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Abstract

We investigate the problem of optimal control of mutation
by asexual self-replicating organisms represented by points
in a metric space. We introduce the notion of a relatively
monotonic fitness landscape and consider a generalisation of
Fisher’s geometric model of adaptation for such spaces. Us-
ing a Hamming space as a prime example, we derive the prob-
ability of adaptation as a function of reproduction parameters
(e.g. mutation size or rate). Optimal control rules for the pa-
rameters are derived explicitly for some relatively monotonic
landscapes, and then a general information-based heuristic is
introduced. We then evaluate our theoretical control func-
tions against optimal mutation functions evolved from a ran-
dom population of functions using a meta genetic algorithm.
Our experimental results show a close match between theory
and experiment. We demonstrate this result both in artifi-
cial fitness landscapes, defined by a Hamming distance, and a
natural landscape, where fitness is defined by a DNA-protein
affinity. We discuss how a control of mutation rate could oc-
cur and evolve in natural organisms. We also outline future
directions of this work.

Introduction
The problem of optimal mutation rate has been studied for
a long time (e.g. see Eiben et al., 1999; Ochoa, 2002; Falco
et al., 2002; Cervantes and Stephens, 2006; Vafaee et al.,
2010, for reviews). It relates directly to optimisation of
genetic algorithms (GAs) in operations research and engi-
neering problems (i.e. meta-heuristics). It is also related
to some fundamental questions in evolutionary theory about
the role of mutation in adaptation and biological mecha-
nisms of DNA repair and mutation control.

As noted by Eiben et al. (1999), there are two trends in
optimisation of parameters in GAs — optimal parameter
setting and optimal parameter control. In the former, one
looks for an optimal value of a parameter, which is than kept
constant. Thus, Mühlenbein (1992) proposed mutation rate
µ = 1/l, where l is the length of sequences. The value
1/l, as was pointed out by Ochoa et al. (1999), is related
to the error threshold (Eigen et al., 1988). However, while
mutation rate 1/l can give satisfactory performance in some
problems, the advantages of using a variable rate were be-
coming obvious to many researchers, leading to the problem

of optimal parameter control. In particular, Ackley (1987)
suggested that mutation probability is analogous to temper-
ature in simulated annealing, and should decrease with time.
A gradual reduction of mutation rate was also proposed by
Fogarty (1989). In a pioneering work, Yanagiya (1993) used
Markov chain analysis of GAs to show that in any problem
there exists a sequence of optimal mutation rates maximis-
ing the probability of obtaining global solution at each gen-
eration. A significant contribution to the field was made by
Bäck (1993), who suggested that mutation rate µ should de-
pend on fitness values rather than time. Recently, Vafaee
et al. (2010) used numerical methods to optimise a mutation
operator based on the Markov chain model of GA by Nix
and Vose (1992). The complexity of this model, however,
restricts the application of this method to small spaces and
populations. Thus, the precise form of the optimal mutation
rate control, as well as question about the existence of such
a control in the general case, remain open problems. These
problems are extremely important not only for applications
of GAs, but also for biology and evolutionary theory.

In biological systems, mutation, unlike natural selection,
is an evolutionary process controlled, to a degree, by the
organism. This control is primarily seen in highly refined
DNA repair and replication machinery (e.g. Hakem, 2008).
This ensures both that physical damage to genetic mate-
rial is repaired and that, in the process of cell division, the
newly synthesised copies of DNA faithfully reproduce the
parental sequence. The result is that biological mutation
rates are very low: DNA-based organism values typically
being 1/300 per genome per replication, which, for genomes
frequently in the range between 106 and 1010 base-pairs,
means extremely faithful repair and replication (Drake et al.,
1998). Nonetheless, this observation also implies that bio-
logical mutation rates per base-pair are not minimised, since
widely varying genome sizes imply very different per-base-
pair rates. At a mechanistic level, some organisms do exist,
such as the bacterium Deinococcus radiodurans with sub-
stantially more developed DNA repair or replication mecha-
nisms than closely related species (Cox et al., 2010), imply-
ing that mutation rates elsewhere at least are not minimised.



Genetic variation also exists in mutation rates within species
and in the way mutation rate changes with environment for
a single genotype (Bjedov et al., 2003). Therefore, mutation
rates and their variation are potentially subject to biological
evolution themselves. Thus, while mutation rates are only a
part of the biological evolutionary process, they merit exam-
ination independent of the vicissitudes of selection that are
imposed on their products, which is what we address.

Our approach is based on theories of optimal control and
information. However, we believe that the key to finding so-
lutions that are relevant not only for engineering, but also
for biology, is understanding the relation between a repre-
sentation space, which is a discrete space of genotypes, and
its (pre)-ordering by phenotypic fitness. Biology typically
understands this relation via landscape metaphors, used in
a variety of ways (e.g. classically adaptive landscapes of
Wright, 1932, and ‘epistatic’ landscapes of Waddington,
1957). However, while the underlying elements, particu-
lar alleles of genes, are acknowledged as discrete, these
landscapes have almost uniformly been theorised (and visu-
alised) in continuous space following Fisher (1930). This is
problematic when one comes to the mechanistic basis of bi-
ological evolution in discrete DNA mutations. Attempts are
being made to reconcile such continuous models with indi-
vidual DNA mutations (Orr, 2005). However, hitherto, these
attempts have maintained a continuous view of the land-
scape space, in contrast to the reality of its discrete domain.
Discrete views have typically been restricted to abstracted
biological systems, such as aptamer (Knight et al., 2009) or
RNA structure evolution, where landscape analogies can be
dropped in favour of networks of sequences (Cowperthwaite
and Meyers, 2007) which do not lend themselves to consid-
eration of variable mutation sizes.

This work presents elements of a theory on optimisation
of asexual reproduction by a mutation rate control together
with its experimental evaluation. We introduce the notion
of relatively and weakly monotonic fitness landscapes, and
then develop the necessary machinery for Hamming spaces
of sequences with arbitrary alphabets, which are particularly
relevant in biology. Then we evolve mutation rate control
functions using a meta genetic algorithm, and show that they
closely match our theoretical predictions.

Theory
Let Ω be a countable set of all possible individuals ω and
f : Ω → R be a fitness function. Assuming that fitness value
x = f(ω) is the only information available, let P (xs+1 | xs)
be the conditional probability of an offspring having fitness
value xs+1 given that its parent had value xs at generation
(time) s. This Markov probability can be represented by
a left stochastic matrix T , and if P (xs+1 | xs) does not
depend on s (i.e. T is stationary), then T t defines a linear
transformation of distribution ps := P (xs) of fitness values
at time s into distribution ps+t := P (xs+t) of fitness values

after t ≥ 0 generations:

ps+1 = Tps =
∑
xs

P (xs+1 | xs) P (xs) ⇒ ps+t = T tps

We denote the expected fitness at generation s as

E{xs} :=
∑
xs

xs P (xs)

If E{xs+t} ≥ E{xs}, then individuals have adapted.
Suppose that the transition probability Pµ(xs+1 | xs) de-

pends on a control parameter µ, so that the Markov operator
Tµ(x) depends on the control function µ(x). Then the ex-
pected fitness Eµ(x){xs+t} also depends on µ(x). We inter-
pret µ(x) as a control function that parents use in reproduc-
tion to maximise expected fitness of their offspring based on
the value of their own fitness. A particular example we shall
consider here is when µ is the mutation rate parameter.

If Ω is the space Hl
α := {1, . . . , α}l of sequences of

length l and α letters, then by mutation we understand here
a process of independently changing each letter in a parent
sequence to any of the other α − 1 letters with probability
µ/(α− 1). This is point mutation, the simplest form of mu-
tation defined by one parameter µ, called the mutation rate.

The main result that we present in this paper is a mutation
rate control function, which is approximately optimal for
maximising expected fitness E{xs+t} in landscapes f(ω)
that are locally monotonic relative to the Hamming met-
ric (this property will be defined later). This mutation rate
function corresponds to the cumulative distribution function
(CDF) Pe(xr > x), r ∈ [s, s + t], computed from empir-
ical distribution Pe(xr) of observed fitness values xr over
the period [s, s + t]:

µe(x) = Pe(xr > x) =
∑

xr>x

Pe(xr) (1)

We refer to this function as informed mutation rate, because
it uses information communicated by random variable x. We
first present the theory and assumptions behind this heuris-
tic. Then we evaluate it against nearly optimal mutation
functions, evolved using a meta genetic algorithm both for
artificial and natural fitness landscapes.

Problem Definition
Formally, an optimal control function (e.g. an optimal mu-
tation rate function) is µ̄(x) achieving the following optimal
(supremum) value:

x(λ) := sup
µ(x)

{Eµ(x){xs+t} : t ≤ λ} (2)

Here, λ represents a time constraint. Function (2) is non-
decreasing and has the following inverse

x−1(υ) := inf
µ(x)

{t ≥ 0 : Eµ(x){xs+t} ≥ υ} (3)



Here, υ is a constraint on the expected fitness at s+ t. Thus,
x(λ) is the maximum adaptation in no more than λ genera-
tions; x−1(υ) is the minimum (infimum) number of genera-
tions required to achieve adaptation υ.

Optimal solutions µ̄(x), defined by function (2), depend
on the constraint t ≤ λ. We are interested in solutions for
λ that is large enough to achieve the maximum expected fit-
ness E{xs+t} = sup f(ω). This can be represented dually
by function (3) with constraint υ = sup f(ω). We note
that x(λ) = sup f(ω), if λ = ∞. However, generally
x−1(υ) ≤ ∞, even if υ = sup f(ω). Thus, our objective
is to derive one optimal control function µ̄(x) that can be
used by each individual parent based on their fitness value
throughout the entire ‘evolution’ [s, s+ t]. We note also that
our formulation uses only the values of fitness, and therefore
it extends to the case where f(ω) is time-variable.

Specific expressions for Pµ(xs+1 | xs), defining Tµ(x),
can be learnt or derived analytically from the domain Ω and
its structure. The operator Tµ(x) contains all information
required to compute optimal values (2) and (3). Thus, in
principle, one can find an optimal control function µ̄(x), if
the family of operators Tµ(x) is known. For example, con-
sidering values x ≥ υ as absorbing states, one can use Tµ(x)

to compute the fundamental matrix of the corresponding ab-
sorbing Markov chain and minimise the expected conver-
gence time to the absorbing states. Solving the complete
optimisation problem, however, can be an intractable task.
We shall formulate additional assumptions that will allow us
to solve the problem for some important cases.

Relatively Monotonic Landscapes

First, we shall make some assumptions about fitness f(ω),
which on one hand will generalise and clarify the terms
‘smooth’ and ‘rugged’ fitness landscape, and on the other
hand will allow us to obtain expressions for Pµ(xs+1 | xs).
In particular, we assume that there exists optimal individual
> ∈ Ω (not necessarily unique) such that sup f(ω) = f(>).
This is always true if Ω is finite. Also, we shall equip Ω with
a metric d : Ω × Ω → [0,∞), so that similarity between a
and b ∈ Ω can be measured by d(a, b), and assume that there
is a relation between the metric d and the fitness function f .
In particular, we define f to be monotonic relative to d.

Definition 1 (Monotonic landscape). Let (Ω, d) be a met-
ric space, and let f : Ω → R be a function with f(>) =
sup f(ω) for some > ∈ Ω. We say that f is locally mono-
tonic (locally isomorphic) relative to metric d if for each >
there exists a ball B(>, r) := {ω : d(>, ω) ≤ r} 6= {>}
such that for all a, b ∈ B(>, r):

−d(>, a) ≤ −d(>, b) =⇒ ( ⇐⇒ ) f(a) ≤ f(b)

We say that f is monotonic (isomorphic) relative to d if
B(>, r) ≡ Ω.

Example 1 (Needle in a haystack). Let f(ω) be defined as

f(ω) =
{

1 if d(>, ω) = 0
0 otherwise

This fitness landscape is often used in studies of GA per-
formance. A two-valued landscape is used to derive er-
ror threshold and critical mutation rate, and elements >
are referred to as the wild type. Such f is locally mono-
tonic relative to any metric, if for each > ∈ Ω there exists
B(>, r) 6= {>} containing only one >. Then conditions of
the definition above are satisfied in all such B(>, r) ⊂ Ω.
If Ω has unique >, then the conditions are satisfied for
B(>,∞) = Ω. In a two-valued landscape, optimal function
µ̄(x) for any λ in (2) is defined by maximising the one-step
transition probability Pµ(xs+1 = 1 | xs).

Example 2 (Negative distance to optimum). If f is isomor-
phic to d, then one can replace fitness f(ω) by the negative
distance−d(>, ω). The number of values of such f is equal
to the number of spheres S(>, r) := {ω : d(>, ω) = r}.
One can easily show also that when f is isomorphic to d,
then there is only one > element: f(>1) = f(>2) ⇐⇒
d(>2,>1) = d(>2,>2) = 0 ⇐⇒ >1 = >2.

In monotonic landscapes, spheres S(>, r) cannot contain
individuals with different fitness. We can generalise this
property by weak or ε-monotonicity, which requires that the
variance of fitness within individuals of each sphere S(>, r)
is small or does not exceed some ε ≥ 0. These assump-
tions allow us to replace fitness f(ω) by negative distance
−d(>, ω), and derive expressions for transition probability
Pµ(xs+1 | xs) using topological properties of (Ω, d).

Monotonicity of f depends on the choice of metric,
and one can define different metrics on Ω. Fitness land-
scapes that are at least weakly locally monotonic relative to
the Hamming metric seem biologically plausible given the
abundance of neutral mutations in nature and redundancy in
the translation of DNA to protein sequences. Thus, we focus
our attention on the case when Ω is a Hamming space.

Mutation and Adaptation in a Hamming Space
First, we outline a model of asexual reproduction in met-
ric space (Ω, d), and define the relation of parameter µ to
topology on Ω. This model is a generalisation of Fisher’s
geometric model of adaptation in Euclidean space (Fisher,
1930). Then we shall specialise this to a Hamming space.

Let individual a be a parent of b, and let d(a, b) = r. We
consider single-parent reproduction as a transition from par-
ent a to a random point b on a sphere: b ∈ S(a, r). We refer
to r as a radius of mutation. Suppose that d(>, a) = n and
d(>, b) = m. We are interested in the following probability:

P (m | n) := P (b ∈ S(>,m) | a ∈ S(>, n))

=
l∑

r=0

P (m | r, n) P (r | n) (4)



where the following notation was used

P (m | r, n) := P (b ∈ S(>,m) | b ∈ S(a, r), a ∈ S(>, n))
P (r | n) := P (b ∈ S(a, r) | a ∈ S(>, n))

If mutation radius r can be controlled via parameter µ,
then transition probability (4) depends on this parameter as
well. Specific expressions for Pµ(m | n) depend on the
topology of Ω. Let us consider the Hamming space.

Let Ω be a space Hl
α := {1, . . . , α}l — a space of se-

quences of length l and α letters and equipped with the Ham-
ming metric d(a, b) := |{i : ai 6= bi}|. Then, given proba-
bility of mutation µ(n) ∈ [0, 1] of each letter in the parent
sequence a ∈ S(>, n), the probability that b ∈ S(a, r) is

Pµ(r | n) =
(

l

r

)
µ(n)r(1− µ(n))l−r (5)

Probability P (m | r, n) is defined by the number of ele-
ments in the intersection of spheres S(>,m) and S(a, r):

P (m | r, n) =
|S(>,m) ∩ S(a, r)|d(>,a)=n

|S(a, r)|
(6)

where cardinality of the intersection S(>,m)∩S(a, r) with
condition d(>, a) = n is computed as follows

|S(>,m) ∩ S(a, r)|d(>,a)=n = (7)∑
(α− 2)r0

(
n− r−

r0

)
(α− 1)r+

(
l − n

r+

)(
n

r−

)
where the triple summation runs over r0, r+ and r− satisfy-
ing r+ ∈ [0, (r + m − n)/2], r− ∈ [0, (n − |r − m|)/2],
r−−r+ = n−max{r, m} and r0 +r+ +r− = min{r, m}.
These conditions are based on metric inequalities for r, m
and n (e.g. |n − m| ≤ r ≤ n + m). The number of se-
quences in S(a, r) ⊂ Hl

α is

|S(a, r)| = (α− 1)r

(
l

r

)
(8)

Substituting equations (5)–(8) into (4) we obtain the expres-
sion for Pµ(m | n) in Hamming space Hl

α.

Analytical Solutions for Special Cases
If fitness f is isomorphic to the Hamming metric, then tran-
sition probabilities Pµ(xs+1 | xs) are completely defined
by Pµ(m | n) with xs+1 = −m and xs = −n. The corre-
sponding Markov operator Tµ(n) is then an (l + 1)× (l + 1)
matrix completely defining the evolution on [s, s+ t], t ≤ λ,
for a given mutation rate function µ(n), if all individuals are
allowed to reproduce (with selection, one has to compose
Tµ(n) with a selection operator). For example, one can show
that for λ = 1, the optimal mutation rate is a step function:

µ1(n) :=

 0 if n < l(1− 1/α)
1
2 if n = l(1− 1/α)
1 otherwise

Unfortunately, analytical or numerical solutions to optimi-
sation problems (2) or (3) are not available or tractable for
λ > 1 and large l. However, analysis allows us to derive
some main features of an optimal control function µ̄(n).

Minimisation of the convergence time to state m = 0 is
related to maximisation of probability Pµ(m = 0 | n). Be-
cause r = n and |S(>, 0)∩S(a, n)|d(>,a)=n = 1, it has the
following expression:

Pµ(m = 0 | n) = (α− 1)−nµn(1− µ)l−n (9)

Mutation rate maximising this probability is obtained by tak-
ing its derivative P ′

µ over µ to zero, and together with con-
dition P ′′

µ ≤ 0, this gives n− lµ = 0 or

µ2(n) =
n

l
(10)

This linear mutation control function has very intuitive inter-
pretation — if sequence a has n letters different from the op-
timal sequence >, then substitute n letters in the offspring.
One can show that the linear function (10) is optimal for
two-valued fitness landscapes with one optimal sequence,
such as the Needle in a Haystack discussed in Example 1.
This is because expected fitness Eµ(x){xs+t} in this case
is completely defined by probability (9). For other fitness
landscapes that are monotonic relative to the Hamming met-
ric, function (10) is an approximation of the optimal control,
because it does not take into account transition probabilities
Pµ(m 6= 0 | n 6= 0) between other (transient) states, which
may influence the expected time of convergence to m = 0.
As a result, the convergence can be very poor in the initial
stages of evolution on [s, s + t].

Bäck (1993) derived probability Pµ(m < n | n) of ‘suc-
cess’ in the space Hl

2 of binary sequences, and then con-
sidered mutation rates µ̂ maximising its value for each n =
d(>, ω). Our equations (4)–(8) allow us to perform such
optimisation for arbitrary α. This method makes significant
improvement over the linear control for the speed of conver-
gence in the initial stages of evolution on [s, s+ t]. We note,
however, that the resulting mutation controls do not achieve
optimal values (2) or (3). One can show that maximisation of
Pµ(m < n | n) is equivalent to maximisation of conditional
expectation E{u(m,n) | n} =

∑
m u(m,n)Pµ(m | n) of a

two-valued utility function: u(m,n) = 1 if m < n; 0 oth-
erwise. This function has only two values, and such optimi-
sation of µ(n) is not precise for fitness functions with more
than two values. In fact, analysis using absorbing Markov
chains shows that linear control (10) achieves shorter ex-
pected times of convergence into absorbing state m = 0.

Empirically Informed Mutation Rate
Another approach to optimal control of parameters in evo-
lutionary systems is based on theories of information and
optimal coding. In brief, one can reformulate problems (2)
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and (3) by replacing the time constraint t ≤ λ with a con-
straint on information ‘distance’ Es+t{ln(ps+t/ps)} ≤ λ of
distribution ps+t = T tps from ps. Although minimisation
of information distance is not equivalent to minimisation of
convergence time, this formulation has the advantage that
the corresponding optimal values can be computed exactly
and used to evaluate various control functions.

Our evaluation shows that adaptation E{xs+t} ≥ υ with
the least information distance of ps+t from ps is achieved
if mutation rate is identified with the CDF of the ‘least in-
formed’ distribution P0(x) of fitness values. In particular,
assuming a uniform distribution P0(ω) = α−l of sequences
in Hl

α, the distribution P0(n) := P0(ω ∈ S(>, n)) of their
distances from > can be obtained by counting sequences in
the spheres S(>, n) ⊂ Hl

α. One can show also that this
corresponds to binomial distribution with µ = 1− 1/α:

P0(n) =
(

l

n

) (
1− 1

α

)n (
1
α

)l−n

=
(

l

n

)
(α− 1)n

αl

In this case, E{n} = lµ = l(1 − 1/α). Under the mini-
mal information distance assumption, the offspring will have
very similar distribution, and the probability P0(m < n)
that an offspring is closer to> is given by the CDF of P0(n),
which can be used to control the mutation rate:

µ0(n) = P0(m < n) =
n−1∑
m=0

P0(m) (11)

This mutation control function has the following interpreta-
tion — if sequence a has n letters different from the optimal
sequence >, then substitute each letter in the offspring with
the ‘least informed’ probability of improvement relative to
the current value n = d(>, a). Figure 1 shows P0(m < n)
for H30

2 and H30
4 . We note that minimisation of information

distance of ps+t from ps := P0 corresponds to maximisa-
tion of entropy of ps+t, but adaptation E{xs+t} ≥ E{xs}

leads to increasing the distance and decreasing the entropy
(i.e. slow ‘cooling’ as in simulated annealing).

In the next section, we present nearly optimal mutation
rate functions, obtained experimentally, and find that they
correspond to CDFs of distributions that are skewed towards
the optimum compared to the CDFs of the least informed
distributions P0 (i.e. skewed to the left compared to those
used in Figure 1). This can be explained by the fact that
the offspring sequences do not have a uniform distribution
in Hl

α during long intervals [s, s + t] due to adaptation
Eµ(n){m} ≤ E{n} = l(1 − 1/α). Therefore, the prob-
abilities of improvement relative to the current fitness are
higher than P0(m < n), and they can be approximated by
empirical functions Pe(m < n), observed during [s, s + t].
Thus, we refer to such a control as ‘informed’.

Finally, we note that if fitness is monotonic relative to the
Hamming metric, then function Pe(m < n) can be replaced
by function Pe(xr > x) for fitness values. We conjecture
that the corresponding control (1) of mutation rate should
achieve good performance also in landscapes that are only
weakly or ε-monotonic. Our experiments with an aptamer
landscape (Rowe et al., 2010) support this hypothesis.

Evolving Optimal Mutation Rates
To evaluate our theoretically derived mutation control func-
tions, we have evolved such functions independently us-
ing a meta-genetic algorithm (Meta-GA). Populations of the
Meta-GA comprised individual functions µ(x), which were
then used to control mutation rates of another GA, referred
to as Inner-GA. We first give some details about the Inner-
and Meta-GAs, and then describe results of the experiments.

Inner-GA
The Inner-GA is a simple generational genetic algorithm
that uses no selection and no recombination. Each geno-
type in the Inner-GA is a sequence ω ∈ Hl

α, and we used
populations of 100 individuals. The initial population had
equal numbers of individuals at each fitness value, and all
runs within the same Meta-GA generation were seeded with
the same initial population. Individuals were evolved by the
Inner-GA for t = 500 generations using simple mutation.
The objective was to maximise a fixed fitness function f(ω).
Here, we report results of the following three experiments:

1. H30
2 (i.e. α = 2, l = 30) and fitness f(ω) = −d(>, ω),

where d is Hamming metric.

2. H10
4 (i.e. α = 4, l = 10) and fitness f(ω) = −d(>, ω),

where d is Hamming metric.

3. H10
4 (i.e. α = 4, l = 10) and fitness f(ω) defined by

a complete DNA-protein affinity landscape for 10-base-
pair sequences (Rowe et al., 2010), which we refer to as
the aptamer landscape.
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Meta-GA
The Meta-GA is a simple generational genetic algorithm
that uses tournament selection (a good choice when little
is known or assumed about the structure of the landscape).
Each genotype in the Meta-GA is a mutation rate function
µ(x), which is a sequence of l +1 real values µ ∈ [0, 1] rep-
resenting per-locus probabilities of mutation. We used pop-
ulations of 100 individual functions, which were initialised
to µ(x) = 0.

The Meta-GA evolved functions µe(x) for t = 5 · 105

generations to maximise the average fitness in the final gen-
eration of the Inner-GA. The Meta-GA used the following
selection, recombination and mutation:

• Randomly select three individuals from the population
and replace the least fit of these with a mutated crossover
of the other two; repeat until all individuals from the pop-
ulation have been selected.

• Crossover (recombination) uses a single cut point chosen
randomly (excluding the possibility of being at either end,
so that there are no clones).

• Mutation adds a uniform-random number ∆µ ∈ [−.1, .1]
to one randomly selected value µ (mutation rate) on the
individual (mutation rate function), but then bounds that
value to be within [0, 1].

The Meta-GA returned the fittest mutation rate function
µe(x). In addition, we recorded empirical frequencies Pe(x)
of fitness values x = f(ω), observed during running the
Inner-GA for t generations on the relevant landscape and
using that mutation rate function. We note that empirical
frequencies Pe(x) counted only the number of phenotypic
mutations (i.e. genetic mutations that result in a change
in fitness). Empirical frequencies Pe(x) were then used to
compute the cumulative distribution functions Pe(xr > x),
which we then compared to the evolved µe(x).
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Experimental Results
We performed multiple runs of each experiment collect-
ing multiple versions of evolved mutation control functions
µe(x) and cumulative distribution functions Pe(xr > x) of
observed fitness values. Figures 2, 3 and 4 show the av-
erage of these functions from 20 runs together with stan-
dard deviations. Figures 2 and 3 are for the experiments in
H30

2 and H10
4 respectively, and with fitness f(ω) defined by

the negative Hamming distance −d(>, ω) to a fixed opti-
mum >. Figure 4 is for the experiment in H10

4 , but with fit-
ness f(ω) defined by the complete aptamer landscape from
(Rowe et al., 2010). The evolved functions µe(x) are ap-
proximated fairly by the cumulative distribution functions
Pe(xr > x), supporting heuristic (1). The mismatch in the
areas of low fitness can be explained by slower convergence
of functions µe(x) in this part of the space Hl

α due to lim-
ited exploration of it by populations of 100 individuals in the
Inner-GA, which are small relative to |Hl

α| = αl.



Discussion
In this work, we have made some progress towards under-
standing optimal control of mutation rate, and some general
principles can be formulated. It appears that choice of a rep-
resentation space and its topology is crucial, as it defines the
monotonic property of a fitness landscape. Our analysis was
performed for a Hamming space, but the ideas can be ex-
tended to other spaces, such as a space of variable or infinite
sequences with p-adic metric. If the right representation has
been found, then specific formulae can be derived using geo-
metric analysis in the representation space. These principles
can also be extended to sexual reproduction and control of
recombination. Our analysis and experiments suggest that
an optimal control of mutation rate is based on statistical in-
formation about the distribution of fitness values.

The existence of optimal mutation rates that vary depend-
ing upon an individual’s fitness raises a number of questions
about the existence and control of variable mutation rates
in biological organisms. For mutation rate control to have
evolved in nature, a first prerequisite is that biological mu-
tation rates can vary and are not simply minimised. There
is ample evidence that mutation rates do vary in nature,
between distantly (Drake et al., 1998) and closely-related
(Matic et al., 1997) organisms, between regions of genomes
(Lang and Murray, 2008) and even within an organism in
stressful versus benign environments (Bjedov et al., 2003).
However, the question of whether there may be an adaptive
trait, allowing an individual organism to affect the number of
mutations between itself and its offspring, dependent upon
environmental cues, remains an open question. This would
be an example of ‘higher-order’ selection, that is selection
not on the immediate fitness of an individual, but on its abil-
ity to produce fitter descendants, potentially many genera-
tions later. Such higher order effects have always been ques-
tioned in biology, since they might be expected, in real popu-
lations, to be swamped by direct selective effects (Pigliucci,
2008). However, discussion has intensified recently over the
concepts of ‘robustness’ and ‘evolvability’ (Masel and Trot-
ter, 2010). These are higher order effects of somewhat un-
clear definition; the latter potentially relates directly to the
control of mutation rate considered here. Very recent results
from experimental evolution of microbial populations show
that higher order evolvability effects can indeed play an im-
portant part in the evolution of real biological populations
(Woods et al., 2011). However, in mechanistic terms, only
the gross evolution of mutation rate itself (rather than muta-
tion rate control) in ‘mutator’ strains has been identified in
such experiments (Arjan et al., 1999).

If one moves from complete organisms to viruses and in
silico quasi-biological evolution, there is more work on op-
timal mutation rates and their evolution. Optimal mutation
rates can be identified (Kamp et al., 2002), relating to the
concept of an ‘error threshold’ (Ochoa et al., 1999) the mu-
tation rate at which selection can no longer be sufficient to

balance the deleterious effects of mutation (Biebricher and
Eigen, 2005). However, Clune et al. (2008) used digital or-
ganisms to show that natural selection does not always ef-
fectively evolve optimal mutation rates for adaptation in the
long-term, and this fact is particularly apparent when evolu-
tion occurs on a rugged fitness landscape. There is evidence
that, in nature, epistasis is widespread (e.g. Costanzo et al.,
2010), leading to rugged fitness landscapes. This potentially
reduces the biological relevance of work, such as ours, with
simple fitness functions. Nonetheless, even in rugged land-
scapes, biological evolution is, empirically, able to occur via
locally monotonic accessible paths (Poelwijk et al., 2007),
and we find a good agreement between the evolved and the-
oretical functions, even for a fitness landscape known to be
rugged (e.g. Fig. 4 in Rowe et al., 2010). Similarly, tem-
poral variation in fitness landscapes has been highlighted as
biologically important (Costanzo et al., 2010), which, while
it calls into question the biological relevance of optimal mu-
tation rates in static landscapes, leads back to the potential
biological importance of mutation rate variation in response
to environmental cues (Stich et al., 2010).

Finally, we observe that understanding of evolution and
dynamical systems, such as populations of organisms, may
be facilitated by theories of information and information dy-
namics. In particular, optimisation problems, defined by
functions (2) and (3), can be reformulated by replacing time
with an information distance between probability distribu-
tions. Analytical solutions for such problems can be ob-
tained (e.g. Belavkin, 2010), providing an alternative way to
evaluate control functions. Although we do not report such
evaluation here, we have observed that these information-
theoretic optimal values are achieved when the mutation rate
corresponds to a CDF of the ‘least informed’ distribution of
fitness values. Understanding this relation between muta-
tion rate control and information, along with its biological
relevance, are some of the directions of our future work.
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