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A Successive Optimization Approach to Pilot Design for
Multi-Cell Massive MIMO Systems
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Abstract—In this letter, we introduce a novel pilot design
approach that minimizes the total mean square errors of the
minimum mean square error estimators of all base stations (BSs)
subject to the transmit power constraints of individual users in
the network, while tackling the pilot contamination in multi-
cell Massive MIMO systems. First, we decompose the original
non-convex problem into distributed optimization sub-problems
at individual BSs, where each BS can optimize its own pilot
signals given the knowledge of pilot signals from the remaining
BSs. We then introduce a successive optimization approach to
transform each optimization sub-problem into a linear matrix
inequality (LMI) form, which is convex and can be solved
by available optimization packages. Simulation results confirm
the fast convergence of the proposed approach and prevails a
benchmark scheme in terms of providing higher accuracy.

I. I NTRODUCTION

In multi-cell Massive MIMO systems, each base station
(BS) requires accurate knowledge of the channel state infor-
mation (CSI) obtained during the pilot training phase. To attain
accurate channel estimates, perfectly orthogonal pilot alloca-
tions to users are required. Unfortunately, this requirement is
impractical, since the pilot overhead has to be proportional
to the number of users in the entire system. Furthermore, the
channel coherence block limits the number of orthogonal pilots
[1]. Thus, pilot signals need to be reused over cells, causing
spatially correlated interference, known as pilot contamination
that degrades the performance of a Massive MIMO system [1].

In order to address the pilot contamination problem, the
authors of [2] proposed a superimposed channel estimation
approach by adding a low power pilot signal to the data signal
at the transmitter. The superimposed signal is then utilized at
the receiver for channel estimation. However, a proportionof
the power allocated to the pilot signal is wasted. Fortunately,
it has been shown in [3] that the wasted-power problem can
be theoretically mitigated with properly designed forward-
error-correction codes. On the other attempts, pilot assignment
and pilot power control are alternative solutions which can
attain great improvements for the case that the system only
has a finite set of orthogonal pilot signals [4]–[6]. Involving
reuse factor in pilot design may lead to a combinatorial pilot
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assignment problem in many pilot designs and, hence, result
in an exponentially increased computational complexity [7].

In this letter, we consider a multi-cell Massive MIMO
system adopting minimum mean square error (MMSE) esti-
mators at BSs. We derive the mean square error (MSE) of the
adopted MMSE estimator as a widely used accuracy criteria
for estimation. We, then, formulate an optimization problem to
find optimal pilot signals that minimize the total derived MSE
of the MMSE estimators of all BSs in the network subject
to a transmit power constraint at each user. The proposed
formulation is non-convex with respect to the pilot matrices.
To overcome non-convexity, we, first, decompose the proposed
optimization problem into distributed subproblems at BSs,
where each BS in the network optimizes its own pilot signal,
given the knowledge of the pilot signals of other BSs. We
then introduce a successive optimization approach to transform
each subproblem into a linear matrix inequality (LMI) problem
which is convex and can be effectively solved by available
optimization packages, e.g., CVX [8]. Finally, we analyse the
complexity of the transformed LMI optimization problem.

Notation: Bold lower/upper case letters are used for vec-
tors/matrices;‖·‖F and‖·‖ stand for the Frobenius norm and
the Euclidean norm;(·)T and(·)H is the regular and complex
conjugate transpose operator, respectively; Tr(·) is the trace
of a matrix;X � 0 is the positive semidefinite condition;Ia
is ana×a identity matrix; diag{x} is a diagonal matrix which
the diagonal entries are elements of the vectorx; CN (·, ·) is a
circularly symmetric complex Gaussian distribution;E[·] is the
expectation of a random variable;O(·) is the big-O notation.

II. SYSTEM MODEL

Consider a multi-cell massive MIMO system withC cells
operating in a time-division duplexing mode. Each cell com-
prises of anM -antenna BS andN single-antenna users. The
propagation factor between thei-th antenna of the BS in
cell c∗, denoted as BSc∗, and usern in cell c is

√
φn
c,c∗h

n
c,c∗,i,

whereφn
c,c∗ is the large scale fading coefficient modeling the

path-loss and shadowing, whilehn
c,c∗,i ∼ CN (0, 1) is small-

scale fading.
In the pilot training phase, all users in each cell syn-

chronously send their pilot signals. Letxn
c ∈ C

τ×1 be the pilot
signal used by usern in cell c and‖xn

c ‖2 ≤ Pmax,c, ∀c, where
τ is the length of the pilot signal, andPmax,c is the maximum
allocated power level by each user in cellc to its pilot signal.
The received baseband training signalyc∗,i ∈ C

τ×1 at thei-th
antenna element of the BSc∗ can be expressed as:

yc∗,i =

C∑

c=1

N∑

n=1

√
φn
c,c∗h

n
c,c∗,ix

n
c + vc∗,i, (1)
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where vc∗,i is Gaussian noise withvc∗,i ∼ CN (0, σ2Iτ ).
Let the received signals, Gaussian noises, pilot signals byall
antenna elements of BSc∗ and the corresponding large scale
channel coefficients be denoted as

Yc∗ = [yc∗,1, yc∗,2, . . . ,yc∗,M ] ∈ C
τ×M , (2)

Vc∗ = [vc∗,1, vc∗,2, . . . , vc∗,M ] ∈ C
τ×M , (3)

Xc∗ = [x1
c∗ , x2

c∗ , . . . ,x
N
c∗ ] ∈ C

τ×N , (4)

Dc,c∗ = diag{[φ1
c,c∗ , φ2

c,c∗ , . . . , φ
N
c,c∗ ]

T } ∈ C
N×N . (5)

Also, let the small-scale fading channel coefficients of allN
users in cellc as seen by BSc∗ be expressed as

Hc,c∗ =



h1
c,c∗,1, . . . , h1

c,c∗,M

...
. . . ,

...
hN
c,c∗,1 . . . , hN

c,c∗,M


 ∈ C

N×M . (6)

Then, using (1)− (6), one can formulate the received training
signals by allM antenna elements of BSc∗, according

Yc∗ = Xc∗D
1
2
c∗,c∗Hc∗,c∗ +

C∑

c=1,c 6=c∗

XcD
1
2
c,c∗Hc,c∗ +Vc∗ .

(7)
The first term in right hand side of (7) involves desired channel
coefficients and the remaining terms indicate the effects of
mutual interference and Gaussian noise. The channel estimate
Ĥc∗,c∗ of the original channelHc∗,c∗ is computed by utilizing
the MMSE estimation upon the observation ofYc∗ is [9]:

Ĥc∗,c∗ = E[Hc∗,c∗Y
H
c∗ ]

(
E[Yc∗Y

H
c∗ ]

)−1
Yc∗ . (8)

Plugging (7) in (8), and after some mathematical manipula-
tions, we obtain

Ĥc∗,c∗ = MD
1
2
c∗,c∗X

H
c∗Ω

−1
c∗ Yc∗ , (9)

whereΩc∗ = M
∑C

c=1 XcDc,c∗X
H
c +Mσ2Iτ . From (9), the

channel estimation quality depends on the pilot design and if
τ < CN , it also suffers from pilot contamination [4]–[6]. Let
the channel estimation errors at BSc∗ be denoted as

∆c∗ = Hc∗,c∗ − Ĥc∗,c∗ , (10)

and the MSE be defined as

MSEc∗ = E
[
‖∆c∗‖2F

]
= E

[
Tr

(
∆c∗∆

H
c∗

)]
. (11)

Then, using (7), (8), (9), and after some mathematical manip-
ulations, one can rewrite MSE in (11) as:

MTr
(
A−1 −A−1B(C−1 +DA−1B)−1DA−1

)
, (12)

whereA−1 = IN , B = MD
1
2
c∗,c∗X

H
c∗ , D = Xc∗D

1
2
c∗,c∗ , and

C−1 = M
∑C

c=1,c 6=c∗ XcDc,c∗X
H
c +Mσ2Iτ . By utilizing the

Sherman-Morrison-Woodbury identity

(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1

and defining MSEc∗ , fc∗ (Xc∗), one can reformulate (11) as

fc∗ (Xc∗) = MTr

((
IN +D

1
2
c∗,c∗X

H
c∗F

−1
c∗ Xc∗D

1
2
c∗,c∗

)−1
)
, (13)

whereFc∗ =
∑C

c=1,c 6=c∗ XcDc,c∗X
H
c + σ2I τ .

III. A S UCCESSIVEOPTIMIZATION PILOT DESIGN

From (13), the performance of the MMSE estimation al-
gorithm depends on the pilot structure. In this section, we
develop an optimal pilot design to minimize the total channel
estimation errors of all BSs in the network subject to the
transmit power constraints at individual users. Hence, we
introduce the following optimization problem for the network:

minimize
{Xc∗}

C∑

c∗=1

fc∗ (Xc∗)

subject to XH
c∗Xc∗ � Pmax,c∗IN , ∀c∗,

(14)

where {Xc∗} = {X1,X2, · · · ,XC}. Problem (14) is non-
convex due to its objective function. To tackle the problem,
we first introduce an auxiliary variableGc∗ , denote{Gc∗} =
{G1, · · · ,GC}, remove the constantM , and rewrite (14) as1

minimize
{Xc∗},{Gc∗}

C∑

c∗=1

Tr (Gc∗)

subject to XH
c∗I

−1
τ Xc∗ � Pmax,c∗IN , ∀c∗,

(
IN +D

1
2
c∗,c∗X

H
c∗F

−1
c∗ Xc∗D

1
2
c∗,c∗

)−1

� Gc∗ , ∀c∗.

(15)

Adopting the Schur complement [10], one can equivalently
reformulate problem (15) as

minimize
{Xc∗},{Gc∗}

C∑

c∗=1

Tr (Gc∗)

subject to

[
Pmax,c∗IN XH

c∗

Xc∗ Iτ

]
� 0, ∀c∗,

[
Gc∗ IN

IN IN +D
1
2
c∗,c∗X

H
c∗F

−1
c∗ Xc∗D

1
2
c∗,c∗

]
� 0, ∀c∗.

(16)

The second set of constraints in (16) is still non-convex due
to the nonlinearity of the termD

1
2
c∗,c∗X

H
c∗F

−1
c∗ Xc∗D

1
2
c∗,c∗ with

respect to optimization variableXc∗ , ∀c∗, i.e., the optimization
variable is in quadratic forms and appears in both numerator
and denominator of the term. As a main contribution of this
paper, we propose a distributed algorithm where every BSc∗

optimizes its own pilot signals given the knowledge of the
pilot signals of the other cells inF−1

c∗ as follows:

minimize
Xc∗ ,Gc∗

Tr (Gc∗)

subject to

[
Pmax,c∗IN XH

c∗

Xc∗ Iτ

]
� 0,

[
Gc∗ IN

IN IN +D
1
2
c∗,c∗X

H
c∗F

−1
c∗ Xc∗D

1
2
c∗,c∗

]
� 0.

(17)

Although the distributed optimization problem (17) only
considersXc∗ andGc∗ as the optimization variables, its sec-
ond constraint is still not in an LMI form with respect toXc∗ .
To proceed, we propose a successive optimization approach

1Problems (14) and (15) are equivalent since (15) is an epigraph form of
(14) [10, pp.134]. In fact, introducing the auxiliary variable Gc

∗ transforms
the objective function into a linear form while shifting thenonlinear part into
a constraint.
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where, at thet-th iteration, BSc∗ updates its pilot signals by
solving the following distributed optimization problem:

minimize
X

(t)

c∗
,G

(t)

c∗

Tr
(
G

(t)
c∗

)

subject to

[
Pmax,c∗IN X

(t),H
c∗

X
(t)
c∗ Iτ

]
� 0,

[
G

(t)
c∗ IN

IN IN +D
1
2
c∗,c∗X

(t),H
c∗ (F−1

c∗ )(t−1)X
(t−1)
c∗ D

1
2
c∗,c∗

]
� 0,

(18)
whereF−1

c∗ from the previous iteration is

(F−1
c∗ )(t−1) =

C∑

c=1,c 6=c∗

X(t−1)
c Dc,c∗X

(t−1),H
c + σ2I τ , (19)

X
(t−1)
c∗ and X

(t−1)
c are the optimal pilots of cellsc∗ and c,

respectively, which are obtained from the(t− 1)-th iteration.
In order to transform the second constraint of (18) into an
LMI form with respect to bothX(t)

c∗ andG
(t)
c∗ , we have used

the known value ofX(t−1)
c∗ . Notice that at the stationary

point attained after a sufficient number of iterations, the
approximation

X
(t)
c∗ ≈ X

(t−1)
c∗ , ∀c∗, (20)

can be assured with any desired accuracy. Note that, the matrix
in the second constraint of (18) is not Hermitian during the
iterations, due to the mismatch betweenX

(t)
c∗ andX(t−1)

c∗ , ∀c∗.
To guarantee a Hermitian matrix in the second constraint of
(18), we introduce a new variableA(t)

c∗ , such that

2A
(t)
c∗ =D

1
2
c∗,c∗X

(t),H
c∗ (F−1

c∗ )(t−1)X
(t−1)
c∗ D

1
2
c∗,c∗

+D
1
2
c∗,c∗X

(t−1),H
c∗ (F−1

c∗ )(t−1)X
(t)
c∗ D

1
2
c∗,c∗ .

(21)

Finally, we reformulate (18) as

minimize
X

(t)

c∗
,G

(t)

c∗
,A

(t)

c∗

Tr
(
G

(t)
c∗

)

subject to

[
Pmax,c∗IN X

(t),H
c∗

X
(t)
c∗ Iτ

]
� 0,

[
G

(t)
c∗ IN

IN IN +A
(t)
c∗

]
� 0,

constraint (21).

(22)

Problem (22) is now convex and can be efficiently solved by
CVX [8]. The procedure to obtain the optimal pilot signals
for all C cells in the network is summarized in Algorithm 1.
Remark 1 (Convergence):Since problem (22) is convex, steps
3 and 4 in Algorithm 1 ensure theδ-convergence ofX(t)

c∗ to
its optimal value and a minimal objective function value in
problem (22) per cell.2

As the main computational complexity of Algorithm 1 is
to solve (22) at each BS, we analyze such complexity in
the sequel. Since (22) contains LMI constraints, a standard

2Although the global optimality can be achieved per iterationand per cell
by solving (22), it may not be achievable to the original multicell problem (14)
due to its inherent non-convexity. In fact, Algorithm 1 is a suboptimal
algorithm with an affordable complexity to the NP-hard problem (14).

Algorithm 1 Successive optimization approach for (15)

1: Inputs: Dc,c∗ , Pmax,c∗ , σ2, stopping criteriaδ > 0,
initialize X

(0)
c , ∀c, c∗; t = 1;

2: Each cell c∗ calculatesF(t−1)
c∗ utilizing (19) and then

solves (22) to attainX(t)
c∗ , ∀c∗; ExchangeX(t)

c∗ with the
other cells;

3: If
∑C

c∗=1 ‖X
(t)
c∗ −X

(t−1)
c∗ ‖F ≤ δ, then Go to step 5;

4: else if
∑C

c∗=1 ‖X
(t)
c∗ −X

(t−1)
c∗ ‖F > δ, then t = t+1; Go

to step 2;
5: Outputs: X⋆

c∗ ← X
(t)
c∗ , ∀c∗.

interior-point method (IPM) [10] can be used to find its op-
timal solution. Therefore, we consider the worst-case runtime
of the IPM to analyze the computational complexities of the
proposed problem (22) as follows.

Definition 1: For a given ǫ > 0, the set of
X

(t),ǫ
c∗ ,G

(t),ǫ
c∗ ,A

(t),ǫ
c∗ is called anǫ-solution to (22) if

Tr
(
G

(t),ǫ
c∗

)
≤ minimize

X
(t)

c∗
,G

(t)

c∗
,A

(t)

c∗

Tr
(
G

(t)
c∗

)
+ ǫ. (23)

It can be observed that the number of decision variables
of problem (22) is on the order of(2N + τ)N . Let m =
O ((2N + τ)N), we introduce the following lemma.

Lemma 1:The computational complexities to obtainǫ-
solution to problem (22) is

ln(ǫ−1)
√
4N + ταm, (24)

whereα = 10N3+(3τ +6m)N2+Nmτ(mτ +2)+ τ2(m+
τ) +m2.

Proof: Problem (22) has1 LMI constraint of dimension
N + τ , 1 LMI constraint of dimension2N , and 1 LMI
constraint of dimensionN . Based on these observations, one
can follow the same steps as in [11, Section V-A] to arrive
at (24). Note that the termln(ǫ−1)

√
4N + τ in (24) is the

iteration complexities [11] required for obtainingǫ-solutions
to problem (22) while the remaining terms represent the per-
iteration computation costs [11].

IV. SIMULATION RESULTS

A wrapped-around multi-cell Massive MIMO system is
considered for simulations withC = 4, M = 500, and
N = 10. All users are randomly distributed over the coverage
area. However, the distance between any usern of cell c and
BS c∗, denoted asdnc,c∗ , is always satisfieddnc,c∗ ≥ 0.035
km. The system utilizes20 MHz bandwidth related to the
noise variance of−96 dBm and the noise figure of5 dB.
The large-scale fading coefficientφn

c,c∗ [dB] is modeled as
φn
c,c∗ = −148.1− 37.6 log10(d

n
c,c∗) + znc,c∗ , whereznc,c∗ is the

shadow fading following a log-normal Gaussian distribution
with the standard variation of7 dB. Monte-Carlo simulations
are tackled over200 different realizations of user locations.
The widely adopted orthogonal pilot design, e.g., [4], [12],
is used as a benchmark where each pilot symbol is allocated
with power 200 mW and those orthogonal pilots are reused
amongst users in the network. For every realization of user
locations, such pilot signals are generated by the eigenvectors
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Figure 1. The CDFs of the MMSE per user-BS antenna link for theproposed
and benchmark approaches.

Figure 2. (a) The CDFs of the power allocated for each pilot symbol of
the proposed approach with different pilot lengths;(b) The average power
allocated for each pilot symbol of the proposed approach v.s.the pilot length.

of a uniformly generated random matrix. The power constraint
for pilot signal is set to bePmax,c = 200τ mW, ∀c.

Fig. 1 shows the cumulative distribution function
(CDF) of the BS-user antenna link which is defined by
fc∗(Xc∗)/(MN). It is clear from the figure that the channel
estimation accuracy of the proposed approach is significantly
improved compared to that of the benchmark. This confirms
the effectiveness of our optimal pilot design in combating
pilot contaminations. The results also indicate that the
performance gap between the proposed approach and the
benchmark increases as the pilot length increases. This is
because increasing pilot length gives more degrees of freedom
to the proposed approach for optimizing its performances.3

Fig. 2 (a) displays the CDFs of the power allocated to each
pilot symbol with different pilot lengths. It can be seen from
the figure that for most of the cases, e.g., around80 % for
τ = 6 and70 % for τ = 10 andτ = 16, the proposed approach
spends less power for each symbol than the benchmark does,
i.e., less than200 mW per symbol. Fig. 2 (b) illustrates the
average power for each pilot symbol against the length of
pilot signals. Whenτ < N = 10, the proposed approach
consumes less power than the benchmark does and the system
suffers from both intra-cell and inter-cell interference.In such
hostile situations, the proposed approach can still effectively
handle the pilot contaminations which results in higher channel

3The MMSE of the system approaches zero when the pilot length goes to
infinity. An ideal pilot length ofτ = NC is sufficient to distinguish all users
in the network, and also to balance between channel estimation errors and
spectral efficiency (SE). However, this is impractical for a large-scale network.
To that end, the proposed approach offers significant MMSE improvements
for practical pilot lengths, i.e., whenτ < NC.

Figure 3. The convergence of MMSE per user-BS antenna link v.s. iteration
index for the proposed approach.

Table I
AVERAGE UPLINK SE OF EACH USER IN THE NETWORK[BITS/S/HZ] FOR

DIFFERENT PILOT LENGTHS.

τ = 6 τ = 10 τ = 16
Benchmark 1.19 1.49 1.55
Proposed 1.39 1.74 1.86

Gain 16.81% 16.78% 20.00%

estimate accuracy as seen in Fig. 1, while consuming less
power than the benchmark. Interestingly, whenτ ≥ N , the
optimal transmit power spent on each symbol turns out to
be 200 mW and to be constant irrespective to the value ofτ ,
which can also be observed from the CDF shown in Fig. 2 (a).

Fig. 3 numerically reveals the fast convergent speed of the
proposed approach, i.e., within less than 20 iterations. This
results confirm the statement in Remark 1. Finally, Table I
demonstrates the average uplink SE of per user in the network
using the use-and-then-forget capacity bounding technique [6,
eq. (28)] with maximum ratio detection, fixed data power200
mW, and the coherence block length200 symbols. Thanks
to minimizing MSE, the proposed approach attains a higher
uplink SE than the benchmark does.
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