
__

 Elli Georgiadou Page: 1

A Holistic Method for Improving

Software Product and Process Quality

By Elli Georgiadou

Director of Studies: Professor Richard Comley

 Supervisor: Professor Anthony White

Submitted for the partial fulfillment of the Doctorate of Philosophy Degree

School of Science and Technology

Middlesex University

London

United Kingdom

August, 2018

__

 Elli Georgiadou Page: 2

CANDIDATE DECLARATION FORM

Name of Candidate: Elli Georgiadou

Student Number: M00388540

Thesis Title: A Holistic Method for Improving

Software Product and Process Quality

Degree for which thesis is submitted: Doctorate of Philosophy

Statement of Associated Studies undertaken in connection with the

programme of research (Regulation G3.1 refers). While a registered

student of the university, I attended the following courses/workshops/

conferences where I presented the following peer reviewed papers:

Georgiadou, E., Siakas K.V., Berki E., (2003): Quality Improvement through the

Identification of Controllable and Uncontrollable Factors in Software Development,

11
th

 EuroSPI 2003 (European Software Process Improvement Conference), Graz,

Austria.

Siakas K.V., Georgiadou, E. (2005): PERFUMES: A Scent of Product Quality

Characteristics, The 13
th

 Software Quality Management International Conference,

SQM 2005, March 2005, Gloucestershire, UK.

Georgiadou, E. & George, C. (2006) “Information Systems Failures: Whose

responsibility?” Proceedings of the 11th INternational conference on Software

Process Improvement - Research into Education and Training, (INSPIRE 2006),

April, Southampton, UK, ISBN 1-902505-77-8.

 Georgiadou, E., “A framework for the design and execution of controlled

experiments in Software Engineering”, Software Quality Management International

Conference, Special 50
th

 Anniversary of the BCS, Tampere, Finland, 2007.

Georgiadou, E. (2008) “GEQUAMO II Verification, Validation and Improvement

of a Generic, Multilayered, Customisable, Software Quality Model “, Software

Quality Management, 2008, Ulster University, March 2008.

Georgiadou, E., Sheriff, M. (2008) “Reconciling stakeholder conflicts by

analysing apparently contradicting notions of value in SE projects”, In: Software

Quality Management International Conference, 2008, Belfast, Northern Ireland.

__

 Elli Georgiadou Page: 3

Georgiadou, E. “Navigating the labyrinth of software Re-words”, 17th Software

Quality Management International Conference, Southampton, UK, April 2009.

Georgiadou, E., Siakas, K., Balstrup, B. (2010), “The I
5
P Visualisation Framework

for Performance Estimation through the Alignment of Process Maturity and

Knowledge Sharing”, International Journal of Human Capital and Information

Technology Professionals (IJHCITP) Vol. 2 No 2. (extended version of paper

presented at EuroSPI, 2009)

Georgiadou, E., Siakas, K. (2013) “VALO5 – Innovation, Maturity Growth,

Quality and Valorisation”, Systems, Software and Services Process Improvement

Systems, Software and Services Process Improvement Communications in

Computer and Information Science, Springer, Volume 364, 2013, pp 294-299.

Georgiadou, E., White, A., Comley, R. (2017) “ CoFeD: A Visualisation

Framework for Comparative Quality Evaluation”, in Achieving Software Quality in

Development and in Use, P Marchbank, M Ross, G Staples (Eds), 25th Software

Quality International Conference, 2017.

Georgiadou, E., “Is the Composite Software Metric  (rho) a Good Metric?” in

Computing and Quality, 26th Software Quality International Conference, 2018

ISBN: ISBN 978-0-9932889-9.

Georgiadou, E. “Reflections on the need for Disambiguation of Terminology for

software Process Improvement”, EuroSPI 2018, in Systems, Software and Services

Process Improvement, Volume 896, Communications in Computer and Information

, Springer, 2018 (in print – to be presented in September 2018).

 I declare that while registered as a candidate for the university’s research

degree, I have not been a registered candidate or an enrolled student for an

award of another university, academic or professional institution. I declare

that no material contained in this thesis has been used in any other

submission for academic award.

Signature of the candidate:

http://link.springer.com/book/10.1007/978-3-642-39179-8

__

 Elli Georgiadou Page: 4

ABSTRACT

The concept of quality in general is elusive, multi-faceted and is perceived differently

by different stakeholders. Quality is difficult to define and extremely difficult to

measure. Deficient software systems regularly result in failures which often lead to

significant financial losses but more importantly to loss of human lives. Such systems

need to be either scrapped and replaced by new ones or corrected/improved through

maintenance. One of the most serious challenges is how to deal with legacy systems

which, even when not failing, inevitably require upgrades, maintenance and

improvement because of malfunctioning or changing requirements, or because of

changing technologies, languages, or platforms. In such cases, the dilemma is whether

to develop solutions from scratch or to re-engineer a legacy system. This research

addresses this dilemma and seeks to establish a rigorous method for the derivation of

indicators which, together with management criteria, can help decide whether

restructuring of legacy systems is advisable.

At the same time as the software engineering community has been moving from

corrective methods to preventive methods, concentrating not only on both product

quality improvement and process quality improvement has become imperative. This

research investigation combines Product Quality Improvement, primarily through the

re-engineering of legacy systems; and Process Improvement methods, models and

practices, and uses a holistic approach to study the interplay of Product and Process

Improvement. The re-engineering factor rho (), a composite metric was

proposed and validated.

The design and execution of formal experiments tested hypotheses on the relationship

of internal (code-based) and external (behavioural) metrics. In addition to proving the

hypotheses, the insights gained on logistics challenges resulted in the development of a

framework for the design and execution of controlled experiments in Software

Engineering.

The next part of the research resulted in the development of the novel, generic and,

hence, customisable Quality Model GEQUAMO, which observes the principle of

__

 Elli Georgiadou Page: 5

orthogonality, and combines a top-down analysis of the identification, classification

and visualisation of software quality characteristics, and a bottom-up method for

measurement and evaluation. GEQUAMO II addressed weaknesses that were

identified during various GEQUAMO implementations and expert validation by

academics and practitioners.

Further work on Process Improvement investigated the Process Maturity and its

relationship to Knowledge Sharing, resulted in the development of the I
5
P

Visualisation Framework for Performance Estimation through the Alignment of

Process Maturity and Knowledge Sharing. I
5
P was used in industry and was validated

by experts from academia and industry. Using the principles that guided the creation of

the GEQUAMO model, the CoFeD visualisation framework, was developed for

comparative quality evaluation and selection of methods, tools, models and other

software artifacts. CoFeD is very useful as the selection of wrong methods, tools or

even personnel is detrimental to the survival and success of projects and organisations,

and even to individuals.

Finally, throughout the many years of research and teaching Software Engineering,

Information Systems, Methodologies, I observed the ambiguities of terminology and

the use of one term to mean different concepts and one concept to be expressed in

different terms. These practices result in lack of clarity. Thus my final contribution

comes in my reflections on terminology disambiguation for the achievement of clarity,

and the development of a framework for achieving disambiguation of terms as a

necessary step towards gaining maturity and justifying the use of the term

“Engineering” 50 years since the term Software Engineering was coined.

This research resulted in the creation of new knowledge in the form of novel indicators,

models and frameworks which can aid quantification and decision making primarily on

re-engineering of legacy code and on the management of process and its improvement.

The thesis also contributes to the broader debate and understanding of problems

relating to Software Quality, and establishes the need for a holistic approach to

software quality improvement from both the product and the process perspectives.

__

 Elli Georgiadou Page: 6

 Dedication

This work is dedicated to the haunting memory of my unborn child, and to the memory

of four remarkable people who gave me life, unbounded love, and quality of life:

 my beloved parents George and Elizabeth who had no opportunity to study (my

father finished primary school and my mother was illiterate) but the two of them

enabled me to dream, instilled in me the love of learning, devotion to my teachers

and dedication to duty and social justice;

and

 my uncle Lazaros, an autodidact (who only attended 2 years of primary school), a

polymath, thinker and philosopher who practised and taught me the dialectic

method of enquiry, and problem-solving, and my aunt Angeliki who taught me

patience and who, together with uncle Lazaros, offered me (a village girl) the

opportunity to come to their house and family in town in order to study at secondary

school. They also introduced me to the arts and art appreciation which continue to

enrich my life.

__

 Elli Georgiadou Page: 7

Acknowledgements

My research journey was long, difficult, interesting, and rewarding. During this journey many people

have accompanied me, inspired me, collaborated with me and helped me. Since I presented my first

research paper in the First Software Quality Management International Conference in 1993 two

remarkable people Professor Margaret Ross and EurIng Geoff Staples inspired me, trusted me to join the

scientific committees of the SQM and INSPIRE conferences, and later on to help organise and chair both

conferences on three occasions. They inspired and mentored me enthusiastically and generously

throughout our collaboration on the International Committee of the British Computer Society Quality

Specialist Group. For all these and for your friendship dear Margaret and Geoff, I owe you my deepest

thanks and gratitude.

More recently my main supervisor and advisor Professor Anthony White provided immense inspiration

through his own amazing research achievements and generosity to nearly 30 PhD completions. His

continuing thirst for study and learning, as well as his ability and willingness to encourage and support

researchers, like myself, to achieve their PhD completion, despite the various obstacles, delays and

digressions, are remarkable. My deepest thanks go to you Tony for the scientific guidance and the trust in

my research work and for the enormous encouragement you provided me with, without which I would

not have been able to submit my thesis. My completion brings the total number of your PhD completions

to 30. This number speaks for itself.

My Director of Studies Professor Richard Comley has given me valuable scientific advice and

encouragement, as well as practical support not only for this research but also for my European

Activities and the management of 6 European Tempus projects on Research and Knowledge Transfer

many of which run simultaneously! Richard, without your endorsement and support I would not have

been able to build a large network of research contacts and collaborators across the world. Many thanks

for your understanding especially at difficult times (and there have been many).

Special thanks go to my two Universities (University of North London (now London Metropolitan

University)) and Middlesex University for their generous support to serve as a European and

International Affairs Faculty Co-ordinator, and to attend a large number of international meetings and

conferences where I presented my work, received feedback, validated my models and collaborated on

many research projects and initiatives. Professor Martin Loomes, you always encouraged me to pursue

my research (saying it is never too late), and you appreciated my mentoring of younger colleagues

through collaborative research. Thank you Martin for respecting and trusting me to represent the

University at European and International levels for recruitment, forging collaborative links and carrying

out joint research. Professor Balbir Barn you spurred me on not long ago to concentrate on my PhD by

what felt like a hurtful remark at the time. You said “you have no passion for your research”. Balbir, your

remark re-ignited my passion which had always been there but had been masked by adversity, illness and

an overwhelming amount of work. Thank you for focussing my efforts!

My European Funded Projects including Socrates/Erasmus, Tempus on Curriculum Development and

Research and Knowledge Transfer brought me into contact with many colleagues from various countries;

too many to mention here but special thanks are due to Dr Juri Valtanen from Finland for the stimulating

discussions and subsequent collaboration and joint publications on Problem Based Learning. Also

Professor Rita Gevorgyan from Armenia for over 10 years of collaboration and co-authorship on

Educational Quality Management where I was able to apply models and knowhow from Software

Engineering to Process Improvement in Education and Educational Management in countries of

transition following the collapse of the Soviet Union.

I want to thank all my co-authors and especially all my colleagues who volunteered their various groups

of students to participate in my experiments, and Professor Witold Suryn for his knowledge on Software

Quality Engineering and incisive comments during our joint work on the evaluation of Quality Models.

Also I owe thanks to the many journal and conference reviewers who provided valuable feedback for

which I am grateful.

__

 Elli Georgiadou Page: 8

Going back to the early years of my research I had patient support by Mr Chris Sadler who not only was

my supervisor, he was also my Head of Department for many years at the University of North London.

Chris, during my early research steps our discussions steered me towards reverse engineering which

reinforced my focus on re-engineering. Thank you Chris for all the years of collaboration, and for those

stimulating discussions and witty comments especially during the latest part of our service at Middlesex

University when we shared an office. Dear Chris, you trusted me to join the DESMET research project

team and you sent me to attend my first conference (Eurometrics in 1992) where I met Professor Barbara

Kitchenham. She encouraged me to continue delving deeper into concepts of software measurement, and

later on gave me feedback on my experimental designs. Thank you Barbara – your work inspired me to

focus further on software metrics. This in turn pointed me towards the then young Professor Norman

Fenton who, for a brief time, was my external advisor, and who gave me valuable feedback on my first

experiment. Thank you Norman for the respect and encouragement you showed me.

At the University of North London I had valuable support from Professor Ian Haines (my Dean of

Faculty), Professor Jim Yip my supportive Head of Department (and very briefly my supervisor),

Professor John Charalambous who was not only inspiring to me but to so many with his energy and

enthusiasm, his love of Education and love for Cyprus. John, you have been instrumental in my engaging

in research and in international recruitment for the University. Professor Mikis Stassinopoulos gave me

valuable advice on selecting suitable experimental designs and on analysing the experimental data. Many

thanks to Dr George Karakitsos whose static analyser enabled me to analyse legacy code when

considering re-engineering. Finally Nick Silvester provided effective and valuable on-going technical

support. Thank you all for everything.

While at the University of North London I was privileged to meet a group of Visiting Professors who are

brilliant Ukrainian scientists and warm people who became my friends: the eminent Professor Igor

Kovalenko (a student of the eminent mathematician Kolmokorov) and his colleagues Doctors Nicolai

Kuznetsov, Valentyn Shpak, and Lyidmila Zavadskaya. I enjoyed and benefited greatly from our many

discussions on Statistics, Mathematics and Cybernetics here in London during your various visits and

during my visits to Kiev. Thank you for inviting me and hosting me in Kiev, where I presented my early

research findings receiving crucial feedback, but also for introducing me to the work of the Institute of

Cybernetics, and to the Ukrainian history and culture.

I thank Professor Inger Eriksson who in the late 90s invited me and two of my then PhD students to

design and deliver a short course on Software and Systems Quality at the University of Turku, and later

on invited me together with Professor Gary Richardson to visit them at North Carolina University where

I presented my research and gained feedback.

My sincere thanks go to my colleague Maya Milankovic-Atkinson for stimulating discussions in the

early years on Object-Orientation and for generously offering her various student cohorts, all novice

programmers, to act as the subjects of my many experiments at the University of North London. We

continued our collaboration at Middlesex University. Thank you dear Maya for 30 years of collaboration

(research and teaching) and true friendship born out of common approaches to teaching and research, and

based on our shared culture, personal struggles and understanding reached through wars and injustices

perpetrated on our two countries.

Many thanks go to Professor Darren Dalcher with whom I shared an office for 4 years. Our discussions

on project failures strengthened my interest in Systems and Projects failure.

Also many thanks go to the late Professor Tully for inviting me to successfully co-supervise two PhD

students.

My interest and focus on Process Improvement pointed me to the EuroSPI (now EurasiaSPI) Conference

and to Dr Richard Messnarz, another polymath, a scientist, a commentator, a critic of socio-cultural and

historical events and developments. Thank you Richard for creating such a thriving network of

researchers and practitioners within the Software Process Improvement movement. Thank you also for

the stimulating discussions and for the opportunities you gave me to attend the EuroSPI conference,

present my work and validate my models by conference delegates from industry and academia.

__

 Elli Georgiadou Page: 9

My deepest thanks go to the thousands of undergraduate and hundreds of Masters students (over 33 years

of teaching) who often pilot-tested and validated my various models and frameworks which were

incorporated in modules and programmes (some of which are still being taught).

Most importantly I thank my 10 PhD students who in an unorthodox, (prothysteron) manner completed

their studies under my guidance well before myself. I learned as much from all of them as I taught them.

Many of them continue to carry out collaborative research with me evidenced by our many joint

publications. Our meetings and discussions were always stimulating, rewarding, and inspirational. You

are all now enjoying successful and satisfying careers which make me very happy and proud. I feel

privileged to have been given a chance to supervise you all, to teach you but also to learn from you, to

co-investigate, to innovate and to co-create. Lastly thank you all for urging me to study for my own

PhD – and this is the reason I call this process a prothysteron (i.e. putting last what should have been

first) which may be unorthodox but which I do not regret.

In particular, I want to thank deeply Dr Eleni Berki (one of my early PhD students), a creative and

inspirational person, a brilliant scientist, a deep thinker and a charismatic, multifaceted and multitalented

human being and researcher. Eleni, I am proud of your commitment to the struggle and for your

significant scientific contribution starting from your undergraduate studies when you endeavoured to

integrate Soft Systems Methods and Formal Methods, proceeding to CDM-FILTERS, your PhD and now

surrounded by your own research team working on diverse subjects including Open Source, Security,

Creativity, Social Impact of Technologies to list but a few of your many areas of interest, knowledge and

expertise. You have been my student, my colleague, my friend and as a daughter to me, always urging

me to complete my PhD studies. Thank you very much for everything. I owe many thanks to Professors

Mike Holcome, and Kalle Lyttinen; I learned a lot from you, your research and your way of thinking

especially during our co-supervising Eleni Berki.

Another of my early PhD students is Professor Kerstin Siakas, a multicultural polyglot, with whom I co-

authored in excess of 40 papers (since the mid-1990s) on a large range of topics including Quality

Management, Process Improvement, and the influence of Culture on Systems and Organisations, as well

as numerous pedagogic matters such as Distance Education, Information Literacy and Social Media.

Kerstin, you have been such a constant, effective, organised and supportive co-researcher! Above all you

have been a real friend especially at times of adversity (and there have sadly been many such times). I

cannot thank you enough for the encouragement and support to make one last effort to complete my

thesis.

There is also a very special, indefatigable, socially and politically committed human being Dr Janet

Shapiro who has been in my life since October 1970. It is you Janet, my Statistics Lecturer in the 70s, my

colleague in the 80s and 90s, and in the last 25 years my close and reliable friend (more like family to

me) with whom I share ideology, commitment to social justice, interest in the Arts and in Radical

Statistics! Thank you Janet for always reminding me to re-start my studies and to be kind to myself!

Thank you above all for being there for me, especially in recent years.

Warm thanks go to my colleague, research collaborator and very dear friend Geetha (Dr Abeysinghe),

and her husband Vijay, who have been supportive to me in so many ways. Geetha and Vijay, I admire

and love you for your gentle calmness and philosophical life attitude even in the face of adversity. You

always enable me to draw courage and energy by your example.

I owe deep thanks and gratitude to the compassionate and supportive colleague Professor Gill Whitney.

Dear Gill thank you for standing by me in so many ways at the time of terrible loss and bereavement.

I want to also thank all my colleagues, research collaborators, co-authors and good friends: Drs Nawaz

Khan, Mohamed Sheriff, Carlisle George, Elke Dunker, Elizabeth Stokes and Carlisle George; also

Professor Chris Huyck, Chris Kindberg and Ed Currie. Warm thanks go to my compatriot, ex-colleague

and very dear friend Professor Stylianos Hatzipanagos for his kindness, wit, and shared research and

socio-cultural interests.

Special thanks to my dear colleague Dr Harjinder Rahanu, a bibliophile and an excellent lecturer, for our

on-going collaboration on EU projects, researching and co-authoring papers primarily on Ethics,

__

 Elli Georgiadou Page: 10

Pedagogy, Information Literacy, and on Process Improvement. Harjinder, I am thankful for our shared

worldview (Weltanschauung or Κοσμοθεωρία) on education, politics and society at large, and love of

family and books of course!

 I want to thank deeply the ingenious and untiring Leonard Miraziz. Thank you dear Leonard for

providing me with endless technical support throughout the years. Without your help, I would not have

been able to work, especially since I nowadays work mostly from home.

Thank you all dear colleagues for the research collaborations and for the many stimulating discussions on

research, teaching and on socio-cultural matters. I enjoyed, and still enjoy, working with many of you,

teaching with you, thinking with you, writing with you. If nothing else, Middlesex University has given

me such a wonderful bunch of friends for which I will always be grateful.

I want to give deep and warm thanks to another special person Dr Nikos Paltalidis who over the last 21

years has been a constant and a very special presence in my academic, intellectual, research and family

life. Niko, you are the son I never had, and as such I watched your journey from the first year of your

undergraduate studies, through to your Masters and PhD, and now your University teaching position,

with interest and pride for your achievements. Thank you for your kindness and for being there for me

especially at my hours of need.

Also many thanks go to Ms Annita Zirki, a secondary school Computing teacher, who was my student

and supervisee during her undergraduate studies, and now my friend who shares my love of music, and

who provides solid technical support whenever she visits me in London! Annita, I hope that my

difficulties in completing my thesis do not put you off embarking onto your own PhD studies.

I also thank my most recent American friend, Adam Dufour, for his kindness but also for many

stimulating discussions on the latest technologies and methodologies, crossing over from Software

Engineering to Accounting, Finance, Government, Politics, and the Arts. Our discussions show how

things that seem isolated within certain knowledge domains are organically inter-connected by thought

processes, and can indeed be addressed by similar problem-solving methods.

My penultimate thanks go to Professor Mary Plastira-Valkanou and Nikos Valkanos and their four

daughters, for a deep and long friendship of over 25 years built on our shared understanding of the world,

the meaning of human creativity, our commitment to research in our respective fields and the struggle for

a fairer society, as well as the education of future generations. I cherish our discussions and exchange of

ideas on research, education, culture, civilisation, history, language and poetry (of course), and your four

children whom I have known as babies and now four intelligent, beautiful, successful and simply

delightful and lovable young women! Thank you for sharing so many precious times with all of you.

Last but not least, my loving thanks go to all my family, my siblings Maria, Michael and Menelaos and

their children, grandchildren and great-grandchildren. It was with your love and practical help, however

small, that I managed to study (the first one from our family who had the opportunity to go to

University). I often wonder with sadness what our lives/your lives might have been like had you had

indeed such an opportunity…? But my warmest and biggest thanks go to my dearest, humorous, and

brilliant polymath brother Melis (Menelaos) and his amazingly generous, organised, warm and kind wife

Despina. The two of you have always been patient, supportive and understanding especially during

testing times for our parents and for me. A thousand thankyous for everything (Χίλια ευχαριστώ για όλα)

go to you, and your beautiful children and grandchildren for always making me welcome in Cyprus. I

conclude with many heartfelt wishes for the future of the younger generations, and for peace in the

family and in our long suffering country, Cyprus. I love you all as always/Σας αγαπώ όλους όπως πάντα.

Elli/Έλλη/Γιαγιά ‘Αγγλία’, London August, 2018

__

 Elli Georgiadou Page: 11

List of Figures

Figure Page

1.1 Part 1 research questions funnel

(product based)

36

1.2 Part 2 research questions funnel

(process based)

37

3.1 Information Systems Development

Methodologies over 50 years

51

3.2 Methodology Classification Tree 53

3.3 Prototyping: The ‘Balanced’ interaction 54

3.4 Growth of Lifecycle Models and

Capability Maturity

56

3.5 A generic CFD (Composite Features

Diagram)

58

3.6 A Visual Comparison between two

items using CFDs

58

3.7 Basic and Tailored Quality Models 59

5.1

Star plots for two programs under

consideration for restructuring

71

5.2 The experimental process and

opportunities for Improvement

75

6.1 The I
5
P Visualisation Framework 78

6.2 The VALO5 Model

80

6.3 The CoFeD Framework Architecture 82

7.1 A framework for the effective

disambiguation of terms

88

__

 Elli Georgiadou Page: 12

List of Tables

Table Page

2.1a Research Methods Used 46

2.1b Research Methods Used 47

2.1c Research Methods Used 48

5.1 Cross Over Experimental Design 72

5.2 Cross Over Design for testing understandability 74

7.1a Research Contributions, Benefits, Limitations and Future Work 91

7.1b Research Contributions, Benefits, Limitations and Future Work 92

7.1c Research Contributions, Benefits, Limitations and Future Work 93

__

 Elli Georgiadou Page: 13

 TABLE OF CONTENTS

Page

COVER PAGE ___1

CANDIDATE DECLARATION FORM_____________________2

ABSTRACT___ _4

DEDICATION__6

ACKNOWLEDGEMENTS__________________________________7

LIST OF FIGURES_______________________________________11

LIST OF TABLES _______________________________________ 12

PROLOGUE___16

Submitted Publications in Thematic Groupins _ _____________________ 20

Theme 1: Software Quality, Software Crisis and Attempts to Address it __ 20

Theme 2: Measurable and Controllable Factors in Software Development __ 20

Theme 3: A suite of controlled experiments ________________________ 21

Theme 4: Performance Estimation, Process Maturity _________________ 21

Theme 5: Reflections __ 22

Additional papers ___ 23

CHAPTER 1

INTRODUCTION__

1.0 Background ___ 24

1.1 Fundamental Terms Pertinent to this research _______________ 27

1.2 Attempts to address the Software Crisis ____________________ 29

1.3 Learning from the Manufacturing Industry __________________ 31

1.4 Motivation __ 33

__

 Elli Georgiadou Page: 14

1.5 Research Scope and Research Questions ___________________ 34

1.6 Focussing on Product Improvement _______________________ 35

1.7 Focussing on Process Improvement _______________________ 36

1.8 Research Objectives and Hypotheses ______________________ 38

1.9 Summary of Chapter 1 _________________________________ 39

CHAPTER 2 __

RESEARCH PHILOSOPHY, RISEARCH METHODS AND

RESEARCH METHODS USED IN THIS RESEARCH _________ 40

2.0 Introduction __ 39

2.1 Research Philosophies __________________________________ 40
2.1.1 Positivism__40

2.1.2 Interpretivism and the multi-paradigmatic approach___________________41

2.2 Research Methodology Selection and Justification ____________ 42

2.3 Research Methods Used ________________________________ 44

2.4 Summary of Chapter 2 _________________________________ 44

CHAPTER 3 __

INFORMATION SYSTEMS DEVELOMENT METHODOLOGIES,

LIFECYCLES, AND QUALITY MODELS ___________________ 48

3.0 Introduction 47

3.1 Information Systems Development Methodologies ___________ 48

3.2 A Taxonomy of Methodologies __________________________ 50

3.3 Evolution of the Software Development Lifecycle ____________ 51

3.4 Software Quality Models _______________________________ 55

3.5 GEQUAMO – A generic, multi-layered and customisable Quality

Model __ 56

3.6 Summary of Chapter 3 _________________________________ 58

CHAPTER 4 __

SOFTWARE MEASUREMENT ____________________________ 59

4.0 Introduction 58

4.1 What is measurement? _________________________________ 59

__

 Elli Georgiadou Page: 15

4.2 Controllable Quality Factors ____________________________ 60

4.3 Uncontrollable Factors ________________________________ 61

4.4 Conclusion to Chapter 4 _______________________________ 65

CHAPTER 5 ___

A SUITE OF RANDOMISED CONTROLLED EXPERIMENTS 66

5.0 Introduction ___ 67

5.1 Controlled Experiments _______________________________ 66

5.3 The derivation of the re-engineering factor  (rho) __________ 68

5.5 Maintainability of software depends on its structuredness _____ 69

5.6 Measuring the understandability of a Graphical Query Language 72

5.7 A Framework for the Design and Execution of Experiments __ 73

5.8 Summary of Chapter 5 ________________________________ 74

CHAPTER 6 ___

SOFTWARE PROCESS IMPROVEMENT ___ Error! Bookmark not

defined.

6.0 Introduction ___ 77

6.1 Knowledge Sharing, Process Maturity and Process Improvement 76

6.2 Innovation, Maturity Growth, Quality and Valorisation ________ 78

6.3 CoFeD: A Visualisation Framework for Comparative Evaluation 80

6.7 Summary of Chapter 6 _________________________________ 81

CHAPTER 7__

REFLECTIONS AND REFINEMENTS ACROSS THE RESEARCH

JOURNEY __ 83

7.0 Introduction 83

7.1 Revisiting the re-engineering factor rho () and metrication ____ 83

7.2 The need for Disambiguation of Terms ____________________ 84

7.3 Who should be responsible for bad quality and systems failures? 88

7.4 Quality and Value are in the eye of the stakeholder __________89

7.5 Original contributions of this research_____________________89

__

 Elli Georgiadou Page: 16

CHAPTER 8 __

CONCLUSION __ 93

CHAPTER 9 ___

EPILOGUE – PERSONAL REFLECTIONS _________________ 97

9.1 Quality and Social Responsibility _________________________ 97

9.2 Software Engineering: Is it an Engineering discipline?________100

9.3 Continuous search for truth, knowledge and improvement ____100

REFERENCES ___ 103

APPENDICES __ 112

Appendix A : Glossary of terms pertinent to this research ______ 112

Appendix B : Access Guide for Submitted Papers ________ 115

__

 Elli Georgiadou Page: 17

PROLOGUE

The research reported in this thesis is the result of work carried out over a period of 35

years during which the results of the research were published in journal papers and

refereed international conference papers as well as book chapters. Over this period

major technological developments and paradigm shifts in information systems

development have informed and shaped the direction, experience and the outputs of this

research. Increasingly deeper insights into the various issues relating to software quality

were gained through the study of the literature, the design and execution of formal

experiments, and the development of models which were validated by experts in

academia and industry. The developed models were also integrated into several

academic programmes and modules, and offered at two UK universities where the

author worked as a Principal Lecturer in Software Engineering and Information

Systems. Elements of Quality Management Processes have been applied to the Quality

Management and Quality Evaluation of three European Tempus Projects for

Knowledge Transfer.

The structure of the thesis is as follows:

Chapter 1 is the Introduction which presents the motivation, context, scope,

objectives, formulation of research hypotheses and research methods employed.

Chapter 2 provides a discussion of research philosophy, research methods, their

strengths and weakness, and the selection of the research methods used in this research.

Chapter 3 is a critical review of lifecycle models, information systems development

methodologies, process models, standards, and quality models, and the development of

the generic, multilayered, and customisable software quality model GEQUAMO. Some

deficiencies of GEQUAMO were identified during its use resulting in GEQUAMO II

which was validated by experts from academia and industry.

(Papers I, II, III, IV, V)

__

 Elli Georgiadou Page: 18

Chapter 4 identifies controllable and uncontrollable factors in software development

and proposes improvements to the ISO 7126 quality model.

(Papers VI, VII)

Chapter 5 describes the derivation of the composite metric rho () which is an

indicator for answering the question on whether deficient or malfunctioning systems

should be scrapped or re-engineered. Achieving improvements through the

manipulation of legacy code was carried out through the design and execution of formal

experiments for testing the hypotheses. Gradual understanding of the problems with

logistics encountered during the design and execution of the experiments lead to the

development of a Framework for the Management of similar experiments.

(Papers VIII, IX, X, XI, XII, XIII)

Chapter 6 starts with a discussion of the main drivers of process improvement and

presents the development, use and validation two frameworks and one model:

 the I
5
P Visualisation Framework for Performance Estimation through the

alignment of Process Maturity and Knowledge Sharing;

 the VALO5 Model of innovation, maturity, quality and valorisation; and

 The CoFeD – visualisation framework for comparative quality evaluation.

(Papers XIV, XV, XVI)

Chapter 7 presents reflections on metrics validity through revisiting the composite

metric rho (). It also considers the ethical and legal dimensions of systems failures as

well as the potential value gains if we can reconcile stakeholder conflicts by analysing

apparently contradicting notions of value in SE projects concludes with the recurring

problem of terminology management/mismanagement and the need for terminology

disambiguation for creating clarity.

(Papers XVII, XVIII, XIX, XX)

Chapter 8 is the overall conclusion which summarises the Contributions to Knowledge

and the Significance of the Study. This research contributes to a broader understanding

of information systems and the elements within the environment that influence the

__

 Elli Georgiadou Page: 19

quality of process and product. The research also explored the use of formal

experiments to test hypotheses and beliefs across the software engineering and

information systems research and practitioner communities. The need for a legal and

ethical stance towards software failures and their social implications is highlighted. The

need for disambiguation of terms so that Software Engineers ‘speak the same language’

is also discussed. Limitations of the research as well as directions of future work

complete the thesis.

The Epilogue is a personal reflection on my research journey, my quest for knowledge

and understanding, the creation of new knowledge, and the development of models and

frameworks as mechanisms for product and process improvement, the application of

the author’s research findings in industry, as well as in curriculum development, and

European Projects for Research & Knowledge Transfer. It concludes with a brief

discussion on the role of educators in raising awareness and the sense of social

responsibility in their students, who will be the future software engineers. It outlines the

benefits of improved quality in software products and processes.

__

 Elli Georgiadou Page: 20

Submitted Publications in Thematic Groupings

Theme 1: Software Quality, Software Crisis and Attempts to Address it

I. Georgiadou E., Sadler C., (1995) "Achieving quality improvement through

understanding and evaluating Information Systems Development

Methodologies", 3rd International Conference on Software Quality

Management, SQM'95, Seville, Spain ISBN 1-853812-416-8,

Number of citations 2

II. Georgiadou, E. “Software Process and Product Improvement - A Historical

Perspective”, International Journal of Cybernetics, Volume 1, No1, Jan 2003

pp172-197.

Number of citations 60

III. Marc-Alexis Côté, Witold Suryn, Elli Georgiadou: “In search for a widely

applicable and accepted software quality model for software quality

engineering”. Software Quality Journal 15(4): 401-416 (2007).

Number of citations 45

IV. Georgiadou, E. (2003) GEQUAMO: a generic, multilayered, customisable,

software quality model. Software Quality Journal, 11 (4). pp. 313-323.

Number of citations 42

V. Georgiadou, E. (2008) “GEQUAMO II Verification, Validation and

Improvement of a Generic, Multilayered, Customisable, Software Quality

Model “, Quality Issues for Business Software Quality Management, 2008,

Ulster University, March 2008. ISBN 978-1-906124-05-2

Number of citations 1

Theme 2: Measurable and Controllable Factors in Software Development

VI. Georgiadou, E., Siakas K.V., Berki E., (2003): Quality Improvement through

the Identification of Controllable and Uncontrollable Factors in Software

Development, 11
th

 EuroSPI 2003 (European Software Process Improvement

Conference), Graz, Austria, 10-12.12.2003.

Number of citations 14

VII. Siakas K.V., Georgiadou, E. (2005): PERFUMES: A Scent of Product Quality

Characteristics, The 13th Software Quality Management International

Conference, SQM 2005, Gloustershire, UK Current Issues in Software

Quality, ISBN 1-902505-67-0

Number of citations 13

__

 Elli Georgiadou Page: 21

Theme 3: A suite of controlled experiments

VIII. Georgiadou E., Karakitsos G., Sadler, C., Stasinopoulos D (1993). "An

experimental examination of the role of re-engineering in the management of

software quality", 1
st
 Software Quality Management International Conference

II Vol., Computational Mechanics Publications, ISBN 1-85312-225-4.

Number of citations 1

IX. Georgiadou, E., Karakitsos G., Sadler C., (1994) “Improving the program

quality by using the re-engineering factor metric ", the 10th. International

Conference of the Israel Society for Quality, Jerusalem, ISBN1-85312-225-4.

Number of citations 2

X. Georgiadou, E., Karakitsos, G., Sadler C., Stasinopoulos D, Jones, R. (1994)

Program maintainability is a function of structuredness, 2
nd

 International

Software Quality Management, Computational Mechanics Publications,

Edinburg, Scotland

Number of citations 1

XI. Georgiadou, E., Keramopoulos, E. (2001) “Measuring the Understandability

of a Graphical Query Language through a Controlled Experiment”, 9th

International Conference on Software Quality Management, University of

Loughborough, UK. Pathways to Software Quality, ISBN 1-902505-40-9

Number of citations 9

XII. Georgiadou, E., (2007) “A framework for the design and execution of

controlled experiments in Software Engineering”, Software Quality

Management International Conference, Special 50th Anniversary of the BCS,

Tampere, Finland, Software Quality in the Knowledge Society, ISBN 978-1-

902505-96-1

Number of citations 1

Theme 4: Performance Estimation, Process Maturity

XIII. Georgiadou, E., Siakas, K., Balstrup, B. (2010), “The I
5
P Visualisation

Framework for Performance Estimation through the Alignment of Process

Maturity and Knowledge Sharing”, International Journal of Human Capital

and Information Technology Professionals (IJHCITP) Vol. 2 No 2.

Number of citations 5

__

 Elli Georgiadou Page: 22

XIV. Georgiadou, E., Siakas, K. (2013) “VALO5 – Innovation, Maturity Growth,

Quality and Valorisation”, Systems, Software and Services Process

Improvement Systems, Software and Services Process Improvement

Communications in Computer and Information Science, Springer, Volume

364, 2013, pp 294-299.

Number of citations 5

XV. Georgiadou., White, A., Comley, R. (2017) “ CoFeD: A Visualisation

Framework for Comparative Quality Evaluation”, in Achieving Software

Quality in Development and in Use, P Marchbank, M Ross, G Staples (Eds),

25th Software Quality International Conference, Achieving Software Quality

in Development and in Use ISBN: 978-0-9932889-6-8

Number of citations 1

Theme 5: Reflections Metrics Validity, Ethical Dimension of Systems Failures,

Value Gains and Terminology Disambiguation

XVI. Georgiadou, E., (2018) “Is the Composite Software Metric  (rho) a Good

Metric?” in Computing and Quality, 26th Software Quality International

Conference, 2018, ISBN: 978-0-9932889-9.

Number of citations 0

XVII. Georgiadou, E. (2009) “Navigating the labyrinth of software Re-words”,

Software Quality in the 21st Century 17th Software Quality Management

International Conference, Southampton, UK, ISBN 978-1-906124-22-917

Number of citations 2

XVIII. Georgiadou, E. “Reflections on the need for Disambiguation of

Terminology for software Process Improvement”, EuroSPI 2018, in Systems,

Software and Services Process Improvement, Volume 896, Communications in

Computer and Information , Springer, 2018
Number of citations 0

XIX. Georgiadou, E. & George, C. (2006) “Information Systems Failures: Whose

responsibility?” Proceedings of the 11th INternational Conference on

Software Process Improvement - Research into Education and Training,

(INSPIRE 2006), April, Southampton, UK, ISBN 1-902505-77-8.

Number of citations 2

XX. Georgiadou, E., Sheriff, M. (2008) “Reconciling stakeholder conflicts by analysing

apparently contradicting notions of value in SE projects”, In: Quality Issues for

Business Software Quality Management International Conference, 2008, Belfast,

Northern Ireland. ISBN 978-1-906124-05-2

Number of citations 0

http://link.springer.com/book/10.1007/978-3-642-39179-8
http://link.springer.com/book/10.1007/978-3-642-39179-8

__

 Elli Georgiadou Page: 23

Additional papers

Papers 1 to 10 (below) report on collaborative research which contributes to

various aspects of the on-going Software Quality debate and practice.

1. Georgiadou. E., Evaluating the evaluation methods: Data Collection and

Storage System using the DESMET Feature Analysis, the tenth international

conference of the Israel Society for Quality, Nov 1994, pages467-474

2. Milankovic-Atkinson, M., Georgiadou, E. "Object-Oriented Metrics for reusability",

Software Quality Management International Conference, Cambridge, UK, Apr. 1996.

3. Siakas, K.V., Berki, Georgiadou, E., Sadler, C. "The complete alphabet of quality

software systems”, 7th World Congress for Total Quality Management, New Delhi,

India, Feb. 97.

4. Berki, E. , Georgiadou, E. “A comparison of qualitative frameworks for information

systems development methodologies”, In Proceedings of The Twelfth International

Conference of The Israel Society for Quality (Jerusalem, ISRAEL, December 1998.

5. Georgiadou, E., Milankovic-Atkinson, M. “A formal experiment to verify Object-

Oriented Metrics”, 4
th
 INSPIRE’99, Crete, September 1999.

6. Barbor, N &Georgiadou, E. [2002] Investigating the applicability of the Taguchi

Method to Software Development, Proceedings of Quality Week, San Francisco.

USA, July 2002

7. Berki, E., Georgiadou, E., Holcombe, M.[2003a]: “Process Metamodelling and

Method Engineering as Tools for Improved Software Quality Management - A

Chronological Review and Evaluation Critique Considering the Need for a New

Scientific Discipline”, In the Proc. of Ross, M., Staples, G. (Eds.) 11
th

International

Conference on Software Quality Management, SQM 2003, Glasgow, April 2003
Process Improvement and Project Management Issues, 1-902505-53-0

8. Siakas, K.V. &Georgiadou, E. (2008) “Knowledge Sharing in Virtual and

Networked Organisations in Different Organisational and National Cultures”, eds.

Ettore Bolisani, Building the Knowledge Society on the Internet, Idea Publishing

ISBN: 978-1-59904-816-1, Part 1, Chapter 3.

9. Berki E., Siakas K.V., Georgiadou, E., (2006): “Agile Quality or Depth of

Reasoning? Applicability versus Suitability Respecting Stakeholders' Needs”, eds.

Stamelos Ioannis and Sfetsos Panagiotis, Agile Software Development Quality

Assurance, Idea Publishing ISBN: 9781599042169, pp. 23-55.

10. Estdale, J., Georgiadou, E. Applying the ISO/IEC 25010 Quality Models to Software

Product, EuroSPI 2018, in Systems, Software and Services Process Improvement,

Volume 896, Communications in Computer and Information , Springer, 2018 (in

print)

__

 Elli Georgiadou Page: 24

CHAPTER 1 INTRODUCTION

1.0 Introduction to the chapter

This chapter presents the motivation, context, scope, objectives, formulation of research

hypotheses and research methods employed. This thesis contributes a holistic approach

to the broader debate and understanding of problems relating to Software Quality.

1.1 Background

This research focuses on the interdependencies of software product and software

process; also on the quest for continuous improvement. It provides new knowledge in

the form of a novel composite metric/indicator, models and frameworks which can aid

quantification, and hence decision making, primarily on the efficacy of re-engineering

legacy code and the management of process improvement.

As many researchers, practitioners and members of the public know, quality in general

is transparent (and could even be taken for granted) when present, but is easily and

immediately recognised in its absence. Software quality is no exception. However,

defining and measuring quality is extremely difficult. Kitchenham (1996) and

Kitchenham and Pfleeger (1996) emhpasised that: “quality is an elusive concept”.

Software artifacts even 'small programs' are among the most complex artifacts that

humans produce, and software development projects are among our most complex

undertakings. Nowadays our lives are governed by computers, communications and

computer-based systems. Computer Systems and Information Systems play a very

central role in organisations and the demands on information systems are continuously

increasing. At the same time as information systems become more complex, more

people are involved with software development and the need for repeatable processes

have become necessary. Deficient quality of software systems result in failures which

lead to significant economic losses but more importantly to loss of human lives.

There are many different causes of failures in computer-based systems including

physical faults, maintenance errors, design and implementation, mistakes resulting in

__

 Elli Georgiadou Page: 25

hardware or software defects, and user or operator mistakes. The causes of these

failures are varied but often they are not foreseen and hence they are discovered too late

in the process and invariably unexpectedly. In 1968 at the land mark Software

Engineering Conference (NATO, 1968) the term Software Crisis was coined as a mark

of recognition that there was a serious problem of systems failures. The quality of

systems therefore became questionable.

Similarly most software projects can be considered at least partial failures because few

projects meet all their cost, schedule, quality, or requirements objectives. Many surveys

have indicated that as many as 50 % -75% of information systems projects are total or

partial failures (Polymenakou and Serafeimidis, 1995).

According to the Standish Group reports CHAOS published regularly since 1995,

(CHAOS, 2015), Liebowitz, J., (2015), (Dalcher, 2017) many of these deficient systems

are never used or abandoned after release. Researchers and practitioners have sought to

understand the reasons for failures and have developed a plethora of methods,

techniques and tools for alleviating the likelihood of failure.

The concerns about late deliveries of software, with low reliability and high

maintenance costs have directed most efforts to improve software quality. There is

universal agreement that although it may be difficult to understand, define and measure

quality, we all readily recognise its absence.

Since the 1950s Deming (1986) recognised that quality is difficult to define mainly

because it is difficult to express future user needs into measurable attributes. Users

want a product to satisfy their needs within specified time and cost limits. Nearly 30

years later, Juran et al. (1981) defined quality as "fitness for purpose”. Customers hold

different opinions, for different reasons about quality. In the same year Crosby

extended this definition to "Quality is conformance to requirements” (Crosby, 1979).

A decade later the emphasis shifted to specification with Cullen asserting that “Quality

is conformance to specification” (Cullen, 1989). The most all-encompassing definition

is provided in ISO 9001 second edition (1994), and later on ISO9126 namely “Quality is

the totality of features and characteristics of a product or service that bear on its ability

__

 Elli Georgiadou Page: 26

to satisfy specified or implied needs”. This definition recognises that many different

aspects make up and affect quality. These factors are often interdependent and tradeoffs

may be necessary to achieve an acceptable level of compromise.

Gillies proposed that “Quality is generally transparent when present, but easily

recognised in its absence “(Gillies, 1992). He elaborated as follows:

Quality is not absolute. It means different things in different situations. In one

situation the safety of the car can be the most important attribute for quality, and in

another situation it can be the speed and the acceleration. It depends on what is

important for us in a specific moment.

Quality is multidimensional: It depends on many different factors. There is seldom only

one factor that decides the quality of a product or a service. There are usually many

details that make us to consider a product as a quality product.

Quality is subject to constraints: Some products are usually considered as quality

products (for example Rolls Royce) but because of the high price we choose to consider

some other products as quality products.

Quality is about acceptable compromises: Some criteria may be sacrificed because of

constraints such as prohibitive costs settling for a product or service of lower quality.

Quality criteria are not independent: They interact with each other causing conflicts.

For example the more complex a system is, the more unreliable it is likely to be. That is

complexity is likely to affect reliability.

Gillies proceeded to define five views of quality which may be in conflict with each

other. These are:

The transcendent view: The classical definition of quality meaning "elegance".

The product-based view: The economist's view, higher quality = higher cost.

The user-based view: It is meeting the users’ requirements and fitness for purpose.

The manufacturing view: Measures quality in terms of conformance to requirements.

The value-based view: Provide what the customer requires at a price they can afford.

Kitchenham (1996) encapsulated many of the issues relating to the understanding,

definition and measurement of Software, arguing that "Quality is a complex concept

__

 Elli Georgiadou Page: 27

that means different things to different individuals. It can be highly context dependent.

This means that there can never be any simple measure of quality that will be accepted

by everyone. If you are interested in assessing or improving quality in your

organisation, you must ensure that you define what aspect of quality you are interested

in and how you are going to measure it. In fact, if you define quality in a measurable

way, it is usually easier for other people to understand your viewpoint. “

More than 75 % of software projects run late and as many as 30% of projects are

cancelled (CHAOS, 1994; Dalcher, 2005, Jones, 2010; Chaos, 2016 Dalcher, 2017).

A constant quality improvement quest resulted in the development of numerous

approaches to building and maintaining software, from new technologies to progressive

processes and frameworks as reported by among others Jayaratna (1994), Jackson

(1995), Beck (2001), Vandierendonck & Mens (2011), Wolf (2016), Dalcher,

(2017).

New languages were often believed to have almost magical powers for resolving the

Crisis. Automated tools, formal methods, object-orientated methods have been

proposed as alternative 'religions' with many software engineers becoming almost

fanatical followers of one or the other approach (Georgiadou & Sadler, 1995), (Siakas

et al 1997). Despite these efforts systems continue to fail with dramatic frequency and

impact.

At this juncture it is necessary to introduce some fundamental terms in the context of

Software Engineering and the scope of this research namely Quality, Measurement and

Metrics, Product, Process, Resources and Projects.

1.2 Fundamental Terms Pertinent to this research

Quality according to Kitchenham (1996) is an elusive concept, difficult to define and

even more difficult to measure. Quality means different things to different people. The

approach of this research is to look at quality in a holistic manner studying the

inextricable interaction of software product and software process quality.

__

 Elli Georgiadou Page: 28

 Based on Kitchenham’s observation, the ISO 9001 (1994) definition for quality and

my philosophy of providing for generalisation and specialisation/customisation, the

following definition of software quality is proposed:

Software Quality is the totality of product as well as process characteristics,

and their interaction and measurement (whether qualitative or quantitative)

that satisfy different stakeholder requirements.

Software products or artifacts are also known as the deliverables or outputs of the

software process. These products may be plans, functional specifications, process

models, procedure manuals, coding, test data, test results and so on (Whitmire 1997). In

the early years the Software Engineering community adopted an end-of-cycle quality

inspection regime just like the early manufacturers who inspected finished products.

Inspections in turn resulted in three categories of finished product namely the accepted,

the rejected and those products requiring rework. The last two 'heaps' namely the

rejects and the reworks gave a measure of the losses which every manufacturer needed

to reduce for survival and competitive advantage (Gilb & Graham, 1993), (Burr and

Georgiadou 1995).

Software process is a set of activities that begin with the identification of a need and

conclude with the retirement of a product that satisfies the need; or more completely, as

a set of activities, methods, practices, and transformations that people use to develop

and maintain software and its associated products (e.g. project plans, design documents,

code, test cases, user manuals). Pfleeger (1998) emphasizes that “we must learn how to

use software process to enhance products without stifling creativity and flexibility. We

must also learn which processes work best in which situations, and understand what

characteristics of the products and of the people building them are the most important

in process choice”.

Resources include people, tools, materials, methods, time, money, training (or

generally knowledge and skill) and products from other projects (Whitmire, 1997). In

essence resources are the inputs to the processes used on a project. Resource usage

together with size measures allow productivity to be measured (Kitchenham 1996).

__

 Elli Georgiadou Page: 29

A software project is the relationship between instances of a problem to be solved,

internal and external goals and standards, processes, methods and techniques,

constraints and finally a product (one or more deliverables) (Whitmire, 1997). The

goals and constraints particularly on resources affect the outcome, the nature of the

product and the success or failure of the whole project. Therefore the study of failed

projects is complex but necessary if the software engineering community is to address,

rectify and eventually prevent future failures.

Software metrics: Fenton and Neil (1999) asserted that ‘Software metrics' “is the rather

misleading collective term used to describe the wide range of activities concerned with

measurement in software engineering”. A software metric is a standard of a measure of

a degree to which a software system or process possesses some property. Even if a

metric is not a measurement (metrics are functions, while measurements are the

numbers obtained by the application of metrics), often the two terms are used as

synonyms.

According to IEEE 1061 (1998) “Software metrics measure properties of software

and are loosely defined as functions whose inputs are software data and whose output

are single numerical values that can be interpreted as the degree to which software

possesses a given attribute that affects its quality”. A standard way of measuring some

attribute of software is known as a metric. According to ISO 9126 (2001) and the

ISO/IEC 25010 (2014) a software quality metric is a quantitative scale and method that

can be used to determine the value which a feature takes for a specific software

product.

The definition used in this research is “A software metric is a measurable property

which is an indicator of one or more of the quality attributes.”

1.3 Attempts to address the Software Crisis

For nearly 50 years the Software Engineering community has recognised the necessity

to address systems and project failures which came to be known as the Software Crisis

(Sommerville, 2010); (Standish Group, CHAOS Report, 2015); (Dalcher, 2017).

__

 Elli Georgiadou Page: 30

[Britain: The health service's IT problem; Computerising the NHS] and [The

Economist, Oct 19, 2002, Vol. 365(8295), pp.51-52].

Researchers and practitioners endeavoured to identify methods for improving the

productivity and the quality of product. Due mainly to lack of awareness and the strong

desire to achieve these aims, myths and often unsubstantiated claims plagued the

industry. It was not long ago that program generators were hailed as the answer to the

problem of late deliveries and therefore high costs. New languages were often believed

to have almost ‘magical’ powers of resolving the crisis. Automated tools, formal

methods, object-orientated methods have been proposed as alternative 'religions' with

Software Engineers becoming almost fanatical followers of one or the other approach

(Georgiadou & Sadler, 1995), (Siakas et al 1997).

This quest resulted in the development of numerous approaches to building and

maintaining software, from new technologies to progressive processes and frameworks

as reported by among others the various CHAOS reports (1994 -2015) by the Standish

Group, Jackson (1995), Jayaratna (1994), Beck (1999), Avison & Fitzgerald (2003),

(Eveleens and Verhoef, (2010), Vandierendonck & Mens (2011), and Dalcher

(2017).

Although the CHAOS reports have come under some criticism e.g. by Eveleens and

Verhoef (2010) they nevertheless provide a benchmark for further study as despite the

many developments such as the adoption of agile methods the rates of failures have not

improved significantly.

This research sought to gain increasingly deeper insights into the ways in which the

Software Engineering community has attempted to address the software crisis by

examining the role of Software Development Lifecycles, Information Systems

Development Methodologies, and Quality models which researchers and practitioners

proposed, developed and used over the last 50 years. A historical perspective was

adopted tracing major developments and their contribution to this endless quest for

improvement.

__

 Elli Georgiadou Page: 31

1.4 Learning from the Manufacturing Industry

Already

The automobile manufacturer's eighth model

Reposes on top of the scrap iron

But we

Are travelling in the ninth

Thus we have decided

In ever new vehicles - full of flaws

Instantly destructible

Light, fragile

Innumerable -

Henceforward to travel.

(from Bertolt Brecht : The Impact of the Cities 1925-1928

 Still, when the automobile manufacturer's eighth model)

The Japanese approach to quality control was initiated by Shewhart in 1939 (Shewhart

W A. Statistical method from the viewpoint of quality control. Mineola, NY: Dover

Publications, 1986 (1939) and continued by Deming (1986). Shewhart wrote Statistical

Method from the Viewpoint of Quality Control and gained recognition in the statistical

community. Logothetis and Wynn (1989) also reported that Kaoru Ishikawa who is

considered the father of ‘Total Quality Control’ and who received the ‘Deming Prize’,

advocated that Statistics should become a common language that can be used at all

levels in the organisation providing the information to anticipate, identify and correct

mistakes, and also used to reduce wasteful variability in the system by ‘doing it right

the first time’.

Hagime Karatsu (cited by Logothetis & Wynn, 1989) explained the benefits from a

high quality manufacturing process as follows: “If it is aimed to produce quality

products, there will be great financial benefits. Withdrawal and return of products are

reduced. Higher productivity will be achieved because the necessity to stop machines in

order to replace materials will be less frequent. This means it is possible to reduce the

operation rate. As the manufacturing system itself improves in quality, the cost will be

minimised. That will give rise to the company’s reputation and will increase its sales.”

Deming is regarded as the founder of the third wave of the Industrial Revolution. He

claimed that if a company tries to obtain short term profit, it would lead to business

failure, and suggested ceasing dependence on inspection in order to achieve quality,

__

 Elli Georgiadou Page: 32

and eliminating the need for mass inspection by building quality into the product in the

first place. This emphasises the importance of the stage of design of a product, which is

common from Deming to Taguchi.

Taguchi’s philosophy began taking shape in the early 1950s when he was recruited to

help improve the postwar Japan’s crippled telephone system. Finding deficiencies in

traditional trial-and-error approaches to identifying design problems, he eventually

developed his own complete, integrated methodology for designing experiments

(American Supplier Institute, 1999) for process and product improvements.

Taguchi’s philosophy is now well practiced in the manufacturing industry. In Japan the

Taguchi Method (1985; 1986) is called ‘hinshitsu kougaku’ which translates to ‘quality

engineering’. The method has ensured the significant reduction of manufacturing costs

together with increased product quality (Barbor & Georgiadou, 2001). Taguchi also

spoke of social loss. If quality is high, society will get benefit from the product. If

quality is low, society’s current standards will decrease to cope with those deficient

products. Therefore, it is desirable to strive for smaller social loss. The term ‘social loss’

(Logothetis & Wynn, 1989) implies:

 losses due to poor and varied performance of a product;

 failure to meet the customer’s requirements of fitness for use or

for prompt delivery;

 harmful side-effects caused by the product.

Examples of notorious failures that caused exorbitant financial losses but also loss of

life include the space shuttle Challenger Disaster in 1986 (Dennis S. G. et al., 1986),

the London Ambulances Dispatch Service failure in 1992, Beynon-Davies, P., (1999)

The London ambulance dispatch system was cancelled in 1990 at 11.25 million pounds;

the second attempt was abandoned after deployment costing another costing another 15

million pounds!

Business examples include the total failure of the London Stock Exchange – Taurus,

(Charette, 2005), and the fiasco of the BA Terminal 5 Luggage Handling system

(Winston, 2008).

__

 Elli Georgiadou Page: 33

Lessons that can be learned from the manufacturing industry are twofold: firstly the

need to built-in quality at the early stages of the development process, avoiding product

testing at the end of the lifecycle, and secondly the need to use techniques such as

Statistical Process Control to monitor the quality of the process and hence the products.

In the case of Software Engineering considerable effort was expended in carrying out

software testing namely exercising finished code with 'suitable' test data. Despite these

efforts systems continued to fail and the Software Engineering community had to seek

alternative or complementary methods for minimising the losses in terms of financial

costs and loss of human life.

Maintenance of existing software is by far the most frequent, demanding and expensive

process in software engineering. Legacy systems require constant maintenance:

corrective to address failures in use, adaptive to accommodate changes in requirements

and perfective to improve performance (Lehman, 1974; Sommerville, 2001; Pressman,

et al., 2015). Modifying software is an integral part in the lifecycle of systems.

Maintainability, the ease with which maintenance activities are carried out, impacts on

productivity and costs. Through the study of the behaviour of existing systems it is

aimed to help decide whether a failing system should be scrapped or improved by

carrying out adaptive, corrective and perfective maintenance.

1.5 Motivation of the Researcher

Reliability, Functionality, Usability, Portability, Efficiency, Maintainability are aspects

of quality which, when deficient, can cause failures resulting in disasters and financial

losses. All aspects of life nowadays depend on complex and interconnected systems:

transport, health, the economy, government, education. Managers need accurate

information and guidelines to help them make important decisions, plan and schedule

activities to allocate resources for the different software activities that take place during

software development. Therefore understanding and controlling the process is

imperative if we are going to enhance the quality of the product and the success of

project(s).

__

 Elli Georgiadou Page: 34

1.6 Research Scope and Research Questions

This investigation is multifaceted. It views Software Quality from different

perspectives. Different stakeholders have a different understanding of software quality

and hence different requirements. Their requirements and opinions may be synergistic

or conflicting. The broad topic therefore covers a big range of issues relating to systems

and project failures and the efforts of the community (both theoreticians and

practitioners) engage in a continuous quest for identifying and resolving the issues.

According to Lehman’s first law software systems must be continually adapted, or they

become progressively less satisfactory (Lehman, 1980), (Lehman, et al., 1997). At the

same time, software is becoming more and more complex and expensive than before.

“As a software system evolves, its complexity increases unless work is done to

maintain or reduce it”. Lehman (1998) observed that systems continue to evolve over

time. As they evolve, they grow more complex unless some action, such as code

refactoring, is taken to reduce the complexity. In the late 1970s, a widely cited survey

study by Lientz and Swanson (1981) established that maintenance and enhancement of

software consume between 75% and 80% of the lifecycle cost. They categorised

maintenance activities into four classes:

 Adaptive – modifying the system to cope with changes in the software

environment

 Perfective – implementing new or changed user requirements which concern

functional enhancements to the software

 Corrective – diagnosing and fixing errors, possibly ones found by users

 Preventive – increasing software maintainability or reliability to prevent

problems in the future.

This research combines an investigation and implementation of Product Improvement,

(and primarily on software maintenance of existing (legacy) systems), and investigation

__

 Elli Georgiadou Page: 35

of Process Improvement methods, models and practices, and interplay of Product and

Process Improvement.

1.7 Focussing on Product Improvement

The manifestations of what came to be known as the Software Crisis demand quality

improvements to rectify errors and even catastrophic failures. Additionally even if

systems are not failing, they inevitably require maintenance because of changing

technologies or changing requirements. Therefore a major challenge is how to deal with

legacy systems. The question is “whether to develop new solutions from scratch or to

re-engineer systems?” This investigation addresses this dilemma and seeks to establish

a rigorous methods and associated measures for supporting management criteria for

deciding whether code restructuring is advisable. As the area is broad it is necessary to

narrow the scope and focus on the topic as shown in Figure 1.1.

Figure 1.1: Part 1 research questions funnel (adapted from Chilakanti, 2013)

Software Crisis, Information Systems and Project Failures,

Quality Models

Measurement

Evaluation

Improvement

Software Legacy Systems, Quality,

Maintenance and Maintainability,

Usability, Complexity

Research

Questions

Broad

Topic

Narrowing

the topic

Focussing

on the

topic

Research Questions:

“Can we improve the

product,”

“How can we measure such

improvement?”

“why, when and how can we

re-engineer legacy code?”

__

 Elli Georgiadou Page: 36

Software development has shifted from corrective to preventive methods and quality

improvements have shifted from product improvement to process improvement

emulating the manufacturing industry. Preventive methods in all fields of human

activity (such as preventive health care) are preferable and in the long run less costly.

Shifting the effort to process improvement relies on the assumption that an improved

process is likely to result in improved outputs (products) (Shewhart, 1986); (Deming,

1986); (Taguchi, 1985 and 1986).

1.8 Focussing on Process Improvement

Process improvement initiatives in other industries as well as in the Software

Engineering industry have argued and demonstrated that process improvement

enhances the chances of product improvement (Kitchenham, 1995, Burr and

Georgiadou, 1995, Pleeger-Lawrence, 1996).

Thus product improvement should not be separated from process improvement as the

two are interconnected.

Considering the research from a process improvement approach we start from the broad

topic of Total Quality Management and Continuous Process Improvement to proceed to

Process Maturity, Knowledge Sharing and Performance Measurement. This is the

second Pillar of this research.

Figure 1.2 depicts additional research questions funnel.

__

 Elli Georgiadou Page: 37

Figure 1.2: The Pillar 2 research questions funnel (adapted from Chilakanti, 2013)

The Research Questions (RQs) were:

RQ1 “Can we improve the quality of software by manipulating its structure, and,

if the answer is yes, can we measure such improvement?”

RQ2 “When and how is it preferable to re-structure existing code or develop from

scratch?”

RQ3 “if we can improve the process, can we measure such improvement?”

Process Improvement

Kkowledge Sharing

Performance Measurement

Research Questions:

“Can we improve the

process?

“Can we measure

such improvement?”

“when and how can

we re-engineer

legacy code?”

TQM, Continuous Improvement. Process Quality

Process Maturity

Broad

Topic

Narrowing

the topic

Focussing

on the

topic

__

 Elli Georgiadou Page: 38

In order to answer these questions it was decided to:

 identify and study the characteristics of software and its behaviour with the

view to bring about improvements through manipulation (restructuring,

reengineering, refactoring) of legacy software;

 investigate methods and models proposed for software process improvement;

 develop estimates, measures, models and frameworks for the achievement of

improvements.

Software Quality has many characteristics both structural and behavioural. The focus of

this study was covering the nexus of software product improvement (especially re-

engineering of legacy code) and software process improvement, and the measurement

of improvements as a means of substantiating and validating propositions, models, and

results.

1.9 Research Objectives and Hypotheses

1.9.1 The objectives of this research were to:

 investigate methods and practices of addressing systems failures;

 identify software characteristics and their measures of the software product &

manipulate/re-structure software and study empirically the effects of such interventions

on behavioural characteristics (such as maintainability and usability);

 propose suitable re-engineering software product measures through the study of

dependencies of internal characteristics and external characteristics of software;

 identify the factors and characteristics of the software process & develop process

improvement and measurement mechanisms;

 construct an adaptable quality model suitable for different stakeholders (such as users,

developers, sponsors) & develop a framework for the evaluation of items under

selection.

1.9.2 Research Assumptions

Assumption 1: Process Improvement impacts directly on Product Improvement.

Assumption 2: Process Improvement depends on Maturity level and Knowledge

Sharing.

__

 Elli Georgiadou Page: 39

1.8.3 The research hypotheses

H1: Structural software product characteristics impact on its behaviour

H2: The usability of software depends on design characteristics

In this investigation the product characteristics selected are maintainability and

understandability.

Thus H1 is recast

H1.1 The maintainability of software depends on its complexity.

(i.e. Low module complexity results in high maintainability).

H1.2 The maintainability of software depends on its structuredness

 (i.e. Highly structured programs are highly maintainable).

And H2 is recast as

H2.1 The understandability of software depends on the use of colour in the Human

Computer Interface (HCI).

H2.2 The understandability of software depends on the use of non-symbolic naming

of variables.

1.10 Summary of Chapter 1

The context of this research was the widespread problem of Information Systems

failures and the manifestations of what has come to be known as the Software Crisis.

Studying the attempts to address the crisis allowed for the focus and motivation to be

expressed. The research rested on three pillars:

 Product Improvement (particularly Maintainability and Usability) of legacy code,

 Process Improvement which was expected to result in Product Improvement, and

 The connection between Product and Process Improvement and the measurability

of Improvement.

The aims and objectives were specified, and research hypotheses were formulated.

__

 Elli Georgiadou Page: 40

CHAPTER 2

RESEARCH PHILOSOPHY, RISEARCH METHODS AND

RESEARCH METHODS USED IN THIS RESEARCH

Disciple: "Rabbi, why do you answer a question with another question?”

 Rabbi: "Is there another way?" (Jewish Proverb)

Chapter 1 is the Introduction which presents the motivation, context, scope,

objectives, formulation of research hypotheses and research methods employed.

2.1 Research Philosophies

The research questions posed here demand scientific proof of generally held beliefs,

which often mark the beginning of many investigations. Doxai represent what is

believed to be true whilst epistemic investigation results in something known to be

true. The purpose of science, then, is the process of transforming things believed into

things known i.e. transformation of doxa to episteme; δόξα [dóxa] : Greek term for

opinion, belief, or judgment, as opposed to επιστήμη[epistêmê] Greek term for

systematic knowledge.

Two major research philosophies have been identified in the tradition of science,

namely positivist (sometimes called scientific), and interpretivist (also known as anti-

positivist) (Galliers, 1992). According to Checkland (1981) scientific (empirical)

approaches have: Repeatability, Reductionism and Refutability.

2.1.1 Positivism

Positivists believe that reality is stable and can be observed and described from an

objective viewpoint (Sarkar, 1996) without interfering with the phenomena being

studied. Positivists seek to isolate and observe phenomena. Positivism requires

repeatability, and involves manipulation of “a single independent variable so as to

identify regularities in, and to form relationships between, some of the constituent

http://www.philosophypages.com/dy/e5.htm#eptm

__

 Elli Georgiadou Page: 41

elements of the social world.” Previous observations, explained realities and inter-

relationships form the basis of predictions.

In the case of Software Engineering and Information Systems the factors involved in

their development and operation are either not measurable or extremely difficult to

measure. Conversely, considerable debate on whether positivism is a suitable paradigm

for social science research is reported in, among others, (Hirscheim, 1982) and

(Remenyi & Williams, 1996).

2.1.2 Interpretivism and the multi-paradigmatic approach

The positivist paradigm has been widely used as reported by researchers like

Orlikowski and Baroudi (1991) in Information Systems research. A combination of

research methods is preferable in order to improve the quality of research. The

constructivist approach is concerned with developing frameworks, refining concepts or

pursuing technical developments. The approach allows models and frameworks to be

created that do not describe any existing reality or do not necessarily have any

“physical” realisation (Cornford and Smithson 1996).

Lee (1991) developed a framework which can be used in order to combine qualitative

and quantitative research in a study. Lee’s framework is known as a multi-

paradigmatic approach which identifies three levels of understanding as follows:

First level: subjective understanding belongs to the observed human objects. This

understanding is the making of sense of everyday behaviour which manifests itself in

social settings.

Second level: interpretive understanding belongs to the observer (researcher). This

understanding is the reading or interpretation of the first level, common sense

understanding.

Third level: positivistic understanding belongs to the researcher. This understanding

involves the researcher creating and testing propositions in order to explain the

empirical reality that he/she is investigating.

__

 Elli Georgiadou Page: 42

Lee (1991) suggests that research methods such as case study, action research and

grounded theory can be used to develop the researcher’s second level understanding

which in turn helps develop testable propositions addressing the social phenomena

under investigation. This in essence constitutes the third level of understanding. A

multi-paradigmatic approach can provide a basis for developing testable propositions.

2.2 Research Methodology Selection and Justification

This research is concerned with a search for, and evidence to support general laws or

theories that will cover a whole class of cases. Such research emphasises systematic

protocols and hypothesis testing within the scientific tradition and is known as

nomothetic research (Cornford and Smithson, 1996). Galliers (1992) summarised the

main research methods in Information Systems.

Formal laboratory controlled experiments are primarily used for testing a hypothesis

to establish the confidence with which you may predict the implications of a particular

theory.

Laboratory experiments permit the researcher to identify precise relationships between

a small number of variables that are studied intensively via a designed laboratory

situation using quantitative analytical techniques with a view to making generalisable

statements applicable to real-life situations.

The key weakness of laboratory experiments is the "limited extent to which identified

relationships exist in the real world due to oversimplification of the experimental

situation and the isolation of such situations from most of the variables that are found in

the real world" (Galliers, 1992, p.150). However, as it is usually impractical to carry

out formal experiments within industry due to the heavy demand on resources

researchers frequently carry out experiments within academia.

Surveys enable the researcher to obtain data about practices, situations or views at one

point in time through questionnaires or interviews. Quantitative analytical techniques

__

 Elli Georgiadou Page: 43

are then used to draw inferences from this data regarding existing relationships. The use

of surveys permits a researcher to study more variables at one time than is typically

possible in laboratory or field experiments, whilst data can be collected about real

world environments.

Case studies involve an attempt to describe relationships that exist in reality, very often

in a single organisation. Case studies may be positivist or interpretivist in nature,

depending on the approach of the researcher, the data collected and the analytical

techniques employed. Reality can be captured in greater detail by an observer-

researcher, with the analysis of more variables than is typically possible in experimental

and survey research.

Model Development (MD) is an effective research method. MD assists researchers and

scientists to describe, understand, predict, and test complex systems or events.

“Models can consist of actual objects or abstract forms, such as sketches,

mathematical formulas, or diagrams. A model is an abstraction, a mental framework

for analysis of a system” (Busha & Harter, 1980). Although models can be an

oversimplification and overgeneralisation their simplicity aids understanding of what

and/or who are involved and of when and in what sequence processes take place.

The research reported here was based on the three levels of Lee’s multi- paradigmatic

framework provided understanding which is the making of sense (level 1), followed by

interpretive understanding (level 2) , and the third level (positivist understanding)

which enabled the formulation and testing of propositions and hypotheses.

In order to achieve the research aims and objectives, this research adopted a multi-

paradigmatic method combining literature review (historical and underpinned by an

interpretive stance), formal controlled experiments, qualitative analysis, quantitative

evaluations, qualitative surveys, expert opinion, and model development.

__

 Elli Georgiadou Page: 44

2.3 Research Methods Used

Table 2.1 shows the research methods used and the main contributions under

development of: taxonomy, indicator, model, or framework.

2.4 Summary of Chapter 2

This chapter presented the scope and focus of the research, the research objectives and

assumptions. Finally the formulated research hypotheses and the research methods were

presented.

__

 Elli Georgiadou Page: 45

Table 2.1a - Research Methods Used
P

A

P

E

R

Literature

Review,

interpretivism

&

argumentation

Survey for

validation

&

verification

Case

studies

Formal,

Controlled

Experiment

Qualitative

analysis ,

categorisation

Quantitative

Measurement

& Evaluation

Model Development:

Taxonomy

Indicator,

Model,

Framework.

I. I ✓ ✓ Indicator

II. I

I

✓ ✓ Taxonomy

III. I

I

I

✓ Model extension

IV. I

V

✓ ✓ ✓ ✓ Feature Analysis, CFD:

Composite Features

Diagram

GEQUAMO Model

V. V ✓ ✓ ✓ ✓ GEQUAMO II Model

__

 Elli Georgiadou Page: 46

Table 2.1b - Research Methods Used

VI. V

I

✓ ✓

VII. V

I

I

✓ ✓

VIII. V

I

I

I

✓ Model extension

IX ✓ ✓

X ✓ ✓

XI ✓ ✓

XII ✓ ✓

XIII ✓ Framework for experimental

design and execution

__

 Elli Georgiadou Page: 47

Table 2.1c - Research Methods Used

XIV ✓ ✓ I
5
PModel

XV ✓ ✓ VALO5 Model

XVI ✓ ✓ ✓ CoFeD framework

XVI

I

✓

XVI

II

✓ ✓ Guidelines

XIX ✓ ✓

XX ✓ ✓ Framework

__

 Elli Georgiadou Page: 48

CHAPTER 3

INFORMATION SYSTEMS DEVELOMENT

METHODOLOGIES, LIFECYCLES, AND QUALITY

MODELS

3.0 Introduction

This chapter presents a critical review of lifecycle models, information systems

development methodologies, process models, standards, and quality models, and the

development and validation of the generic, multilayered, and customisable software

quality model GEQUAMO.

3.1 Information Systems Development Methodologies

Information Systems Development Methodologies (ISDMs) and associated tools aim to

a systematic planning and control of the development process. Systems Development

Methodologies have been proposed and used to address a number of problems

including ambiguous user requirements, un-ambitious systems design, unmet

deadlines, budgets exceeded, poor quality software with numerous 'bugs' and poor or

non-existent documentation. This meant that software was difficult to maintain, and

inflexible to future changes.

It is important to note the erroneous use of the terms method and methodology as

synonyms by both researchers and practitioners in the Information Systems and

Software Engineering domains. Kerry Howell (2013), in her book “Introduction to the

Philosophy of Methodology” clarifies that “a methodology is the rationale for the

research approach, and the lens through which the analysis occurs....A method is

simply a tool used to answer your research questions — how, in short, you will go about

collecting your data. Examples of research methods include: Contextual inquiry,

Interview, Survey etc. The methodology should impact which method(s) for a research

endeavour are selected in order to generate the compelling data.”

__

 Elli Georgiadou Page: 49

The use of method and methodology as synonyms has been perpetuated for over 40

years. Evidence of this issue can be found in many articles and acclaimed textbooks

such as Jayaratna (1994) and Avison and Fitzgerald (2003). At this stage we will not

challenge this ambiguity but we put a marker for subsequent investigation and action

towards addressing such ambiguities. As the community continues to refer to methods

as methodologies we did the same (see Papers I and II).

By applying a methodology to the development of software insights are gained into the

problems under consideration and thus, these problems can be addressed more

systematically. Methodologies provide the environment for repeatable procedures with

specified deliverables at each stage of the system lifecycle. Software should comply

with the important quality requirements of Timeliness, Relevance, Accuracy and Cost

Effectiveness (TRACE)
1
Software Engineering aims to bring to bear the more rigorous

methods used in the engineering world in the software development world.

Paper I (Georgiadou and Sadler, 1995) outlines the main characteristics and

philosophy of the prevalent methodologies. Over 2000 methodologies (and brand

names) are in existence (Jayaratna, 1994), each claiming to solve most, if not all, of the

problems of systems development (Jackson 1994), (Berki et al, 1997). Since the 70s

literally hundreds of different methods and tools have appeared each claiming to ease

the life of the developer and the user by achieving improved productivity without

compromising the quality of the software product.

These methodologies range from integrated collections of procedures to a single

technique, notations, 4GLs and tools for supporting the process at the various stages of

the systems lifecycle. Figure 3.1 depicts the approximate time of their introduction.

ad-hoc

NCC Struc. Methods

JSD

SSM

ETHICS

Multiview

Coad-YourdonZ

65 70 75 80 85 90 95

OMT

00

XP

CBD

DSDM

Figure 3.1 Information Systems Development Methodologies over 50 years

1 TRACE is a term coined by the author (UNL Lecture Notes SDM 1993)

__

 Elli Georgiadou Page: 50

With the exception of Formal Methods (such as Z and VDM) which are not within the

scope of this research all methodologies aspire to help organize the process of

information systems development.

Using the techniques and tools of a methodology we can understand a problem situation

by using abstraction, generalisation, classification and specialisation to model a system.

The resulting models elucidate the functionality of the system and introduce a degree of

structure and rigour enabling us to produce solutions satisfying the identified

requirements.

3.2 A Taxonomy of Methodologies

The level of user participation is inherent in each methodology. Participative

methodologies like SSM, ETHICS and Agile Methods such as XP, place a strong

emphasis on the managerial and social issues and, usually, devote extra time and effort

on preventative actions such as liaising with stakeholders and users in particular, during

the early stages of the systems lifecycle. This shapes the development process and the

type of solution(s) achieved. User involvement and user participation takes many forms

such as discussions on requirements, walkthroughs, reviews, inspections, and

validations.

Although there are thousands of information systems methodologies (brand names)

they tend to form clusters or families with general characteristics dictated by their

philosophy and type of problems they attempt to solve. Thus they have been divided

into data-driven or process driven, hard and soft, large and small depending on the

viewpoint of the researchers studying the whole area of methodologies.

Avison and Fitzgerald (1995) proposed a classification of ISDMs into Soft and Hard

with the addition of Hybrid Methodologies. Paper I presents an enhanced

classification by the addition of Agile Methods (XP), Formal Methods and Specialised

Methods, shown in Figure 3.2.

__

 Elli Georgiadou Page: 51

This classification was used to underpin further investigations into requirements

engineering and quality models (Siakas et al., 1997), (Berki et al., 1997).

Figure 3.2 Methodology Classification Tree

[Adapted from Georgiadou &Sadler, 1995]

Information systems practitioners (developers) are mainly interested in selecting a

methodology that is appropriate for their particular environment, capable to address

their problems and finally enable them to enhance their productivity. It is thus

important to develop ways of evaluating and selecting suitable methodologies

according to requirements. "Making the wrong choice of methods and tools can be a

big risk to an organisation (and to those who made the choice), because the acquisition

and installation costs can be very high and the consequential costs of project disruption

and delay can also be very high" (Law & Naeem, 1992). The choice of an appropriate

method has been of concern to industry and academia alike. Making the wrong choice

of method or tool can be very costly for a company. How are software engineers to

succeed in making these choices?

3.3 Evolution of the Software Development Lifecycle

In addition to methodologies, the lifecycle of systems development has been depicted in

numerous lifecycle models. Tom Gilb (1981), and Naumann and Jenkins (1982) were

__

 Elli Georgiadou Page: 52

already referring to previously practiced methods as traditional and that new

evolutionary methods were necessary and preferable.

The involvement of the user is an integral part of the prototyping paradigm. The cycle

starts with the requirements gathering and goes through a number of refinements.

Prototyping is a mechanism for clarifying the requirements and making improvements

(Figure 3.3).

Figure 3.3 Prototyping: The ‘Balanced’ interaction (Paper II)

Paper II concluded that the prototyping development route is characterised by constant

feedback from the users and team, collaborative development tending to achieve near-

perfect solutions, trading off technical effectiveness to usability as shown on the

solutions space. The whole system of transformation from problem to solution can be

likened to a group of musicians playing their instruments and making music. The

musicians are the systems developers, the instruments are the methods and the music

the solutions produced.

__

 Elli Georgiadou Page: 53

It was argued (in Paper II) that the role of the methodology as an instrument of

understanding is provided by its underlying lifecycle namely the organised phases,

steps, tasks and checklists which steer the developer towards identifying and specifying

the components, sub-systems and their interactions. Therefore in trying to choose and

apply a methodology valuable insights are gained into the original problem and the

existing procedures, highlighting problem areas and additional requirements.

Software Lifecycles models are paradigms for guiding the development process and for

aiding the planning, monitoring and controlling of projects. Hence lifecycles are

process models with phases and deliverables at each phase. The nature of the problem,

the methods and tools, the controls and the deliverables formulate the paradigm. Figure

3.4 shows the approximate time of introduction of the major software lifecycle models

since 1970.

In Paper II a historical perspective was adopted to look at the major developments and

introductions of lifecycle models, methodologies (revisited), and quality models.

Linear, incremental, cyclic, Object-Oriented, and fractal models were discussed.

Efforts for process improvement and particularly Continuous Improvement through

Total Quality Management as well as Quality Models were presented and discussed.

Cyclic models such as the Spiral Model reflect the iterative nature of software

development. Prototyping was primarily an iterative model. Models like the V, W, X

include embedded quality assurance mechanisms through the development process

emhpasising that code is not the only thing that needs ‘testing’. Object-oriented models

came with the promise of development with re-use in mind.

For several years the community was engaged in corrective measures. Linear models,

like the Waterfall model, placed Testing towards the end of the lifecycle which results

in late discoveries of errors and omissions when it often proved to be very late and

extremely expensive. This study revealed that as the lifecycle development itself

became more mature, testing has been ‘moving’ towards the beginning of the lifecycle.

Additionally other quality assurance techniques such as walkthroughs, inspections,

reviews, design reviews etc., were used throughout the lifecycle giving many

__

 Elli Georgiadou Page: 54

opportunities for early detection of errors and omissions. These are steps towards

preventive quality assurance. With the introduction of agile methods such as Extreme

Programming it was observed that Testing had moved to the beginning of the lifecycle

as predicted in 1995 (Georgiadou and Sadler, 1995). .

 0 1 2 3 4 5

Figure 3.4 Growth of Lifecycle Models and Capability Maturity

The juxtaposition of the lifecycle timeline and the Capability Maturity level depicts the

maturity growth of the lifecycle. The capability maturity of the process is expressed in

recent years by the development and adoption of iterative and agile methods.

In the last 10 years studies on Agile Methods show increasing take up by the industry.

In 2014 del Águila et al. (2014) provided a comparative review of Software

Engineering (SE) and Knowledge Engineering (KE). They noted that these two

Engineering Disciplines have been evolving in parallel but have not been learning from

each other. They (del Aguila et al.) proposed an integration of the two, named

SKEngineering, which “allows the development of quality products using SE or KE

methods, since there are many cases in which companies require deploying software

systems that integrate components based and not based on knowledge in a transparent

way.” They additionally suggest that SKEngineering can be assisted by well-known

Artificial Intelligence techniques as machine learning or fuzzy approaches.

In recent years there has been increasing focus on Model Driven Engineering (MDE).

Clark et al. (2016) advised that MDE should be used for Model Driven Organisations

(MDO) because modelling can provide a more scientific tractable alternative instead.

Kulkani (2016) reports on the successful adoption of MDE within the large

organisation TATA.

__

 Elli Georgiadou Page: 55

Information Systems Development Methodologies (ISDMs) have been changing,

evolving and adapting to other changes in the field. As Software Engineering is

maturing so do the methods, techniques and tools evolve to meet new requirements and

challenges. However, systems failures persist.

3.4 Software Quality Models

In the last 40 years various product quality models have been developed. Software

Quality Models have primarily been based on Top Down, hierarchical structures the

most notable of which are: the Dromey model (Dromey, 1995); (Hyatt & Rosenberg,

1996), the McCall model (McCall et al., 1977); the Boehm model (Boehm et al., 1978); the

FURPS Model (Grady &Caswell, 1987); and the ISO 9126-1 model (2001); also its standards

for both external metrics: ISO / IEC 9126-2 and internal metrics: ISO / IEC 9126-3 in 2003

and quality in use: ISO / IEC 9126-4 in 2004. The ISO -9126 model incorporated various

aspects from previous models and standards for assessing, controlling and measuring the quality

of software.

These models suffer from lack of orthogonality between the quality factors and their

sub-factor or constructs. For example the Boehm quality model proposes definitions

and measures for a range of software quality attributes. It focuses on software quality

form the developer’s perspective and divides quality into 7 quality factors (intermediate

constructs) namely Portability, Reliability, Efficiency, Human Engineering, Testability,

Understandability, and Modifiability. Each of these intermediate constructs is further

divided into primitive constructs It can be seen that the 7 top level quality factors are

not orthogonal. For example reliability and human engineering share a common

primitive construct of Robustness/Integrity. Therefore, this lack of orthogonality

presents difficulties when considering quantification and evaluation

The ISO 9126 standard sets out a strict framework for designing an evaluation of

quality characteristics. Six characteristics are specified and decomposed into several

sub-characteristics. It is the only model that observes orthogonality – each sub-

characteristic relates to only one characteristic.

__

 Elli Georgiadou Page: 56

In Paper III the major quality models were discussed, and ISO 9126 was judged to be

“a widely applicable and accepted software quality model for software quality

engineering”.

However, none of these models are customisable according to the different stakeholders

and their specific requirements. Since the turn of the millennium the tendency has been

to customise quality models. Another weakness of these quality models is that they

rarely specify how quality attributes should be measured and how measurement results

can be aggregated to achieve an overall quality assessment for a system.

3.5 GEQUAMO – A generic, multi-layered and customisable

Quality Model

In Paper IV the GEQUAMO (GEneric, multi-layered and customisable) QUAlity

MOdel was proposed. GEQUAMO encapsulates the requirements of different

stakeholders in a dynamic and flexible manner so as to enable each stakeholder

(developer, user or sponsor) to construct their own model reflecting the

emphasis/weighting for each attribute/requirement. Using a combination of the CFD

(Composite Features Diagramming Technique) developed by the author, and Kiviat

diagrams a multi-layered and dynamic model is constructed.

A generic CFD shown in Figure 3.5 each node is exploded into two, three or more sub-

characteristics. The proposed Quality Model uses the CFD- Composite Features

Diagram comprising a set of concentric circles showing increasingly lower details (sub-

characteristics). The lowest branches in every case represent sub-characteristics which

are measurable and hence controllable. It can be seen that the number of branches

(siblings) emanating from each node can be 0, 2, 3 or more. CFDs can be used for

generating visual profiles for items under comparison for the purpose of selection. R1,

R2, R3 are the requirements of a specific stakeholder. Each tree represents

decomposition into lower layers. The outer branches are usually measurable directly.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/C=ocirc=t=eacute=:Marc=Alexis.html

__

 Elli Georgiadou Page: 57

Figure 3.5 – A generic CFD- Composite Features Diagram

In Paper IV, the genericity and versatility of GEQUAMO were demonstrated

through its application to various evaluation cases. Also the algorithm for top-down

qualitative identification and decomposition of the requirements (features, sub-

features, sub-subfeatures), and the bottom-up quantitative evaluation were presented.

The construction rules do not allow one sub-characteristic, and it is also advisable that

the maximum number of sub-characteristics should not exceed 7.

Figure 3.6 – A Visual Comparison between two items using CFDs

It can be seen in Figure 3.6 even before the numerical (bottom up evaluation) that the

ítem profiled on the left (in red) has more deficincies than the one on the right in

Green).

__

 Elli Georgiadou Page: 58

Miguel et al. (2003) included GEQUAMO as one of the early Tailored Quality Models

as shown in Figure 3.7.

Figure 3.7 - Basic and Tailored Quality Models (Source Miguel et al., 2014)

In Paper V weaknesses of GEQUAMO were addressed resulting in GEQUAMO II.

As one of the aims of the GEQUAMO (and GEQUAMO II) is the visual representation

which enables immediate and easy comparison especially for comparative evaluation of

items, it was found that decomposition to various sub-characteristics and over several

layers may result in the braches running into each other making the picture confusing

and potentially illegible. This is a limitation that needs to be recognised and managed

through adhering to refined construction rules. Also through the validation exercise it

became apparent that the combination of CFDs and the repeated use of Kiviat Diagrams

caused the model to be unstable due to confounding errors. This was addressed by

opting for a straight averaging of the terminal values (assuming they are equally

weighted) as a more representative value to be propagated to the parent branch.

3.6 Summary of Chapter 3

This chapter studied the development of methodologies, lifecycles and quality models.

The major contribution at this stage was the development of the GEQUAMO model

(and its refinement in GEQUAMO II), which integrates top down (qualitative) feature

analysis, bottom up (quantitative evaluation), and visualisation. Thus the model

provides both rigour and clarity to both practitioners and academics alike.

__

 Elli Georgiadou Page: 59

CHAPTER 4

SOFTWARE MEASUREMENT

"To measure is to know. If you cannot measure it, you cannot improve it."

(William Thomson also known as Lord Kelvin) (1824 - 1907).

4.0 Introduction

This chapter presents a discussion on measurement in general and software

measurements and metrics in particular. It identifies controllable and uncontrollable

factors and the challenges of understanding, measuring and controlling the quality of

both the product and the process

4. 1 What is measurement?

Fenton and Pfleeger (1997) provide a definition of measurement: “Measurement is the

process by which numbers or symbols are assigned to attributes of entities in the real

world in such a way as to characterise them according to clearly defined rules. The

numeral assignment is called the measure.”

This definition provides a rigorous basis for determining when a proposed measure

characterises an attribute and provides rules for determining what statistical analysis are

relevant and meaningful. Hence, in order to understand the definition of measurement

in the software context, we need to identify the relevant entities and attributes which we

are interested in characterising numerically. Measurement theory provides the rigorous

framework for determining when a proposed measure characterises an attribute and

provides rules for determining what statistical analysis is relevant and meaningful

(Briand and Wüst, 2001).

Entities of interest include objects, (e.g. code, specification, person) or processes (e.g.

analysis, error identification, testing). Distinct attributes might be length of code,

duration, costs. Representation is usually in numbers (or other mathematical objects e.g.

vectors and ratios). Finally in order to provide objectivity we need to assign numbers

(symbols) according to explicit rules which ensure that the assignment is not random.

__

 Elli Georgiadou Page: 60

Measures and quantitative information in general appeal to practitioners and

researchers alike. Simple counts, ratios, comparisons and estimations constitute the

backbone of many decisions in science, engineering, organisations and life in general.

The Carnegie-Melon Software Engineering Institute’s Capability maturity model CMM

(and later CMMI) level 4 level requires that measures of software process and product

quality be collected so that process effectiveness can be determined quantitatively

(CMMI Product Team, 2002). A process database and adequate resources are needed to

continually plan, implement, and track process improvements.

At CMM/CMMI level 5 the optimising level, quantitative feedback data from the

process allows continuous process improvement. Data gathering has been partially

automated. Management has changed its emphasis from product maintenance to

process analysis and improvement (Agrawal and Chari, 2007)

Defect cause analysis and defect prevention are the most important activities added at

this level. Very few organisations keep metrics on either systems or the software

development process. However, the Software Engineering Institute's Capability

Maturity Model (CMM) estimates returns of four- or five-to-one for successful metrics

programs.

In addition to understanding what is measurement we need to decide what we are

measuring, and how we are measuring in order to maximising success and minimising

failure of a metrics programme.

4.2 Controllable Quality Factors

The challenges faced when we are trying to understand, measure and control the quality

of both the product and the process are presented in Paper VI. Measurements of both

the current and the desired system are necessary. Internal metrics (Fenton, 1991) can be

obtained in terms of the product (code). They are counts (such as LOC, Number of

Classes, McCabe Complexity) and ratios (such as Number of calls per Module, Average

size of module, and Average length of hierarchy), and they are also known as direct

metrics. Additionally, these metrics can be generated automatically by using static

analysis tools such as CANTATA, Testbed and Logiscope. Attributes such as

__

 Elli Georgiadou Page: 61

morphology, architectural structure, depth of class hierarchy, size of module,

maximum level of module complexity etc. can be controlled through a management

mechanism and specific guidelines to the developers.

Controllable design parameters can be found in the software development process, the

software product and the software development environment (Fenton, 1994;

Kitchenham, 1996). However, external attributes (Fenton 1997), which are behavioural

such as understandability and maintainability are more elusive and more difficult to

measure. Metrics for these attributes are both qualitative and quantitative. They are

almost always obtained indirectly through the use of surrogate measures (Kitchenham,

1996). For example maintainability can be estimated, calculated and thus controlled

through measuring the time taken for a specified maintenance task. Results obtained by

Georgiadou et al. in a series of controlled experiments provided confidence (through

statistical methods) in the ability to effectively use surrogate measures (Georgiadou, 93,

94, 97, 98, and 2001).

4.3 Uncontrollable Factors

Human factors are unpredictable and mostly difficult, often impossible to control. For

example, one such factor is performance variability in a human being, such as their

experience and communication skills needed within a software development team. The

developers’ performance has an effect on producing quality software products in a

similar way to the effect of machines on the manufacturing of products. It is important

to maximise and properly maintain programmers’ performance. The possible control

factors will be conducting educational sessions within and outside a company where

software developers are encouraged to learn the new techniques of their interest or to

polish their skills. Recreational events may help developers to get to know each other

better and this will be reflected in better communication and teamwork in an office.

Ergonomic office design, temperature and humidity in the workplace can also affect the

developers’ performance.

Experimental evaluations, carried out by Basili et al. (1986), Shepperd (1990),

Georgiadou (1999, 2001), attempted to identify design parameters and hence factors,

which can be controlled. According to Taguchi cited in (Logothetis and Wynn, 1989) it

__

 Elli Georgiadou Page: 62

is desirable to choose the set of design parameters, which are less affected by such

factors. For example, developers’ experience can be controlled to a certain extent by

years in the profession and looking at the past projects they had been involved in.

However every individual is unique. Their individual capability, patterns of learning

and cognition are likely to be different from those of others of similar experience. The

health of the developers may also have an effect on their performance at work.

In addition to differentiating between controllable and uncontrollable factors paper VI

reported on a collaborative multidisciplinary study (in industry) which revealed that

the holistic nature of such an approach provides software developers with the use of

software measurement as the instrument for understanding, estimating and controlling

the quality of specified factors. It must be born in mind that different stakeholder

(discussed in Papers IV and V) place different emphasis on software attributes by

different stakeholders. Usability and reliability are primary concerns to the user.

Usability is enhanced through greater understandability, which in turn is enhanced

through design correctness and consistency and through training, on-line help and

support, all of which reduce productivity with the possible exception of Component

Based Development which makes extensive reuse of code and increasingly reuse of

designs too.

Reliability is of interest to all groups of stakeholders (in this case users, developers,

and sponsors). It can be achieved through correct design, testing, walkthroughs,

reviews and inspections. Enhanced reliability increases productivity and therefore

decreases costs. Also enhanced functionality increases costs (in the short term) and

may cause losses to the sponsor.

It is important for the software developer to understand the objectives and

requirements for software product or the process improvement, and to specify the

product/process response characteristics that reflect these objectives. The formulation

of the problem as well as the production of a list of controlled parameters and noise

variables can be achieved through brainstorming and formulated using techniques

such as the Ishikawa (cause and effect) or fishbone diagram.

Measurable and, hence, controllable objectives should be chosen such as the number

__

 Elli Georgiadou Page: 63

of bugs found during formal inspections, which are conducted during the software life

cycle under the specified methodology a company adopts.

In order to understand and control the process we need measurements of both the

current and the desired / new system. Internal metrics can be obtained in terms of the

product (code) and they are counts (such as LOC, Number Classes, and McCabe

Complexity) and ratios (such as Number of calls per Module and Average length of

hierarchy).

Attributes such as the morphology, architectural structure, depth of class hierarchy,

size of module, maximum level of module complexity etc. can be controlled through a

management mechanism and specific guidelines to the developers. Controllable

design parameters can be found in the software development process, the software

product and the software development environment.

However, external attributes such as understandability and maintainability. These

characteristics are behavioural, thus more elusive and more difficult to measure.

Measurements of these attributes are almost always obtained indirectly through the

use of surrogate measures. For example maintainability can be estimated, calculated

and controlled through measuring the time taken for a specified maintenance task.

Also human factors are unpredictable and mostly difficult, often impossible to

measure and hence to control. One such example is the performance variability in a

human being, such as his/her experience and communication skills needed in a

software development team. The developers’ performance has an effect on producing

quality software products in a similar way to the effect of machines on the

manufacturing of products. It is important to maximise and properly maintain

programmers’ performance, however difficult it is due to the uniqueness of every

developer. In this paper some high level guidelines for developing cultural awareness

and for practical measures such as training of staff were provided.

Product quality characteristics specified in various standards and quality models refer to

the behaviour or perceived behaviour of software such as Usability, Maintainability,

and Reliability. Software Quality is undoubtedly desirable by all stakeholders.

__

 Elli Georgiadou Page: 64

However, the emphasis and detail of their respective requirements differ. Hence, some

attributes are considered to be more important than others depending on the

stakeholder. In “The complete alphabet of quality software systems“(Siakas, et al.,

1997) the same stakeholder groupings (user, developer, sponsor) were used indicating

only whether a characteristic is of high interest, low interest or of no interest to each

group of stakeholders.

In paper VII the viewoints and the degree of interest in certain characteristics users,

developers and sponsors were considered. Sponsors and managers and other decision

makers were considered, because they are the representatives of the financing

organisation. Users are considered to be the persons who, in different ways, use the

final software product. Users can either be internal in the organisation that develops the

software or external customers who use the software. Developers were considered as

the persons that are not users or sponsors. Developers can be involved in the

production of artifacts at different life-cycle stages. They are primarily interested in

functionality and reliability.

A sponsor may be more interested in the overall quality rather than in a specific

quality characteristic. The sponsor, in order to optimise quality within a limited time-

and cost-frame may need to balance the quality improvement with management

criteria for schedule delays and cost over-runs.

There is universal agreement that Functionality and Reliability are common concerns

to all stakeholders. However, it can safely be assumed that a software systems

developer strives to produce reliable and maintainable systems with maximum

functionality. The user desires a system which is reliable, understandable, usable,

easy to learn and easy to use and with the necessary functionality. The sponsor is

extremely interested in maximising productivity i.e. he/she requires a reliable system

with the necessary functionality, produced within acceptable time limits and at the

lowest cost possible.

Enhanced Reliability (usually achieved through testing, walkthroughs, reviews and

inspections) will most probably reduce productivity and will therefore increase costs.

Both of these cause losses to the sponsor. Enhanced functionality increases costs (in

__

 Elli Georgiadou Page: 65

the short term) and causes losses to the sponsor.

An extension to the ISO 9126 (2001) model was proposed through the introduction

of Extensibility and Security as primary characteristics, hence the acronym

PERFUMES which stands for Portability, Efficiency, Reliability, Functionality,

Usability, Maintainability, Extensibility, Security, the first six characteristics at this

primary level are those of the ISO 9126.

4.4 Conclusion to Chapter 4

Product quality characteristics specified in various standards and quality models refer to

the behaviour or perceived behaviour of software such as Usability, Maintainability,

and Reliability. Software Quality is undoubtedly desirable by all stakeholders.

However, the emphasis and detail of their respective requirements differ. Hence, some

attributes are considered to be more important than others depending on the

stakeholder.

Chapter 4 refers to a collaborative multidisciplinary study (in industry) which

revealed the strengths that the holistic nature of such an approach provides software

developers with the use of software measurement as the instrument for understanding,

estimating and controlling the quality of specified factors. Measurability and hence

controllability of factors need to be established in order to decide what should be

measured.

__

 Elli Georgiadou Page: 66

CHAPTER 5

A SUITE OF RANDOMISED CONTROLLED

EXPERIMENTS

5.0 Introduction

This chapter describes the main contributions in terms of product. The derivation of the

composite metric rho () which is an indicator for answering the question on whether

deficient or malfunctioning systems should be scrapped or re-engineered. It also

presents the design and execution of several controlled experiments.

5.1 Controlled Experiments

Having formulated the research hypotheses it was necessary to test them. According to

Galliers (1992) Formal laboratory controlled experiments are primarily used for

testing a hypothesis to establish the confidence with which you may predict the

implications of a particular theory. They depend heavily on very careful experimental

design (using replication, randomisation, blocking) and on the application of statistical

techniques to analyse the results. Laboratory experimentation involves the creation of

an (artificial) environment, in order to isolate and control potentially confounding

variables.

This is the reason such experiments especially in software engineering are mostly run

by academics within a university environment where a fairly large number of students

can carry out the experimental tasks.

A total of 8 controlled experiments were designed and conducted over a period of 7

years. The reason is that new cohort of novice programmers needed to be recruited as

experimental subjects i.e. the people who were to carry out the experimental tasks. The

experimental design required the use of 4 laboratories with identical hardware and

software. In addition to technical support, two members of staff were required for

invigilation in each laboratory.

__

 Elli Georgiadou Page: 67

One experiment was abandoned due to weather conditions (severe snowfall!). It was

subsequently re-scheduled due to staff absence, and a third experiment was totally

invalidated due to a total breakdown/closure of one of the laboratories. Details can be

seen under Logistics or Murphy’s Law in Paper XII, and in outline form in Section

5.7).

Prior to any execution of each experiment a brief trial session was conducted to test the

laboratory equipment, and to familiarise the students as well as the invigilators with the

process.

5.2 Testing the research hypotheses

In this investigation the product characteristics selected to study were maintainability

and understandability. The research hypotheses were formulated (Section 1.8.3) as

follows:

H1.1 The maintainability of software depends on its complexity.

(i.e. Low module complexity results in high maintainability).

H1.2 The maintainability of software depends on its structuredness

 (i.e. Highly structured programs are highliy maintenable).

H2.1 The understandasbility of software depends on the use of colour in the

HCI.

H2.2 The understandability of software depends on the use of non-symbolic

naming of variables.

Paper VIII reports on the role of re-engineering in the management of software

quality. The randomized, controlled experiment tested hypothesis H1.1

H1.1 The maintainability of software depends on its complexity.

(i.e. Low module complexity results in high maintainability)

__

 Elli Georgiadou Page: 68

Modules were judged a good candidate for modularisation if:

their granularity was greater than 50;

their McCabe Complexity was greater than 10;

they contained common code.

The hypothesis was born out. Details can be seen in Paper VIII.

5.3 The derivation of the re-engineering factor  (rho)

Paper IX presents the rationale and derivation of the re-engineering factor  (rho). The

specification of the criteria for both complexity and structuredness are provided.

Among the many metrics proposed the four metrics selected to represent the profile of

each program were Granularity, McCabe Complexity, Information Flow, and Number

of Local Variables.

The derivation of the criteria for software restructuring was specified as Granularity,

Information Flow, Local Variables, and McCabe Complexity. Once target (desirable)

values of these four attributes are selected, the actual measures are obtained by static

analysis and plotted in an anticlockwise sequence. Comparing the star plot of a program

to the target plot (inner quadrangle) the differences cannot only be compared visually

but also measured.

The re-engineering factor rho () can be calculated using the values of the following

formula

Re-engineering Factor () = (Actual Area - Target Area) / Actual Area

 Considering an example where the target (desirable) values for the four module

characteristics of interest were specified as follows:

Number of Local Variables = 5, Granularity = 50,

 McCabe Complexity = 7, Number of Local Variables = 6.

Programs under consideration for re-engineering are statically analysed and their

profiles are superimposed onto the target module profile as shown in the star plot

(Figure 5.1) where the inner rectangle depicts the desirable profile whilst the outer

rectangle depicts the actual profile.

__

 Elli Georgiadou Page: 69

Figure 5.1 – Star plots for two programs under consideration for

restructuring

It can be seen that the program on the right deviates substantially from the target

(desirable). Thus the program on the right is a stronger candidate for restructuring than

the program on the left. The tolerance level on the size of the deviation is a

management decision as to whether it will be preferable to re-engineer a program or to

discard and develop from scratch. The higher the value of , the more deviation from

the desirable profile, in which case the more likely to opt for restructuring. The re-

engineering factor rho () is a new composite metric.

5.5 Maintainability of software depends on its structuredness

ISO/IEC/ IEEE 24765 (ISO 2010) - Vocabulary of systems and software engineering)

gives three definitions (and the source of the definitions) for maintainability (Definition

3.1668):

 the ease with which a software system or component can be

modified to change or add capabilities, correct faults or defects,

improve performance or other attributes, or adapt to a changed

environment;

 the ease with which a hardware system or component can be

retained in, or restored to, a state in which it can perform its

required functions ;

 the capability of the software product to be modified. ISO/IEC

14764:2006 (IEEE Std 14764-2006), Software Engineering —

Software Life Cycle Processes.

 = 0.37

6

7 5

7

7

 = 0.72

1 2 0

7

1 5

1 1

__

 Elli Georgiadou Page: 70

 This standard also provides the following definitions for maintenance:

 the average effort required to locate and fix a software failure

 the speed and ease with which a program can be corrected or changed.

(IEEE Std 982.1-2005 IEEE Standard Dictionary of Measures of the Software

Aspects of Dependability).

The definition for maintainability used in this research is close to part 1

of the above definition 1:

Maintainability is the ease with which a software system (program) or

component can be maintained (i.e. modified to change or add capabilities,

correct errors, faults and/or defects, to improve performance or other

behaviour, or adapt to a changed environment).

Sine maintainability is not directly measurable, the surrogate measure

Maintenance (as defined by ISO/IEC/ IEEE 24765 (ISO 2010)) was used.

The tasks were to identify and correct embedded logic errors in two versions

(one non-structured and one structured) of a program. The surrogate measure

was the time taken to carry out the experimental tasks.

Paper X reports the design, execution and results of a randomised controlled

experiment estimating the effects of predetermined changes in program structure on the

maintainability of different program versions seeded with equivalent logic errors. The

experiment tested the research sub-hypothesis

H1.2 The maintainability of software depends directly on its structuredness.

Prior to the execution of the experiment, programs were statically analysed to obtain

measurements of internal sub-attributes of the fundamental attribute of structuredness.

A first version of a program was modularised according to established rules (specified

in Paper X) giving a new version of the program with a larger number of modules but

with a smaller individual module complexity, and smaller average module complexity.

__

 Elli Georgiadou Page: 71

Structure is an internal attribute. It is multidimensional and as such it cannot be

measured directly. The external term structuredness is difficult to define and to

measure.

The sub-attributes of structuredness selected were: McCabe Cyclomatic Complexity,

Information Flow, Number of Identifiers (Local Variables) and Granularity. A star plot

provides a visual comparison of the module profiles. Details can be seen in Papers

VIII and IX.

In order to ensure validity, interpretability and accuracy of the results factors such as

different programming experience of the experimental subjects were factored out. The

subjects were students who were novices in C programming although they had earlier

passed a programming unit in Modula 2.

The experimental design (shown in Table 5.1) was a cross-over design involving two

versions of each program.

Table 5.1 The Cross Over Design

Group P1 P2

A V1 V1

B V1 V2

C V2 V1

D V2 V2

Where P1V1 is Program 1 version 1 Unstructured

 P1V2 is Program 1 version 2 Structured

P2V1 is Program 2 version 1 Unstructured

P2V2 is Program 2 version 2 Structured.

The hypothesis was born out with a p-value equal to 0.008. The unstructured version

was more difficult to understand and therefore more difficult to maintain.

__

 Elli Georgiadou Page: 72

Additionally from this first experiment several lessons were learned relating to erratic

attendance or reluctance of subjects to conform to rules, such as stop working on

program 1 and start working on program 2. Several subjects kept swapping from

program to program which meant that we should have had a mechanism of stopping

work on the first program at a specified time before embarking on the next one. This

same cross-over experimental design was used in all subsequent experiments.

The results of this work can be used to provide an indicator for re-engineering whereby

a given program can be restructured in such a way that quality improvement can be

quantified or at least estimated.

Hypothesis H1.2 The maintainability of software depends on its structuredness was

born out.

5.6 Measuring the Understandability of a Graphical Query Language

In addition to manipulating code the final experiment, reported in Paper XI, dealt with

the measurement of understandability of the new Graphical Object Query Language

named GOQL developed by my co-author Euclid Keramopoulos. The requirements of

Keramopoulos were to test various aspects that are likely to impact on the

understandability and usability of the interface for his Graphical Query language.

The author:

 provided the rationale for selecting the formal experiment evaluation method;

 formulated the hypothesis;

 designed the experiment;

 found the experimental subjects;

 ensured laboratory support by colleagues;

 helped analyse the experimental results.

The co-author produced the experimental materials and co-analysed the results.

“The use of colour and non-symbolic representation enhance the understandability of

the graphical user interface of GOQL.”

__

 Elli Georgiadou Page: 73

Again the design was cross over as shown in Table 5.2.

Table 5.2 – Cross Over Design for testing understandability

Group

(of experimental

subjects)

Colour

(in

variables)

Symbolic

Representation

of Variables

A Y N

B N N

C Y Y

D N Y

Both hypotheses (H2.1 and H2.2) were born out evidenced by the positive correlation

between the independent variables (colour and symbolic representation of variables)

and the response variable (understandability). The participation of the subjects in

providing feedback was captured and analysed. Many of their suggestions fed back into

the design and improvement of GOQL.

In addition to proving the research hypotheses, many lessons were learned regarding

the logistics. The trial run of the experiment helped avoid problems with equipment and

absences of experimental subjects.

5.7 A Framework for the Design and Execution of Controlled

Experiments

Following the design and execution of 7 formal, randomised controlled experiments the

knowledge and experience gained culminated in the development of a framework for

the design and execution of this type of experiment. This framework was presented in

Paper XII. The experimental process involves a number of Phases and deliverables at

each phase. Before the actual execution of an experiment, the experiment needs to be

designed according to scientific principles and considerable preparation must take

place. Figure 5.2 depicts the proposed framework which consists of three Phases and

seven stages.

__

 Elli Georgiadou Page: 74

Figure 5.2 The experimental process and opportunities for Improvement

Experiments involve a large number of people including the experimental subjects and

the scientific, academic and technical staff, the supervisors/invigilators and others.

Experiments need laboratories, equipment and other resources. Experimental materials

and tasks as well as methods for capturing data must be produced. Any of the many

internal and external factors constituting and affecting an experiment are liable to cause

failure and to invalidate an experiment as indeed happened in one of the experiments

carried out during this research.

An experiment yields results which need to be analysed and interpreted. The process

can be repeated, improved, refined and generalised. Logistics can cause delays or even

failures. The proposed framework allows for feedback at the end of each experiment, so

that necessary modifications could be carried out. Modifications are of two types

namely experimental design, and logistics. Experiments are normally replicated. This

iterative improvement builds a body of knowledge which in turn helps improve both the

design and the logistics.

5.8 Summary of Chapter 5

This chapter showed the derivation of the composite metric and outlined three of the

experiments to test the research hypotheses. The relationship between internal and

external metrics was studied and tested experimentally. Beliefs that have been held by

the community were tested.

__

 Elli Georgiadou Page: 75

Carrying out experiments is a very demanding and difficult undertaking. Considerable

preparation and arrangements for a successful and reliable process have to be

undertaken prior to any experiment. Among the tasks are: the design of the experiment,

the preparation of the experimental materials, the involvement of a large number of

people namely the experimental subjects (i.e. the people who will carry out the

experimental tasks) but also technical and academic staff.

Logistics and challenges regarding the availability of experimental subjects and

laboratories as well as staff for invigilating the experiments were presented in a paper

which included the proposal of a framework for guiding and improving the

experimental process.

__

 Elli Georgiadou Page: 76

CHAPTER 6

SOFTWARE PROCESS IMPROVEMENT

6.0 Introduction

This chapter presents the work on process improvement and performance. The

contributions reported here are: the Visualisation Framework I
5
P, the VALO5 and the

integration of the two.

6.1 Knowledge Sharing, Process Maturity and Process

Improvement

The philosophy and belief of this researcher as well as experiences from the

manufacturing industry gave rise to the following assumptions:

Assumption 1: Process Improvement impacts directly on Product Improvement.

Assumption 2: Process Improvement depends on Maturity level and Knowledge

Sharing.

Although it is necessary to improve deficient or failing products it is also important

(even more important) to improve the process. This realisation is clearly evidenced and

practiced in the manufacturing industry. This part of research explored the

relationship of Knowledge Management, Knowledge Sharing, Process Improvement,

Performance and Valorisation.

Paper XIII argues that Knowledge Management (KM) and Knowledge Sharing (KS)

are strongly linked to organisational maturity. The mechanisms that enable this upward

movement, and the achievement of measurable improvements in performance

(depicted by the volume of the inverted cone at each level) as the organisation climbs

from an adhoc/incidental level to institutionalised, higher levels of process maturity,

were investigated.

__

 Elli Georgiadou Page: 77

The I
5
P visualisation framework (shown in Figure 6.1) developed here aligns a

Knowledge Sharing level to the appropriate maturity level and characterises the process

from incidental to innovative. This framework provides the basis, in terms of

preparedness and disposition towards knowledge sharing, for estimating and measuring

organisational performance. In today’s competitive global business environment

organisations are increasingly dependent on Information and Communication

Technologies (ICTs) and particularly vulnerable to knowledge dilution.

Figure 5.1 The I
5
P Framework

Figure 6.1 - The I
5
P Visualisation Framework

The framework links knowledge sharing to process maturity, and aims to encapsulate

accumulated tacit knowledge in the organisation by preserving it for future needs. The

framework will be useful to Information Technology (IT) organisations especially those

that are familiar with capability maturity models, such as CMMI (Jalote, 2000).

Knowledge Sharing between project teams, across departments and across the whole

organisation depends on the process maturity level (Georgiadou et al., 2015). Trust

engenders motivation and improves the process. Hall, T. (2002) carried out an analysis

which provides managers with insights into designing appropriate SPI implementation

__

 Elli Georgiadou Page: 78

strategies to maximise practitioner support for SPI.

The I
5
P framework was developed with the participation of an industry based

researcher and practitioner (Mr Bo Balstrup). It was validated by experts in both

academia and industry and was supported by and implemented for the European

Leonardo Da Vinci Project VALO project (number 2011- l -GR I - LEOOS -06789 in

which Middlesex University was a partner, and of which I was initially the local

Middlesex Co-ordinator).

6.2 Innovation, Maturity Growth, Quality and

Valorisation

As the maturity of process grows, the quality of both processes and products improves.

Innovation is encouraged and valorisation of results is facilitated. It is evident that high

quality products (including research results) can be more easily disseminated and

exploited.

Paper XIV presents the development of the VALO5, which is a novel Valorisation

Model (shown in Figure 6.2). Valorisation involves dissemination and exploitation

activities. The overall objective of valorisation is to promote a project and its results,

and to foster their use by different individuals and organisations, with the attempt of

continuously spreading and improving the usage and the content of the results. Decision

makers need to be convinced of the value of project outputs, and target groups need to

be identified before dissemination. For continued exploitation of a project’s results the

identification of new environments, new contexts and new target groups are necessary.

__

 Elli Georgiadou Page: 79

Figure 6.2 – The VALO5 Model

Continuous Process Improvement Principles through on-going review of progress

requires planning, implementing, checking/reviewing and correcting/modifying

ensuring that errors, omissions or adaptations to accommodate changes .It is based on

the principle of the 5-layer maturity model which was also used for the I
5
P model. At

every step Deming’s PDCA cycle of continuous improvement is employed to Plan, Do,

Check, Act. This work was partially financed by the European Leonardo Da Vinci

project number 2011- l -GR I - LEOOS -06789 in which Middlesex University was a

partner, and the author was co-investigator).

In Georgiadou and Sheriff (2008) and Georgiadou et al. (2015) the I
5
P Framework and

the VALO5 project were further integrated (Figure 6.3) to show that as the Process

Maturity rises, Knowledge sharing also rises, the performance of an organisation moves

from the unpredictability level to the optimising level, thus generating the prerequisites

for growth in the gained value from projects. Performance and Valorisation increase

from Opportunistic (level) through to Optimising (level 5).

VALO5

1

Opportunistic

3

5

4

Observant

Organised

Objective

Optimising

2

__

 Elli Georgiadou Page: 80

Figure 6.3 - Integrating I
5
P & VALO5

6.3 CoFeD: A Visualisation Framework for Comparative Quality

Evaluation

Quality evaluations for the purpose of selection are an everyday occurrence informing

all decisions spanning the most trivial to the most profound in our individual lives, our

professional lives and our scientific endeavours. The challenge of making the most

appropriate selection especially from a plethora of available options becomes enormous

when the risks of making the wrong choice are imminent and when they have the

potential of high and even catastrophic impact. Evaluation for the purpose of selection

can be a challenging task particularly when there is a plethora of choices available.

Short- listing, comparisons and eventual choice(s) can be aided by visualisation

techniques.

In Paper XV Feature Analysis, Tabular and Tree Representations, and Composite

Features Diagrams (CFDs) were used for profiling user requirements and for top-down

profiling and bottom-up evaluation of items (methods, tools, techniques, processes and

__

 Elli Georgiadou Page: 81

so on) under evaluation. The resulting framework CoFeD enables efficient visual

comparison and initial short-listing. The second phase uses bottom-up quantitative

evaluation which aids the elimination of the weakest items and hence the effective

selection of the most appropriate item. The versatility of the framework is illustrated by

a case study comparison and evaluation of two agile methodologies. Figure 6.4 shows

the architecture of CoFeD which revolves around a central hub, the process of

continuous Review. This ensures continuous improvement of process and continuous

improvement of its outputs (products).

Figure 6.4 - The CoFeD Framework Architecture

The techniques used within CoFeD are Feature Analysis, tree representation,

Composite Features Diagrams (CFDs), tabulation, and Kiviat Diagrams.

Visualising the profiles of items (methods, tools, people, artifacts and so on) under

investigation helps novices, practitioners and experts, to make informed and quick

judgements and make decisions. CoFeD and particularly the CFD technique have been

used by a notable mobile phone company (which cannot be disclosed because of

commercial confidentiality) to plan new versions of their products looking particularly

at comparing and improving the playfulness of mobile phones.

6.7 Summary of Chapter 6

This chapter focused on Process Improvement and was based on the assumptions that

 1: Process Improvement impacts directly on Product Improvement, and

__

 Elli Georgiadou Page: 82

2: Process Improvement depends on Maturity level and Knowledge Sharing.

The I
5
P visualisation framework provides a mechanism that enables the estimation

and quantification of the maturity growth, knowledge sharing and upward movement,

and the achievement of measurable improvements in performance (depicted by the

volume of the inverted cone at each level) as the organisation climbs from an

adhoc/incidental level to institutionalised, higher levels of process maturity, were

investigated.

The VALO5 model (which was applied to a the European Research and Knowledge

Transfer project VALO contributes to the debate on gaining value after complication of

a project either in industry or academia. Valorisation is itself a process which can grow

and improve.

The integration of I
5
P and VALO5 as well as the Deming cycle Plan, Do, Check, Act

(PDCA) emphasise the need for and the benefits of Continuous Improvement.

The CoFeD Framework revisits the concept of Product Improvement which also

follows a process based on the principle of continuous review and improvement. This

constitutes the third pillar of the overall research.

__

 Elli Georgiadou Page: 83

CHAPTER 7

REFLECTIONS AND REFINEMENTS ACROSS THE

RESEARCH JOURNEY

7.0 Introduction

This chapter presents reflections on metrics validity through revisiting the composite

metric rho (). It also considers the ethical and legal dimensions of systems failures

and recurring problem of terminology management/mismanagement and the need for

terminology disambiguation for creating clarity.

7.1 Revisiting the re-engineering factor rho () and metrication

One of the early contributions of this research was the development and introduction of

the re-engineering factor rho () which enables decision makers to either embark onto

re-engineering legacy code or onto developing from scratch. Legacy code needs to be

continuously updated, corrected, augmented, extended, migrated to new environments,

platforms, languages etc.

Since I started this research journey many attempts to address the issue of system

failures resulted in new lifecycle models, methodologies, techniques, tools. Yet systems

continue to malfunction or fail.

Metrics and metrication of systems is by far the most rigorous method of

understanding, controlling, and improving systems. A large number of metrics have

been proposed, developed and used over 40 years. On revisiting rho (), a small

addition to this vast collection of metrics, I found it necessary to formally present a

validation which I had not explicitly presented in earlier years.

Thus in Paper XVI “Is the Composite Software Metric  (rho) a Good Metric? “

which I presented at the 26th International Software Quality Conference, 26 years

__

 Elli Georgiadou Page: 84

since I presented Paper I at the very 1st International Software Quality Conference in

1993, I reviewed the major contributions by researchers and practitioners in software

metrics.

Measures and quantitative information are of interest to both researchers and

practitioners. Measurements are needed for understanding the current situation, for

estimating costs and risks and, generally, for aiding decision makers in their operations.

It is the backbone of sciences and engineering. Software Engineering is no exception.

Software measurement and metrics have been developed and used for planning,

estimation and improvement. Metrics can be simple counts, ratios, comparisons and

estimations. They form the basis of most decisions in science, engineering,

organisations and life in general.

Using Elaine Weyuker’s Good Metrics Properties, the author validated the four module

metrics namely Granularity (which refers to size), Number of Local Variables (which

indicates the degree of cohesion), McCabe Complexity (which gives the alternative

paths through the code and hence the number of test data required to exercise the code),

and Information Flow (which indicates the degree of coupling). It was concluded that

the composite metric  (rho), satisfies the Weyuker properties (Weyuker, 1988) since

all its four constituent metrics satisfy these properties individually.

7.2 The need for Disambiguation of Terms

In natural languages we use words as synonyms and thus we use them interchangeably,

but mostly when we intent to place particular emphasis on what we are trying to

communicate. However, scientists and especially researchers give new or even

erroneous meanings to existing words or create new words and combinations of words

to name concepts, ideas, theories and products. An example from the Information

Systems and Software Engineering domains of erroneous use of terms as synonyms

from the Information Systems and Software Engineering domains is that of method and

methodology. The (mis)use of these terms as synonyms has been perpetuated for over

40 years.

__

 Elli Georgiadou Page: 85

Such phenomena usually appear hen systems, processes or disciplines are new and

immature. For example a study by Bozkurt et al. (2015 in their examination of 633

scholarly articles (covering 5 years from 2009 to 2013) reported that at least 12 terms

are being used by scholars to describe Distance Education which is due to the

unprecedented explosion of technology-based learning. These new terms are similar but

not the same. They are, however, often used interchangeably as synonyms.

Software Engineering experienced unprecedented growth of new technologies, methods

and theories in recent decades. As a result a large number of terms have been

introduced. However, definitions of these terms can vary even across various ISO

standards. For this reason, it has become necessary to collect and standardise

terminology.

In Paper XVII “Navigating the labyrinth of Software ‘re’ words” an examination of

terms such as reuse, restructuring, re-engineering, reverse engineering, retro

engineering and refactoring where considered. Their meanings and purpose were

examined. These ‘re’ words were identified as processes often overlapping and inter-

related but with their distinct character and emphasis. It was concluded that these ‘re’

processes aim to bring expected quality improvements but also potential problems

arising from their use. The main benefits are reuse and often lower productivity costs

than costs incurred from developing from scratch.

For example the expected quality improvements of the re-engineering process, which

is the primary focus of this research, are: simplicity, understandability, reusability,

usability, responsiveness, maintainability, adaptability, reliability, and efficiency. The

paper identified and summarised the potential benefits of this study for practitioners but

also for academics and scholars.

Paper XVIII (Georgiadou, 2018) reports on the current debate on terminology

management. According to ISO (2010) Systems and software engineering —

Vocabulary, “The systems and software engineering disciplines are continuing to

mature while information technology advances. New terms are being generated and

new meanings are being adopted for existing terms. This International Standard was

__

 Elli Georgiadou Page: 86

prepared to collect and standardise terminology…. It provides definitions that are

rigorous, uncomplicated, and understandable by all concerned.”

During the current decade, the debate on the need for terminology standardisation

intensified, evidenced by research presented in Kirsch& Sauberer, (2011), Jacobson et

al. (2013), (Clarke et al., (2016), and Sauberer et al., (2017). Researchers have argued

that conceptual modeling, vocabularies, taxonomies, and ontologies are mechanisms of

understanding and standardization.

According to Clark et al. (2013) “conceptual modelling provides a mechanism by

which a shared understanding between business domain specialists and IT specialists

positively enhances the alignment of business and IT goals leading to improved quality

of IT Solutions.”

Ontologies formalise knowledge meaning, and facilitate the search for contents and

information. Standardised terminology formalises knowledge meaning and facilitates

the search for contents and information. The paper presented a chronology of seminal

contributions to the terminology debate.

The systems and software engineering disciplines are continuing to mature while

information technology advances at an unprecedented rate. During their journey from

the general to the specific and then to the general they often generate new knowledge

expressed in novel interpretations of existing terms or they even generate new terms in

order to exemplify their research contribution, the originality of their work .

Continuous change and continuous improvements, innovations and changes in

technologies bring their own new terms (which may be synonyms to existing terms) to

add to the already highly populated vocabulary of Software Engineering. This in turn

generates ambiguity.

Practitioners are normally focused on in-house projects and challenges. Their own

experiential knowledge is often very useful for the theoreticians especially when they

form part of the same team integrating theory and practice (Paper XVIII, 2018).

__

 Elli Georgiadou Page: 87

For this purpose I proposed a framework (shown in Figure 7.1) for launching, carrying

out and implementing the terminology disambiguation process. It is proposed that the

disambiguation of terms is a cyclic sub-process to ensure improvements are achieved

through continuous monitoring and coordinating.

Figure 7.1 - A framework for the effective disambiguation of terms

[Source: Paper XVIII]

The central node (Number 8) forms the core of the framework. It is the on-going sub-

process of reviewing all the work coming from all other stages and all committees, sub-

committees, standards bodies and so on. The bidirectional arrows emphasise the need

of information change, updating all stakeholders and responding to external changes.

__

 Elli Georgiadou Page: 88

Terms and their relationship to other terms may be rejected or accepted, modified,

refined, and incorporated in existing databases. If experts disagree and cannot

reconcile their differences in opinion, terms may be rejected or revisited for further

elaboration. Without stifling creativity and imagination and the resulting generation of

new terms or new meanings to existing terms, it is necessary to employ mechanisms to

capture them but more importantly to identify and describe their relationship to existing

terms.

7.3 Who should be responsible for bad quality and systems

failures?

Software systems and software projects have been regularly failing causing losses

which are not only financial but social too. The term ‘social loss’ implies:

 losses due to poor and varied performance of a product;

 failure to meet the customer’s requirements of fitness for use or for prompt

delivery;

 harmful side-effects caused by the product.

Thus it is important for educators to raise awareness among the new cohorts of

students of their responsibility as scientists and as human beings to produce

correct, reliable, functional and maintainable systems.

In paper XIX (Georgiadou& George, 2006) “Information Systems Failures: Whose

responsibility?”) , this question was posed concentrating on systems failures from the

legal point of view. Although there is nowadays greater awareness of the dangers and

possibilities of litigation in case of failure, and some awareness of the social

responsibility of engineers, managers, and financiers, there is still low awareness of and

commitment to the ethical dimension.

In Rahanu et al. (2018) it was argued that “a set of defensible moral obligations that

must be fulfilled in the development and deployment of systems, protagonists such as:

project managers, software engineering teams, systems analysts, clients, etc. can fulfil

their ethical duties, thus increasing the likelihood a deployed system that is compliant

with principles of health and safety and wellbeing of its users. Ultimately systems

development and deployment must be underpinned with ethical consideration.”

__

 Elli Georgiadou Page: 89

7.4 Quality and Value are in the eye of the stakeholder

In Siakas, et al. (1997) Berki suggested that Quality is in the eye of the stakeholder. In

paper XX a brief review of existing holistic, inclusive and participative approaches

was presented. However, it was noted these approaches focused on ‘success’ rather

than value. These approaches strived to enhance software products and/or software

processes through value surrogates such as participation, negotiation, fairness,

consensus, democracy, interaction, discussion and empowerment. Yet, software

development is far from perfect. In paper XX it was proposed that, emphasis should

aim at delivering mutually acceptable values through Value Compatible Appreciation

(VCA), rather than focusing on surrogates of value which results in some types of

compromise. VCA would engender the recognition and appreciation of mutual benefits

and constraints.

7.5 Original contributions of this research

This research made several contributions to the debate on and practice of software

quality, product quality, process quality and their improvement. It also developed

metrics, guidelines, models and frameworks for guiding various processes and

activities.

 Tables 7.1a, 7.1b, and 7.1c summarise these contributions, the benefits they are

intending to achieve, their limitations and indications of future work.

__

 Elli Georgiadou Page: 90

Table 7.1a Research Contributions, Benefits, Limitations and Future Work

Contribution Benefits Limitations Future Work

Re-engineering Factor

a Composite Metric

rho ()

Indicator for effective

decision making on re-

engineering (or not) of

legacy code.

Applies only to procedural code at

the moment.

Additional composite metrics e.g.

develop:

u for improving usability

oo for deciding on re-

engineering of OO code

GEQUAMO &

GEQUAMO II

Generic Customisable

Visualisation Quality

Model enabling

qualitative and

quantitative evaluations

for identifying strengths

and weakness and for

the purpose of selection.

GEQUAMO uses both

qualitative and

quantitative methods for

classifying features and

their sub-features, and

for measuring

respectively.

The sub-attributes decomposition

may result in overlaps of tree

branches (must be controlled

through the construction rules).

The CFD (Composite Features

Diagramming) technique is also a

thinking tool for classifying groups

of attributes and all their lower

levels of attributes/features

Implementation of automated tools

for visualising the profiles of items

under evaluation and for bottom up

measurement and quantification.

__

 Elli Georgiadou Page: 91

Table 7.1b Research Contributions, Benefits, Limitations and Future Work

Contribution Benefits Limitations Future Work

A Framework for the

Design and Execution of

Controlled Experiments

Streamlining the

process which can be

repeated, improved,

refined and

generalized. Logistics

improvement. A

body of knowledge

can be gathered and

processes can be

improved.

Limited opportunities and extent to

which identified relationships exist

in the real world.

Further replication of experiments for

additional validation and refinement

of the proposed Phases of the

Framework.

The I
5
P

Framework

Depicts the maturity,

preparedness and

disposition towards

knowledge sharing, for

estimating and

measuring

organisational

performance.

Implemented in and

validated by experts

from industry and

academia.

 Longitudinal monitoring of different

size companies to obtain further

performance measurements.

VALO5

A new model for

Innovation, Maturity

Growth, Quality and

Valorisation.

 Longitudinal monitoring of different

companies to obtain further data for

facilitating the growth and gaining

added value for companies.

__

 Elli Georgiadou Page: 92

Table 7.1c Research Contributions, Benefits, Limitations and Future Work

Contribution Benefits Limitations Future Work

CoFeD: A Visualisation

Framework for

Comparative Quality

Evaluation

Architecture of

CoFeD revolves

around a central

hub, the process

of continuous

Review and

improvement.

Tried and tested

representation and

visualisation

techniques.

 Automated tools for profiling and

visualisation

A Framework for

the Disambiguation

of Terms

Standardisation ,

Clarity

May stifle innovation and creativity Co-ordinate with standards working groups

Guidelines for

Value

Compatibility

Appreciation

Analysis

Avoidance of

dissent, conflict

and resistance to

change

 Industrial surveys and case studies

__

 Elli Georgiadou Page: 93

CHAPTER 8

CONCLUSION

This chapter is the overall conclusion which summarises the Contributions to

Knowledge and the Significance of the Study.

The ubiquitous presence of Software Systems brings many benefits to individuals,

groups, organisations, and society at large. However, as they become increasingly

complex a large number of them are regularly failing. Failed or challenged systems are

not only costly financially, they are, and have been, harmful in terms of safety and

violation of privacy.

The moment a software system goes live it is indeed a legacy system. The rate of

change in technologies means that, apart from undergoing corrections to accommodate

new or changed requirements, systems must accommodate change in general. They

must constantly evolve and adapt. Changes can bring improvements but they are also

likely to have a ripple effect which can be turbulent especially in complex and

embedded systems.

Even when software systems continue to function, they maybe deficient and thus they

require continuous corrective maintenance because requirements:

(i) had been initially misunderstood,

(ii) had been omitted or mis-specified, or

(iii) have changed.

Also, even if existing systems continue to function, as technologies change, they need to

be migrated to new platforms and programming languages. Maintenance in this case is

adaptive or perfective as is the case of performance improvement.

Preventive maintenance could be carried out, but in reality most of the time the whole

software engineering community is ‘firefighting’ as problems crop up regularly.

Although there has been a gradual shift from corrective to preventive methods, and the

focus shifted from primarily product improvement to process improvement, software

systems and also software projects have been failing regularly. Often software projects

__

 Elli Georgiadou Page: 94

are abandoned after several years, and after wasting several millions of pounds. A brief

look at articles such as “Britain: The health service's IT problem; Computerising the

NHS”; The Economist, Oct 19, 2002, Vol.365 (8295), pp.51-52 will attest to the

enormity of the problem.

This research spanned a period of over 25 years and encompassed aspects of quality

improvement, starting from product improvement and re-engineering of legacy code,

moving to process improvement and establishing interrelationships of process and

product quality.

Controlled experiments were used to test various hypotheses which were born out.

Software characteristics (both internal and thus directly measurable) and external

(indirectly measurable) were studied and used to decide whether restructuring legacy

code is advisable.

On re-engineering, this thesis contributes the novel composite metric rho (), which

can act as an indicator for decision makers on whether legacy code should be

restructured or abandoned to be replaced by developing a new system from scratch.

A series of controlled experiments were designed and conducted to test the research

hypotheses. At the end of Part 1 of the research, a framework for the design of

experiments was developed.

The generic quality model GEQUAMO and GEQUAMO II were developed. They are

customisable, as each class of stakeholder places different emphasis on characteristics

such as usability, maintainability, and reliability. The models combine a top-down

qualitative method for feature analysis, decomposition and classification, and bottom

up quantitative evaluation and comparison, including visualisation, for the purpose of

selection.

Based on the assumption and widespread belief that process improvement impacts

positively on product improvement the research continued with a focus on process

improvement by looking at process maturity and knowledge sharing and their impact

on performance. The I
5
P framework was developed in collaboration with industry and

https://mdx.primo.exlibrisgroup.com/discovery/fulldisplay?docid=proquest224029225&context=PC&vid=44MUN_INST:hendon&lang=en&search_scope=Hendon_CI&adaptor=Primo%20Central&tab=default&query=any,contains,abandoned%20IT%20NHS%20project&offset=0
https://mdx.primo.exlibrisgroup.com/discovery/fulldisplay?docid=proquest224029225&context=PC&vid=44MUN_INST:hendon&lang=en&search_scope=Hendon_CI&adaptor=Primo%20Central&tab=default&query=any,contains,abandoned%20IT%20NHS%20project&offset=0

__

 Elli Georgiadou Page: 95

validated by experts from academia and industry. This framework provides a

mechanism for estimating performance improvement as the maturity and knowledge-

sharing within a team, a project, or an organisation advance from level 1 to level 5.

Further work on value gains from process improvement, the valorisation model VALO5

was developed under the auspices of a European Research and Knowledge Transfer

project. Further integration of I
5
P and VALO5 as well as the Deming PDCA continuous

improvement cycle (Georgiadou & Sheriff, 2008), and (Georgiadou, et al., 2015)

showed that process improvement can bring value to an organisation, and can reconcile

differences between different stakeholders.

The CoFeD Visualisation Framework for Comparative Quality Evaluation was

developed and illustrated by case studies. Finally a study of dominant discourse on

terminology management and the need for disambiguation of terms for the achievement

of clarity and standardization resulted in a framework whose architecture is built

around central hub of continuous review and feedback for continuous monitoring and

standardisation without stifling creativity and innovation.

In addition to the above metrics, frameworks and models the thesis contributes to the

on-going debate on software quality and quantifiable quality improvement to both

product and process.

Quality is difficult to define, very difficult to achieve, and even more difficult to

measure. In reality there can be no absolute or exact value for quality. The definition

below was proposed and used throughout this research:

Software Quality is the totality of product as well as process characteristics,

and their interaction and measurement (whether qualitative or quantitative)

that satisfy different stakeholder requirements.

In engineering everything is an approximation, a compromise – sometimes small

sometimes bigger. The degree of tolerance and threshold values/acceptable limits of

deviation depend on many interdependent factors.

__

 Elli Georgiadou Page: 96

Icarus’s flight to freedom ended up in disaster because the specifications given by his

father Daedalus who was an architect were ignored and the safe limits were violated.

"'My Icarus' he says; 'I warn thee fly

Along the middle track: nor low, nor high;

If low, thy plumes may flag with ocean's spray;

If high, the sun may dart his fiery ray.'"

(Ovid)

Flyvbjerg and Budzier (2011) warned that IT projects are nowadays so big and their

influence so wide ranging across many aspects of the organisation, that “they pose a

singular new kind of risk that can sink entire corporations, cities, and even nations.”

As software is integrated into bigger products and systems, the concerns can become

magnified. The software industry has the highest failure rate among all other

engineering disciplines.

An occupation that runs late on more than 75 % of projects and cancels as many as 35

% of larger projects is not a true engineering discipline’ (Jones, 2010).

As systems are not only software (Kaposi and Pyle, 1993) a holistic approach is

necessary in order to achieve faster and better progress in quality improvement.

Generally, quality is desirable by all stakeholders. Yet as “quality is in the eye of the

stakeholder” (Siakas et. al, 1997) it is necessary to address the specific. Reconciling

different worldviews which Peter Checkland (1981) called ‘accommodating’ different

Weltanschauungen is a challenge that needs continuous attention and effort.

Finally, this research demonstrated that adopting a holistic approach enables the study

and the improvement of both the product and the process. In addition it is possible to

estimate and measure such improvements. It is certain that changes to the culture of

relying on corrective strategies and actions to preventive strategy and actions are

imperative.

“The world as we have created it is a process of our thinking. It cannot be changed

without changing our thinking.”

Albert Einstein (in an Interview with Michael Arminne, June 23
rd

, 1946)

__

 Elli Georgiadou Page: 97

CHAPTER 9

EPILOGUE – PERSONAL REFLECTIONS

9.0 Introduction

The Epilogue is a personal reflection on my research journey, my quest for knowledge

and understanding, the creation of new knowledge, also the role of educators in raising

awareness and sense of responsibility in preparing the younger generations of software

engineers to understand and embrace ethical principles in their future professional and

personal life.

9.1 Quality and Social Responsibility

Over the 25 years of this research many changes took place in the software engineering

and information systems fields. Methods, methodologies, lifecycles, techniques, tools

and frameworks were proposed, introduced, improved, and abandoned. However, the

problems of software systems’ deficient quality persist. It is also inevitable to need to

deal with legacy issues as software evolves and changes. Thus, the research reported

here is relevant to both the discourse and the practical implementations of solutions

offered by academics and practitioners.

My quest for knowledge and understanding culminated in the creation of new

knowledge, and the development of models and frameworks as mechanisms for product

and process improvement. The visualisation techniques, models and frameworks,

which I developed, aid understanding and decision making for both researchers and

practitioners. The application of my research findings in industry, as well as in

curriculum development, and European Projects for Research & Knowledge Transfer

has been a gratifying endorsement.

Process improvement is intertwined with product improvement. This integration is

widely believed to result in improved products and services. In Rahanu et al. (2018) it

was emphasised that “central to each of software process improvement models is the

notion of a focused and sustained effort towards building a process infrastructure of

__

 Elli Georgiadou Page: 98

effective software engineering and management practices. The software process

improvement strategy aims for something that is more focused, more repeatable, and

more reliable, with regards to the quality of the system developed (conformance to

requirements, reliability, usability etc.), the timeliness of delivery and the expected cost.

Quality in use also has implications on performance, reliability, and usability. The

overall assumption is that a sound and improving process is likely to result in high

quality systems i.e. process improvement is likely to result in improved products”.

My role as a researcher and as an educator enabled me to impart knowledge and expose

my students to my philosophy of social responsibility, fairness, and morality. I was able

to oversee the development of new curricula on Software Product and Process

Improvement, particularly at Masters level, to discuss and test my knowledge and

discoveries with many thousands of students (classes I taught were often 300-400

strong per annum), and dozens of colleagues in the UK, Europe and further afield.

Links with industry kept my feet on the ground as practitioners have a focused mind on

real, tangible problems that need to be addressed in the short term than is the case with

academic investigations.

The advent of global connectivity and rapid technological change brought with them

intense social change, threats against existing distributions of power, and capital. New

obligations, new kinds of crime and over-dependency on interconnected technologies

and embedded systems, are making it difficult to know whose responsibility it is to

ensure the quality of systems in use can be assured. As an educator, in order to instill

in my students (current and future software engineers) principles of right or wrong, I

often start my classes on Information Systems Quality Management with the question:

Is 99% quality level good? I invariably receive a resounding YES! I give them 5

minutes to discuss among themselves, and then I show them the following table:

3.8 Sigma = 99% Good 6 Sigma = 99.999 % good

20,000 articles of mail lost each hour 7 articles lost per hour

15 mminutes of unsafe drinking

water every day

2 minutes unsafe water per year

5,000 incorrect surgical operations

per week

2 incorrect procedures per week

2 short or long landings at most

major airports each day

1 short or long landing every 5 years

200,000 wrong drug prescriptions

each year

68 wrong prescriptions per year

[http://www.snuniversity.nl/downloads/University/artikel-crosby.pdf (accessed 2/07/2018)]

__

 Elli Georgiadou Page: 99

After a few more minutes of discussion, I ask “What if you or a member of your friends

or family is the patient that undergoes one of the incorrect surgical procedures, or if you

or a loved one is a passenger on one of the short or long aircraft landings?” Their

answers to this and to the first question are quite revealing as the students come to

realise and reflect on the very real dangers of badly designed, poorly tested, erroneous,

failing systems. The students can (and do) reflect on the concept and the importance of

building quality into systems. They can also reflect on their own future role and

responsibilities in this industry.

In addition, because the students originate from diverse backgrounds, cultures, and

countries I also urge them to think of the word or phrase for quality and its meaning in

their own mother tongue – only then they can feel and understand the importance of

quality. This was a challenge posed by Shimon Peres to over 2,000 delegates at the 10th

International Conference of the Israel Society for Quality, which I attended in

November 1994.

The word Quality itself was introduced in the English language c.1300; it means

“temperament, disposition”, and derives from old English qualite “meaning nature,

characteristic”, itself deriving from modern French qualité, from Latin qualitatem

“meaning property, nature, state, condition”, said to have been coined by Cicero to

translate the Greek (which is my own mother tongue) poiotes (ποιότης) meaning

degree of goodness. Simon Peres’ challenge made me think that ποιότης is also the

root of the word poet (which means creator in Greek) and also of the word poetry

“which is perceived by many as the highest form of intellectual creation”

[https://www.etymonline.com/word/quality (accessed 1/07/2018)].

It can be assumed that quality (meaning good quality) is universally desirable.

However, our field is still immature. Mature disciplines have clear and unambiguous

nomenclature. Standard definitions, and standard measures.

__

 Elli Georgiadou Page: 100

9.2 Software Engineering: Is it an Engineering discipline?

Jackson (1994) asserted that “software engineering is not a discipline; it is an

aspiration, as yet unachieved. Many approaches have been proposed, including

reusable components, formal methods, structured methods and architectural studies.

These approaches chiefly emphasise the engineering product; the solution rather than

the problem it solves.”

Abran et al. (2003) emphasised that “the metrology perspective suggests that the field

of software measurement has not yet been fully addressed by current research, and that

much work remains to be done to support Software Engineering as an engineering

discipline based on quantitative data and adequate measurement methods meeting the

classic set of criteria for measuring instruments as described by the metrology body of

knowledge in large use in the engineering disciplines”.

Despite the immense progress achieved it seems that even after 50 years since the

coining of the term Software Engineering we are still far from justifying the term

engineering compared to other types of engineering.

The work carried out by a number of researchers, such as Holcombe and Ipate, (1998)

demonstrates that formal methods are probably the best way of designing correct

systems. Anthony White (2013) developed a control-theoretic model of the

requirements process. This model addresses “the questions of deadlines, quality

objectives, effort, and size of the requirements team. The objective of the model,

applied to the requirements process, is to help a manager make decisions regarding the

expansion of the workforce, change of quality in the process and to control how the

requirements process achieves its objectives”.

 9.3 Continuous search for truth, knowledge and improvement

I, like most researchers started my investigation in a top-down manner, a wide ranging

ambition spanning a large knowledge area often involving universal concepts, ideas,

themes, principles, and ideals that are found and can be proven within, between, and

across various subject areas and disciplines.

__

 Elli Georgiadou Page: 101

As researchers we gradually gain insights and understanding of the enormity and

complexity of our originally ambitious scope and purpose, we narrow down our

investigation focusing on smaller and more specific problems.

Cerca Trova (seek and ye shall find)

[https://www.florenceinferno.com/cerca-

trova-or-catrovacer/”(last accessed

1/07/2018)]. may be a mysterious

inscription but inspiration, creativity,

perseverance, an open and questioning

mind are necessary abilities or qualities

that a researcher must have to engage in

effective problem solving and to find the

underlying truth in any situation.

“Cerca trova” (seek and ye

shall find) is a mysterious

inscription that is located at the

top of Vasari’s fresco “The

Battle of Marciano” positioned

in the Hall of the Five Hundred

in Palazzo Vecchio, Florence,

Italy.

The words mean "Seek and you

shall find." They appear on a

flag in a battle scene (part of the

painting can be seen here),

painted as a fresco by Giorgio

Vasari on one of the walls of the

Salone dei Cinquecento (council

chamber) of the Palazzo

Vecchio.

Some people think that Vasari's

painting may hide an earlier

work by Leonardo da Vinci,

called "The Battle of Anghiari."

My research journey was very long I did not wish it (as Kavafis a Greek poet from

Alexandria, Egypt advised in 1911). However, life took me in different directions: there were

illnesses, bereavements, temporary pauses, long stoppages, backtrackings, extraordinary

work-loads, going in circular paths, restarting… Throughout this journey I gathered much

knowledge, and I created some new knowledge too. I gained understanding of Software

Systems Failures, and understood my own limitations. I am wiser. My life-long learning

journey for seeking and sharing knowledge, for achieving deeper understanding, creating new

knowledge and finding some solutions to seemingly unsolvable problems continues to

perhaps reach the elusive destination of ‘Ithaka’.

https://www.florenceinferno.com/wp-content/uploads/2013/07/cerca-trova1.jpg

__

 Elli Georgiadou Page: 102

Ithaka by Constantine Kavafy

As you set out for Ithaka

hope the voyage is a long one,

full of adventure, full of discovery.

Laistrygonians and Cyclops,

angry Poseidon—don’t be afraid of them:

you’ll never find things like that on your way

as long as you keep your thoughts raised high,

as long as a rare excitement

stirs your spirit and your body.

Laistrygonians and Cyclops,

wild Poseidon—you won’t encounter them

unless you bring them along inside your soul,

unless your soul sets them up in front of you.

Hope the voyage is a long one.

May there be many a summer morning when,

with what pleasure, what joy,

you come into harbours seen for the first time;

may you stop at Phoenician trading stations

to buy fine things,

mother of pearl and coral, amber and ebony,

sensual perfume of every kind—

as many sensual perfumes as you can;

and may you visit many Egyptian cities

to gather stores of knowledge from their scholars.

Keep Ithaka always in your mind.

Arriving there is what you are destined for.

But do not hurry the journey at all.

Better if it lasts for years,

so you are old by the time you reach the island,

wealthy with all you have gained on the way,

not expecting Ithaka to make you rich.

Ithaka gave you the marvelous journey.

Without her you would not have set out.

She has nothing left to give you now.

And if you find her poor, Ithaka won’t have fooled you.

Wise as you will have become, so full of experience,

you will have understood by then what these Ithakas mean.

(C.P. Cavafy, Collected Poems. Translated by Edmund Keeley and Philip

Sherrard. Edited by George Savidis. Revised Edition. Princeton University Press,

1992)

__

 Elli Georgiadou Page: 103

REFERENCES

NOTE: Many additional references to the ones below appear at the end of

Papers I to XX.

Abran, A, Sellami, A, Suryn, W. (2003)Metrology, measurement and metrics in

software engineering, Proceedings. 5th International Workshop on Enterprise

Networking and Computing in Healthcare Industry (IEEE Cat. No.03EX717).

Agrawal M., Chari, K. (2007) Software Effort, Quality, and Cycle Time: A Study of

CMM Level 5 Projects, IEEE Transaction on Software Engineering, Vol. 33, No. 3.

Avison, D., Fitzgerald, G. (1995), "Information Systems Development: Methodologies,

Techniques and Tools", McGraw-Hill, 2nd edition.

Avison, D., Fitzgerald, G. (2003) “Information Systems Development: Methodologies,

Techniques and Tools", Graw-Hill, 3
rd

 edition.

Basili, V., R. Selby, W. & Hutchins D. H. (1986), Experimentation in Software

Engineering. IEEE Trans. on Software Engineering, SE-12. p. 733-743.

Beck, K. (1999) Extreme Programming Explained: Embrace Change. Addison-Wesley.

Beynon-Davies, P., (1999) , "Human error and information systems failure: the case of

the London ambulance service computer-aided despatch system project," in Interacting

with Computers, vol. 11, no. 6, pp. 699-720, June 1999.

Berki, E., Georgiadou, E., Sadler, C., Siakas K. V., (1997): A Methodology is as

Strong as the User Participation, International Symposium on Software Engineering in

Universities - ISSEU 97, Rovaniemi, 7-9 March, pp.36-51.

Boehm, B. W., Brown, J.R., Kaspar, J.R., Lipow, M., MacCleod (1978) Charavteristics

of Software Quality, Amsterdam, North Holland.

Bozkurt, A., Akgun-Ozbek, E., Yilmazel, S., Erdogdu, E., Ucar, H. Guler, E., Sezgin,

S., Karadeniz, A., Sen-Ersoy, N., Goksel-Canbek, N.,Dincer, G.D., Ari, S. and Aydin,

C.H. (2015), Trends in Distance Education Research: A Content Analysis of Journals

2009-2013, The international review of research in open and distributed learning, Vol

16, No 1 (2015)

Briand, L. C.: Wüst, J. (2001), Integrating scenario-based and measurement-based

software product assessment. The Journal of Systems and Software, 59(2001), pp. 3-22.

Busha, C. A. & Harter, S. P. (1980). Research methods in librarianship: Techniques and

interpretations. New York: Academic Press.

Charette, R. N., (2005) "Why software fails [software failure," in IEEE Spectrum, vol.

42, no. 9, pp. 42-49, Sept. 2005. doi: 10.1109/MSPEC.2005.1502528

__

 Elli Georgiadou Page: 104

CHAOS Report (1994): The Standish Group International, Available on-lineat http://

www.standishgroup.com/sample_research/chaos_1994_1.php, 1994(accessed

1/07/2018).

CHAOS Report (2015): The Standish Group International,

http://www.standishgroup.com (accessed 1/07/2018).

Checkland P. (1981), Systems Thinking, Systems Practice, John Wiley and Sons Ltd .

Clark, T., Frank, U., Kulkami, V., Barn, B., Turk, D. (2013) Domain specific languages

for the model driven organization, GlobalDSL 2013 Proceedings of the First Workshop

on the Globalization of Domain Specific Languages Pages 22-27.

Clarke, P., Calafa, M., A. and Ekert, D. and Ekstrom, J. and Gornostaja, T. and

Johansen, Jorn and Mas, A. and Messnarz, Richard and Najera Villar, Blanca and

O'Connor, Alexander and O'Connor, Rory and Reiner, M. and Sauberer, G. and

Schmitz, K-D. and Yilmaz, Murat (2016) Refactoring software development process

terminology through the use of ontology. In: 23nd European Conference on Systems,

Software and Services Process Improvement (EuroSPI 2016), 14-16 Sept 2016, Graz,

Austria. ISBN 978-3-319-44817-6.

CMMI Product Team (2002) Capability Maturity Model, Integration (CMMISM),

Version 1.1 CMMISM for Systems Engineering, Software Engineering, Integrated

Product and Process Development, and Supplier Sourcing (CMMI-SE/SW/IPPD/SS,

V1.1) Continuous Representation, CMU/SEI-2002-TR-011, ESC-TR-2002-011,

Improving processes for better products.

Crosby, P. (1979) "Quality is Free", McGraw-Hill.

Dalcher, D. (2005). "Software Processes: Lessons and Reflections." Software Process

Improvement and Practice 10(2): 99-100.

Dalcher, D. (2014) Rethinking Success in Software Projects: Looking Beyond the

Failure Factors, in Software Project Management in a Changing World, Ruhe, G.,

Wohlin, C. (Eds), 2014, XX, 477 p.81 Springer.

Dalcher, D. (2017), Is it Time to Rethink Project Success? Keynote, Software Quality

Management International Confernce XXV, in proceedings Achieving Software

Quality, in Development and in Use, P Marchbank, M Ross, G Staples(eds) ,

Southampton Solent University, 2017.

del Águila, I.M., Palma, J. , Túnez, S. (2014) Milestones in Software Engineering and

Knowledge Engineering History: A Comparative Review, ScientificWorldJournal.

2014; 2014: 692510. (10.1155/2014/692510).

Deming, W.E., (1986).Out of the Crisis. MIT Press. Cambridge, MA.

__

 Elli Georgiadou Page: 105

Dennis S., Gouran, Randy Y. Hirokawa & Amy E. Martz(1986)A critical analysis of

factors related to decisional processes involved in the challenger disaster,Central States

Speech Journal,37:3,118-135,DOI: 10.1080/10510978609368212.

Dromey, R.G. (1995), A Model for Software Product Quality, IEEE Transactions on

Software Engineering, February, 1995, pp. 146-162. Elsevier, The Journal of Systems

and Software 47 (1999) 149 – 157.

Eveleens, J. L., Verhoef, C. (2010) "The rise and fall of the Chaos report figures," IEEE

Software, vol. 27, pp. 30-36, 2010.

Fenton, N. E., and S. L. Pfleeger, (1977), Software Metrics: A Rigorous Approach, 2nd

ed., Boston: International Thomson Computer Press. Fenton, N.E. (1994), Software

Measurement: A Necessary Scientific Basis, IEEE Transactions on Software

Engineering, Vol. 20, No.3, 199-206.

Fenton, N.E., Neil, M. (1999), Software metrics: successes, failures and new directions,

The Journal of Systems and Software 47 (1999) pp. 149-157.

Galliers, R. (Eds) (1992) Information Systems Research, Issues, Methods and Practical

Guidelines, Blackwell Scientific Publications.

Flyvbjerg, B., Budzier, A. (2011), Why your IT project may be riskier than you think.

Harv Bus Rev 89(9):83–85

Georgiadou E., Karakitsos, G.,Sadler, C., Stasinopoulos D. (1993) An experimental

examination of the role of re-engineering in the management of software quality,

Software Quality Management II Vol., Computational Mechanics Publications, 1993.

Georgiadou, E., Karakitsos G., Sadler C., (1994) "Improving the program quality by

using the re-engineering factor metric ", The 10th. International Conference of the

Israel Society for Quality, November 1994.

Georgiadou E., Sadler C.,(1995) "Achieving quality improvement through

understanding and evaluating Information Systems Development Methodologies", 3rd

International Conference on Software Quality Management, SQM'95, Seville, Spain,

Apr. 1995.

Georgiadou, E., (2003), “Software Process and Product Improvement: A Historical

Perspective”, International Journal of Cybernetics, Volume 1, No1, Jan 2003 pp172-

197.

Georgiadou, E., Sheriff, M. (2008) Reconciling stakeholder conflicts by analysing

apparently contradicting notions of value in SE projects, In: Software Quality

Management International Conference, 2008, Belfast, Northern Ireland.

Georgiadou, E., Siakas, K, V., Balstrup, B., (2010), The I5P Visualisation Framework

for Performance Estimation through the Alignment of Process Maturity and Knowledge

__

 Elli Georgiadou Page: 106

Sharing International Journal of Human Capital and Information Technology

Professionals, 2 (2), pp. 37- 47. ISSN 1947-3478.

Georgiadou, E., Siakas, K. V., Abeysinghe, G., Sheriff, M. (2015). Enhancing Project

Value through evaluating organisational maturity and knowledge sharing capability, in

R. Lock, R. Dawson, E. Georgiadou, M. Ross, G. Staples (eds), Outlook on Quality, the

BCS Quality Specialist Group’s Annual International 23rd Software Quality

Management (SQM) conference, 30 March, British Computer Society, Loughborough,

UK, pp. 47-62.

Marc-Alexis Côté, Witold Suryn, Elli Georgiadou, (2007) : “In search for a widely

applicable and accepted software quality model for software quality engineering”, .

Software Quality Journal 15(4): 401-416 (2007).

Georgiadou, E. (2003), GEQUAMO: a generic, multilayered, customisable, software

quality model. Software Quality Journal, 11 (4). pp. 313-323.

Georgiadou, E. (2008) “GEQUAMO II Verification, Validation and Improvement of a

Generic, Multilayered, Customisable, Software Quality Model “, Software Quality

Management, 2008, Ulster University, March 2008.

Georgiadou, E. , Siakas K.V. , Berki E., (2003): Quality Improvement through the

Identification of Controllable and Uncontrollable Factors in Software Development,

11
th

 EuroSPI 2003 (European Software Process Improvement Conference), Graz,

Austria, 10-12.12.2003.

Siakas K.V., Georgiadou, E. (2005): PERFUMES: A Scent of Product Quality

Characteristics, The 13
th

 Software Quality Management International Conference, SQM

2005, March 2005, Glouchestershire, UK.

Georgiadou E., Karakitsos G., Sadler, C., Stasinopoulos, D. (1993) "An experimental

examination of the role of re-engineering in the management of software quality", 1
st

Software Quality Management International Conference II Vol., Computational

Mechanics Publications, 1993.

Georgiadou, E., Karakitsos G., Sadler C., (1994) "Improving the program quality by

using the re-engineering factor metric ", The 10th. International Conference of the

Israel Society for Quality, Jerusalem, November 1994.

Georgiadou, E., Karakitsos, G., Sadler C., Stasinopoulos D, Jones, R. (1994) Program

maintainability is a function of structuredness, 2
nd

 International Software Quality

Management, Computational Mechanics Publications, Edinburg, Scotland, August

1994.

Georgiadou, E., Karakitsos, G., Sadler C., Stasinopoulos D, Jones, R. (1994)

“Program maintainability is a function of structuredness”, 2
nd

 Software Quality

__

 Elli Georgiadou Page: 107

Management International Confreence, Computational Mechanics Publications,

Edinburg, Scotland, August 1994.

Georgiadou, E., Keramopoulos, E. (2001) “Measuring the Understandability of a

Graphical Query Language through a Controlled Experiment”, 9th International

Conference on Software Quality Management, SQM 2001, April 2001, University of

Loughborough, UK.

Georgiadou, E., (2007) “A framework for the design and execution of controlled

experiments in Software Engineering”, Software Quality Management International

Conference, Special 50
th

 Anniversary of the BCS, Tampere, Finland, 2007.

Georgiadou, E., Siakas, K. “VALO5 (2013) – Innovation, Maturity Growth, Quality

and Valorisation”, Systems, Software and Services Process Improvement Systems,

Software and Services Process Improvement Communications in Computer and

Information Science, Springer, Volume 364, 2013, pp 294-299.

Georgiadou, E., White, A., Comley, R. (2017) “ CoFeD: A Visualisation Framework

for Comparative Quality Evaluation”, in Achieving Software Quality in Development

and in Use, P Marchbank, M Ross, G Staples (eds), 25th Software Quality

International Conference, 2017.

Georgiadou, E., (2018), “Is the Composite Software Metric  (rho) a Good Metric?”

in Computing and Quality, 26th Software Quality International Conference, 2018.

Georgiadou, E. (2009) “Navigating the labyrinth of software Re-words”, 17th

Software Quality Management International Conference, Southampton, UK, April

2009.

Georgiadou, E. (2018) “Reflections on the need for Disambiguation of Terminology

for software Process Improvement”, EuroSPI 2018, in Systems, Software and Services

Process Improvement, Volume 896, Communications in Computer and Information ,

Springer, 2018 (in print).

Georgiadou, E. & George, C. (2006) “Information Systems Failures: Whose

responsibility?” Proceedings of the 11th INternational Conference on Software Process

Improvement - Research into Education and Training, (INSPIRE 2006), April,

Southampton, UK, ISBN 1-902505-77-8.

Gilb, T. (1981) Evolutionary development, SigSoft, ACM SIGSOFT, Software

Engineering Notes, Volume 6 Issue 2, pp 17-17.

Gillies, A.C. (1992), "Software Quality: Theory and Measurement", International

Thompson Computer Press.

Grady, R., Caswell, D. (1987). Software Metrics: Establishing a Company-wide

Program. Prentice Hall.

http://link.springer.com/book/10.1007/978-3-642-39179-8

__

 Elli Georgiadou Page: 108

Hall, T., Jagielska, D., Baddoo, N. (2007) Motivating developer performance to

improve project outcomes in a high maturity organization, Software Quality Journal,

Vol 15, Issue 4, pp. 365-381.

Hirscheim, R.A., (1982), Information Systems Epistemology: A Historical Perspective,

IFIPWG82 [https://ifipwg82.org/sites/ifipwg82.org/files/Hirschheim_0.pdf (accessed

15/07/2018)].

Holcombe, M., Ipate, F. (1998) Correct Systems: Building a Business Process

Solution. Springer-Verlag, London

Howell, K.E., (2013), An Introduction to the Philosophy of Methodology, Sage

Publications, London 2013.

Hyatt, L.E. and Rosenberg, L.H., (1996), A software quality model and metrics for

identifying project risks and assessing software quality, 1996.

IEEE Standard 1061 (1998) IEEE Standard for a Software Quality Metrics

Methodology, Software Engineering Standards Committee of the IEEE Computer

Society.

ISO (2010) ISO/IEC/IEEE 24765:2010 (©ISO/IEC 2010 & © IEEE 2010), Published

by ISO in 2011, Switzerland.

ISO 9001 (1994), 2nd Edition: Quality Systems: model for quality assurance in

design/development, production, installation, ans servicing, International Organization

for Standardization, Geneva.

ISO (2001) Technical Committee ISO/IEC 9126-1:2001 Software engineering --

Product quality -- Part 1: Quality model.

ISO (2014): ISO/IEC 25000: 2014, Systems and software engineering -- Systems and

software Quality Requirements and Evaluation (SQuaRE) – Guide to SQuaRE.

Jacobson I., Pan-Wei Ng, McMahon P., Spence I., Lidman S. (2013). The Essence of

Software Engineering—Applying the SEMAT Kernel. Addison-Wesley.

Jackson, M. (1994) Problems, methods and specialization, Software Engineering

Journal, Volume 9, Issue 6, November 1994, p. 249 – 256, Online ISSN 2053-910X.

Jalote, P., (2000) CMM in Practice: Processes for Executing Software Projects at

Infosys. Addison Wesley Longman, 2000.

Jayaratna, N (1994), "Understanding and Evaluating Methodologies", NIMSAD:

ASystemic Approach, McGraw-Hill.

Jones, C. (2010) cited by Dalcher (2014) Software engineering best practices:lessons

from successful projects in the top companies. McGraw Hill, New York.

Juran, J. M., Blanton, Godfrey, A. (1999), Juran's Quality Handbook , McGraw-Hill.

http://researchprofiles.herts.ac.uk/portal/en/persons/nathan-baddoo(06f42040-a628-4898-88e8-b61090901ec1).html
http://researchprofiles.herts.ac.uk/portal/en/publications/motivating-developer-performance-to-improve-project-outcomes-in-a-high-maturity-organization(c93f56d1-b043-4973-90f1-3685cb7e5ae7).html
http://researchprofiles.herts.ac.uk/portal/en/publications/motivating-developer-performance-to-improve-project-outcomes-in-a-high-maturity-organization(c93f56d1-b043-4973-90f1-3685cb7e5ae7).html
http://digital-library.theiet.org/content/journals/sej/9/6;jsessionid=1g1l6z99cwmeq.x-iet-live-01

__

 Elli Georgiadou Page: 109

Kaposi, A., Pyle, I. (1993) Systems are not only software, Software Engineering

Journal, Volume 8, Issue 1, January 1993, p. 31 – 39.

Kirsch, B. I., Sauberer, G. (2011), Terminological Precision - A Key Factor in Product

Usability and Safety, in Design, User Experience and Usability, Theory, Methods,

Tools and Practice, Orlando, Florida, USA, DUXU 2011.

Kitchenham, B. (1996), Software Metrics, Measurement for Software Process

Improvement, NCC, Blackwell.

Kitchenham, B., and Pfleeger, S., (1996), software quality –– The elusive target, IEEE

Software, January (1996) pp. 12- 21.

Kulkarni, V. (2016), Model Driven Development of Business Applications – a

Practitioner’s Perspective, IEEE/ACM 38th IEEE International Conference on Software

Engineering Companion (ICSE-C).

Law, D., and Naeem, T., (1992), `DESMET: Determining and Evaluation methodology

for Software MEthods and Tools', Proceedings of BCS Conference on CASE - Current

Practice, Future Prospects, Cambridge, England, March 1992.

Lee, A. (1991). Integrating positivist and interpretivist approaches to organizational

research. Organ. Sci. 2 342–365.

Lehman, M.M. (1998) Software's Future: Managing Evolution, IEEE Software, Vol 15,

No 1, 1998, 40-44.

Lehman, M.M., (1980), Programs, life cycles, and laws of software evolution. Proc.

IEEE 68 (9), 1060–1076.

Lehman, M.M., Ramil, J.F., Wernick, P.D., Perry, D.E., Turski, W.M., (1997), Metrics

and laws of software evolution - the nineties view. In: Proceedings of the 4th Inter-

national Symposium on Software Metrics. IEEE Computer Society, Washington, DC,

USA, p. 20.

Liebowitz, J., (2015), IT Project Failures: What Management Can Learn, IT Professional,

Nov.-Dec. 2015, Vol. 17(6), pp.8-9.

Logothetis, N. and Wynn, H.P. (1989) Quality through Design: Experimental Design,

Off-Line Quality Control and Taguchi’s Contributions. Clarendon Press, Oxford.

McCall, J. A. &, Richards, P. K. & Walters, G. F. (1977). Factors in Software Quality,

US Rome Air Development Center Reports, US Department of Commerce, USA.

Miguel, J.P., Mauricio, D. , Rodriguez, G. (2014) A Review of Software Quality

Models for the Evaluation of Software Products, International Journal of Software

Engineering & Applications (IJSEA), Vol.5, No.6, November 2014 , DOI :

10.5121/ijsea.2014.5603 31.

Naumann, J.D., Jekins, M., (1982), Prototyping: The New Paradigm for Systems

http://digital-library.theiet.org/content/journals/sej/8/1;jsessionid=1fy3ovzep222p.x-iet-live-01

__

 Elli Georgiadou Page: 110

Development, MIS Quarterly, Vol. 6, No. 3 (Sep., 1982), pp. 29-44.

Orlikowski, W.J., Baroudi, J.J. (1991) Studying information technology in

organizations: research approaches and assumptions. Information Systems Research

2(1), 1–28.

Pfleeger-Lawrence, S. (1998), Software Engineering: Theory and Practice, Prentice

Hall.

Polymenakou, A, Serafeimidis V. (1995), Unlocking the Secrets of Information

Systems Failures: the Key Role of Evaluation", 5th Panhellenic Informatics

Conference, Proceedings Vol II, Athens, Greece.

Pressman, R., S; Maxim, Bruce, R. (2015) Software engineering: a practitioner's

approach, McGraw-Hill Education, New York (8th ed., International student).

Rahanu, H., Georgiadou, E., Siakas, K.V., Ross, M. (2018) Imperative Ethical

Behaviours in Making Systems Development and Deployment Compliant with Health

& Safety and Wellbeing EuroSPI 2018, in Systems, Software and Services Process

Improvement, Volume 896, Communications in Computer and Information , Springer,

2018 (in print).

Remenyi, D., Williams, B. (1996), The nature of research: qualitative or quantitative,

narrative or paradigmatic? Information Systems Journal.

[https://doi.org/10.1111/j.1365-2575.1996.tb00009.x (accsssed 15/07/2018)].

Rokeach, M. (1973), The nature of human values, Free Press, Collier-Manmillan,

Lomdon.

Sarkar, S. (1996) (Ed.), The emergence of logical empiricism: from 1900 to the Vienna

circle, Garland Publishing. New York.

Sauberer, G., Villar, N., Blanca and Drebler, Jens and Schmitz, K-D., Clarke, P,

O'Connor, R. (2017) Do we speak the same language?: terminology strategies for

(software) engineering environments based on the elcat model - innovative terminology

e-learning for the automotive industry. In: 24th European Conference on Systems,

Software and Services Process Improvement (EuroSPI 2017), 6-8 Sept 2017, Ostrava,

Czech Republic. ISBN 978-3-319-64218-5.

Shepperd, M.J. (1990), 'An empirical study of design measurement', Softw. Eng. J.,

5(1), pp3-10, 1990.

Shewhart W. A., (1986) Statistical method from the viewpoint of quality control,

Mineola, NY: Dover Publications, 1986.

Siakas, K. V., Berki, E., Georgiadou, E., Sadler, C. (1997): The Complete Alphabet of

Quality Software Systems: Conflicts and Compromises, 7th World Congress on Total

Quality & Qualex 97, New Delhi, India, 17-19 February.

__

 Elli Georgiadou Page: 111

Sommerville, I. (2016) Software Engineering (10th edition), Pearson Education

Limited , Boston, 2016.

Taguchi, G. (1985), "Quality Engineering in Japan", Bulletin of the Japan Society of

Precision Engineering, Vol 19 No (4), pp. 237-242, (1985).

Taguchi, G. (1986), “Introduction to Quality Engineering - Designing Quality into

Products and Processes”, Asian Productivity Organization, Tokyo, (1986).

Vandierendonck, H., Mens, T. (2011), Averting the Next Software Crisis, Computer,

04/2011, Volume 44, Issue 4.

Weyuker, E. (1988) “Evaluating Software Complexity Measures,” IEEE Trans.

SoftwareEng., vol. 14, no. 9, pp. 1357-1365

White, A.S, (2006), ‘External Disturbance control for software project management’,

Int. J Project Management, 24, 127-135.

White, S.A. (2013) A control model of the software requirements process, Kybernetes,

Volume: 42 Issue: 3, 2013.

Whitmire, S.A. (1997): Object-Oriented Design Measurement, John Wiley & Sons Inc.,

1997.

Winston, P. (2008), New, improved airport: Same old lost luggage; Business Insurance,

June 30, 2008, Vol. 42(26), p.6.

https://www.emeraldinsight.com/doi/full/10.1108/03684921311323671
https://www.emeraldinsight.com/loi/k
https://www.emeraldinsight.com/toc/k/42/3

__

 Elli Georgiadou Page: 112

APPENDICES

Appendix A

Glossary of terms pertinent to this research

Term Definition Source
Maintainability is the ease with which a software system (program)

or component can be maintained (i.e. modified to

change or add capabilities, correct errors, faults

and/or defects, to improve performance or other

behaviour, or adapt to a changed environment).

Proposed by

the author

Measurement is the process by which numbers or symbols are assigned

to attributes of entities in the real world in such a way as

to describe them according to clearly defined rules

Finkelstein,

1984

Methodology is a system of practices, techniques, procedures, and rules

used by those who work in a discipline

ISO/IEC/IEEE

24765:2010

Process
is a set of activities that begin with the

identification of a need and conclude with the

retirement of a product that satisfies the need; or

more completely, as a set of activities, methods,

practices, and transformations that people use to

develop and maintain software and its associated

products (e.g. project plans, design documents,

code, test cases, user manuals).

Whitmire,

1997

__

 Elli Georgiadou Page: 113

Term Definition Source
Process

Improvemnet

are actions taken to change an organisation's

processes so that they more effectively and/or

efficiently meet the organization's business goals.

ISO/IEC/IEEE

24765:2010

Reengineering

the examination and alteration of software to

reconstitute it in a new form, including the

subsequent implementation of the new form.

ISO/IEC/IEEE

24765:2010

Resources are people, tools, materials, methods, time, money,

training (or generally knowledge and skill) and

products from other projects

Whitmire,

1997

SoftwareMetric is a measurable property which is an indicator of one or

more of the quality attributes.

Proposed by

the author

Software

products or

artifacts

are the products (deliverables/outputs of the

software process. These products may be plans,

functional specifications, process models,

procedure manuals, coding, test data, test results

and so on

Whitmire,

1997

Software project is the relationship between instances of a problem

to be solved, internal and external goals and

standards, processes, methods and techniques,

constraints and finally a product (one or more

deliverables)

Whitmire,

1997

Software Quality is the totality of product as well as process

characteristics, and their interaction and

measurement (whether qualitative or quantitative)

that satisfy different stakeholder requirements.

Proposed by

the author

__

 Elli Georgiadou Page: 114

Term Definition Source
Structuredness is a factor connected to a low probability of errors Oulsnam, 1982

Un-

structuredness

is a factor connected to a high higher probability of

errors

Oulsnam,

1982

Valorisation is the process of value creation from knowledge, by

making it applicable and available for economic or

societal utilisation, and by translating it in the form of

new business, products, services, or processes. It includes

dissemination and exploitation of results.

VALO project

Value is an enduring belief that a specific mode of conduct or

end-state is personally or socially preferable to an

opposite or converse mode of conduct or end-state of

existence.

Rokeach

(1973)

Usability is the capability of the software product to be understood,

learned and liked by the user, when used under specific

conditions.

Georgiadou &

Sheriff (2008)

__

 Elli Georgiadou Page: 115

Appendix B

Access Guide for Submitted Papers

Paper I eprints.mdx.ac.uk

Paper II https://link.springer.com/article/10.1023/A:1023833428613

Paper III https://link.springer.com/article/10.1007/s11219-007-9029-0

Paper IV https://link.springer.com/article/10.1023/A:1025817312035

Paper V eprints.mdx.ac.uk

Paper VI
https://pdfs.semanticscholar.org/7415/766cdae5f9233708fe0e87f530cd31f58f61.pdf

Paper VII eprints.mdx.ac.uk

Paper VIII eprints.mdx.ac.uk

Paper IX eprints.mdx.ac.uk

Paper X eprints.mdx.ac.uk

Paper XI eprints.mdx.ac.uk

Paper XII eprints.mdx.ac.uk

Paper XIII

 https://pdfs.semanticscholar.org/5080/8b77c65e0c5960c3f89eb56b195bc469495f.pdf

Paper XIV https://link.springer.com/chapter/10.1007/978-3-642-39179-8_26

Paper XV eprints.mdx.ac.uk

Paper XVI eprints.mdx.ac.uk

Paper XVII eprints.mdx.ac.uk

Paper XVIII https://link.springer.com/chapter/10.1007/978-3-319-97925-0_49

Paper XIX eprints.mdx.ac.uk

Paper XX eprints.mdx.ac.uk

https://link.springer.com/article/10.1023/A:1023833428613
https://link.springer.com/article/10.1007/s11219-007-9029-0
https://link.springer.com/article/10.1023/A:1025817312035
https://pdfs.semanticscholar.org/7415/766cdae5f9233708fe0e87f530cd31f58f61.pdf
https://link.springer.com/chapter/10.1007/978-3-642-39179-8_26
https://link.springer.com/chapter/10.1007/978-3-319-97925-0_49

