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A B S T R A C T
This study develops a novel, accurate and efficient framework for the reliability analysis of multi-
component civil structures, which involves many random variables and repeated time-consuming
structural analysis processes. The simple yet effective idea is to construct a binary classification surro-
gate model to detect the structure’s condition (failure/safe) given structural parameters, external loads,
and predefined safety thresholds. However, building a surrogate model that can accurately detect the
structure condition is challenging because of the heavy imbalance nature of the considered problem,
i.e., only a very small portion of the data corresponds to the failure condition. To overcome this
problem, an ensemble learning model which stacks six different classification machine/deep learning
models is engineered. The ensemble model can improve the classification performance by leveraging
the model diversity rather than manually tuning a set of hyperparameters. Besides, a subset simulation
scheme is leveraged to address the scarcity of relevant samples, i.e., providing more training samples
from the potential failure region. In addition, the sampling weighting technique is adopted to assign
higher weights for samples corresponding to the class with smaller probability, allowing the train-
ing process to achieve a faster convergence rate and higher final performance. The applicability and
efficiency of the proposed approach are successfully demonstrated through three case studies with
different complexity and dimensionality, showing that the proposed approach can provide accurate
reliability results with up to two orders of magnitudes less computational costs.

1. Introduction
Civil structures are expensive multi-component systems

involving a large number of random variables related to ex-
ternal loads, material’s mechanical properties, and geomet-
ric properties; therefore, it is important yet challenging to
ensure their high reliability and long lifespan. Monte Carlo
(MC) simulation is a de-factor method to numerically an-
alyze the structural reliability since it does not require any
simplifying assumption on the structure’s behavior or the
failure domain. However, the MC method suffers from two
major drawbacks: i) repeatedly performing a large number
of calculations and ii) the requirement of time-consuming
numerical simulations such as the Finite Element Method
(FEM). In order to address these two problems, there are
two respective research directions plus a hybrid strategy of
the two.

The first research direction is to employ a sampling strat-
egy to sample more relevant data from failure domains based
on knowledge progressively achieved during calculation it-
erations. Some well-known sampling strategies are the line
sampling [1] which is able to identify the important direction
in the input parameter space; the importance sampling [2],
which introduces importance sampling density functions cen-
tered around the most probable failure points; and the sub-
set simulation (SS) computing the final failure probability as
a product of conditional intermediate failure probabilities.
The pioneering work that applied SS to the structural reli-
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ability analysis was proposed by Au and Beck [3], proving
that SS could estimate a very small failure probability with
acceptable accuracy and with impressive reduced time com-
plexity. After that, several authors have developed different
SS variants to extend their applications and improve their
performance. For example, Hsu and Ching [4] designed a
parallel SS approach for addressing multiple limit states si-
multaneously. Alvarez et al. [5] proposed to combine SS
with the random set theory to estimate the lower and up-
per bounds of the failure probability of structures subjected
to aleatoric and epistemic uncertain inputs. Ebenuwa and
Tee [6] analyzed the reliability of structures with the pres-
ence of deterministic, random, and fuzzy variables through
a fuzzy-based optimized SS approach. Abdollahi et al. [7]
suggested incorporating the control variate technique with
SS, forming the subset control variate (SCV) method. Sev-
eral examples were performed to demonstrate improved re-
liability results achieved by SCV. For structures exhibiting
inelastic behaviors, Katafygiotis and Cheung [8] developed
a two-stage SS variant where SS was only activated for sam-
ples from the inelastic region, making the two-stage SS method
more efficient than the standard one.

The second research direction is to conceive a fast sur-
rogate model in place of FEM in estimating the limit state
function. A practical and easy-to-implement method is the
Response Surface Modeling [9] which constructs a predic-
tor using a polynomial function of random variables plus a
random error. However, the Response Surface Modeling’s
prediction accuracy for a nonlinear limit state function of
complex problems is limited. Another widely used surrogate
model is the Kriging model, a.k.a, Gaussian Process [10,
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Table 1
Comparison between the proposed a-eSS framework with other active learning methods in the structural reliability literature

N𝑜 Authors Surrogate Sampling Structural Number of Year
model strategy application variables

1 Echard et al. [18] Kriging model Monte Carlo 1-dof oscillator 6 2011
2 Chojaczyk et al. [19] ANN Important Sampling 3D stiffer plate 13 2015
3 Vazirizade et al. [20] ANN Monte Carlo 2D story frame 3 2017
4 Ghosh et al. [21] SVM Monte Carlo 2D bridge piers 5 2018
5 Hariri-Ardebili [22] KNN/Naive Bayes Important Sampling Dam structure 18 2018
6 Zhang et al. [23] Kriging model Subset simulation 2D truss structure 10 2019
7 Gomes and Jose [24] ANN Important Sampling 1-dof oscillator 6 2019
8 Zhao et al. [25] RBF-GA Monte Carlo 2D 6-story frame 67 2019
9 Mendoza Lugo et al. [26] Bayesian Network Monte Carlo 3D bridge columns 17 2019
10 Roy et al. [27] SVM Sequential sampling 3D 6-story building 39 2020
11 Lieu et al. [15] Deep NN Monte Carlo 3D 120-bar dome 11 2022
12 Zhou and Peng [17] DNN + Probability 2D 10-story 110 2022

Gaussian Process density evolution frame structure
13 a-eSS (this study) Ensemble model Subset simulation 3D 9-story building 42 2022

11], which is basically a statistic-based interpolation tech-
nique leveraging the spatial correlation between data sam-
ples to interpolate unknown values. However, the compu-
tation time of the standard Kriging model increases quickly
with the number of variables [12] because it requires per-
forming multiple matrix inversion and multiplication oper-
ations. Lately, using machine learning/deep learning algo-
rithms to build a surrogate model has gained considerable at-
tention thanks to its high performance and efficiency. Dang
et al. [13] developed a surrogate model based on the Bayesian
neural network to analyze the time-varying reliability of struc-
tures. Later, the authors [14] leveraged the deep learning al-
gorithm Long Short Term Memory to approximate the struc-
ture’s time-varying responses when performing seismic re-
liability analysis. Lıeu et al. [15] found that deep neural
network-based surrogate models can effectively evaluate limit
state functions, as demonstrated through various examples
involving multiple failure modes. Moreover, machine learn-
ing models could be integrated with the Bayesian probabil-
ity framework, forming a probabilistic surrogate model ro-
bust against unwanted noises, as demonstrated in [16]. Zhou
and Pen [17] combined the deep learning model with Gaus-
sian Process and the probability density evolution method to
tackle high-dimensional reliability problems. The proposed
method is applicable for both static and dynamic systems.
However, a drawback of the deep learning-based surrogate
model is the necessity of preparing in advance a considerably
large amount of data for adequately training the surrogate
model, which undermines its practicality in real scenarios.

A promising advantage of the machine learning-based
surrogate model is its ease of integration into existing frame-
works without requiring a specific program like FEM or ex-
pert knowledge like statistical methods. Based on this prop-
erty, this study proposes a active learning framework seam-
lessly integrating SS with a robust machine learning tech-
nique, namely ensemble learning, to improve further the effi-
ciency of the standard SS method while alleviating the com-

putationally expensive data preparation step. Table 1 com-
pares recent works on active learning for structural reliability
analysis, via which the distinctive contributions of the pro-
posed approach are clarified. It can be seen that different
methods combining Kriging with MC [18] have been devel-
oped to improve one or some aspects to achieve higher effi-
ciency and accuracy. However, in the authors’ opinion, these
methods have two major limitations when working with ex-
tremely small failure probabilities. First, the Kriging based
surrogate models are based on a subjective distance metric to
assess the correlation between input points. This approach
is not optimal for problems involving a high number of ran-
dom variables, especially when they have different physi-
cal natures, which potentially impedes the Kriging model’s
performance. Second, for extremely small failure probabili-
ties, the data is highly imbalanced; thus, the refinement pro-
cess of Kriging-based methods may require a large number
of iterations to get enough relevant data samples from fail-
ure regions for properly training the surrogate model. In
order to remedy the first drawback, this study develops an
ensemble learning model that stacks various classification
machine/deep learning models to improve the final perfor-
mance. Different models exploit different features from in-
put data, perform chains of reasoning in different ways, and
suffer different errors. Hence, the ensemble model is more
robust and achieves higher or at least equal accuracy than
any individual model. In order to address the second draw-
back, two techniques are leveraged: i) the SS strategy for
progressively drawing relevant samples from intermediate
sub-failure domains, ii) the sampling weighting technique,
which assigns higher importance weights for scarce samples
from failure regions than for normal samples, allows for mit-
igating the adverse effect of imbalanced data. In short, one
summarizes the main contributions of this study as follows:

• A novel, accurate and efficient framework using adap-
tive ensemble learning paired with subset simulation,
dubbed a-eSS, for analyzing the reliability of struc-
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tures with a high number of random variables is de-
signed and fully implemented without the need to pre-
pare a FEM database in advance. The random vari-
ables considered in this study belong to structural pa-
rameter/variable uncertainties [16], which include ma-
terial properties, cross-section dimensions of load bear-
ing members, boundary condition stiffnesses, and ex-
ternal load intensities. Their values are drawn from
predefined distributions with given statistical charac-
teristics such as mean and standard deviation.

• The viability and performance of the a-eSS method
are quantitatively illustrated through three case studies
with increasing complexity. The computation results
show that the proposed method outperforms compet-
ing approaches in terms of efficiency, i.e., 1.7 and 494
times faster than the SS and MC methods, respectively,
while still providing highly similar reliability results.

• The informative insights about the mechanism of a-
eSS are clarified through ablation, comparison, and
parametric studies, thus increasing its applicability for
further studies.

The remainder of the paper is organized as follows: Sec-
tion 2 introduces the general workflow of the a-eSS frame-
work, the theoretical background, the surrogate model us-
ing ensemble learning, and six machine/deep learning com-
ponents. Section 3 presents three case studies involving a
15-bar truss structure, a 2D frame structure, and a 3D build-
ing structure. Finally, the conclusions, limitations, and some
ideas for future works are drawn in Section 4.

2. Ensemble model for structural reliability
analysis
Figure 1 illustrates the working flow of the proposed a-

eSS approach (on the rightmost) and competing approaches,
including the conventional Monte Carlo and Subset Simu-
lation methods. The typical first step consists of defining
key random variables that considerably impact structures’
responses, for example, materials’ mechanical properties, sec-
tion sizes, load intensities, etc. These variables are described
by predefined probability distributions and statistical charac-
teristics such as mean and coefficient of variance values. For
the conventional MC method, one first draws a large number
of samples, then a series of FEM simulations with these sam-
ples will be carried out. The output of simulations will be
tested with a problem-specific limit state function, such as
a maximum allowable displacement, to calculate the failure
probability and reliability results. Moreover, the reliability
curve can be plotted, showing the evolution of the reliabil-
ity index in function of various safety thresholds. The left-
most panel of Fig. 1 schematically illustrates these steps of
MC. In order to reduce the number of simulations, the sam-
pling strategy SS, which divides the failure region into a set
of sub-failure domains, is utilized. The middle panel of the
figure illustrates the realization steps of SS. Instead of draw-
ing many samples, SS only considers a subset of samples

within sub-failure domains and performs FEMs with these
samples. The obtained outputs are then used to compute new
intermediate safety thresholds and new sub-failure domains.
After that, one employs the Modified Metropolis-Hastings
(MMH) algorithm to draw new candidates. The latter needs
to be checked to see whether they are within sub-failure do-
mains.

Note that the checking process in the standard SS method
is realized still using time-consuming FEM simulations. The
simple yet effective idea of the proposed a-eSS model is to
replace FEM with a surrogate model when checking the rel-
evance of candidates generated by the MMH algorithm. An-
other noteworthy point of a-eSS is that it is fine-tuned by di-
rectly using samples of intermediate subsets of SS. In other
words, it does not require preparing in advance a dataset
for training the surrogate model, as usually done in some
reviewed works. As illustrated in the rightmost panel, a-
eSS only adds two more steps compared to the standard SS
method. By doing so, a-eSS possesses double advantages:
reducing the number of calculation samples (by SS) and short-
ening the checking time of new candidates (by the surrogate
model), making it highly efficient. In the next paragraph, the
details of two key components of a-eSS, i.e., the adaptive en-
semble learning model and subset simulation, are described
in detail.

The surrogate model, which can quickly identify the ac-
tual state of the structure based on structural parameters,
excitation, and safety threshold, is one of the most critical
components of the proposed framework. Its identification
accuracy has a defining impact on the final performance.
In order to achieve high accuracy, in this study, one lever-
ages the ensemble learning method [28], which is a meta
approach combining the outputs from multiple models, in
other words, a model of models. Per the ensemble theory,
an ensemble tends to provide better results with lower vari-
ance than any individual model used in the ensemble. This
is because ensemble learning increases the diversity and de-
creases the risk of being stuck in local optima, potentially
encountered by a single model.

Considering a dataset 𝐷 = {𝑋𝑖, 𝑦𝑖} with 𝑋𝑖 being a vec-
tor of input features, 𝑋𝑖 = [𝑥𝑖,1, 𝑥𝑖,2,… , 𝑥𝑖,𝑚], 𝑚 is the total
number of features, 𝑦𝑖 is a binary value indicating the state
of the structure, 𝑦𝑖 = 0 means a safe state, 𝑦𝑖 = 1 indicates
a failure state. Let’s denote 𝑓 (𝑋𝑖) as an individual machine
learning model. There are two major ways to combine 𝑘
different models 𝑓1(𝑋𝑖), 𝑓2(𝑋𝑖),… , 𝑓𝑘(𝑋𝑖): homogeneous
and heterogeneous ensemble models. The former uses a set
of models of the same type, while the latter employs models
of different types. In this study, one works with imbalanced
data as samples belonging to the failure domain occupy only
a small probability; it is expected that increasing the diver-
sity may be beneficial for such a scenario. This is why the
heterogeneous, a.k.a, stacking ensemble model is selected,
whose formula can be written as follows:

�̂�𝑖 = 𝐺[𝑓1(𝑋𝑖), 𝑓2(𝑋𝑖),… , 𝑓𝑘(𝑋𝑖)], (1)
where 𝐺 is an aggregation function.
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Figure 1: Working flow of the proposed a-eSS method (rightmost), Subset Simulation
(middle), and conventional Monte Carlo Simulation (leftmost).

2.1. Model selection
Consider a training dataset (𝑋1, 𝑦1), (𝑋2, 𝑦2),… , (𝑋𝑛, 𝑦𝑛),where 𝑋𝑖 and 𝑦𝑖 are input feature vectors and the structure’s

condition (normal/failure) of the 𝑖𝑡ℎ sample, respectively, it
is required to identify the corresponding structure’s condi-
tion for a new input 𝑋∗. Until now, a spectrum of ML clas-
sification algorithms has been developed. In order to con-
struct an effective ensemble model, it should select differ-
ent machine learning algorithms using different strategies
for processing features rather than using algorithms in the
same family to enrich the model diversity. On the other hand,
it should prioritize popular, reliable, and easy-to-implement
algorithms to promote their practical applicability. In con-
trast, using advanced machine learning models, for example,
Random Forest (bagging), XGBoost (Boosting), etc., would
add more tunable parameters, potentially making the ensem-
ble model impractical. That is why one selects six different
low/moderate complexity models, namely Logistic Classifi-
cation, Naïve Bayes Classifier, Support Vector Machine, De-

cision Tree, K-Nearest Neighbors, and Multiple Layer Per-
ceptron. They are among the most machine learning models
widely acknowledged and used in different domains in both
the academy [29] and industry [30? ].

The first machine learning model is the polynomial lo-
gistic classification model [31], thanks to its clarity and pop-
ularity. A polynomial combination of features is calculated
before going through a nonlinear sigmoidal function for cal-
culating probabilities of structures’ possible states, as fol-
lows:
𝑦∗ = 𝑤0+𝑤1𝑥

∗
1+𝑤2𝑥

∗
2+𝑤3𝑥

∗
1𝑥

∗
2+𝑤4(𝑥∗1)

2+𝑤5(𝑥∗2)
2 (2)

where 𝑤𝑖 are coefficients of the polynomial function. The
polynomial combination could include high-order powers of
variables and their interactions if the boundary between classes
is nonlinear. However, not all nonlinear relationships could
be described by polynomial functions; in such a scenario,
high-order terms may incur unnecessary complexity in the
model, especially with high-dimensional inputs. Herein, the
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quadratic polynomial function is selected.
The second model is the support vector machine model

(SVM) [32], which is built upon a solid statistical learning
framework. The core idea of SVM is to construct a linear
hyperplane for separating data. Data samples belonging to
the same side of the hyperplane are classified into the same
classes. The optimal hyperplane would maximize the mar-
gin between samples of two classes on both sides of the hy-
perplane. In other words, this maximizes the distance be-
tween the hyperplane and the nearest data. Herein, the dis-
tance is obtained via an inner product. For nonlinear prob-
lems, if a linear hyperplane does not exist on the original
feature spaces, a kernel function will be used to transform
samples into higher-dimensional feature spaces where a lin-
ear decision boundary can be found. Mathematically, the
SVM hyperplane can be described by:

ℎ(𝑋) =
𝑁
∑

𝑖=1
𝑤𝑖𝐾(𝑋,𝑋𝑖) + 𝑏 (3)

where 𝐾(𝑋,𝑋𝑖) is a kernel function, 𝑏 is an intercept term,
𝑤𝑖 are weight coefficients. One of the most used kernel
functions is the Gaussian Radial Basis function, a.k.a, RBF,
whose formula is written as below:

𝐾(𝑋𝑖, 𝑋𝑗) = exp(−𝛾|𝑋𝑖 −𝑋𝑗|
2), (4)

where 𝛾 is an user-defined parameter.
Another adopted model is the Naïve Bayes Classifier [33]

which is an easy-to-implement classifier with a clear theo-
retical background and can provide quick results even when
the input dimensionality is high. This model is based on the
Bayes theorem and a relatively naïve assumption, as sug-
gested by its name, that input features are independent of
each other, i.e., there is no correlation between features. Let’s
denote 𝑃 (𝐶𝑘|𝑥𝑖,1, 𝑥𝑖,2,… , 𝑥𝑖,𝑚) is the probability of the class
𝐶𝑘 given a set of features 𝑋𝑖 = [𝑥𝑖,1, 𝑥𝑖,2,… , 𝑥𝑖,𝑚]. Per the
Bayes’ theorem, this probability can be calculated by:

𝑃 (𝑦|𝑥𝑖,1, 𝑥𝑖,2,… , 𝑥𝑖,𝑚) =
𝑃 (𝑦)𝑃 (𝑥𝑖,1, 𝑥𝑖,2,… , 𝑥𝑖,𝑚|𝑦)

𝑃 (𝑥𝑖,1, 𝑥𝑖,2,… , 𝑥𝑖,𝑚)
(5)

By using the independence assumption, the conditional
joint probability on the right-hand side of Eq. (5) is obtained
as the product of a series of conditional probabilities, and the
equation is rewritten as:

𝑃 (𝑦|𝑥𝑖,1, 𝑥𝑖,2,… , 𝑥𝑖,𝑚) =
𝑃 (𝑦)

∏𝑚
𝑗=1 𝑃 (𝑥𝑖,𝑗|𝑦)

𝑃 (𝑥𝑖,1, 𝑥𝑖,2,… , 𝑥𝑖,𝑚)
(6)

Because probability𝑃 (𝑥𝑖,1, 𝑥𝑖,2,… , 𝑥𝑖,𝑚) is the same, thus
the predicted class will be the one that maximizes the numer-
ator of the right-hand side in Eq. (6):

𝑦𝑖 = argmax
𝑘∈1,…,𝐾

𝑃 (𝐶𝑘)
𝑚
∏

𝑗=1
𝑃 (𝑥𝑖,𝑗|𝐶𝑘) (7)

Marginal probability 𝑃 (𝐶𝑘) and each conditional probability
𝑝(𝑥𝑖,𝑗|𝐶𝑘) can be calculated from the training dataset.

Next, the fourth model is an interpretable learning method,
namely, Decision Tree [34]. It can be expressed as an if-then
clause-based model, using features for dividing data in a top-
down fashion from the root node to branch nodes and leaf
nodes. The root node corresponds to the whole data, while
the leaf nodes correspond to prediction results. Let’s intro-
duce the entropy as a measure of the randomness calculated
from class probabilities as follows:

Entropy =
𝐾
∑

𝑘=1
−𝑝𝑘 log2 𝑝𝑘, (8)

where 𝑝𝑘 is the predicted probabilities for class 𝑘, entropy
values range from 0 to 1. A low entropy value (near 0)
means data samples within a node are highly similar, while a
high entropy value (near 1) means samples are highly differ-
ent and require further splitting. Next, intermediate branch
nodes are divided such that the Information Gain value (IG)
is maximized, where IG signifies the reduction in entropy as
below:

IG = Entropy(parents) – Entropy(children), (9)
in which Entropy(parents) and Entropy(children) are the en-
tropies of parent and children nodes.

The fifth model is a non-parametric model, named K-
Nearest Neighbor (K-NN) [35], i.e., no trainable weights need
to be determined through a training process. The algorithm
first calculates the distance between new sample 𝑋∗ with
other data samples in the training dataset; then, its 𝐾 near-
est neighbor samples are selected. After that, 𝑦∗ is derived
based on the majority vote rule of these 𝐾 neighbors. The
distance between data samples is usually the Manhattan or
Euclidean distances. Standardization or normalization is car-
ried out before the distance calculation if data features have
different physical meanings and are of different scales. For
K-NN, selecting an adequate value of𝐾 is critical, which has
an important impact on the performance of K-NN. A small
value of 𝐾 will increase the variance of the model, while a
high value of 𝐾 will reduce the model variance but give rise
to bias. Usually, the cross-validation and elbow techniques
are used to plot the performance of K-NN against different
values of 𝐾 . In this study, 𝐾 is set to 10 unless otherwise
stated. It may not be an optimal value, but with the help of
diversity, the ensemble model could still achieve high perfor-
mance, as will be demonstrated later. To sum up, the steps
of K-NN are as follows:

• Calculate distance between (𝑋∗, 𝑋𝑖) with 𝑖 = 1,… , 𝑁 .
• Sort these distances in ascending order and then select

the first 𝐾 samples
• Identify the most frequent class from these chosen 𝐾

samples and assign it to 𝑦∗.
The last model is a multiple layer perceptron (MLP) [36]

network that can extract non-linear relationships between fea-
tures through its hierarchical architecture. The deeper the
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(a) Working flow

(b) Code snippets written in Python

Figure 2: Representation of the stacking ensemble model.

architecture, the more complex relationship can be captured.
However, a deeper architecture will increase the number of
network weights, just requiring a larger volume of data. Oth-
erwise, the overfitting problem may happen, where the model
achieves high performance on training data but low accuracy
on unseen data. Given a 𝑑-dimensional input, one selects
a MLP network with a configuration of [𝑑, 3𝑑, 3𝑑, 2], i.e.,
there are two hidden layers, each having 3𝑑 neurons. Such
a configuration is preliminarily evaluated by the authors; it
can provide a good balance between the model complexity
and performance in this study.

2.2. Stacking ensemble learning
Each machine learning model 𝑓𝑗(𝑋𝑖) can directly pre-

dict a class (hard voting) or provide a vector of probabilities
for each class (soft voting). For the case of hard voting, 𝐺
is usually a maximum function, and the final predicted class
is the one with the most votes from models. However, this
way may not be optimal because a weak model has the same
impact on the final results as a strong one. Hence, the soft
voting scheme is selected where the probabilities for each
class will go through a one-hidden-layer feed-forward net-
work for predicting the final prediction. Considering model
𝑓𝑗(𝑋𝑖), the probabilities of 𝑓𝑗(𝑋𝑖) = 0 and 1 are denoted by
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𝑝𝑖 and 𝑞𝑖 = 1− 𝑝𝑖, respectively. The aggregation function 𝐺
is rewritten as follows:

𝐺[𝑓1(𝑋𝑖), 𝑓2(𝑋𝑖),… , 𝑓𝑘(𝑋𝑖)] =

𝐹𝑜𝑢𝑡
[

𝐹ℎ(𝑝1, 𝑞1,… , 𝑝𝑘, 𝑞𝑘,𝑊ℎ),𝑊𝑜𝑢𝑡
]

=
[

𝑝𝑖𝑒𝑛𝑠
𝑞𝑖𝑒𝑛𝑠

] (10)

where 𝑊ℎ and 𝑊𝑜𝑢𝑡 are trainable parameters of the hidden
layer 𝐹ℎ and output layer 𝐹𝑜𝑢𝑡, 𝑝𝑒𝑛𝑠 and 𝑞𝑒𝑛𝑠 are class prob-
abilities predicted by the ensemble model. The number of
neurons in the hidden layer is set to 64, which provides sat-
isfactory results for the examples investigated in this study.
The cross-entropy loss function is utilized to measure the
classification performance of the ensemble model:

𝐿 = − 1
𝑁

𝑁
∑

𝑖=1

(

log 𝑝𝑖𝑒𝑛𝑠 + log 𝑞𝑖𝑒𝑛𝑠
) (11)

The graphical presentation of the proposed stacking en-
semble model is illustrated in Fig. 2 where the first part in-
volves defining individual machine learning models, and the
second part combines the output of ML models through a
feed-forward network. Correspondingly, the code snippets
of the ensemble learning written in Python are briefly pre-
sented in Fig. 2(b).
2.3. Subset Simulation

Considering a vector of independent random variables
𝑋𝑖 = [𝑥𝑖,1, 𝑥𝑖,2,… , 𝑥𝑖,𝑚], where 𝑥𝑖,𝑗 denotes a random vari-
able representing uncertainty in structural parameters and
load intensities with a predefined probability distribution 𝑝𝑗 ,with 𝑗 = 1,… , 𝑚. Per [37], the joint probability of 𝑋 is
computed as the product of 𝑝𝑗(𝑥𝑖,𝑗) as follows:

𝑝(𝑋𝑖) =
𝑚
∏

𝑗=1
𝑝𝑗(𝑥𝑖,𝑗). (12)

A limit state of the structure is expressed via function 𝐹 (𝑋𝑖).
𝐹 (𝑋𝑖) ≥ 0 corresponds to a safety state; otherwise, if𝐹 (𝑋𝑖) <
0, the failure happens. The probability of the failure 𝑃𝑓 is
calculated as follows:

𝑃𝑓 = 𝑃 [𝐹 (𝑋) < 0] = ∫ ⋯∫𝐹 (𝑋)<0
𝑝(𝑋) 𝑑𝑥. (13)

Next, one can calculate the reliability index (𝑅𝐼) as below:
𝑅𝐼 = −Φ−1(𝑃𝑓 ), (14)

where Φ−1 is the inverse of the standard normal cumulative
distribution function. The right-hand side of Eq. (13) can
be numerically approximated by using MC simulation with
a large number of samples drawn from predefined distribu-
tions. Let’s introduce a binary function 𝐼 as follows:

𝐼[𝑓 (𝑋𝑖)] =

{

0 if 𝐹 (𝑋𝑖) ≥ 0 (safe),
1 if 𝐹 (𝑋𝑖) < 0 (failure). (15)

The probability of failure 𝑃𝑓 is then calculated as an expec-
tation of the indicator function as below:

𝑃𝑓 = 1
𝑁𝑠𝑎𝑚𝑝𝑙𝑒

𝑁𝑠𝑎𝑚𝑝𝑙𝑒
∑

𝐼[𝐹 (𝑋)], (16)

where𝑁𝑠𝑎𝑚𝑝𝑙𝑒 stands for the total number of samples. 𝑁𝑠𝑎𝑚𝑝𝑙𝑒needs to be sufficiently large to accurately estimate 𝑃𝑓 . A
reasonable value of 𝑁𝑠𝑎𝑚𝑝𝑙𝑒 could be estimated by [38]:

𝑁𝑠𝑎𝑚𝑝𝑙𝑒 =
1 − 𝑃𝑓

𝐶𝑜𝑉 2 × 𝑃𝑓
, (17)

where 𝐶𝑜𝑉 denotes a coefficient of variance of 𝑃𝑓 . Appar-
ently, a very small 𝑃𝑓 would demand a large 𝑁𝑠𝑎𝑚𝑝𝑙𝑒. If the
estimation of 𝐹 (𝑋𝑖) is time-consuming, the reliability anal-
ysis procedure with a large number of calculations will be
computationally expensive or even prohibitive.

To reduce the number of calculation, the Subset Simu-
lation method divides the failure domain 𝐹 into a sequence
of sub-failure domains 𝐹1 ⊃ 𝐹2 ⊃ … ⊃ 𝐹𝑁𝑠𝑢𝑏

= 𝐹 , with
𝑁𝑠𝑢𝑏 being the total number of sub-domains. For each sub-
domain, the failure probability is large enough to be accept-
ably approximated by using a feasible number of calcula-
tions with MC. Note that the sub-domains are hierarchically
dependent, i.e., to compute𝐹𝑠+1, one only considers samples
within the sub-domain 𝐹𝑠. Thus, the obtained failure prob-
ability of sub-domain 𝑖 is a conditional probability, denoted
by 𝑃𝑓 (𝐹𝑠+1|𝐹𝑠). By multiplying these conditional probabil-
ities together, the final failure probability is obtained as fol-
lows:

𝑃𝑓 = 𝑃𝑓 (𝐹𝑁𝑠𝑢𝑏
) = 𝑃𝑓 (𝐹1)

𝑁𝑠𝑢𝑏−1
∏

𝑠=1
𝑃𝑓 (𝐹𝑠+1|𝐹𝑠). (18)

An important step of the SS method is how to sample data
within sub-domain 𝐹𝑠 when calculating 𝑃𝑓 (𝐹𝑠+1|𝐹𝑠). To-
wards this end, a variant of the Markov chain Monte Carlo
method, namely, the random walk modified metropolis hast-
ings algorithm, is employed owing to its simplicity, flexi-
bility, and effectiveness in sampling data from an arbitrary
probability distribution.

In this algorithm, one predefines in advance a value of
probability failure for each intermediate level, 𝑃 𝑖𝑛𝑡

𝑓 . For level
𝑠 of SS, one computes the next threshold 𝐹𝑠+1 based on data
samples and 𝑃 𝑖𝑛𝑡

𝑓 . More specifically, if there are 𝑁𝑠 known
samples [𝑋1,… , 𝑋𝑁𝑠

] within sub-domain 𝐹𝑠 sorted in as-
cending order: 𝐹 (𝑋𝑁𝑠

) > ⋯ > 𝐹 (𝑋1) > 𝐹𝑠, then the
threshold 𝐹𝑠+1 is defined as 𝐹𝑠+1 = 𝑓 (𝑋𝑁𝑡

) with 𝑁𝑡 =
𝑁𝑠 × 𝑃 𝑖𝑛𝑡

𝑓 .
For the next subset level 𝑠 + 1, it is necessary to sam-

ple 𝑁𝑠 data within the critical region 𝐹𝑠 using 𝑁𝑡 known
samples of the subset level 𝑠 determined above as seeds plus
random walk quantities. In parallel, the threshold 𝐹𝑠 and
these data samples [𝑋1,… , 𝑋𝑁𝑠

] are used to update the en-
semble learning model such that it can accurately separate
samples within or outside the sub-failure domain 𝐹𝑠. Be-
sides, the sampling weighting technique is used to reduce
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the unbalance problem of data, i.e., the number of samples
corresponding to the normal state of the structure is con-
siderably larger than that corresponding to the failure state.
This technique assigns higher weights for the latter, making
the training process achieves a faster convergence rate and
higher final performance. Specifically, the ratio between the
weight of samples belonging to the normal state and that of
the failure state is 1:3.

Let’s consider a feature 𝑥𝑠𝑖,𝑗 , of a sample data 𝑖 in the
sub-domain 𝑠: 𝑋𝑠

𝑖 = [𝑥𝑠𝑖,1, 𝑥
𝑠
𝑖,2,… , 𝑥𝑠𝑖,𝑚] with 𝑖 ∈ [1, 𝑁𝑡].

For simplicity, in the rest of the section, one omits the su-
perscript 𝑠. First, a proposal univariate Gaussian probability
density function 𝑞𝑗 with a mean value equal to 𝑥𝑖,𝑗 and stan-
dard deviation 𝜎𝑗 is introduced. Next, a proposal value 𝜂
of component 𝑗 of the new sample is drawn according to a
Gaussian probability density function as follows:

𝑞∗𝑗 (𝜂|𝑥𝑖,𝑗) =
1

√

2𝜋𝜎𝑗
exp

(

−(𝜂 − 𝑥𝑖,𝑗)2

2𝜎2𝑗

)

, (19)

The value of 𝜎𝑗 is defined based on the original distribution
𝑝𝑗(𝑥𝑖,𝑗) and/or of 𝑁𝑡 seed samples. Afterward, a so-called
acceptance ratio between the new sample 𝜂 and 𝑥𝑖,𝑗 is calcu-
lated based on the given probability 𝑝𝑗 by:

𝑟 =
𝑝𝑗(𝜂)
𝑝𝑗(𝑥𝑖,𝑗)

. (20)

then 𝜂 is accepted, i.e., 𝑥𝑖+1,𝑗 = 𝜂 with a probability of
𝑚𝑖𝑛(1, 𝑟). Otherwise, 𝜂 is rejected and 𝑥𝑖+1,𝑗 = 𝑥𝑖,𝑗 .Since each data sample is multi-dimensional, one applies
the Metropolis-Hasting procedure separately for each fea-
ture, i.e., using 𝑚 proposal probability density functions for
𝑚 features. Such an approach is referred to as modified M-H
or component-wise MH [39]. After that, the new sample 𝑋∗

is checked whether it lies within the sub-failure domain 𝐹𝑗 .If not, one needs to regenerate 𝑋∗. Note that the checking
is performed with the help of the updated, fast and accurate
ensemble learning model. One repeats these above steps to
generate 𝑁𝑠 samples for the sub-failure domain 𝐹𝑠. These
samples are further sorted, and a new failure threshold 𝐹𝑠+1is determined.

In short, this section has described how the ensemble
learning and the Subset Simulation algorithm are combined
in a complementary and synchronized way in the context of
structural reliability analysis.
2.4. Training process setting

The training process settings of the ensemble model are
specified as follows. The cross-entropy loss function is em-
ployed to measure the disparity between the ensemble model’s
outputs and the structure’s actual conditions. To minimize
the loss function, one employs the Stochastic Gradient De-
scent optimization algorithm, which gradually adjusts the
model’s weights in the opposite direction of the gradient of
the loss function. The adjustment rate is characterized by the
learning rate, which is initially set to 0.001, then reduced

by a factor of 2 if the loss function on the validation data
does not decrease for five consecutive epochs. The learning
process finishes either when the learning rate decreases to
1×10−5 or the maximum number of epochs is reached. The
ensemble model is trained and validated by using the sam-
ples generated by the MMH algorithm in each sub-failure
domain. These samples are randomly split into two datasets:
training and validation datasets, with a widely used ratio of
8:2. Because there are multiple sub-failure domains; hence
the ensemble model would be trained and retrained multi-
ple times, accordingly. The model creation, training process,
and evaluation of the a-eSS framework are implemented by
the authors using the Python programming language and its
scientific packages, including Numpy [40], Pandas for data
preparation, Scikit learn [41] for machine learning models,
Keras [42] for building MLP and stacking different models,
and Matplotlib for data visualization.

3. Case studies
In this section, the applicability and performance of the

proposed approach will be demonstrated via three case stud-
ies with increasing complexity. The same workflow as de-
scribed in Fig. 1 is applied for all case studies, though the
specific values of the ensemble model’s hyperparameters and
training settings will vary depending on the number of inputs
and the problem complexity. In addition, parametric and ab-
lation studies are also be carried out to gain insight into the
mechanism of the a-eSS framework.
3.1. Case Study 1: 15-bar truss structure

The first case study is a simply-supported 2D Warren
truss structure composed of 15 bars of the same cross-section.
The truss has a total span of 1.2 m and a height of 0.26
m. Four concentrated loads are applied at the top joints,
as shown in Fig. 3. The random variables include exter-
nal load intensities, Young modulus, and section area, which
are drawn from predefined distributions with mean and co-
efficient of variance values listed in Table 2. The output of
interest is the vertical displacement of joint 3, located in the
middle of the bottom chords of the truss.

The finite element model of the truss is created with the
help of the open-source and reliable software OpenSees [43].
The truss bars are modeled by using linear elastic 2-node
truss elements. Next, the proposed a-eSS method is adopted
to calculate the reliability of the structure. The number of
intermediate levels and the intermediate failure probability
𝑃 𝑖𝑛𝑡
𝑓 of SS are set to 9 and 0.3, respectively. Note that a too-

small value of 𝑃 𝑖𝑛𝑡
𝑓 will require a large number of samples for

each intermediate level, thus reducing the efficiency of SS.
On the other hand, the larger the value of𝑃 𝑖𝑛𝑡

𝑓 , the more inter-
mediate level is required to achieve a very small final failure
probability, which potentially leads to higher accumulated
errors. In this study, with𝑃 𝑖𝑛𝑡

𝑓 =0.3 and 9 intermediate levels,
one can achieve a final failure probability of about 2 × 10−5,
i.e., a reliability index of around 4.1, and a relatively smooth
reliability curve.
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Figure 3: Schematic representation of the 15-bar truss struc-
ture.

Table 2
Random variables of the 15-bar truss structure

Variable 𝐹1 (kN) 𝐹2 (kN) 𝐸 (GPa) 𝐴 (mm2)

Mean 10 20 210 113
CoV 0.1 0.1 0.05 0.1
Dist. Normal Normal Normal Normal

Figure 4: Reliability index curves for the 15-bar truss structures
obtained by the a-eSS, SS, and MC methods.

Figure 5: Effect of removing machine learning/deep learning
components on the performance of the ensemble model.

In terms of the ensemble learning model, it is noted that
the backbone of the proposed method is to leverage the di-
versity of different machine learning/deep learning models
for increasing the classification performance rather than tun-

ing a set of optimal hyperparameters. Therefore, for each
ML/DL model component, its hyperparameters are set by
default values. For SVM, the regularization parameters 𝐶
and 𝛾 are set to 1.0 and 1∕𝑚, respectively, with 𝑚 being the
number of random variables. For the decision tree model,
the minimum number of samples needed for a split is 10,
i.e., a split is carried out when and only when there are more
than ten samples at a node. For the MLP model, the model
architecture is [5, 15, 15, 2], consisting of an input layer with
five perceptrons (4 random variables plus a safety threshold)
and two hidden layers; each layer has 15 perceptrons and an
output layer with two perceptrons. For basic models such as
linear regression and Naïve Bayes models, no special hyper-
parameters are required.

Once the a-eSS model is defined and trained, it is used to
calculate failure probabilities for different safety thresholds,
then derive the corresponding reliability indexes and plot the
reliability curve. The computed reliability results for the 15-
bar truss structure are depicted in Fig. 4. Moreover, the fig-
ure also presents the results obtained via the conventional
Monte Carlo simulation using FEM and the subset simula-
tion using FEM for comparison purposes. In the figure, the
solid line with dot symbols, red line with star symbols, and
dashed line with triangle symbols denote results provided by
a-eSS, MC, and SS, respectively. It can be seen that a high
agreement between these three methods is obtained, which
reaffirms the correct implementation and credibility of the
proposed a-eSS method. For MC, the required number of
simulations is up to 3 × 106 to reach a reliability index of
around 4.0, according to Eq. (17). Meanwhile, the number
of calculations for SS is only 300 × 9 = 2700. Further-
more, the CPU time required by a-eSS for the whole relia-
bility analysis of the truss structure is 23.7 minutes, while it
takes 28.6 and 217.5 minutes with SS and MC, respectively.
Therefore, a-eSS reduces the computation time by 1.2 and
9.2 folds compared to SS and MC for this case study. Note
that a-eSS does not require performing an extensive series
of FEM simulations in advance to prepare training data. It
directly uses intermediate results to improve the ensemble
model’s performance.

In order to get more insights into the functioning of the
ensemble model, a leave-one-out study is carried out to in-
vestigate the contribution of each machine learning compo-
nent to the performance of the ensemble model. Specifically,
one repeats the above reliability analysis multiple times, each
time a machine learning component model is removed, while
the others remain unchanged. The results of the leave-one-
out study are illustrated in Fig. 5. It is noticed that remov-
ing the linear regression reduces the accuracy of the ensem-
ble model slightly, as the corresponding curve (solid orange
line with dot symbols) diverts from that of a-eSS by a small
amount. In contrast, the effects of removing MLP and De-
cision Tree are profound, as deviations are significant, es-
pecially with high-reliability indices. For example, with a
safety threshold of 0.45, the model without MLP overesti-
mates the RI, i.e., RI=4.0 vs. 3.5 by a-eSS. Besides, the im-
pact of SVM and Bayes are more important than the linear

Dang et al.: Preprint submitted to Elsevier Page 9 of 17



Reliability analysis based on ensemble learning

Figure 6: Random variables including 𝐹1, 𝐹2, 𝐸, and 𝐴 drawn at different intermediate
levels of SS. The random variables are plotted against each other for better observation.

Table 3
Random variables of the 4-story 2-bay frame structure.

Variable 𝐹1 (kN) 𝐹2 (kN) 𝐹3 (kN) 𝐹4 (kN) 𝐶 (N/m2) 𝐷 (m) 𝐴1 (m) 𝐻1 (m) 𝐴2 (m) 𝐻2 (m)

Mean 50 100 100 50 100000 2 1.5 0.6 1.8 0.6
CoV 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Dist. Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal

regression model, but less than those of MLP and Decision
Tree.

Next, to explore how the SS strategy draws random vari-
ables [𝐹1, 𝐹2, 𝐸, 𝐴], these variables are plotted against each
other for intermediate levels 1, 3, 5, 7, and 9, as shown in the
subplots of Fig. 6. Apparently, at the first intermediate level,
the random variables spread over a large domain; after that,
they move towards some specific failure domains; for exam-
ple, in Fig. 6, values of 𝐸 and 𝐹2 progressively approach 150
and 23, at the ninth intermediate level.

In short, via a relatively simple yet representative struc-
ture with four random variables, the realization steps, po-
tency, and mechanism of the proposed approach have been
demonstrated. In the following subsection, a-eSS will be ap-
plied to more complex structures with more random vari-
ables.
3.2. Case Study 2: 2-bay 4-story frame structure

The second case study is a 2D reinforced concrete 4-
story 2-bay frame structure with shallow foundations. The
frame has a total height of 17 m, and its bay width is 6 m. The
structure is subjected to four concentrated horizontal loads
acting at the story levels. Each foundation is modeled by two

Figure 7: Schematic representation of the 4-story 2-bay frame
structure.
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(a) (b) (c)

Figure 8: Constitutive models for concrete (a), steel (b), and the fiber approach for
modeling the RC section in the OpenSees software (c).

springs, i.e., vertical and horizontal ones, as schematically
displayed in Fig. 7. The stiffnesses of the springs are de-
rived from soil properties and foundations’ geometry. More
details about shallow foundation modeling can be found in
the OpenSees documentation [44]. There are, in total, 10
random variables considered in this example which are the
magnitudes of horizontal loads (𝐹1 to 𝐹4), soil cohesion (𝐶),
depth of embedment of the footings (𝐷), footing heights (𝐻1,
𝐻2) and widths (𝐴1, 𝐴2). The longitudinal reinforcement ra-
tio for the columns and beams are 2% and 1%, respectively.
The statistical values of these random variables are enumer-
ated in Table 3. To model the elastoplastic behavior of con-
crete, the Kent-Scott-Park model [45] is adopted (Fig. 8(a)).
For the compressive behavior, initially, the stress-deformation
curve features a linear elastic relationship with a slope𝐸0=35
GPa; after attaining the maximum strength 𝑓𝑝𝑐 = 30 MPa,
the concrete strength diminishes while the deformation still
increases until the crushing strain 𝑒𝑢. On the other hand, the
tensile behavior is characterized by the tensile strength 𝑓𝑡.For the steel reinforcement, its behavior is described via a
bilinear curve comprised of a linear elastic branch with slope
𝐸𝑠 and a hardening state with a smaller slope 𝐸1 = 𝑏 × 𝐸𝑠,as illustrated in Fig. 8(b).

The fiber approach is utilized to simulate the reinforced
concrete (RC) section. This approach can account for moment-
curvature and axial force-deformation relationships simul-
taneously; thus, it can adequately model composite actions
between concrete and reinforcement. The fiber approach di-
vides RC sections into a set of fibers both horizontally and
vertically, as illustrated in Fig. 8(c). Then, the response of
the cross-section is obtained by summing the contributions
of individual fibers. The output under investigation in this
example is the top floor’s horizontal displacement.

Next, an a-eSS model is engineered with nine intermedi-
ate levels, intermediate failure probability 𝑃 𝑖𝑛𝑡

𝑓 = 0.3, num-
ber of samples in each sub-failure domain 𝑁𝑠 = 300. For
an intermediate level 𝑠, 300 numerical simulations with data
samples within sub-domain 𝐹𝑠−1 are carried out using FEM
at first, the obtained results are then used to determine safety

Figure 9: Reliability index curves for the 4-story 2-bay structure
obtained by the a-eSS, SS, and MC methods.

threshold 𝐹𝑠 and then fine-tune the ensemble model. The
updated ensemble model is utilized to check whether candi-
dates generated by the MMH algorithm lie within the sub-
failure domain 𝐹𝑠. The computed reliability results for the
2D frame structure are presented in Fig. 9 for three meth-
ods involving a-eSS, MC, and SS. Besides, one repeats 100
times the reliability analysis with the proposed framework
a-eSS, then reports the confidence of obtained results via a
90%-confidence interval as shown by the grey area in the fig-
ure, providing additional information about the credibility
of obtained results. Apparently, a-eSS yields results highly
correlated with MC and SS as their curves are well aligned.
Despite some slight discrepancies between the MC’s curve
and the mean curve of a-eSS, the former is still enclosed in-
side the 90%-CI area of a-eSS.

In order to assess the influence of the number of sam-
ples in each intermediate level (𝑁𝑠) on the a-eSS perfor-
mance, the reliability analysis is performed with different
numbers of samples from 100 to 600, and corresponding
results are highlighted in Fig. 10. The picture features RI
curves (Fig. 10(a)), the CPU time and mean relative errors
(MRE) (Fig. 10(b)). A low value of 𝑁𝑠 cannot provide sat-
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(a) (b)

Figure 10: Effect of the number of data samples used in each SS intermediate level on
reliability results and computational times.

Figure 11: Schematic representation of the 9-story building structure.

isfactory results as the RI curves of 𝑁𝑠 = 100 and 200 are
clearly different from those of higher 𝑁𝑠. More specifically,
MRE decreased from about 13% for 𝑁𝑠 = 100 to around
1.2% for 𝑁𝑠 = 600. However, the CPU times increase pro-
portionally with increasing 𝑁𝑠, e.g., CPU time of 𝑁𝑠=200
is nearly double that of 𝑁𝑠=100 (52 s vs. 27 s). Besides, 𝑁𝑠= 300 provides a good balance between performance and
computation complexity as its MRE is less than 5% while its
CPU time is about half of that of 𝑁𝑠=600 (74 s vs. 135 s).

3.3. Case Study 3: 9-story building structure
The third case study considers a 3D nine-story two-bay

building structure with up to 42 random variables, subjected
to horizontal uniform line loads at each story as depicted in
Fig. 11. The figure shows its 3D representation, floor plan,
and front view with dimensions and assigned cross-sections.
The typical story height is 3.5 m, except for the first story
with a height of 4 m; thus, the structure’s total height is 32
m. The bay widths of the structure in the X-direction are 8 m
and 10 m, while the bay widths in the Y-direction are 6 m and
8 m. The longitudinal rebar ratios are 2% for the column and
1% for the tension area of the beam. The random variables
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Table 4
Random variables of the 9-story building structure.

Variable 𝑆1
1 𝑆1

2 𝑆1
3 𝑆2

1 𝑆2
2 𝑆2

3 𝑆3
1 𝑆3

2 𝑆3
3

(mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)

Mean 400 400 400 400 400 400 400 400 400
CoV 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Distribution Normal Normal Normal Normal Normal Normal Normal Normal Normal

Variable 𝑆4
1 𝑆4

2 𝑆4
3 𝑆5

1 𝑆5
2 𝑆5

3 𝑆6
1 𝑆6

2 𝑆6
3

(mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)

mean 350 350 350 350 350 350 350 350 350
CoV 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Distribution Normal Normal Normal Normal Normal Normal Normal Normal Normal

Variable 𝑆7
1 𝑆7

2 𝑆7
3 𝑆8

1 𝑆8
2 𝑆8

3 𝑆9
1 𝑆9

2 𝑆9
3

(mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)

mean 300 300 300 300 300 300 300 300 300
CoV 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Distribution Normal Normal Normal Normal Normal Normal Normal Normal Normal

Variable 𝐻𝑏
1 𝐻𝑏

2 𝑞1 𝑞2 𝑞3 𝑞4 𝑞5 𝑞6 𝑞7
(mm) (mm) (N/m) (N/m) (N/m) (N/m) (N/m) (N/m) (N/m)

mean 600 500 4.7 5.1 5.4 5.6 5.8 5.9 6
CoV 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Distribution Normal Normal Normal Normal Normal Normal Normal Normal Normal

Variable 𝑞8 𝑞9 𝑓𝐷𝐿 𝑓𝐿𝐿 𝐸 𝜌
(N/m) (N/m) (N/m2) (N/m2) (GPa) (kg/m3)

mean 6.1 6.2 3 2 30.0 2400
CoV 0.2 0.2 0.1 0.1 0.05 0.1
Distribution Normal Normal Normal Normal Normal Normal

involve the intensities of horizontal loads, vertical dead load
and live load, column cross-sections, beam heights, Young
modulus, and concrete density. The statistical characteris-
tics of these random variables, including the mean and CoV
values, are listed in Table 4. Note that, with no loss of gen-
erality, the stories are supposed to have the same beam sec-
tions, and members of frames of axes 1, 2, and 3 are identi-
cal. The FE model of the structure is realized in OpenSees
using concrete and steel constitutive laws described in ex-
ample 2. The number of structural members in this example
increases up to 189. Each column-beam joint has 6 degrees
of freedom. The equation of equilibrium of the structure
is numerically solved with the help of the Newton-Raphson
algorithm. The solution convergence is tested by checking
whether the norm of the displacement increments is smaller
than a small enough tolerance. The limit state function of
this example is constructed by comparing the maximum top
floor horizontal displacement in the X-direction with a safety
threshold.

Next, the input layer of a-eSS is modified to a layer of
43 perceptrons to account for 42 random variables plus a
safety threshold value. Next, the a-eSS model is applied to
analyze the structure’s reliability using the same procedure
as the previous examples. Obtained results are graphically
presented via RI curves in Fig. 12. It is noticed that a-eSS
can acceptably approximate the MC method, though for high

Figure 12: Reliability index curves for the 9-story building
structure obtained by the a-eSS, SS, and MC methods.

RI (>3.2), the uncertainty of results increases, as illustrated
by the widening of the 90%-CI area.

It is essential to ensure the correctness of a-eSS after
each fine-tuning step; otherwise, intermediate errors would
accumulate, leading to uncontrolled results. Fig. 13 demon-
strates the accuracy of a-eSS for nine SS intermediate lev-
els via confusion matrices. The 0/1 values on the X-axis of
the confusion matrix denote the structure’s actual condition
(safe/failure), while the values on the Y-axis correspond to
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Figure 13: Confusion matrices representing the accuracy of the ensemble models for dif-
ferent SS intermediate levels.

Table 5
Comparison results of time complexity for reliability analysis of the 9-story building structure between a-eSS and
counterparts.

Model Data preparation (min) Training process (min) Reliability analysis(min) Total CPU times (min)

a-eSS 0 8 64 72
eSS 360(∗) 5 56 421
MC 0 0 35565(∗∗) 35565
SS 0 0 120 120
(∗) for 3 × 104 samples
(∗∗) for 3 × 106 samples

predictions by a-eSS. The ratio between the sum of diagonal
cells and the total number of samples will provide the pro-
posed approach’s accuracy. It is noticed that the ensemble
model achieves high classification accuracies from 98.7% to
100% across all intermediate levels. Therefore, it is justifi-
able to use the ensemble model as an alternative and comple-
mentary to FEM when assessing the structure’s condition.

In terms of computation complexity, Table 5 enumerates
the CPU times of main computation steps for four methods,
i.e., a-eSS, MC, SS, and a method, called eSS, using a pre-
trained ensemble model to replace FEM completely. The

computation steps presented in the table include data prepa-
ration for training the ensemble model, the training process,
and reliability analysis. Based on Eq. (17), for a RI value of
approximately 4.0 and a CoV value of 0.1, the required num-
ber of samples for MC is about 3 × 106. Such a number is
equal to or higher than those considered in some published
works; for example, Zhao et al. [25] and Zhou and Peng [17]
both performed MCS using 106 samples for structures with
67 and 110 random variables, respectively. The estimated
CPU time of the reliability analysis of the 3D building struc-
ture using MCS with 3×106 samples is up to 35565 minutes
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on a single CPU (Table 5). Actually, calculations were op-
erated in parallel on a computation server equipped with 12
Intel Xeon E5-2696 processors, 32 GB Ram, and a RTX3090
GPU, and the actual calculation time was reduced to around
59.3 hours. It can be seen that eSS required significant CPU
times to prepare a training database, making its overall com-
putation cost relatively high. Meanwhile, a-eSS is adap-
tively fine-tuned through each intermediate level of the sub-
set simulation and does not require preparing data before-
hand. On the other hand, compared to SS, the a-eSS method
replaces the time-consuming FEM with the fast ensemble
model when checking the relevance of candidates proposed
by the MMH algorithm. That is why a-eSS is highly effi-
cient, requiring only about 72 minutes to construct the whole
RI curves, i.e., 1.7 times, 5.8 times, and 494 times faster
than SS, eSS, and MC, respectively. In summary, this exam-
ple qualitatively and quantitatively reaffirms the applicabil-
ity of a-eSS to a complex 3D structure with numerous ran-
dom variables.

4. Conclusion
This study develops an accurate and efficient active learn-

ing framework for structural reliability analysis, which is ap-
plicable to high-dimensional problems with extremely low
failure probabilities. The backbone idea of the proposed
framework is the seamless integration of a decent surrogate
model based on ensemble learning with the SS sampling
strategy. The paper describes different perspectives of the
proposed a-eSS framework in detail, including the theoreti-
cal background, implementation steps, values of key hyper-
parameters, intermediate results, and ablation studies. With
obtained computational and comparison results, some con-
cluding remarks are drawn as follows

• The proposed ensemble learning-based surrogate model
is capable of effectively and efficiently predicting the
structure’s responses. It achieves better or at least equal
prediction accuracy to any individual machine learn-
ing model while not increasing the model complexity
considerably. Hence, the surrogate model can be built,
trained, and deployed with standard personal comput-
ers, facilitating its practical application.

• Unlike the deep learning counterparts, which require
a large number of training data generated in advance
via time-consuming FEM, the proposed a-eSS is adap-
tively trained with a sequence of small-size relevant
datasets. Thus, the tedious data generation process is
significantly alleviated.

• Integrating the surrogate model into SS is straightfor-
ward thanks to the improved portability of the modern
machine learning model and by omitting a number of
barriers such as license checking, pre/post-processing
steps with graphical user interface, and communica-
tion between different softwares. This advantage al-
lows for forming a smooth working flow for structural
reliability analysis.

• The a-eSS framework brings two benefits to the com-
putation of the failure probability: i) less number of
calculations are needed, and ii) the computational cost
for generating new relevant samples within the sub-
failure regions is significantly reduced. That is why
a-eSS can be utilized to compute extremely small fail-
ure probability. Furthermore, a-eSS helps establish
RI and failure probability curves, showing a full pic-
ture of the structure’s reliability with different safety
thresholds.

• All the aforementioned statements are qualitatively and
quantitatively demonstrated through three case studies
with increasing complexity. Especially for a complex
3D building structure with 42 random variables, the a-
eSS approach reduces the computational time nearly
500 times with a mean relative error of less than 5%
compared to MC.

The current version of the a-eSS framework can only
address single failure criteria; thus, in the next step of the
study, it is desired to extend a-eSS to handle multiple failure
scenarios. This could be done by engineering a multitask-
ing model which can provide different structural responses
at the same time. Such a multitasking model will require a
carefully designed compound loss function and correspond-
ing joint training strategies. It is also required to extend the
MMH algorithm to draw relevant samples within failure do-
mains defined for multi-criteria. Another promising research
direction is to account for time-varying inputs whose statisti-
cal characteristics could change over time. For this purpose,
on the one hand, one resorts to sophisticated deep learn-
ing architectures specialized in handling time-varying data
such as Long Short Term Memory, 1D Convolution Neu-
ral Network, or Transformer. On the other hand, some non-
probability techniques, such as the ellipsoid mode and subin-
terval method [46] are adopted if unknown-but-bounded un-
certain variables are considered. Such a framework is promis-
ing for addressing time-dependent reliability analysis-based
applications such as dynamic topology optimization [47], in-
telligent design technologies [48], remaining useful life pre-
diction, etc. Finally, it is noteworthy to test the viability of
the proposed approach with a realistic structure. For this pur-
pose, physical tests are first carried out to evaluate the cur-
rent values of structural parameters. Next, these measured
values are used to construct a calibrated numerical model.
After that, the procedure described in this study is used to
evaluate the structure’s reliability thoroughly.
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