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Abstract.  The objective of this study is to develop a novel and efficient model for 

forecasting the non-linear behavior of structures in response to time-varying random 

excitation which is a challenging task for the civil engineering community. The 

backbone idea is to design a deep learning architecture to leverage the dual relationship 

within multiple time-series data which are the inter-relationship between external 

excitations and structure's vibration signals, as well as the intra-relationship between 

historical values with future values within times series data. The proposed method 

consists of two main steps: the first step applies a global attention mechanism to 

combine multiple measured time series and time-varying excitation into a weighted 

time series before feeding it to a temporal architecture, and the second step utilizes a 

self-attention mechanism followed by a fully connected layer to predict multi-step 

ahead values. The viability of the proposed method is demonstrated via two case studies 

involving synthetic data from a 3D reinforced concrete structure and experimental data 

from an 18-story steel frame. Furthermore, comparison and robustness studies were 

carried out, showing that the proposed method outperforms other conventional methods 

and maintains high performance in the presence of noise with an amplitude of less than 

10%.  

Keywords.  Structural dynamic, time-varying excitation, deep learning, signal 

processing, response forecasting 

 

1.  Introduction 

Large-scale structures such as long-range bridges, skyscrapers, and wide-span roof 

structures have been increasingly popular worldwide, usually classified as high-safety 

and expensive assets. Accurately predicting the behaviors of these structures with 

reduced time complexity has been a longstanding endeavor in civil engineering. This 

capability facilitates the execution of numerous subsequent critical tasks such as 

structural optimization, reliability analysis, filling missing measured data, preventing 

collapses, and so on. Motivated by this, in this study, we developed a novel and efficient 

surrogate model for forecasting the non-linear behavior of large-scale structures in 



response to time-varying random excitation. However, this task is highly challenging 

especially when taking into account the non-linearity and dynamic behavior of 

structures. Classical methods such as a finite element model are computationally 

expensive or even intractable because they require fine time and space discretization, 

to ensure analysis convergence; thus, its applicability for prediction of large-size 

structures is limited. On the other hand, the model-free, a.k.a, the data-driven and other 

alternative methods have been successfully applied in place of model-based methods in 

a spectrum of sectors such as structural damage detection [1-5], predicting structures’ 

responses [6-9], structural reliability analysis [10, 11], experimental measurement [12, 

13], and so forth. 

In the context of structural analysis, Moller and Reuter [14], investigated a model-

free approach, a.k.a, fuzzy ARMA, for predicting structural responses given historical 

uncertain time-series data. The effectiveness of the method was demonstrated through 

various case studies such as predicting the time-variant damage state of a reinforced 

concrete T-beam plate, forecasting the settlement of a slope bordering highways, and 

deformation of a pavement. Recently, in order to predict structures’ response to an 

earthquake, Zhang et al. [15], developed a data-driven using the long short-term 

memory (LSTM) network thanks to its capability in capturing the long-range 

dependency in time-series. The method’s performance was tested with both field data 

and synthetic data, showing high prediction accuracy with an error under 10%. Guo et 

al. [16] deep neural network to approximately predict the transversal deflection of 

Kirchhoff plate. Later, the authors expand the idea for predict vibration and buckling 

behaviors of Kirchhoff plates [17]. Besides, various authors have shown increasing 

interests in utilized physics-informed deep learning-based method to find solution of 

different underlying partial different equations of structural and mechanical systems 

[18-20]. 

In reality, the structure’s responses to external excitations follow some underlying 

physical rules; therefore, Zhang et al. [21] combined the convolutional neural network 

with equations of motion, forming a physical-guided data-driven approach able to 

accurately predict buildings’ behaviors under earthquakes. Furthermore, the method 

was applied to assess the serviceability of a full-size six-story building, providing a 

fragility curve useful for the maintenance and rehabilitation operation plan of the 

structure. Oh et al. [22] proposed a deep convolutional neural network-based method 

for forecasting displacement time-series of building structures prone to seismic 

excitation using their historically measured acceleration as inputs. The validity of the 

method was demonstrated through an experimental shaking-table database from the 

Seismic Disaster Prevention Center, South Korea. Nevertheless, there exist some 

pitfalls in popular deep learning architectures such as 1DCNN and LSTM when 

working with time series data. For example, 1DCNN could distill invariant local 

features but is not adept at capturing temporal relationships within time series data. 

Meanwhile, LSTM can retain long-term relationships but treats values at different time 

steps equally, which may not be optimal for predicting future values. It is observed that 

the correlation between different time series inputs and the time series output is not the 

same. For example, vibration signals recorded from nearby sensors show more similar 



patterns than those from distant sensors. 

Given the reviewed difficulties faced by model-based methods and the drawbacks 

of some popular data-driven methods, this study aims to develop a novel and efficient 

surrogate model for forecasting the structures’ dynamic behaviors. The intuitive idea 

behind this study is to find an effective and efficient way to leverage the inter-

relationship between time-varying external excitations and the structures’ vibration 

signals, as well as the intra-relationship between historical values with future values 

within times series data. To achieve this, we propose a deep learning-based framework 

featuring a dual-attention mechanism. The first global attention mechanism combines 

multiple structural time-series inputs and time-varying excitation into a softmax 

weighted time-series before feeding to an LSTM layer. The second attention layer, 

namely, self-attention, is applied to the time-series output obtained from LSTM to 

predict multi-step values ahead. Besides, the sliding window technique is adopted, 

where highly accurate prediction outputs of previous steps are appended to the input of 

the later step; by doing so, long-term forecasting can be undertaken. 

Table 1 Comparing the proposed S-DAN framework with recent LSTM-based 

models for time-series forecasting in literature. 

Work Architecture Input data Output Application Year 

Zhang et 

al. [15] 

Dual LSTM Univariate Multi-step 

prediction 

Structural 

analysis 

2019 

Yu et al. 

[23] 

Physic-guided RNN 

+ LSTM 

Multivariate Multi-step 

prediction 

Structural 

analysis 

2020 

Xu et al. 

[24] 

LSTM Univariate Classification  Structural 

damage detection 

2020 

Du et al. 

[25] 

Encoder-decoder + 

LSTM + Attention 

Multivariate Classification Human emotion 

recognition 

2020 

Gao and 

Ruan [26] 

Encoder-decoder + 

LSTM + Attention 

Multivariate Multi-step 

prediction 

Energy 

consumption 

2021 

Liu et al. 

[27] 

LSTM + Attention 

+ Feature 

extraction 

Univariate Multi-step 

prediction 

Precipitation 

forecasting 

2021 

Zhang et 

al. [28] 

CNN + Attention + 

LSTM 

Univariate Classification Muscle fatigue 

detection 

2021 

Kong et al. 

[29] 

Bidirectional 

LSTM + Attention 

Multivariate Anomaly 

detection 

Internet of 

Things 

2021 

Hsu et al. 

[30] 

TCN + LSTM + 

Attention 

Multivariate Remaining 

useful life 

Semiconductor 

manufacturing 

2022 

Sun et al. 

[31] 

Feature/temporal-

attention + LSTM 

Univariate Remaining 

useful life 

Power 

distribution 

system 

2022 

He et al. 

[32] 

Dual attention Multivariate One-step 

prediction 

Wind speed 

prediction 

2023 

This study Dual attention + Multivariate Multi-step Structural 2023 



LSTM prediction analysis 

Table 1 highlights the differences between the proposed dual-attention based 

framework and other recent works in the literature, which also leverage the LSTM with 

attention mechanism (LSTM-AM) to handle time series data. It can be seen that using 

LSTM along with the attention mechanism has been widely acknowledged for its 

superior accuracy across different domains such as weather forecasting, healthcare, 

semiconductor, and energy. In the domain of civil structures, some LSTM-AM models 

[15, 24] were originally designed to work with univariate time series; thus, their 

applicability to multivariate time series has not been justified. Actually, the idea of 

using a dual-attention mechanism has been used in literature, for example, in the work 

of He et al. [32] where it was utilized for predicting wind speed. On the one hand, this 

implies that the attention mechanism is effective in handling multiple time-series data. 

On the other hand, such an algorithm remains relatively under-explored in the field of 

civil engineering. It is noted that building a robust and functional framework requires 

domain knowledge, deep understanding of the data, and suitable data processing. 

Therefore, while these methods may be partly similar in terms of algorithm, their 

implementations can differ significantly. Moreover, in [32], the author only predicted 

only a single value each time whereas the proposed method performs multi-step 

prediction. In short, the main contributions of this study can be summarized as follows: 

• A model-free framework is developed for forecasting structural responses viable 

for both linear and non-linear behaviors, without requiring sophisticated numerical 

models. It is capable of extracting underlying patterns embedded in historical data 

as well as the interaction relationship among multi-variate input and output time-

series.  

• The correctness and effectiveness of the proposed framework are demonstrated 

through two case studies involving synthetic data of a 3D reinforced concrete frame 

structure and experimental data of a 18-story steel structure. The obtained results 

clearly showed that the proposed method outperforms counterparts such as vector 

autoregression (VAR), Extreme Gradient Boosting (XGB), and LSTM by a margin 

of more than 30% in terms of accuracy. 

• Parametric studies are conducted to provide insights into the effect of different 

parameters on prediction performance. Prediction errors increase with the 

prediction length and the intensity of the excitation; the proposed method still 

provides acceptable results with the presence of random noise having an amplitude 

no greater than 10% of the root mean square value of vibration data. 

 

The rest of the paper is organized as follows: Section 2 presents the architecture of 

the deep neural network with dual attention mechanisms designed for forecasting time-

varying structural behaviors. In Section 3, the performance of the proposed approach is 

justified through two case studies. Finally, the conclusions and perspectives are drawn 

in Section 4. 

 

2.  Methodology 



This work aims to develop a data-driven approach for forecasting the dynamic 

response of structures under time-varying excitations, whose main components are 

schematically presented in Fig. 1. 

 

Fig. 1 Workflow of the proposed S-DAN framework for forecasting structures’ responses. 

 

2.1  Data-Driven Pipeline for Forecasting Structure’s Response 

At first, a structural database is required, including excitation and structural 

responses, which can be obtained either synthetically using numerical modeling or 

experimentally via a series of measurements. Secondly, the database is split into non-

overlapping subsets, i.e., training, validation, and testing for the training and evaluation 

process. Unlike other data types, an additional preprocessing step is required for time-

series data, involving the sliding window technique to further divide each subset into 

batches of input/output pairs. Thirdly, a deep learning architecture based on LSTM and 

attention mechanism is devised, encompassing multiple time series as input for 

forecasting structural dynamic responses. In the fourth step, the machine learning Keras 

library and Adam optimization are used to build and train the deep learning model. 

Finally, the model’s performance is evaluated using unseen testing data and predefined 

measurement metrics such as Root Mean Square Error, Dynamic Time Warping, etc. 

Further details of each component are explicitly explained in the following sections. 

 

2.2  Mathematical notation 

At first, the mathematical notations utilized throughout the paper are presented. 

Considering a structure equipped with N sensors across its body, one denotes measured 

quantities by 𝑿 =  [𝑋1, … , 𝑋𝑁], where 𝑋𝑖 = [𝑥𝑖,1, … , 𝑥𝑖,𝑁𝑡
]

𝑇
with subscript 𝑖 refers to 

sensor 𝑖 , 𝑁𝑡  is the total number of measured time instant, and 𝑥𝑖,𝑗  signifies a 

measurand at time instant j of sensor i. Here, one considers displacement or acceleration 

as the quantities of interest, which are also the most commonly used in practice. The 

known time-varying excitations are denoted by 𝑭 = [𝐹1, … , 𝐹𝑀] , with 𝐹𝑘 =

[𝑓𝑘,1, … , 𝑓𝑘,𝑁𝑡
]  where 𝑀  is the number of excitations, 𝑓𝑘,𝑙  represents a value of 

excitation 𝑘 at time instant 𝑙. The aims of this study is to estimate a sequence of next 

values of a quantity of interest denoted by 𝑦(𝑁𝑡 + 𝜏), with 𝜏 = 1, … , 𝜏𝑚𝑎𝑥 based on 

historical measured values and excitations, which constitutes a multivariate time-series 

multi-step forecasting problem. In this study, it is assumed that excitations are known 

in advance. It is common in the structural design practice to perform many calculations 

with various known excitations to determine the structures’ most critical responses and 



derive conservative design solutions. Afterwards, we introduce the important weight α 

assigned to time-series data which will be used later in the global attention layer, 𝜒 is 

the weighted time series obtained at the output of the global attention layer. For the 

LSTM layer, the associated hyperparameter is the dimensionality of the output, being 

denoted by 𝑁𝑙𝑠𝑡𝑚, and the output of the LSTM layer is signified by 𝜒𝑙𝑠𝑡𝑚. For the self-

attention layer, three variants of 𝜒𝑙𝑠𝑡𝑚  named query, key and value vectors are 

symbolized by 𝑄, 𝐾, and 𝑉. In addition, an attention matrix A will be calculated to 

calculate the output vector 𝜒𝑎𝑡𝑡 of the self-attention layer. 

 

2.3  Deep Learning Architecture Using Dual Attention Mechanism 

 

Fig. 2 Architecture of the deep learning model within the S-DAN framework featuring the 

dual-attention mechanism. 

We elaborate on a data-driven method for structural analysis using LSTM coupled 

with a dual-attention mechanism, named S-DAN (Structural analysis - Dual Attention 

Network). The approach is based on the intuition that the attention mechanism allows 

for selectively concentrating on the most relevant components among multiple time-

series via more important weights, while the LSTM architecture permits retaining long-

range dependencies via continuous cell states. Thus, by combining long-range 

information and attention information, one expects to achieve better prediction 

performance. The architecture of the proposed method is schematically illustrated in 

Fig. 2, where different colors highlight different layers. There are five layers in total: 

the Input layer, Global attention layer, LSTM layer, Self-attention layer, and Output 

layer. For better clarification, each layer’s input and output data shapes are specified, 

and the directed arrows are used to represent the data flow. The input layer comprises 

various time series such as vibration signals, time-varying excitation, and historical 

output. The details of the other layers are explained in the following paragraphs. 

 

2.3.1  Global Attention Mechanism and LSTM 

 The global attention mechanism is used to combine multiple time-series into a new 

single time-series, which is mathematically described below. First, a fully-connected 



layer is applied to 𝑿 and 𝑭, as below: 

𝑬 = 𝑓(𝑾, 𝑿, 𝑭)                           (1) 

where 𝑾 is a weight matrix of size (𝑁 +  𝑀, 𝑁 +  𝑀), and 𝑬 is an output matrix 

with a size of (𝑁 + 𝑀, 𝑁𝑡). Next, at each time instant 𝑡, the importance weight 𝛼𝑖,𝑡 

assigned to time-series i is calculated usingt the softmax function, as follows: 

𝛼𝑖,𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐸𝑖,𝑡) =
exp(𝐸𝑖,𝑡)

∑ exp (𝐸𝑗,𝑡)𝑁+𝑀
𝑗=1  

                 (2) 

where 𝑡 = 1, … , 𝑁𝑡. It can be seen that the components of each row of 𝛼 sum up to 1. 

After that, the new softmax weighted time series 𝜒 is calculated by: 

𝜒𝑡 = ∑ α𝑖,𝑡𝐸𝑖,𝑡)𝑁+𝑀
𝑖=1                          (3) 

Logically, for a given structural element, its surrounding excitation forces and nearby 

components’ responses will receive larger weights than those of other components from 

afar. In addition, a time-series of low amplitude will apparently have less impact than 

those with high amplitude. Besides, it is noted that excitations are supposed to be known 

in advance by S-DAN. 

 

2.3.2  Long Short-Term Memory Layer 

Next, 𝜒 goes through a LSTM layer, aiming to identify the inherent longterm 

dependency within its setting. In the context of structural analysis, it could be intrinsic 

periodicities or the prevalence of a special vibration mode triggered by excitation. 

LSTM is a variant of the recurrent neural network family consisting of a chain of 

connected identical cells. Each cell behaves like a small neural network with its own 

weight matrix, nonlinear activation, and its output regarded as inputs of its successor. 

Thus, the chain-like nature of LSTM is naturally suitable for time-series data. The 

central idea of LSTM is to calculate two separate outputs at each cell: one instantaneous 

hidden output and another cell state output whose values are between 0 and 1; a value 

of 0 corresponds to ignoring, while 1 corresponds to full retention. Cells with a state 

near one will have a significant influence on later cells in the network. Further 

theoretical foundations of LSTM can be found in [33]. The LSTM layer’s hyper-

parameters consist of the activation function type, dropout rate, and the dimensionality 

of the output. The latter, denoted by 𝑁𝑙𝑠𝑡𝑚 , has a significant impact on the model 

performance. It defines the output shape of the LSTM layer, which is also the input 

shape of the self-attention layer, as shown in Fig 2. The effect of 𝑁𝑙𝑠𝑡𝑚  will be 

investigated in the next section. 

     

2.3.3  Self-Attention Mechanism and an FC Layer 

The output of the LSTM layer, dubbed by χ𝑙𝑠𝑡𝑚 will be fed into the second 

attention layer, namely, self-attention, where the influence of the value at each time 

step on others will be assessed. The realization steps of the self-attention are depicted 

in Fig. 3, involving three linear transformations of χ𝑙𝑠𝑡𝑚 which result in three 

vectors, namely query 𝑄, key 𝐾, and value 𝑉 , then deriving the attention matrix 𝑨 

with shape (𝑁𝑡 ,  𝑁𝑡). 𝐴𝑖𝑗 can be interpreted as how much the value at time instant 𝑖 

correlates with the value at time instant 𝑗 when performing forecasting tasks. 𝑨 is 

normalized using the softmax function so that the components of each row sum to 1. 



Afterward, multiplying the attention matrix with vector 𝑉 provides the output of the 

self-attention layer 𝜒𝑎𝑡𝑡. 

 

 
Fig. 3 Applying self-attention layer to the LSTM layer output. 

Mathematically, these above steps could be expressed as follows [34]: 

           𝑄 = 𝑾𝑄 × 𝜒 

𝐾 = 𝑾𝐾 × 𝜒                           (4) 

𝑉 = 𝑾𝑉 × 𝜒 

𝑨 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄×𝐾𝑇

√𝑁ℎ𝑖𝑑𝑑𝑒𝑛
)                     (5) 

𝜒𝑎𝑡𝑡 = 𝑉 × 𝑨                           (6) 

Finally, 𝜒𝑎𝑡𝑡 goes through a fully connected layer to predict the next values of the 

time-series of concern. To quantify the deviation between predicted values and actual 

values, the commonly used root mean square (RMS) loss function is adopted. 

Table 2 Number of trainable parameters of the proposed S-DAN framework. 

Layer Input shape Output shape Number of parameters 

Global attention layer [𝑁 + 𝑀, 𝑁𝑡] [1, 𝑁𝑡] (𝑁 + 𝑀) × (𝑁 + 𝑀) 

LSTM layer [1, 𝑁𝑡] [𝑁𝑙𝑠𝑡𝑚, 𝑁𝑡] 4 × 𝑁𝑙𝑠𝑡𝑚 × (1 + 𝑁𝑙𝑠𝑡𝑚) 

Self-attention layer [𝑁𝑙𝑠𝑡𝑚 , 𝑁𝑡] [1, 𝑁𝑡] 3 × 𝑁𝑙𝑠𝑡𝑚 × 𝑁ℎ𝑖𝑑𝑑𝑒𝑛 

Output layer [1, 𝑁𝑡] [1, 𝜏𝑚𝑎𝑥] (𝑁𝑡 + 1) × 𝜏𝑚𝑎𝑥 

Nhidden  is the number of neurons in the one-layer feedforward network for calculating vectors Q, K, V per Eq. (4). 

Table 2 enumerates in detail the input/output shapes and the number of trainable 

parameters of each layer of the proposed S-DAN approach. Specifically, for the global 

attention layer, the input and output shapes are [𝑁 + 𝑀, 𝑁𝑡] and [1, 𝑁𝑡], respectively. 

The trainable parameters of this layer come from the weight matrix in Eq. (1) with 

(𝑁 + 𝑀) × (𝑁 + 𝑀)  parameters. Next, for the LSTM layer, the input and output 

shapes of data are [1, 𝑁𝑡] and [𝑁𝑙𝑠𝑡𝑚 , 𝑁𝑡], respectively. Since each LSTM involves 

four feedforward transformations for computing input gate, forget gate, output gate, 

and cell state; thus, the number of trainable parameters is 4 × 𝑁𝑙𝑠𝑡𝑚 × (𝑁𝑙𝑠𝑡𝑚 + 1). 

For the self-attention layer, trainable parameters come from constructing three vectors 

𝑄, 𝐾, 𝑉 according to Eq (4). Thus, the number of trainable parameters is 3 × (𝑁𝑙𝑠𝑡𝑚 +
1) × 𝑁ℎ𝑖𝑑𝑑𝑒𝑛 with 𝑁ℎ𝑖𝑑𝑑𝑒𝑛 being the number of hidden neurons of 𝑊𝑄 as well as of 

𝑊𝐾  and 𝑊𝑉  . After multiplying with the attention matrix, the data with shape 



[𝑁𝑙𝑠𝑡𝑚 , 𝑁𝑡] is averaged over the feature axis, resulting in an output with shape [1, 𝑁𝑡]. 

Finally, the output vector will predict the sequence of size [1, 𝜏𝑚𝑎𝑥]  via a fully 

connected layer whose number of parameters is around (𝑁𝑡 + 1) × 𝜏𝑚𝑎𝑥. 

Algorithm 1 Pseudocode of the proposed S-DAN framework. 

 

Algorithm 1 summarizes the realization steps of the proposed framework. The 

implementation of S-DAN is carried out with the help of the machine learning library 

Keras 2 [35] written in Python thanks to its expressiveness, flexibility, and robustness. 

The adopted hyper-parameters of the model are a learning rate of 10−4, a loss function 

of root mean square error, 𝑁𝑙𝑠𝑡𝑚 = 128, an input length of 500, an output length of 50, 

Begin 

Data: 

Prepare groups of ground motion and structures’ response time-series data. 

Split data into batches of input/output pairs using the sliding window technique. 

Apply Max-min normalization. 

Splitting data into train, validation, and test data. 

Function S-DAN model 

Define global attention, LSTM, self-attention, fully connected layers. 

Employ Adam Optimizer, RMS loss function. 

Define training parameters: learning rate decay, number of epochs, early 

stopping, mini-batch size. 

End Function 

Function Training 

For 𝑖 ← 1 to number of epochs do 

For 𝑗 ← 1 to number of mini-batches do 

Forecast output of each mini-batch. 

Calculate the loss function. 

Update weight using back-propagation. 

End 

Calculate validation loss function. 

Save the best so-far model, check stopping criteria. 

End 

End Function 

Function Evaluation 

1st forecasting using initially known part of testing data. 

Append forecasting results to input data. 

While 𝑡 < 𝑁𝑡 do 

Forecasting next multiple-steps results. 

Append forecasting results to input. 

End 

Evaluate measurement metrics. 

End Function 

End 

 

 

 



and a mini-batch size of 256. In order to achieve high performance, some additional 

steps are conducted apart from those mentioned in the Algorithm: data normalization 

to suppress the scale difference of input variables and learning rate decay to refine the 

training when no reduction in the loss function is observed. On the other hand, some 

steps closely related to specific data under investigation, such as data windowing in 

data preparation, Dynamic Time Warping distance, and long-term forecasting by 

iterating the inference, will be clarified in more detail through the next two case studies. 

3.  Performance Evaluation: Case Studies 

In this section, the applicability of the proposed method is validated through two 

case studies involving synthetic data of a 3D numerical reinforced concrete frame and 

experimental data of a 18-story steel building structure under seismic ground excitation. 

For each case study, the data preparation is first presented; then, the prediction accuracy 

is quantified. After that, the effect of key parameters on the model’s performance is 

estimated, thus providing practical guidance for real-world applications. 

3.1  Case Study 1: Synthetic Data of 3D Reinforced Concrete Frame 

The first case study investigates the response of a six-story two-bay structure under 

various ground motions, as experimentally studied in [36]. To be specific, the output of 

interest is the top floor displacement, while the input data consist of ground motion and 

displacement time series of other floors. All stories have the same height of 0.75 m, 

resulting in a total height of 4.5 m, the bay widths in X-direction are 1.125 m and 1.425 

m, and those in Y-direction are 1.275 m and 0.9 m, respectively, as can be seen in Fig. 

4. The columns’ cross-section is a 100 × 100 mm2 rectangle; the beams in X-direction 

are 64.5 mm wide and 125 mm high, while the beams in Y-direction are 50 mm wide 

and 112.5 mm high. The floors are considered as rigid diaphragms, meaning that nodes 

belonging to the same floor have identical lateral displacements. 

3.1.1  Numerical Model 

To perform dynamic structural analysis, one utilizes the open-source program 

OpenSees [39] from the Pacific Earthquake Engineering Research Center because of 

its effectiveness and efficacy, which are widely acknowledged within the civil 

engineering community. The details of the FEM are described as follows. The spatial 

frame structure is modeled in a three-dimensional environment; each node has 6 

degrees of freedom. Based on the geometry of the structure, there are in total 54 

column-beam joints, 72 non-linear beam elements, and 54 non-linear column elements. 

All columns are fixed at their bases. In terms of material, the nonlinear constitutive law 

of steel is constructed using the bilinear model of Filippou et al. [37]. The constitutive 

law of concrete is simulated using the Kent-Scott-Park model [38] (Fig. 5). Specifically, 

steel rebar has a diameter of 4 mm, a yield strength 𝑓𝑦 of 274.11 MPa, and an elastic 

modulus 𝐸𝑠  of 182 GPa, while the concrete has a compressive strength 𝑓𝑐 of 35.96 

MPa, and elastic modulus 𝐸𝑐  of 24.25 GPa.  

 



 
Fig. 4 Graphical representation of the six-story two-bay reinforced concrete frame structure from [36]. 

 

 

Fig. 5 Illustration of section modeling in the OpenSees model accounting for material nonlinearity. At 

the top is shown the bilinear model for steel [37]. At the bottom is shown the Kent-Scott-Park model 

for concrete [38] and the fiber approach for reinforced concrete sections. 

Regarding section modeling, the section of reinforced concrete elements is 



simulated using the fiber approach (Fig. 5(c)), which can account for moment curvature, 

axial force-deformation, and their interaction at the same time. This approach is 

superior to the uniaxial section approach, which calculates bending and normal stresses 

independently. The forced-based distributed plasticity beam-column element in 

OpenSees is utilized to account for the plasticity potentially developing in the structural 

members when excitations increase beyond an elastic threshold. With such an element, 

the cross-section is assumed to be prismatic both before and after deformation; the 

integration along the element is calculated by using the Gauss-Lobatto quadrature rule. 

The plasticity will spread along the length of elements, and the iterative flexibility 

formulation is adopted to ensure the compatibility condition of the elements. The floors 

are considered rigid diaphragms, meaning that nodes belonging to the same floor have 

identical lateral displacements. For validation, the first two natural frequencies of the 

replicated model are 3.41 and 3.67 Hz, which closely match those of the tested model 

in [36], i.e., 3.45 and 3.72 Hz. 

Next, this model is excited by different ground motions, and its nodes’ 

displacements are recorded, forming the database for S-DAN. The excitations are real 

ground motions recorded and published by the Center for Engineering Strong Motion 

Data [40]. To increase the variety of the database, ten ground motions from different 

regions in the world are utilized: Kobe 1995 in Japan; El Salvador 2001; Fairbank 2000, 

Indiana 2002, San Simeon 2003 in the USA; Lima 1974, Santiago 1985 in Chile; 

Rarakau 2012 in New Zealand; Taiwan 1986; Karditsa 1995 in Greece; and Tonalapa 

1993 in Mexico. In addition, different load scale factors ranging from 0.5 to 2.0 with 

an increment of 0.1 were applied to input ground motions. Scaling, in this context, 

means directly increasing the amplitudes of ground motions without changing other 

characteristics, such as frequency content. Afterward, an extensive suite of simulations 

with these ground motions and different scale factors is carried out for the six-story RC 

frame presented above. In each simulation, the system of structural dynamic equations 

is solved numerically using the iterative Newton-Raphson algorithm in conjunction 

with the Newmark integration method with coefficients of 𝛾 = 0.25 and 𝛽 = 0.5. 

The time step of dynamic analysis is initially set to 0.01s, whereas the time duration of 

each simulation is equal to the length of the input ground motion. Besides, Rayleigh 

damping with a damping ratio of 0.02 is utilized to assign damping for elements of the 

structure. After that, simulation results from Karditsa, Fairbank, and Taiwan ground 

motions’ peak values are separated as unseen test data, while those from other ground 

motions constitute the training data for the S-DAN model. The selection of ground 

motions for test data is objectively random with no predefined criteria. 

 

3.1.2  Data Preparation 

In this subsection, the data preparation for S-DAN is explored in detail, showing 

the shape and values of input data, as well as corresponding output values. It is 

noteworthy that the learning process follows a supervised approach, requiring the 

preparation of input and output pairs in advance. After that, the proposed network is 

trained to map given inputs to their respective outputs as closely as possible. 

 



 
Fig. 6 Illustration of the window sliding technique employed to split original time-series into input 

sequences and respective outputs. 

In order to prepare the dataset for training and validation of the S-DAN model, we 

carried out an extensive series of numerical simulations using the previously mentioned 

FEM in OpenSees with 10 different ground motions and 15 different scale factors 

ranging from 0.5 to 2.0 with an increment of 0.1. Subsequently, we applied the sliding 

window technique to the obtained numerical results to prepare labeled input/output 

pairs. Taking the time history of the top floor displacement as an example, Fig. 6 depicts 

its 3000-length time series obtained by numerical simulation with a total duration of 30 

seconds and a sampling frequency of 100 Hz. The first 500-length records and their 

respective immediately subsequent 50-length time series constitute the first pair of 

input and output. Next, by shifting one time step, the sequence from 2nd to 501st time 

instants, and its following 50 time-step sequences, compose the second input/output 

pair. After that, by shifting a 500-length window one step each time from the beginning 

toward the end of an original 3000-length time series, one can obtain 2950 pairs of 

supervised data. Next, by combining the time history from all six floors and ground 

motion, a 3D tensor input of shape (2950, 500, 7) is formed, along with its 

corresponding 3D tensor output with a shape of (2950, 50, 1). In total, approximately 

442500 input samples, form the training and validation database for S-DAN with a split 

ratio of 90:10. 

 

3.1.3  Dynamic Time Warping Distance 

 



 

Fig. 7 Visual representation of the dynamic time warping path between two time series. 

The problem involving earthquakes is inherently dynamic and non-linear; thus, it 

is nearly impossible in general cases to obtain an ideal solution that provides a perfect 

match between predicted values and actual ones. That is why comparing these values 

point-by-point might not properly assess the model performance. An informative 

alternative to evaluate the similarity between time series is using the dynamic time 

warping (DTW) distance, which is widely adopted in a range of applications [41]. The 

principle of the DTW distance can be briefly explained as follows. Given two time-

series 𝑌1  with a length of 𝐿1  and 𝑌2  with a length of 𝐿2 , we first calculate the 

Euclidean distance, a.k.a, the 𝐿2 norm, between the first point of 𝑌1 and every points 

in 𝑌2. Next, we calculate the distances between the second point of 𝑌1 and all points 

in 𝑌2 except those of previous time instants. The process is realized in a monotonically 

increasing fashion. The same steps are then iterated for all points of 𝑌1. Afterwards, 

the first and second steps are repeated, but the roles of 𝑌1 and 𝑌2 are reversed. After 

completing these three steps, one obtains a matrix of Euclidean distance with a shape 

of (𝐿1, 𝐿2). After that, the path with minimum Euclidean distance going from the first 

position (1, 1) to the last position (𝐿1, 𝐿2) of the matrix is calculated. This path is 

referred to as the warping path; and its length is regarded as the 𝐷𝑇𝑊  distance 

between 𝑌1  and 𝑌2  (Fig. 7). Algorithmically, the process mentioned above is 

automatically realized with the help of the library Fastdtw [42]. Here, one normalizes 

the 𝐷𝑇𝑊 distance to estimate the similarity between two time series in a more general 

way regardless of their length and absolute amplitudes, as follows: 

𝐷𝑇𝑊̅̅ ̅̅ ̅̅ ̅ =
𝐷𝑇𝑊

𝑌1
𝑟𝑚𝑠×𝐿1

× 100%                      (7) 

where 𝐷𝑇𝑊̅̅ ̅̅ ̅̅ ̅  and DTW are the normalized and original dynamic time warping 

distances, respectively, Y1rms is the root mean square amplitude of the reference time 

series, and 𝐿1 is its length. The 𝐷𝑇𝑊̅̅ ̅̅ ̅̅ ̅ roughly provides a sense of how much the 

predicted time series relatively differs from the reference one. A small 𝐷𝑇𝑊 indicates 

that these time series are similar. Especially if 𝐷𝑇𝑊 = 0, they are perfectly identical. 

Otherwise, the larger 𝐷𝑇𝑊 values, the more they differ from each other. 



 

3.1.4  Forecasting Results 

 

 

Fig. 8 Evolution of training and validation loss functions during the training process. At the bottom are 

shown forecasting results generated by the S-DAN model at different training stages. 

 

 

Fig. 9 A representative example of forecasting results of the top floor displacements of the 

structure under the Karditsa earthquake with a load factor of 1.0. 

 



 

 

Fig. 10 Impact of the load factor on the normalized DTW distance (on the top) and examples of 

three ground motions from the testing data, namely, Fairbank, Karditsa, and Taiwan. 

After preparing the database, the proposed approach is trained using the Adam 

optimizer with parameters such as a mini-batch size of 128, an initial learning rate of 

10−4, which is divided by 2 when the validation loss does not decrease. Early stopping 

is applied after ten consecutive epochs of non-decreasing validation loss. The training 

process stops after 110 epochs, as shown in Fig. 8. The figure shows that the value of 

the loss function drastically drops for the first ten epochs, followed by a gradually 

decreasing trend before becoming stable after around epoch 95. Although the validation 

loss fluctuates during the training process, it closely aligns with the training loss by the 

end, indicating that the overfitting problem is precluded to some extent. To highlight 

the significance of the loss value, the insets depict forecasting results obtained by the 

model trained at different epochs: 5, around 40, and 110. As the loss function reduces, 

forecasting results approach actual values, i.e., the model performance improves. In 

terms of computation time, the training process takes 181 minutes on a high-

performance computer equipped with a 2080Ti GPU, Intel Xeon 4.3 GHz, and 32 GB 

RAM. 

Next, one employs the trained model to predict the structure’s response under 

unseen ground motions, i.e., Fairbank, Taiwan, and Karditsa, with different scale load 



factors. For each test case, the input data consist of the ground acceleration and the first 

500 values of the top floor’s vibrations computed by the finite element method (FEM). 

The remaining parts of the FEM results represent the actual responses against which 

predictions from S-DAN will be compared. The input data are fed into S-DAN, 

forecasting the next 50 values of the floors’ vibration. Subsequently, these predicted 50 

values are appended to the previous time-series vibrations, forming new 500-length 

time-series inputs and are used to predict the following 50 values. This process is 

repeated until the final time step is reached. Fig. 9 illustrates forecasting results for the 

test case with the Karditsa earthquake and a load factor of 1.0. In the figure, the red 

curve is the actual time series obtained by FEM, and the dashed black curve, starting 

from step 501, denotes the predicted results by S-DAN. It can be seen that there is a 

satisfying agreement between the results. More specifically, from time instant 6 s to 

around 8 s, a nearly perfect overlap between two curves is observed, as shown in the 

leftmost inset. However, as the excitation becomes stronger, deviations between results 

increase, as shown in the rightmost inset. 

Table 3 Effect of the sliding window length on the performance of the S-DAN 

framework 

Window length 50/5 100/10 250/25 500/50 750/75 

Training time (min) 40.5  60  119  181.3  320 

Validation loss (mm) 0.22  0.23  0.24 0.24 0.30 

Inference time(∗)(s) 55.7  29.0  12.5  7.2   

Window length 1000/100  1500/150  2000/200  2500/250  

Training time (min) 425  740  77.5  NA  

Validation loss 0.36  0.41  0.51  NA  

Inference time(∗)(s) 4.5  3.7  3.3  NA  

(∗): Inference time required for 60 s-long vibration responses. 

Table 4 Effect of the LSTM output dimensionality on the performance of the S-DAN 

framework 

𝑵𝒍𝒔𝒕𝒎 8 16 32 64 128 256 384 512 

Training time (min) 166.2  169.2  172.1  176.8  181.3  185.2  189.7  192.5 

Validation loss (mm) 1.83  1.29  0.96  0.61  0.24  0.23  0.20  0.20 

Inference time(∗)(s) 7.15  7.18  7.20  7.26  7.27  7.28  7.30  7.32 

(∗) : Using window length 500/50. 

Next, one applies S-DAN to the unseen test data and uses the normalized time 

warping distance to quantitatively estimate the model performance. It is acknowledged 

that the more important the external load applied to the structure, the higher the degree 

of non-linearity the structure’s behavior will exhibit. In order to quantitatively assess 

the performance of the proposed S-DAN framework in handling non-linear behaviors, 

we test S-DAN with different excitations of various intensity degrees characterized by 

load factors. Fig. 10 plots the computed 𝐷𝑇𝑊̅̅ ̅̅ ̅̅ ̅ for different load factors. The black 

curve with triangular symbols represents the Fairbank ground motion, the blue one with 

circles corresponds to the Taiwan ground motion, and the red one with star symbols 



correspond to the Karditsa ground motion. It can be seen that there is an increasing 

trend between DTW and the load factor. This is because stronger excitation induces 

more damage to the structure causing its responses to exhibit more non-linear and 

unusual patterns. These patterns may not be learned by the model, leading to larger 

forecasting errors. It is also noticed that 𝐷𝑇𝑊  increases more rapidly with long-

lasting high amplitude ground motions (Taiwan and Karditsa) than with those 

characterized by a short period of high intensity (Fairbank). Specifically, S-DAN can 

provide predicted results with a deviation of less than 10% in terms of amplitude at low 

load factors, (i.e., ≤ 1.2) for all testing ground motions. However, at a load factor of 

2.0, the errors obtained with Karditsa are around twice that of Fairbank (28.2% vs. 

14.8%). In summary, for weak excitation where the structures behave linearly, low 

prediction errors are obtained; when the excitation becomes stronger, the prediction 

errors increase. Later, we will compare the S-DAN method with competing methods to 

clarify its performance in predicting the structures’ dynamic responses. 

In fact, there are various LSTM variants, such as one-to-many, many-to-one, and 

many-to-many LSTM. This study adopts the many-to-many LSTM, which 

concatenates the output of LSTM cells into a new time series rather than considering 

only the output of the last LSTM cell. Besides, one of the key parameters of LSTM is 

the dimensionality of the LSTM cell output, denoted by 𝑁𝑙𝑠𝑡𝑚. This parameter defines 

the shape of the LSTM layer output as [𝑁𝑏𝑎𝑡𝑐ℎ × 𝑁𝑙𝑠𝑡𝑚 × 𝑇] where 𝑁𝑏𝑎𝑡𝑐ℎ  is the 

batch size, and T is the length of the time series. To investigate the effect of 𝑁𝑙𝑠𝑡𝑚 on 

the model performance, one repeats the training process with 𝑁𝑙𝑠𝑡𝑚 in the range [8, 

512], and then the validation loss, training time, and inference time are compared. 

Tables 3 and 4 display the comparison results, showing that the validation loss RMS 

considerably decreases from 1.83 to 0.24 when increasing 𝑁𝑙𝑠𝑡𝑚 from 8 to 128. After 

that, the loss marginally improves with 𝑁𝑙𝑠𝑡𝑚 above 128. In contrast, the training time 

considerably rises with high values of 𝑁𝑙𝑠𝑡𝑚, e.g., the training time for 𝑁𝑙𝑠𝑡𝑚=512 is 

about 3.3 times higher than that for 𝑁𝑙𝑠𝑡𝑚 = 128. Therefore, 𝑁𝑙𝑠𝑡𝑚 = 128 is selected 

because it provides a good balance between performance and training time. 

Besides, the sliding window technique is used to prepare training and validation 

data for the training process of the proposed approach. Hence, it is informative to 

investigate the effect of the window length on the model’s performance and time 

complexity. Table 3 details the calculation results for different window lengths in the 

range of [50-2500]. Note that the ratio between input/output length is fixed to 10; for 

example, if the input length is 500, then the output length is 50. It can be seen that the 

longer the input length, the longer the training time, while the inference time becomes 

shorter. This is because longer window lengths require fewer recursive steps to fully 

predict the structure’s response under a ground motion record. For example, the 

inference time significantly decreases from 23.6s to 3.05s for 50-length and 500- length 

sliding windows, respectively. However, using a long input may require a more 

complex model with wider or deeper neural network layers; otherwise, it can negatively 

impact the performance. For example, the validation losses are nearly similar for 

window lengths from 50 to 500 but decrease with increasing window lengths. Moreover, 

using large input data also necessitates a larger memory and storage footprint, which is 



not available (NA) on regular computers, as in the case of a window length of 2500. 

Based on these observations, one selects a window length of 500 for preparing datasets 

and building the surrogate model. 

 

3.1.5  Comparison between S-DAN with counterparts 

One compares S-DAN with three other methods widely used in the literature for 

forecasting problems, namely the statistic model Vector Autoregression (VAR), the 

machine learning algorithm Extreme Gradient Boosting (XGB), and the deep learning 

algorithm Long-Short Term Memory (LSTM). VAR is a generalized version of the 

popular autoregression model that aims to predict future values based on linear 

functions of historical ones. In this study, the implementation of VAR is realized with 

the help of the Statsmodels library [43]. The LSTM approach [33] is a variant of the 

Recurrent Neural Network adapted for long time series. Meanwhile, XGB, firstly 

introduced by Tianqi Chen [44], is now considered one of the most efficient and flexible 

machine learning algorithms acknowledged by several researchers. As the name 

suggests, the term “boost” means that XGB aggregates multiple models to outperform 

any single one, “Gradient” signifies that the gradient descent algorithm is used during 

the training process to minimize model errors. “Extreme” denotes that XGB is 

designated to work in a highly parallel way to utilize the hardware resources efficiently. 

Note that for a fair comparison, the input and output are the same for all methods, i.e., 

using 500 steps of historical data plus known excitations to predict 50 steps ahead of 

the time-series output. More specifically, considering a current time instant t, the input 

data consist of previously computed values of output 𝑌[𝑡 − 499], … , 𝑌[𝑡], known 

excitation 𝐹[𝑡 − 449], … , 𝐹[𝑡 + 50], and also known time-series from other sensors 

𝑋[𝑡 − 449], … , 𝑋[𝑡 + 50] , if available. Meanwhile, the prediction outputs are 

𝑌[𝑡 + 1], … , 𝑌[𝑡 + 50] . In order to ensure a fair comparison between methods, 

hyperparameter optimization was carried out in a preliminary study for selecting an 

adequate set of hyperparameters for each considered machine learning algorithm. The 

Bayesian Optimization technique and the practical GPyOpt library were employed for 

this purpose. A small sub-dataset, approximately one-tenth the size of the original 

database was randomly selected in advance, to conduct the hyperparameter 

optimization step. Deeper explanations and technical details about hyperparameter 

optimization can be found in [45]. The adopted values of the hyperparameters are 

enumerated in Table 5. 



 

Fig. 11 Prediction results obtained by S-DAN, VAR, XGB, LSTM, and FEM. 

Table 5 Hyperparameters of machine learning algorithms. 

Method  Hyperparameters 

S-DAN  L_in : 500, L_out : 50, N_lstm : 128, N_hidden : 64, learning rate: 

0.001, batch size: 512 

LSTM  L_in : 500, Lout : 50, N_lstm : 128, learning rate: 0.001, batch size: 

512 

SVR  model order: 500 

XGBoost  learning rate: 0.12, maximum depth: 4, Number of tree: 350 

Table 6 Comparison results between S-DAN and VAR, XGB, LSTM for the first case 

study involving a 3D RC frame structure. 

Ground motion  Metric  S-DAN  LSTM  XGB  VAR 

 

Fairbank 

𝐷𝑇𝑊̅̅ ̅̅ ̅̅ ̅ (%) 6.3 ±0.3  10.8 ±0.65  25.2 ±0.3  50.8 ±0.0 

MSE (mm)  0.21±0.017  0.38±0.03  1.3±0.01  2.9 ±0.0 

MAE (mm)  0.27±0.014  0.46±0.02  1.17±0.01 1.49 ±0.0 

MAPE (%)  12.9±0.9  30.0±2.01  45.2±1.5  64.5 ±0.0 

 

Kardista 

𝐷𝑇𝑊̅̅ ̅̅ ̅̅ ̅ (%)  5.6±0.3  9.3±0.54  29.6±0.7  63.2 ±0.0 

MSE (mm)  0.24±0.017  0.47±0.025  0.95±0.03  1.93 ±0.0 

MAE (mm)  0.37±0.018  0.59±0.02  1.02±0.02  1.58 ±0.0 

MAPE (%)  11.3±1.02  33.1±1.05  39.8±0.98  51.2 ±0.0 

 

Taiwan 

𝐷𝑇𝑊̅̅ ̅̅ ̅̅ ̅ (%)  8.0±0.71  13.3±0.9  35.1±1.1  68.0±0.0 

 MSE (mm) 0.19±0.013 0.32±0.019 0.95±0.02 1.53±0.0 

MAE (mm)  0.31±0.018 0.48±0.021 0.72±0.015 0.98±0.0 

MAPE (%)  10.9±0.9  31.4±1.7  43.2±1.2  57.3±0.0 

Training time (min) 181.3  165.5  26.8  4.6 

Inference time∗(s) 7.2  5.7  2.4  0.6 

(∗): Inference time required for 60 s-long vibration responses. 

Fig. 11 presents enlarged forecasting results from steps 750 to 1100 (7.5s to 11s) 

for an example of the Karditsa earthquake and a load factor of 1.0. Results from five 



methods S-DAN, LSTM, VAR, XGB, and FEM, are displayed in dashed red, dash-dot 

blue, dotted green, dashed cyan, and solid black curves, respectively. It can be seen that 

initially, there is a good consistency between results up to step 800. From around step 

800, the errors of VAR become apparent and become more pronounced, while XGB 

maintains relatively good accuracy until step 1000. After that, significant discrepancies 

between XGB and FEM are observed. On the other hand, deviations between LSTM 

and FEM are considerably lower than those of XGB. Meanwhile, the curve of S-DAN 

approximately coincides with that of FEM throughout the whole interval being 

considered. Moreover, Table 6 shows various measurement metrics, including 𝐷𝑇𝑊̅̅ ̅̅ ̅̅ ̅, 

MSE, Mean Absolute Error (MAE), and mean absolute percentage error (MAPE) 

obtained by these four methods for testing data. It can be seen that S-DAN achieves the 

lowest values, i.e., the best forecasting results. The error made by S-DAN is, on average, 

only about two-thirds that of the second-best method (LSTM) in terms of DTW . 

However, in terms of CPU times, S-DAN requires 9.5% more training time than LSTM. 

Meanwhile, VAR is very fast, but its error is too high; XGB, despite its fast training 

time, improves the prediction results, but its accuracy is still substantially lower than 

those of LSTM and S-DAN. In short, the results confirm the outperformance of S-DAN 

compared to currently used methods in forecasting civil structure’s responses. Note that 

though the case study focuses on forecasting the top floor’s response, it is 

straightforward to create another variant of S-DAN for other floors’ displacements. 

This can be done by preparing corresponding data with outputs being the time series of 

interest and input being excitations and other floors’ historical time series. 

In terms of model complexity, as most the reviewed ML-based methods for 

forecasting the structures’ dynamic responses do not explicitly provide the number of 

trainable parameters, one compares the total number of parameters in the S-DAN 

method with that of a conventional single hidden layer MLP network to gain insight 

into the S-DAN’s model complexity. With 𝑁 = 6, 𝑀 = 1, 𝑇 = 500, 𝜏 = 50, 𝑁𝑙𝑠𝑡𝑚 =

128, 𝑁ℎ𝑖𝑑𝑑𝑒𝑛 = 64, according to Table 2, the number of trainable parameters in the S-

DAN method is around 7×7+4×128× 129+3×128×64+500×50 = 115673. Meanwhile, 

the number of parameters in the MLP network with an architecture of [3500, 64, 50] is 

3500×64+64×50 = 227200. The [3500, 64, 50] architecture corresponds to an input 

layer with 3500 neurons for 7 time series of length 500, a hidden layer of 64 neurons, 

and an output layer with 50 neurons representing a 50-length output. Thus, it can be 

seen that the proposed method possesses a reasonable complexity, requiring half the 

number of parameters compared to the conventional MLP counterparts. 

 

3.2  Case Study 2: Experimental Data of 18-story Steel Frame Structure 

3.2.1  Experimental Data Description 

  



 
 

Fig. 12 Representation of the 18-story two-bay frame structure from [46]. 

In this subsection, the proposed method is applied to experimental data from a high-

rise steel frame structure prone to ground motions, realized at the Hyogo Earthquake 

Engineering Research Center [46]. In analogy to the first example, the top floor 

acceleration will be predicted using ground motions and measured accelerations on 

other floors. The frame has 18 stories with a total height of 25.35 m, three spans of 2 m 

width in the loading direction, and one 5 m span in the other direction, as shown in Fig. 

12. The columns are constructed from built-up hollow sections, while the beams are I-

shaped and welded to the columns. The total weight of the structure is approximately 

4200 kN. The structure is subjected to ground motions with characteristics of 

earthquake waves recorded at the Tokyo Shiba Elementary school by MeSOnet in 2011. 

Furthermore, nine levels of amplitudes were used, corresponding to pseudo spectral 

velocities (PSV) within the range of [40, 81, 110, 180, 220, 250, 300, 340, 420] cm/s. 

These excitations will induce various damages to the structure, such as yielding at beam 

ends, fracture, local buckling of columns, global buckling at lower stories, and 

eventually, a collapse mechanism. 



 

 
Fig. 13 Representative examples of experimentally measured data featuring a 110 cm/s2- PSV 

ground motion and the corresponding structure’s accelerations at the top and second floor. At the 

bottom are shown peak accelerations recorded at all 18 floors for ground motions of different 

intensities. 

Figure 13 represents the 110 cm/s2 PSV-ground motion acceleration on the left and 

the corresponding measured vibration signals at the 18th and 2nd floors at the bottom 

left corner. Furthermore, the variation of peak accelerations recorded at all 18 floors 

caused by different ground motion intensities is depicted on the right. It can be seen 

that the essential part of the signals is between [30-120] s, while before and after this 

range, vibration amplitudes are insignificant. Therefore, one only considers the 30-120 

s segment of the time series, significantly reducing computational costs in terms of both 

time and memory. With a sampling frequency of 100 Hz, this segment of interest has a 

total length of 9000. 

 

3.2.2  Data Preparation 



 

Fig. 14 Evolution of training and validation loss functions during the training process for the 

second case study. 

 

Among experimental signals, those corresponding to three PSV values [110, 220, 

340] cm/s2 are separated and regarded as test data unseen by S-DAN during the training 

process. The other signals of [40, 81, 180, 250, 300, 420] cm/s2 PSV are grouped into 

training data. Similarly to the first example, the sliding window technique was 

employed to prepare the required vibration database. Each vibration signal is divided 

into multiple 500-length sub-time series accompanied by their subsequent 50-length 

time-series, forming input and output pairs. After that, one combines signals from 

different floors and ground motions to form multivariate inputs for the S-DAN model. 

Given a 9000-length signal, with one step forward each time, we can obtain about 8450 

input/output pairs. With 9 levels of ground motions, the total number of data in the 

database 𝑁𝑠𝑎𝑚𝑝𝑙𝑒 , is around 76050 samples. The shape of the input data is (𝑁𝑠𝑎𝑚𝑝𝑙𝑒 , 

19, 500), where 𝑁𝑠𝑎𝑚𝑝𝑙𝑒  is the number of samples in the input database. The shape of 

the output data is (𝑁𝑠𝑎𝑚𝑝𝑙𝑒 , 1, 50). It is noted that the ground motion is known in 

advance by S-DAN. After that the S-DAN model is trained and validated with this 

database, and its learning curves are presented in Fig. 14. 

 

3.2.3  Forecasting Results 

Next, the performance of the trained model is assessed on unseen testing data. Fig. 

15 displays forecasting results obtained for the top floor’s accelerations. The first row 

shows experimentally measured signals in red, and the second row represent results 

obtained by S-DAN. In the figure, the red parts from 30 s to 45 s denote an initial warm-

up period, and the black parts from 45 s to 120 s represent multiple-step predicted 

outputs. The third row of the figure magnifies the comparison between predicted results 

and experim5545ental ones in the range [90 s-100 s]. Overall, good consistency 

between results is achieved, especially for low PSV values, i.e., 110 cm/s2. On the other 

hand, for higher PSV, discrepancies become more apparent as the structure is damaged 

and exhibits non-linear behavior, i.e., corresponding acceleration signals showing more 

irregularities. For example, in the case of the 340 cm/s2 PSV ground motion, the peak 

of the structure’s responses between 70 s-80 s is not captured by S-DAN. 



 
Fig. 15 Predictive results of the top floor’s vibration obtained by using the S-DAN framework. 

The experimental accelerations and the corresponding forecasting results are displayed in the first and 

second rows, respectively. To facilitate visual comparison, the signal part from the 90s to the 100s is 

magnified. 

 

Fig. 16 Influence of time-series length on the obtained DTW distance. 

Fig. 16 illustrates the time evolution of DTW between forecasting results and 

experimental ones for three test cases. Because the first 15 s of experimental signals are 

used as input, there is no difference between results, i.e., DTW = 0 for this interval. 

Afterward, DTW proportionally increases with the length of the predicted time series 

due to error accumulation. The DTW curves exhibit different slopes for various ground 

motion intensities. Specifically, the DTW curve associated with 340 PSV-excitation 

rises sharply, and at the end of the time series, DTW is nearly 2.0 and 2.5 times those 

of 220 PSV-excitation and 110 PSV-excitation, respectively (12.5 vs. 6.5 and 5.0). 

Furthermore, when considering a single DTW curve, the portion corresponding to the 

strongest period [60 s-90 s] of the ground motion has a steeper slope than other portions. 



 

3.2.4  Comparison between S-DAN with Counterparts 

Analogous to the first case study, the performance of S-DAN is directly compared 

with other popular methods, namely VAR, XGB, and LSTM, to demonstrate its 

accuracy and efficiency. It is recalled that the excitations are known in advance and 

included in input data for all methods. Table 7 enumerates comparison results using 

four measurement metrics, i.e., DTW , MSE, MAE, and MAPE on testing data, which 

shows a significant improvement in accuracy achieved by S-DAN. Specifically, DTW 

of S-DAN is around 45% lower on average compared to that of the second-best method, 

LSTM, and substantially lower than results from XGB and VAR. It is noted that for 

highly nonlinear case such as the 340-PSV ground motion, which leads to buckling at 

lower stories of the structure, the errors commit by the S-DAN framework are lower 

than those of the competing methods by a clear margin. Specifically, the DTW by S-

DAN is 12.5%, compared to 20.5%, 36.5% and 51.5% for LSTM, XGB, VAR, 

respectively. The superiority of S-DAN over its counterparts can be rationalized as 

follows: VAR is basically a linear statistical method, making it suitable for situations 

where the structure behaves in the elastic range. However, when plasticity or damage 

occurs, a linear method is no longer adequate. While the XGB algorithm can perform a 

non-linear mapping between time-series input and output, it does not account for the 

chronological relationship, which is one of the most important features of time-series 

data. The LSTM algorithm can take into account both non-linear behavior and 

chronological connectivity, thus providing reasonable results. However, LSTM only 

exploits features of long-term relationships through its cell state values lying between 

[0, 1]. The S-DAN method, on the other hand, allows for capturing richer temporal 

information, including the importance (key vector), the appropriateness (query vector), 

and amplitude (value vector), as explained in the Methodology section. That is why the 

attention mechanism significantly boost forecasting accuracy. 

Table 7 Comparison results between S-DAN and VAR, XGB, LSTM for the second 

case study. 

Ground motion  Metric  S-DAN  LSTM  XGB  VAR 

 

110-PSV 

𝐷𝑇𝑊̅̅ ̅̅ ̅̅ ̅ (%) 5.0±0.2  9.9±0.54  19.9±0.36  27±0.0 

MSE (mm)  0.22±0.02  0.48±0.034  1.95±0.03  2.93±0.0 

MAE (mm)  0.37±0.015  0.53±0.026  1.07±0.014  1.36±0.0 

MAPE (%)  9.3±0.41  19.2±1.15  38.6±1.0  52.7±0.0 

 

220-PSV 

𝐷𝑇𝑊̅̅ ̅̅ ̅̅ ̅ (%)  6.5±0.32  12.1±0.73  22.9±0.45  35.5±0.0 

MSE (mm)  0.25±0.013  0.35±0.02  0.93±0.037  1.43±0.0 

MAE (mm)  0.36±0.014  0.57±0.04  1.09±0.016  1.65±0.0 

MAPE (%)  8.9±0.44  14.9±0.098  33.1±1.02  49.5±0.0 

 

330-PSV 

𝐷𝑇𝑊̅̅ ̅̅ ̅̅ ̅ (%)  12.5±0.65  20.5±1.43  36.5±1.1  51.5±0.0 

 MSE (mm) 0.7±0.025  1.4±0.12  2.6±0.1  3.7±0.0 

MAE (mm)  0.59±0.026  0.91±0.041  1.79±0.02  2.05±0.0 

MAPE (%)  19.2±1.34  26.0±2.65  41.7±1.46  62.1±0.0 

Training time (min) 160.4  110.3  12.1  2.3 



Inference time∗(s) 16.5  11.6  5.2  1.2 

(∗): Inference time required for 90 s-long vibration responses. 

 

In terms of time complexity, during the training process, S-DAN requires the 

longest training time, up to 160.4 minutes, which is approximately 1.5 times longer than 

that of LSTM. The XGB and VAR methods require training times that are one and two 

orders of magnitude faster than S-DAN, respectively. Nevertheless, at inference time, 

it takes only a few seconds for S-DAN to forecast a 9000-length time series. 

 

3.2.5  Robustness Study 

In the following part, the robustness of S-DAN is investigated concerning time 

series input data contaminated by noise. Herein, one considers white noise, which is a 

classical yet essential problem in time series analysis. The noise amplitude is defined 

based on the root mean square (RMS) value of the vibration data, as follows:  

𝑋𝑛𝑜𝑖𝑠𝑒 = 𝑋 + 𝛼 × 𝜂                           (8) 

where 𝑋 is the measured vibration signal, 𝑋𝑛𝑜𝑖𝑠𝑒  is added-noise data, 𝜂 is the white 

noise vector with zero mean and unit variance, and α is the noise amplitude dependent 

on the RMS of the original data. The noise effect study consists of the following 

realization steps: i) accelerations of floors 1 to 17 are contaminated by external noises; 

thus, the input data consist of noisy vibration data plus original ground motion 

acceleration (no noise), as it is supposed that the excitation is well-controlled in 

laboratory conditions. ii) The noisy data are fed into the S-DAN model to predict the 

top floor acceleration as done above. iii) Next, DT W between computed results and 

experimental ones is calculated. In the civil engineering, a noise level in the range of 

[2%-10%] is usually considered for different applications, e.g., dynamic structural 

analysis [47], and damage detection [48]. In practice, such noise may be caused by 

environmental factors (temperature, humidity), sensor sensibility, and transmission 

instability but does not cover systematic errors such as human errors or device 

inaccuracies. In this work, we investigate the impact of noises with amplitude α in a 

range of (0% up to 20%).  

 

 
Fig. 17 Impact of noise on the normalized DTW distance between forecasted and experimental 

results 



Fig.17 depicts the evolution of DT W versus the noise amplitude obtained by 

applying the S-DAN approach to testing data. Under low- and moderate-intensity 

excitations (110-PSV and 220-PSV), S-DAN can provide controlled prediction results 

with DT W of less than 15% for a noise level of 9%. However, with stronger 

earthquakes (340- PSV excitations), prediction performance starts to suffer more from 

errors, reaching around 20% for a noise level of 9%. It is noted that prediction results 

with relative errors of no more than 20% are still widely considered acceptable for 

structures’ seismic nonlinear responses [22]. These results are obtained by using a 

model trained with original data (without noise) and then tested with noisy data. In 

order to further improve the model’s noise robustness, some strategies such as noise 

injection, data augmentation, or enhancing S-DAN with a noise filter could be applied. 

 In summary, this case study has demonstrated that S-DAN outperforms counterpart 

methods in terms of accuracy, can deliver forecasting results with a fast inference time 

of a few seconds, and is generally robust against noise with amplitudes of less than 10%. 

4  Conclusion 

In this study, a data-driven method for multi-step forecasting the responses of 

structures under time-varying excitation was developed. Throughout the manuscript, 

different aspects of the proposed S-DAN framework were explicitly presented, 

including the overall workflow, the underlying intuition of capturing inter- and intra-

relationships between multiple time-varying signals, data preparation using the window 

sliding technique, the deep learning architecture featuring a dual-attention mechanism, 

algorithm description via pseudocode, and implementation details. The viability of the 

proposed method was quantitatively demonstrated through two case studies involving 

synthetic data from a 3D reinforced concrete frame structure and experimental data 

from an 18-story steel frame structure. The obtained results proved that the S-DAN 

method consistently outperforms competing approaches including LSTM, XGB, and 

VAR as the normalized DTW distance between the actual responses with those 

predicted by S-DAN is significantly lower than those of other approaches. Furthermore, 

additional studies providing more insights into the performance of the proposed method 

were carried out: i) S-DAN could maintain good prediction accuracy with input data 

disturbed by noise with an amplitude of less than 10% of their RMS; ii) for the elastic 

regime when structures are subjected to low-intensity excitation, predicted results 

nearly coincide with actual results; however, in the highly nonlinear regime as in the 

case of structures subjected to the high-intensity earthquake, higher prediction errors 

would occur; iii) investigating the trade-off between accuracy and efficiency when 

using long input data. More specifically, using long input data reduces the number of 

recursive steps, thus shortening the inference time and reducing the risk of error 

accumulation, but it increases model complexity with a significantly higher number of 

parameters.  

Although achieving promising results, the current version of S-DAN still has two 

limitations that should be improved in the next study step to increase its practicality. 

The first limitation is that the inference time is still higher than that of competing 

methods because the attention mechanism is cubically proportional to the input data 



length. Therefore, exploring new variants of attention mechanisms such as flash 

attention, spare attention, and fast attention could be beneficial to reduce computational 

resources. Secondly, the robustness of S-DAN against noise with an amplitude greater 

than 10% should be improved possibly by combining it with a denoising autoencoder 

component. This component can reconstruct clean vibration signals from noisy ones, 

before passing through the S-DAN model for predicting the structures’ responses. 
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