]ys))

m (by Prop. 12(3), since (xs, x) 6= (zs,z))

fresh zs z (X [Y/y]ys)

m (by Induction Hypothesis)

((zs,z) = (ys,y)∨ fresh zs z X) ∧ (fresh ys y X∨ fresh zs z Y)

m (by Prop. 12(3) applied twice, since (xs, x) 6= (zs,z) and (xs, x) 6= (ys,y))

((zs,z) = (ys,y)∨ freshAbs zs z (Abs xs x X)) ∧ (freshAbs ys y (Abs xs x X)∨ fresh zs z Y)
The practice of assuming freshness, known in the literature as the Barendregt convention,

is a hallmark in informal reasoning about bindings. Thanks to insight from Nominal Logic
[58, 76, 73], we also know how to apply this morally correct convention fully rigorously.
To capture it in our formalization, we model parameters p : param as anything that allows
for a notion of freshness, or, alternatively, provides a set of (free) variables for each varsort,
varsOf : param→ varsort→ var set. With this, a “fresh induction” principle can be formu-
lated, if all parameters have fewer variables than |var| (in particular, if they have only finitely
many).

Chapter 3. A First Formalization: a Universal Algebra Approach 40

Theorem 28. Let ϕ : term→ param→ bool and ϕAbs : abs→ param→ bool. Assume:
(1) ∀xs, p. |varsOf p xs| < |var|
(2) ∀xs, x, p. ϕ (Var xs x) p

(3) ∀δ, inp,binp, p. |dom inp| < |var| ∧ |dom binp| < |var| ∧ ↑ (λX. good X ∧ (∀q.ϕ X q))

inp ∧ ↑ (λA. goodAbs A ∧ (∀q.ϕAbs A q))binp =⇒ ϕ (Op δ inp binp) p

(4) ∀xs, x, X, p. good X ∧ ϕ X p ∧ x 6∈ varsOf p xs =⇒ ϕAbs (Abs xs x X) p

Then ∀X, p. good X =⇒ ϕ X p and ∀A, p. goodAbs A =⇒ ϕAbs A p.

Highlighted is the essential difference from the usual structural induction: The bound
variable x can be assumed fresh for the parameter p (on its varsort, xs). Note also that, in the
Op case, we lift to inputs the predicate as quantified universally over all parameters.

Back to Prop. 20(a), this follows automatically by fresh induction (plus the shown sim-
plifications), after recognizing as parameters the variables (ys,y) and (zs,z) and the term
Y—formally, taking param = (varsort×var)2× term and varsOf ((ys,y), (zs,z),Y) xs = {y |
xs = ys} ∪ {z | xs = zs} ∪ {x | ¬ fresh xs x Y}.

Fresh induction is based on the possibility to rename bound variables in abstractions
without loss of generality. To prove this principle, we employed standard induction over the
skeleton of terms—using the crucial fact that the skeleton is invariant under swapping.

3.5 Sorting the Terms
So far, we have a framework where the operations take as free and bound inputs partial fam-
ilies of terms and abstractions. All theorems refer to good (i.e., sufficiently low-branching)
terms and abstractions. However, we promised a theory that is applicable to terms over
many-sorted binding signatures. Thanks to the choice of a flexible notion of input, it is not
difficult to cast our results into such a many-sorted setting. Given a suitable notion of signa-
ture (3.5.1), we classify terms according to sorts (3.5.2) and prove that well-sorted terms are
good (3.5.3)—this gives us sorted versions of all theorems (3.5.5).

3.5.1 Binding Signatures

A (binding) signature is a tuple (index,bindex,varsort,sort,opsym,asSort,stOf,arOf, barOf),
where index, bindex, varsort and opsym are types (with the previously discussed intuitions)
and sort is a new type, of sorts for terms. Moreover:

• asSort : varsort→ sort is an injective map, embedding varsorts into sorts

• stOf : opsym→ sort, read “the (result) sort of”

• arOf : opsym→ (index,sort) input, read “the (free) arity of"

• barOf : opsym→ (bindex,varsort× sort) input, read “the bound arity of"

Thus, a signature prescribes which varsorts correspond to which sorts (as discussed in
Section 3.1.4) and, for each operation symbol, which are the sorts of its free inputs (the
arity), of its bound (abstraction) inputs (the bound arity), and of its result.

Chapter 3. A First Formalization: a Universal Algebra Approach 41

When we give examples for our concrete syntaxes described in Section 3.1, we will write
(i1 7→ a1, . . . , in 7→ an) for the partial function that sends each ik to Some ak and everything
else to None. In particular, () denotes the totally undefined function.

For the λ-calculus syntax, we take index = bindex = nat, varsort = sort = {lam} (a
singleton datatype), opsym = {App,Lam}, asSort to be the identity and stOf to be the unique
function to {lam}. Since App has two free inputs and no bound input, we use the first two
elements of nat as free arity and nothing for the bound arity: arOf App = (0 7→ lam, 1 7→
lam), barOf App = (). By contrast, since Lam has no free input and one bound input, we
use nothing for the free arity, and the first element of nat for the bound arity: arOf Lam= (),
barOf Lam= (0 7→ (lam, lam)).

For the CCS example in Section 3.1.5, we fix a type chan of channels. We choose a
cardinal upper bound κ for the branching of sum (∑), and choose a type index of cardinality
κ. For bindex, we do not need anything special, so we take it to be nat. We have two
sorts, of expressions and processes, so we take sort = {exp,proc}. Since we have expression
variables but no process variables, we take varsort = {varexp} and asSort to send varexp to
exp. We define opsym as the following datatype: opsym = Zero |Plus | Inp chan |Out chan |
∑ (index set). The free and bound arities and sorts of the operation symbols are as expected.
For example, Inp c acts similarly to λ-abstraction, but binds, in proc terms, variables of a
different sort, varexp: arOf (Inp c) = (), barOf (Inp c) = (0 7→ (varexp,proc)). For ∑ I with
I : index set, the arity is only defined for elements of I, namely arOf (∑ I) = ((i∈ I) 7→ proc).

3.5.2 Well-Sorted Terms over a Signature

Based on the information from a signature, we can distinguish our terms of interest, namely
those that are well-sorted in the sense that:

• all variables are embedded into terms of sorts compatible with their varsorts

• all operation symbols are applied according their free and bound arities

This is modeled by well-sortedness predicates wls : sort→ term→ bool and wlsAbs :
varsort× sort→ abs→ bool, where wls s X states that X is a well-sorted term of sort s and
wlsAbs (xs, s) A states that A is a well-sorted abstraction binding an xs-variable in an s-term.
They are defined mutually inductively by the following clauses:

wls (asSort xs) (Var xs x)

↑wls (arOf δ) inp ∧ ↑wlsAbs (barOf δ) binp =⇒ wls (stOf δ) (Op δ inp binp)

isInBar (xs, s) ∧ wls s X =⇒ wlsAbs (xs, s) (Abs xs x X)

where isInBar (xs, s) states that the pair (xs, s) is in the bound arity of at least one operation
symbol δ, i.e., barOf δ i = (xs, s) for some i— this rules out unneeded abstractions.

Let us illustrate sorting for our running examples. In the λ-calculus syntax, let X =

Var lam x, A = Abs lam x X, and Y = Op Lam () (0 7→ A). These correspond to what, in the
unsorted BNF notation from Section 3.1.1, we would write Var x, Abs x X and Lam (Abs x X).
In our sorting system, X and Y are both well-sorted terms at sort lam (written wls lam X and
wls lam Y) and A is a well-sorted abstraction at sort (lam, lam) (written wlsAbs (lam, lam)A).

For CCS, we have that E = Op Zero () () and F = Op Plus (0 7→ E, 1 7→ E) () are well-
sorted terms of sort exp. Moreover, P=Op (∑ /0) () () and Q=Op (Out c) (0 7→ F,1 7→ P) ()

Chapter 3. A First Formalization: a Universal Algebra Approach 42

are well-sorted terms of sort proc. (Note that P is a sum over the empty set of choices, i.e., the
null process, whereas Q represents a process that outputs the value of 0+0 on channel c and
then stops.) If, e.g., we swap the arguments of Out c in Q, we obtain Op (Out c) (0 7→ P,1 7→
F) (), which is not well-sorted: In the inductive clause for wls, the input (0 7→ P,1 7→ F) fails
to match the arity of Out c, (0 7→ exp,1 7→ proc).

3.5.3 From Good to Well-Sorted

Recall that goodness means “does not branch beyond |var|.” On the other hand, well-
sortedness imposes that, for each applied operation symbol δ, its inputs have same domains,
i.e., only branch as much, as the arities of δ. Thus, it suffices to assume the arity domains
smaller than |var|. We will more strongly assume that the types of sorts and indexes (the
latter subsuming the arity domains) are all smaller than |var|:

Assumption 29. |sort| < |var| ∧ |index| < |var| ∧ |bindex| < |var|

Now we can prove:

Proposition 30. (wls s X =⇒ good X) ∧ (wls (xs, s) A =⇒ goodAbs A)

In addition, we prove that all the standard operators preserve well-sortedness. For exam-
ple, we prove that if we substitute, in the well-sorted term X of sort s, for the variable y of
varsort ys, the well-sorted term Y of sort corresponding to ys, then we obtain a well-sorted
term of sort s: wls s X ∧ wls (asSort ys) Y =⇒ wls s (X [Y/y]ys).

Using the preservation properties and Prop. 30, we transfer the entire theory of Sections
3.2.4, 3.4 and 3.3 from good terms to well-sorted terms—e.g., Prop. 22(d) becomes:

wls s X ∧ wls (asSort ys) Y1 ∧ wls (asSort ys) Y2 =⇒ X [Y1/y]ys [Y2/y]ys = . . .

The transfer is mostly straightforward for all facts, including the induction theorem. For
stating the sorted version of the recursion and semantic interpretation theorems, there is some
additional bureaucracy since we also need sorting predicates on the target domain; we will
dedicate to this the next subsection 3.5.4.

There is an important remaining question: Are our two Assumptions (6 and 29) satisfi-
able? That is, can we find, for any types sort, index and bindex, a type var larger than these
such that |var| is regular? Fortunately, the theory of cardinals again provides us with a posi-
tive answer: Let G = nat+ sort+ index+bindex. Since any successor of an infinite cardinal
is regular, we can take var to have the same cardinality as the successor of |G|, by defining
var as a suitable subtype of G set. In the case of all operation symbols being finitary, i.e.,
with their arities having finite domains, we do not need the above fancy construction, but can
simply take var to be a copy of nat.

3.5.4 Many-Sorted Recursion

As mentioned in the previous subsection, adapting the theorems from good items to well-
sorted items is a routine process. For recursion, the process is more bureaucratic, since it
involves the sorting of the target domain as well. We obtain the well-sorted versions of all

Chapter 3. A First Formalization: a Universal Algebra Approach 43

the iteration and recursion theorems. We only show here the case of FSb primitive recursion.
(The others are similar.)

A sorted FSb recursion model is an extension of the concept of FSb model with the
following:

• the sorting predicates wlsT : sort→ T→ bool and wlsAbsT : varsort× sort→ A→ bool

• the assumption that all operators preserve sorting, e.g.,

wls s X′ ∧ wls (asSort ys) Y ′ ∧ wlsT s X ∧ wlsT (asSort ys) Y

=⇒ wlsT s (SUBST X′ X Y ′ Y y ys)

The recursion Theorem 26 is now extended to take sorting into account:

Theorem 31. For any sorted FSb recursion model, there exist the functions f : term→ T and
fAbs : abs→ A that satisfy the same properties as in Theorem 26 and additionally preserve
sorting:

• wls s X =⇒ wlsT s (f X)

• wlsAbs (xs, s) A =⇒ wlsAbsT (xs, s) (fAbs A)

Similarly, we obtain a sorted version of the semantic interpretation theorem. We define
a sorted semantic domain to have the same components as a semantic domain from Section
3.3.4, plus sorting predicates wlsDt and wlsDa. Again, it is assumed that the semantic opera-
tors preserve sorting. Then Theorem 27 is adapted to sorted domains, additionally ensuring
the sort preservation of sem and semAbs.

3.5.5 End Product

All in all, the formalization of our first framework provides a theory of syntax with bindings
over an arbitrary many-sorted signature. The signature is formalized as an Isabelle locale
[39] that fixes the types var, sort, varsort, index, bindex and opsym and the constants asSort,
arOf and barOf and assumes the injectivity of asSort and the var properties (Assumptions 6
and 29). All end-product theorems are placed in this locale.

The whole formalization consists of 22700 lines of code (LOC). Of these, 3300 LOC
are dedicated to quasiterms, their standard operators and alpha-equivalence. 3700 LOC are
dedicated to the definition of terms and the lifting of results from quasiterms. Of the latter,
the properties of substitution were the most extensive—2500 LOC out of the whole 3700—
since substitution, unlike freshness and swapping, requires heavy variable renaming, which
complicates the proofs.

The induction scheme presented in Section 3.4 is not the only scheme we formalized
(though it is the most useful). We also proved a variety of lower-level induction schemes
based on the skeleton of the terms and schemes that are easier to instantiate—e.g., by pre-
instantiating Theorem 28 with commonly used parameters such as variables, terms and envi-
ronments. Induction and iteration/recursion principles constitute 8000 LOC altogether.

The remaining 7700 LOC of the formalization are dedicated to transiting from good
terms to sorted terms. Of these, 3500 LOC are taken by the sheer statement of our many end-
product theorems. Another fairly large part, 2000 LOC, is dedicated to transferring all the

Chapter 3. A First Formalization: a Universal Algebra Approach 44

variants of iteration and recursion (those from Sections 3.3.1 and 3.3.2) and the interpretation
Theorem 27, which require conceptually straightforward but technically tedious moves back
and forth between sorted terms and sorted elements of the target domain.

45

Chapter 4

A Formalization of the
Church-Rosser and Standardization
Theorems

In this chapter, we instantiate the general theory from Chapter 3 to the syntax of lambda-
calculus and formalize the development leading to two major λ-calculus results: the Church-
Rosser and Standardization theorems for β-reduction. Our work1 covers both the call-by-
name and call-by-value versions of the calculus, following a classic paper by Gordon Plotkin
[60].

In our journey towards a better understanding of syntaxes and their binding mechanisms,
we wanted some case study, that highlighted the role that a formalized general theory like
ours can assume and the good it can do. Indeed, during the formalization, we were able
to stay focused on the high-level ideas of the development—thanks to the arsenal provided
by our framework: a wealth of basic facts about the substitution, swapping and freshness
operators, as well as recursive-definition and reasoning principles.

The first step we take is instantiating the framework to the syntaxes of call-by-name and
call-by-value λ-calculus, the latter differing from the former by the existence of an additional
syntactic category of special terms called values. This instantiation provides us with a rich
theory of the standard operators on terms, namely freshness, substitution and swapping, as
well as a freshness-aware induction proof principle and operators-aware recursive definition
principles (Section 4.1; see also the previous Chapter 3).

Then we proceed with the formal development of our specific target results. We show in
detail the development for the call-by-name calculus (Section 4.2). The similar development
for the call-by-value calculus is only sketched by pointing out the differences, including the
use of a two-sorted instantiation of our framework (Section 4.3).

The theorems we want to prove require the definition of a range of β-reduction relations,
including parallel and left, single-step and multi-step reductions. The Church-Rosser theorem
(Section 4.2.2) is proved by formalizing the parallel-reduction technique of Tait [8], enhanced
with the complete parallel reduction operator trick due to Takahashi [69]. For Standardization
(Section 4.2.3), we follow closely Plotkin’s original paper [60].

1Our formalization is publicly available from the website [32] associated to our paper [31], currently under
review.

Chapter 4. A Formalization of the Church-Rosser and Standardization Theorems 46

Our presentation emphasizes the use of the various principles provided by our general
framework, as well as some difficulties arising from representing formally some informal
definition and proof idioms—such as recursing over alpha-equated terms (or, equivalently,
recursing in an alpha-equivalence preserving manner) and inversion rules obeying Baren-
dregt’s variable convention. Some of the lessons learned during the formalization effort, as
well as some statistics, are presented in Section 4.4.

4.1 Instantiation of the General Framework
Our framework from the previous chapter is parametrized by an arbitrary binding signature,
which is represented as an Isabelle locale [39] (Subsection 3.5.1, Chapter 3). The signature
essentially specifies the following data: a collection of term sorts, a collection of variable
sorts, an embedding relationship between variable sorts and term sorts, and a collection of
(term) constructors, each with an assigned arity and an assigned result sorts. The arity con-
sists of zero or more input sorts—where an input sort is either just a term sort (for free inputs)
or a pair of a variable sort and a term sort (for bound inputs). The result sort refers to the
output of the constructor. In this chapter we ignore standalone abstractions as presented in
the previous chapter, since we have covered them in syntactic sugar, as one of the first steps
of the instantiation process. To this aim the technique we used is the one described in Section
3.1.1, Chapter 3: we define Lm x X as Lam (Abs x X) and from now on all the definitions
and results will be written using Lm2.

After fixing the signature, “quasi-terms” are defined as being freely generated by the con-
structors, then terms are defined by quotienting quasi-terms to the notion of alpha-equivalence
obtained standardly from the signature-specified bindings of the term constructors. Thus,
what we call “terms” here are as usual alpha-equivalence classes. Several standard operators
are defined on terms, including capture-avoiding substitution of terms for variables, freshness
of a variable for a term, and swapping of two variables in a term. The theory provides many
properties of these operators, as well as binding-aware and standard-operator-aware struc-
tural recursion and induction principles and a principle for interpreting syntax in a semantic
domain.

We have already given details about the general framework in the previous chapter 3;
here we just give a self-contained description of two instances of the framework.

4.1.1 The Syntax of λ-Calculus

Our first instance is the paradigmatic syntax of λ-calculus (with constants), which is typically
informally specified using a grammar such as

X ::= Var x | Ct c | App X Y | Lm x X

where X and Y range over terms (the ones generated by the grammar), x over a given infinite
type var of variables of variables and c over a given type const of constants—where Var and

2In the framework we will develop in Chapters 5 and 6 there will be no need of this method, since we have
not employed standalone abstractions in the first place.

Chapter 4. A Formalization of the Church-Rosser and Standardization Theorems 47

Ct are the embeddings of variables and constants into terms, App is application and Lm is λ-
abstraction. Terms are assumed to be equated modulo alpha-equivalence, defined standardly
by assuming that, in Lm x X, the λ-constructor Lm binds the variable x in the term X. Thus,
for example, Lm x (Var x) = Lm y (Var y) even if x 6= y.

We obtain the above syntax by instantiating our signature to consist of:

• a single variable sort, vs, and a single term sort, ts—assuming that vs is embedded in ts
gives as the variable-constructor Var, which embeds vs-variables into ts-terms

• the (non-variable) constructors App, Lam, and Ct c for each c : const, such that:

– each Ct c has empty arity and result sort ts, which we can write briefly3 as ([], ts)
– App has its arity consisting of two occurrences of free ts and result sort ts, which we

can write as ([ts, ts], ts)
– Lm has its arity consisting of one vs-bound ts and result sort ts, which we can write as
([(vs, ts)], ts)

(Above, we wrote [a1, . . . ,an] for the list consisting of the n elements a1, . . . ,an.)
However, this raw instance is not convenient for the user, because it represents a too

deep embedding. Thus, the constructors would have to be applied to terms using a generic
operator, Op, which is first applied to the desired constructor symbol; sortedness information
would have to be unnecessarily carried around; etc.—in other words, one would incur the
usual inconvenience arising from instantiating universal algebra to fixed-signature algebras,
such as groups or rings.

To address this, we have designed a systematic method for transferring a signature in-
stance to the expected shallow embedding of the instance. This involves creating native
Isabelle/HOL types of terms for each sort of the signature and transferring all the term con-
structors and operators and all facts about them to these native types. The process is concep-
tually straightforward, but is quite tedious, and must be done by hand since we have not yet
automated it. (But [67] presents the automation of a similar kind of transfer.)

For our instance of interest (λ-calculus with constants), this results in the type term of
λ-terms together with:

• the constructors, namely Var : var→ term, Ct : const→ term, App : term→ term→ term

and Lm : var→ term→ term

• and the standard operators:

– depth (height) of a term, depth : term→ nat

– freshness of a variable in a term,4 fresh : var→ term→ bool

– (capture-free) substitution of a term for a variable in a term, _[_/_] : term→ term→
var→ term

– (capture-free) parallel substitution of multiple terms for multiple variables in a term,
[] : term→ (var→ term option)→ term

3The framework uses a more elaborate notation, that exploits partial functions, in order to accommodate a
possibly infinite number of inputs, but this is not relevant here.

4Other frameworks employ a free-variable operator, FVars : term→ term set. This is of course inter-definable
with the freshness operator.

Chapter 4. A Formalization of the Church-Rosser and Standardization Theorems 48

– swapping of two variables in a term,5 _[_∧_] : term→ var→ var→ term

From our general theory, we also obtain for free:

• many basic facts proved about the constructors and operators

• and induction and recursion principles for proving new facts about terms and defining new
functions on terms, respectively

Our framework provides a multitude of general-purpose properties of the constructors
and operators, including properties about their mutual interactions (see Subsection 3.2.4 of
Chapter 3. For example, the following are two essential properties of equality between λ-
abstractions, reflecting the fact that terms are alpha-equivalence classes. The second allows
us to rename bound variables with fresh ones, whenever needed.

Proposition 32. The following hold:

(1) If y /∈ {x, x′} and fresh y X and fresh y X′ and X [(Var y)/ x] = X′ [(Var y)/ x′] then

Lm x X = Lm x′ X′

(2) If fresh y X then Lm x X = Lm y (X [(Var y)/ x]).

Another example is the compositionality of substitution:

Proposition 33. The following hold:

(1) X [Y1/y] [Y2/y] = X [(Y1 [Y2/y])/y]

(2) If y 6= z and fresh y Z then X [Y/y] [Z/z] = X [Z/z] [(Y [Z/z])/y]

More precisely, the last two results are obtained from the instantiation, to the λ-calculus
syntax, of Proposition 10 and of Proposition 22, points (4) and (5).

Fresh structural induction. Our framework also offers a structural induction principle in
the style of nominal logic [58, 76, 73] (see Theorem 28 from Section 3.4). It differs from
standard structural induction in that, in the inductive Lm-case, it allows one to additionally
assume freshness of the Lm-bound variable with respect to any potential parameters of the
to-be-proved statement. For the λ-calculus instance, it becomes:

Proposition 34. (Fresh structural induction principle) Let param be a type (of items called

parameters) endowed with a function varsOf : param→ var set such that varsOf p is finite

for all p : param. Let ϕ : term→ param→ bool be a predicate on terms and parameters.

Assume the following four sentences are true for all x : var, c : const and X,Y : term:

(1) ϕ (Var x) p holds for all p : param.

(2) ϕ (Ct c) p holds for all p : param.

(3) If ϕ X p and ϕ Y p hold for all p : param, then ϕ (App X Y) q holds for all q : param.

(4) If ϕ X p holds for all p : param, then ϕ (Lm x X) q holds for all q : param such that

x 6∈ varsOf q .

Then ϕ X p holds for all X : term and p : param.

5While not explicitly present in the traditional λ-calculus [8], swapping (as already pointed out in this disser-
tation) has been popularized by nominal logic as a very convenient operator in bootstrapping definitions—thanks
to the fact that bijective renamings behave better than arbitrary renamings with respect to bindings [58].

Chapter 4. A Formalization of the Church-Rosser and Standardization Theorems 49

This immediately implies the following fresh case distinction principle. It states that any
term is either a variable, or a constant, or an application, or an abstraction whose bound
variable can be taken to be fresh for a given parameter.

Proposition 35. (Fresh case distinction principle) Let param and varsOf be like in the previ-

ous proposition and let Z : term and p : param. Then one of the following holds:

(1) Z = Var x for some x : var.

(2) Z = Ct c for some c : const.

(3) Z = App X Y for some X,Y : term.

(4) Z = Lm x X for some x : var and X : term such that x 6∈ varsOf p .

When employing the above principles, the type param is often instantiated to (var +

term) list, in order to capture any number of variable and/or term parameters in the to-be-
proved statements.

Operator-aware recursion. Our framework offers structural recursion principles (Section
3.3) for defining functions H from terms to any other target type, based on the following
ingredients:

• a description of the recursive behavior of H with respect to the term constructors (as is
common with primitive recursion on free datatypes)

• a description of the expected interaction of H with freshness on the one hand and substi-
tution and/or swapping on the other hand

These are achieved by organizing the target type as a “model” that interprets the constructors
and the operators in specific ways.

Definition 36. A freshness-substitution model (FSb model) is a type D endowed with the

following:

• functions on D having similar types as the term constructors (but with term replaced with

D in their target type and with the pair of term and D in their source types), namely

VAR : var→ D, CT : const→ D, APP : term→ D→ term→ D→ D and LM : var→
term→ D→ D

• functions on D having similar types as the freshness and substitution operators (again,

with term suitably replaced with D or with term and D), namely FRESH : var→ term→
D→ bool and SUBST : term→ D→ term→ D→ var→ D

The above functions are allowed to be defined in any way, provided they satisfy the follow-

ing freshness clauses (F1)-(F5), substitution clauses (Sb1)–(Sb4) and substitution-renaming

clause (SbRn):

F1: FRESH x (Ct c) (CT c)

F2: x 6= z implies FRESH z (Var x) (VAR x)

F3: FRESH z X′ X and FRESH z Y ′ Y implies FRESH z (App X′ Y ′) (APP X′ X Y ′ Y)

F4: FRESH z (Lm z X′) (LM z X′ X)

Chapter 4. A Formalization of the Church-Rosser and Standardization Theorems 50

F5: FRESH z X′ X implies FRESH z (Lm x X′) (LM x X′ X)

Sb1: SUBST (Var z) (VAR z) Z′ Z z = Z

Sb2: x 6= z implies SUBST (Var x) (VAR x) Z′ Z z = VAR x

Sb3: SUBST (App X′ Y ′) (APP X′ X Y ′ Y) Z′ Z z =

APP (X′[Z′ / z]) (SUBST X′ X Z′ Z z) (Y ′[Z′ / z]) (SUBST Y ′ Y Z′ Z z)

Sb4: x 6= z and FRESH x Z′ Z implies

SUBST (Lm z X′) (LM x X′ X) Z′ Z z = LM x (X′[Z′ / z]) (SUBST X′ X Z′ Z z)

SbRn: x 6= y and FRESH y X′ X implies

LM y (X′[(Var y)/x]) (SUBST X′ X (Var y) (VAR y) x) = LM x X′ X

Definition 37. A freshness-swapping model (FSw model) is similar to an FSb-model, except

that it has a swapping-like function SWAP : term→ D→ var→ var→ D instead of the

substitution-like function SUBST and satisfies the following swapping clauses (Sw1)–(Sw4)

and swapping-congruence clause (SwCg) instead of the substitution-related clauses (Sb1)–

(Sb4) and (SbRn):

Sw1: SWAP (Ct c) (CT c) z1 z2 = CT c

Sw2: SWAP (Var x) (VAR x) z1 z2 = VAR (x [z1∧ z2])

Sw3: SWAP (App X′ Y ′) (APP X′ X Y ′ Y) z1 z2 =

APP (X′ [z1∧ z2]) (SWAP X′ X z1 z2) (Y ′ [z1∧ z2]) (SWAP Y ′ Y z1 z2)

Sw4: SWAP (Lm x X′) (LM x X′ X) z1 z2 = LM (x [z1∧z2]) (X′ [z1∧z2]) (SWAP X′ X z1 z2)

SwCg: FRESH z X′ X and FRESH z Y ′ Y and z /∈ {x,y} and SWAP X′ X z x= SWAP Y ′ Y z y

implies LM x X′ X = LM y Y ′ Y

The framework’s recursion principles essentially say that terms form the initial FSb and
FSw models:6

Proposition 38. Let D be an FSb model (FSw model, respectively). Then there exists a

unique function H : term→ D commuting with the constructors, i.e.,

• H (Var x) = VAR x

• H (Ct c) = CT c

• H (App X Y) = APP X (H X) Y (H Y)

• H (Lm x X) = LM x X (H X)

Additionally, H preserves freshness and commutes with substitution (respectively, swapping):

• fresh x X implies FRESH x X (H X)

6The reason why we define our models’ operations to act not only on the models’ carrier type D but also
on term is to achieve the higher flexibility of primitive recursion compared to iteration—see [62, §1.4.2] for a
detailed discussion of this distinction.

Chapter 4. A Formalization of the Church-Rosser and Standardization Theorems 51

• H (X[Z / z]) = SUBST X (H X) Z (H Z) z

(respectively, H (X[z1∧ z2]) = SWAP X (H X) z1 z2)

The principle is much easier to use in practice than its elaborate formulation might sug-
gest: Say one wishes to define a function H from term to a type D. Then the functions on D

corresponding to the term constructors are determined from the desired recursive clauses for
H. Moreover, the functions on D corresponding to freshness and substitution or swapping
are determined by the desired behavior of H with respect to these operators, obtained from
answering questions such as “How can H (X[Z / x]) be expressed in terms of H X, H Z

and x?”. This methodology is presented in [63] and illustrated in its generality in Chapter
3 of this thesis. Below we show just the definition of a basic recursive function, in order to
emphasize the simplicity of the process when using our principle. We will define the depth

of a term. For development reasons, this function is defined in our framework at a quasi-term
level and then it is transported to terms proving that it preserves alpha-equivalence, but it can
as well be defined directly on terms and we show this in what follows. We want to define
depth : X→ nat in a way that it respects the following recursive clauses:

• depth(Var x) = 1;

• depth (Ct c) = 1

• depth (App X Y) = (max (depth (X)) (depth (Y)))+ 1

• depth (Lm x X) = (depth (X))+ 1

We have just seen, that in order to properly instantiate our recursion principle, we have to
think of the desired behaviour for freshness and at least one between swapping or substitution.
In this case we pick swapping and we ask that the behaviour of our function is trivial (but
also natural): every variable will be fresh for the natural number in the image of any term and
the depth of a term in which two variable are swapped will be the same of the original term.
Formally our model will be the type of natural numbers nat endowed with constructors- and
operators-like functions as follows:

• VAR x = 1

• CT c = 1

• APP X n Y m = (max n m)+ 1

• LM x X n = n+ 1

• FRESH x X n = True (for all n)

• SWAP X n x y = n

Note that the freshness clauses (F1)-(F5) are this way trivially satisfied. As for the swapping
clauses and the swapping-congruence clause:

• Sw1: SWAP (Ct c) (CT c) x y = (CT c), after unfolding the definitions of CT and SWAP,
what is left to prove is 1 = 1;

• Sw2: SWAP (Var x) (VAR x) z1 z2 = VAR (x [z1∧ z2]), after unfolding the definitions of
VAR and SWAP, what is left to prove is 1 = 1;

Chapter 4. A Formalization of the Church-Rosser and Standardization Theorems 52

• Sw3: SWAP (App X Y) (APP X n Y m) z1 z2 =

APP (X [z1 ∧ z2]) (SWAP X n z1 z2) (Y ′ [z1 ∧ z2]) (SWAP Y m z1 z2), after unfolding the
definitions of APP and SWAP, what is left to prove is (max n m)+ 1 = (max n m)+ 1;

• Sw4: SWAP (Lm x X) (LM x X n) z1 z2 = LM (x [z1∧z2]) (X [z1∧z2]) (SWAP X n z1 z2),
after unfolding the definitions of LM and SWAP, what is left to prove is n+ 1 = n+ 1;

• SwCg: FRESH z X n and FRESH z Y m and z /∈ {x,y} and SWAP X n z x = SWAP Y m z y

implies LM x X n = LM y Y m, after unfolding the definitions of FRESH, SWAP and LM,
what is left to prove is with: z /∈ {x,y} and n = m implies n+ 1 = m+ 1.

To summarize: in order to define the depth function by recursion, we only had to (1) define a
model “naturally”, namely asking that the constructors- and operators-like functions behave
according to the recursive clauses we would anyway ask to the function and (2) prove some
properties about them, which are automatically handled in Isabelle/HOL (i.e., by auto).

Finally note that, in the formalization of this λ-calculus instance of our definition princi-
ples, we chose to get the full primitive-recursion version (see Subsection 3.3.2): the definition
of many functions throughout the whole development was not easily handled by simple iter-
ation, e.g., the fundamental one for the complete parallel reduction operator, which will be
defined in Subsection 4.2.2, Proposition 42.

4.1.2 The Two-Sorted Syntax of λ-Calculus with Values Emphasized

We can split the syntax of λ-calculus in two syntactic categories, by distinguishing the subcat-
egory of values, which consist of variables, constants and Lm-terms. This distinction is quite
customary when modeling higher-order programming language semantics, where values are
the only programs that have a “static” identity (whereas the non-values must be run/evalu-
ated). Thus, we consider the mutually recursive syntactic categories of values, ranged over
V ,W and (arbitrary) terms, ranged over by X,Y ,Z:

X ::= Val V | App X Y

V ::= Var x | Ct c | Lm x X
where Val is the injection of values into terms.

We capture the above syntax by instantiating our signature to consists of:

• a single variable sort, vs, and two term sorts, vls and ts (for values and terms) and assuming
that vs is embedded in vls, which again produces the variable-constructor Var, this time
embedding variables into values

• four (non-variable) constructors, Val, Ct c (for each c : const), App and Lm, of arities
([vls], ts), ([],vls), ([ts, ts], ts) and ([(vs, ts)],vls), respectively

Applying the same systematic deep-to-shallow transfer process as for the previous one-
sorted syntax, we obtain “native” types val and term for values and terms, the expected
constructors (e.g., Val : val→ term) and the standard operators, one for either syntactic cate-
gory (e.g., freshval : var→ val→ bool and freshterm : var→ term→ bool). The framework-
provided induction and recursion principles now refer to these mutually recursive types: In-
duction allows us to prove two simultaneous predicates and recursion allows us two define

Chapter 4. A Formalization of the Church-Rosser and Standardization Theorems 53

two simultaneous functions, one on values and one on terms—this will be illustrated in Sec-
tion 4.3.

4.2 Call-by-Name λ-Calculus
In this section, we show how we have used our framework’s infrastructure to formalize two
landmark results in the theory of call-by-name (CBN) λ-calculus: the Church-Rosser theorem
[8], stating that the order in which call-by-name redexes are reduced is irrelevant “in the long
run” and the standardization theorem [60], stating that reducibility is not restricted if we
impose a canonical reduction strategy, based on identifying left-most redexes.

All throughout this section, we employ the (single-sorted) syntax of λ-calculus with con-
stants described in Section 4.1.1. We also fix a partial function Ctapp that shows how to
apply a constant c1 to another constant c2; Ctapp c1 c2 can be either None, meaning “no
result,” or Some X, meaning “the result is X.”

4.2.1 Call-by-Name β-Reduction

Evaluation of a λ-calculus term proceeds by reducing redexes, which are subterms of one of
the following two kinds:

• either β-redexes, of the form App (Lm y X) Y , which are reduced to X [Y /y]

• or δ-redexes, of the form App (Ct c1) (Ct c2) such that Ctapp c1 c2 has the form Some X,
which are reduced to X

The first are general-purpose redexes arising when an abstraction meets an application, whereas
the second are custom redexes representing the functionality built in the constants.

In the CBN calculus, there is no restriction on the terms Y located at the right of β-
redexes, reflecting the intuition that the argument Y is passed to the function Lm y X “by
name,” i.e., without first evaluating it. This style of reduction is captured by the following
definition:

Definition 39. The one-step (CBN) reduction relation → : term→ term→ bool is defined

inductively by the following rules:

App (Lm y X) Y → X [Y / y]
(β)

Ctapp c1 c2 = Some X
App c1 c2→ X

(δ)

X→ X′

App X Y → App X′ Y
(AppL) Y → Y ′

App X Y → App X Y ′
(AppR)

X→ X′

Lm y X→ Lm y X′
(ξ)

The reflexive-transitive closure of → , denoted by →∗, is called the multi-step reduction.

Above, the rules (AppL), (AppR) and (ξ) delve into the term to locate a redex, whereas
(β) and (δ) perform the redex reduction. Note that X→ X′ means that X′ was obtained from
X by the reduction of precisely one (nondeterministically chosen) redex.

Chapter 4. A Formalization of the Church-Rosser and Standardization Theorems 54

4.2.2 The Church-Rosser Theorem

A binary relation� is called confluent provided it satisfies the following “diamond” property:
For all u,v1,v2 such that u � v1 and u � v2, there exists w such that v1 � w and v2 � w. In
other words, every span can be joined. The Church-Rosser theorem states that this is the case
for multi-step reduction:

Theorem 40. →∗ is confluent.

A difficulty when trying to prove this theorem is the need to work with multiple re-
duction steps. Indeed, → itself is not confluent, as seen by the following example. Let
X = App (Lm x1 (App (Var x1) (Var x1))) X1, where X1 = App (Lm x (Var x)) (Ct c).
If we choose to reduce the top redex of X, we obtain X→ Y1, where Y1 = (App (Var x1)

(Var x1)) [X1 / x1] = App X1 X1. On the other hand, if we choose to reduce the inner redex of
X (within X1), we obtain X→ Y2, where Y2 = App (Lm x1 (App (Var x1) (Var x1))) (Ct c).
In order to join Y1 and Y2, intuitively we must perform the complementary reductions: By
reducing the top redex in Y2, we obtain Y2 → Z, where Z = App (Ct c) (Ct c). However, Y1

is not just one, but two redexes away from Z, meaning that Y1 → Z does not hold (although
Y1→∗ Z does).

Dealing with multiple steps in the proof is possible, but the reasoning becomes intricate.
A more elegant solution, due to William Tait, proceeds along the following lines [8]:

(1) First define a relation ⇒ allowing the reduction of multiple (zero or more) redexes in
parallel and prove that its transitive closure, ⇒∗, is the same as →∗.

(2) Then prove that ⇒ is confluent—which should be possible thanks to parallelism. In the
above example, we would have Y1 ⇒ Z by the parallel reduction of two Z-redexes.

Then the proof of the Church-Rosser theorem would be immediate: Since ⇒ is confluent,
than so is ⇒∗, i.e., →∗. Next we proceed with tasks (1) and (2).

Definition 41. The one-step parallel reduction relation ⇒ : term→ term→ bool is defined

inductively by the following rules:

Ctapp c1 c2 = Some X
App c1 c2 ⇒ X

(δ)
X⇒ X′ Y ⇒ Y ′

App (Lm y X) Y ⇒ X′[Y ′ / y]
(β)

X⇒ X′ Y ⇒ Y ′

App X Y ⇒ App X′ Y ′
(App)

X⇒ X
(Refl)

X⇒ X′

Lm y X⇒ Lm y X′
(ξ)

The key technical differences between the definition of ⇒ and that of → are the follow-
ing. There are no left and right rules for delving into application subterms, but only one rule,
(App), allowing the identification of redexes on multiple locations in the term in parallel.
Moreover, the (β) rule allows reducing a redex and at the same time continuing to search for
redexes further down in the components. Finally, the (Refl) rule allows to abandon the search
at any moment, on any reached location.

It is not difficult to prove (by standard rule induction) that X→ Y implies X⇒ Y and
that X⇒ Y implies X→∗ Y , which ensure that ⇒∗ = →∗ . This concludes task (1). Our

Chapter 4. A Formalization of the Church-Rosser and Standardization Theorems 55

formal proof required no special binding-aware type of reasoning, but only standard inductive
definitions and rule-induction proofs.

Moving on to task (2), proving that ⇒ is confluent, the simplest known approach is due
to Takahashi [69]. Let us assume that X⇒ Y1 and X⇒ Y2, which means that both Y1 and Y2

have been obtained from X by the parallel reduction of a number of redexes—it is the choice
of which redexes have been reduced and which have been ignored (via the (Refl) rule) that
constitutes the difference between Y1 and Y2. Hence, if Z is the term obtained from X by
a complete parallel reduction (with no redexes ignored)—which we write as Z = cpred X—
then Z would be a valid join for Y1 and Y2. Indeed, Z would be obtained from both Y1 and Y2

by reducing the redexes that had been ignored during the reductions of X to Y1 and Y2.
To define the complete parallel reduction operator (sometimes called “complete develop-

ment” in the literature), cpred : term→ term, intuitively all we need to do is follow the in-
ductive definition of parallel reduction and make that into a structurally recursive function—
while restricting the application of the (Refl) rule to variables and constants only, for not
skipping the reduction of any redex:

cpred (Var x) = Var x cpred (Ct c) = Ct c cpred (Lm y X) = Lm y (cpred X)

cpred (App X Y) =



cpred Z, if (X,Y) have the form (Ct c1, Ct c2)

with Ctapp c1 c2 = Some Z

(cpred Z) [(cpred Y)/y], if X has the form Lm y Z

App (cpred X) (cpred Y), otherwise

However, the problem is that this definition is not a priori guaranteed to be correct, given
that terms are not a free datatype due to quotienting to alpha-equivalence. One approach
would be to redefine cpred on (unquotiented) quasi-terms and prove that it respects alpha-
equivalence, but this would be technically quite difficult and would require breaking the term
abstraction layer. Our recursion principle provides a better alternative: The above clauses are
almost sufficient to construct an FSw model. What we additionally need is a specification of
the expected behavior of the to-be-defined cpred with respect to freshness and swapping—
which is straightforward, since cpred is expected to preserve freshness and commute with
swapping: fresh y X implies fresh y (cpred X) and cpred (X[z1 ∧ z2]) = (cpred X)[z1 ∧ z2].

Our recursion principle can now be employed to obtain the following:

Proposition 42. There exists a unique function cpred : term→ term satisfying all the above

clauses (for the term constructors as well as the freshness and swapping operators).

Indeed, rewriting these clauses to make the required structure on the target type explicit,
we see that they simply state the commutation of cpred with the constructors and the opera-
tors as described in Prop. 38, where:

• VAR= Var and CT= Ct

• LM x X′ X = Lm x X

Chapter 4. A Formalization of the Church-Rosser and Standardization Theorems 56

• APP X′ X Y ′ Y =



Z if (X′,Y ′) have the form (Ct c1, Ct c2)

with Ctapp c1 c2 = Some Z

Z [Y/y] if X has the form Lm y Z and X′ has the form Lm y′ Z′

App X Y otherwise

• FRESH x X′ X = fresh x X

• SWAP X′ X z1 z2 = X[z1 ∧ z2]

Verifying the FSw model clauses for the above is completely routine (follows by Isabelle’s
“auto” proof method, which applies the natural simplification rules for term constructors and
operators). Note that Prop. 38 does not require the target type of the defined function to be
a “syntactic” domain such as term (or to satisfy any finite-support property)—although this
happens to be the case here. With the definition of cpred in place, it remains to prove the
following:

Lemma 1. X⇒ X′ implies X′⇒ cpred X

The informal proof of this lemma would go by induction on X, applying the Barendregt
convention in the Lm-case, i.e., when X has the form Lm y Y , to ensure that the bound variable
y is fresh for X′. One might expect that the structural fresh induction principle (Prop. 34) is
ideal for formalizing this task. However, the problem is that cpred analyzes X more than
one-level deep—when testing if X is a β-redex, i.e., has the form App (Lm x1 X1) X2. This
means that we need to go a bit beyond structural induction. We therefore use induction on
the depth of X,7 and take advantage of the Barendregt convention by means of the fresh case
distinction principle (Prop. 35) instead.

4.2.3 The Standardization Theorem

The relation → makes a completely nondeterministic choice of the redex it reduces. The
standardization theorem [60] refers to enforcing, without loss of expressiveness, a “standard”
reduction strategy, which prioritizes leftmost redexes.

Definition 43. The one-step left reduction relation # : term→ term→ bool is defined in-

ductively by the following rules:

Ctapp c1 c2 = Some X
App c1 c2 # X

(δ) App (Lm y X) Y # X [Y / y]
(β)

X # X′

App X Y # App X′ Y
(AppL)

X has the form Var x or Ct c Y # Y ′

App X Y # App X Y ′
(AppR)

A first difference between # and→ is that the former gives preference to redexes located
towards the lefthand side of the term—as shown by the fact that the rule (AppL) has no
restriction on Y , whereas (AppR) requires X to be a variable or a constant. In other words,
exploring the righthand side of the term in search for redexes is only allowed if exploring
the lefthand side is no longer possible. Another difference is that # does not reduce under
Lm—as shown by the absence of a (ξ) rule.

7The depth function is built in our framework, but could have been defined by our recursion principle.

Chapter 4. A Formalization of the Church-Rosser and Standardization Theorems 57

Definition 44. The standard reduction (s.r.) sequence predicate srs : term list → bool is

defined inductively by the following rules:

srs [Ct c]
(Ct) srs [Var x]

(Var)

X # hd Xs srs Xs
srs (X ·Xs)

(Red)
srs Xs

srs (map (Lm x) Xs)
(Lm)

srs Xs srs Ys
srs (zipApp Xs Ys)

(App)

Above, for any a, [a] denotes the singleton list containing a and hd, · and map denote
the usual head, append and map functions on lists. Moreover, zipApp applied to two lists
[X1, . . . , Xn] and [Y1, . . . ,Ym] yields the list [(App X1 Y1, . . . , App Xn Y1, . . . ,App Xn Ym)]

(obtained from first applying to Y1 the terms X1, . . . , Xn, followed by applying Xn to the terms
Y2, . . . ,Ym).

A standard reduction sequence [X1, . . . , Xn] represents a systematic way of performing
reduction, prioritizing left reduction, but also eventually exploring rightward located redexes.
Thus, the rule (App) merges two s.r. sequences under the App construct, scheduling the left
one first and the right one second. The standardizaton theorem states that standard reduction
sequences cover all possible reductions.

Theorem 45. X→∗ X′ iff there exists a s.r. sequence starting in X and ending in X′.

The “if” direction, stating that s.r. sequences are subsumed by arbitrary reduction se-
quences, follows immediately by rule induction on the definition of srs. So let us focus on
the “only if” direction. It turns out that it is easier to use the multi-step parallel reduction
⇒∗ instead of →∗—which is OK since we know from Section 4.2.2 that they are equal. To

have better control over⇒ (and over⇒∗), we need to be able to count the number of redexes
that are being reduced in a step X⇒ Y . In his informal proof, Plotkin defines this number
by a recursive traversal of the derivation tree for X⇒ Y . Since we defined the relation ⇒
inductively, i.e., as a least fixed point, we do not have direct access to the derivation trees.
Instead, we introduce this number in a labeled variation of⇒, defined inductively as follows:

Definition 46. The labeled one-step parallel reduction relation ⇒_ : term→ term→ nat→
bool is defined inductively by the following rules:

Ctapp c1 c2 = Some X
App c1 c2⇒1 X

(δ)
X⇒m X′ Y ⇒n Y ′

App (Lm y X) Y ⇒
1+m+ n∗no X′ y

X′[Y ′ / y]
(β)

X⇒m X′ Y ⇒n Y ′

App X Y ⇒m+n App X′ Y ′
(App)

X⇒0 X
(Refl)

X⇒m X′

Lm y X⇒m Lm y X′
(ξ)

The definitional rules for⇒_ are identical to those for⇒, except that they also track the
number of reduced redexes. This number evolves as expected, e.g., for applications the left
and right numbers are added. The most interesting rule is that for β-reduction, where the
label of the conclusion is 1+m+ n∗no X′ y. This is obtained by counting:

• 1 for the top redex (which is being explicitly reduced in the rule)

Chapter 4. A Formalization of the Church-Rosser and Standardization Theorems 58

• m for the redexes being reduced in X to obtain X′

• n∗no X′ y for the n redexes being reduced in Y to obtain Y ′, one set for each (free) occur-

rence of y in X′—because the occurrences of y in X′ correspond to the occurrences of Y in
X′[Y/y] that will be reduced to Y ′

Thus, no X′ y counts the number of (free) occurrences of the variable y in X′. For defining
no we employ our recursion principle, in its freshness-substitution version:

Definition 47. no : term→ (var→ nat) is the unique function satisfying the following prop-

erties:

no (Var y) x =

1, if x = y

0, if x 6= y
no (Ct c) x = 0

no (App X Y) x = no X x+no Y x no (Lm y X) x =

0, if x = y

no X x, if x 6= y

fresh x X implies no X x = 0 no (X[Y / y]) x =

no X y ∗ no Y y, if x = y

no X x + no X y ∗ no Y x, if x 6= y

To justify the above definition, we construct an FSb model obtained from the above
clauses, where D = var→ nat and

• VAR : var→ D is

VAR x = λy.

1 if x = y

0 if x 6= y

• CT : const→ D is CT c = λx. 0

• APP : term→ D→ term→ D→ D and APP X u Y v = λx. (u x)+ (v x)

• LM : var→ term→ D→ D is

LM x X u = λy.

0 if x = y

u y if x 6= y

• FRESH : var→ term→ D→ bool is FRESH x X u = (u x = 0)

• SUBST : term→ D→ term→ D→ var→ D is

SUBST X u Y v y = λx.

u y ∗ v y, if x = y

u x + u y ∗ v x, if x 6= y

Chapter 4. A Formalization of the Church-Rosser and Standardization Theorems 59

The Isabelle/HOL code at this stage is similar to the above pen on paper description; the
operators characterizing the model are collected in a record:

definition no_MOD :: “(’const, var⇒ nat) model”
where “no_MOD ==
(|
VAR = λx z. if x = z then 1 else 0,
CT = λc z. 0,
APP = λX1 f X2 g z. f z + g z,
LM = λy X f z. if y = z then 0 else f z,
FRESH = λy X f. f y = 0,
SUBST = λY g X f y z. if y = z then f z * g z else f z + f y * g z,

|)”
Now we are ready to instantiate Prop. 38; once instantiated with this particular model

such recursion principle will guarantee that there exist a unique function no : term→D com-
muting with the constructors, i.e., the first four properties of Definition 47 above. Addition-
ally , no preserves freshness and commutes with substitution, i.e., the last two properties
of Definition 47. Namely, thanks to our recursion principle we are able to formally justify
the definition given intuitively, with Definition 47, in a way that it satisfy all the desired
properties, of course with some proof obligations.

However verifying Prop. 38’s conditions is again routine—some simple arithmetics that
has been discharged by the “auto” proof method. For example, let us consider (Sb1):

SUBST (Var z) (VAR z) Z u z = u .

After unfolding the definitions, it becomes

λx.

1 ∗ u z, if x = z

0 + 1 ∗ u x, if x 6= z
= u

and this is indeed something that can be proved automatically by Isabelle’s proof methods.
Here we can go even further: in Isabelle the obligations (F1)-(F5), (Sb1)-(Sb4) and (SbRn)
are collected in a single predicate over models: wlsFSb. In this particular case, such obli-
gations for defining no can be proved in one shot and very few lines, just by unfolding
definition and using basic theorems and proof methods. Below we report the Isabelle code
for this lemma:

lemma wlsFSb_no_MOD: “wlsFSb no_MOD”
unfolding wlsFSb_defs

apply auto
by(rule ext, auto simp add: add_mult_distrib)+

Note again how we included not only the recursive clauses for the constructors, but also
those for the interaction with freshness and substitution. On the one hand, the freshness
and substitution clauses are needed to establish the correctness of the definition; on the other
hand, they are useful theorems that are produced (and proved) at definition time together with
the recursive clauses for the constructors.

Chapter 4. A Formalization of the Church-Rosser and Standardization Theorems 60

Back to the proof of the theorem, because X⇒ Y is immediately equivalent with the
existence of n : nat such that X⇒n Y , we are left with proving the following:

Proposition 48. If X⇒∗m X′, then there exists a s.r. sequence starting in X and ending in X′.

The proof idea for the above is to build the desired s.r. sequence by “consuming” X⇒∗m X′

one step at a time, from left to right, as expressed below:

Proposition 49. If X⇒m X′ and Xs is a s.r. sequence starting in X′, then there exists a s.r.

sequence starting in X and ending in the last term of Xs.

Prop. 49 easily implies Prop. 48 by rule induction on the definition of the reflexive-
transitive closure; in the base case, one uses the fact that src [X] holds for all terms X, which
follows immediately by rule induction on the definition of of src.

So it remains to prove Prop. 49. The proof requires a quite elaborate induction, namely
lexicographic induction on three measures: the length of Xs, the number (of X-to-X′ reduction
steps) m and the depth of X. Inside the induction proof, there is a case distinction on the form
of X.

The most complex case is when X is an application, since here we have to deal with the
redexes. For handling the β-redex subcase, two lemmas are required. The first states that⇒_

preserves substitution, while keeping the numeric label under a suitable bound:

Lemma 2. If X⇒m X′ and Y ⇒n Y ′, then there exists k such that k ≤ m+ no X′ y ∗ n and

X [Y /y]⇒k X′ [Y ′/y].

It is proved by induction on the depth of X, making essential use of the property that
connects no with substitution, which is built in our definition of no (Def. 47). The second
expresses commutation between (labeled) parallel reduction and left reduction:

Lemma 3. If X⇒m Y and Y # Z, then there exist Y ′ and n such that X #∗ Y ′ and Y ′⇒n Z.

It is proved by lexicographic induction on m and the depth of X. Back to the proof
of Prop. 49, the other cases (different from App) are conceptually quite straightforward.
However, the formal treatment of the Lm-case raises a subtle issue, which we describe next.

The informal reasoning in the Lm-case goes as follows: Assume X has the form Lm y Y .
Then, for inferring Lm y Y ⇒m X′, the last applied rule must have been either (Refl) or (ξ).
In the case of (Refl), we have X = X′ so the desired s.r. sequence is Xs. In the case of
(ξ), we obtain that X′ = Lm y Y ′ for some Y ′ such that Y ⇒m Y ′ . Moreover, since Xs is a
s.r. sequence starting in Lm y Y ′, there must be a s.r. sequence Ys starting in Y ′ such that
Xs = map (Lm y) Ys. By the induction hypothesis, we obtain a s.r. sequence Ys′ starting in
Y and ending in the last term of Ys. Hence we can take map (Lm y) Ys′ to be the desired s.r.
sequence (starting in X).

The above informal argument applies (among other things) a special inversion rule for
⇒_, taking advantage of knowledge about the shape of the lefthand side of the conclusion:

a term of the form Lm y Y . However, as emphasized above, it is implicitly assumed that an
application of the (ξ) rule with Lm y Y as lefthand side of its conclusion will have the form

Y ⇒m Y ′

Lm y Y ⇒m Lm y Y ′

Chapter 4. A Formalization of the Church-Rosser and Standardization Theorems 61

i.e., will “synchronize” with the variable y bound in Y . In other words, we need the following
inversion rule:

Lemma 4. If Lm y Y ⇒m X′, then one of the following holds:

• X′ = Lm y Y (meaning (Refl) must have been applied)

• There exists Y ′ such that X′ = Lm y Y ′ and Y ⇒m Y ′ (meaning a y-synchronized (ξ) must

have been applied)

Proving the above is not straightforward, and relies on some properties of ⇒m that are
global, i.e., depend on the behavior of its rules different from (ξ). All we can get from the
standard inversion rule (coming from the inductive definition of ⇒m) is, in the second case,
the existence of z, Z and Z′ such that Lm y Y = Lm z Z, X′ = Lm z Z′ and Z⇒m Z′. Using
the properties of equality between Lm-terms, we obtain that Y = Z [y∧ z]. To complete the
proof of Lemma 4, we further need the following:

Lemma 5. ⇒_ is equivariant, i.e., Z⇒m Z′ implies Z [y∧ z]⇒m Z′ [y∧ z].

Lemma 6. ⇒_ preserves freshness, i.e., fresh y Z and Z⇒m Z′ implies fresh y Z′.

Using these lemmas and the basic properties of freshness and swapping, we define Y ′

to be Z′ [y∧ z] and obtain Lm y Y ′ = Lm z Z′ and Y ⇒m Y ′; in particular, X′ = Lm y Y ′ and
Y ⇒m Y ′, as desired. This concludes our outline of the proof of Prop 49 and overall of the
standardization theorem.

4.3 Call-By-Value λ-Calculus
The call-By-Value (CBV) λ-calculus differs from the CBN λ-calculus by the insistence that
only values are being substituted for variables in terms, i.e., a term is evaluated to a value
before being substituted. All the notions pertaining to the CBV calculus are defined as a
variation of their CBN counterparts by factoring in the above value restriction. The Ctapp
partial function is now assumed to return values instead of arbitrary terms.

Definition 50. The one-step CBV reduction relation →v : term→ term→ bool is defined

inductively by rules similar to those of Def. 39, namely by the rules (AppL) and (AppR) from

there (of course, with→v replacing→), together with:

App (Val (Lm y X)) (Val W) →v X [W / y]
(β)

Ctapp c1 c2 = Some V

App c1 c2 →v Val V
(δ)

X →v X′

Val (Lm y X) →v Val (Lm y X′)
(ξ)

Highlighted above are the differences between the one-step CBV reduction and its CBN
counterpart. In the (δ) and (ξ) rules the differences are inessential: One employs the value-
to-term injection Val to account for the fact that Ctapp returns a value and that Lm-terms are
values. The essential difference shows up in the (β) rule, which requires the righthand side
of the redex to be a value. Similar differences are highlighted in the next definitions.

Chapter 4. A Formalization of the Church-Rosser and Standardization Theorems 62

Definition 51. The one-step parallel CBV reduction relation ⇒v : term→ term→ bool is

defined inductively by rules similar to those of Def. 41, namely by the rules (App) and (Refl)

from there (with⇒v replacing⇒), together with:

Ctapp c1 c2 = Some V

App c1 c2⇒v Val V
(δ)

X⇒ X′ Y ⇒ Val V ′

App (Val (Lm y X)) Y ⇒v X′[V ′ / y]
(β)

X⇒v X′

Val (Lm y X) ⇒v Val (Lm y X′)
(ξ)

Definition 52. The one-step left CBV reduction relation #v : term→ term→ term is defined

inductively by rules similar to those of Def. 43, namely by the rule (AppL) from there (with

#v replacing #), together with:

Ctapp c1 c2 = Some V

App c1 c2 #v Val V
(δ)

App (Val (Lm y X)) (Val W) #v X [W / y]
(β)

Y #v Y ′

App (Val V) Y #v App (Val V) Y ′
(AppR)

Except for the above definitions, the CBV concepts are identical to those of the CBN
concepts, mutatis mutandis, i.e., plugging in the above CBV basic relations instead of the
CBN ones. These include the multi-step versions of the relations and the notions of complete
parallel reduction operator and standard reduction sequence.

Moreover, the statements and proofs of the Church-Rosser and standardization theorems
are essentially identical, mutatis mutandis. Like Plotkin has suggested in his informal devel-
opment [60], the formal proofs could be easy adapted from CBN to CBV, obtaining:

Theorem 53. Theorem 40 and Theorem 45 hold with the same statements, after replacing

the CBN notions with their CBV counterparts.

While the CBN and CBV formal developments are conceptually very similar, for the
latter we employed our framework’s infrastructure for a two-sorted syntax. To illustrate how
this two-sorted syntax is handled by the framework, we show the definition of the CBV
counterpart of cpred.

Chapter 4. A Formalization of the Church-Rosser and Standardization Theorems 63

Definition 54. The CBV complete parallel reduction operator of a term X (written cpredterm X)

and of a value V (written cpredval V) are the unique pair of functions satisfying:

cpredval (Var x) = Var x cpredval (Ct c) = Ct c

cpredterm (Val V) = Val (cpredval V) cpredval (Lm y X) = Lm y (cpredterm X)

cpredterm (App X Y) =



Val (cpredval V),

if (X,Y) have the form (Val (Ct c1), Val (Ct c2))

with Ctapp c1 c2 = Some V

(cpredterm Z) [(cpredval W)/y],

if (X,Y) have the form (Val (Lm y Z), Val W)

App (cpredterm X) (cpredterm Y), otherwise

freshval y V implies freshval y (cpredval V)

freshterm y X implies freshterm y (cpredterm X)

cpredval (V [z1 ∧ z2]val) = (cpredval V)[z1 ∧ z2]val

cpredterm (X[z1 ∧ z2]term) = (cpredterm X)[z1 ∧ z2]term

Similarly to the CBN case, this turns out to be a correct definition thanks to a two-sorted
version of Prop. 38, that is, via exhibiting a two-sorted FSw model.

4.4 Overview of the Formalization and Lessons Learned
Our development is based on the general theory of syntax with bindings, which was presented
in Chapter 3.The development has two parts.

The first part is the instantiation of the general theory to the two syntaxes, of λ-calculus
and of λ-calculus with emphasized values, together with the transfer from a deep to a more
shallow embedding (reported in Section 4.1). This is currently a completely routine, but
very tedious process—it spans over more than 15000 lines of code (LOC) for each syntax.
The reasons for this large size are the sheer number of stated theorems about constructors
and substitution (more than 300 facts for the one-sorted syntax and more than 500 for the
two-sorted syntax) and the many intermediate facts stated in the process of transferring the
recursion theorems. Thanks to using a custom template for the instantiation, the whole pro-
cess only took us two person-days. However, this is unreasonably long for a process that can
be entirely automated.

The second part is the theory of CBN and CBV λ-calculus, culminating with the proofs
of the Church-Rosser and Standardization theorems (reported in Sections 4.2 and 4.3). This
is where our routine effort from the first part fully paid off. Thanks to our comprehensive
collection of facts about substitution and freshness, we were able to focus almost entirely on
formalizing the high-level ideas present in the informal proofs—notably in Plotkin’s sketches
of his elaborate proof development for the standardization theorem. On two occasions—for

Chapter 4. A Formalization of the Church-Rosser and Standardization Theorems 64

defining Takahashi’s complete parallel reduction operator and the number of variable occur-
rences needed in the Standardization proof development—our recursion principle allowed us
to quickly get off the ground, in the second case also offering useful freshness and substi-
tution lemmas needed later in the proof. Altogether, the second part consists of 5000 LOC
(2000 for CBN and 3000 for CBV) and took us one person-month.

An exception to the above general phenomenon (of being able to focus on the high-level
proof ideas) was the need to engage in the low-level task of proving custom constructor-
directed inversion rules for our reduction relations—illustrated and motivated in the discus-
sion leading to Lemma 4. This lemma is just one example of the several similar inversion
rules we proved, corresponding to the inductive rules involving λ-abstraction in the reduc-
tion relations’ definitions. These rules are essentially the binding-aware version of what
Isabelle/HOL offers via the “inductive cases” command [78]. They seems to be generally
useful in proof developments that involve inductively defined reductions but require struc-
tural induction over terms. The literature on formal reasoning seems to have overlooked the
general usefulness of these rules; and state of the art definitional packages such as Nominal
Isabelle [71, 74] do not attempt to infer them automatically.

Finally, our case study illustrates another interesting and apparently not uncommon phe-
nomenon: that fresh structural induction on terms may be too weak in proofs, whereas depth-
based induction in conjunction with fresh cases may do the job while still enabling the use of

Barendregt’s convention—as illustrated in our proof of Lemma 1.
In conclusion, we believe that our approach did a very good job handling some formal-

ization task from the “real world”. There are indeed some technical initialization issues, but
we believe they can be resolved once and for all, at the “developers” level, and completely
hidden from the users—especially in our second formalization, described starting from the
next chapter. On the other hand, we believe the features of our framework (notably a rich
built-in theory of substitution and operator-aware recursion) have enabled us to produce a
fully formal, yet high-level presentation of these fundamental results.

65

Chapter 5

Intermezzo: More Bindings to be
Captured

Although the POPLmark Challenge and its recursively defined binding structures from parts
1B and 2B have been openly among our motivations, our first framework does not easily cap-
ture its syntax. In that framework binding structures are modelled via abstractions (Section
3.1.1, Chapter 3) that bind one variable in one term at a time. We could have tried an encod-
ing of the binding patterns from the challenge, by iterating the abstraction binder from our
theory. Instead we decided to remain faithful to our generality purpose and changed some
design features of the framework.

The inability of dealing gracefully with complex binders is not the only limitation of this
first framework. Lack of modularity is also an issue: we have modelled the generic syntax by
means of a binding signature, which fixes constructors and their arities, and precludes from
any nesting or modularity features.

We have indeed captured infinitely branching terms and, in particular, these terms contain
infinitely many free variables. On the other hand, we have limited ourselves to well-founded
syntaxes.

In this chapter we change our design decisions for the framework, extending the theory
to overcome the just mentioned limitations. In Section 5.1 we analyse and criticise what we
have achieved up to now. Then in section 5.2 we build step by step our new formalization,
based on functors. This way we obtain our second framework, which will be described in the
next Chapter 6.

5.1 Critique of the First Framework
In Chapter 3 we have presented our first framework aimed at capturing the essence of syntax
involving binding mechanisms and formalizing this in a general theory. Then with Chapter 4
we provided an instance of the theory, a formalized case study that could help understanding
what we have achieved, what is good and what is missing in our development.

We believe that one of the major strengths of our theory is the exhaustive infrastructure it
gives for its instances. The development is conducted at a general level, definitions are given
and lemmas are proven independently of the particular syntax. We define alpha equivalence
and the basic operators, the fundamental ones being freshness (or equivalently the set of

Chapter 5. Intermezzo: More Bindings to be Captured 66

free variables of a term), swapping and substitution. We give results about these objects up
to reasoning and definition principles suitable for dealing with (alpha-equated) terms with
bindings. Then the theory can be instantiated to a particular syntax and all the infrastructure
is made available and customized for it.

In the the framework from Chapter 3 we achieve this by defining an arbitrary syntax,
via an instantiable binding signature—in the instantiation process constructors, binders and
arities are specified.

We quotient the general terms to alpha equivalence so that, when deploying the formal-
ization in concrete developments, there is no need to deal with it: as we have already pointed
out, one of our aims is the usability of the formalized theory and we believe that this is better
reached if two alpha-equivalent terms are treated as equal and still the variables, also when
bound, are explicitly named.

In order to avoid complications arising from reasoning about alpha-equivalence classes,
we need a collection of lemmas and properties that deal directly with these classes and do not
involve their particular representatives; these are indeed provided in the formalization and we
have dedicated the whole Subsection 3.2.4 of Chapter 3 to their description. These lemmas
allow us to seal the abstraction barrier and the user to deal only with high level concepts and
ignore alpha-equivalence. Moreover some of these properties are subtle and, when dealing
with a particular syntax, the time spent to formulate and prove them would be wasted, since
they can be proved once and for all, at a general level.

We have endowed our theory with useful reasoning and definition principles suitable for
dealing with (alpha-equated) terms with bindings, described in Sections 3.4 and 3.3 from
Chapter 3: Nominal’s fresh induction [58, 76, 73], which allows the formal use of Baren-
dregt’s variable convention, Micheal Norrish’s swapping-sensitive recursion principle [52],
our own substitution-sensitive one and a combination of the two—overall a fair variety of
them for the user to pick from.

Our theory can capture many-sorted binding syntaxes (Section 3.5); so among its possible
instances we have, e.g., λ-calculus (also distinguishing the separate syntactic category of
values, see Setion 4.1.2 from Chapter 4), FOL, process calculi, and System F.

Finally we have captured infinitely branching syntaxes, like CCS [51]: these allow for
an infinite number of free variables in their terms; thus we were forced to go beyond finite
support and exploit cardinality theory.

However this framework, also when confronted with what we declared as our aims (Chap-
ter 1, Section 1.4), has some major drawbacks. For example, it deals with an infinite number
of variables, but only if they are organized in recursively defined, infinitely-branching terms;
namely, non-well-founded syntaxes with terms that have possibly-infinite depth, are not yet
covered.

Our theory also has an overly rigid binding mechanism: our standalone abstractions (see
Chapter 3, Sections 3.1 and 3.2) allow to bind in a term just one variable at a time. If it is
true that this framework can capture many syntaxes with bindings, we have an important left-
out: the motivational example of System F<: from the influential POPLmark challenge [7].

Chapter 5. Intermezzo: More Bindings to be Captured 67

The encoding in our first framework of complex bindings, such as the recursively specified
binding patterns of System F<:, is not immediate, if possible at all.

Finally, it is important to remark that our theory is developed in the style of universal
algebra, namely, it is based on binding signatures, see Subsection 3.5.1. With the signature,
we fix our syntactic objects (organized in sorts, operation symbols, variables etc.) once and
for all, not allowing for any kind of modularity. When formalizing mathematics in a proof
assistant, any object, once defined, is exactly that one: it is not easy to transfer the reasoning
to isomorphic structures, as instead is commonly done in pen-on-paper algebraic practice.
For this reason, it is useful to define flexible structures from the beginning, so that they can
be reused in a wider context, without the need of defining isomorphic ones. In our case,
as already stated in Subsection 1.4, the correct property to go after is modularity. A syntax
should be able to be arbitrarily nested in other syntaxes, just like it happens with free (i.e.
with no bindings involved) datatypes: it can be the case that we have a list of trees and also a
tree with lists at its nodes.

This kind of modularity and also infintely-deep structures are features that have been cap-
tured by the (co)datatype package of Isabelle/HOL [18], based on bounded natural functors
(BNFs, see Subsections 2.2 and 2.3 from Chapter 2), which follows a compositional design
[70] and provides flexible ways to nest types [16] and mix recursion with corecursion [13,
17]. However this work does not cover bindings.

Motivated by its modularity features, we start from the (co)datatype package develop-
ment and model syntax with bindings with an approach based on functors—in particular on
a refined version of BNFs. This approach has a main advantage: it is based on an already
existing mechanism from the logical foundation, namely the dependency of type constructors
on type variables. This will give more flexibility to our structures, which will have generic
parameters as inputs, instead of variables picked from a fixed universe, thus allowing for the
modular nesting property discussed above.

5.2 Towards an Abstract Notion of Binder
Motivated by the analysis from Section 5.1, we start here shaping up a theory of syntax,
based on functors, that captures the essence of binding mechanisms. We start with the fol-
lowing simple observation: The literature so far has focused on binding notions relying on
syntactic formats [64, 68, 75], as well as we have done with our previous framework (Chap-
ter 3). In contrast, here we ask a semantic question: Can we provide an abstract, syntax-free
axiomatization of binders?

5.2.1 Examples of Binders

We first try to extract the essence of binders from examples. The paradigmatic example is the
λ-calculus, in which λ-abstraction binds a single variable a in a single term t, obtaining λa. t.
The term t may contain several free variables. If a is one of them, adding the λ-abstraction
binds it. Suppose t is ba (“b applied to a”), where a and b are distinct variables. After
applying the λ constructor to a and t, we obtain λa.ba, where a is now bound whereas b

Chapter 5. Intermezzo: More Bindings to be Captured 68

remains free. Thus, in a λ-binder we distinguish two main components: the binding variable
and the body (the term where this variable is to be bound).

Other binders take into consideration a wider context than just the body. The “let” con-
struct let a = t1 in t2 binds the variable a in the term t2 without affecting t1. In the expression
let a = ba in ba the first occurrence of a is the binding occurrence, the second occurrence is
free (i.e., not in the binder’s scope), and the third occurrence is bound (i.e., in the binder’s
scope). In general, we must distinguish between the components that fall under a binder’s
scope and those that do not.

To further complicate matters, a single binding variable can affect multiple terms. The
“let rec” construct let rec a= t1 in t2 binds the variable a simultaneously in the terms t1 and t2.
In let rec a = ba in ba, both the second and the third occurrences of a are bound by the first
occurrence. Conversely, multiple variables can affect a single term: λ(a,b). t simultaneously
binds the variables a and b in the term t. The binding relationship can also be many-to-many:
let rec a = t1 and b = t2 in t binds simultaneously two variables (a and b) in three terms (t1,
t2, and t).

Finally, the simultaneously binding variables can be organized in structures of arbitrary
complexity. The “pattern let” binder in part 2B of the POPLmark challenge, pattern-let p =

t1 in t2, allows binding patterns p in terms t2, where the patterns are defined by the recursive
grammar

p ::= a : T | {li = pi}n
i=1

Thus, a pattern is either a typed variable a : T or, recursively, a record of labeled patterns.

5.2.2 Abstract Binder Types

Binders distinguish between binding variables and the other entities, typically terms, which
could be either inside or outside the scope of the binder. Thus, we can think of a binder type
as a type constructor (α,τ)F, with m = len (α) and n = len (τ), that takes as inputs

• m different types αi of binding variables;

• n different types τi of potential terms that represent the context

together with a relation θ ⊆ [m] × [n], which we call binding dispatcher, indicating which
types of variables bind in which types of potential terms. A binder x : (α,τ)F can then be
thought of as an arrangement of zero or more variables of each type αi and zero or more po-
tential terms of each type τi in a suitable structure. The actual binding takes place according
to the binding dispatcher θ: If (i, j) ∈ θ, all the variables of type αi occurring in x bind in all
the terms of type τ j occurring in x.

We use the terminology “potential terms” instead of simply “terms” to describe the in-
puts τi because they do not contain actual terms—they are simply placeholders in (α,τ)F

indicating how terms would be treated by the binder F. The types of actual terms will be
structures defined recursively as fixpoints by filling in the τi placeholders.

Section 5.2.1’s examples are modeled as follows (writing α and τ instead of α1 and τ1 if
m = 1):

Chapter 5. Intermezzo: More Bindings to be Captured 69

• For λa. t, we take m = n = 1, θ = {(1,1)}, and (α,τ)F = α× τ.

• For let a = t1 in t2, we take m = 1, n = 2, θ= {(1,2)}, and (α,τ1,τ2)F = α× τ1 × τ2.

• For let rec a = t1 in t2, we take m = n = 1, θ = {(1,1)}, and (α,τ)F = α× τ× τ.

• For λ(a,b). t, we take m = n = 1, θ = {(1,1)}, and (α,τ)F = α× α× τ.

• For let rec a = t1 and b = t2 in t, we take m = n = 1, θ = {(1,1)}, and (α,τ)F =

α×α×τ×τ×τ.

• For pattern-let p = t1 in t2, we take m = 1, n = 2, θ = {(1,2)}, and (α,τ1,τ2)F =

αpat × τ1 × τ2, where αpat is the datatype defined recursively as αpat ' α× type +

(label, αpat) record, for type and label fixed types (as specified in the POPLmark chal-
lenge) and (β1,β2) record the type constructor of β1-labeled records with elements in
β2.

For the “let” binder, the type constructor, (α,τ1,τ2)F, needs to distinguish between the type
of potential terms in the binder’s scope, τ2, and that of potential terms outside its scope, τ1.
This is necessary to describe the binder’s structure accurately; but the actual terms corre-
sponding to τ1 and τ2 will be allowed to be the same, as in (α,τ,τ)F. One may wonder
why the binder should care about potential terms that fall outside the scope of its binding
variables. The answer is that this could lead to severe lack of precision, as argued by [64].
In the “parallel let” construct let a1 = t1 and . . . and an = tn in t, the terms ti are outside the
scope of the variables ai, but they must be considered as inputs for “let” to ensure that the
number of terms ti matches the number of variables ai.

It could be argued that our proposal constitutes yet another restrictive format. However,
leaving F unspecified gives considerable flexibility compared with the syntactic approach.
F can incorporate arbitrarily complex binders, including the datatype α pat needed for the
POPLmark “pattern let.” It can also accommodate unforeseen situations. Capturing the
“parallel let” construct above rests on the observation that the structure of binding variables
can be intertwined with that of the out-of-scope potential terms, which a syntactic format
would need to anticipate explicitly. By contrast, with our modular semantic approach, it
suffices to choose a suitable type constructor: (α,τ1,τ2)F = (α × τ1) list × τ2, with θ =

{(1,2)}. As another example, the type schemes in Hindley–Milner type inference [49] are
assumed to have all the schematic type variables bound at the top level, but not in a particular
order. A permutative type such as that of finite sets can be used: (α,τ) F = α fset × τ, with
θ = {(1,1)}. In summary, this is our first proposal:

Proposal 1. A binder type is a type constructor with a binding dispatcher on its inputs.

As it stands, the proposal is not particularly impressive. For all its generality, it tells
us nothing about how to construct actual terms with bindings or how to reason about them.
Let us look closer at our proposal and try to improve it. By modeling “binder types” not as
mere types but as type constructors, we can distinguish between the binder’s structure and
the variables and potential terms that populate it—that is, between shape and content. This

Chapter 5. Intermezzo: More Bindings to be Captured 70

follows our intuition of BNFs (Section 2.2). And indeed, all the type constructors we used in
examples of binders seem to be BNFs. So we can be more specific:

Proposal 2. A binder type is a BNF with a binding dispatcher on its inputs.

This would make our notion of binder type more versatile, given all the operations avail-
able on BNFs. In particular, we could use their map functions to perform renaming of bound
variables, an essential operation for developing a theory of syntax with bindings. Moreover,
complex binders could be constructed via the fixpoint operations on BNFs.

Unfortunately, this proposal does not work: Full functoriality of (α,τ)F in the binding-
variable components α is problematic due to a requirement shared by many binders: non-

repetitiveness of the (simultaneously) binding variables. When we modelled the binder
λ(a,b). t, which simultaneously binds a and b in t, we took (α,τ)F to be α×α× τ. However,
this is imprecise, because we also need a and b to be distinct. Similarly, a1, . . . ,an must be
mutually distinct in let a1 = t1 and . . . and an = tn in t, and p may not have repeated variables
in pattern-let p = t1 in t2.

This means that we must further restrict the type constructors to nonrepetitive items on
the binding-variable components—for example, by taking (α,τ)F to be {(a,b) : α× α | a 6=
b} × τ instead of α × α × τ. Unfortunately, the resulting type constructor is not a functor,
since its map function cannot cope with noninjective functions f : α→ α′. If f identifies two
variables that occur at different positions in x : (α,τ)F, then mapF f id x would no longer be
nonrepetitive; hence it would not belong to (α′,τ)F.

To address this issue, we refine the notion of BNF by restricting, on selected inputs,
all conditions involving the map function, including the functoriality, to injective functions
only. For reasons of symmetry, we take the more drastic measure of restricting to bijective

functions only, which additionally have the same domain and codomain—we call these endo-
bijections, but we could have called them permutations, as is common practice in Group The-
ory, and they are a proper generalization of the Nominal swapping (see Section 2.4, Chapter
2, and Section 7.1 from Chapter 7). In other words, all the conditions of the BNF defini-
tion (Definition 4) remain the same, except that on some of the inputs (which are marked as
“restricted”) they are further conditioned by endobijectiveness assumptions about the corre-
sponding functions. For our type constructor (α,τ) F, the restricted inputs will be α, which
means that F will behave like a functor with respect to endobijections f : α→ α and arbi-
trary functions g : τ→ τ′. All our examples involving multiple variable bindings, including
(α,τ)F = {(a,b) : α × α | a 6= b} × τ, belong to this category. We call this refined notion
map-restricted BNF (MRBNF, or α-MRBNF).

Proposal 3. A binder type is a map-restricted BNF with a binding dispatcher on its inputs.

MRBNFs remain general while offering a sound mechanism for renaming bound vari-
ables. To validate this proposal, we ask two questions, which will be answered in Sections
6.1 and 6.2 of the next Chapter: (1) How can nonrepetitive MRBNFs be constructed from
possibly repetitive ones? (2) How can MRBNFs be used to define and reason about actual
terms with bindings and their fundamental operators?

Chapter 5. Intermezzo: More Bindings to be Captured 71

Starting from the answers to (1) and (2), our theory will evolve and lead to a new frame-
work for syntax with bindings. The next Chapter 6 is entirely dedicated to this development,
with an overview of the main and novel features of the framework.

72

Chapter 6

Bindings are Functors

In what follows we present our functor-based framework for specifying and reasoning about
syntax with bindings. Abstract binder types are modeled using a universe of functors on
sets (the just introduced MRBNFs, Section 5.2 of the previous Chapter), subject to a num-
ber of operations that can be used to construct complex binding patterns and binding-aware
datatypes, including non-well-founded and infinitely branching types, in a modular fashion.
Despite not committing to any syntactic format, the framework is “concrete” enough to pro-
vide definitions of the fundamental operators on terms (free variables, alpha-equivalence,
and capture-avoiding substitution) and reasoning and definition principles. This work is
compatible with classical higher-order logic and has been formalized in the proof assistant
Isabelle/HOL.

The goal of this framework is to further systematize and simplify the task of constructing
and reasoning about variable binding and variable substitution, namely the operations of
binding variables into terms and of replacing them with other variables or terms in a well-
scoped fashion.

To improve on our previous work and also on the state of art, we believe that the missing
ingredient is a semantics-based understanding of the binding and substitution mechanisms,
as opposed to ever more general syntactic formats. Here we aim at identifying the funda-
mental laws that guide binding and substitution and expressing them in a syntax-free man-
ner. Bindings can be abstractly understood in a world of shapes and of content that fills the
shapes. A binder puts together one or more variables in a suitable shape that is connected
with the body through common content. Variable renaming and replacement, which give rise
to alpha-equivalence and capture-free substitution, amount to replacing content while leaving
the shape unchanged.

We here perfect the definition of MRBNFs, the class of functors on sets that we have
introduced in Section 5.2 of Chapter 5, so that they can express the action of arbitrarily
complex binders while supporting the construction of the key operations involving syntax
with bindings—such as free variables, alpha-equivalence, and substitution—and the proof
of their fundamental properties. This class of functors will subsume a large number of re-
sults for a variety of syntactic formats. Another gain will be modularity: complex binding
patterns can be developed separately and placed in larger contexts in a manner that guaran-
tees correct scoping and produces correct definitions of alpha-equivalence and substitution.
The abstract perspective also will clarify the acquisition of fresh variables, allowing us to go

Chapter 6. Bindings are Functors 73

beyond finitary syntax. Our theory gracefully extends the scope of techniques for reasoning
about bindings to infinitely branching and non-well-founded terms. Finally we will equip our
binding-aware (co)datatypes with a powerful arsenal of reasoning and definitional principles
that follow the (co)datatypes’ structure.

As said this work targets the Isabelle/HOL proof assistant, a popular implementation of
higher-order logic (HOL), and extends Isabelle’s framework of BNFs (see Chapter 2), turning
them into binding-aware entities (see Chapter 5).

In this chapter we reprise the questions left open at the end of the previous Chapter 5. We
first analyze how complex binder types can be constructed in a uniform way (Section 6.1) and
then we try to apply these ideas to define terms with bindings (Section 6.2): Is our abstraction
“concrete” enough to support all the constructions and properties typically associated with
syntax with bindings, including binding-aware (co)datatypes? And can the constructions be
performed in a modular fashion, allowing previous constructions to be reused for new ones?
After undergoing a few more refinements, our binders pass the test of properly handling
not only bound variables, but also free variables. This suggests that we have identified a
“sweet spot” between the assumptions and the guarantees involved in the construction of
(co)datatypes. We synthesize the process we have been through, by giving a formal definition
of the class of functors we have identified (Section 6.3).

We equip our binding-aware (co)datatypes with a powerful arsenal of reasoning and def-
initional principles that follow the (co)datatypes’ structure. We generalize fresh induction in
the style of nominal logic and propose new coinduction principles (Section 6.4). Moreover,
we provide (co)recursion principles that improve on the state of the art even in the case of
simple binders, and we validate the constructions by characterizing them up to isomorphism
(Section 6.5). We expand on this by giving different versions of the definition principles—
which can be more or less useful according to the application where they are invoked—
(Section 6.6) and by confronting ours with other recursion principles from literature, in the
simple case of λ-calculus so that we can focus on the features of the recursors themselves
and not on the complexity of the binding syntax (Section 6.7).

A slightly restricted version of the definitions and theorems from this chapter have been
mechanically checked in Isabelle/HOL (Section 6.8). Our formal development is publicly
available at https://sites.google.com/view/lorgheri/research.

6.1 Constructing Nonrepetitive Map-Restricted BNFs
For MRBNFs’ predecessors, BNFs (Sections 2.2 and 2.3, Chapter 2, and Section A.1 from
the Appendix for a further insight), the question of constructibility has a most satisfactory
answer: We can start with the basic BNFs and repeatedly apply composition, least fixpoint
(datatype), and greatest fixpoint (codatatype). Any BNF also constitutes a map-restricted
BNF, and it is in principle possible to lift the map-restricted arguments through fixpoints
on the nonrestricted type arguments. However, nonrepetitiveness—the defining feature for
MRBNFs, see Subsection 5.2.2 of Chapter 5—is not closed under fixpoints. Thus, if (α,τ)F

is a nonrepetitive α-MRBNF, the (least or greatest) fixpoint αT specified as (α,αT)F ' αT

https://sites.google.com/view/lorgheri/research

Chapter 6. Bindings are Functors 74

will be an α-MRBNF, but not necessarily a nonrepetitive one. For example, (α,τ)F = unit +

α× τ is a nonrepetitive α-MRBNF (because α atoms cannot occur multiple times in members
of (α,τ)F), but its least and greatest fixpoints are α list and α llist, the usual types of list and
lazy lists—which are repetitive α-MRBNFs because lists, whether lazy or otherwise, may
contain repeated elements.

The absence of good fixpoint behavior implies that complex nonrepetitive MRBNFs can-
not be built recursively from simpler components. But we can take an alternative route for
building nonrepetitive MRBNFs. We can employ the fixpoint constructions on BNFs, and
as a last step we carve out nonrepetitive MRBNFs from BNFs, by taking the subset of items
whose atoms of selected type arguments are nonrepetitive. For example, from the BNF α list

(built recursively from the BNF unit + α × β), we construct the MRBNF of nonrepetitive
lists, {xs : α list | nonreplist xs}. Similarly, from the “pattern let” BNF αpat (built recursively
from the BNF α × type + (label,β) record), we construct the MRBNF of nonrepetitive pat-
terns, {xs : αpat | nonreppat xs}. In both examples, we have a clear intuition for what it means
to be a nonrepetitive member of the given BNF: A list xs is nonrepetitive, written nonreplist xs,
if no α-atom occurs more than once in it; and similarly for the members of p : αpat, which
are essentially trees with α-labeled leaves.

Can we express nonrepetitiveness generally for any BNF? A first idea is to rely on
the cardinality of sets of atoms. For the α list BNF, the nonrepetitive items are those lists
as = [a1, . . . ,an] containing precisely n distinct elements a1, . . . ,an—or, equivalently, having
a maximal cardinality of atoms, |setlist x|, among the lists of a given length. This idea can
be generalized to arbitrary BNFs αF by observing that the length of a list is essentially its
“shape.” So we can define the fact that two members x, x′ of αF have the same shape, written
sameShapeF x x′, to mean that relF> x x′ holds, where > : α→ α→ bool is the vacuously
true relation that ignores the content. Indeed, recall from Section 2.2 that the main intuition
behind a BNF relator relF is that relF R x x′ holds if and only if (1) x and x′ have the same
shape and (2) their atoms are positionwise related by R. Condition (2) is trivially satisfied for
R := >. For lists and lazy lists, sameShape means “same length,” and for various kinds of
trees it means that the two trees become identical if we erase their content (e.g., the labels on
their nodes or their branches).

We could define nonrepF x to mean that, for all x′ such that sameShapeF x x′, |setF x′| ≤
|setF x|. This works for finitary BNFs such as lists and finitely branching well-founded trees,
but fails for infinitary ones. For example, a lazy list as = [1,1,2,2, . . .] : nat stream has
|setllist as| of maximal cardinality, and yet it is repetitive. We need a more abstract approach
that exploits the functorial structure. An essential property of the nonrepetitive lists as =

[a1, . . . ,an] is their ability to pattern-match any other list as′ = [a′1, . . . ,a′n] of the same length
n; and the pattern-matching process yields the function f that sends each ai to a′i (and leaves
the shape unchanged), where f achieves the overall effect that it maps as to as′.

In general, for x : αF, we define nonrepF x so that for all x′ such that sameShapeF x x′,
there exists a function f that maps x to x′, so that x′ = mapF f x. This gives the correct result
for lists, lazy lists, trees, and in general for any combination of (co)datatypes where each
atom has a fixed position in the shape—i.e., for strong BNFs (Section 2.3, Chapter 2). We

Chapter 6. Bindings are Functors 75

can define the corresponding nonrepetitive MRBNF:

Theorem 55. If αF is a strong BNF and nonrepF is nonempty, then αG= {x : αF | nonrepF x},
in conjunction with the corresponding restrictions of mapF, setF, relF, and bdF, forms an
MRBNF.

This construction works for any n-ary BNF αF, which can be restricted to nonrepetitive
members with respect to any of its strong inputs αi, and more generally to any α-MRBNF
(α,τ)F, which can be further restricted with respect to any of its unrestricted strong inputs
τi.

We introduce the notation (α,τ)F @ τi to indicate such further restricted nonrepetitive
MRBNFs. For example, we write α list @ α for the α-MRBNF of nonrepetitive lists over α,
and (α × β) list @ α for the α-MRBNF of lists of pairs in α × β that do not have repeated
occurrences of the first component. Thus, given a,a′ : α with a 6= a′ and b,b′ : β with b 6= b′,
the type (α× β) list @ α contains the list [(a,b), (a′,b)] but not the list [(a,b), (a,b′)].

For BNFs that are not strong such as finite sets and multisets, the nonrepetitiveness con-
struction tends to give counterintuitive results, e.g., no finite set but the empty one is non-
repetitive. However, these structures do not require any nonrepetitiveness revision, being
useful as they are. For example, Hindley–Milner type schemes bind finite sets of variables.

6.2 Defining Terms with Bindings via Map-Restricted BNFs
So far, we have modeled binders as α-MRBNFs (α,τ)F, with m = len (α), n = len (τ),
together with a binding dispatcher θ ⊆ [m] × [n]. We think of each αi as a type of variables,
of each τ j as a type of potential terms, and of (i, j) ∈ θ as indicating that αi-variables are
binding in τ j-terms.

Before we can define actual terms, we must prepare for a dual phenomenon to the binding
of variables: The terms must be allowed to have free variables in the first place, before these
can be bound. Thus, in addition to binding mechanisms, we need mechanisms to inject free
variables into potential terms. This can be achieved by upgrading F: Instead of (α,τ)F,
we work with an (β,α,τ)F, where we consider an additional vector of inputs β representing
the types of (injected) free variables. It is natural to consider the same types of variables
as possibly free and possibly bound. Hence, we will assume len (β) = len (α) = m and use
(α,α,τ)F when defining actual terms. Nevertheless, it is important to allow F to distinguish
between the two kinds of inputs.

Actual terms can be defined by means of a datatype construction framed by F. For
simplicity, we will define a single type of terms where all the types of variables αi can be
bound, which means assuming that all potential term types τi are equal. This is achieved by
taking the following datatype αT , of F-framed terms with variables in α:

αT ' (α,α, [αT]n)F

Chapter 6. Bindings are Functors 76

where [αT]n denotes the tuple consisting of n (identical) occurrences of αT . The fully gen-
eral case, of multiple (mutually recursive) term types, is a straightforward but technical gen-
eralization.

Example 56. Consider the syntax of the λ-calculus, where the collection αT of terms t with
variables in α are defined by the grammar t ::= Vara | λa. t | t t. A term is either a variable,
an abstraction, or an application. This is supported in our abstract scheme by taking m = 1,
n = 2, θ = {(1,1)}, and (β,α,τ1,τ2)F = β + α × τ1 + τ2 × τ2. The resulting αT satisfies
the recursive equation αT ' α+ α× αT + αT × αT . Not visible in this equation is how F

distinguishes

• between the free-variable type β and the binding-variable type α—a distinction that
ensures that the occurrence of α as the first summand stands for an injection of free
variables, whereas the first occurrence of α in the second summand stands for binding
variables; and

• between two different types of potential terms, τ1 and τ2—a distinction that ensures,
via θ, that α’s binding powers extend to the occurrence of αT in the second summand
but not to the two occurrences in the third summand.

This additional information is needed for the proper treatment of the bindings.

The functor F both binds variables and injects free variables. Despite this dual role, we
will call F a binder type. Multiple binding or free-variable injecting operators can be handled
simultaneously by defining F appropriately.

Example 57. Consider the extension of the λ-calculus syntax with “parallel let” binders:

t ::= · · · | let a1 = t1 and . . . and an = tn in t

We can add a further summand, ((α × τ2) list × τ1) @ α, to the previous definition of
(β,α,τ1,τ2)F. The choice of the type variables in (α × τ2) list × τ1, in conjunction with
θ’s relating α with τ1 but not with τ2, indicate that the term t, but not the terms ti, is in the
scope of the binding variables ai.

To summarize, we have extended the MRBNF F with a further vector of inputs, β. The
new functor (β,α,τ)F has the following inputs:

• β are types of free variables;

• α are types of binding variables;

• τ are types of potential terms, which are made into actual terms when defining the
datatype αT as αT ' (α,α, [αT]n)F.

We have assumed F to be a full functor on τ, and to be a functor on α with respect to
endobijections. But how should it behave on β? A natural answer would be to require
full functoriality, because the nonrepetitiveness condition that compelled us to restrict F’s
behavior on binding variable inputs seems unnecessary here: There is no apparent need to

Chapter 6. Bindings are Functors 77

avoid repeated occurrences of free variables. In fact, the central operation of substitution
introduces repetitions, e.g., by substituting a for a′ while a was already free in the term. So
for now, we will assume full functoriality on β.

Proposal 4. A binder type is a map-restricted BNF that

• distinguishes between free-variable, binding-variable, and potential term inputs; and

• puts the map restriction on the binding-variable inputs only

together with a binding dispatcher between the binding-variable inputs and the potential

term inputs.

Next, we will see if this refined proposal is apt for supporting some fundamental con-
structions on terms. A small running example, exhibiting plenty of binding diversity, will
keep us company:

Example 58. Consider a variation of the λ-calculus syntax where abstractions simultane-
ously bind two variables in two terms, given by the grammar t ::= Var a | λ(a,b). (t1, t2),
with the usual requirement that the variables a and b are distinct. We can take θ = {(1,1)}
and (β,α,τ)F = β + ((α × α) @ α) × τ × τ. We write Inl and Inr for the left and right
injections of the components into sums types: Inl : β→ (β,α,τ)F and Inr : ((α× α) @ α)×
τ× τ→ (β,α,τ)F.

6.2.1 Free Variables

Any element t : αT can be written as ctor x, where x : (α,α, [αT]n)F has three kinds of
atoms.

• (i-)top-free variables (topFreei x): the elements of setF
i x for i ∈ [m]—these are mem-

bers of αi, representing the free variables injected by the topmost constructor of t;

• (i-)top-binding variables (topBindi x): the elements of setF
m+i x for i ∈ [m]—these are

members of αi, representing the binding variables introduced by the topmost construc-
tor of t;

• (j-)recursive components (rec j x): the elements of setF
2m+ j x for j ∈ [n]—these are

members of αT .

To refer more precisely to the scope of bindings in light of the binding dispatcher θ, for each
i ∈ [m] and j ∈ [n] we define topBindi, j x to be either topBindi x if (i, j) ∈ θ or ∅ otherwise.
(Since topBindi, j incorporates the information provided by θ, the latter will be left implicit
in our forthcoming constructions.) We can think of topBindi, j x as the top-binding variables
that are actually binding in all of the rec j x components, simultaneously.

Equipped with these notations, we can define a free variable of a term to be either a top-
free variable or, recursively, a free variable of some recursive component that is not among
the relevant top-binding variables. Formally, FVarsi t for i ∈ [m] is defined inductively by the

Chapter 6. Bindings are Functors 78

following rules:

a ∈ topFreei x

a ∈ FVarsi (ctor x)

t ∈ rec j x a ∈ FVarsi tr topBindi, j x

a ∈ FVarsi (ctor x)

In the context of our running Example 58, let us assume from now on that a,b,c,d, . . .
are mutually distinct variables. First, consider the term t = Var c. It can be written as ctor x,
where x = Inl c. Therefore, topFree x = {c}, topBind x = ∅, and rec x = ∅. (We omit the
indices since m = n = 1.) Thus, t has c as its single top-free variable, has no top-binding
variables, and has no recursive components. Moreover, t has c as its single free variable: Ap-
plying the first rule in the definition of FVars, we infer c ∈ FVars (ctor x) from c ∈ topFree x.

Now consider the term t = λ(a,b). (Vara,Varc). It can be written as t = ctor x, where
x = Inr ((a,b), (Vara,Varc)). Therefore, topFree x = ∅, topBind x = {a,b}, and rec x =

{Var a, Var c}. Thus, t has no top-free variables, has a and b as top-binding variables, and has
Var a, Var c as recursive components. Moreover, t has c as its single free variable: Applying
the second rule in the definition of FVars, we infer c ∈ FVars (ctor x) from Var c ∈ rec x and
c ∈ FVars (Var c)r topBind x = {c}r{a,b}= {c} using (1,1) ∈ θ.

6.2.2 Alpha-Equivalence

To express alpha-equivalence, we first need to define the notion of renaming the variables of
a term via m bijections f . This can be achieved using by the map function of αT , defined
recursively as

mapT f (ctor x) = ctor (mapF f f [mapT f]n x)

Thus, mapT f applies f to the top-binding and top-free variables of any term ctor x, and calls
itself recursively for the recursive components. The overall effect is the application of f to
all the variables (free or not) of a term.

Intuitively, two terms t1 and t2 should be alpha-equivalent if they are the same up to a
renaming of their bound variables. More precisely, the situation is as follows (Fig. 6.1):

• Their top-free variables (marked in the figure as a1 and a2) are positionwise equal.

• The top-binding variables of one (marked as a′1) are positionwise renamed into the
top-binding variables of the other (marked as a′2), e.g., by a bijection fi.

• The results of correspondingly (i.e., via f) renaming the recursive components of t1
are positionwise alpha-equivalent to the recursive components of t2. In symbols, we
will express this fact as mapT f t1 ≡ t2.

As discussed in Section 2.2, the relators can elegantly express positionwise correspondences
as required above. Formally, we define the (infix-applied) alpha-equivalence relation ≡ :
αT→ αT→ bool inductively by the following clause:

relF [(=)]m (Gr f1) . . . (Gr fm) [(λt1, t2. mapT f t1 ≡ t2)]n x1 x2 cond1 (f1) · · ·condm (fm)
ctor x1 ≡ ctor x2

Chapter 6. Bindings are Functors 79

The clause’s first hypothesis is the inductive one. It employs the relator relF to express how
the three kinds of atoms of x1 and x2 must be positionwise related: by equality for the top-
free variables, by the graph of the m renaming functions fi for the top-binding variables,
and by alpha-equivalence after renaming with f for the recursive components. The sec-
ond hypothesis is a condition on the fi’s. Clearly, fi : αi → αi must be a bijection (written
bij : (α→ α)→ bool), to avoid collapsing top-binding variables. Moreover, fi should not be
allowed to change the free variables of the recursive components t1 that are not captured by
the top-binding variables. We thus take condi (fi) to be

bij fi ∧ ∀a ∈ (
⋃

j∈[n] (
⋃

t1∈rec j x1
FVars t1)r topBindi, j x1). fi a = a

Returning to the context of Example 58, we first note that Var a ≡ Var a for every a.
This is shown by applying the definitional clause of ≡ with the identity for f . The first
hypothesis can be immediately verified: Since Var a has no top-binding variables or recursive
components, only the condition concerning the top-free variables needs to be checked: a = a.

Now consider the terms t1 = λ(a,b). (Var a,Var c) and t2 = λ(b,a). (Var b,Var c), which
can be written as ctor x1 and ctor x2, where x1 = Inr ((a,b), (Var a,Var c)) and x2 = Inr ((b,
a), (Var b,Var c)). We can prove these to be alpha-equivalent by taking f to swap a and
b (i.e., send a to b and b to a) and leave all the other variables, including c, unchanged.
Verifying the first hypothesis of≡’s definitional clause amounts to the following: Concerning
positionwise equality of the top-free variables, there is nothing to check (since t1 and t2
have none); concerning the top-binding variables, we must check that f a = b and f b =

a; concerning the recursive components, we must check that mapT f (Var a) ≡ Var b and
mapT f (Var c) ≡ Var c. Applying the definition of mapT , the last equivalences become
Var (f a) ≡ Var b—i.e., Var b ≡ Var b and Var c ≡ Var c. Finally, verifying the second
hypothesis, cond (f), amounts to checking that f is bijective and that f is the identity on all
variables in the set (

⋃
t1∈{Var a,Var c}FVars t1)r{a,b}= {a,c}r{a,b}= {c}—i.e., f sends

c to c.
The approach above is one of the several possible choices to define alpha-equivalence.

We could pose stricter conditions on the fi, allowing them to change only the top-binding
variables, whereas we also allow it to change some other (nonfree) variables occurring in the
components. In the context of the running example, if the left term is λ(a,b). (Var c, λ(c,d).
(Var c,Var d)), then both solutions allow f to change a and b, and do not allow it to change
c. Our definition additionally allows f to change d. Another alternative would consist in
a symmetric formulation: Rather than renaming variables of the left term only, we could
rename the variables of both terms to a third term, whose binding variables are all distinct
from those of the first two. All these variants of introducing alpha-equivalence have different
virtues in terms of the ease or elegance of proving various basic properties, but in the end
produce the same concept.

For any MRBNF F, we can prove the following crucial properties of alpha-equivalence.
All these results follow by either rule induction on the definition of ≡ or structural induction
on αT .

Chapter 6. Bindings are Functors 80

F F

a1

=

a′1

fi

t1

mapT f _ ≡ _

a2 a′2 t2

FIGURE 6.1: Alpha-equivalence

Theorem 59. Alpha-equivalence is an equivalence and is compatible with

• the term constructor, in that relF [(=)]m [(=)]m [(≡)]n x1 x2 implies ctor x1 ≡ ctor x2

for all x1, x2 : (α,α, [αT]n)F;

• the free-variable operators, in that t1 ≡ t2 implies FVarsi t1 = FVarsi t2 for all i ∈ [m];

• the map function of T , in that, if fi : α→ α for i ∈ [m] are (endo)bijections, then t1 ≡ t2
implies mapT f t1 ≡mapT f t2.

6.2.3 Alpha-Quotiented Terms

Exploiting Theorem 59, we can define the quotient αT = (αT)/≡, and lift the relevant func-
tions to αT. Using overloaded notation, we obtain the constructor ctor : (α,α, [αT]n)F→
αT and the operators FVars : αT → α set and mapT : (α1 → α1)→ ··· → (αm → αm)→
αT→ αT.

Note that, whereas on αT the constructor is bijective, on αT it is only surjective. Its
injectivity fails due to quotienting, which allows us to bind different variables in different
terms but obtain equal results. In our running example, the terms λ(a,b). (Var a,Var c) and
λ(b,a). (Var b,Var c) are equal (in αT), which means that ctor x1 = ctor x2, where x1 =

Inr ((a,b), (Var a,Var c)) and x2 = Inr ((b,a), (Var b,Var c)); but x1 6= x2, since Var a 6=
Var b.

Nevertheless, the quotient type enjoys injectivity up to a renaming, which follows from
the definition of α, its compatibility with ctor and mapT , and the properties of relators:

Proposition 60. Given x1, x2 : (α,α, [αT]n)F, the following are equivalent:

• ctor x1 = ctor x2;

• there exist functions fi : αi→ αi satisfying condi (fi) for i ∈ [m] such that x2 = mapF

[id]m f [mapT f]n x1.

Thus, αT was defined by fixpoint construction framed by F followed by a quotienting
construction to a notion of alpha-equivalence determined by the binding dispatcher θ, which
for (β,α,τ)F states what α binds in τ. We will use the notation

αT 'θ (α,α, [αT]n)F

to summarize the definition of this binding-aware datatype, where the θ subscript emphasizes
that we have an isomorphism up to the alpha-equivalence determined by θ.

The presence of the operators ctor, FVars, and mapT on quotiented terms offers them a
large degree of independence from the underlying terms. Indeed, we are here being faithful

Chapter 6. Bindings are Functors 81

to one of our main design goals, that was already present in the development we presented
in Chapter 3, namely, developing an abstraction layer for reasoning about the type αT that
allows us to forget about αT .

Terminology From now on, we will adhere to the following convention: We will call the
members of αT terms and the members of the underlying type αT raw terms1.

6.2.4 Infinitely Branching Terms

Also in this second functor-based formalization of our theory, our constructions do not com-
mit to the finite branching of terms, thus capturing situations required by some calculi [51]
and logics [40, 35] (see also Section 3.1.5 from Chapter 3).

Example 61. A simplified version of the syntax for processes in the calculus of communi-
cating systems (CCS) [51] is the following, where c ranges over a fixed type C of channels,
e over a type αE of arithmetic expressions with variables in α, and J over subsets of a fixed,
possibly infinite type I of indices:

p ::= c (a). p | ce. p | ∑i∈J pi

Above, c(a) . p is an input-prefix process with the binding variable a modeling the receiving
of data on channel c, and ce. p is an output-prefixed process that starts by sending the value
of expression e on c. The sum constructor models nondeterministic choice from a variety of
possible continuations (pi)i∈J . The terminating process 0 is defined as an empty sum.

In our framework, αE is a standard datatype BNF and the type αT of process terms can
be defined as the binding-aware datatype given by m = 1, n = 2, θ = {(1,1)}, and

(β,α,τ1,τ2)F = (C×α×τ1) + (C×βE×τ2) + (I→ (τ2 + unit))

where we have modeled functions from subsets of I to τ2 as functions from I to τ2 + unit.
Hence, as desired, αT satisfies the recursive equation

αT 'θ (C×α×αT) + (C×αE×αT) + (I→ (αT+ unit))

where the notion of alpha-equivalence induced by θ asks that in the first summand the α
variables bind in their neighboring terms.

6.2.5 Substitution

An important operation we want to support on terms αT is capture-avoiding substitution.
With our current infrastructure, we should hope to be able to define simultaneous substitution

of variables for variables, sub : (α1 → α1)→ ·· · → (αm → αm)→ αT → αT. It should
take m functions fi : αi → αi and a term t and return a term obtained by substituting in t,
in a capture-avoiding fashion, all its free variables a with fi a. Substitution with injective
functions fi is customarily called “renaming.” Moreover, unary substitution is a particular

1Here we use again again, as in Chapter 3 the word “raw” to indicate those items not yet quotiented by
alpha-equivalence.

Chapter 6. Bindings are Functors 82

case of simultaneous substitution, defined as t[a/b] = sub fa,b t, where fa,b sends b to a and
all other variables to themselves.

A candidate for sub that suggests itself is mapT, which αT inherits from αT . However,
this operator is not suitable, since it only works with bijections fi. The fundamental desired
property of sub concerns its recursive behavior on terms of the form ctor x:

(∀i ∈ [m]. topBindi x∩FVarsi (ctor x) = ∅ ∧ topBindi x∩ supp fi = ∅)

−→ sub f (ctor x) = ctor (mapF f [id]m [sub f]n x)
(∗)

where supp fi, the support of fi, is defined as the union of Ai = {a : αi | fi a 6= a} and
image fi Ai (Ai’s image through fi). Thus, sub f should distribute over the term construc-
tor when neither the term’s free variables nor the variables touched by fi overlap with the
top-binding variables.

The first of these two conditions, topBindi x∩FVarsi (ctor x) = ∅, which we will ab-
breviate as noClashi x, follows a general hygiene principle that is independent of the notion
of substitution (and which will be observed by all our proof and definition principles): We
never consider variables that appear both bound and free in the same term. The condition
is vacuously true for syntaxes in which no constructor simultaneously binds variables and
introduces free variables.

To satisfy the two conditions, it must be possible to replace any binding variables in x

that belong to the offending sets FVarsi (ctor x) or supp fi with variables from outside these
sets, resulting in x′. This replacement would be immaterial as far as the input term ctor x

is concerned: Alpha-equivalence being equality on αT, ctor x′ and ctor x would be equal.
By this argument, it would be legitimate to take the premise of (∗) as true whenever we
apply substitution. However, there is the issue that FVarsi (ctor x)∪supp fi may be too large;
indeed, it may even exhaust the entire type αi. We need a way to ensure that enough fresh
variables are available.

6.2.6 Acquiring Enough Fresh Variables

An advantage of our functorial setting is that the collection of variables α is not a priori fixed.
Since the functor F that underlies αT is a BNF, we can prove ∀i∈ [m]. |FVarsi t| < bdF for all
raw terms t, hence also for all terms t, where bdF is the bound of F (Section 2.2). To ensure
that |FVarsi t| < |αi|, it suffices to instantiate αi with a type with a cardinality ≥ bdF. We can
therefore hope to prove the existence of a function sub : (α1→ α1)→ ··· → (αm→ αm)→
αT→ αT satisfying (∗) if bdF < |αi| and |supp fi| < |αi|.

Here is an illustration of the above phenomenon, in a case that goes beyond finite sup-
port. Using the notations of Example 61, let J = I = nat and let t be the process term
c (a0).∑i∈nat cai.0, where the ai’s are all distinct variables. Then what is the term sub f t,
where f is the function that sends a0 to a0 and any ai+1 to ai? Clearly, sub f t should start
with c (a) for some variable a. However, a cannot be an ai, since ai must be free in sub f t

(due to ai+1 being free in t). But what if the ai’s exhaust all the available variables? To
avoid this scenario, we ask that the support of f be smaller than the set of available variables,
which is true for example (1) if the support is finite and there are infinitely many variables,

Chapter 6. Bindings are Functors 83

or (2) if the support is countable and there are uncountably many variables. In the first case,
f is not deemed suitable for substitution. In the second case, there exists a fresh variable
xπ with the help of which we can express tsub f t as c (aπ).∑i∈nat ca′i.0, where a′0 = aπ and
a′i+1 = ai. By keeping the type αT of terms polymorphic in the type α of variables, we can
avoid committing to a specific scenario. This contributes to modularity: When using αT as
part of a larger (co)datatype (perhaps defined as a T-nested fixed point), T will be able to
export collections of variables of any required size. (See also Section 6.2.9.)

The above solution seems to require needlessly many variables when F is finitary—i.e.,
bdF = ℵ0 (the countable cardinal). This is the case for all finitely branching datatypes.
With our approach, we would need α to be uncountable, even though countably infinitely
many variables would suffice. It could be argued that variable countability is unimportant.
Indeed, some textbooks assume only “an infinite supply of variables,” without mentioning
countability. But countability becomes important when we consider practical aspects such as
executability. Therefore, it is worth salvaging countability if we can. It turns out that we can
do that with a little insight from the theory of cardinals. We note that the crucial property
that |FVarsi t| < |αi| for all i ∈ [m] and t : αT can be achieved using the nonstrict inequality
bdF ≤ |αi| if |αi| is a regular cardinal—again regularity proves itself to be the right property
to exploit in this context, see 3.2.3.

Theorem 62. There exists a (polymorphic) function sub : (α1→ α1)→ ···→ (αm→ αm)→
αT→ αT satisfying (∗) for all αi and fi if |αi| is regular, bdF ≤ |αi|, and |supp fi| < |αi|.

This solution is applicable for any MRBNF F: Since there exist arbitrarily large regular
cardinals, for any bdF we can choose suitable types αi—for example, we can choose αi whose
cardinality is the successor cardinal of bdF. Moreover, the solution gracefully caters for the
finitary case: Since ℵ0 is regular, for a countable bound bdF we can choose countable αi’s.

6.2.7 Term-for-Variable Substitution

So far, we have only discussed variable-for-variable substitutions. Often it is necessary to
perform a term-for-variable substitution, in a capture-avoiding fashion. In the λ-calculus,
we could substitute λc.Var a for b in λa. (Var a) (Var b), yielding (after a renaming which
does not affect alpha-equivalence) λa′. (Var a′) (λc.Var a). However, not all syntaxes with
bindings allow substituting terms for variables. Process terms in the π-calculus [50] contain
channel variables (names), which can be substituted by other channel variables but not by
processes.

So when is term-for-variable substitution possible? A key observation is that, unlike the
π-calculus, the λ-calculus can embed single variables into terms. This is achieved either
explicitly via an operator (e.g., Var) or implicitly by stating that variables are terms.

We can express such situations abstractly in our framework, by requiring that the framing
MRBNF (β,α,τ)F accommodate such embeddings. We fix I ⊆ [m] and assume injective
natural transformations ηi : βi→ (β,α,τ)F for i ∈ I such that setF

i (ηi a) = {a}. Moreover,
we assume that ηi is the only source of variables in F, by requiring that setF

i x = ∅ for every
x that is not in the image of ηi. The injections of variables into terms, Vari : αi → αT, are

Chapter 6. Bindings are Functors 84

defined as Vari = ctor ◦ ηi. For the syntax of our running Example 58, where (β,α,τ)F =

β + ((α × α) @ α) × τ × τ, we have that η : β→ (β,α,τ)F is the injection of the leftmost
summand.

Now we can define simultaneous term-for-variable substitution similarly to variable-for-
variable substitution, parameterized by functions fi : αi→ αT of suitable small support:

tsub f I (ctor x) =

 fi a if x has the form ηi a

ctor (mapF [id]m [id]m [tsub f I]n x) otherwise
(∗∗)

provided that ∀i ∈ I. noClashi x ∧ topBindi x∩ supp fi = ∅. Above, supp fi is the union of
Ai = {a : αi | fi a 6= Var a} and image (FVarsi ◦ fi) Ai (Ai’s image through FVarsi ◦ fi), and
f I denotes the tuple (fi)i∈I .

For a term t = ctor x, saying that x has the form ηi a is the same as saying that t has the
form Vari a—hence the first case in the above equality is the base case of a variable term
Vari a.

The existence of an operator tsub exhibiting such recursive behavior can be established
by playing a similar cardinality game as we did for sub:

Theorem 63. There exists a (polymorphic) function tsub : (∏i∈I(αi→ αT))→ αT satisfy-
ing (∗∗) for all αi and fi in case |αi| is regular, bdF ≤ |αi| and |supp fi| < |αi|.

6.2.8 Non-Well-Founded Terms

We have developed the theory of well-founded terms framed by an abstract binder type F

using a binding dispatcher θ. An analogous development results in a theory for possibly non-
well-founded terms, yielding non-well-founded terms modulo the alpha-equivalence induced
by θ:

αT '∞
θ (α,α, [αT]n)F

To this end, raw terms are defined as a greatest fixpoint: αT '∞ (α,α, [αT]n)F. Then alpha-
equivalence ≡ : αT → αT → bool is defined by the same rules as in Section 6.2.2, but em-
ploying a coinductive (greatest fixpoint) interpretation. On the other hand, the free-variable
operator is still defined inductively, by the same rules as in Section 6.2.1.

To see why alpha-equivalence becomes coinductive whereas free variables stay inductive,
imagine coinductive terms as infinite trees: If two terms are alpha-equivalent, this cannot be
determined by a finite number of the applications of ≡; by contrast, if a variable is free in a
term, it must be located somewhere at a finite depth, so a finite number of rule applications
should suffice to find it.

This inductive–coinductive asymmetry seems to stand in the way of a duality principle,
which would allow us to reuse, or at least copy, the proofs above to cover non-well-founded
terms. Fortunately, there is a way to restore the symmetry. On well-founded terms, ≡ could
have been equivalently defined coinductively. This is because the fixpoint operator Op≡ :
(αT → αT → bool)→ (αT → αT → bool) underlying the definition of ≡ has a unique
fixpoint: (≡) = lfp Op≡ = gfp Op≡. In addition, the recursive definition of mapT on well-
founded terms in Section 6.2.2 has an identical formulation for non-well-founded terms,

Chapter 6. Bindings are Functors 85

although it has different, corecursive justification.
As a result, many properties concerning the constructor, alpha-equivalence, free vari-

ables, the map function, and their combination on raw terms, including Theorem 59, which
justifies the construction of αT, can be proved in exactly the same way. All the theorems
shown in Sections 6.2.1 to 6.2.7 hold for non-well-founded terms as well, with identical
formulations. In particular, our solution to allow infinite support also applies to non-well-
founded terms, which is crucial given that infinite terms rarely have finite support.

6.2.9 Modularity Considerations

Starting with a binding dispatcher θ and an α-MRBNF (β,α,τ)F, we have constructed the
binding-aware datatype (or codatatype) αT as αT 'θ (α,α, [αT]n)F. It enjoys the following
property:

Theorem 64. αT is an α-MRBNF with map function mapT and set functions FVarsi.

This suggests that our framework is modular in the sense that we can employ T in further
constructions of binding-aware types. And indeed, this is possible if we want to use the
variables α that parameterize αT as binding variables. For example, if len (α) = 1 and we
take (β,α,τ)F′ to be β + α T × τ, then F′ is an α-MRBNF, which can in turn be used to
build further binding-aware datatypes αT′ as αT′ 'θ (α,α,αT′)F′.

However, T cannot also export its variables as free variables. For example, if again
len (α) = 1 and we take (β,α,τ)F′ to be β+ α× β T × τ, then F′ is not an α-MRBNF; it is
only a (β,α)-MRBNF, since it is defined using β T, which imposes a map-restriction on β as
well. In particular, F′ cannot be employed in fixpoints αT′ 'θ (α,α,αT′)F′, which requires
full functoriality of (β,α,τ)F′ on β. Unfortunately, this second scenario seems to be the most
useful. The next example illustrates it. It considers a syntactic category of types that allows
binding type variables, while participating as annotations in a syntactic category of terms that
also allows binding type variables.

Example 65. Consider the syntax of System F types, σ ::= TyVar a | ∀a. σ | σ→ σ, as-
sumed to be quotiented by the alpha-equivalence standardly induced by the ∀ binders. In our
framework, this is modeled as αT 'θ (α,α,αT,αT)F, where θ= {(1,1)} and (β,α,τ1,τ2)

F = β + α× τ1 + τ2 × τ2. Now consider the syntax of System F terms, writing a′ for term
variables:

t ::= Var a′ | Λa. t | λa′ : σ. t | t σ | t t

This should be expressed as αT′ 'θ (α,α, [αT′]3)F′, where θ= {(1,1), (2,2)} and (β,α,τ)F′

= β2 + α1 × τ1 + α2 × β1 T × τ2 + τ3 × β1 T + τ3 × τ3 with len (β) = len (α) = 2 and
len (τ) = 3. Indeed, this would give the overall fixpoint equation

αT′ 'θ α2 +α1 × αT′+α2 × α1 T × αT′+αT′ × αT+αT′ × αT′

In this scheme, α1 stores the System F type variables, and α2 stores the System F term
variables. As usual, this isomorphism is considered up to the alpha-equivalence induced by
θ, which tells us that in the second summand α1 binds in its neighboring αT′, and in the third

Chapter 6. Bindings are Functors 86

summand α2 binds in its neighboring αT′. Note that System F type variables (represented
by α1) appear as binding in the second summand and as free (as part of α1 T) in the third
summand. However, the definition of αT′ is not possible; due to the presence of β1 T as a
component, (β,α,τ)F′ is not an α-restricted MRBNF, but is additionally map-restricted on
β1.

The above problem would vanish if T were a full functor (with respect to arbitrary func-
tions). However, the map function’s mapT restriction to endobijections is quite fundamental:
Its definition is based on the low-level mapT on raw terms, which preserves alpha-equivalence
only if applied to endoinjections or endobijections. This phenomenon is well known in nom-
inal logic, and is a main reason for this logic’s focus on the swapping operator (as we pointed
out, considering swapping for finitary objects is essentially the same as considering endobi-
jections): Swapping a and b respects alpha-equivalence (e.g., starting with λa.ab ≡ λc.cb

we obtain λb.ba ≡ λc.ca), whereas substituting a for b (in a capturing fashion) does not
(e.g., starting with the same terms as above we obtain λa.a a 6≡ λc.c a).

On the other hand, besides mapT : (α1 → α1)→ ··· → (αm → αm)→ αT → αT, on
αT, we can also rely on the capture-avoiding substitution operator sub : (α1→ α1)→ ··· →
(αm→ αm)→ αT→ αT. This one has functorial behavior with respect to functions fi : αi→
αi that are not endobijections, but suffers from a different kind of limitation: It requires that
f has small support (of cardinality less than |α|). Thus, we do have a partial preservation of
functoriality that goes beyond endobijections: On α, the framing F was a full functor, while
the emerging datatype is only a functor with respect to small-support endofunctions.

At this point, it is worth asking whether full functoriality of (β,α,τ)F on its free-variable
inputs β was really necessary for the constructions leading to αT and its properties. It turns
out that the answer is no. It is enough to assume functoriality with respect to small-support
endofunctions to recover everything we developed, while performing minor changes to the
definitions. Assuming that all the functions involved have small support, in particular, adding
this condition to the condi(fi) hypothesis in the definition of alpha-equivalence. This leads
us to our final proposal:

Proposal 5. A binder type is a map-restricted BNF that

• distinguishes between free-variable, binding-variable and potential term inputs;

• puts a small-support endobijection map restriction on the binding-variable inputs; and

• puts a small-support endofunction map restriction on the free-variable inputs

together with a binding dispatcher between the binding-variable inputs and the term inputs.

Thus, we will require that (β,α,τ)F be a functor with respect to small-support endofunc-
tions on β, with respect to small-support endobijections on α, and with respect to arbitrary
functions on τ. Full functoriality on τ is necessary to solve the fixpoint equations that de-
fine the (co)datatypes. To clearly indicate this refined classification of its inputs, we will
call (β,α,τ)F a β-free α-binding MRBNF, where we omit “β-free” or “α-binding” if the
corresponding vector β or α is empty.

Chapter 6. Bindings are Functors 87

This final notion of MRBNF achieves useful modularity, in the sense that the free vari-
ables of terms are really a free MRBNF component:

Theorem 66. αT is an α-free MRBNF with map function sub and set functions FVarsi.

Now we can give the complete definition of our just developed map-restricted bounded
natural functors, to which the next section is dedicated. In the subsequent two sections, we
complete our stated goal of offering the terms with bindings an abstraction layer, consisting
of reasoning and definitional principles, that insulates them completely from the low-level
details of raw terms.

6.3 Full Definition of Map-Restricted Bounded Natural Functors
Section 5.2, from Chapter 5, and 6.1 and 6.2, from this chapter, develop the notion of MRBNF
through a sequence of refinements. While it can be inferred from the refinements, it may also
be useful to list the end product as a single definition.

Let F = (F,mapF, (seti
F)i∈[m1+m2+n],bdF), where

• F is an m1 +m2 + n-ary type constructor;

• bdF is an infinite cardinal number;

• bdF ≤ |βi| and |βi| is a regular cardinal for all i ∈ [m1];

• bdF ≤ |αi| and |αi| is a regular cardinal for all i ∈ [m2];

• mapF : (β1→β1)→ ··· → (βm1→βm1)→ (α1→α1)→ ··· → (αm2→αm2)→ (τ1→
τ′1)→ ··· → (τn→τ′n)→ (β,α,τ)F→ (β,α,τ′)F;

• seti
F : (β,α,τ)F→ βi set for i ∈ [m1];

• setm1+i
F : (β,α,τ)F→ αi set for i ∈ [m2];

• setm1+m2+i
F : (β,α,τ)F→ τi set for i ∈ [n];

F’s action on relations relF : (β1→β1)→ ·· · → (βm1→βm1)→ (α1→α1)→ ··· → (αm2→
αm2)→ (τ1→ τ′1→bool)→···→ (τn→ τ′n→bool)→ (β,α,τ)F→ (β,α,τ)F→bool is de-
fined by

(DefRel) (∀i ∈ [m1]. |supp ui| < |βi|)∧ (∀i ∈ [m2]. |supp vi| < |αi|∧bij vi) −→
relF u v R x y←→∃z. (∀i ∈ [n].setm1+m2+i

F z⊆ {(a,a′) | Ri a a′})
∧ mapF [id]m1 [id]m2 [fst]n z = x ∧mapF u v [snd]n z = y

(where bij is a predicate expressing that a function is a bijection). F is an β-free α-binding

map-restricted bounded natural functor (MRBNF) if it satisfies the following properties:

Chapter 6. Bindings are Functors 88

(Fun) (F,mapF) is an n-ary functor—i.e., mapF commutes with function composition and
preserves the identities, i.e.,

mapF [id]m1 [id]m2 [id]n = id
(∀i ∈ [m1]. |supp ui| < |βi|∧ |supp u′i| < |βi|)∧
(∀i ∈ [m2]. |supp vi| < |αi|∧bij vi∧|supp v′i| < |αi|∧bij v′i) −→

mapF (u1 ◦u′1) · · · (um1 ◦u′m1
) (v1 ◦ v′1) · · · (vm2 ◦ v′m2

) (g1 ◦ f1) · · · (gn ◦ fn) =

mapF u v g◦mapF u′ v′ f ;

(Nat) each seti
F is a natural transformation between the functor (F,mapF) and the powerset

functor (set, image), i.e.,

(∀i ∈ [m1]. |supp ui| < |βi|)∧ (∀i ∈ [m2]. |supp vi| < |αi|∧bij vi) −→
(∀i ∈ [m1]. seti

F ◦mapF u v f = image ui ◦ seti
F)∧

(∀i ∈ [m2]. setm1+i
F ◦mapF u v f = image vi ◦ setm1+i

F)∧
(∀i ∈ [n]. setm1+m2+i

F ◦mapF u v f = image fi ◦ setm1+m2+i
F ;)

(Cong) mapF only depends on the value of its argument functions on the elements of seti
F,

i.e.,
(∀i ∈ [m1]. |supp ui| < |βi|∧ |supp u′i| < |βi|)∧
(∀i ∈ [m2]. |supp vi| < |αi|∧bij vi∧|supp v′i| < |αi|∧bij v′i)∧
(∀i ∈ [m1]. ∀a ∈ seti

F x. ui a = u′i a)∧
(∀i ∈ [m2]. ∀a ∈ setm1+i

F x. vi a = v′i a)∧
(∀i ∈ [n]. ∀a ∈ setm1+m2+i

F x. fi a = gi a) −→
mapF u v f x = mapF u′ v′ g x;

(Bound) the elements of seti
F are bounded by bdF, i.e.,

∀i ∈ [m1 +m2 + n]. ∀x : (β,α,τ)F.
∣∣seti

F x
∣∣ < bdF;

(Rel) (F, relF) is an n-ary relator, i.e., relF commutes with relation composition } and pre-
serves the equality relations, i.e.,

relF [id]m1 [id]m2 [(=)]n = (=)

(∀i ∈ [m1]. |supp ui| < |βi|∧ |supp u′i| < |βi|)∧
(∀i ∈ [m2]. |supp vi| < |αi|∧bij vi∧|supp v′i| < |αi|∧bij v′i) −→

relF (u1 ◦u′1) · · · (um1 ◦u′m1
) (v1 ◦ v′1) · · · (vm2 ◦ v′m2

) (R1 }S 1) · · · (Rn }S n) =

relF u v R} relF u′ v′ S .

Clause (Rel) shows that, on restricted inputs, the MRBNF relator operates not on relations
that form the graph of endofunctions or endobijections, but, to the same effect, directly on
the functions themselves. In other words, on restricted inputs the relator collapses into the
map function.

Chapter 6. Bindings are Functors 89

6.4 Binding-Aware (Co)induction Proof Principles
This section is dedicated to reasoning about terms, in their well-founded and non-well-
founded incarnations, taking their binding structure into consideration (see Chapter 3, Sec-
tion 3.4). In what follows, we will implicitly assume that αi is such that |αi| is regular and
bdF ≤ |αi|.

6.4.1 Induction

Next, we take αT to be type of (well-founded) terms (as in Section 6.2.3). Let us fix a
polymorphic type αP, of entities we will call “parameters.” For proving a property such as
∀t : αT .∀p : αP. ϕ t p, we have at our disposal the standard structural induction principle
inherited by the quotient αT from the (free) datatype αT of raw terms: It suffices to prove
that, for each term ctor x, the predicate λt. ∀p : αP. ϕ t p holds for it provided that holds
for all its recursive components. However, we can be more ambitious. The following fresh

structural induction (FSI) is a binding-aware improvement inspired by the nominal logic
principle of [76]:

Theorem 67 (FSI). Let PFVarsi : αP→ αi set with ∀p : αP. |PFVarsi p| < |αi|.
Given a predicate ϕ : αT→ αP→ bool, if the condition

∀x : (α,α, [αT]n)F. (∀ j ∈ [n]. ∀t ∈ rec j x.∀p : αP. ϕ t p)

−→ (∀p : αP. (∀i ∈ [m]. noClashi x ∧ topBindi x∩PFVarsi p = ∅) −→ ϕ (ctor x) p)

holds, then the following also holds: ∀t : αT.∀p : αP. ϕ t p.

Above, we highlighted the two differences from standard structural induction: We as-
sume that parameters p come with sets of variables PFVarsi p which are smaller than αi.
This weakens what we must prove in the induction step for a given term ctor x, by allowing
us to further assume that x is no-clashing and that its top-binding variables are fresh for the
parameter’s variables.

The (FSI) principle is especially useful when the parameters are themselves terms, vari-
ables, or functions on them, which is often the case. An example is the distributivity over
composition of sub:

Proposition 68. We have sub (g1 ◦ f1) · · · (gm ◦ fm) = sub g ◦ sub f for all fi, gi : αi → αi

such that |supp fi| < |α| and |supp gi| < |α| for all i ∈ [m].

This property would be difficult to prove by standard induction, since the support of the
functions f and g may capture bound variables. With (FSI) the problem is avoided: Taking
the parameters to be tuples (f ,g) of endofunctions of small support, PFVarsi (f ,g) to be
supp fi∪ supp gi, and ϕ t (f ,g) to be sub (g ◦ f) t = (sub g ◦ sub f) t. In the inductive case,
we must prove

sub (g1 ◦ f1) · · · (gm ◦ fm) (ctor x) = sub g (sub f (ctor x))

assuming that the fact holds for all recursive components of x and that the binding variables
of x do not appear free in ctor x and also are not in supp fi∪ supp gi for each i ∈ [m]. Thanks

Chapter 6. Bindings are Functors 90

to this second assumption, we are able push the substitution inside the components of ctor x

according to the recursive law (∗) for sub, thus reducing what we need to prove to

ctor (mapF (g1 ◦ f1) · · · (gm ◦ fm) [id]m [sub (g1 ◦ f1) · · · (gm ◦ fm)]n x) =

ctor (mapF g [id]m [sub g]n (mapF f [id]m [sub f]n x)).

From here on, the fact follows easily from the induction hypothesis, applying the functoriality
and congruence properties of F.

6.4.2 Coinduction

Next, we take αT to be the type of non-well-founded terms (as in Section 6.2.8). Concerning
binding-aware proof principles for αT, we encounter a discrepancy from the inductive case.
The standard structural coinduction principle imported from raw terms would allow us to
prove that a binary relation on αT is included in the equality if it is an F-bismulation (i.e.,
if it is preserved by F’s relator). Using the ideas discussed in Section 6.4.1, we can prove
a parameter-based fresh variation of this principle, where we again emphasize the binding-
specific enhancements:

Theorem 69 (FSC). Let αP and PFVarsi be like in Theorem 67. Given a binary relation
ϕ : αT→ αT→ αP→ bool, if the condition

∀x1, x2 : (α,α, [αT]n)F. (∀p : αP. ϕ (ctor x1) (ctor x2) p

∧ (∀i ∈ [m]. noClashi x1∧noClashi x2∧ (topBindi x1∪ topBindi x2)∩PFVarsi p = ∅))

−→ relF [(=)]m [(=)]m [λt1 t2. ∀p : αP. ϕ t1 t2 p]n x1 x2

holds, then the following holds: ∀t1, t2 : αT.∀p : αP. ϕ t1 t2 p−→ t1 = t2.

However, this proof principle turns out to be not as useful as its inductive counterpart.
Consider the task of proving Proposition 68 for non-well-founded terms. Let us attempt
to prove it using (FSC). We again take the parameters to be tuples (f ,g) of endofunctions
of small support and PFVarsi (f ,g) to be supp fi ∪ supp gi. Define ϕ t1 t2 (f ,g) as ∃t. t1 =

sub (g1◦ f1) · · · (gm◦ fm) t∧ t2 = (sub g◦sub f) t. Then, it suffices to verify (FSC)’s hypothe-
sis. So we assume that, for all endofunctions of small support fi and gi, (1) ctor x1 = sub (g1◦
f1) · · · (gm ◦ fm) t and ctor x2 = (sub g◦ sub f) t, and (2) (supp fi∪ supp gi)∩ (topBindi x1∪
topBindi x2) =∅ for all i∈ [m]. We must prove (3) relF [(=)]m [(=)]m [λt1 t2. ∀(f ,g). ϕ t1 t2
(f ,g)]m x1 x2. To this end, assume t has the form ctor x, where thanks to the availabil-
ity of enough fresh variables we can assume (supp fi ∪ supp gi) ∩ topBindi x = ∅ for all
i ∈ [m]. This allows us to push sub under the constructor in the equalities (1), obtaining (4)
ctor x1 = ctor x′1 and ctor x2 = ctor x′2 where

x′1 = mapF (g1 ◦ f1) · · · (gm ◦ fm) [id]m [sub (g1 ◦ f1) · · · (gm ◦ fm)]n x

x′2 = mapF (g1 ◦ f1) · · · (gm ◦ fm) [id]m [subg◦ sub f]n x

At this point, we are stuck: To prove (3), we seem to need (5) x1 = x′1 and x2 = x′2, which do
not follow from the equalities (4), and the freshness assumption (2) does not help. Indeed,
we could use (2) in conjunction with a suitable choice of x to prove one of the equalities (5),

Chapter 6. Bindings are Functors 91

but not both.
The problem above is a certain synchronization requirement between the top-binding

variables of x1 and x2, which is not accounted for by the freshness hypothesis. To accom-
modate such a synchronization, we prove a different enhancement of structural coinduction,
(ESC). Instead on explicitly avoiding clashes with parameters, (ESC) enables the terms them-
selves to avoid any clashes, and also to synchronize their decompositions via ctor, as long as
this does not change their identity:

Theorem 70 (ESC). Given a binary relation ϕ : αT→ αT→ bool, if the condition

∀x1, x2 : (α,α, [αT]n)F. ϕ (ctor x1) (ctor x2)

−→ (∃x′1, x′2. ctor x1 = ctor x′1 ∧ ctor x2 = ctor x′2 ∧
relF [(=)]m [(=)]m [λt1 t2. ϕ t1 t2]n x′1 x′2)

holds, then the following holds: ∀t1, t2 : αT.ϕ t1 t2 −→ t1 = t2.

(ESC) is more general than, and in fact can easily prove, (FSC). It resolves the problem
in our concrete example with substitution (because it allows us to dynamically shift from x1

and x2 to x′1 and x′2) and similar problems when proving equational theorems on non-well-
founded terms.

6.5 Binding-Aware (Co)recursive Definition Principles
Two aspects have not been formally addressed so far. The first concerns Theorems 62 and
63, stating the existence of substitution operators. While we have shown how the need for
sufficiently many fresh variables can be fulfilled, we have not accounted for the possibility
to define the substitutions as well-behaved functions on (quotiented) terms. The second as-
pect concerns a standard litmus test for abstract data types: the unique characterization of a
construction up to isomorphism. In contrast to raw terms, which are known to form initial
objects in the category of BNF algebras [70], the status of terms is currently less abstract,
since they rely on alpha-equivalence. Can we also characterize the term algebras as initial
objects?

The resolution of both aspects rests on the availability of suitable (co)recursion defi-
nitional principles, (co)recursors for short, for the types of terms— the older brothers of
these principles have been presented for the previous framework in Chapter 3, Section 3.3.
The main technical difficulty in developing such a recursor is that terms do not form a free
datatype, which means that defining functions on terms is no longer possible by simply list-
ing some constructor-based recursive clauses. Instead, the recursor must be aware of the
nonfreeness introduced by bindings. And a similar (dual) problem holds for the corecur-
sor. The key to address these problem is to identify suitable abstract algebraic structures that
satisfy term-like properties, to be used as (co)domains for (co)recursive definitions.

We will present a simple version of the (co)recursors, which are more commonly called
(co)iterators. The supplementary material covers the straightforward extension to full-fledged
(co)recursors.

Chapter 6. Bindings are Functors 92

Below, we implicitly assume that |αi| is regular and bdF ≤ |αi|. In addition, unless oth-
erwise stated, fi and gi range over (endo)bijections of type αi→ αi that have small support:
|supp fi| < |αi| and |supp gi| < |αi|.

Definition 71. A term-like structure is a triple D = (αD,DFVars,Dmap), where

• αD is a polymorphic type;

• DFVars is a tuple of functions DFVarsi : αD→ αi set for i ∈ [m];

• Dmap : (α1→ α1)→ ·· · → (αm→ αm)→ αD→ αD

are such that the following properties hold:

• Dmap [id]m = id;

• Dmap (g1 ◦ f1) · · · (gm ◦ fm) = Dmap g◦Dmap f ;

• (∀i ∈ [m]. ∀a ∈ DFVarsi d. fi a = a) −→ Dmap f d = d;

• a ∈ DFVarsi (Dmap f d)←→ f−1
i a ∈ DFVarsi d.

Term-like structures imitate to a degree the type of terms. Indeed, (αT,FVars,mapT)

forms the archetypal term-like structure.

6.5.1 Binding-Aware Recursor

Next, we take αT to be type of (well-founded) terms. Recall from Section 6.4.1 that fresh
induction relies on parameters, assumed to be equipped with small-cardinality free-variable-
like operators. To discuss recursion, we need parameters to have map functions as well:

Definition 72. A parameter structure is a term-like structure P = (αP,FVars,Pmap) such
that ∀p : αP. |PFVarsi p| < |αi|.

The codomains of our recursive definitions, called models, must be even more similar to
the type of terms than term-like structures. Namely, they additionally have a constructor-like
operator.

Definition 73. Given a parameter structure P , a P-model is a quadruple U = (αU,UFVars,
Umap,Uctor), where

• (αU,UFVars,Umap) is a term-like structure;

• Uctor : (α,α, [αP→ αU]n)F→ αP→ αU

such that the following properties hold:

(MC) Umap f (Uctor y p) = Uctor (mapF f f [Umap f]n y) (Pmap f p)

(VC) (∀i ∈ [m]. topBindi y∩PFVarsi p = ∅) ∧
(∀i ∈ [m]. ∀ j ∈ [n]. ∀pu ∈ rec j y. ∀p. UFVarsi (pu p) \ topBindi, j y⊆ PFVarsi p)

−→ ∀i ∈ [m]. UFVarsi (Uctor y p) ⊆ topFree y∪PFVarsi p

Chapter 6. Bindings are Functors 93

Above, we use similar concepts for models as for terms, such as topBindi and rec j,
applied to members y of (α,α, [αP→ αU]n)F—they are defined in the same way and follow
the same intuition as for terms, with Uctor playing the role of ctor. The recursion theorem
states the existence and uniqueness of a “recursively defined” function from terms to any
model:

Theorem 74. Given a parameter structure P and a P-model U , there exists a unique function
H : αT→ αP→ αU that preserves the constructor, mapping, and free-variable operators:

(C) (∀i ∈ [m]. noClashi x ∧ topBindi x∩PFVarsi p = ∅) −→
H (ctor x) p = Uctor (mapF [id]2∗m [H]n x) p

(M) H (mapT f t) p = Umap f (H t (Pmap f−1 p))

(V) ∀i ∈ [m].UFVarsi (H t p) ⊆ FVarsi t ∪ PFVarsi p

This theorem captures the following contract: To define a function H from αT to αU,
it suffices to organize αU as a P-model for some parameter structure P . In other words, it
suffices to define on αU some P-model operators and check that they satisfy the required
properties. In exchange, we obtain such a function H, which is additionally guaranteed to
preserve the operators.

This function depends on both terms and parameters. Intuitively, H recurses over terms
while the binding variables are assumed to avoid the parameters’ variables. Indeed, the the-
orem’s clause (C) specifies the behavior of H on terms of the form ctor x not for an arbitrary
x, but for a (no-clashing) x whose top-binding variables do not overlap with those of a given
parameter p. This is the recursive-definition incarnation of Barendregt’s convention, just as
the parameter twist of fresh induction (Theorem 67) is its inductive-proof incarnation.

The two additional model axioms are also generalizations of term properties. They de-
scribe the interaction between the constructor-like operator and the other operators. (MC)
states that the map function commutes with the constructor (for endobijections f of small
support). (VC) is more subtle. If we ignore its first premise, (VC) states an implication that
generalizes and weakens the following property of the term constructor’s free variables:

∀i ∈ [m]. FVarsi (ctor x) = topFree y ∪
⋃

j∈[n]
⋃

t∈rec j x FVarsi tr topBindi, j x

The weakening consists of turning the above equality, which has the form ∀i ∈ [m]. Li = Ri∪
R′i, into an inclusion ∀i ∈ [m]. Li ⊆ Ri∪R′i and further weakening the latter into an “inclusion
modulo parameters,” ∀i ∈ [m].R′i ⊆ PFVarsi p −→ Li ⊆ Ri∪PFVarsi p, which is equivalent
to

(∀i ∈ [m]. ∀ j ∈ [n]. ∀t ∈ rec j x. FVarsi tr topBindi, j x⊆ PFVarsi p)

−→ (∀i ∈ [m]. FVarsi (ctor x) ⊆ topFree y∪PFVarsi p)

(VC) is the model version of this last property, mutatis mutandis, e.g., replacing ctor and
FVarsi with Uctor and UFVarsi, together with the additional weakening brought by its first
premise: the top-binding variables in Uctor y p are fresh for the parameters. Given that
weaker model axiomatizations lead to more expressive recursors, our recursor improves on
the state of the art (see next Chapter 7).

Chapter 6. Bindings are Functors 94

To define the variable-for-variable substitution sub, we define P by taking αP to consist
of all tuples of small-support endofunctions f , PFVarsi f = supp fi and Pmap g f = g ◦
f ◦ g−1. We define the P-model U by taking αU = αT, UFVarsi = FVarsi, Umap = mapT

and Uctor y f = ctor (mapF f [id]m [λpu. pu f]n y). To apply Theorem 74, we must check its
hypotheses, which amount to standard identities on terms. We obtain a function sub : αT→
αP→ αT satisfying three clauses, among which

(C) (∀i ∈ [m]. noClashi x ∧ topBindi x∩ supp fi = ∅)

−→ sub (ctor x) f = ctor (mapF f [id]m [λpu. pu f]n (mapF [id]2∗m [sub]n x))

By (restricted) functoriality, mapF f [id]m [λpu. pu f]n (mapF [id]2∗m [sub]n x) =mapF f [id]m

[λt. sub t f]n x, making (C) equivalent to Section 6.2.5’s clause (∗), hence proving the desired
behavior for substitution (Theorem 62)—that is, after flipping the arguments of sub, to turn
it into a function of type αP→ αT→ αT.

Term-for-variable substitution (Section 6.2.7) can be defined similarly.
To characterize terms as an abstract data type, let ⊥ be the parameter structure where the

carrier type is a singleton, the map function is trivial, and PFVarsi returns ∅ for all i ∈ [m].
We obtain the following, as an immediate consequence of Theorem 74:

Corollary 75. (αT,FVars,mapT,ctor) is the initial ⊥-model (where a model morphism is a
function that preserves all the operators).

To summarize, the generalization of natural term properties has led us to the axiomati-
zation of models and to an associated recursor. The axiomatization factors in parameters,
which are useful for enforcing Barendregt’s convention; in particular, they allow a uniform
recursive definition of substitution. If we ignore parameters, our recursor exhibits the term
model as initial, which yields an up to isomorphism characterization in a standard way (via
Lambek’s lemma).

6.5.2 Binding-Aware Corecursor

Next, we take αT to be the type of non-well-founded terms. Traditionally, a corecursor is
based on an identification of our collection of interest as a final coalgebra for a suitable
functor. The problem here is that, unlike raw terms, terms do not form a standard coalge-
bra for F. Indeed, since ctor is not injective, there is no destructor operation dtor : αT →
(α,α, [αT]n)F.

Yet something akin to a coalgebaic structure can still be obtained if we leave some
room for nondeterminism. Namely, we define a nondeterministic destructor dtor : αT →
((α,α, [αT]n)F) set as dtor t = {x | t = ctor x}. Crucially, this destructor is still determin-

istic up to a renaming of the top-binding variables. Indeed, Prop. 60 ensures that, for any
x, x′ ∈ dtor t, we have x′ = mapF [id]m f [mapT f]n x for some small-support endobijections
f subject to some suitable conditions. This suggests the following axiomatization of core-
cursive models:

Definition 76. A comodel is a quadruple U = (αU,UFVars,Umap,Udtor), where

• (αU,UFVars,Umap) is a term-like structure;

Chapter 6. Bindings are Functors 95

• Udtor : αU→ ((α,α, [αU]n)F) set

such that the following properties hold:

(Dne) Udtor u 6= ∅

(DRen) y,y′ ∈ Udtor u −→ ∃ f . (∀i ∈ [m]. bij fi ∧ |supp fi| < |αi| ∧
(∀a ∈ (

⋃
j∈[n] (

⋃
u∈rec j y UFVarsi u)r topBindi, j y). fi a = a)) ∧

y′ = mapF [id]m f [Umap f]n y

(MD) Udtor (Umap f u) ⊆ image (mapF f f [Umap f]n) (Udtor u)

(VD) y ∈ Udtor u −→
∀i ∈ [m]. topFree y ∪

⋃
j∈[n] (

⋃
u′∈rec j y UFVarsi u′)r topBindi, j y ⊆ UFVarsi u

Thus, comodels exhibit the term-like structure of models; but instead of a constructor-like
operator, they are equipped with a destructor-like operator Udtor that returns nonempty sets
(Dne) and is deterministic modulo a renaming (DRen)—generalizing properties of the term
destructor. Moreover, (MD) generalizes the term property dtor (mapT f t) ⊆ image (mapF f

f [mapT f]n) (dtor t), which after expanding the definition of dtor from ctor becomes mapT

f t = ctor x′ −→ ∃x. t = ctor x∧ x′ = mapF f f [mapT f]n x. Since this property is (im-
plicitly) quantified universally over the small-support endobijections f , by mapping with the
inverses g = f−1 of these functions and using the restricted functoriality of mapT and mapF

we can rewrite the property into

mapT g (mapT f t) = mapT g (ctor x′) −→
∃x. t = ctor x∧mapF g g [mapT g]n x′ = mapF g g [mapT g]n (mapF f f [mapT f]n x)

then into t = mapT g (ctor x′) −→ ∃x. t = ctor x ∧mapF g g [mapT g]n x′ = x and fi-
nally into mapT g (ctor x′) = ctor (mapF g g [mapT g]n x′). This last property is the one
that inspired the model axiom (MC), which shows the conceptual duality between (MC)
and (MD): They generalize the same term property, but one from a constructor and the
other from a destructor point of view. The property (VD) is also in a dual relationship
with the corresponding model axiom (VC). Both can be traced back to the term property
∀i ∈ [m]. FVarsi (ctor x) = topFree x ∪

⋃
j∈[n] (

⋃
t∈rec j x FVarsi t)r topBindi, j x which is

weakened by (VC) and (VD) into inclusions of opposite polarities. An indeed, comodels
achieve the dual of what models achieve:

Theorem 77. Given a comodel U , there exists a unique function H : αU→ αT that preserves
the destructor, mapping and free-variable operators, in the following sense:

(D) mapF [id]2∗m [H]n (Udtor d) ⊆ dtor (H d)

(M) H (Umap f u) = mapT f (H u)

(V) ∀i ∈ [m].UFVarsi (H t) ⊆ FVarsi t

Note that clause (D) can be rewritten as y∈Udtor d−→mapF [id]2∗m [H]n y∈ dtor (H d)

and further, expanding the definition of dtor from ctor, as

Chapter 6. Bindings are Functors 96

(D′) y ∈ Udtor u −→ H u = ctor (mapF [id]2∗m [H]n y)

which shows the corecursive behavior of H in a more operational fashion: To build a (possi-
bly infinite) term starting with the input d, H can choose any y ∈ Udtor d and then delve into
y after “producing” a ctor. Thanks to the comodel axioms (notably, (DRen)), the choice of y

does not matter.

Corollary 78. (αT,FVars,mapT,dtor) is the final comodel.

Unlike models, our comodels do not have parameters. This is because, in the corecursive
case, any freshness assumptions can be easily incorporated in the choice of the destructor-like
operator. (This mirrors the situation of binding-aware coinduction, which also departs from
binding-aware induction on the very topic of explicit parameters.) The corecursive definition
of substitution is a good illustration of this phenomenon. We define the comodel U by taking
αU to consists of all pairs (t, f) with t term and f tuple of small-support endofunctions,
UVari (t, f) = FVarsi t∪ supp fi, Umapg (t, f) = (mapT gt, g ◦ f ◦ g−1), and Udtor (t, f) =

{mapF f [id]m [(λt′. (t′, f))]n x | x ∈ dtor t ∧ noClashi x∧ topBindi x∩ supp fi = ∅ }. We
have highlighted how we insulate, among all possible ways to choose x ∈ dtor t, those x’s
that avoid capture, as required by the desired clause (∗) for substitution—which is the same
as for well-founded terms. This is a general trick for replacing the explicit use of parameters.
After checking that this is indeed a comodel, Theorem 77 offers the function sub : αU→ αT
that satisfies three clauses, among which

(D′) x ∈ dtor t∧ (∀i ∈ [m].noClashi x∧ topBindi x∩ supp fi = ∅)

−→ sub (f , t) = ctor (mapF [id]2∗m [sub]n (mapF f [id]m [(λt′. (t′, f))]n x))

After uncurrying, this is equivalent to (∗) by the functoriality of mapF and the fact that
x ∈ dtor t means t = ctor x.

6.6 Useful Variations of the (Co)recursion Principles

6.6.1 A Fixed-Parameter Restriction

Our recursors employ a notion of dynamically varying parameter, whose free variables must
be avoided. Let us introduce some notation for a useful particular case: that of static (fixed)
parameters, more precisely, that of fixed sets of variables that must be avoided. Technically,
we assume that the parameter type is a singleton, which is the same as replacing the parameter
structure with a tupleA consiting of fixed small sets of variables Ai⊆αi (each Ai representing
the set of variables of the unique parameter).2 Also, since αP is a singleton, we can replace
αP→ αU with αU.

Definition 79. Given a tuple A of small sets, an A-model is a quadruple U = (αU,UFVars,
Umap,Uctor), where:

• (αU,UFVars,Umap) is a term-like structure

• Umap : (α1→ α1)→ ··· → (αm→ αm)→ αU→ αU

2The smallness of a Ai ⊆ αi means, as usual, that |Ai| < |αi|.

Chapter 6. Bindings are Functors 97

such that the following hold:

(MC) (∀i ∈ [m]. supp fi∩Ai = ∅)

−→ Umap f (Uctor y) = Uctor (mapF f f [Umap f]n y)

(VC) (∀i ∈ [m]. topBindi y∩Ai = ∅) ∧
(∀i ∈ [m]. ∀ j ∈ [n]. ∀u. u ∈ rec j y. UFVarsi u\ topBindi, j y⊆ Ai)

−→ ∀i ∈ [m]. UFVarsi (Uctor y) ⊆ Ai

Then Theorem 74 instantiates to:

Theorem 80. Given a tuple of small setsA and anA-model U , there exists a unique function
H : αT→ αU such that:

(C) (∀i ∈ [m]. noClash x ∧ topBindi x ∩ Ai = ∅)

−→ H (ctor x) = Uctor (mapF [id]2∗m [H]n x)

(M) (∀i ∈ [m]. suppi fi∩Ai = ∅) −→ H (mapT f t) = Umap f (H t)

(V) ∀i ∈ [m].UFVarsi (H t) ⊆ FVarsi t ∪ Ai

Since the majority of binding-aware recursive definitions seem to require fixed rather than
dynamic parameters, in our Isabelle formalization of the recursor we wire inA as a primitive
(in addition to P)—this avoids the bureaucracy of having to instantiate P to a singleton for
handling fixed parameters.

6.6.2 The Full-Fledged Primitive (Co)recursor

In Section 6.5 we have presented a restricted form of (co)recursors that are usually known as
(co)iterators. Here we formulate the full-fledged (co)recursors, which constitute a theoreti-
cally straightforward but practically useful extension of the (co)iterators.

The difference between a recursor and an iterator is that the former allows the value of
a function H applied to a given term ctor x to depend not only on the values of H on the
recursive components t of x, but also on the components themselves. To cater for this, we
routinely enhance our notions of term-like structure and model with additional term argu-
ments, as highlighted below:

Definition 81. An extended term-like structure is a triple D = (αD,DFVars,Dmap), where

• αD is a polymorphic type

• DFVars is a tuple of functions DFVarsi : αP→ αT→ αi set for i ∈ [m]

• Dmap : (α1→ α1)→ ·· · → (αm→ αm)→ αD→ αT→ αD

are such that the following hold:

• Dmap [id]m t = id

• Dmap (g1 ◦ f1) · · · (gm ◦ fm) t = Dmap g t ◦Dmap f t

Chapter 6. Bindings are Functors 98

• (∀i ∈ [m]. ∀a ∈ DFVarsi t d. fi a = a) −→ Dmap f t d = d

• a ∈ DFVarsi (mapT f t) (Dmap f t d)←→ f−1
i a ∈ DFVarsi t d

Definition 82. Given a parameter structure P , an extended P-model is a quadruple U =

(αU,UFVars,Umap,Uctor), where:

• (αU,UFVars,Umap) is an extended term-like structure

• Uctor : (α,α, [αT × (αP→ αU)]n)F→ αP→ αU

such that the following hold:

(MC) Umap f (ctor xy) (Uctor y p) = Uctor (mapF f f [〈mapT, Umap 〉 f]n y) (Pmap
f p)

(VC) (∀i ∈ [m]. topBindi y∩PFVarsi p = ∅) ∧
(∀i ∈ [m]. ∀ j ∈ [n]. ∀ t, pu, p. (t, pu) ∈ rec j y. UFVarsi (pu p)r topBindi, j y⊆

FVarsi; tr topBindi, j xy ∪ PFVarsi p)

−→ ∀i ∈ [m]. UFVarsi (Uctor y p) ⊆ FVarsi (ctor xy) ∪ topFree y ∪ PFVarsi p

Above, xy and xy′ are shorthands for mapF [id]2∗m [fst]n y and mapF [id]2∗m [fst]n y′,
respectively. Also recall that fst and snd are the standard first and second projection functions
on the product type ×. Moreover, 〈mapT,Umap〉 f denotes the function λ(t,pu). (mapT f t,
Umap f t pu).

Note that, for (VC), the additional structure brought by the extended models makes the
presence of topFree y redundant. Indeed, it is easy to check that topFree y = topFree xy,
meaning that topFree y ⊆ FVarsi (ctor y). In short, topFree y can be removed from the
conclusion of (VC), without affecting this property.

The recursion theorem follows suit with this term-argument extension.

Full-fledged recursion extension of Theorem 74: Given a parameter structure P and a
P-model U , there exists a unique function H : αT→ αP→ αU such that:

(C) (∀i ∈ [m]. noClash x ∧ topBindi x∩PFVarsi p = ∅) −→
H (ctor x) p = Uctor (mapF [id]2∗m [〈id, H 〉]n x) p

(M) H (mapT f t) p = Umap f t (f t (Pmap f−1 p))

(V) ∀i ∈ [m].UFVarsi t (H t p) ⊆ FVarsi t ∪ PFVarsi p

A similar game can be played with the corecursor, where the additional term inputs occur
in the result of the function, with the following intuition: In addition to the option of delving
into a corecursive call, we now also have the option to stop the corecursion immediately
returning an indicated term. For example, the constructor-like operator Udtor of an extended
comodel will have the type αU→ ((α,α, [αT + αU]n)F) set.

It is easy to infer the extended version of the (co)recursion theorems from their original
version. However, in our Isabelle formalization we directly prove the extended versions.

Chapter 6. Bindings are Functors 99

6.6.3 A Constructor-Based Variation

For an extended model, instead of assuming that it forms an extended term-like structure we
can assume that it satisfies the following axiom, obtaining what we cal call weak extended

models:

(CC) (∀ j ∈ [n]. ∀ t, pu, p. (t, pu) ∈ rec j y ∪ rec j y′. ∀i ∈ [m]. UFVarsi (pu p)

⊆ FVarsi t ∪ PFVarsi p) ∧
(∀i ∈ [m]. supp fi ∩ (FVarsi (ctor xy) ∪ PFVarsi p) = ∅) ∧
(∀i ∈ [m]. fi (topBindi y) ∩ topBindi y = ∅) ∧
(∀i ∈ [m]. supp f ′i ∩ (FVarsi (ctor xy′) ∪ PFVarsi p) = ∅) ∧
(∀i ∈ [m]. f ′i (topBindi y′) ∩ topBindi y′ = ∅) ∧
mapF f f [〈mapT, Umap 〉 f]n y = mapF f ′ f ′ [〈mapT, Umap 〉 f ′]n y

−→ Uctor y = Uctor y′

(CC) postulates a condition under which the application of the constructor Uctor to two
different arguments, y and y′, yields the same result. This generalizes (and weakens by adding
additional premises) the following property of terms, stating that the constructor produces the
same results its the arguments are equal modulo small-support endobijective renamings f and
f ′:

(∀i ∈ [m]. supp fi ∩ FVarsi (ctor x) = ∅ ∧ supp f ′i ∩ FVarsi (ctor x′) = ∅) ∧
mapF f f [mapT f]n x = mapF f ′ f ′ [mapT f ′]n x′ −→ ctor x = ctor x′

This alternative axiomatization seems to be more complex to check in particular cases.
However, it is indeed slightly weaker, hence leads to a slightly stronger (more expressive)
recursor:

Theorem 83. Any weak extended model is also an extended model, hence (the extended
version of) Theorem 74 also holds for weak extended P-models.

For this reason, our formalization also includes this constructor-based variation of the
recursor (together with the proof of its higher expressiveness power).

6.7 Formal Comparison with Recursors from the Literature
To make a comparison with previous work in terms of what we call intrinsic recursor expres-
siveness3 we need to consider a syntax with bindings that follows in the scope of all these
results. We choose the minimalistic syntax of λ-calculus.

Now, α T denotes the type of λ-terms with variables in α. To avoid confusion with
the meta-level, we will write App : α T → α T → α T and Lam : α→ α T → α T for the
application and λ-abstraction constructors on terms. Note that our abstract constructor ctor :
(α,α,α T,α T)F = α + α T × α T + α × α T→ α T is the joining of the “concrete” Var,
App and Lam constructors. We will prefer to present the λ-calculus instance of our theorem

3Namely, expressiveness that refers not to the complexity of the binders that it can handle, but to the class of
functions that are definable for a given fixed syntax, e.g., that of λ-calculus.

Chapter 6. Bindings are Functors 100

in terms of the concrete constructors. This will also apply to models, where the abstract
constructor-like operator Uctor will be correspondingly split into three operators UVar, UApp
and ULam. The abstract (single-constructor) and the concrete (multi-constructor) views are
the same, modulo the trivial transformations of sum splitting/joining and (un)currying of
functions.

Thus, for this particular case, the notion of extended term-like structure becomes a triple
D = (α D,DFVars,Dmap), where4

• α D is a polymorphic type

• DFVars : α D→ α T→ α set

• Dmap : (α→ α)→ α T→ α D→ α D

are such that the following hold:

• Dmap id t = id

• Dmap (g◦ f) t = Dmap g t ◦Dmap f t

• (∀a ∈ DFVars t d. f a = a) −→ Dmap f t d = d

• a ∈ DFVars (mapT f t) (Dmap f t d)←→ f−1 a ∈ DFVars t d

And the notion of extendedP-model becomes a tuple U = (αU,Umap,UFVars,UVar,UApp,
ULam) where

• (α U,Umap,UFVars) is a term-like structure

• UVar : α→ α P→ α U,
UApp : α T→ (α P→ α U)→ α T→ (α P→ α U)→ α P→ α U,
ULam : α→ α T→ (α P→ α U)→ α P→ α U

satisfying the following properties for all finitely supported endobijections f : α→ α:

(MC) • Umap f (Var a) (UVar a p) = UVar (f a) (Pmap f p)

• Umap f (UApp t1 u1 t2 u2 p) =

UApp (mapT f t1) (Umap f t1 u1) (mapT f t2) (Umap f t2 u2) (Pmap f p)

• Umap f (ULam a t u p) = ULam (f a) (mapT f t) (Umap f u) (Pmap f p)

(VC) • UFVars (UVar a p) ⊆ FVars (Var a) ∪ PFVars p

• UFVars (pu1 p)⊆ FVars t1∪ PFVars p ∧ UFVars (pu2 p)⊆ FVars t2∪ PFVars p

−→ UFVars (UApp t1 pu1 t2 pu2 p) ⊆ FVars (App t1 t2) ∪ PFVars p

• a /∈ PFVars p ∧ UFVars (pu p)r{a} ⊆ FVars tr{a}∪ PFVars p

−→ UFVars (ULam t pu p) ⊆ FVars (Lam a t) ∪ PFVars p

4As usual, we highlight the additional structure brought by the full-fledged recursor.

Chapter 6. Bindings are Functors 101

And weak extended models are obtained from the above by replacing the extended term-
like structure condition with:

(CC) • UFVars (pu1 p)⊆ FVars t1∪ PFVars p ∧ UFVars (pu2 p)⊆ FVars t2∪ PFVars p ∧
UFVars (pu′1 p)⊆ FVars t′1∪ PFVars p ∧ UFVars (pu′2 p)⊆ FVars t′2∪ PFVars p

supp f ∩ (FVars (App t1 t2) ∪ PFVars p) = ∅ ∧
supp f ′ ∩ (FVars (App t′1 t′2) ∪ PFVars p) = ∅ ∧
mapT f t1 = mapT f ′ t′1 ∧ Umap f t1 pu1 = Umap f ′ t′1 pu′1 ∧
mapT f t2 = mapT f ′ t′2 ∧ Umap f t2 pu2 = Umap f ′ t′2 pu′2
−→ UApp t1 pu1 t2 pu2 = UApp t′1 pu′1 t′2 pu′2
• {a,a′}∩PFVars p = ∅ ∧

UFVars (pu p)⊆ FVars t∪ PFVars p ∧ UFVars (pu′ p)⊆ FVars t′∪ PFVars p∧
supp f ∩ (FVars (Lam a t) ∪ PFVars p) = ∅ ∧ f a 6= a ∧
supp f ′ ∩ (FVars (Lam a′ t′) ∪ PFVars p) = ∅ ∧ f ′ a′ 6= a′ ∧
f a = f ′ a′ ∧ mapT f t = mapT f ′ t′ ∧ Umap f t pu = Umap f ′ t′ pu′

−→ ULam a t pu = ULam a′ t′ pu′

Because of using concrete constructors, each of the abstract clauses splits into three
clauses—one for each of concrete constructor. An exception is (CC), where the clause
for UVar is trivial due to the nonexistence of recursive components. Some of the abstract
premises become simpler in the concrete case. For example, consider the premise ∀i ∈
[m]. fi (topBindi y) ∩ topBindi y = ∅ in (CC). First, since m = 1, the index i is omitted.
Moreover, since App introduces no bindings, the premise becomes vacuous (and omitted) in
the case of App/UApp; and becomes f a 6= a in the case of Lam/ULam, since this constructor
has a single top-binding variable, say, a. As another example, in the Lam/ULam case the
(CC) premise mapF f f [〈mapT,Umap〉 f]n y = mapF f ′ f ′ [〈mapT,Umap〉 f ′]n y becomes
f a = f ′ a′ ∧ mapT f t = mapT f ′ t′ ∧ Umap f t pu = Umap f ′ t′ pu′.

Instantiating (the extended version of) Theorem 74 and Theorem 83 for this syntax gives
us the following (again, after performing the splitting according to concrete constructors):

Corollary 84. Given a parameter structure P and a (weak) extended P-model U , there exists
a unique function H : α T→ α P→ α U such that

(C) • H (Var a) p = UVar a p

• H (App t1 t2) p = UApp t1 (H t1) t2 (H t2) p

• a /∈ PFVars p −→ H (Lam a t) p = ULam a t (H t) p

(M) H (mapT f t) p = Umap f t (H t (Pmap f−1 p))

(V) UFVars t (H t p) ⊆ FVars t ∪ PFVars p

Thus, as we would expect, for the λ-calculus our recursor gives us a function H satisfying
some recursive clauses w.r.t. the constructors, and also some clauses expressing the preserva-
tion of the map function and free-variable operator—all modulo a notion of parameter, with
respect to which the λ-binding variables must be fresh in the recursive clause for Lam.

Chapter 6. Bindings are Functors 102

If above we remove the highlighted text, we obtain the more primitive, iterative form of
the recursor. It is also worth spelling out the fixed-parameter instance of the iterator (de-
scribed in general in Section 6.6.1). FixingA to consist of a single finite5 set A, the notion of
A-model (for the λ-calculus syntax) becomes a quadruple U = (αU,UFVars,Umap,Uctor),
where:

• (αU,UFVars,Umap) is a term-like structure

• Umap : (α→ α)→ α U→ α U

satisfying the following properties for all finitely supported endobijections f : α→ α:

(MC) • supp f ∩ A = ∅ −→ Umap f (UVar a) = UVar (f a)

• supp f ∩ A =∅ −→ Umap f (UApp u1 u2) = UApp (Umap f u1) (Umap f u2)

• supp f ∩ A = ∅ −→ Umap f (ULam a u) = ULam (f a) (Umap f u)

(VC) • UFVars (UVar a) ⊆ FVars (Var a) ∪ A

• UFVars u1 ⊆ A ∧ UFVars u2 ⊆ A −→ UFVars (UApp u1 u2) ⊆ A

• a /∈ A ∧ UFVars u⊆ A −→ UFVars (ULam a u) ⊆ A

Then Theorem 80 instantiates to:

Corollary 85. Given anA-model U , there exists a unique function H : α T→ αU such that:

(C) • H (Var a) = UVar a

• H (App t1 t2) = UApp (H t1) (H t2)

• a /∈ A −→ H (Lam a t) = ULam a (H t)

(M) supp f ∩ A = ∅ −→ H (mapT f t) = Umap f (H t)

(V) UFVars (H t) ⊆ FVars t ∪ A

Comparison with the nominal recursor
Recall that, for this particular finitary syntax:

• Our type variable α, assumed countable, corresponds to a Nominal set of atoms

• Our functions f : α→ α of small support correspond to permutations of finite support

• Our map function mapT corresponds to the swapping action on terms (see also the
discussion in Section 7.1 from Chapter 7)

As we have already pointed out (Chapter 2, Section 2.4), a classic result of group theory
is that Sym f (α) (namely the group of all finitely supported endo-bijections on α) is a group
generated by transpositions, i.e., every finitely supported bijection is obtainable from the
composition of a finite number of transposition. We can make one more claim and state the
next result.

5Recall that, in this finitary case, “small” means “finite.”

Chapter 6. Bindings are Functors 103

Lemma 7. The usual swapping operation, with its properties, induces the nominal action.

Formally, we can obtain this with the following steps (where the notation _◦_ indicates
the usual function composition):

1 We define the nominal action not for all permutations with finite support, but only for
swapping (transpositions).

2 We extend it to any generic finitely supported permutation f , picking f .t to be (xn↔ xn−1)

.(. . . .((x1↔ x0).t) . . .), where f = (xn↔ xn−1) ◦ · · · ◦ (x1↔ x0).

3 We observe that for every two representation in terms of transpositions of y, f = (xn ↔
xn−1) ◦ · · · ◦ (x1↔ x0) = (ym↔ ym−1) ◦ · · · ◦ (y1↔ y0), we obtain that (xn↔ xn−1).(. . .
.((x1↔ x0).t) . . .) = (ym↔ ym−1).(. . . .((y1↔ y0).t) . . .) (namely, that what we are defin-
ing is indeed a function)6.

4 We do routine checks for the two properties defining an action.

5 Proving that the two actions are equal is again routine.

Thus, we can formulate (the λ-calculus instance of) the nominal recursor [58] just relying
on swapping and using the terminology of this chapter:

Definition 86. The notion nominal A-model is obtained from that of A-model by removing
the last two (out of four) term-like structure axioms and the (VC) axiom and adding instead
the following axioms:

(FfromM) UFVars u = {a | {a′ | Umap (a↔ a′) u 6= u} finite}

(FCB) ∃u. ∀a. a /∈ A∧a /∈ UFVars u

In clause (FfromM), (a↔ a′) denotes the swapping function7 in α→ α, sending a to a′,
a′ to a and everything else to itself. Note that we use a free-variable-like operator UFVars :
U→α set, whereas the nominal logic literature considers a freshness operator Ufresh : αU→
α→ bool (and usually writes a#u instead of Ufresh u a). These are of course inter-definable
via negation, as follows:

• Ufresh u a, as a /∈ UFVars u

• UFVars u, as {a | ¬ Ufresh u a}

With this translation, we see that (FfromM) states that freshness is definable from map-
ping (i.e., from the nominal permutation action)8 and (FCB) is the so-called freshness condi-

tion for binders, both familiar from nominal logic:

(FfromM) Ufresh a u←→{a′ | Umap (a↔ a′) u 6= u} infinite

6We have proved this in Isabelle [actions-scripts], the proof goes by induction on the overall number of
transpositions, plus some lemmas on the properties of swapping.

7Here for swapping we use a notation close to the one we used for group actions in Chapter 2, Subsection 2.4.
8See in [76], Def. 3. [58] gives a slightly more complex definition (as the minimal set that supports and

entity)—these two definitions are known to be equivalent in the presence of finite support, which is a pervasive
assumption in nominal logic.

Chapter 6. Bindings are Functors 104

(FCB) ∃u. ∀a. a /∈ A∧a /∈ Ufresh a u

We can show that the nominal A-model axioms are stronger than those of the A-models.
Indeed, the UFVars operator defined in a nominal A-model from the Umap operator can be
shown to satisfy the (VC) axioms.

Proposition 87. Any nominal A-model is an A-model.

As a consequence, we obtain the following:

Corollary 88. We have that Corollary 85 stays true if we replace A-models with nominal
A-models.

This last corollary is essentially the sort-directed alpha-structural recursion theorem (The-
orem 5.1) of [58]—henceforth abbreviated ASRT—instantiated to the λ-calculus syntax (thus,
taking the signature Σ to consist of the λ-calculus constructors Var,Lam,App).

Indeed, concerning the input to the two recursion theorems: Our model carrier αU corre-
sponds to the the ASRT target domain X, and our constructor-like operators UVar,ULam,UApp
correspond to the ASRT functions fk considered on the target domain. Our set A corresponds
to the ASRT set A. Our first two term-like structure axioms (the only ones kept in the no-
tion of A-nominal model) correspond the ASRT requirement that the permutation action
satisfies the first nominal-set axioms concerning the identity and composition of permutation
actions. Our axioms (MC) correspond to the fact that the functions fk are supported by A.9

Our condition (FCB) corresponds to the identically named ASRT condition—noting that for
the λ-calculus syntax this condition is only meaningful for Lam, the only constructor that
actually binds variables. Finally, our nominal A-models have Ufresh as part of their struc-
ture, whereas the ASRT target domain does not have any freshness operator as a primitive.
However, the ASRT target domain is required to be a nominal set, hence it has a notion of
freshness definable from the permutation action—which is exactly what our (FfromM) ax-
iom imposes. In short, there is a precise (bijective) correspondence between our nominal
A-models and the structure considered on the ASRT target domains.

Now, concerning the output of the two recursion theorems: Our function H corresponds
to the ASRT function f̂ . Our clause (C) corresponds to ASRT’s recursive clauses for f̂ (la-
beled as identity (47) in the paper) and (M) corresponds to ASRT concluding that the defined
function f̂ is itself supported by A. On the other hand, there is nothing in ASRT that matches
our clause (V); but in the nominal case, with freshness definable from mapping, this clause is
redundant, i.e., follows from the others. In short, via the aforementioned correspondence, the
recursor based on nominalA-models (which is a particular case of our more general recursor)
produces the same results as ASRT.

Comparison with the Norrish and the Gheri-Popescu recursors These recursors operate
with swapping actions (a↔ b) : α→ α, also known as transpositions, rather than arbitrary
permutations. The possibility to restrict the focus in this way is based on the fact that all

9Indeed, saying that a function is supported by a set of atoms A (as in ASRT) is the same as saying that
it is equivariant (i.e., commutes with the permutation action) with respect to all atoms outside of A (as in our
corollary).

Chapter 6. Bindings are Functors 105

finite-support permutations are generated from transpositions via composition . (This does
not scale, however, to the infinitary case, as already pointed out in Section 2.4, 2.)

Indeed, in the finitary case our axiomatization of term-like structures using arbitrary
small-support (here finite-support) endobijections is equivalent to the following axiomati-
zation using a swapping-like operator:

Definition 89. A swapping-based term-like structure is a triple D = (α D,DFVars,Dswap),
where

• α D is a polymorphic type

• DFVars : α D→ α set

• Dswap : α×α→ α D→ α D

are such that the following hold:10

• Dswap a a′ d = d

• Dswap b b′ (Dswap a a′ d) = Dswap ((b↔ b′)a) ((b↔ b′)a′) (Dswap b b′ d)

• a,a′ 6∈ DFVars d −→ Dswap a a′ d = d

• a ∈ DFVars (Dswap b b′ d)←→ (b↔ b′)a ∈ DFVars d

The above swapping-based axiomatization is equivalent to the mapping-based axiomati-
zation. Indeed, from a term-like structure we obtain a swapping-based term-like structure by
simply taking Dswap to be the restriction of Dmap, namely Dswap a a′ = Dmap (a↔ a′).
Conversely, from a swapping-based term-like structure we obtain a term-like structure by
defining Dmap f as the composition

Dmap a1 a′1 ◦ . . . ◦ Dmap an an ($)

where
f = (a1,a′1) ◦ . . .◦ (an,a′n) ($$)

Note that any finite-support bijection f can be written as a composition ($$) of transpositions—
although not uniquely. Thanks to the swapping-based term-like structure axioms, it can be
shown that the result of ($) is the same for any decomposition ($$).

Proposition 90. The above correspondence (extended to morphisms in the expected way)
is an equivalence between the categories of swapping-based term-like structures and that of
term-like structures.

Based on this correspondence, it is straightforward to adapt our permutation based re-
cursor to a swapping-based recursor. It employs swapping-based models, which feature an
operator Uswap : α×α→ α U → α U instead of Umap : (α→ α)→ α U → α U, etc. Its
final theorem is a swapping-based variant of Corollary 85 that replaces clause (M) with the
following:

10Note that (b↔ b′)a denotes the application of the swapping function (b↔ b′) to a.

Chapter 6. Bindings are Functors 106

(M’) a,a′ /∈ A −→ H (mapT (a↔ a′) t) = Uswap a a′ (H t)

Notice how, in this replacement, the premise supp f ∩ A = ∅ has become a,a′ /∈ A; this
is because f is now the transposition (a↔ a′), and therefore supp f = {a,a′}. This last
formulation allows us to see that:

• our recursion theorem is a slightly stronger form of the recursor in [53]

• our constructor-based variation is a parameter-based improvement of the recursor de-
scribed in Chapter 3

Our Isabelle formalization [14] contains formal proofs of this facts (for the syntax of
λ-calculus).

6.8 Isabelle Formalization and Implementation
All our results have been formalized in Isabelle/HOL [14], in a slightly less general case
than presented in this Chapter. Namely, while the formalization is abstract in that it works
with arbitrary type constructors and constants (such as F and mapF), it is concrete in that it
fixes certain arities for the type constructors. Thus, for the fixpoint constructions, instead of
θ ⊆ [m] × [n] and (β,α,τ)F where len (β) = len (α) = m and len (τ) = n, we work with an
F of a fixed arity, (β1,α1,τ1,τ2)F taking m = n = 1 and θ = {(1,2)}.

This is the best we can do while working in the Isabelle/HOL user space, given that in
the HOL logic we cannot consider type constructors depending on varying numbers of type
variables. On the positive side, having the fixed-arity case fully worked out gives us strong
confidence that our results are correct. Moreover, by doing a lot of copy-pasting we can easily
adapt our formalization to any given m,n and θ. On the negative side, our framework is not
yet usable in the way a definitional package such as Isabelle Nominal [76] and the BNF-
based (co)datatype package [18] is. Besides the above issue with arities, another missing
component is a mechanism for hiding away the category theory under some user-friendly
notation, e.g., splitting, for sum types, the single abstract constructor into multiple user-
named constructors.

As a first step in the usability direction, our coauthors—for the submitted paper [15] cur-
rently under review— have implemented in Standard ML a tool that automates the process
of instantiating an Isabelle formalization parameterized by some type constructors and poly-
morphic constants with any desired user specified instances—e.g., to switch from an arbitrary
functor F to the particular one required by the syntax of the λ-calculus. This tool has already
been very helpful with instantiating the arbitrary (co)models used by our (co)recursion prin-
ciples into the specific ones needed to define substitution.

The distance between our current work and a fully usable definitional package is a good
opportunity to reflect on the benefits and limitations of our bindings as functors approach.
The main benefit is the semantic treatment of binders, which allows us to “plug and play” ar-
bitrarily complex binders into (co)datatypes—an improvement over the syntactic approaches
which essentially inline the whole complexity of binders into the (co)datatypes. On the other
hand, we should stress that the functorial approach is no substitute for the usual combinatorial

Chapter 6. Bindings are Functors 107

complexity stemming from many-sortedness: multiple types of variables bound in multiple
types of terms. To cope with these, we are forced to consider multiple arguments for our
functors (and also mutually recursive (co)datatypes). In conclusion, unlike the syntactic ap-
proaches we can hide the binding complexity, but like the syntactic approaches we must face
the many-sortedness complexity.

108

Chapter 7

Conclusion and Related Work

7.1 Literature Review
Following our desiderata, we have developed a theory of syntax with bindings, exploiting
along the way different concepts and testing it against different theoretical and formalization
challenges. In its final shape, it relies on map-restricted bounded natural functors, MRBNFs
in short, an appropriate class of functors we have identified. These are an extension of BNFs
(Sections 2.2 and 2.3, Chapter 2) that can accommodate arbitrarily complex statically scoped
bindings without committing to any syntactic format. The universe of MRBNFs is closed
under the operations of turning an input nonrepetitive (useful for constructing binders) and
of taking binding-aware least and greatest fixpoints ((co)datatypes). These constructions
come equipped with powerful reasoning and definitional principles.

The literature includes some major frameworks and paradigms for syntax with bindings,
featuring a variety of mechanisms for specification and reasoning.

7.1.1 Major Frameworks for Bindings

Nominal Logic There is considerable overlap between our framework and nominal logic
[59, 58], which is itself a syntax-free axiomatization of term-like entities that can contain
variables, called atoms. Our theory takes the nominal approach, in which it uses explicit
names for bound variables, has a similar treatment of alpha-equivalence and applies nominal
techniques for recovering Barendregt’s variable convention (e.g. fresh induction [76]). Fur-
thermore, we can draw a precise correspondence between a specific fragment of our frame-
work and nominal logic: our MRBNF restriction to small-support functions, as well as our
overall approach, are inspired by nominal logic [58]. Let αF be an α-binding MRBNF
(whose inputs are all binding inputs) that is finitary (i.e., bdF = ℵ0) and fix α to some count-
able types. Then αF is a (multi-atom) nominal set having α as sets of atoms. Moreover, our
endobijections fi : αi → αi of small support coincide with what nominal logic calls permu-
tations of finite support, and the map function mapT is the same as the nominal permutation
action. In what follows we give some more detail for the unary case.

Recalling definition 1 from Subsection 2.4, Chapter 2, an action of finitely-supported
permutations of atoms (variables) on a set S is a function:

Φ : Sym f (A)→ Sym(S)

Chapter 7. Conclusion and Related Work 109

where A is the set of atoms, satisfying the following:

1. Φ id = id;

2. Φ (h◦g) = (Φ h) ◦ (Φ g), for all f ,g finitely supported permutations.

Also, a MRBNF is first of all a functor (property (Fun) from Section 6.3, Chapter 6).
Namely, considering the unary case and fixing, we have a (unary) type constructor F with a
mapper mapF : (α→ α)→ (α F→ α F) satisfying the following two properties:

1. mapF id = id;

2. mapF (h◦g) = (mapF h) ◦ (mapF g), for all functions f and g.

If we take the set of atoms A to be the set of elements of type α and we restrict the
functorial action of mapF to finitely-supported permutations (endobijections) of α, the two
formulations of these properties express exactly the same concept, the first time in the termi-
nology of group theory, the second in that of category theory.

Nevertheless, there are some important differences between our theory and the nominal
development, due to the choice of functors for modelling the presence of variables, instead
of atom-enriched sets.

First, we exploit a mechanism that is already present in the logical foundation: the de-
pendence of type constructors on type variables. Moreover, unlike nominal sets, which are
assigned fixed collections of atoms, the inputs to our functors are parameters that can be
instantiated in various ways. We exploit this flexibility to remove the finite support restric-
tion and to accept terms that are infinitely branching, that have infinite depth, or both. To
accommodate such larger entities, all we need to do is instantiate type variables with suitably
large types: we have generalized finite support to “small” support (property (Bound) from
Section 6.3, Chapter 6), in order to capture infinitary syntaxes. Because of this, swapping has
lost his central role in our development, replaced by small-support renaming endobijections.
However this is no surprise: from group theory it is well-known that every finitely-supported
permutation is a composition of transpositions (2.4), but at the same time this result cannot
be extended to infinitely-supported permutations.

A second difference with nominal logic concerns the amount of theory (structure and
properties) that is built into the framework as opposed to developed in an ad hoc fashion.
Unlike nominal sets, whose atoms can only be manipulated via bijections, our functors dis-
tinguish between binding variables (manipulated via bijections) and free variables (manipu-
lated via possibly nonbijective functions). Our functors allow us to apply not only swappings
or permutations but arbitrary substitutions.

Higher-order abstract syntax A well-established alternative to nominal logic is higher-
order abstract syntax (HOAS) [34, 56], which reduces the bindings of the object syntax to
those of the metalogic. HOAS can often simplify reasoning [27, 57], but its reliance on the
metalogic’s binder makes it difficult (if possible at all) to encode complex binding patterns.
In [34] this fact is openly recognized and so useful techniques that improved on this issue
have been proposed—immediately in that paper and in many subsequent works. However,

Chapter 7. Conclusion and Related Work 110

the vast majority of these improvements consists of a substitution of the metalogic binding
mechanism for a more general and powerful one [56], thus showing that this metalogic binder
represents indeed a limitation, a “supremum” for what binders can be encoded.

Nameless and Locally Nameless Another approach is to treat (bound) variables as name-
less objects. In this context many different frameworks have been developed in different
proof assistants, such as presheaf-based abstract syntax [29, 38, 3], binding signatures based
on modules over monads [1] (building on [36, 37]; results checked in the UniMath library in
Coq), bindings embedded in nested datatypes [11], bindings embedded in dependent types
[2] (formalized in Agda), the locally nameless representation [6, 21], Autosubst [66], (the
last two formalized in Coq). As it happens with HOAS, this approach, although good for
implementations, involves some encoding for the native binding constructors. This brings to
difficulties when reasoning about the syntax, see Section 7.1.3 below.

Less Related Work Scope graphs [4] are a recent language-independent framework for
specifying bindings. This research is not concerned with definitional or reasoning principles,
but with the integration of bindings with programming language parsers, compilers and static
analyzers.

7.1.2 Complex Bindings

The literature on specification mechanisms for syntax with bindings offers a wide range of
syntactic formats of various levels of sophistication, including those underlying CαMl [64],
Ott [68], Unbound [77], and Isabelle Nominal2 [75]. By contrast, we axiomatize binders
through their fundamental properties and show that any binder satisfying the axiomatization
can participate in binding-aware (co)datatypes. For example, the Isabelle Nominal2 pack-
age [75] is an impressive piece of engineering that caters for complex binders specified as
recursive datatypes, but suffers from the lack of flexibility specific to syntactic formats. It
cannot be combined with datatypes specified outside the framework, in particular, its nomi-
nal datatypes cannot nest standard (co)datatypes, as discussed in Section 1.5, Chapter 1. Our
approach owes its generality and modularity to the use of category theory (and functors in
particular). To our knowledge, our approach is the first in which category theory is used
not only for the construction of (co)datatypes but also for capturing complex binders. Other
category-theoretic frameworks [1, 29, 38, 46] focus on identifying the right category that
has the generic syntax as the initial object. Thanks to this the syntax is characterized up to
isomorphism and provided with an iterative structure. Our work is instead all about cap-
turing the fundamental behaviour of (possibly complex) binding structures from literature,
independently of their particularities. To this aim we first used signatures, but later realized
that category theory would have provided us with better tools, in particular functors and their
properties. Nonetheless we give as well a characterization of the syntax up to isomorphism,
identifying it as an initial object in an appropriate category (Section 6.5, Chapter 6).

7.1.3 Reasoning and Definitional Infrastructure

Besides specification expressiveness, another criterion for assessing a formal framework is
the amount of infrastructure built around the specification language, including reasoning and

Chapter 7. Conclusion and Related Work 111

definitional mechanisms. For syntactic approaches, the difficulty of providing such an in-
frastructure increases with the complexity of the supported binders. For example, Nominal
Isabelle includes simple binders supported by induction [76] and recursion [72], whereas Isa-
belle Nominal2 provides complex binders but only induction. By contrast, our induction and
recursion principles operate generically for arbitrary MRBNFs, regardless of the binders’
complexity. For finitary syntax, our (co)induction and (co)recursion principles are as ex-
pressive as those of nominal logic, via the correspondence between MRBNFs and nominal
sets described above; any predicate that is provable or function that is definable using one
approach is also provable or definable with the other approach.

Binding-aware recursion is technically more complex than induction, given the require-
ment that one produces a function that is well-defined on alpha-quotiented terms. Here, the
state of the art on high expressiveness is the nominal recursor [58] (implemented in Isabelle
[72] and in Coq [5]), and the essential variation due to [53] (implemented in HOL4). Our
recursor improves on the expressiveness of these recursors, by combining their respective
strengths: It uses a flexible notion of (dynamic) parameter as in [53] with our improved
Horn-style axiomatization (Chapter 3 Section 3.3)and circumvents the nominal recursor’s
limitation that freshness must be definable from the permutation action. In Section 6.7 of
Chapter 6, we have formally proved these claims for the particular case of the λ-calculus.

The last paragraph only covers nominal-style recursors, where the recursive clauses re-
fer to the native “first-order” binding operators, such as λ : α × α T → α T for the λ-
calculus. This has the important advantage of manipulating terms in a natural way, re-
flecting the informal practice in describing logics and programming languages. Other re-
cursors in the literature emphasize different constructors, such as λde Bruijn : α T→ α T and
λweak HOAS : (α→ α T)→ α T. These circumvent the difficulties arising from quotienting,
at the cost of having to filter out unwanted terms and introduce an encoding overhead. In
the end, these different approaches target the same platonic concept of term, and our bind-
ing specification framework could in principle offer these alternative “views” of the term
datatype by defining the alternative constructors and proving their associated recursors.

As exemplified above for the lambda constructor, what de Brujin, HOAS and other hy-
brid approaches (e.g. locally nameless) have in common is that they rely on some encoding
of binding, as opposed to using native constructors—this is instead done by theories, like
ours, taking the nominal approach. De Brujin indexes are a very good solution for imple-
mentation, but at the same time they are counterintuitive and heavy for human readability
and hence for reasoning. The nameless approach does not offer support for operators that
explicitly bind free variables, as in λx. t. Instead, it uses name-free de Bruijn style operators,
where in λde Bruijn t the structure of t itself contains the slot for the binding. The explicit-
variable operators can of course be defined from the de Bruijn ones, but the induction and
recursion principles provided by the nameless datatypes lack a strong “awareness” about
these operators, and therefore do not capture informal definitional and reasoning idioms such
as Barendregt’s variable convention. For a more detailed discussion, we refer to [9].

HOAS offers a smart alternative and it results more intuitive then the (locally) nameless
approach, with the representation of variables as metavariables; however this process relies

Chapter 7. Conclusion and Related Work 112

heavily, as discussed above, on the binding construct of the metatheory and moreover needs
adequacy proofs. These can be regarded as a formal connection between the two styles of
constructors: the native first-order ones and the higher-order ones; unfortunately this is an
heavy task to be mechanized and often is left to pen-on-paper practice.

For non-well-founded syntax with bindings such as infinite-depth λ-calculus terms (also
known as Böhm trees [8]), coinduction seems to be largely unexplored territory—where
we study and criticize parameter-based fresh coinduction, and produce an improved version
based on dynamically changing binding variables in terms. By contrast, corecursion has been
studied for Böhm trees [45] and more generally for nominal codatatypes [46]. However, these
works impose the finite-support restriction even for infinite objects. With the help of regular
cardinals, we are able to lift this artificial restriction. The idea of using cardinality was
already present in [22], but in this work the aim was different: the author builds models that
allow for infinite (but “small”) support; these models form a sound and complete semantics
for nominal logic and Herbrand theorems can be proved. A different approach to go beyond
finite support has been taken by [30], as an infinitary extension of his previous work on
nonstandard set-theoretic foundations of nominal logic.

7.2 Conclusion
The major ambition of our PhD project has been developing a general mathematical theory
of syntax with bindings.

Syntaxes with binding mechanisms have been singularly employed and studied for decades
in mathematical logic and to model computation. The arguably most famous example is
Barendregt’s book on λ-calculus [8]. In this work the calculus is carefully studied from its
syntax with many results, to its operational and denotational semantics.

On the other hand, in regard to the formal treatment of concepts about binding indepen-
dently of the particular syntax, the state of the art is unsatisfactory. If we think of a generic
syntax with bindings as an algebraic structure, for example as we think of a generic group,
what we have addressed is developing a general theory, where syntaxes with bindings are
studied as groups in group theory. Each framework in literature (Section 7.1), to our knowl-
edge, lack some important feature or is not general enough (e.g., does not capture some
complex binding structure) to be up to the task.

Not only generality was among our motivations: we wanted our theory to be expressive.
While capturing many instances, the theory should have been able to represent the essential
mechanisms of the binding structures involved, thus giving the possibility to reason about
these—in this regard the features we considered paramount for such a theory have been
presented in Section 1.4 of Chapter 1 and then discussed throughout this document. Moreover
we wanted that the end result was a tool that eased this reasoning. That is why we formalized
it in a proof assistant: we checked every result in Isabelle/HOL and we are working to the
development of a package that implements the theory and is easily instantiable.

Our work started with the study and consequent extension of an older framework (see
Chapter 3) with which we identified the main features that should be asked to our theory

Chapter 7. Conclusion and Related Work 113

and obtained some important original results: a treatment of infinitely branching terms (with
infinitely many free variables) based on cardinality theory (Sections 3.1.5 and 3.2.3) and a
substitution-based recursion principle (Section 3.3), thanks to which we were able to define
generally, independently of the syntax, an interpretation function in semantics domains (Sec-
tion 3.3.4). For this first framework we decided to adopt a “universal algebra approach”: a
syntax is specified via a binding signature (Section 3.5), which also organizes statically terms
in their respective sorts.

With the second framework for our theory (Chapters 5 and 6) we decided to abandon
signatures. Now syntaxes are captured by mean of a special class of functors (Sections 6.1
and 6.2). This led to a significant improvement in terms of generality—on our previous
framework, but also on the state of art:

• We achieve full modularity for our syntaxes (Section 6.2.9), being able to specify new
syntaxes with bindings from previously defined ones.

• We are able to handle a wide variety of binding structures, of arbitrary complexity in a
uniform way (Section 5.2).

• We extend our treatment of infinitary syntaxes also to non-well-founded ones (Section
6.2.8).

• We give an adaptation of fresh induction [76] to our framework and, symmetrically, a
binding-aware coinduction principle (Section 6.4).

• We provide our theory with renaming-based (co)recursion principles, showing that the
terms form initial (final) objects in an appropriate category (Section 6.5). Our recursion
principle generalizes the nominal-style principles due to Pitts, Urban and Tasson, and Nor-
rish, as well as the swapping-based recursor developed within our first framework (Section
6.7).

7.3 Future Work
The next step to be taken for our theory, is to get it into a fully functional package for Is-
abelle/HOL, with a fully automated interface for the user. This means that the user will be
able to specify quickly their syntax, by just giving its constructors, and in exchange they will
get a rich collection of lemmas about terms and operators on them (see Section 3.2.4 from
Chapter 3), as well as bindings-aware reasoning and definition principles, all customized for
the particular instance. The whole functorial setting will be hidden from the user and the
properties of it will be phrased naturally in terms of the constructors of the syntax. This will
include all the modularity properties, as well as mutually-inductively specified objects to get
many sorted syntaxes. This process is theoretically straightforward, but technically demand-
ing, as witnessed by its predecessor: the BNFs-based (co)datatype package for Isabelle/HOL
[18, 70, 16, 13, 17].

On a more theoretical level, there are some additional features that we plan to add soon
to our framework. In particular, we have shown how we implement and generalize to our
functorial setting a swapping-based (co)recursion—as discussed, by now we should more

Chapter 7. Conclusion and Related Work 114

properly call it “renaming-based (co)recursion”. However our second functorial framework
still lacks a substitution-based (co)recursion, that generalizes our principle presented in Sec-
tion 3.3, Chapter 3. After we formalize this result, we will also be able to port to the new
framework a generalization of our previous interpretation of syntaxes in semantic domains
(Section 3.3.4, Chapter 3)—the interpretation function will be defined independently of the
particular syntax and a good behaviour with respect to substitution (the “substitution lemma”)
will be guaranteed once and for all.

As later developments, we plan to go beyond the study of datatypes and formalize binding-
aware non-structural induction principles, such as rule induction—which is very well sup-
ported by Isabelle’s nominal package [73]. For a dual rule coinduction principle, our study
(Section 6.4.2, Chapter 6) suggests that fresh coinduction may not be the best notion to con-
sider. Similar considerations hold for general recursion in the presence of bindings.

115

Appendix A

Appendix

A.1 More Details About BNFs and BNF-based (Co)datatypes
The properties of BNFs and their employment in the construction of modular (co)datatypes
are described in [70] and [18]. Here we recall the reasoning principles emerging from these
constructions, referring to the notations in Section 2.3.

The minimality of the datatype construction is expressed in the following structural in-

duction proof principle:

(SI) Given the predicate ϕ : αT→ bool, if the condition

∀x : (α,αT)F. (∀t ∈ setm+1
F x. ϕ t) −→ ϕ (ctor x)

holds, then the following holds: ∀t : αT .ϕ t.

For codatatypes, we no longer have a structural induction proof principle, but a structural

coinduction principle:

(SC) Given the binary relation ϕ : αT→ αT→ bool, if the condition

∀x,y : (α, αT)F. ϕ (ctor x) (ctor y) −→ relF [(=)]m ϕ x y

holds, then the following holds: ∀s, t : αT .ϕ s t −→ s = t.

Visual intuition Datatype and codatatype (and the difference between them) can be viewed
as “shape plus content.” To simplify notations, consider the binary BNF (α,τ)F and its
datatype on the second component, αT , so that we have αT ' (α,αT)F via the isomorphism

(α,αT)F ctor→ αT

(Thus, we have m= 1.) Fig. A.1a illustrates the effect of decomposing, or “pattern-matching”
a member of the datatype, t : αT . Such an element will have the form ctor x, where x :
(α,αT)F. In turn, x has two types of atoms: the items in setF

1 x, which are members of α,
and the items in setF

2 x, which themselves members of the datatype—we call the latter the
recursive components of t. By repeated applications of ctor, setF

1 , and setF
2 , any element of

the datatype can be unfolded into an F-branching tree, which has two types of nodes: ones
that represent members of α, and ones that represent elements of the datatype. The former are
always leaves, whereas the latter are leaves if and only if they have no recursive components

Appendix A. Appendix 116

T F

ctoroo
a a′ T

a′′

(A) Applying the (co)datatype constructor

F

a′ F

a′′ F

a′′′
...

(B) Elements of the datatypes as piles of F-shapes

FIGURE A.1: Visualizing a datatype

themselves, i.e., applying setF
2 to them yields ∅. Fig. A.1b pictures a recursive component

path of such a tree.
The essential property of the datatype is that all such trees are well founded, meaning that

they all end in items t that have no recursive components (setF
2 t =∅). This is precisely what

the structural induction principle (SI) says, in a slightly different, higher-order formulation
that is more suitable for proof development: A predicate ϕ ends up being true for the whole
datatype if, for each element ctor x, ϕ is true for ctor x provided ϕ is true for all its recursive
components t ∈ set2

F (ctor x).
If instead of a datatype we consider the codatatype αT defined as αT '∞ (α,αT)F,

the pictures in Fig. A.1 remain relevant. The difference is that members of αT can now be
unfolded into possibly non-well-founded trees—i.e., trees that are allowed to have infinite
recursive-component paths, corresponding to an infinite number of applications of the con-
structor. As a result, induction is no longer a valid proof principle. However, we can take
advantage of the fact that the tree obtained by fully unfolding a member t of the codatatype
determines t uniquely—along the principle “to be is to do,” where “to be” refers to t’s identity
and “to do” refers to t’s unfolding behavior.1 Thus, s and t will be equal whenever they are
bisimilar as F-trees—that is, if there exists an F-bisimilarity relation ϕ : αT → αT → bool

such that ϕ s t holds. The notion of ϕ being an F-bisimilarity means that, whenever ϕ relates
two F-trees ctor x and ctor y, their top F-layers have the same shapes, positionwise equal
α-atoms, and positionwise ϕ-related components. As seen in Section 2.2, such positionwise
relations can be expressed using the relator of F. The structural coinduction principle (SC)
embodies the above reasoning pattern.

Modularity The type constructors T resulting from (co)datatype definitions are themselves
BNFs, hence can be used in later (co)datatype definitions. This allows one to freely mix and
nest (co)datatypes in a modular fashion.

The above definitional modularity is matched by modularity with respect to proof prin-
ciples: The (co)induction principle associated with a (co)datatype respects the abstraction
barrier of the (co)datatypes nested in it, in that it does not refer to their definition or their con-
structors; instead, it only uses their BNF interfaces, consisting of map functions, set functions
and relators. For example, here is the structural coinduction principle for finitely branching

1This formulation is Jan Rutten’s import of the famous existentialist dogma into the realm of fully abstract
coalgebras.

Appendix A. Appendix 117

possibly non-well-founded rose trees, defined as a codatatype by α tree∞ ' α× (α tree∞) list,
where for its constructor we write Node instead of ctor:

(SCPtree∞
) Given ϕ : α tree∞→ α tree∞→ bool, if

∀ts,ss : (α tree∞) list.ϕ (Node a ts) (Node b ss) −→ a = b ∧ rellistϕ ts ss

then ∀s, t : α tree.ϕ s t −→ s = t

Thus, the codatatype tree∞ nests the datatype list, but its coinduction principle only refers
to list’s relator structure, rellist. In proofs, one is free to also use the particular definition of
rellist, which is the componentwise lifting of a relation to lists—but the coinduction principle
for tree∞ does not depend on such details. The list type constructor is seen as an arbitrary
BNF. To define unordered rose trees, we could use the finite powerset BNF fset instead of
list, and the coinductive principle would remain the same, except with relfset instead of rellist.

A.2 More Details on the (Co)recursive Definition of Substitution
We show the main proof obligations that must be discharged when defining the variable-for-
variable substitution on α T, i.e., the conditions from Definitions 73 and 76 instantiated with
the corresponding substitution-specific definitions introduced in Sections 6.5.1 and 6.5.2.
We omit the easy-to-prove obligations that the instantiations yield term-like structures or
parameter structures.

For well-founded terms, we obtain the following two conditions:

(MC) (∀i ∈ [m]. bij gi∧|supp gi| < |αi|∧ |supp fi| < |αi|)
−→mapT g (ctor (mapF f [id]m [λpu. pu f]n y)) =

ctor (mapF (g◦ f ◦g−1) [id]m [λpu. pu (g◦ f ◦g−1)]n (mapF g g [mapT g]n y))

(VC) (∀i ∈ [m]. |supp fi| < |αi|)∧ (∀i ∈ [m]. topBindi y∩ supp fi = ∅) ∧
(∀i ∈ [m]. ∀ j ∈ [n]. ∀pu ∈ rec j y. ∀ f . FVarsi (pu f) \ topBindi, j y⊆ supp fi)

−→ ∀i ∈ [m]. FVarsi (ctor (mapF f [id]m [λpu. pu f]n y)) ⊆ topFree y∪ supp fi

The conditions follow by routine reasoning from (restricted) functoriality, naturality, and
simple properties of bijections. For non-well-founded terms, we obtain the following four
conditions, which are similarly easy to discharge:

(Dne) {mapF f [id]m [(λt′. (t′, f))]n x | x ∈ dtor t ∧ (∀i ∈ [m]. noClashi x∧ topBindi x∩ supp
fi = ∅)} 6= ∅

(DRen) y,y′ ∈ {mapF f [id]m [(λt′. (t′, f))]n x | x∈ dtor t ∧(∀i∈ [m]. noClashi x∧topBindi x

∩ supp fi = ∅)} −→ ∃g. (∀i ∈ [m]. bij gi ∧ |supp gi| < |αi|∧
(∀a ∈ (

⋃
j∈[n] (

⋃
u∈rec j y FVarsi u∪ supp fi)r topBindi, j y). gi a = a)∧

y′ = mapF [id]m g [λ(t, f). (mapT g t, g◦ f ◦g−1))]n y

(MD) {mapF (g◦ f ◦g−1)) [id]m [(λt′. (t′, (g◦ f ◦g−1))))]n x | x ∈ dtor (mapT g t) ∧ (∀i ∈
[m]. noClashi x∧ topBindi x∩ supp (gi ◦ fi ◦g−1

i) = ∅)} ⊆

Appendix A. Appendix 118

image (mapF g g [λ(t, f). (mapT g t, g◦ f ◦g−1))]n) ({mapF f [id]m [(λt′. (t′, f))]n x |
x ∈ dtor t ∧ (∀i ∈ [m]. noClashi x∧ topBindi x∩ supp fi = ∅)})

(VD) y ∈ {mapF f [id]m [(λt′. (t′, f))]n x | x ∈ dtor t ∧ (∀i ∈ [m]. noClashi x ∧ topBindi x

∩ supp fi = ∅)} −→ ∀i ∈ [m]. topFree y ∪
⋃

j∈[n] (
⋃

u′∈rec j y FVarsi u′ ∪ supp fi)r
topBindi, j y ⊆ FVarsi t∪ supp fi

The (co)recursor-based definitions of tsub for both well-founded and non-well-founded
terms are very similar to the one of sub. We refer to the formalization for the precise defini-
tions.

119

Bibliography

[1] Benedikt Ahrens et al. “High-level signatures and initial semantics”. In: CoRR abs/1805.03740
(2018). arXiv: 1805.03740. URL: http://arxiv.org/abs/1805.03740.

[2] Guillaume Allais et al. “Type-and-scope safe programs and their proofs”. In: CPP.
2017, pp. 195–207.

[3] S. J. Ambler, Roy L. Crole, and Alberto Momigliano. “A definitional approach to
primitive recursion over higher order abstract syntax”. In: MERLIN. 2003.

[4] Hendrik van Antwerpen et al. “A constraint language for static semantic analysis based
on scope graphs”. In: PEPM. 2016, pp. 49–60.

[5] Brian E. Aydemir, Aaron Bohannon, and Stephanie Weirich. “Nominal Reasoning
Techniques in Coq: Extended Abstract”. In: Electr. Notes Theor. Comput. Sci. 174.5
(2007), pp. 69–77.

[6] Brian E. Aydemir et al. “Engineering formal metatheory”. In: POPL. 2008, pp. 3–15.

[7] Brian E. Aydemir et al. “Mechanized Metatheory for the Masses: The PoplMark Chal-
lenge”. In: TPHOLs. 2005, pp. 50–65.

[8] H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. Elsevier, 1984.

[9] Stefan Berghofer and Christian Urban. “A Head-to-Head Comparison of de Bruijn In-
dices and Names”. In: Electronic Notes in Theoretical Computer Science 174.5 (2007).
LFMTP 2006, pp. 53 –67.

[10] Stefan Berghofer and Markus Wenzel. “Inductive Datatypes in HOL—Lessons Learned
in Formal-Logic Engineering”. In: TPHOLs ’99. Vol. 1690. LNCS. 1999, pp. 19–36.

[11] Richard S. Bird and Ross Paterson. “De Bruijn Notation as a Nested Datatype”. In: J.

Funct. Program. 9.1 (1999), pp. 77–91.

[12] Jasmin Christian Blanchette, Andrei Popescu, and Dmitriy Traytel. “Cardinals in Is-
abelle/HOL”. In: ITP. 2014, pp. 111–127.

[13] Jasmin Christian Blanchette, Andrei Popescu, and Dmitriy Traytel. “Foundational Ex-
tensible Corecursion”. In: ICFP 2015. ACM, 2015, pp. 192–204.

[14] Jasmin Christian Blanchette et al. Binders as Bounded Natural Functors (Formal

Scripts associtated to the homonymous paper.) Available at: https://sites.google.

com/view/lorgheri/research.

[15] Jasmin Christian Blanchette et al. “Bindings As Bounded Natural Functors”. In: Proc.

ACM Program. Lang. 3.POPL (Jan. 2019), 22:1–22:34. ISSN: 2475-1421. DOI: 10.

1145/3290335. URL: http://doi.acm.org/10.1145/3290335.

http://arxiv.org/abs/1805.03740
http://arxiv.org/abs/1805.03740
https://sites.google.com/view/lorgheri/research
https://sites.google.com/view/lorgheri/research
http://dx.doi.org/10.1145/3290335
http://dx.doi.org/10.1145/3290335
http://doi.acm.org/10.1145/3290335

BIBLIOGRAPHY 120

[16] Jasmin Christian Blanchette et al. “Foundational nonuniform (co)datatypes for higher-
order logic”. In: LICS. IEEE, 2017.

[17] Jasmin Christian Blanchette et al. “Friends with benefits: Implementing corecursion in
foundational proof assistants”. In: ESOP 2017. LNCS. To appear. Available at http:

//andreipopescu.uk/pdf/amico.pdf. Springer, 2017.

[18] Jasmin Christian Blanchette et al. “Truly Modular (Co)datatypes for Isabelle/HOL”.
In: ITP. 2014, pp. 93–110.

[19] N. de Bruijn. “Λ-calculus notation with nameless dummies, a tool for automatic for-
mula manipulation, with application to the Church-Rosser Theorem”. In: Indag. Math

34.5 (1972), pp. 381–392.

[20] Lukas Bulwahn, Alexander Krauss, and Tobias Nipkow. “Finding Lexicographic Or-
ders for Termination Proofs in Isabelle/HOL”. In: Theorem Proving in Higher Order

Logics. Ed. by Klaus Schneider and Jens Brandt. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2007, pp. 38–53. ISBN: 978-3-540-74591-4.

[21] Arthur Charguéraud. “The Locally Nameless Representation”. In: J. Autom. Reason-

ing 49.3 (2012), pp. 363–408.

[22] James Cheney. “Completeness and Herbrand theorems for nominal logic”. In: J. Sym-

bolic Logic 71.1 (Mar. 2006), pp. 299–320. DOI: 10.2178/jsl/1140641176. URL:
https://doi.org/10.2178/jsl/1140641176.

[23] Adam Chlipala. “Parametric higher-order abstract syntax for mechanized semantics”.
In: ICFP. 2008, pp. 143–156.

[24] Alonzo Church. “A Formulation of the Simple Theory of Types”. In: J. Symb. Logic

5.2 (1940), pp. 56–68.

[25] Ernesto Copello et al. “Alpha-Structural Induction and Recursion for the Lambda Cal-
culus in Constructive Type Theory”. In: Electr. Notes Theor. Comput. Sci. 323 (2016),
pp. 109–124.

[26] Joëlle Despeyroux, Amy P. Felty, and André Hirschowitz. “Higher-Order Abstract
Syntax in Coq”. In: TLCA. 1995, pp. 124–138.

[27] Amy P. Felty, Alberto Momigliano, and Brigitte Pientka. “The Next 700 Challenge
Problems for Reasoning with Higher-Order Abstract Syntax Representations - Part 2
- A Survey”. In: J. Autom. Reasoning 55.4 (2015), pp. 307–372.

[28] Amy P. Felty and Brigitte Pientka. “Reasoning with Higher-Order Abstract Syntax and
Contexts: A Comparison”. In: ITP. 2010, pp. 227–242.

[29] Marcelo Fiore, Gordon Plotkin, and Daniele Turi. “Abstract Syntax and Variable Bind-
ing (Extended Abstract)”. In: LICS. 1999, pp. 193–202.

[30] Murdoch Gabbay. “A general mathematics of names”. In: Inf. Comput. 205.7 (2007),
pp. 982–1011.

http://andreipopescu.uk/pdf/amico.pdf
http://andreipopescu.uk/pdf/amico.pdf
http://dx.doi.org/10.2178/jsl/1140641176
https://doi.org/10.2178/jsl/1140641176

BIBLIOGRAPHY 121

[31] Lorenzo Gheri and Andrei Popescu. “A Case Study in Reasoning about Syntax with
Bindings: The Church-Rosser and Standardization Theorems”. Draft, submitted. Avail-
able at https://sites.google.com/view/lorgheri/research.

[32] Lorenzo Gheri and Andrei Popescu. A Case Study in Reasoning about Syntax with

Bindings: The Church-Rosser and Standardization Theorems (website). http : / /

andreipopescu.uk/papers/Lambda_CR_Std.html.

[33] M. J. C. Gordon and T. F. Melham, eds. Introduction to HOL: A Theorem Proving

Environment for Higher Order Logic. Cambridge University Press, 1993.

[34] Robert Harper, Furio Honsell, and Gordon Plotkin. “A Framework for Defining Log-
ics”. In: LICS. 1987, pp. 194–204.

[35] Matthew Hennessy and Robin Milner. “On Observing Nondeterminism and Concur-
rency”. In: ICALP. 1980, pp. 299–309.

[36] André Hirschowitz and Marco Maggesi. “Modules over Monads and Linearity”. In:
Logic, Language, Information and Computation. Ed. by Daniel Leivant and Ruy de
Queiroz. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 218–237. ISBN:
978-3-540-73445-1.

[37] André Hirschowitz and Marco Maggesi. “Nested Abstract Syntax in Coq”. In: Journal

of Automated Reasoning 49.3 (2012), pp. 409–426.

[38] Martin Hofmann. “Semantical Analysis of Higher-Order Abstract Syntax”. In: LICS.
1999, pp. 204–213.

[39] Florian Kammüller, Markus Wenzel, and Lawrence C. Paulson. “Locales—A Section-
ing Concept for Isabelle”. In: TPHOLs. 1999, pp. 149–166.

[40] H. J. Keisler. Model Theory for Infinitary Logic. North-Holland, 1971.

[41] Alexander Krauss. “Certified Size-Change Termination”. In: Automated Deduction –

CADE-21. Ed. by Frank Pfenning. Berlin, Heidelberg: Springer Berlin Heidelberg,
2007, pp. 460–475. ISBN: 978-3-540-73595-3.

[42] Alexander Krauss. “Partial Recursive Functions in Higher-Order Logic”. In: IJCAR.
2006, pp. 589–603.

[43] Ramana Kumar et al. “CakeML: A Verified Implementation of ML”. In: Proceed-

ings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages. POPL ’14. San Diego, California, USA: ACM, 2014, pp. 179–191. ISBN:
978-1-4503-2544-8.

[44] Ramana Kumar et al. “Self-Formalisation of Higher-Order Logic”. In: Journal of Au-

tomated Reasoning 56.3 (2016), pp. 221–259. ISSN: 1573-0670.

[45] Alexander Kurz et al. “An Alpha-Corecursion Principle for the Infinitary Lambda Cal-
culus”. In: CMCS. 2012, pp. 130–149.

[46] Alexander Kurz et al. “Nominal Coalgebraic Data Types with Applications to Lambda
Calculus”. In: Logical Methods in Computer Science 9.4 (2013).

https://sites.google.com/view/lorgheri/research
http://andreipopescu.uk/papers/Lambda_CR_Std.html
http://andreipopescu.uk/papers/Lambda_CR_Std.html

BIBLIOGRAPHY 122

[47] James McKinna and Robert Pollack. “Pure Type Systems Formalized”. In: TLCA.
1993.

[48] Dale Miller and Alwen Tiu. “A proof theory for generic judgments”. In: ACM Trans-

actions on Computational Logic 6.4 (2005), pp. 749–783.

[49] Robin Milner. “A Theory of Type Polymorphism in Programming”. In: J. Comput.

Syst. Sci. 17.3 (1978), pp. 348–375.

[50] Robin Milner. Communicating and mobile systems: the π-calculus. Cambridge, 2001.

[51] Robin Milner. Communication and concurrency. Prentice Hall, 1989.

[52] Michael Norrish. “Mechanising lambda-calculus using a classical first order theory of
terms with permutations”. In: Higher-Order and Symbolic Computation 19.2-3 (2006),
pp. 169–195.

[53] Michael Norrish. “Recursive Function Definition for Types with Binders”. In: TPHOLs.
2004, pp. 241–256.

[54] Michael Norrish and René Vestergaard. “Proof Pearl: De Bruijn Terms Really Do
Work”. In: TPHOLs.

[55] Lawrence C. Paulson. “A Mechanised Proof of Gödel’s Incompleteness Theorems
Using Nominal Isabelle”. In: Journal of Automated Reasoning 55.1 (2015), pp. 1–
37. ISSN: 1573-0670.

[56] Frank Pfenning and Conal Elliott. “Higher-Order Abstract Syntax”. In: PLDI. Ed. by
Richard L. Wexelblat. 1988, pp. 199–208.

[57] Brigitte Pientka. “POPLMark reloaded: mechanizing logical relations proofs (invited
talk)”. In: CPP. 2018, p. 1.

[58] Andrew M. Pitts. “Alpha-structural recursion and induction”. In: J. ACM 53.3 (2006).

[59] Andrew M. Pitts. “Nominal logic, a first order theory of names and binding”. In: Inf.

Comput. 186.2 (2003), pp. 165–193.

[60] Gordon D. Plotkin. “Call-by-Name, Call-by-Value and the lambda-Calculus”. In: Theor.

Comput. Sci. 1.2 (1975), pp. 125–159.

[61] Randy Pollack, Masahiko Sato, and Wilmer Ricciotti. “A Canonical Locally Named
Representation of Binding”. In: J. Autom. Reasoning 49.2 (2012), pp. 185–207.

[62] Andrei Popescu. “Contributions to the theory of syntax with bindings and to pro-
cess algebra”. PhD thesis, Univ. of Illinois, 2010. Available at andreipopescu.uk/

thesis.pdf.

[63] Andrei Popescu and Elsa L. Gunter. “Recursion principles for syntax with bindings
and substitution”. In: Proceeding of the 16th ACM SIGPLAN international conference

on Functional Programming, ICFP 2011, Tokyo, Japan, September 19-21, 2011. 2011,
pp. 346–358.

[64] François Pottier. “An Overview of CαMl”. In: Electron. Notes Theor. Comput. Sci.

148.2 (2006), pp. 27–52. ISSN: 1571-0661.

andreipopescu.uk/thesis.pdf
andreipopescu.uk/thesis.pdf

BIBLIOGRAPHY 123

[65] J. J. M. M. Rutten. “Relators and Metric Bisimulations”. In: Electr. Notes Theor. Com-

put. Sci. 11 (1998), pp. 252–258.

[66] Steven Schäfer, Tobias Tebbi, and Gert Smolka. “Autosubst: Reasoning with de Bruijn
Terms and Parallel Substitutions”. In: ITP. 2015, pp. 359–374.

[67] Andreas Schropp and Andrei Popescu. “Nonfree Datatypes in Isabelle/HOL - Animat-
ing a Many-Sorted Metatheory”. In: CPP. 2013, pp. 114–130.

[68] Peter Sewell et al. “Ott: Effective tool support for the working semanticist”. In: J.

Funct. Program. 20.1 (2010), pp. 71–122.

[69] Masako Takahashi. “Parallel Reductions in lambda-Calculus”. In: Inf. Comput. 118.1
(1995), pp. 120–127.

[70] Dmitriy Traytel, Andrei Popescu, and Jasmin Christian Blanchette. “Foundational,
Compositional (Co)datatypes for Higher-Order Logic: Category Theory Applied to
Theorem Proving”. In: LICS. 2012, pp. 596–605.

[71] Christian Urban. “Nominal Techniques in Isabelle/HOL”. In: J. Autom. Reasoning

40.4 (2008), pp. 327–356.

[72] Christian Urban and Stefan Berghofer. “A Recursion Combinator for Nominal Datatypes
Implemented in Isabelle/HOL”. In: IJCAR. 2006, pp. 498–512.

[73] Christian Urban, Stefan Berghofer, and Michael Norrish. “Barendregt’s Variable Con-
vention in Rule Inductions”. In: CADE. 2007, pp. 35–50.

[74] Christian Urban and Cezary Kaliszyk. “General Bindings and Alpha-Equivalence in
Nominal Isabelle”. In: ESOP. 2011, pp. 480–500.

[75] Christian Urban and Cezary Kaliszyk. “General Bindings and Alpha-Equivalence in
Nominal Isabelle”. In: Logical Methods in Computer Science 8.2 (2012).

[76] Christian Urban and Christine Tasson. “Nominal Techniques in Isabelle/HOL”. In:
CADE. 2005, pp. 38–53.

[77] Stephanie Weirich, Brent A. Yorgey, and Tim Sheard. “Binders unbound”. In: ICFP.
2011, pp. 333–345.

[78] Makarius Wenzel. “The Isabelle/Isar Reference Manual”. Available at http://isabelle.

in.tum.de/doc/isar-ref.pdf. 2018.

http://isabelle.in.tum.de/doc/isar-ref.pdf
http://isabelle.in.tum.de/doc/isar-ref.pdf

	Declaration of Authorship
	Abstract
	Acknowledgements
	1 Introduction
	1.1 Problem Statement
	1.2 State of the Art
	1.3 Our Improvement on the State of Art
	1.4 Technical Goals of Our Theory
	1.5 Isabelle/HOL Formalization
	1.6 Relevant Publications and Drafts
	1.7 Structure of the Thesis

	2 Preliminaries
	2.1 Higher-Order Logic
	2.2 Bounded Natural Functors
	2.3 (Co)datatypes from Bounded Natural Functors
	2.4 Group Actions, Finite Support and Nominal Logic

	3 A First Formalization: a Universal Algebra Approach
	3.1 Design Decisions
	3.1.1 Standalone Abstractions
	3.1.2 Freshness, Substitution and Swapping
	3.1.3 Advantages and Obligations from Working with Terms Modulo Alpha
	3.1.4 Many-Sortedness
	3.1.5 Possibly Infinite Branching

	3.2 General Terms with Bindings
	3.2.1 Quasiterms
	3.2.2 Alpha-Equivalence
	3.2.3 Good Quasiterms and Regularity of Variables
	3.2.4 Terms and Their Properties

	3.3 Operator-Sensitive Recursion
	3.3.1 Iteration
	3.3.2 Primitive Recursion
	3.3.3 Iteration Example: the Skeleton of a Term
	3.3.4 Interpretation of Syntax in Semantic Domains

	3.4 Induction Principle
	3.5 Sorting the Terms
	3.5.1 Binding Signatures
	3.5.2 Well-Sorted Terms over a Signature
	3.5.3 From Good to Well-Sorted
	3.5.4 Many-Sorted Recursion
	3.5.5 End Product

	4 A Formalization of the Church-Rosser and Standardization Theorems
	4.1 Instantiation of the General Framework
	4.1.1 The Syntax of -Calculus
	4.1.2 The Two-Sorted Syntax of -Calculus with Values Emphasized

	4.2 Call-by-Name -Calculus
	4.2.1 Call-by-Name -Reduction
	4.2.2 The Church-Rosser Theorem
	4.2.3 The Standardization Theorem

	4.3 Call-By-Value -Calculus
	4.4 Overview of the Formalization and Lessons Learned

	5 Intermezzo: More Bindings to be Captured
	5.1 Critique of the First Framework
	5.2 Towards an Abstract Notion of Binder
	5.2.1 Examples of Binders
	5.2.2 Abstract Binder Types

	6 Bindings are Functors
	6.1 Constructing Nonrepetitive Map-Restricted BNFs
	6.2 Defining Terms with Bindings via Map-Restricted BNFs
	6.2.1 Free Variables
	6.2.2 Alpha-Equivalence
	6.2.3 Alpha-Quotiented Terms
	6.2.4 Infinitely Branching Terms
	6.2.5 Substitution
	6.2.6 Acquiring Enough Fresh Variables
	6.2.7 Term-for-Variable Substitution
	6.2.8 Non-Well-Founded Terms
	6.2.9 Modularity Considerations

	6.3 Full Definition of Map-Restricted Bounded Natural Functors
	6.4 Binding-Aware (Co)induction Proof Principles
	6.4.1 Induction
	6.4.2 Coinduction

	6.5 Binding-Aware (Co)recursive Definition Principles
	6.5.1 Binding-Aware Recursor
	6.5.2 Binding-Aware Corecursor

	6.6 Useful Variations of the (Co)recursion Principles
	6.6.1 A Fixed-Parameter Restriction
	6.6.2 The Full-Fledged Primitive (Co)recursor
	6.6.3 A Constructor-Based Variation

	6.7 Formal Comparison with Recursors from the Literature
	6.8 Isabelle Formalization and Implementation

	7 Conclusion and Related Work
	7.1 Literature Review
	7.1.1 Major Frameworks for Bindings
	7.1.2 Complex Bindings
	7.1.3 Reasoning and Definitional Infrastructure

	7.2 Conclusion
	7.3 Future Work

	A Appendix
	A.1 More Details About BNFs and BNF-based (Co)datatypes
	A.2 More Details on the (Co)recursive Definition of Substitution

	Bibliography

