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Abstract—In this letter, we introduce a novel pilot design assignment problem in many pilot designs and, hence, result
approach that minimizes the total mean square errors of the in an exponentially increased computational complexifly [7
minimum mean square error estimators of all base stations (BSs) | this letter. we consider a multi-cell Massive MIMO

subject to the transmit power constraints of individual users in ; - .
the network, while tackling the pilot contamination in multi- system adopting m'mmum mean square error (MMSE) esti-
cell Massive MIMO systems. First, we decompose the original mators at BSs. We derive the mean square error (MSE) of the
non-convex problem into distributed optimization sub-problems adopted MMSE estimator as a widely used accuracy criteria
at individual BSs, where each BS can optimize its own pilot for estimation. We, then, formulate an optimization promble
signals given the knowledge of pilot signals from the remaining fiq optimal pilot signals that minimize the total derived EIS
BSs. We then introduce a successive optimization approach to f the MMSE estimat f all BSs in th work subiect
transform each optimization sub-problem into a linear matrix of the . estimators o ‘,”1 S In the network subjec
inequality (LMI) form, which is convex and can be solved !0 @ transmit power constraint at each user. The proposed
by available optimization packages. Simulation results confirm formulation is non-convex with respect to the pilot matsice
the fast convergence of the proposed approach and prevails a To overcome non-convexity, we, first, decompose the prapose
benchmark scheme in terms of providing higher accuracy. optimization problem into distributed subproblems at BSs,
where each BS in the network optimizes its own pilot signal,
given the knowledge of the pilot signals of other BSs. We

. INTRODUCTION then introduce a successive optimization approach toftsems

In multi-cell Massive MIMO systems, each base statioR@Ch subproblem into a linear matrix inequality (LMI) preipl
(BS) requires accurate knowledge of the channel state-inf§fhich is convex and can be effectively solved by available
mation (CSI) obtained during the pilot training phase. Taiat OPtimization packages, e.g., CVX [8]. Finally, we analyse t
accurate channel estimates, perfectly orthogonal pilocal COMPlexity of the transformed LMI optimization problem.
tions to users are required. Unfortunately, this requirenie Notanqn: Bold lower/upper case letters are.used for vec-
impractical, since the pilot overhead has to be proportioni@"S/matricesi|-[| . andT||-|| stang for the Frobenius norm and
to the number of users in the entire system. Furthermore, fh& Euclidean norm(.)™ and(-)™ is the regular and complex
channel coherence block limits the number of orthogonatgpil CONiugate transpose operator, respectively;-JTis the trace
[1]. Thus, pilot signals need to be reused over cells, causifif @ Matrx; X = 0 is the positive semidefinite conditiod;,
spatially correlated interference, known as pilot contetion 1S @na > a identity matrix; diagx} is a diagonal matrix which
that degrades the performance of a Massive MIMO system [1f}€ diagonal entries are elements of the vestat N (-, ) is a

In order to address the pilot contamination problem, tr%rcularly symmetric complex Gaussian distributid; is the

authors of [2] proposed a superimposed channel estimatfgfPectation of a random variablé)(-) is the big-O notation.

approach by adding a low power pilot signal to the data signal
at the transmitter. The superimposed signal is then udilete ) _ ) _
the receiver for channel estimation. However, a proportibn ~ Consider a multi-cell massive MIMO system with cells
the power allocated to the pilot signal is wasted. FortugateOPerating in a time-division duplexing mode. Each cell com-
it has been shown in [3] that the wasted-power problem cRfSes of an}/-antenna BS and{ single-antenna users. The
be theoretically mitigated with properly designed forwardPropagation factor between theth antenna of the BS in
error-correction codes. On the other attempts, pilot assent C€ll ¢*, denoted as BS*, and usen in cell ¢is \ /o7 . h . ;,
and pilot power control are alternative solutions which caffnere¢c .. is the large scale fading coefficient modeling the
attain great improvements for the case that the system oRfth-loss and shadowing, while! .. ; ~ CA(0,1) is small-
has a finite set of orthogonal pilot signals [4]-[6]. Invaigi Scale fading. o _
reuse factor in pilot design may lead to a combinatorialtpilo N the pilot training phase, all users in each cell syn-
chronously send their pilot signals. Let € C™*! be the pilot
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where v, ; is Gaussian noise witlv.; ~ CN(0,0%L,). Il1. A SUCCESSIVEOPTIMIZATION PILOT DESIGN
Let the received signals, Gaussian noises, pilot signalallby
antenna elements of B& and the corresponding large scal
channel coefficients be denoted as

From (13), the performance of the MMSE estimation al-
%orithm depends on the pilot structure. In this section, we
develop an optimal pilot design to minimize the total chdnne
estimation errors of all BSs in the network subject to the
Yoo = [Yer 1, Yer2seoos Vo] € CTM (2) transmit power constraints at individual users. Hence, we

Voo = [Ver 1y Verenes Veort] € oM 3) introduce the following optimization problem for the netko
X =[xk, X2, xN]eC™V, 4) c
. minimize For (X
D = diag{[g} .-, @2 s 00T} € CVN(5) {X.-) 2:1 (Xe) (14)
Also, let the small-scale fading channel coefficients of/dll subject to Xﬁ{Xc* = Phax,c<In, V",

users in cellc as seen by B$* be expressed as
¢ Y P where {X..} = {X;,Xq, -, X¢}. Problem (14) is non-

h(lz,c*,lv R h(l;7c*7M convex due to its objective function. To tackle the problem,
H. . = : : e CN*M () we first introduce an auxiliary variabl@.-, denote{G.-} =
BN hf\} {Gq,---,G¢}, remove the constant/, and rewrite (14) ds
c,c*,1 R » He,et M
Then, using (1) (6), one can formulate the received training L ¢
signals by allM antenna elements of B8, according e, > Tr(Ger)

c*=1

subject to XHZI'X . < Ppax.o-In, Vc*, (15)

1 c 1
Yo =Xo-DZ L He oo + Z X.D? .Hc + V. »
e=1cer . (v + D XEFZXoDL ) = Gee, Ve

The ﬁrst term in r|ght hand Side Of (7) inVOIVeS desired CmnnAdopting the Schur Complement [10], one can equiva'enﬂy
coefficients and the remaining terms indicate the effects gformulate problem (15) as
mutual interference and Gaussian noise. The channel ¢stima
H,.- .- of the original channeH.- .- is computed by utilizing L C TG
the MMSE estimation upon the observationsf- is [9]: e, > Tr(Ger)

c*=1
= _ H Hp\ 1 H
Hc*7c* = E[Hc*yc*Yc*] (E[YC*YC*]) Yc*- (8) SUbjeCt to |:Pm(,;gc* IN jib*] t O7VC*7 (16)
Plugging (7) in (8), and after some mathematical manipula- C* T
tions, we obtain G- Iy .
~ 1 I 1 D% XHp1 3 ] = 0,vc.
H.. = MDZ .X1Q'Y.., ©) N In A Do o Ko For XeDee e

whereQ. .. — MZC X D, X" + Mo>1,. From (9), the The second set of constraints in (16) is still non-convex due
c* — c=1 “>ctc,c* e T- ’ . . 1 1 1 .
channel estimation quality depends on the pilot design and@ the nonlinearity of the teriz. .. X F ' X DZ. .. with

T < CN, it also suffers from pilot contamination [4]-[6]. Let€SPect to optimization variab,-, Vc*, i.e., the optimization

the channel estimation errors at BS be denoted as variable is in quadratic forms and appears in both numerator
. and denominator of the term. As a main contribution of this
Ag = Her o = Hes o, (10) ' paper, we propose a distributed algorithm where every-BS
and the MSE be defined as optimizes its own pilot signals given the knowledge of the
pilot signals of the other cells i 2" as follows:
MSE.. =E[||Ac[}] =E [Tr (A AZ)]. (11)
) i , minimize Tr(G.)
Then, using (7), (8), (9), and after some mathematical manip X+, G
: ; : } I
ulations, one can rewrite MSE in (11) as: subject to [Pmax’c*IN XC*} =0,
MTr(A™'— A-'B(C"! + DA'B)"'DA™!), (12) X I, a7
1 3 H 3 Ger 1 Iy 1 =0
whereA™" =1y, B= MDZ ..X %, D = X.Dg .., and Iy Iy+DZ , XAFX.D2 .|

Cl=MY, . XD X"+ ML, By utilizing the
Sherman-Morrison-Woodbury identity Although the distributed optimization problem (17) only
1 A1 1 1 11 _1 considersX.- andG.- as the optimization variables, its sec-
(A+BCD)™ =A™ -AT'B(C™ +DA™T'B) DA ond constraint is still not in an LMI form with respect X,
and defining MSE- £ f.. (X.~), one can reformulate (11) asTo proceed, we propose a successive optimization approach
-1
fer (XC*) = MTr (IN + DC%* C*Xg F;}XC* DC%* C*) , (13) 1Problems (14) and (15) are equivalent since (15) is an epigiam of
’ ’ (14) [10, pp.134]. In fact, introducing the auxiliary varia G« transforms

the objective function into a linear form while shifting thenlinear part into

C .
whereF .- = ZC:L#C* XCDC’C*Xf + 52, a constraint.



where, at the-th iteration, BSc* updates its pilot signals by Algorithm 1 Successive optimization approach for (15)

solving the following distributed optimization problem:

minimize Tr (G(t))

x g
(t).H
subject to Pma"’(gIN X,
X,- 1,
G(t) Iy
c* N N t 0
Iy IN"’DE*,C*X(t) H(F )(f 1)X(t I)DE o
(18)
whereF_.' from the previous iteration is
c
(Foh)Y = Z XUID, - XD 6%, (19)
c=1,c#c*

XD and X" are the optimal pilots of cells* andc,
respectlvely, which are obtained from tke— 1)-th iteration.

In order to transform the second constralnt of (18) into aK
we have used

Notice that at the stationary

LMI form with respect to bothx " o andG!
the known value ofX: ™.

(’*’

1: Inputs: D¢ ¢+, Pruax,cr, o2, stopping criteriad > 0,
initialize XE ), Ve, et =1;

2: Each cell ¢* calculatesF(t_l) utilizing (19) and then
solves (22) to attaer(*), Ve*; ExchangeX with the
other cells;

3 |If Z I HX(t) r <4, then Go to step 5;

4: else |fZ \X(t) ng;_l)\lp >d,thent =t+1; Go
to step 2;

5: Outputs: X7.

t 1)H

XD yer,

c* 1

interior-point method (IPM) [10] can be used to find its op-

timal solution. Therefore, we consider the worst-caseimet

of the IPM to analyze the computational complexities of the

proposed problem (22) as follows.

Definition 1: For a given ¢ > 0, the set of
G AD is called ane-solution to (22) if

Tr (G() ) < minimize Tr (G(t ) +e.

2
X(’) G(f) A(f ( 3)

point attained after a sufficient number of iterations, the

approximation

X~ XY yer, (20)

It can be observed that the number of decision variables
of problem (22) is on the order a2N + 7)N. Let m =
O ((2N + 7)N), we introduce the following lemma.

can be assured with any desired accuracy. Note that, thexmatr Lemma 1: The computational complexities to obtain
in the second constraint of (18) is not Hermitian during theolution to problem (22) is

iterations, due to the mismatch betwe)étfl) andX(f Y over,

To guarantee a Hermitian matrix in the second constralnt of

(18), we introduce a new variable ' such that

c* 1

24 =DZ. C*Xff)H(F DX D3,

(t n,H (t—-1)x Bz (21)
+DL X (F2HE-Dx Dc*
Finally, we reformulate (18) as
minimize  Tr (Gg;))
SNUNCIGING!
(t),H
subject to Pnax, C*IN Xer
X (22)
GY Iy
| =0
Iy Iy+ A

constraint (21)

In(e ')V4AN + ram, (24)

wherea = 10N? + (37 + 6m)N? + Nm7(m7 +2) +72(m +
7) +m2.

Proof: Problem (22) had LMI constraint of dimension
N + 7, 1 LMI constraint of dimension2N, and 1 LMI
constraint of dimensiorV. Based on these observations, one
can follow the same steps as in [11, Section V-A] to arrive
at (24). Note that the ternm(e~1)\/4N + 7 in (24) is the
iteration complexities [11] required for obtainingsolutions
to problem (22) while the remaining terms represent the per-

iteration computation costs [11]. [ ]

IV. SIMULATION RESULTS

A wrapped-around multi-cell Massive MIMO system is
considered for simulations witlt' = 4, M = 500, and
N = 10. All users are randomly distributed over the coverage

Problem (22) is now convex and can be efficiently solved tarea. However, the distance between any wsef cell ¢ and

CVX [8]. The procedure to obtain the optimal pilot signal8S c*

, denoted asiy .., is always satisfied .. > 0.035

for all C cells in the network is summarized in Algorithm 1.km. The system ut|I|zeé20 MHz bandwidth related to the
Remark 1 (Convergencegince problem (22) is convex, stepsioise variance of~-96 dBm and the noise figure of dB.

3 and 4 in Algorithm 1 ensure th&convergence oK ) to

its optimal value and a minimal objective function value i o« = —148.1 — 37.6log;(dr .

problem (22) per cef.

The large-scale fading coefficient! ., [dB] is modeled as
)+zyc , wherez .. is the
shadow fading following a Iog -normal Gaussian distribatio

As the main computational complexity of Algorithm 1 iswith the standard variation &f dB. Monte-Carlo simulations
to solve (22) at each BS, we analyze such complexity are tackled oveR00 different realizations of user locations.

the sequel. Since (22) contains LMI constraints, a standartie widely adopted orthogonal pilot design, e.g.,

2Although the global optimality can be achieved per iteraton per cell
by solving (22), it may not be achievable to the original melfiproblem (14)
due to its inherent non-convexity. In fact, Algorithm 1 is abseptimal
algorithm with an affordable complexity to the NP-hard peshl(14).

[4], [12]
is used as a benchmark where each pilot symbol is allocated
with power 200 mW and those orthogonal pilots are reused
amongst users in the network. For every realization of user
locations, such pilot signals are generated by the eigéongec
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Figure 3. The convergence of MMSE per user-BS antenna Imkiteration
Figure 1. The CDFs of the MMSE per user-BS antenna link fopitegposed  index for the proposed approach.

and benchmark approaches. Table |
@) AVERAGE UPLINK SEOF EACH USER IN THE NETWORK[BITS/S/HZ] FOR

1 T
=6 200 mW e DIFFERENT PILOT LENGTHS
B osll- =10 “d
O e =16 e ! T=6 T=10 | =16
0 -l 1 Benchmark| 1.19 1.49 1.55
10 107 107 Proposed 1.39 1.74 1.86
FPower per pilot symbal (mW) Gain 16.81% | 16.78% | 20.00%
« 200 T T T - =i ¥
& estimate accuracy as seen in Fig. 1, while consuming less
£ power than the benchmark. Interestingly, when> N, the
= optimal transmit power spent on each symbol turns out to

> 1 6 s 10 12 1 16
Length of pilot signal (7) be 200 mW and to be constant irrespective to the value- of
which can also be observed from the CDF shown in Fig. 2 (a).

Fhigure 2. (3) The CDhFS 'Orfn tg_ffef power .fillolcatedh ;;JrTiach pilot symbol of ' Fig. 3 numerically reveals the fast convergent speed of the

the proposed approach with different pilot lengt e average power . s . P

allocated for each pilot symbol of the proposed approactthespilot length. proposed approach, €., Wlthm less than 20 I_teratlonﬂs Th
results confirm the statement in Remark 1. Finally, Table |

of a uniformly generated random matrix. The power consltraiﬂemcmstrates the average uplink SE of per user in the network
using the use-and-then-forget capacity bounding teclenjgu

forF?él_Ot i'gn;l ol\?vss ett:]oe bd;ﬂ?nxalgti\z/gm drig\t/;/i'blvjii'on functior€d: (28)] with maximum ratio detection, fixed data powee
(CDF) of the BS-user antenna link which is defined b W,_a_nd_ Fhe coherence block lengii0 symbols: Thanl§s
fur (Xo)/(MN). It is clear from the figure that the channe 0 minimizing MSE, the proposed approach attains a higher
estimation accuracy of the proposed approach is signif';can?p“nk SE than the benchmark does.
improved compared to that of the benchmark. This confirms REFERENCES

the effectiveness of our optimal pilot design in combating
él] E. Bjornson et al, “Massive MIMO: 10 Myths and One Critical

pilot contaminations. The results also indicate that th Question”.vol. 54, no. 2. pp. 114-123, 2016.
performance gap between the proposed approach and € H. zhang et al, “On superimposed pilot for channel estimation in

benchmark increases as the pilot length increases. This is multicell multiuser mimo uplink: Large system analysitfEE Trans.
; ; ; ; Vehi. Technq.vol. 65, no. 3, pp. 1492-1505, 2016.
because Increasing pIIOt Iength gives more degrees ofdreed [3] J. Ma et al, “On Orthogonal and Superimposed Pilot Schemes in

to the proposed approach for optimizing its performarices. Massive MIMO NOMA Systems,IEEE Journal on Selected Areas in

Fig. 2 (a) displays the CDFs of the power allocated to each Commun.vol. 35, no. 12, pp. 2696-2707, 2017.
[4] X. Zhu et al, “Smart pilot assignment for Massive MIMO/JEEE

pilot symbol with different pilot lengths. It can be seenrfro Commun. Lettersvol. 19, no. 9, pp. 1644 - 1647, 2015
the figure that for most of the cases, e.g., aro80d% for (5] p, wanget al, “A Novel Pilot Assignment Approach for Pilot Decontam-

7= 6and70 % for - = 10 andr = 16, the proposed approach inating in Massive MIMO Systems, " iRroc. IEEE Wireless Commun.
and Networking Conf. (WCNC), pp. 1-6, 2017.
spends less power for each SymbOI than the benchmark do "T. V. Chienet al, “Joint Pilot Design and Uplink Power Allocation in

i.e., less thar00 mW per symbol. Fig. 2 (b) illustrates the Multi-Cell Massive MIMO Systems,IEEE Trans. Wireless Commuyn.

average power for each pilot symbol against the length of early access.
S. Ma, et al, “A Novel Pilot Assignment Scheme in Massive MIMO

. . _ [7]
pilot signals. Whenr < N 10, the proposed approach Networks,” [EEE Wireless Commun. Lettersarly access.
consumes less power than the benchmark does and the Systgmu. c. Grant and S. P. Boydihe CVX Users’ Guide, Release 2.Mar.

suffers from both intra-cell and inter-cell interferent® such 2015, [Online]. Available: http://web.cvxr.com/cvx/d@/X.pdf.
[9] T. Kailath et al, Linear Estimation Prentice Hall, 2000.

hostile sﬂuapons, the PrOp.osed approach ce}n S.“” ot [10] S. Boyd and L. Vandenbergh&onvex Optimization Cambridge
handle the pilot contaminations which results in highemeted University Press, 2004.
[11] K.-Y. Wang et al, “Outage constrained robust transmit optimization
3The MMSE of the system approaches zero when the pilot lengéls ¢o for multiuser MISO downlinks: Tractable approximations bynico
infinity. An ideal pilot length ofr = NC is sufficient to distinguish all users optimization,” IEEE Trans. Signal Processvol. 62, no. 21, pp. 5690-

in the network, and also to balance between channel estimatiors and 5705, 2014.
spectral efficiency (SE). However, this is impractical foaegke-scale network. [12] L. You et al, “Pilot reuse for Massive MIMO transmission over spatially

To that end, the proposed approach offers significant MMSEdrgments correlated rayleigh fading channeldEEE Trans. Wireless Commun.
for practical pilot lengths, i.e., when < NC. vol. 14, no. 6, pp. 3352-3366, 2015.



