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ABSTRACT  

 

The concept of quality in general is elusive, multi-faceted and is perceived differently 

by different stakeholders. Quality is difficult to define and extremely difficult to 

measure.  Deficient software systems regularly result in failures which often lead to 

significant financial losses but more importantly to loss of human lives. Such systems 

need to be either scrapped and replaced by new ones or corrected/improved through 

maintenance. One of the most serious challenges is how to deal with legacy systems 

which, even when not failing, inevitably require upgrades, maintenance and 

improvement because of malfunctioning or changing requirements, or because of 

changing technologies, languages, or platforms.  In such cases, the dilemma is whether 

to develop solutions from scratch or to re-engineer a legacy system.   This research 

addresses this dilemma and seeks to establish a rigorous method for the derivation of 

indicators which, together with management criteria, can help decide whether 

restructuring of legacy systems is advisable.  

At the same time as the software engineering community has been moving from 

corrective methods to preventive methods, concentrating not only on both product 

quality improvement and process quality improvement has become imperative. This 

research investigation combines Product Quality Improvement, primarily through the 

re-engineering of legacy systems; and Process Improvement methods, models and 

practices, and uses a holistic approach to study the interplay of Product and Process 

Improvement.  The re-engineering factor rho (),   a composite metric was 

proposed and validated.  

The design and execution of formal experiments tested hypotheses on the relationship 

of internal (code-based) and external (behavioural) metrics.  In addition to proving the 

hypotheses, the insights gained on logistics challenges resulted in the development of a 

framework for the design and execution of controlled experiments in Software 

Engineering.  

The next part of the research resulted in the development of the novel, generic and,  

hence,  customisable  Quality Model GEQUAMO,   which observes the principle of 
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orthogonality, and combines a top-down analysis of the identification,  classification 

and visualisation  of software quality characteristics,  and a bottom-up method for 

measurement and evaluation.  GEQUAMO II addressed weaknesses that were 

identified during various GEQUAMO implementations and expert validation by 

academics and practitioners.   

Further work on Process Improvement investigated the Process Maturity and its 

relationship to Knowledge Sharing, resulted in the development of the I
5
P 

Visualisation Framework for Performance Estimation through the Alignment of 

Process Maturity and Knowledge Sharing. I
5
P was used in industry and was validated 

by experts from academia and industry.  Using the principles that guided the creation of 

the GEQUAMO model, the CoFeD visualisation framework, was developed for 

comparative quality evaluation and selection of methods, tools, models and other 

software artifacts. CoFeD is very useful as the selection of wrong methods, tools or 

even personnel is detrimental to the survival and success of projects and organisations, 

and even to individuals.  

Finally, throughout the many years of research and teaching Software Engineering, 

Information Systems, Methodologies, I observed the ambiguities of terminology and 

the use of one term to mean different concepts and one concept to be expressed in 

different terms.  These practices result in lack of clarity.  Thus  my final contribution 

comes in my reflections on terminology disambiguation for the achievement of clarity, 

and the development of a framework for achieving disambiguation of terms as a 

necessary step towards gaining maturity and justifying the use of the term 

“Engineering” 50 years since the term Software Engineering was coined.  

 

This research resulted in the creation of new knowledge in the form of novel indicators, 

models and frameworks which can aid quantification and decision making primarily on 

re-engineering of legacy code and on the management of process and its improvement.  

The thesis also contributes to the broader debate and understanding of problems 

relating to Software Quality, and establishes the need for a holistic approach to 

software quality improvement from both the product and the process perspectives.  
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PROLOGUE 

 

The research reported in this thesis is the result of work carried out over a period of 35 

years during which the results of the research were published in journal papers and 

refereed international conference papers as well as book chapters.   Over this period 

major technological developments and paradigm shifts in information systems 

development have informed and shaped the direction, experience and the outputs of this 

research. Increasingly deeper insights into the various issues relating to software quality 

were gained through the study of the literature, the design and execution of formal 

experiments, and the development of models which were validated by experts in 

academia and industry.  The developed models were also integrated into several 

academic programmes and modules, and offered at two UK universities where the 

author worked as a Principal Lecturer in Software Engineering and Information 

Systems. Elements of Quality Management Processes have been applied to the Quality 

Management and Quality Evaluation of three European Tempus Projects for 

Knowledge Transfer.  

 

The structure of the thesis is as follows:  

 

Chapter 1 is the Introduction which presents the motivation, context, scope, 

objectives, formulation of research hypotheses and research methods employed.  

 

Chapter 2 provides a discussion of research philosophy, research methods, their 

strengths and weakness, and the selection of the research methods used in this research. 

 

Chapter 3 is a critical review of lifecycle models, information systems development 

methodologies, process models, standards, and quality models, and the development of 

the generic, multilayered, and customisable software quality model GEQUAMO. Some 

deficiencies of GEQUAMO were identified during its use resulting in GEQUAMO II 

which was validated by experts from academia and industry.  

(Papers I, II, III, IV, V) 
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Chapter 4 identifies controllable and uncontrollable factors in software development 

and proposes improvements to the ISO 7126 quality model. 

(Papers VI, VII)  

 

Chapter 5 describes the derivation of the composite metric rho () which is an 

indicator for answering the question on whether deficient or malfunctioning systems 

should be scrapped or re-engineered. Achieving improvements through the 

manipulation of legacy code was carried out through the design and execution of formal       

experiments for testing the hypotheses. Gradual understanding of the problems with 

logistics encountered during the design and execution of the experiments lead to the 

development of a Framework for the Management of similar experiments.  

(Papers VIII, IX, X, XI, XII, XIII) 

 

Chapter 6 starts with a discussion of the main drivers of process improvement and 

presents the development, use and validation two frameworks and one model:  

 the I
5
P Visualisation Framework for Performance Estimation through the     

alignment of Process Maturity and Knowledge Sharing;   

 the VALO5  Model of innovation, maturity, quality and valorisation;  and  

 The CoFeD – visualisation framework for comparative quality evaluation.  

 

(Papers XIV, XV, XVI) 

 

Chapter 7 presents reflections on metrics validity through revisiting the composite 

metric rho (). It also considers the ethical and legal dimensions of systems failures as 

well as the potential value gains if we can reconcile stakeholder conflicts by analysing 

apparently contradicting notions of value in SE projects concludes with the recurring 

problem of terminology management/mismanagement and the need for terminology 

disambiguation for creating clarity.  

 

(Papers XVII, XVIII, XIX, XX) 

 

Chapter 8 is the overall conclusion which summarises the Contributions to Knowledge 

and the Significance of the Study. This research contributes to a broader understanding 

of information systems and the elements within the environment that influence the 
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quality of process and product. The research also explored the use of formal 

experiments to test hypotheses and beliefs across the software engineering and 

information systems research and practitioner communities. The need for a legal and 

ethical stance towards software failures and their social implications is highlighted. The 

need for disambiguation of terms so that Software Engineers ‘speak the same language’ 

is also discussed.  Limitations of the research as well as directions of future work 

complete the thesis.  

 

The Epilogue is a personal reflection on my research journey, my quest for knowledge 

and understanding, the creation of new knowledge, and the development of models and 

frameworks as mechanisms for product and process improvement, the application of 

the author’s research findings in industry, as well as in curriculum development, and 

European Projects for Research & Knowledge Transfer.  It concludes with a brief 

discussion on the role of educators in raising awareness and the sense of social 

responsibility in their students, who will be the future software engineers. It outlines the 

benefits of improved quality in software products and processes.  
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CHAPTER 1 INTRODUCTION  

 

1.0 Introduction to the chapter  

 

This chapter presents the motivation, context, scope, objectives, formulation of research 

hypotheses and research methods employed. This thesis contributes a holistic approach 

to the broader debate and understanding of problems relating to Software Quality. 

1.1 Background 

This research focuses on the interdependencies of software product and software 

process; also on the quest for continuous improvement.  It provides new knowledge in 

the form of a novel composite metric/indicator, models and frameworks which can aid 

quantification, and hence decision making, primarily on the efficacy of re-engineering 

legacy code and the management of process improvement.  

 

As many researchers, practitioners and members of the public know, quality in general 

is transparent (and could even be taken for granted) when present, but is easily and 

immediately recognised in its absence.  Software quality is no exception. However, 

defining and measuring quality is extremely difficult.  Kitchenham (1996) and 

Kitchenham and Pfleeger (1996) emhpasised that: “quality is an elusive concept”.   

 

Software artifacts even 'small programs' are among the most complex artifacts that 

humans produce, and software development projects are among our most complex 

undertakings. Nowadays our lives are governed by computers, communications and 

computer-based systems. Computer Systems and Information Systems play a very 

central role in organisations and the demands on information systems are continuously 

increasing. At the same time as information systems become more complex, more 

people are involved with software development and the need for repeatable processes 

have become necessary. Deficient quality of software systems result in failures which 

lead to significant economic losses but more importantly to loss of human lives.  

 

There are many different causes of failures in computer-based systems including 

physical faults, maintenance errors, design and implementation, mistakes resulting in 
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hardware or software defects, and user or operator mistakes. The causes of these 

failures are varied but often they are not foreseen and hence they are discovered too late 

in the process and invariably unexpectedly. In 1968 at the land mark Software 

Engineering Conference (NATO, 1968) the term Software Crisis was coined as a mark 

of recognition that there was a serious problem of systems failures.  The quality of 

systems therefore became questionable.  

 

Similarly most software projects can be considered at least partial failures because few 

projects meet all their cost, schedule, quality, or requirements objectives. Many surveys 

have indicated that as many as 50 % -75% of information systems projects are total or 

partial failures (Polymenakou and Serafeimidis, 1995).   

According to the Standish Group reports CHAOS published regularly since 1995, 

(CHAOS, 2015), Liebowitz, J., (2015), (Dalcher, 2017) many of these deficient systems 

are never used or abandoned after release. Researchers and practitioners have sought to 

understand the reasons for failures and have developed a plethora of methods, 

techniques and tools for alleviating the likelihood of failure.  

The concerns about late deliveries of software, with low reliability and high 

maintenance costs have directed most efforts to improve software quality. There is 

universal agreement that although it may be difficult to understand, define and measure 

quality, we all readily recognise its absence. 

 

Since the 1950s Deming (1986) recognised that quality is difficult to define mainly 

because it is difficult to express future user needs into measurable attributes. Users 

want a product to satisfy their needs within specified time and cost limits. Nearly 30 

years later, Juran et al. (1981) defined quality as "fitness for purpose”. Customers hold 

different opinions, for different reasons about quality. In the same year Crosby 

extended this definition to "Quality is conformance to requirements” (Crosby, 1979).  

 

A decade later the emphasis shifted to specification with Cullen asserting that “Quality 

is conformance to specification” (Cullen, 1989). The most all-encompassing definition 

is provided in ISO 9001 second edition (1994), and later on ISO9126 namely “Quality is 

the totality of features and characteristics of a product or service that bear on its ability 
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to satisfy specified or implied needs”. This definition recognises that many different 

aspects make up and affect quality. These factors are often interdependent and tradeoffs 

may be necessary to achieve an acceptable level of compromise.  

 

Gillies proposed that “Quality is generally transparent when present, but easily 

recognised in its absence “(Gillies, 1992).  He elaborated as follows: 

Quality is not absolute. It means different things in different situations.   In one 

situation the safety of the car can be the most important attribute for quality, and in 

another situation it can be the speed and the acceleration.  It depends on what is 

important for us in a specific moment. 

 

Quality is multidimensional: It depends on many different factors. There is seldom only 

one factor that decides the quality of a product or a service. There are usually many 

details that make us to consider a product as a quality product.   

Quality is subject to constraints: Some products are usually considered as quality 

products (for example Rolls Royce) but because of the high price we choose to consider 

some other products as quality products. 

Quality is about acceptable compromises: Some criteria may be sacrificed because of 

constraints such as prohibitive costs settling for a product or service of lower quality. 

 

Quality criteria are not independent: They interact with each other causing conflicts. 

For example the more complex a system is, the more unreliable it is likely to be. That is 

complexity is likely to affect reliability.  

 

Gillies proceeded to define five views of quality which may be in conflict with each 

other. These are: 

The transcendent view: The classical definition of quality meaning "elegance". 

The product-based view: The economist's view, higher quality = higher cost. 

The user-based view: It is meeting the users’ requirements and fitness for purpose. 

The manufacturing view: Measures quality in terms of conformance to requirements. 

The value-based view: Provide what the customer requires at a price they can afford. 

 

Kitchenham (1996) encapsulated many of the issues relating to the understanding, 

definition and measurement of Software, arguing that "Quality is a complex concept 
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that means different things to different individuals. It can be highly context dependent. 

This means that there can never be any simple measure of quality that will be accepted 

by everyone. If you are interested in assessing or improving quality in your 

organisation, you must ensure that you define what aspect of quality you are interested 

in and how you are going to measure it. In fact, if you define quality in a measurable 

way, it is usually easier for other people to understand your viewpoint. “ 

 

More than 75 % of software projects run late and as many as 30% of projects are 

cancelled (CHAOS, 1994; Dalcher, 2005, Jones, 2010; Chaos, 2016 Dalcher, 2017).     

A constant  quality improvement quest resulted in the development of numerous 

approaches to building and maintaining software, from new technologies to progressive 

processes and frameworks  as reported by among others Jayaratna (1994), Jackson 

(1995), Beck (2001), Vandierendonck  & Mens (2011),    Wolf (2016),  Dalcher, 

(2017). 

New languages were often believed to have almost magical powers for resolving the 

Crisis. Automated tools, formal methods, object-orientated methods have been 

proposed as alternative 'religions' with many software engineers becoming almost 

fanatical followers of one or the other approach (Georgiadou & Sadler, 1995), (Siakas 

et al 1997).  Despite these efforts systems continue to fail with dramatic frequency and 

impact.  

 

At this juncture it is necessary to introduce some fundamental terms in the context of 

Software Engineering and the scope of this research namely Quality, Measurement and 

Metrics, Product, Process, Resources and Projects. 

 

1.2 Fundamental Terms Pertinent to this research 

 

Quality according to Kitchenham (1996) is an elusive concept, difficult to define and 

even more difficult to measure. Quality means different things to different people. The 

approach of this research is to look at quality in a holistic manner studying the 

inextricable interaction of software product and software process quality. 
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 Based on Kitchenham’s observation, the ISO 9001 (1994) definition for quality and 

my philosophy of providing for generalisation and specialisation/customisation, the 

following definition of software quality is proposed:  

Software Quality is the totality of product as well as process characteristics, 

and their interaction and measurement (whether qualitative or quantitative) 

that satisfy different stakeholder requirements.   

 

Software products or artifacts are also known as the deliverables or outputs of the 

software process. These products may be plans, functional specifications, process 

models, procedure manuals, coding, test data, test results and so on (Whitmire 1997). In 

the early years the Software Engineering community adopted an end-of-cycle quality 

inspection regime just like the early manufacturers who inspected finished products. 

Inspections in turn resulted in three categories of finished product namely the accepted, 

the rejected and those products requiring rework. The last two 'heaps' namely the 

rejects and the reworks gave a measure of the losses which every manufacturer needed 

to reduce for survival and competitive advantage (Gilb & Graham, 1993), (Burr and 

Georgiadou 1995). 

 

Software process is a set of activities that begin with the identification of a need and 

conclude with the retirement of a product that satisfies the need; or more completely, as 

a set of activities, methods, practices, and transformations that people use to develop 

and maintain software and its associated products (e.g. project plans, design documents, 

code, test cases, user manuals). Pfleeger (1998) emphasizes that “we must learn how to 

use software process to enhance products without stifling creativity and flexibility. We 

must also learn which processes work best in which situations, and understand what 

characteristics of the products and of the people building them are the most important 

in process choice”.  

 

Resources include people, tools, materials, methods, time, money, training (or 

generally knowledge and skill) and products from other projects (Whitmire, 1997). In 

essence resources are the inputs to the processes used on a project. Resource usage 

together with size measures allow productivity to be measured (Kitchenham 1996). 
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A software project is the relationship between instances of a problem to be solved, 

internal and external goals and standards, processes, methods and techniques, 

constraints and finally a product (one or more deliverables) (Whitmire, 1997). The 

goals and constraints particularly on resources affect the outcome, the nature of the 

product and the success or failure of the whole project. Therefore the study of failed 

projects is complex but necessary if the software engineering community is to address, 

rectify and eventually prevent future failures. 

 

Software metrics: Fenton and Neil (1999) asserted that ‘Software metrics' “is the rather 

misleading collective term used to describe the wide range of activities concerned with 

measurement in software engineering”. A software metric is a standard of a measure of 

a degree to which a software system or process possesses some property. Even if a 

metric is not a measurement (metrics are functions, while measurements are the 

numbers obtained by the application of metrics), often the two terms are used as 

synonyms.   

 

According to   IEEE 1061  (1998)  “Software metrics measure properties of software 

and are loosely defined as functions  whose inputs are software data and whose output  

are single numerical values  that can be interpreted as the degree to which software 

possesses a given attribute that affects its quality”.  A standard way of measuring some 

attribute of software is known as a metric.  According to ISO 9126 (2001) and the 

ISO/IEC 25010 (2014) a software quality metric is a quantitative scale and method that 

can be used to determine the value which a feature takes for a specific software 

product.  

The definition used in this research is “A software metric is a measurable property 

which is an indicator of one or more of the quality attributes.” 

 

1.3 Attempts to address the Software Crisis 

For nearly 50 years the Software Engineering community has recognised the necessity 

to address systems and project failures which came to be known as the Software Crisis 

(Sommerville, 2010); (Standish Group, CHAOS Report, 2015); (Dalcher, 2017). 
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[Britain: The health service's IT problem; Computerising the NHS] and [The 

Economist, Oct 19, 2002, Vol. 365(8295), pp.51-52]. 

 

Researchers and practitioners endeavoured to identify methods for improving the 

productivity and the quality of product. Due mainly to lack of awareness and the strong 

desire to achieve these aims, myths and often unsubstantiated claims plagued the 

industry. It was not long ago that program generators were hailed as the answer to the 

problem of late deliveries and therefore high costs. New languages were often believed 

to have almost ‘magical’ powers of resolving the crisis. Automated tools, formal 

methods, object-orientated methods have been proposed as alternative 'religions' with 

Software Engineers becoming almost fanatical followers of one or the other approach 

(Georgiadou & Sadler, 1995), (Siakas et al 1997). 

This quest resulted in the development of numerous approaches to building and 

maintaining software, from new technologies to progressive processes and frameworks  

as reported by among others the various CHAOS reports (1994 -2015) by the Standish 

Group,  Jackson (1995), Jayaratna (1994), Beck (1999),  Avison & Fitzgerald (2003), 

(Eveleens and  Verhoef, (2010),   Vandierendonck  &  Mens (2011),   and   Dalcher 

(2017).   

Although the CHAOS reports have come under some criticism e.g. by Eveleens and 

Verhoef (2010) they nevertheless provide a benchmark for further study as despite the 

many developments such as the adoption of agile methods the rates of failures have not 

improved significantly.  

This research sought to gain increasingly deeper insights into the ways in which the 

Software Engineering community has attempted to address the software crisis by 

examining the role of Software Development Lifecycles,   Information Systems 

Development Methodologies, and Quality models which researchers and practitioners 

proposed, developed and used over the last 50 years. A historical perspective was 

adopted tracing major developments and their contribution to this endless quest for 

improvement. 

 



________________________________________________________________________________ 

  Elli Georgiadou                                                                             Page: 31 

1.4 Learning from the Manufacturing Industry 

Already 

The automobile manufacturer's eighth model 

Reposes on top of the scrap iron 

But we 

Are travelling in the ninth 

Thus we have decided 

In ever new vehicles - full of flaws 

Instantly destructible 

Light, fragile 

Innumerable - 

Henceforward to travel. 

 

(from Bertolt Brecht : The Impact of the Cities 1925-1928  

   Still, when the automobile manufacturer's eighth model) 

 

The Japanese approach to quality control was initiated by Shewhart in 1939 (Shewhart 

W A. Statistical method from the viewpoint of quality control. Mineola, NY: Dover 

Publications, 1986 (1939) and continued by Deming (1986).  Shewhart wrote Statistical 

Method from the Viewpoint of Quality Control and gained recognition in the statistical 

community.  Logothetis and Wynn (1989) also reported that Kaoru Ishikawa who is 

considered the father of ‘Total Quality Control’ and who received the ‘Deming Prize’, 

advocated that Statistics should become a common language that can be used at all 

levels in the organisation providing the information to anticipate, identify and correct 

mistakes, and also used to reduce wasteful variability in the system by ‘doing it right 

the first time’. 

 

Hagime Karatsu (cited by Logothetis & Wynn, 1989) explained the benefits from a 

high quality manufacturing process as follows: “If it is aimed to produce quality 

products, there will be great financial benefits. Withdrawal and return of products are 

reduced. Higher productivity will be achieved because the necessity to stop machines in 

order to replace materials will be less frequent. This means it is possible to reduce the 

operation rate. As the manufacturing system itself improves in quality, the cost will be 

minimised. That will give rise to the company’s reputation and will increase its sales.” 

 

Deming is regarded as the founder of the third wave of the Industrial Revolution. He 

claimed that if a company tries to obtain short term profit, it would lead to business 

failure, and suggested ceasing dependence on inspection in order to achieve quality, 
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and eliminating the need for mass inspection by building quality into the product in the 

first place. This emphasises the importance of the stage of design of a product, which is 

common from Deming to Taguchi. 

 

Taguchi’s philosophy began taking shape in the early 1950s when he was recruited to 

help improve the postwar Japan’s crippled telephone system. Finding deficiencies in 

traditional trial-and-error approaches to identifying design problems, he eventually 

developed his own complete, integrated methodology for designing experiments 

(American Supplier Institute, 1999) for process and product improvements. 

 

Taguchi’s philosophy is now well practiced in the manufacturing industry. In Japan the 

Taguchi Method (1985; 1986) is called ‘hinshitsu kougaku’ which translates to ‘quality 

engineering’. The method has ensured the significant reduction of manufacturing costs 

together with increased product quality (Barbor & Georgiadou, 2001). Taguchi also 

spoke of social loss. If quality is high, society will get benefit from the product. If 

quality is low, society’s current standards will decrease to cope with those deficient 

products. Therefore, it is desirable to strive for smaller social loss. The term ‘social loss’ 

(Logothetis & Wynn, 1989) implies: 

 losses due to poor and varied performance of a product; 

 failure to meet the customer’s requirements of fitness for use or  

for prompt delivery; 

 harmful side-effects caused by the product. 

Examples of notorious failures that caused exorbitant financial losses but also loss of 

life include the space shuttle Challenger Disaster in 1986 (Dennis S. G. et al., 1986), 

the London Ambulances Dispatch Service failure in 1992, Beynon-Davies, P., (1999) 

The London ambulance dispatch system was cancelled in 1990 at 11.25 million pounds; 

the second attempt was abandoned after deployment costing another costing another 15 

million pounds! 

Business examples include the total failure of the London Stock Exchange – Taurus, 

(Charette, 2005),   and the fiasco of the BA Terminal 5 Luggage Handling system 

(Winston, 2008).  
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Lessons that can be learned from the manufacturing industry are twofold: firstly the 

need to built-in quality at the early stages of the development process, avoiding product 

testing at the end of the lifecycle, and secondly the need to use techniques such as 

Statistical Process Control to monitor the quality of the process and hence the products.  

 

In the case of Software Engineering considerable effort was expended in carrying out 

software testing namely exercising finished code with 'suitable' test data. Despite these 

efforts systems continued to fail and the Software Engineering community had to seek 

alternative or complementary methods for minimising the losses in terms of financial 

costs and loss of human life.  

 

Maintenance of existing software is by far the most frequent, demanding and expensive 

process in software engineering. Legacy systems require constant maintenance: 

corrective to address failures in use, adaptive to accommodate changes in requirements 

and perfective to improve performance (Lehman, 1974; Sommerville, 2001; Pressman, 

et al., 2015). Modifying software is an integral part in the lifecycle of systems. 

Maintainability, the ease with which maintenance activities are carried out, impacts on 

productivity and costs.  Through the study of the behaviour of existing systems it is 

aimed to help decide whether a failing system should be scrapped or improved by 

carrying out adaptive, corrective and perfective maintenance.   

 

1.5 Motivation of the Researcher 

 

Reliability, Functionality, Usability, Portability, Efficiency, Maintainability are aspects 

of quality which, when deficient, can cause failures resulting in disasters and financial 

losses. All aspects of life nowadays depend on complex and interconnected systems: 

transport, health, the economy, government, education. Managers need accurate 

information and guidelines to help them make important decisions, plan and schedule 

activities to allocate resources for the different software activities that take place during 

software development. Therefore understanding and controlling the process is 

imperative if we are going to enhance the quality of the product and the success of 

project(s). 
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1.6 Research Scope and Research Questions 

 

This investigation is multifaceted. It views Software Quality from different 

perspectives. Different stakeholders have a different understanding of software quality 

and hence different requirements. Their requirements and opinions may be synergistic 

or conflicting. The broad topic therefore covers a big range of issues relating to systems 

and project failures and the efforts of the community (both theoreticians and 

practitioners) engage in a continuous quest for identifying and resolving the issues.  

 

According to Lehman’s first law software systems must be continually adapted, or they 

become progressively less satisfactory (Lehman, 1980), (Lehman, et al., 1997). At the 

same time, software is becoming more and more complex and expensive than before. 

“As a software system evolves, its complexity increases unless work is done to 

maintain or reduce it”. Lehman (1998) observed that systems continue to evolve over 

time. As they evolve, they grow more complex unless some action, such as code 

refactoring, is taken to reduce the complexity. In the late 1970s, a widely cited survey 

study by Lientz and Swanson (1981)   established that maintenance and enhancement of 

software consume between 75% and 80% of the lifecycle cost. They categorised 

maintenance activities into four classes: 

 Adaptive – modifying the system to cope with changes in the software 

environment 

 Perfective – implementing new or changed user requirements which concern 

functional enhancements to the software 

 Corrective – diagnosing and fixing errors, possibly ones found by users  

 Preventive – increasing software maintainability or reliability to prevent 

problems in the future. 

This research combines an investigation and implementation of Product Improvement, 

(and primarily on software maintenance of existing (legacy) systems), and investigation 



________________________________________________________________________________ 

  Elli Georgiadou                                                                             Page: 35 

of Process Improvement methods, models and practices, and interplay of Product and 

Process Improvement.  

1.7 Focussing on Product Improvement 

 

The manifestations of what came to be known as the Software Crisis demand quality 

improvements to rectify errors and even catastrophic failures.  Additionally even if 

systems are not failing, they inevitably require maintenance because of changing 

technologies or changing requirements. Therefore a major challenge is how to deal with 

legacy systems. The question is “whether to develop new solutions from scratch or to 

re-engineer systems?” This investigation addresses this dilemma and seeks to establish 

a rigorous methods and associated measures for supporting management criteria for 

deciding whether code restructuring is advisable.  As the area is broad it is necessary to 

narrow the scope and focus on the topic as shown in Figure 1.1.  

 
 

 

Figure 1.1: Part 1 research questions funnel (adapted from Chilakanti, 2013)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Software Crisis, Information Systems and Project Failures,  

Quality Models  

Measurement 

Evaluation 

Improvement  

 

Software Legacy Systems, Quality, 

Maintenance and Maintainability, 

Usability, Complexity 

 

Research 

Questions 

 

Broad 

Topic  

Narrowing 

the topic 

Focussing 

on the 

topic 

Research Questions: 

“Can we improve the 

product,” 

“How can  we measure such 

improvement?” 

“why, when and how can we 

re-engineer legacy code?” 
 

 



________________________________________________________________________________ 

  Elli Georgiadou                                                                             Page: 36 

 

 

 

Software development has shifted from corrective to preventive methods and quality 

improvements have shifted from product improvement to process improvement 

emulating the manufacturing industry.   Preventive methods in all fields of human 

activity (such as preventive health care) are preferable and in the long run less costly.  

Shifting the effort to process improvement relies on the assumption that an improved 

process is likely to result in improved outputs (products) (Shewhart, 1986); (Deming, 

1986); (Taguchi, 1985 and 1986 ).     

 

1.8 Focussing on Process Improvement 

 

Process improvement initiatives in other industries as well as in the Software 

Engineering industry have argued and demonstrated that process improvement 

enhances the chances of product improvement (Kitchenham, 1995, Burr and 

Georgiadou, 1995, Pleeger-Lawrence, 1996).  

 

Thus product improvement should not be separated from process improvement as the 

two are interconnected.   

Considering the research from a process improvement approach we start from the broad 

topic of Total Quality Management and Continuous Process Improvement to proceed to 

Process Maturity, Knowledge Sharing and Performance Measurement.  This is the 

second Pillar of this research.    

 

Figure 1.2 depicts additional research questions funnel.  
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Figure 1.2: The Pillar 2 research questions funnel (adapted from Chilakanti, 2013)  

 

 

The Research Questions (RQs) were: 

 

RQ1 “Can we improve the quality of software by manipulating its structure, and, 

if the    answer is yes, can we measure such improvement?” 

 

RQ2 “When and how is it preferable to re-structure existing code or develop from 

scratch?” 

 

RQ3 “if we can improve the process,  can we measure such improvement?” 
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In order to answer these questions it was decided to:  

 identify and study the characteristics of software and its behaviour with the 

view to bring about improvements through manipulation (restructuring, 

reengineering, refactoring) of legacy software; 

 investigate methods and models proposed for software process improvement;  

 develop estimates, measures, models and frameworks for the achievement of 

improvements.  

 

Software Quality has many characteristics both structural and behavioural. The focus of 

this study was covering the nexus of software product improvement (especially re-

engineering of legacy code) and software process improvement, and the measurement 

of improvements as a means of substantiating and validating propositions, models, and 

results.  

1.9 Research Objectives and Hypotheses 

1.9.1  The objectives of this research were to:  

 investigate methods and practices of addressing systems failures; 

 identify software characteristics and their measures  of the software  product & 

manipulate/re-structure software and study empirically the effects of such interventions 

on  behavioural characteristics (such as maintainability and usability); 

 propose suitable re-engineering software product measures through the study of 

dependencies of internal characteristics and external characteristics of software;  

 identify the factors and characteristics of the software process  & develop process 

improvement and measurement mechanisms;  

 construct an adaptable quality model suitable for different stakeholders (such as users, 

developers, sponsors) & develop a framework for the evaluation of items under 

selection. 

 

1.9.2 Research Assumptions 

 

Assumption   1: Process Improvement impacts directly on Product Improvement. 

Assumption   2: Process Improvement depends on Maturity level and Knowledge 

Sharing.  
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1.8.3 The research hypotheses  

H1: Structural software product characteristics impact on its behaviour   

H2: The usability of software depends on design characteristics  

 

In this investigation the product characteristics selected are maintainability and 

understandability. 

Thus  H1 is recast 

H1.1  The maintainability of software depends on its complexity. 

(i.e. Low module complexity results in high maintainability). 

 

H1.2 The maintainability of software depends on its structuredness 

             (i.e. Highly structured programs are highly maintainable).  

 

And  H2 is recast as  

H2.1 The understandability of software depends on the use of colour in the Human 

Computer Interface (HCI). 

 

H2.2 The understandability of software depends on the use of non-symbolic naming 

of variables. 

 

1.10  Summary of Chapter 1 

 

The context of this research was the widespread problem of Information Systems 

failures and the manifestations of what has come to be known as the Software Crisis. 

Studying the attempts to address the crisis allowed for the focus and motivation to be 

expressed. The research rested on three pillars: 

 Product Improvement (particularly Maintainability and Usability) of legacy code,  

 Process Improvement which was expected to result in Product Improvement, and  

 The connection between Product and Process Improvement and the measurability 

of Improvement.   

 

The aims and objectives were specified, and research hypotheses were formulated.  
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CHAPTER 2 

 

RESEARCH PHILOSOPHY, RISEARCH METHODS AND 

RESEARCH METHODS USED IN THIS RESEARCH 

 

Disciple: "Rabbi, why do you answer a question with another question?” 

 Rabbi: "Is there another way?"      (Jewish Proverb) 

Chapter 1 is the Introduction which presents the motivation, context, scope, 

objectives, formulation of research hypotheses and research methods employed.  

 

2.1 Research Philosophies 

 

The research questions posed here demand scientific proof of generally held beliefs, 

which often mark the beginning of many investigations. Doxai represent what is 

believed to be true whilst epistemic investigation results in something known to be 

true. The purpose of science, then, is the process of transforming things believed into 

things known i.e. transformation of doxa to episteme; δόξα [dóxa] : Greek term for 

opinion, belief, or judgment, as opposed to επιστήμη[epistêmê] Greek term for 

systematic knowledge.  

 

Two major research philosophies have been identified in the tradition of science, 

namely positivist (sometimes called scientific), and interpretivist (also known as anti-

positivist) (Galliers, 1992).  According to Checkland (1981) scientific (empirical) 

approaches have: Repeatability, Reductionism and Refutability. 

 

2.1.1 Positivism 

 

Positivists believe that reality is stable and can be observed and described from an 

objective viewpoint (Sarkar, 1996) without interfering with the phenomena being 

studied. Positivists seek to isolate and observe phenomena. Positivism requires 

repeatability, and involves manipulation of “a single independent variable so as to 

identify regularities in, and to form relationships between, some of the constituent 

http://www.philosophypages.com/dy/e5.htm#eptm
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elements of the social world.” Previous observations, explained realities and inter-

relationships form the basis of predictions.  

 

In the case of Software Engineering and Information Systems the factors involved in 

their development and operation are either not measurable or extremely difficult to 

measure. Conversely, considerable debate on whether positivism is a suitable paradigm 

for social science research is reported in, among others, (Hirscheim, 1982) and 

(Remenyi & Williams, 1996).  

 

2.1.2 Interpretivism and the multi-paradigmatic approach 

 

The positivist paradigm has been widely used as reported by researchers like 

Orlikowski and Baroudi (1991) in Information Systems research. A combination of 

research methods is preferable in order to improve the quality of research. The 

constructivist approach is concerned with developing frameworks, refining concepts or 

pursuing technical developments. The approach allows models and frameworks to be 

created that do not describe any existing reality or do not necessarily have any 

“physical” realisation (Cornford and Smithson 1996).  

 

Lee (1991) developed a framework which can be used in order to combine qualitative 

and quantitative research in a study.  Lee’s framework is known as a multi-

paradigmatic approach which identifies three levels of understanding as follows:   

First level: subjective understanding belongs to the observed human objects.  This 

understanding is the making of sense of everyday behaviour which manifests itself in 

social settings.  

Second level: interpretive understanding belongs to the observer (researcher). This 

understanding is the reading or interpretation of the first level, common sense 

understanding. 

Third level: positivistic understanding belongs to the researcher.  This understanding 

involves the researcher creating and testing propositions in order to explain the 

empirical reality that he/she is investigating.   
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Lee (1991) suggests that research methods such as case study, action research and 

grounded theory can be used to develop the researcher’s second level understanding 

which in turn helps develop testable propositions addressing the social phenomena 

under investigation.   This in essence constitutes the third level of understanding.  A 

multi-paradigmatic approach can provide a basis for developing testable propositions.   

 

 

2.2   Research Methodology Selection and Justification 

 

This research is concerned with a search for, and evidence to support general laws or 

theories that will cover a whole class of cases. Such research emphasises systematic 

protocols and hypothesis testing within the scientific tradition and is known as 

nomothetic research (Cornford and Smithson, 1996).  Galliers (1992) summarised the 

main research methods in Information Systems.   

 

Formal laboratory controlled experiments are primarily used for testing a hypothesis 

to establish the confidence with which you may predict the implications of a particular 

theory.  

 

Laboratory experiments permit the researcher to identify precise relationships between 

a small number of variables that are studied intensively via a designed laboratory 

situation using quantitative analytical techniques with a view to making generalisable 

statements applicable to real-life situations.  

 

The key weakness of laboratory experiments is the "limited extent to which identified 

relationships exist in the real world due to oversimplification of the experimental 

situation and the isolation of such situations from most of the variables that are found in 

the real world" (Galliers, 1992, p.150). However, as it is usually impractical to carry 

out formal experiments within industry due to the heavy demand on resources 

researchers frequently carry out experiments within academia. 

 

Surveys enable the researcher to obtain data about practices, situations or views at one 

point in time through questionnaires or interviews. Quantitative analytical techniques 
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are then used to draw inferences from this data regarding existing relationships. The use 

of surveys permits a researcher to study more variables at one time than is typically 

possible in laboratory or field experiments, whilst data can be collected about real 

world environments.  

 

Case studies involve an attempt to describe relationships that exist in reality, very often 

in a single organisation. Case studies may be positivist or interpretivist in nature, 

depending on the approach of the researcher, the data collected and the analytical 

techniques employed. Reality can be captured in greater detail by an observer-

researcher, with the analysis of more variables than is typically possible in experimental 

and survey research.  

 

Model Development (MD) is an effective research method. MD assists researchers and 

scientists to describe, understand, predict, and test complex systems or events.  

“Models can consist of actual objects or abstract forms, such as sketches, 

mathematical formulas, or diagrams. A model is an abstraction, a mental framework 

for analysis of a system” (Busha & Harter, 1980).  Although models can be an 

oversimplification and overgeneralisation their simplicity aids understanding of what 

and/or who are involved and of when and in what sequence processes take place. 

 

The  research reported here was based on the three  levels of Lee’s multi- paradigmatic 

framework provided understanding which is the making of sense (level 1), followed by 

interpretive understanding (level 2) , and the third level   (positivist understanding)  

which enabled the formulation  and testing of propositions and hypotheses.  

 

 

In order to achieve the research aims and objectives, this research adopted a multi-

paradigmatic method combining literature review (historical and underpinned by an 

interpretive stance), formal controlled experiments, qualitative analysis, quantitative 

evaluations, qualitative surveys, expert opinion, and model development. 
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2.3  Research Methods Used 

Table 2.1 shows the research methods used and the main contributions under 

development of: taxonomy, indicator, model, or framework.  

2.4  Summary of Chapter 2 

This chapter presented the scope and focus of the research, the research objectives and 

assumptions. Finally the formulated research hypotheses and the research methods were 

presented.  
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Table 2.1a - Research Methods Used   
P 

A 

P 

E 

R 

Literature 

Review, 

interpretivism  

& 

argumentation 

Survey for 

validation 

& 

verification 

 

Case 

studies 

Formal, 

Controlled  

Experiment 

Qualitative 

analysis , 

categorisation 

Quantitative 

Measurement 

& Evaluation 

Model Development: 

Taxonomy 

Indicator, 

Model,  

Framework. 

I. I ✓    ✓  Indicator 

II. I

I 

✓    ✓  Taxonomy 

III. I

I

I 

✓      Model extension 

IV. I

V 

✓  ✓  ✓ ✓ Feature Analysis,  CFD:    

Composite Features 

Diagram 

GEQUAMO Model 

V. V ✓ ✓ ✓   ✓ GEQUAMO II Model 
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Table 2.1b - Research Methods Used   
 

VI. V

I 

✓    ✓   

VII. V

I

I 

✓    ✓   

VIII. V

I

I

I 

✓      Model extension 

IX ✓   ✓    

X ✓   ✓    

XI ✓   ✓    

XII ✓   ✓    

XIII ✓      Framework for experimental 

design and execution 
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Table 2.1c - Research Methods Used   
 

 

XIV ✓   ✓   I
5
PModel 

XV ✓   ✓   VALO5 Model 

XVI ✓ ✓  ✓   CoFeD framework 

XVI

I 

✓       

XVI

II 

✓ ✓     Guidelines 

XIX ✓    ✓   

XX ✓    ✓  Framework 
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CHAPTER 3 

 

INFORMATION SYSTEMS DEVELOMENT 

METHODOLOGIES, LIFECYCLES, AND QUALITY 

MODELS 

 

3.0 Introduction 

This chapter presents a critical review of lifecycle models, information systems 

development methodologies, process models, standards, and quality models, and the 

development and validation of the generic, multilayered, and customisable software 

quality model GEQUAMO.  

3.1  Information Systems Development Methodologies 

Information Systems Development Methodologies (ISDMs) and associated tools aim to 

a systematic planning and control of the development process. Systems Development 

Methodologies have been proposed and used to address a number of problems 

including  ambiguous user requirements, un-ambitious systems design, unmet 

deadlines, budgets exceeded, poor quality software with numerous 'bugs' and poor or 

non-existent documentation. This meant that software was difficult to maintain, and 

inflexible to future changes. 

 

It is important to note the erroneous use of the terms method and methodology as 

synonyms by both researchers and practitioners in the Information Systems and 

Software Engineering domains.  Kerry Howell (2013), in her book “Introduction to the 

Philosophy of Methodology” clarifies that “a methodology is the rationale for the 

research approach, and the lens through which the analysis occurs....A method is 

simply a tool used to answer your research questions — how, in short, you will go about 

collecting your data. Examples of research methods include: Contextual inquiry, 

Interview, Survey etc. The methodology should impact which method(s) for a research 

endeavour are selected in order to generate the compelling data.” 
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The use of method and methodology as synonyms has been perpetuated for over 40 

years. Evidence of this issue can be found in many articles and acclaimed textbooks 

such as Jayaratna (1994) and   Avison and Fitzgerald (2003). At this stage we will not 

challenge this ambiguity but we put a marker for subsequent investigation and action 

towards addressing such ambiguities. As the community continues to refer to methods 

as methodologies we did the same (see Papers I and II).    

 

By applying a methodology to the development of software insights are gained into the 

problems under consideration and thus, these problems can be addressed more 

systematically. Methodologies provide the environment for repeatable procedures with 

specified deliverables at each stage of the system lifecycle.  Software should comply 

with the important quality requirements of Timeliness, Relevance, Accuracy and Cost 

Effectiveness (TRACE)
1
Software Engineering aims to bring to bear the more rigorous 

methods used in the engineering world in the software development world. 

 

Paper I (Georgiadou and Sadler, 1995) outlines the main characteristics and 

philosophy of the prevalent methodologies.   Over 2000 methodologies (and brand 

names) are in existence (Jayaratna, 1994), each claiming to solve most, if not all, of the 

problems of systems development (Jackson 1994), (Berki et al, 1997).  Since the 70s 

literally hundreds of different methods and tools have appeared each claiming to ease 

the life of the developer and the user by achieving improved productivity without 

compromising the quality of the software product.  

 

These methodologies range from integrated collections of procedures to a single 

technique, notations, 4GLs and tools for supporting the process at the various stages of 

the systems lifecycle. Figure 3.1 depicts the approximate time of their introduction.    
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Figure 3.1  Information Systems Development Methodologies over 50 years 

 
                                                           

1 TRACE is a term coined by the author (UNL Lecture Notes SDM 1993) 
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With the exception of Formal Methods (such as Z and VDM) which are not within the 

scope of this research all methodologies aspire to help organize the process of 

information systems development.   

 

Using the techniques and tools of a methodology we can understand a problem situation 

by using abstraction, generalisation, classification and specialisation to model a system. 

The resulting models elucidate the functionality of the system and introduce a degree of 

structure and rigour enabling us to produce solutions satisfying the identified 

requirements. 

 

3.2 A Taxonomy of Methodologies 

The level of user participation is inherent in each methodology. Participative 

methodologies like SSM, ETHICS and Agile Methods such as XP, place a strong 

emphasis on the managerial and social issues and, usually, devote extra time and effort 

on preventative actions such as liaising with stakeholders and users in particular, during 

the early stages of the systems lifecycle. This shapes the development process and the 

type of solution(s) achieved. User involvement and user participation takes many forms 

such as discussions on requirements, walkthroughs, reviews, inspections, and 

validations.   

 

Although there are thousands of information systems methodologies (brand names) 

they tend to form clusters or families with general characteristics dictated by their 

philosophy and type of problems they attempt to solve. Thus they have been divided 

into data-driven or process driven, hard and soft, large and small depending on the 

viewpoint of the researchers studying the whole area of methodologies.  

 

Avison and Fitzgerald (1995) proposed a classification of ISDMs into Soft and Hard 

with the addition of Hybrid Methodologies.  Paper I presents an enhanced 

classification by the addition of Agile Methods (XP), Formal Methods and Specialised 

Methods, shown in Figure 3.2.    
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This classification was used to underpin further investigations into requirements 

engineering and quality models (Siakas et al., 1997), (Berki et al., 1997).  

 

 
 

Figure 3.2   Methodology Classification Tree  

[Adapted from Georgiadou &Sadler, 1995] 

 

Information systems practitioners (developers) are mainly interested in selecting a 

methodology that is appropriate for their particular environment, capable to address 

their problems and finally enable them to enhance their productivity.  It is thus 

important to develop ways of evaluating and selecting suitable methodologies 

according to requirements. "Making the wrong choice of methods and tools can be a 

big risk to an organisation (and to those who made the choice), because the acquisition 

and installation costs can be very high and the consequential costs of project disruption 

and delay can also be very high" (Law & Naeem, 1992). The choice of an appropriate 

method has been of concern to industry and academia alike. Making the wrong choice 

of method or tool can be very costly for a company. How are software engineers to 

succeed in making these choices? 

3.3 Evolution of the Software Development Lifecycle 

In addition to methodologies, the lifecycle of systems development has been depicted in 

numerous lifecycle models. Tom Gilb (1981), and Naumann and Jenkins (1982) were 
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already referring to previously practiced methods as traditional and that new 

evolutionary methods were necessary and preferable. 

 

The involvement of the user is an integral part of the prototyping paradigm. The cycle 

starts with the requirements gathering and goes through a number of refinements.  

Prototyping is a mechanism for clarifying the requirements and making improvements 

(Figure 3.3). 

 

 

 

Figure 3.3 Prototyping: The ‘Balanced’ interaction (Paper II) 

 

 

Paper II concluded that the prototyping development route is characterised by constant 

feedback from the users and team, collaborative development tending to achieve near-

perfect solutions, trading off technical effectiveness to usability as shown on the 

solutions space. The whole system of transformation from problem to solution can be 

likened to a group of musicians playing their instruments and making music. The 

musicians are the systems developers, the instruments are the methods and the music 

the solutions produced.       
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It was argued (in Paper II) that the role of the methodology as an instrument of 

understanding is provided by its underlying lifecycle namely the organised phases, 

steps, tasks and checklists which steer the developer towards identifying and specifying 

the components, sub-systems and their interactions. Therefore in trying to choose and 

apply a methodology valuable insights are gained into the original problem and the 

existing procedures, highlighting problem areas and additional requirements. 

 

Software Lifecycles models are paradigms for guiding the development process and for 

aiding the planning, monitoring and controlling of projects. Hence lifecycles are 

process models with phases and deliverables at each phase. The nature of the problem, 

the methods and tools, the controls and the deliverables formulate the paradigm. Figure 

3.4 shows the approximate time of introduction of the major software lifecycle models 

since 1970.  

 

In Paper II a historical perspective was adopted to look at the major developments and 

introductions of lifecycle models, methodologies (revisited), and quality models.   

Linear, incremental, cyclic, Object-Oriented, and fractal models were discussed.   

Efforts for process improvement and particularly Continuous Improvement through 

Total Quality Management as well as Quality Models were presented and discussed.  

 

Cyclic models such as the Spiral Model reflect the iterative nature of software 

development. Prototyping was primarily an iterative model. Models like the V, W, X  

include embedded quality assurance mechanisms through the development process 

emhpasising that code is not the only thing that needs ‘testing’. Object-oriented models 

came with the promise of development with re-use in mind.  

 

For several years the community was engaged in corrective measures. Linear models, 

like the Waterfall model, placed Testing towards the end of the lifecycle which results 

in late discoveries of errors and omissions when it often proved to be very late and 

extremely expensive. This study revealed that as the lifecycle development itself 

became more mature,  testing has been ‘moving’ towards the beginning of the lifecycle. 

Additionally other quality assurance techniques such as walkthroughs, inspections, 

reviews, design reviews etc., were used throughout the lifecycle giving many 
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opportunities for early detection of errors and omissions. These are steps towards 

preventive quality assurance.   With the introduction of agile methods such as Extreme 

Programming it was observed that Testing had moved to the beginning of the lifecycle 

as predicted in 1995 (Georgiadou and Sadler, 1995).  .   

 

       0            1                2                 3                4                     5 

 

Figure 3.4  Growth of Lifecycle Models and Capability Maturity  

 

The juxtaposition of the lifecycle timeline and the Capability Maturity level depicts the 

maturity growth of the lifecycle.  The capability maturity of the process is expressed in 

recent years by the development and adoption of iterative and agile methods. 

 

In the last 10 years studies on Agile Methods show increasing take up by the industry. 

In 2014 del Águila et al. (2014) provided a comparative review of Software 

Engineering (SE) and Knowledge Engineering (KE). They noted that these two 

Engineering Disciplines have been evolving in parallel but have not been learning from 

each other. They (del Aguila et al.) proposed an integration of the two, named 

SKEngineering, which “allows the development of quality products using SE or KE 

methods, since there are many cases in which companies require deploying software 

systems that integrate components based and not based on knowledge in a transparent 

way.” They additionally suggest that SKEngineering can be assisted by well-known 

Artificial Intelligence techniques as machine learning or fuzzy approaches. 

 

In recent years there has been increasing focus on Model Driven Engineering (MDE).  

Clark et al. (2016) advised that MDE should be used for Model Driven Organisations 

(MDO) because modelling can provide a more scientific tractable alternative instead.  

Kulkani (2016) reports on the successful adoption of MDE within the large 

organisation TATA. 
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Information Systems Development Methodologies (ISDMs) have been changing, 

evolving and adapting to other changes in the field.  As Software Engineering is 

maturing so do the methods, techniques and tools evolve to meet new requirements and 

challenges.  However, systems failures persist.  

 

3.4  Software Quality Models 

 

In the last 40 years various product quality models have been developed.  Software 

Quality Models have primarily been based on Top Down, hierarchical structures the 

most notable of which are:  the Dromey model  (Dromey, 1995);   (Hyatt & Rosenberg, 

1996), the McCall model (McCall et al., 1977);   the Boehm model (Boehm et al., 1978);  the 

FURPS Model (Grady &Caswell, 1987);  and the  ISO 9126-1 model (2001); also  its standards 

for both external metrics: ISO / IEC 9126-2 and  internal metrics: ISO / IEC 9126-3 in 2003  

and quality in use: ISO / IEC 9126-4 in 2004.  The ISO -9126 model incorporated various 

aspects from previous models and standards for assessing, controlling and measuring the quality 

of software.   

 

These models suffer from lack of orthogonality between the quality factors and their 

sub-factor or constructs. For example the Boehm quality model proposes definitions 

and measures for a range of software quality attributes. It focuses on software quality 

form the developer’s perspective and divides quality into 7 quality factors (intermediate 

constructs) namely Portability, Reliability, Efficiency, Human Engineering, Testability, 

Understandability, and  Modifiability. Each of these intermediate constructs is further 

divided into primitive constructs It can be seen that the 7 top level quality factors are 

not orthogonal. For example reliability and human engineering share a common 

primitive construct of Robustness/Integrity. Therefore, this lack of orthogonality 

presents difficulties when considering quantification and evaluation 

 

The ISO 9126 standard sets out a strict framework for designing an evaluation of 

quality characteristics. Six characteristics are specified and decomposed into several 

sub-characteristics.  It is the only model that observes orthogonality – each sub-

characteristic relates to only one characteristic.   
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In Paper III the major quality models were discussed, and ISO 9126 was judged to be 

“a widely applicable and accepted software quality model for software quality 

engineering”. 

 

However, none of these models are customisable according to the different stakeholders 

and their specific requirements.  Since the turn of the millennium the tendency has been 

to customise quality models.  Another weakness of these quality models is that they 

rarely specify how quality attributes should be measured and how measurement results 

can be aggregated to achieve an overall quality assessment for a system. 

 

3.5      GEQUAMO – A generic, multi-layered and customisable 

Quality Model 

In Paper IV the GEQUAMO (GEneric, multi-layered and customisable) QUAlity 

MOdel was proposed. GEQUAMO encapsulates the requirements of different 

stakeholders in a dynamic and flexible manner so as to enable each stakeholder 

(developer, user or sponsor) to construct their own model reflecting the 

emphasis/weighting for each attribute/requirement. Using a combination of the CFD 

(Composite Features Diagramming Technique) developed by the author, and Kiviat 

diagrams a multi-layered and dynamic model is constructed. 

 

A generic CFD shown in Figure 3.5 each node is exploded into two, three or more sub-

characteristics. The proposed Quality Model uses the CFD- Composite Features 

Diagram comprising a set of concentric circles showing increasingly lower details (sub-

characteristics). The lowest branches in every case represent sub-characteristics which 

are measurable and hence controllable.  It can be seen that the number of branches 

(siblings) emanating from each node can be 0, 2, 3 or more. CFDs can be used for 

generating visual profiles for items under comparison for the purpose of selection.  R1, 

R2, R3 are the requirements of a specific stakeholder. Each tree represents 

decomposition into lower layers. The outer branches are usually measurable directly.  

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/C=ocirc=t=eacute=:Marc=Alexis.html
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Figure 3.5 – A generic CFD- Composite Features Diagram 

 

In Paper  IV, the genericity and versatility of GEQUAMO  were  demonstrated 

through its application to various evaluation cases. Also the algorithm for top-down 

qualitative  identification and decomposition of the requirements (features, sub-

features, sub-subfeatures), and the bottom-up quantitative evaluation were  presented. 

The construction rules do not allow one sub-characteristic, and it is also advisable that 

the maximum number of sub-characteristics should not exceed 7. 

 

 

Figure 3.6 – A Visual Comparison between two items using CFDs 

 

It can be seen in Figure 3.6 even before the numerical (bottom up evaluation) that the 

ítem profiled on the left (in red) has more deficincies than the one on the right in 

Green).   
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Miguel et al. (2003)  included GEQUAMO as one of the early Tailored Quality Models 

as shown in Figure 3.7. 

 

Figure 3.7   -   Basic and Tailored Quality Models   (Source Miguel et al., 2014) 

 

In Paper V weaknesses of GEQUAMO were addressed resulting in GEQUAMO II.  

As one of the aims of the GEQUAMO (and GEQUAMO II) is the visual representation 

which enables immediate and easy comparison especially for comparative evaluation of 

items, it was found that decomposition to various sub-characteristics and over several 

layers may result in the braches running into each other making the picture confusing 

and potentially illegible. This is a limitation that needs to be recognised and managed 

through adhering to refined construction rules. Also through the validation exercise it 

became apparent that the combination of CFDs and the repeated use of Kiviat Diagrams 

caused the model to be unstable due to confounding errors. This was addressed by 

opting for a straight averaging of the terminal values (assuming they are equally 

weighted) as a more representative value to be propagated to the parent branch.  

3.6   Summary of Chapter 3 

 

This chapter studied the development of methodologies, lifecycles and quality models.  

The major contribution at this stage was the development of the GEQUAMO model   

(and its refinement in GEQUAMO II), which integrates top down (qualitative) feature 

analysis, bottom up (quantitative evaluation), and visualisation. Thus the model 

provides both rigour and clarity to both practitioners and academics alike.  
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CHAPTER 4 

SOFTWARE MEASUREMENT 

 

"To measure is to know. If you cannot measure it, you cannot improve it." 

(William Thomson also known as Lord Kelvin) (1824 - 1907). 

 

4.0  Introduction 

 

This chapter presents a discussion on measurement in general and software 

measurements and metrics in particular. It identifies controllable and uncontrollable 

factors and the challenges of understanding, measuring and controlling the quality of 

both the product and the process 

4. 1 What is measurement? 

Fenton and Pfleeger (1997) provide a definition of measurement: “Measurement is the 

process by which numbers or symbols are assigned to attributes of entities in the real 

world in such a way as to characterise them according to clearly defined rules. The 

numeral assignment is called the measure.” 

 

This definition provides a rigorous basis for determining when a proposed measure 

characterises an attribute and provides rules for determining what statistical analysis are 

relevant and meaningful.  Hence, in order to understand the definition of measurement 

in the software context, we need to identify the relevant entities and attributes which we 

are interested in characterising numerically. Measurement theory provides the rigorous 

framework for determining when a proposed measure characterises an attribute and 

provides rules for determining what statistical analysis is relevant and meaningful 

(Briand and Wüst, 2001).   

 

Entities of interest include objects, (e.g. code, specification, person) or processes (e.g. 

analysis, error identification, testing). Distinct attributes might be length of code, 

duration, costs. Representation is usually in numbers (or other mathematical objects e.g. 

vectors and ratios). Finally in order to provide objectivity we need to assign numbers 

(symbols) according to explicit rules which ensure that the assignment is not random. 
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Measures and quantitative information in general appeal to practitioners and 

researchers alike. Simple counts, ratios, comparisons and estimations constitute the 

backbone of many decisions in science, engineering, organisations and life in general. 

The Carnegie-Melon Software Engineering Institute’s Capability maturity model CMM 

(and later CMMI) level 4 level requires that measures of software process and product 

quality be collected so that process effectiveness can be determined quantitatively  

(CMMI Product Team, 2002). A process database and adequate resources are needed to 

continually plan, implement, and track process improvements. 

 

At CMM/CMMI level 5 the optimising level, quantitative feedback data from the 

process allows continuous process improvement. Data gathering has been partially 

automated. Management has changed its emphasis from product maintenance to 

process analysis and improvement (Agrawal and Chari, 2007) 

 

Defect cause analysis and defect prevention are the most important activities added at 

this level. Very few organisations keep metrics on either systems or the software 

development process. However, the Software Engineering Institute's Capability 

Maturity Model (CMM) estimates returns of four- or five-to-one for successful metrics 

programs. 

 

In addition to understanding what is measurement we need to decide what we are 

measuring, and how we are measuring in order to maximising success and minimising 

failure of a metrics programme.  

 

4.2   Controllable Quality Factors 

The challenges faced when we are trying to understand, measure and control the quality 

of both the product and the process are presented in Paper VI. Measurements of both 

the current and the desired system are necessary. Internal metrics (Fenton, 1991) can be 

obtained in terms of the product (code). They are counts (such as LOC, Number of 

Classes, McCabe Complexity) and ratios (such as Number of calls per Module, Average 

size of module, and Average length of hierarchy), and they are also known as direct 

metrics. Additionally, these metrics can be generated automatically by using static 

analysis tools such as CANTATA, Testbed and Logiscope. Attributes such as 
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morphology, architectural structure,   depth of class hierarchy, size of module, 

maximum level of module complexity etc. can be controlled through a management 

mechanism and specific guidelines to the developers.  

 

Controllable design parameters can be found in the software development process, the 

software product and the software development environment (Fenton, 1994; 

Kitchenham, 1996). However, external attributes (Fenton 1997), which are behavioural 

such as understandability and maintainability are more elusive and more difficult to 

measure. Metrics for these attributes are both qualitative and quantitative. They are 

almost always obtained indirectly through the use of surrogate measures (Kitchenham, 

1996).  For example maintainability can be estimated, calculated and thus controlled 

through measuring the time taken for a specified maintenance task. Results obtained by 

Georgiadou et al. in a series of controlled experiments provided confidence (through 

statistical methods) in the ability to effectively use surrogate measures (Georgiadou, 93, 

94, 97, 98, and 2001).  

 

4.3  Uncontrollable Factors 

Human factors are unpredictable and mostly difficult, often impossible to control. For 

example, one such factor is performance variability in a human being, such as their 

experience and communication skills needed within a software development team. The 

developers’ performance has an effect on producing quality software products in a 

similar way to the effect of machines on the manufacturing of products. It is important 

to maximise and properly maintain programmers’ performance. The possible control 

factors will be conducting educational sessions within and outside a company where 

software developers are encouraged to learn the new techniques of their interest or to 

polish their skills. Recreational events may help developers to get to know each other 

better and this will be reflected in better communication and teamwork in an office. 

Ergonomic office design, temperature and humidity in the workplace can also affect the 

developers’ performance.  

 

Experimental evaluations, carried out by Basili  et al. (1986), Shepperd (1990), 

Georgiadou (1999, 2001), attempted to identify design parameters and hence factors, 

which can be controlled. According to Taguchi cited in (Logothetis and Wynn, 1989) it 
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is desirable to choose the set of design parameters, which are less affected by such 

factors. For example, developers’ experience can be controlled to a certain extent by 

years in the profession and looking at the past projects they had been involved in. 

However every individual is unique. Their individual capability, patterns of learning 

and cognition are likely to be different from those of others of similar experience. The 

health of the developers may also have an effect on their performance at work. 

 

In addition to differentiating between controllable and uncontrollable factors  paper VI  

reported on a collaborative  multidisciplinary study (in industry) which revealed that 

the holistic nature of such an approach provides software developers with the use of 

software measurement as the instrument for understanding, estimating and controlling 

the quality of specified factors. It must be born in mind that different stakeholder 

(discussed in Papers IV and V) place different emphasis on software attributes by 

different stakeholders. Usability and reliability are primary concerns to the user. 

Usability is enhanced through greater understandability, which in turn is enhanced 

through design correctness and consistency and through training, on-line help and 

support, all of which reduce productivity with the possible exception of Component 

Based Development which makes extensive reuse of code and increasingly reuse of 

designs too. 

 

Reliability is of interest to all groups of stakeholders (in this case users, developers, 

and sponsors). It can be achieved through correct design, testing, walkthroughs, 

reviews and inspections. Enhanced reliability increases productivity and therefore 

decreases costs. Also enhanced functionality increases costs (in the short term) and 

may cause losses to the sponsor. 

 

It is important for the software developer to understand the objectives and 

requirements for software product or the process improvement, and to specify the 

product/process response characteristics that reflect these objectives. The formulation 

of the problem as well as the production of a list of controlled parameters and noise 

variables can be achieved through brainstorming and formulated using techniques 

such as the Ishikawa (cause and effect) or fishbone diagram. 

 

Measurable and, hence,  controllable objectives should be chosen such as the number 
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of bugs found during formal inspections, which are conducted during the software life 

cycle under the specified methodology a company adopts. 

 

In order to understand and control the process we need measurements of both the 

current and the desired / new system. Internal metrics can be obtained in terms of the 

product (code) and they are counts (such as LOC, Number Classes, and McCabe 

Complexity) and ratios (such as Number of calls per Module and Average length of 

hierarchy).  

 

Attributes such as the morphology, architectural structure, depth of class hierarchy, 

size of module, maximum level of module complexity etc. can be controlled through a 

management mechanism and specific guidelines to the developers. Controllable 

design parameters can be found in the software development process, the software 

product and the software development environment.  

 

However, external attributes such as understandability and maintainability. These 

characteristics are behavioural, thus more elusive and more difficult to measure. 

Measurements of these attributes are almost always obtained indirectly through the 

use of surrogate measures. For example maintainability can be estimated, calculated 

and controlled through measuring the time taken for a specified maintenance task.  

 

Also human factors are unpredictable and mostly difficult, often impossible to 

measure and hence to control. One such example is the performance variability in a 

human being, such as his/her experience and communication skills needed in a 

software development team. The developers’ performance has an effect on producing 

quality software products in a similar way to the effect of machines on the 

manufacturing of products.  It is important to maximise and properly maintain 

programmers’ performance, however difficult it is due to the uniqueness of every 

developer. In this paper some high level guidelines for developing cultural awareness 

and for practical measures such as training of staff were provided.  

 

Product quality characteristics specified in various standards and quality models refer to 

the behaviour or perceived behaviour of software such as Usability, Maintainability, 

and Reliability. Software Quality is undoubtedly desirable by all stakeholders. 
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However, the emphasis and detail of their respective requirements differ. Hence, some 

attributes are considered to be more important than others depending on the 

stakeholder. In “The complete alphabet of quality software systems“(Siakas, et al., 

1997) the same stakeholder groupings (user, developer, sponsor) were used indicating 

only whether a characteristic is of high interest, low interest or of no interest to each 

group of stakeholders.   

 

In paper VII the viewoints and the degree of interest in certain characteristics users, 

developers and sponsors were considered. Sponsors and managers and other decision 

makers were considered, because they are the representatives of the financing 

organisation. Users are considered to be the persons who, in different ways, use the 

final software product. Users can either be internal in the organisation that develops the 

software or external customers who use the software. Developers were considered as 

the persons that are not users or sponsors. Developers can be involved in the 

production of artifacts at different life-cycle stages. They are primarily interested in 

functionality and reliability. 

 

A sponsor may be more interested in the overall quality rather than in a specific 

quality characteristic. The sponsor, in order to optimise quality within a limited time- 

and cost-frame may need to balance the quality improvement with management 

criteria for schedule delays and cost over-runs. 

 

There is universal agreement that Functionality and Reliability are common concerns 

to all stakeholders. However, it can safely be assumed that a software systems 

developer strives to produce reliable and maintainable systems with maximum 

functionality. The user desires a system which is reliable, understandable, usable, 

easy to learn and easy to use and with the necessary functionality. The sponsor is 

extremely interested in maximising productivity i.e. he/she requires a reliable system 

with the necessary functionality, produced within acceptable time limits and at the 

lowest cost possible. 

 

Enhanced Reliability (usually achieved through testing, walkthroughs, reviews and 

inspections) will most probably reduce productivity and will therefore increase costs. 

Both of these cause losses to the sponsor. Enhanced functionality increases costs (in 
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the short term) and causes losses to the sponsor. 

 

An  extension to the ISO 9126 (2001)  model was proposed through the  introduction 

of  Extensibility and Security as primary characteristics, hence the acronym 

PERFUMES which stands for Portability, Efficiency, Reliability, Functionality, 

Usability, Maintainability, Extensibility, Security, the first six characteristics at this 

primary level are those of the ISO 9126. 

 

4.4 Conclusion to Chapter 4 

 

Product quality characteristics specified in various standards and quality models refer to 

the behaviour or perceived behaviour of software such as Usability, Maintainability, 

and Reliability. Software Quality is undoubtedly desirable by all stakeholders. 

However, the emphasis and detail of their respective requirements differ. Hence, some 

attributes are considered to be more important than others depending on the 

stakeholder. 

 

Chapter 4 refers to a collaborative  multidisciplinary study (in industry)   which 

revealed the  strengths that the holistic nature of such an approach provides software 

developers with the use of software measurement as the instrument for understanding, 

estimating and controlling the quality of specified factors. Measurability and hence 

controllability of factors need to be established in order to decide what should be 

measured. 
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CHAPTER    5 

 

A SUITE OF RANDOMISED CONTROLLED 

EXPERIMENTS 

5.0   Introduction 

This chapter describes the main contributions in terms of product. The derivation of the 

composite metric rho () which is an indicator for answering the question on whether 

deficient or malfunctioning systems should be scrapped or re-engineered. It also 

presents the design and execution of several controlled experiments.   

5.1   Controlled Experiments 

Having formulated the research hypotheses it was necessary to test them. According to 

Galliers (1992) Formal laboratory controlled experiments are primarily used for 

testing a hypothesis to establish the confidence with which you may predict the 

implications of a particular theory. They depend heavily on very careful experimental 

design (using replication, randomisation, blocking) and on the application of statistical 

techniques to analyse the results. Laboratory experimentation involves the creation of 

an (artificial) environment, in order to isolate and control potentially confounding 

variables. 

 

This is the reason such experiments especially in software engineering are mostly run 

by academics within a university environment where a fairly large number of students 

can carry out the experimental tasks.    

 

A total of 8 controlled experiments were designed and conducted over a period of 7 

years. The reason is that new cohort of novice programmers needed to be recruited as 

experimental subjects i.e. the people who were to carry out the experimental tasks.  The 

experimental design required the use of 4 laboratories with identical hardware and 

software. In addition to technical support, two members of staff were required for 

invigilation in each laboratory.   
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One experiment was abandoned due to weather conditions (severe snowfall!).  It was 

subsequently re-scheduled due to staff absence, and a third experiment was totally 

invalidated due to a total breakdown/closure of one of the laboratories. Details can be 

seen under Logistics or Murphy’s Law in Paper XII, and in outline form in Section 

5.7).  

 

Prior to any execution of each experiment a brief trial session was conducted to test the 

laboratory equipment, and to familiarise the students as well as the invigilators with the 

process. 

 

5.2  Testing the research hypotheses         

In this investigation the product characteristics selected to study were maintainability 

and understandability. The research hypotheses were formulated (Section 1.8.3)  as 

follows:  

 

H1.1  The maintainability of software depends on its complexity. 

(i.e. Low module complexity results in high maintainability). 

 

H1.2 The maintainability of software depends on its structuredness 

            (i.e. Highly structured programs are highliy maintenable).  

 

H2.1  The understandasbility  of software depends on the use of colour in the 

HCI. 

 

H2.2 The understandability of software depends on the use of non-symbolic 

naming of variables. 

 

 

Paper VIII reports on the role of re-engineering in the management of software 

quality.   The randomized, controlled experiment tested hypothesis H1.1  

 

H1.1  The maintainability of software depends on its complexity. 

(i.e. Low module complexity results in high maintainability) 

 



________________________________________________________________________________ 

  Elli Georgiadou                                                                             Page: 68 

Modules were judged a good candidate for modularisation if: 

their granularity was greater than 50; 

their McCabe Complexity  was greater than 10; 

they contained common code.  

 

The hypothesis was born out. Details can be seen in Paper VIII.  

 

5.3 The derivation of the re-engineering factor   (rho) 

Paper IX presents the rationale and derivation of the re-engineering factor   (rho). The 

specification of the criteria for both complexity and structuredness are provided.  

Among the many metrics proposed the four metrics selected to represent the profile of 

each program were Granularity, McCabe Complexity, Information Flow, and Number 

of Local Variables.   

 

 

The derivation of the criteria for software restructuring was specified as Granularity, 

Information Flow, Local Variables, and McCabe Complexity. Once target (desirable) 

values of these four attributes are selected, the actual measures are obtained by static 

analysis and plotted in an anticlockwise sequence. Comparing the star plot of a program 

to the target plot (inner quadrangle) the differences cannot only be compared visually 

but also measured.    

 

The re-engineering factor rho ( ) can be calculated using the values of the following 

formula    

Re-engineering Factor ()  = (Actual Area - Target Area) / Actual Area 

 Considering an example where the target (desirable) values for the four module 

characteristics of interest were specified as follows:  

Number of Local Variables = 5,    Granularity = 50, 

           McCabe Complexity = 7,    Number of Local Variables = 6.     

Programs under consideration for re-engineering are statically analysed and their 

profiles are superimposed onto the target module profile as shown in the star plot 

(Figure 5.1) where the inner rectangle depicts the desirable profile whilst the outer 

rectangle depicts the actual profile.  
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Figure 5.1 – Star plots for two programs under consideration for 

restructuring 

 

It can be seen that the program on the right deviates substantially from the target 

(desirable). Thus the program on the right is a stronger candidate for restructuring than 

the program on the left. The tolerance level on the size of the deviation is a 

management decision as to whether it will be preferable to re-engineer a program or to 

discard and develop from scratch.  The higher the value of  ,  the more deviation from 

the desirable profile, in which case the more likely to opt for restructuring.  The re-

engineering factor rho ( ) is a new composite metric.  

5.5  Maintainability of software depends on its structuredness 

ISO/IEC/ IEEE 24765 (ISO 2010) - Vocabulary of systems and software engineering) 

gives three definitions (and the source of the definitions) for maintainability (Definition 

3.1668): 

 the ease with which a software system or component can be 

modified to change or add   capabilities, correct faults or defects, 

improve performance or other attributes, or adapt to a changed 

environment;  

 the ease with which a hardware system or component can be 

retained in, or restored to, a state in which it can perform its 

required functions ; 

 the capability of the software product to be modified. ISO/IEC 

14764:2006 (IEEE Std 14764-2006), Software Engineering — 

Software Life Cycle Processes.  
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      This standard also provides the following definitions for maintenance:  

 the  average effort required to locate and fix a software failure  

 the speed and ease with which a program can be corrected or changed. 

(IEEE Std 982.1-2005 IEEE Standard Dictionary of Measures of the Software 

Aspects of Dependability). 

The definition for maintainability used in this research is close to part 1 

of the above definition 1:   

 

Maintainability is the ease with which a software system (program) or 

component can be maintained (i.e. modified to change or add capabilities, 

correct errors, faults and/or defects, to improve performance or other 

behaviour, or adapt to a changed environment).   

 

Sine maintainability is not directly measurable, the surrogate measure 

Maintenance (as defined by ISO/IEC/ IEEE 24765 (ISO 2010)) was used. 

 

The tasks were to identify and correct embedded logic errors in two versions 

(one non-structured and one structured) of a program. The surrogate measure 

was the time taken to carry out the experimental tasks.   

 

Paper X reports the design, execution and results of a randomised controlled 

experiment estimating the effects of predetermined changes in program structure on the 

maintainability of different program versions seeded with equivalent logic errors. The 

experiment tested the research sub-hypothesis  

 

H1.2 The maintainability of software depends directly on its structuredness. 

 

Prior to the execution of the experiment, programs were statically analysed to obtain 

measurements of internal sub-attributes of the fundamental attribute of structuredness. 

A first version of a program was modularised according to established rules (specified 

in Paper X) giving a new version of the program with a larger number of modules but 

with a smaller individual module complexity, and smaller average module complexity.     
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Structure is an internal attribute. It is multidimensional and as such it cannot be 

measured directly. The external term structuredness is difficult to define and to 

measure.   

 

The sub-attributes of structuredness selected were: McCabe Cyclomatic Complexity, 

Information Flow, Number of Identifiers (Local Variables) and Granularity.  A star plot 

provides a visual comparison of the module profiles. Details can be seen in Papers 

VIII and IX. 

 

In order to ensure validity, interpretability and accuracy of the results factors such as 

different programming experience of the experimental subjects were factored out. The 

subjects were students who were novices in C programming although they had earlier 

passed a programming unit in Modula 2. 

 

The experimental design (shown in Table 5.1) was a cross-over design involving two 

versions of each program.  

 

Table 5.1 The Cross Over Design  

Group P1 P2 

A V1 V1 

B V1 V2 

C V2 V1 

D V2 V2 

 

 

Where  P1V1   is   Program 1 version 1 Unstructured 

   P1V2   is   Program 1 version 2 Structured 

P2V1  is    Program 2 version 1  Unstructured 

P2V2  is   Program 2 version 2  Structured. 

 

The hypothesis was born out with a p-value equal to 0.008. The unstructured version 

was more difficult to understand and therefore more difficult to maintain.  
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Additionally from this first experiment several lessons were learned relating to erratic 

attendance or reluctance of subjects to conform to rules, such as stop working on 

program 1 and start working on program 2. Several subjects kept swapping from 

program to program which meant that we should have had a mechanism of stopping 

work on the first program at a specified time before embarking on the next one. This 

same cross-over experimental design was used in all subsequent experiments. 

 

The results of this work can be used to provide an indicator for re-engineering whereby 

a given program can be restructured in such a way that quality improvement can be 

quantified or at least estimated.    

 

Hypothesis H1.2  The maintainability of software depends on its structuredness was 

born out.  

 

 

5.6   Measuring the Understandability of a Graphical Query Language 

 

In addition to manipulating code the final experiment, reported in Paper XI, dealt with 

the measurement of understandability of the new Graphical Object Query Language 

named GOQL developed by my co-author Euclid Keramopoulos.  The requirements of 

Keramopoulos were to test various aspects that are likely to impact on the 

understandability and usability of the interface for his Graphical Query language.   

 

The author:   

 provided the rationale for selecting the formal experiment evaluation method; 

 formulated the hypothesis; 

 designed the experiment; 

 found the experimental subjects; 

 ensured laboratory support by colleagues; 

 helped analyse the experimental results. 

 

The co-author produced the experimental materials and co-analysed the results.  

 

“The use of colour and non-symbolic representation enhance the understandability of 

the graphical user interface of GOQL.”   
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Again the design was cross over as shown in Table 5.2.  

 

Table  5.2 – Cross  Over Design for testing understandability  
 

Group 

(of experimental 

subjects)  

 

Colour 

(in 

variables)  

Symbolic 

Representation 

of  Variables 

A Y N 

B N N 

C Y Y 

D N Y 

 

Both hypotheses (H2.1 and H2.2) were born out evidenced by the positive correlation 

between the independent variables (colour and symbolic representation of variables) 

and the response variable (understandability).  The participation of the subjects in 

providing feedback was captured and analysed. Many of their suggestions fed back into 

the design and improvement of GOQL.  

 

In addition to proving the research hypotheses, many lessons were learned regarding 

the logistics. The trial run of the experiment helped avoid problems with equipment and 

absences of experimental subjects.   

 

5.7  A Framework for the Design and Execution of Controlled 

Experiments 

 

Following the design and execution of 7 formal, randomised controlled experiments the 

knowledge and experience gained culminated in the development of a framework for 

the design and execution of this type of experiment. This framework was presented in 

Paper XII.   The experimental process involves a number of Phases and deliverables at 

each phase. Before the actual execution of an experiment, the experiment needs to be 

designed according to scientific principles and considerable preparation must take 

place. Figure 5.2 depicts the proposed framework which consists of three Phases and 

seven stages.  
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Figure 5.2   The experimental process and opportunities for Improvement  

 

Experiments involve a large number of people including the experimental subjects and 

the scientific, academic and technical staff, the supervisors/invigilators and others. 

Experiments need laboratories, equipment and other resources.  Experimental materials 

and tasks as well as methods for capturing data must be produced.  Any of the many 

internal and external factors constituting and affecting an experiment are liable to cause 

failure and to invalidate an experiment as indeed happened in one of the experiments 

carried out during this research.   

 

An   experiment yields results which need to be analysed and interpreted. The process 

can be repeated, improved, refined and generalised. Logistics can cause delays or even 

failures. The proposed framework allows for feedback at the end of each experiment, so 

that necessary modifications could be carried out. Modifications are of two types 

namely experimental design, and logistics.  Experiments are normally replicated. This 

iterative improvement builds a body of knowledge which in turn helps improve both the 

design and the logistics.   

 

5.8  Summary of Chapter 5 

This chapter showed the derivation of the composite metric and outlined three of the 

experiments to test the research hypotheses.  The relationship between internal and 

external metrics was studied and tested experimentally. Beliefs that have been held by 

the community were tested.  
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Carrying out experiments is a very demanding and difficult undertaking. Considerable 

preparation and arrangements for a successful and reliable process have to be 

undertaken prior to any experiment. Among the tasks are: the design of the experiment, 

the preparation of the experimental materials, the involvement of a large number of 

people namely  the experimental subjects  (i.e. the people who will carry out the 

experimental tasks)   but also technical and academic staff.  

 

Logistics and challenges regarding the availability of experimental subjects and 

laboratories as well as staff for invigilating the experiments were presented in a paper 

which included the proposal of a framework for guiding and improving the 

experimental process.  
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CHAPTER  6 

SOFTWARE PROCESS IMPROVEMENT 

 

6.0      Introduction  

 

This chapter presents the work on process improvement and performance.  The 

contributions reported here are:  the Visualisation Framework  I
5
P, the VALO5 and the 

integration of the two.  

 

6.1 Knowledge Sharing, Process Maturity and Process 

Improvement 

 

The philosophy and belief of this researcher as well as experiences from the 

manufacturing industry gave rise to the following assumptions:  

Assumption   1: Process Improvement impacts directly on Product Improvement.  

Assumption 2: Process Improvement depends on Maturity level and Knowledge 

Sharing.  

 

Although it is necessary to improve deficient or failing products it is also important 

(even more important) to improve the process. This realisation is clearly evidenced and 

practiced in the manufacturing industry.     This part of research explored the 

relationship of Knowledge Management, Knowledge Sharing, Process Improvement, 

Performance and Valorisation.  

 

Paper XIII argues that Knowledge Management (KM) and Knowledge Sharing (KS) 

are strongly linked to organisational maturity. The mechanisms that enable this upward 

movement, and the achievement of  measurable improvements in performance 

(depicted by the volume of the inverted cone at each level) as the organisation climbs 

from an adhoc/incidental level to institutionalised, higher levels of process maturity,  

were investigated.  
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The I
5
P visualisation framework (shown in Figure 6.1) developed here aligns a 

Knowledge Sharing level to the appropriate maturity level and characterises the process 

from incidental to innovative. This framework provides the basis, in terms of 

preparedness and disposition towards knowledge sharing, for estimating and measuring 

organisational performance. In today’s competitive global business environment 

organisations are increasingly dependent on Information and Communication 

Technologies (ICTs) and particularly vulnerable to knowledge dilution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1  The I
5
P Framework  

 

 

 

Figure 6.1 - The  I
5
P Visualisation Framework  

 

The framework links knowledge sharing to process maturity, and aims to encapsulate 

accumulated tacit knowledge in the organisation by preserving it for future needs. The 

framework will be useful to Information Technology (IT) organisations especially those 

that are familiar with capability maturity models, such as CMMI (Jalote, 2000).  

 

Knowledge Sharing between project teams, across departments and across the whole 

organisation depends on the process maturity level (Georgiadou et al., 2015).  Trust 

engenders motivation and improves the process.   Hall, T. (2002) carried out an analysis 

which provides managers with insights into designing  appropriate SPI implementation 
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strategies to maximise practitioner support for SPI. 

The I
5
P framework was developed with the participation of an industry based 

researcher and practitioner (Mr Bo Balstrup). It was validated by experts in both 

academia and industry and was supported by and implemented for the European 

Leonardo Da Vinci Project  VALO project (number 2011- l -GR I - LEOOS -06789 in 

which Middlesex University was a partner,  and of which  I was initially the local 

Middlesex Co-ordinator).   

 

6.2  Innovation, Maturity Growth, Quality and 

Valorisation 

 
As the maturity of process grows, the quality of both processes and products improves. 

Innovation is encouraged and valorisation of results is facilitated. It is evident that high 

quality products (including research results) can be more easily disseminated and 

exploited.   

 

Paper XIV presents the development of the VALO5, which is a novel Valorisation 

Model (shown in Figure 6.2). Valorisation involves dissemination and exploitation 

activities. The overall objective of valorisation is to promote a project and its results, 

and to foster their use by different individuals and organisations, with the attempt of 

continuously spreading and improving the usage and the content of the results. Decision 

makers need to be convinced of the value of project outputs, and target groups need to 

be identified before dissemination.  For continued exploitation of a project’s results the 

identification of new environments, new contexts and new target groups are necessary.   
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Figure 6.2 – The VALO5 Model 

 

Continuous Process Improvement Principles through on-going review of progress 

requires planning, implementing, checking/reviewing and correcting/modifying 

ensuring that errors, omissions or adaptations to accommodate changes .It is based on 

the principle of the 5-layer maturity model which was also used for the I
5
P model. At 

every step Deming’s PDCA cycle of continuous improvement is employed to Plan, Do, 

Check, Act. This work was partially financed by the European Leonardo Da Vinci 

project number 2011- l -GR I - LEOOS -06789 in which Middlesex University was a 

partner, and the author was co-investigator).   

 

In Georgiadou and Sheriff (2008)  and Georgiadou et al. (2015) the I
5
P Framework and 

the VALO5  project were further integrated  (Figure 6.3)  to show  that as the Process 

Maturity rises, Knowledge sharing also rises, the performance of an organisation moves 

from the unpredictability level to the optimising level, thus generating the prerequisites 

for growth in the gained value from projects.  Performance and Valorisation increase 

from Opportunistic (level) through to Optimising (level 5). 

VALO5

1

Opportunistic

3

5

4

Observant

Organised

Objective

Optimising

2
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Figure 6.3 - Integrating I
5
P & VALO5 

6.3   CoFeD: A Visualisation Framework for Comparative Quality 

Evaluation 

Quality evaluations for the purpose of selection are an everyday occurrence informing 

all decisions spanning the most trivial to the most profound in our individual lives, our 

professional lives and our scientific endeavours. The challenge of making the most 

appropriate selection especially from a plethora of available options becomes enormous 

when the risks of making the wrong choice are imminent and when they have the 

potential of high and even catastrophic impact. Evaluation for the purpose of selection 

can be a challenging task particularly when there is a plethora of choices available. 

Short- listing, comparisons and eventual choice(s) can be aided by visualisation 

techniques.  

In  Paper  XV  Feature Analysis, Tabular and Tree Representations, and Composite 

Features Diagrams (CFDs) were  used  for profiling user requirements and for top-down 

profiling and bottom-up evaluation of items (methods, tools, techniques, processes and 
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so on) under evaluation. The resulting framework CoFeD enables efficient visual 

comparison and initial short-listing. The second phase uses bottom-up quantitative 

evaluation which aids the elimination of the weakest items and hence the effective 

selection of the most appropriate item. The versatility of the framework is illustrated by 

a case study comparison and evaluation of two agile methodologies. Figure 6.4 shows 

the architecture of CoFeD which revolves around a central hub, the process of 

continuous Review. This ensures continuous improvement of process and continuous 

improvement of its outputs (products).  

 

 

Figure 6.4  - The CoFeD Framework Architecture 

 

The techniques used within CoFeD are Feature Analysis, tree representation, 

Composite Features Diagrams (CFDs), tabulation, and Kiviat Diagrams.  

 

Visualising the profiles of items (methods, tools, people, artifacts and so on) under 

investigation helps novices, practitioners and experts, to make informed and quick 

judgements and make decisions. CoFeD and particularly the CFD technique have been 

used by a notable mobile phone company (which cannot be disclosed because of 

commercial confidentiality) to plan new versions of their products looking particularly 

at comparing and improving the playfulness of mobile phones.  

 

6.7   Summary of Chapter 6 

 

This chapter focused on Process Improvement and was based on the assumptions that 

  1: Process Improvement impacts directly on Product Improvement, and  
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2: Process Improvement depends on Maturity level and Knowledge Sharing.  

 

The I
5
P visualisation framework  provides a mechanism that  enables the estimation 

and quantification of the maturity growth, knowledge sharing and upward movement, 

and the achievement of  measurable improvements in performance (depicted by the 

volume of the inverted cone at each level) as the organisation climbs from an 

adhoc/incidental level to institutionalised, higher levels of process maturity,  were 

investigated.  

The VALO5 model (which was applied to a the European Research and Knowledge 

Transfer project VALO contributes to the debate on gaining value after complication of 

a project either in industry or academia. Valorisation is itself a process which can grow 

and improve.  

The integration of I
5
P and VALO5 as well as the Deming cycle Plan, Do, Check, Act 

(PDCA) emphasise the need for and the benefits of Continuous Improvement.  

 

The CoFeD Framework revisits the concept of Product Improvement which also 

follows a process based on the principle of continuous review and improvement. This 

constitutes the third pillar of the overall research.   
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CHAPTER 7  

 

 

REFLECTIONS AND REFINEMENTS ACROSS THE 

RESEARCH JOURNEY 

 

7.0  Introduction  

 

This chapter presents reflections on metrics validity through revisiting the composite 

metric rho  (). It also considers the ethical and legal dimensions of systems failures 

and recurring problem of terminology management/mismanagement and the need for 

terminology disambiguation for creating clarity. 

 

7.1 Revisiting the re-engineering factor rho () and metrication 

One of the early contributions of this research was the development and introduction of 

the re-engineering factor rho ( ) which enables decision makers to either embark onto 

re-engineering legacy code or onto developing from scratch. Legacy code needs to be 

continuously updated, corrected, augmented, extended, migrated to new environments, 

platforms, languages etc.  

 

Since I started this research journey many attempts to address the issue of system 

failures resulted in new lifecycle models, methodologies, techniques, tools. Yet systems 

continue to malfunction or fail.   

 

Metrics and metrication of systems is by far the most rigorous method of 

understanding, controlling, and improving systems.  A large number of metrics have 

been proposed, developed and used over 40 years.  On revisiting rho ( ), a small 

addition to this vast collection of metrics, I found it necessary to formally present a 

validation which I had not explicitly presented in earlier years.   

 

Thus in Paper XVI   “Is the Composite Software Metric  (rho) a Good Metric? “  

which I   presented at the 26th International Software Quality Conference, 26 years 
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since I  presented Paper I  at the very 1st International Software Quality Conference in 

1993,  I reviewed the major contributions by researchers and practitioners in software 

metrics.   

 

Measures and quantitative information are of interest to both researchers and 

practitioners.  Measurements are needed for understanding the current situation, for 

estimating costs and risks and, generally, for aiding decision makers in their operations.  

It is the backbone of sciences and engineering. Software Engineering is no exception. 

Software measurement and metrics have been developed and used for planning, 

estimation and improvement. Metrics can be simple counts, ratios, comparisons and 

estimations. They form the basis of most decisions in science, engineering, 

organisations and life in general.   

 

 

Using Elaine Weyuker’s Good Metrics Properties, the author validated the four module 

metrics namely Granularity (which refers to size), Number of Local Variables (which 

indicates the degree of cohesion), McCabe Complexity (which gives the alternative 

paths through the code and hence the number of test data required to exercise the code), 

and Information Flow (which indicates the degree of coupling). It was concluded that 

the composite metric    (rho), satisfies the Weyuker properties (Weyuker, 1988) since 

all its four constituent metrics satisfy these properties individually.  

 

7.2  The need for Disambiguation of Terms 

 

In natural languages we use words as synonyms and thus we use them interchangeably, 

but mostly when we intent to place particular emphasis on what we are trying to 

communicate. However, scientists and especially researchers give new or even 

erroneous meanings to existing words or create new words and combinations of words 

to name concepts, ideas, theories and products. An example from the Information 

Systems and Software Engineering domains of erroneous use of terms as synonyms 

from the Information Systems and Software Engineering domains is that of method and 

methodology.  The (mis)use of these terms as synonyms has been perpetuated for over 

40 years.  
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Such phenomena usually appear hen systems, processes or disciplines are new and 

immature. For example a study by Bozkurt et al. (2015 in their examination of  633 

scholarly articles (covering 5 years from 2009 to 2013) reported that at least 12 terms 

are being used by scholars to describe Distance Education which is due to the 

unprecedented explosion of technology-based learning. These new terms are similar but 

not the same. They are, however, often used interchangeably as synonyms.   

 

Software Engineering experienced unprecedented growth of new technologies, methods 

and theories in recent decades. As a result a large number of terms have been 

introduced. However, definitions of these terms can vary even across various ISO 

standards.  For this reason, it has become necessary to collect and standardise 

terminology.  

 

In Paper XVII “Navigating the labyrinth of Software  ‘re’ words” an examination of   

terms such as reuse, restructuring, re-engineering, reverse engineering, retro 

engineering and refactoring  where considered. Their meanings and purpose were 

examined.  These  ‘re’ words were identified as processes often overlapping and inter-

related but with their distinct character and emphasis. It was concluded that these ‘re’ 

processes aim to bring expected quality improvements but also potential problems 

arising from their use.  The main benefits are reuse and often lower productivity costs 

than costs incurred from developing from scratch.  

 

For example the expected quality improvements of the re-engineering process, which 

is the primary focus of this research, are:  simplicity, understandability, reusability, 

usability, responsiveness, maintainability, adaptability, reliability, and efficiency. The 

paper identified and summarised the potential benefits of this study for practitioners but 

also for academics and scholars.  

 

Paper XVIII (Georgiadou, 2018) reports on the current debate on terminology 

management.   According to ISO (2010) Systems and software engineering — 

Vocabulary, “The systems and software engineering disciplines are continuing to 

mature while information technology advances. New terms are being generated and 

new meanings are being adopted for existing terms. This International Standard was 
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prepared to collect and standardise terminology…. It provides definitions that are 

rigorous, uncomplicated, and understandable by all concerned.”   

 

During the current decade, the debate on the need for terminology standardisation 

intensified, evidenced by research presented in Kirsch& Sauberer, (2011), Jacobson et 

al. (2013), (Clarke et al., (2016), and Sauberer et al., (2017).  Researchers have argued 

that conceptual modeling, vocabularies, taxonomies, and ontologies are mechanisms of 

understanding and standardization. 

 

According to Clark et al. (2013) “conceptual modelling provides a mechanism by 

which a shared understanding between business domain specialists and IT specialists 

positively enhances the alignment of business and IT goals leading to improved quality 

of IT Solutions.”  

 

Ontologies formalise knowledge meaning, and facilitate the search for contents and 

information. Standardised terminology formalises knowledge meaning and facilitates 

the search for contents and information.  The paper presented a chronology of seminal 

contributions to the terminology debate. 

 

The systems and software engineering disciplines are continuing to mature while 

information technology advances at an unprecedented rate.   During their  journey from 

the general to the specific and then to the general  they often generate new knowledge 

expressed in novel interpretations of existing terms or they even generate new terms  in 

order to exemplify their research contribution, the originality of their work .   

 

Continuous change and continuous improvements, innovations and changes in 

technologies bring their own new terms (which may be synonyms to existing terms) to 

add to the already highly populated vocabulary of Software Engineering.  This in turn 

generates ambiguity.  

 

Practitioners are normally focused on in-house projects and challenges.  Their own 

experiential knowledge is often very useful for the theoreticians especially when they 

form part of the same team integrating theory and practice (Paper XVIII, 2018).  
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For this purpose I proposed a framework (shown in Figure 7.1) for launching, carrying 

out and implementing the terminology disambiguation process. It is proposed that the 

disambiguation of terms is a cyclic sub-process to ensure improvements are achieved 

through continuous monitoring and coordinating.    

 

 

 

 

Figure 7.1 - A framework for the effective disambiguation of terms   

[Source: Paper XVIII] 

 

 

The central node (Number 8) forms the core of the framework.  It is the on-going sub-

process of reviewing all the work coming from all other stages and all committees, sub-

committees, standards bodies and so on. The bidirectional arrows emphasise the need 

of information change, updating all stakeholders and responding to external changes. 
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Terms and their relationship to other terms may be rejected or accepted, modified, 

refined, and incorporated in existing databases.  If experts disagree and cannot 

reconcile their differences in opinion, terms may be rejected or revisited for further 

elaboration.  Without stifling creativity and imagination and the resulting generation of 

new terms or new meanings to existing terms, it is necessary to employ mechanisms to 

capture them but more importantly to identify and describe their relationship to existing 

terms.    

7.3  Who should be responsible for bad quality and systems 

failures? 

 

Software systems and software projects have been regularly failing causing losses 

which are not only financial but social too.  The term ‘social loss’ implies: 

 losses due to poor and varied performance of a product; 

 failure to meet the customer’s requirements of fitness for use or for prompt 

delivery; 

 harmful side-effects caused by the product. 

 

Thus it is important for educators to raise awareness among the new cohorts of 

students of their responsibility as scientists and as human beings to produce 

correct, reliable, functional and maintainable systems. 

 

In paper XIX (Georgiadou& George, 2006) “Information Systems Failures: Whose 

responsibility?”) , this question was posed concentrating on systems failures from the 

legal point of view. Although there is nowadays greater awareness of the dangers and 

possibilities of litigation in case of failure, and some awareness of the social 

responsibility of engineers, managers, and financiers, there is still low awareness of and 

commitment to the ethical dimension.  

 

In Rahanu et al. (2018) it was argued that “a set of defensible moral obligations that 

must be fulfilled in the development and deployment of systems, protagonists such as: 

project managers, software engineering teams, systems analysts, clients, etc. can fulfil 

their ethical duties, thus increasing the likelihood a deployed system that is compliant 

with principles of health and safety and wellbeing of its users. Ultimately systems 

development and deployment must be underpinned with ethical consideration.”  
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7.4   Quality and Value are in the eye of the stakeholder  

 

In Siakas, et al. (1997) Berki suggested that Quality is in the eye of the stakeholder.  In 

paper XX a brief review of existing holistic, inclusive and participative approaches 

was presented. However, it was noted these approaches focused on ‘success’ rather 

than value.  These approaches strived to enhance software products and/or software 

processes through value surrogates such as participation, negotiation, fairness, 

consensus, democracy, interaction, discussion and empowerment. Yet, software 

development is far from perfect.  In paper XX it was proposed that, emphasis should 

aim at delivering mutually acceptable values through Value Compatible Appreciation 

(VCA), rather than focusing on surrogates of value which results in some types of 

compromise. VCA would engender the recognition and appreciation of mutual benefits 

and constraints.  

 

 

7.5  Original contributions of this research   

 

This research made several contributions to the debate on and practice of software 

quality, product quality, process quality and their improvement. It also developed 

metrics, guidelines, models and frameworks for guiding various processes and 

activities.   

 

  Tables 7.1a, 7.1b, and 7.1c summarise these contributions, the benefits they are 

intending to achieve, their limitations and indications of future work.   
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Table 7.1a   Research Contributions, Benefits, Limitations and Future Work  

 

Contribution Benefits Limitations Future Work 

Re-engineering Factor   

a Composite Metric  

rho () 

Indicator for effective 

decision making on re-

engineering (or not) of 

legacy code. 

Applies only to procedural code at 

the moment. 

Additional composite metrics e.g. 

develop: 

u  for improving usability  

oo  for deciding on re-

engineering of OO code  

 

GEQUAMO & 

GEQUAMO II 

Generic Customisable 

Visualisation Quality 

Model enabling 

qualitative and 

quantitative evaluations 

for identifying strengths 

and weakness and for 

the purpose of selection. 

GEQUAMO uses both 

qualitative and 

quantitative methods for 

classifying features and 

their sub-features, and 

for measuring 

respectively. 

The sub-attributes decomposition 

may result in overlaps of tree 

branches (must be controlled 

through the construction rules). 

The CFD (Composite Features 

Diagramming)  technique  is also a 

thinking  tool for classifying groups 

of attributes and all their lower 

levels of  attributes/features  

 

Implementation of automated tools 

for visualising the profiles of items 

under evaluation and for bottom up 

measurement and quantification.  
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Table 7.1b   Research Contributions, Benefits, Limitations and Future Work  

 

Contribution Benefits Limitations Future Work 

 

A Framework  for the 

Design and Execution of  

Controlled Experiments  

 

Streamlining the 

process which can be 

repeated, improved, 

refined and 

generalized. Logistics 

improvement.       A 

body of knowledge 

can be gathered and 

processes can be 

improved. 

Limited opportunities and extent to 

which identified relationships exist 

in the real world.   

 

Further replication of experiments for 

additional validation and refinement 

of the proposed Phases of the 

Framework.  

The I
5
P 

Framework 

Depicts the maturity, 

preparedness and 

disposition towards 

knowledge sharing, for 

estimating and 

measuring 

organisational 

performance.  

Implemented in and 

validated by experts 

from industry and 

academia. 

 Longitudinal monitoring of different 

size companies to obtain further 

performance measurements. 

 

VALO5 

A new model for 

Innovation, Maturity 

Growth, Quality and 

Valorisation. 

 Longitudinal monitoring of different 

companies to obtain further data for 

facilitating the growth and gaining 

added value for companies.  
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Table 7.1c   Research Contributions, Benefits, Limitations and Future Work  

 

Contribution Benefits Limitations Future Work 

CoFeD: A Visualisation 

Framework for 

Comparative Quality 

Evaluation 

 

Architecture of 

CoFeD revolves 

around a central 

hub, the process 

of continuous 

Review and 

improvement.  

Tried and tested 

representation and 

visualisation 

techniques.  

 Automated tools for profiling and 

visualisation  

A Framework for 

the Disambiguation 

of Terms  

 

Standardisation , 

Clarity 

May stifle innovation and creativity  Co-ordinate with standards working groups  

Guidelines for 

Value 

Compatibility 

Appreciation 

Analysis 

Avoidance of 

dissent, conflict  

and resistance to 

change 

 Industrial surveys and case studies  
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CHAPTER  8 

CONCLUSION 

This chapter is the overall conclusion which summarises the Contributions to 

Knowledge and the Significance of the Study. 

 

The ubiquitous presence of Software Systems brings many benefits to individuals, 

groups, organisations, and society at large. However, as they become increasingly 

complex a large number of them are regularly failing. Failed or challenged systems are 

not only costly financially, they are, and have been, harmful in terms of safety and 

violation of privacy.  

 

The moment a software system goes live it is indeed a legacy system. The rate of 

change in technologies means that, apart from undergoing corrections to accommodate 

new or changed requirements, systems must accommodate change in general. They 

must constantly evolve and adapt.  Changes can bring improvements but they are also 

likely to have a ripple effect which can be turbulent especially in complex and 

embedded systems.  

 

Even when software systems continue to function, they maybe deficient and thus they 

require continuous corrective maintenance because requirements: 

(i) had been initially misunderstood, 

(ii) had been omitted or mis-specified, or 

(iii) have changed. 

Also, even if existing systems continue to function, as technologies change, they need to 

be migrated to new platforms and programming languages. Maintenance in this case is 

adaptive or perfective as is the case of performance improvement. 

Preventive maintenance could be carried out, but in reality most of the time the whole 

software engineering community is ‘firefighting’ as problems crop up regularly. 

Although there has been a gradual shift from corrective to preventive methods, and the 

focus shifted from primarily product improvement to process improvement, software 

systems and also software projects have been failing regularly. Often software projects 
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are abandoned after several years, and after wasting several millions of pounds.  A brief 

look at articles such as “Britain: The health service's IT problem; Computerising the 

NHS”; The Economist, Oct 19, 2002, Vol.365 (8295), pp.51-52 will attest to the 

enormity of the problem.  

 

This research spanned a period of over 25 years and encompassed aspects of quality 

improvement, starting from product improvement and re-engineering of legacy code, 

moving to process improvement and establishing interrelationships of process and 

product quality.  

 

Controlled experiments were used to test various hypotheses which were born out.   

Software characteristics (both internal and thus directly measurable) and external 

(indirectly measurable) were studied and used to decide whether restructuring legacy 

code is advisable.  

 

On re-engineering, this thesis contributes the  novel composite metric rho (), which 

can act as an indicator for decision makers on whether legacy code should be 

restructured or abandoned to be replaced by developing a new system from scratch.  

 

A series of controlled experiments were designed and conducted to test the research 

hypotheses. At the end of Part 1 of the research, a framework for the design of 

experiments was developed.  

 

The generic quality model GEQUAMO and GEQUAMO II were developed. They are 

customisable, as each class of stakeholder places different emphasis on characteristics 

such as usability, maintainability, and reliability. The models combine a top-down 

qualitative method for feature analysis, decomposition and classification, and bottom 

up quantitative evaluation and comparison, including visualisation, for the purpose of 

selection.  

 

Based on the assumption and widespread belief that process improvement impacts 

positively on product improvement the research continued with a focus on process 

improvement by looking at process maturity and knowledge sharing and their impact 

on performance. The I
5
P framework was developed in collaboration with industry and 

https://mdx.primo.exlibrisgroup.com/discovery/fulldisplay?docid=proquest224029225&context=PC&vid=44MUN_INST:hendon&lang=en&search_scope=Hendon_CI&adaptor=Primo%20Central&tab=default&query=any,contains,abandoned%20IT%20NHS%20project&offset=0
https://mdx.primo.exlibrisgroup.com/discovery/fulldisplay?docid=proquest224029225&context=PC&vid=44MUN_INST:hendon&lang=en&search_scope=Hendon_CI&adaptor=Primo%20Central&tab=default&query=any,contains,abandoned%20IT%20NHS%20project&offset=0
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validated by experts from academia and industry. This framework provides a 

mechanism for estimating performance improvement as the maturity and knowledge- 

sharing within a team, a project, or an organisation advance from level 1 to level 5.  

 

Further work on value gains from process improvement, the valorisation model VALO5 

was developed under the auspices of a European Research and Knowledge Transfer 

project.  Further integration of I
5
P and VALO5 as well as the Deming PDCA continuous 

improvement cycle (Georgiadou & Sheriff, 2008), and (Georgiadou, et al., 2015) 

showed that process improvement can bring value to an organisation, and can reconcile 

differences between different stakeholders.  

The CoFeD Visualisation Framework for Comparative Quality Evaluation was 

developed and illustrated by case studies.  Finally a study of dominant discourse on 

terminology management and the need for disambiguation of terms for the achievement 

of clarity and standardization resulted in a framework whose architecture is built 

around central hub of continuous review and feedback for continuous monitoring and 

standardisation without stifling creativity and innovation.  

In addition to the above metrics, frameworks and models the thesis contributes to the 

on-going debate on software quality and quantifiable quality improvement to both 

product and process.  

 

Quality is difficult to define, very difficult to achieve, and even more difficult to 

measure. In reality there can be no absolute or exact value for quality.  The definition 

below was proposed and used throughout this research:   

 

Software Quality is the totality of product as well as process characteristics, 

and their interaction and measurement (whether qualitative or quantitative) 

that satisfy different stakeholder requirements.   

 

In engineering everything is an approximation, a compromise – sometimes small 

sometimes bigger. The degree of tolerance and threshold values/acceptable limits of 

deviation depend on many interdependent factors.    
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Icarus’s flight to freedom ended up in disaster because the specifications given by his 

father Daedalus who was an architect were ignored and the safe limits were violated.  

 

"'My Icarus' he says; 'I warn thee fly 

Along the middle track: nor low, nor high; 

If low, thy plumes may flag with ocean's spray; 

If high, the sun may dart his fiery ray.'" 

(Ovid) 

Flyvbjerg and Budzier (2011) warned that IT projects are nowadays so big and their 

influence so wide ranging across many aspects of the organisation, that “they pose a 

singular new kind of risk that can sink entire corporations, cities, and even nations.”  

As software is integrated into bigger products and systems, the concerns can become 

magnified. The software industry has the highest failure rate among all other 

engineering disciplines. 

 

An occupation that runs late on more than 75 % of projects and cancels as many as 35 

% of larger projects is not a true engineering discipline’ (Jones, 2010). 

 

As systems are not only software (Kaposi and Pyle, 1993) a holistic approach is 

necessary in order to achieve faster and better progress in quality improvement.  

Generally, quality is desirable by all stakeholders. Yet as “quality is in the eye of the 

stakeholder” (Siakas et. al, 1997) it is necessary to address the specific.  Reconciling 

different worldviews which   Peter Checkland (1981) called ‘accommodating’ different 

Weltanschauungen is a challenge that needs continuous attention and effort.  

 

Finally, this research demonstrated that adopting a holistic approach enables the study 

and the improvement of both the product and the process. In addition it is possible to 

estimate and measure such improvements.  It is certain that changes to the culture of 

relying on corrective strategies and actions to preventive strategy and actions are 

imperative.  

“The world as we have created it is a process of our thinking. It cannot be changed 

without changing our thinking.” 

Albert Einstein (in an Interview with Michael Arminne, June 23
rd

, 1946)  
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CHAPTER 9 

EPILOGUE – PERSONAL REFLECTIONS 

 

9.0      Introduction  

The Epilogue is a personal reflection on my research journey, my quest for knowledge 

and understanding, the creation of new knowledge, also the role of educators in raising 

awareness and sense of responsibility in preparing the younger generations of software 

engineers to understand and embrace ethical principles in their future professional and 

personal life.  

9.1  Quality and Social Responsibility 

 

Over the 25 years of this research many changes took place in the software engineering 

and information systems fields. Methods, methodologies, lifecycles, techniques, tools 

and frameworks were proposed, introduced, improved, and abandoned.  However, the 

problems of software systems’ deficient quality persist. It is also inevitable to need to 

deal with legacy issues as software evolves and changes. Thus, the research reported 

here is relevant to both the discourse and the practical implementations of solutions 

offered by academics and practitioners.                       

 

My quest for knowledge and understanding culminated in the creation of new 

knowledge, and the development of models and frameworks as mechanisms for product 

and process improvement.  The visualisation techniques, models and frameworks, 

which I developed, aid understanding and decision making for both researchers and 

practitioners. The application of my research findings in industry, as well as in 

curriculum development, and European Projects for Research & Knowledge Transfer 

has been a gratifying endorsement.  
 

Process improvement is intertwined with product improvement. This integration is 

widely believed to result in improved products and services. In Rahanu et al. (2018) it 

was emphasised that “central to each of software process improvement models is the 

notion of a focused and sustained effort towards building a process infrastructure of 
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effective software engineering and management practices. The software process 

improvement strategy aims for something that is more focused, more repeatable, and 

more reliable, with regards to the quality of the system developed (conformance to 

requirements, reliability, usability etc.), the timeliness of delivery and the expected cost. 

Quality in use also has implications on performance, reliability, and usability. The 

overall assumption is that a sound and improving process is likely to result in high 

quality systems i.e. process improvement is likely to result in improved products”. 

 

My role as a researcher and as an educator enabled me to impart knowledge and expose 

my students to my philosophy of social responsibility, fairness, and morality. I was able 

to oversee the development of new curricula on Software Product and Process 

Improvement, particularly at Masters level, to  discuss and test my knowledge and 

discoveries with many thousands of students (classes I taught were often 300-400 

strong per annum), and dozens of colleagues in the UK, Europe and further afield.  

Links with industry kept my feet on the ground as practitioners have a focused mind on 

real, tangible problems that need to be addressed in the short term than is the case with 

academic investigations. 

 

The advent of global connectivity and rapid technological change brought with them 

intense social change, threats against existing distributions of power, and capital. New 

obligations, new kinds of crime and over-dependency on interconnected technologies 

and embedded systems, are making it difficult to know whose responsibility it is to 

ensure the quality of systems in use can be assured.   As an educator, in order to instill 

in my students (current and future software engineers) principles of right or wrong, I 

often start my classes on Information Systems Quality Management with the question:  

Is 99% quality level good?  I invariably receive a resounding YES! I give them 5 

minutes to discuss among themselves, and then I show them the following table: 

3.8 Sigma  =  99% Good 6 Sigma = 99.999 % good 

20,000 articles of mail lost each hour 7 articles lost per hour 

15 mminutes of unsafe drinking 

water every day 

2 minutes unsafe water per year 

5,000 incorrect surgical operations 

per week 

2 incorrect procedures per week 

2 short or long landings at most 

major airports each day 

1 short or long landing every 5 years 

200,000 wrong drug prescriptions 

each year 

68 wrong prescriptions per year 

[http://www.snuniversity.nl/downloads/University/artikel-crosby.pdf (accessed 2/07/2018)] 
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After a few more minutes of discussion, I ask “What if you or a member of your friends 

or family is the patient that undergoes one of the incorrect surgical procedures, or if you 

or a loved one is a passenger on one of the short or long aircraft landings?”   Their 

answers to this and to the first question are quite revealing as the students come to 

realise and reflect on the very real dangers of badly designed, poorly tested, erroneous, 

failing systems.  The students can (and do) reflect on the concept and the importance of 

building quality into systems. They can also reflect on their own future role and 

responsibilities in this industry.   

 

In addition, because the students originate from diverse backgrounds, cultures, and 

countries I also urge them to think of the word or phrase for quality and its meaning in 

their own mother tongue – only then they can feel and understand the importance of 

quality. This was a challenge posed by Shimon Peres to over 2,000 delegates at the 10th 

International Conference of the Israel Society for Quality, which I attended in 

November 1994. 

 

The word Quality itself was introduced in the English language c.1300; it means 

“temperament, disposition”, and derives from old English qualite “meaning nature, 

characteristic”, itself deriving from modern French qualité, from Latin qualitatem 

“meaning property, nature, state, condition”, said to have been coined by Cicero to 

translate the Greek (which is my own mother tongue) poiotes (ποιότης) meaning 

degree of goodness. Simon Peres’ challenge made me think that ποιότης is also the 

root of the word poet (which means creator in Greek) and also of the word poetry 

“which is perceived by many as the highest form of intellectual creation” 

[https://www.etymonline.com/word/quality (accessed 1/07/2018)]. 

 

It can be assumed that quality (meaning good quality) is universally desirable. 

However, our field is still immature. Mature disciplines have clear and unambiguous 

nomenclature. Standard definitions, and standard measures.  
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9.2  Software Engineering: Is it an Engineering discipline? 

 

Jackson (1994) asserted that “software engineering is not a discipline; it is an 

aspiration, as yet unachieved. Many approaches have been proposed, including 

reusable components, formal methods, structured methods and architectural studies. 

These approaches chiefly emphasise the engineering product; the solution rather than 

the problem it solves.” 

 

Abran et al. (2003) emphasised that “the metrology perspective suggests that the field 

of software measurement has not yet been fully addressed by current research, and that 

much work remains to be done to support Software Engineering as an engineering 

discipline based on quantitative data and adequate measurement methods meeting the 

classic set of criteria for measuring instruments as described by the metrology body of 

knowledge in large use in the engineering disciplines”.  

 

Despite the immense progress achieved it seems that even after  50 years since the 

coining of the term Software Engineering  we are still far from justifying the term 

engineering compared to other types of engineering.   

 

The work carried out by a number of researchers, such as  Holcombe and Ipate, (1998) 

demonstrates that formal methods are probably the best way of designing correct 

systems. Anthony White (2013) developed a control-theoretic model of the 

requirements process. This model addresses “the questions of deadlines, quality 

objectives, effort, and size of the requirements team. The objective of the model, 

applied to the requirements process, is to help a manager make decisions regarding the 

expansion of the workforce, change of quality in the process and to control how the 

requirements process achieves its objectives”.     

 

 9.3  Continuous search for truth, knowledge and improvement  

 

I,  like most researchers started my investigation in a top-down manner, a wide ranging  

ambition spanning a large knowledge area often involving universal concepts, ideas, 

themes, principles, and ideals that are found and can be proven within, between, and 

across various subject areas and disciplines.  
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As researchers we gradually gain insights and understanding of the enormity and 

complexity of our originally ambitious scope and purpose, we narrow down our 

investigation focusing on smaller and more specific problems.   

Cerca Trova (seek and ye shall find) 

[https://www.florenceinferno.com/cerca-

trova-or-catrovacer/”(last accessed 

1/07/2018)]. may be a mysterious 

inscription but inspiration, creativity, 

perseverance,  an open and questioning 

mind are necessary abilities or qualities  

that a researcher must have to engage in  

effective problem solving and to  find the 

underlying truth in any situation.  

 

 

“Cerca trova” (seek and ye 

shall find) is a mysterious 

inscription that is located at the 

top of Vasari’s fresco “The 

Battle of Marciano” positioned 

in the Hall of the Five Hundred 

in Palazzo Vecchio, Florence, 

Italy.  

 

 

The words mean "Seek and you 

shall find." They appear on a 

flag in a battle scene  (part of the 

painting can be seen here), 

painted as a fresco by Giorgio 

Vasari on one of the walls of the 

Salone dei Cinquecento (council 

chamber) of the Palazzo 

Vecchio.  

 

Some people think that Vasari's 

painting may hide an earlier 

work by Leonardo da Vinci, 

called "The Battle of Anghiari."  

 
 

 

My research journey was very long I did not wish it (as Kavafis a Greek poet from 

Alexandria, Egypt advised in 1911). However, life took me in different directions: there were 

illnesses, bereavements, temporary pauses, long stoppages, backtrackings, extraordinary 

work-loads, going in circular paths, restarting… Throughout this journey I gathered much 

knowledge, and I created some new knowledge too.  I gained understanding of Software 

Systems Failures, and understood my own limitations. I am wiser. My life-long learning 

journey for seeking and sharing knowledge, for achieving deeper understanding, creating new 

knowledge and finding some solutions to seemingly unsolvable problems continues to 

perhaps reach the elusive destination of ‘Ithaka’. 

  

https://www.florenceinferno.com/wp-content/uploads/2013/07/cerca-trova1.jpg
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Ithaka by Constantine Kavafy  
 

As you set out for Ithaka 

hope the voyage is a long one, 

full of adventure, full of discovery. 

Laistrygonians and Cyclops, 

angry Poseidon—don’t be afraid of them: 

you’ll never find things like that on your way 

as long as you keep your thoughts raised high, 

as long as a rare excitement 

stirs your spirit and your body. 

Laistrygonians and Cyclops, 

wild Poseidon—you won’t encounter them 

unless you bring them along inside your soul, 

unless your soul sets them up in front of you. 

  

Hope the voyage is a long one. 

May there be many a summer morning when, 

with what pleasure, what joy, 

you come into harbours seen for the first time; 

may you stop at Phoenician trading stations 

to buy fine things, 

mother of pearl and coral, amber and ebony, 

sensual perfume of every kind— 

as many sensual perfumes as you can; 

and may you visit many Egyptian cities 

to gather stores of knowledge from their scholars. 

  

Keep Ithaka always in your mind. 

Arriving there is what you are destined for. 

But do not hurry the journey at all. 

Better if it lasts for years, 

so you are old by the time you reach the island, 

wealthy with all you have gained on the way, 

not expecting Ithaka to make you rich. 

  

Ithaka gave you the marvelous journey. 

Without her you would not have set out. 

She has nothing left to give you now. 

  

And if you find her poor, Ithaka won’t have fooled you. 

Wise as you will have become, so full of experience, 

you will have understood by then what these Ithakas mean.  

 

(C.P. Cavafy, Collected Poems. Translated by Edmund Keeley and Philip 

Sherrard. Edited by George Savidis. Revised Edition. Princeton University Press, 

1992) 
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APPENDICES  

Appendix A 

Glossary of terms pertinent to this research 

 

Term  Definition Source 
Maintainability is the ease with which a software system (program) 

or component can be maintained (i.e. modified to 

change or add capabilities, correct errors, faults 

and/or defects, to improve performance or other 

behaviour, or adapt to a changed environment).   

Proposed by 

the author 

Measurement is the process by which numbers or symbols are assigned 

to attributes of entities in the real world in such a way as 

to describe them according to clearly defined rules 

Finkelstein, 

1984 

Methodology is a system of practices, techniques, procedures, and rules 

used by those who work in a discipline 

ISO/IEC/IEEE 

24765:2010 
 

Process 
is a set of activities that begin with the 

identification of a need and conclude with the 

retirement of a product that satisfies the need; or 

more completely, as a set of activities, methods, 

practices, and transformations that people use to 

develop and maintain software and its associated 

products (e.g. project plans, design documents, 

code, test cases, user manuals). 

Whitmire,  

1997 
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Term  Definition Source 
Process 

Improvemnet  

are actions taken to change an organisation's 

processes so that they more effectively and/or 

efficiently meet the organization's business goals.  

ISO/IEC/IEEE 

24765:2010 

Reengineering 

 

the examination and alteration of software to 

reconstitute it in a new form, including the 

subsequent implementation of the new form. 

ISO/IEC/IEEE 

24765:2010 

Resources are people, tools, materials, methods, time, money, 

training (or generally knowledge and skill) and 

products from other projects  

Whitmire,  

1997 

SoftwareMetric is a measurable property which is an indicator of one or 

more of the quality attributes. 

Proposed by 

the author 

Software 

products or 

artifacts 

are the products (deliverables/outputs of the 

software process. These products may be plans, 

functional specifications, process models, 

procedure manuals, coding, test data, test results 

and so on  

Whitmire,  

1997 

Software project  is the relationship between instances of a problem 

to be solved, internal and external goals and 

standards, processes, methods and techniques, 

constraints and finally a product (one or more 

deliverables)  

Whitmire,  

1997 

Software Quality is the totality of product as well as process 

characteristics, and their interaction and 

measurement (whether qualitative or quantitative) 

that satisfy different stakeholder requirements.   

 

Proposed by 

the author  
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Term  Definition Source 
Structuredness  is a factor connected to a low probability of errors Oulsnam, 1982 

Un-

structuredness 

is a factor connected to a high  higher probability of 

errors  

Oulsnam, 

1982 

Valorisation is the process of value creation from knowledge, by 

making it applicable and available for economic or 

societal utilisation, and by translating it in the form of 

new business, products, services, or processes. It includes 

dissemination and exploitation of results.  

VALO project   

Value is an enduring belief that a specific mode of conduct or 

end-state is personally or socially preferable to an 

opposite or converse mode of conduct or end-state of 

existence.  

Rokeach 

(1973)  

Usability is the capability of the software product to be understood, 

learned  and liked by the user, when used under specific 

conditions.  

Georgiadou & 

Sheriff (2008)  
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