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Abstract. The advances and development of various machine learning
techniques has lead to practical solutions in various areas of science, en-
gineering, medicine and �nance. The great choice of algorithms, their im-
plementations and libraries has resulted in another challenge of selecting
the right algorithm and tuning their parameters in order to achieve op-
timal or satisfactory performance in speci�c applications. Here we show
how the value of information (V (I)) can be used in this task to guide
the algorithm choice and parameter tuning process. After estimating the
amount of Shannon's mutual information between the predictor and re-
sponse variables, V (I) can de�ne theoretical upper bound of performance
of any algorithm. The inverse function I(V ) de�nes the lower frontier of
the minimum amount of information required to achieve the desired per-
formance. In this paper, we illustrate the value of information for the
mean-square error minimization and apply it to forecasts of cryptocur-
rency log-returns.

Keywords: Value of information · Shannon's information · mean-square
error · time-series forecast

1 Introduction

The value of information V (I) is the maximum gain in performance one can
achieve due to receiving the amount I of information (mathematical mean-
ing of `performance' and `information' will be clari�ed later). This concept
was discussed in various settings in the literature, but the main advances of
the theory behind it were made by Ruslan Stratonovich and his colleagues in
the 1960s [15,19,16,10,17,20]. Inspired by Shannon's rate-distortion theory [12],
Stratonovich �rst extended the ideas to more general class of Bayesian systems
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and various types of information. He then used original techniques and some
methods of statistical physics to derive very deep results on asymptotic equiva-
lence of the value functions for di�erent types of information. Stratonovich and
his colleagues also studied the value of information in di�erent settings, from
the simplest Boolean and Gaussian systems to stochastic processes in continu-
ous time. Many of these examples are covered in the classical monograph [18],
which has recently been published in English [14].

Recent advances of intelligent and learning systems combined with exponen-
tial growth of the size and dimensionality of datasets facilitated by the growth in
computer performance has prompted a new interest in the value of information
theory and its applications. Some results of the theory have facilitated better un-
derstanding of the role of randomization in machine learning algorithms [2,1,5].
For example, the value of information was used to derive optimal control func-
tions of mutation rates in genetic algorithms [3,4,8]. It was shown also that the
value of information theory is closely related to optimal transport [7] and can
have unexpected applications in explaining some decision-making paradoxes in
behavioural economics [6].

The purpose of this paper is to demonstrate how the value of information
can be used to evaluate the performance and tune parameters of di�erent data-
driven models with a speci�c focus on the mean-square error criterion. In the
next section, we brie�y overview the VoI theory for the case of translation in-
variant objective functions, such as the mean-square deviation. We derive a
simple expression for the smallest root-mean-square error (RMSE) as a function
of Shannon's mutual information between the predictor and response variables.
This function is then used in Section 3 as performance frontier for several models
attempting to forecast daily log-returns of some cryptocurrencies. We conclude
by the discussion of these results, the importance of correct estimation of the
amount of information in data as well as the choice of objective functions to
evaluate the models.

2 Value of information for translation invariant objective

functions

Let us review some of the main ideas of the value of information theory in the
context of optimal estimation, although the context of optimal control is also
relevant. Let (Ω,P,A) be a probability space, and let x ∈ X be a random variable
(i.e. a measurable function x = x(ω) on a probability space, and P (X) = P{ω :
x(ω) ∈ X} is the corresponding push-forward measure). Consider the problem
of �nding an element y ∈ Y maximizing the expected value of utility function
u : X × Y → R. Let us denote the corresponding optimal value as follows:

U(0) := sup
y∈Y

EP (x){u(x, y)}

where zero in U(0) designates the fact that no information about speci�c value
of x ∈ X is given, only the prior distribution P (x). At the other extreme, full
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information entails that there is an invertible function z = f(x) such that x ∈ X
is determined uniquely x = f−1(z) by the `message' z ∈ Z. The corresponding
optimal value is

U(∞) := EP (x){sup
y(z)

u(x, y(z))}

where optimization is over all mappings y(z) (i.e. y : Z → Y ). In the context of
estimation, variable x is the response (i.e. the variable of interest), and z is the
predictor. The mapping y(z) represents a model with output y ∈ Y .

Let us denote by U(I) the intermediate values in the interval [U(0), U(∞)]
for all information amounts I ∈ [0,∞]. The value of information is then de�ned
as the following di�erence [14]:

V (I) := U(I)− U(0)

There are, however, di�erent ways in which information amount I and the
quantity U(I) can be de�ned leading to di�erent types of function V (I). For
example, suppose that z ∈ Z partitions X into a �nite number of subsets. This
corresponds to a mapping z : X → Z with a constraint on the cardinality of its
image |Z| ≤ eI < |X|. Then, given such a partition z : X → Z, one can �nd
optimal y(z) maximizing the conditional expected utility EP (x|z){u(x, y) | z} for
each subset f−1(z) ∋ x. The optimal value U(I) is then de�ned by repeating the
above and optimizing over all partitions z(x) satisfying the cardinality constraint
ln |Z| ≤ I:

U(I) := sup
z(x)

[
EP (z)

{
sup
y(z)

EP (x|z){u(x, y) | z}

}
: ln |Z| ≤ I

]
(1)

Here P (z) = P{x ∈ f−1(z)}. The quantity I = ln |Z| is called Hartley's in-
formation, and the di�erence V (I) = U(I) − U(0) in this case is the value of
Hartley's information.

Example 1. Let X ≡ Rn and u(x, y) = − 1
2∥x− y∥2. Then the optimal estimator

is the expected value y = E{x}, which is found from the stationary condition:

∂

∂y
EP (x)

{
−1

2
∥x− y∥2

}
= y − E{x} = 0

The optimal value is U(0) = − 1
2σ

2
x, where σ2

x is the variance of x. Given a
partition z : X → Z of X into k = |Z| subsets, one can compute k estimators
given by conditional expectations y(z) = E{x | z}. The value U(ln k) can be
estimated by computing and minimizing the average of conditional variances
σ2
x(z) over several partitions.

One can see from equation (1) that the computation of the value of Hartley's
information is quite demanding, and Example 1 suggests that it might involve
a procedure such as the k-means clustering algorithm or training a multilayer
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neural network. Indeed, computing the error at the output layer of a percep-
tron and adjusting the output weights corresponds to �nding optimal output
function y(z) in equation (1); back-propagation of the error into hidden layers
and adjusting their weights corresponds to �nding optimal partition z(x) in (1).
Although there exist e�cient algorithms for such optimization, it is clear that
using the value of Hartley's information is not practical due to high cost of the
computations involved. The main result of the theory [14] is that the value of
Hartley's information (1) is asymptotically equivalent to the value of Shannon's
information, which is much easier to compute.

Recall the de�nition of Shannon's mutual information [12]:

I(X,Y ) := EW (x,y)

{
ln

P (x | y)
P (x)

}
= H(X)−H(X | Y )

= H(Y )−H(Y | X)

where W (x, y) = P (x | y)Q(y) is the joint probability distribution on X × Y ,
and H(·) = −EP {lnP (·)} is the entropy function. The following inequality is
valid:

0 ≤ I(X,Y ) ≤ min{H(X), H(Y )} ≤ min{ln |X|, ln |Y |}

The value of Shannon's information is de�ned using the quantity:

U(I) := sup
P (y|x)

[EW {u(x, y)} : I(X,Y ) ≤ I] (2)

where optimization is over all conditional probabilities P (y | x) (or joint mea-
sures W (x, y) = P (y | x)P (x)) satisfying the information constraint I(X,Y ) ≤
I. Contrast this with U(I) for Hartley's information (1), where optimization is
over the mappings y(x) = y◦z(x). As was pointed out in [7], the relation between
functions (1) and (2) is similar to that between optimal transport problems in
the Monge and Kantorovich formulations.

Function U(I) de�ned in (2) is strictly increasing and concave, and it has
the following inverse:

I(U) := inf[I(X,Y ) : EW {u(x, y)} ≥ U ] (3)

It is a proper convex and strictly increasing function, where it is �nite. The
strictly increasing and concave (resp. convex) properties of U(I) (resp. I(U)) can
be shown in more general settings, when information is de�ned by any closed
functional (see Proposition 3 in [5]). This means that solutions to these condi-
tional extremum problems can be found by the standard method of Lagrange
multipliers (see [14,5] for details). Thus, the optimal joint distributions belong
to the following exponential family:

W (x, y;β) = P (x)Q(y)eβu(x,y)−γ(x;β) (4)

where P and Q are the marginal distributions of W , and function γ(x;β) is
de�ned by the normalization condition

∫
X×Y

dW (x, y;β) = 1. Parameter β is
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called the inverse temperature, and it is the Lagrange multiplier associated to
the constraint E{u} ≥ U in (3). The temperature β−1 is associated respectively
to the constraint I(X,Y ) ≤ I in (2). Their values are de�ned by the following
conditions:

β−1 = U ′(I) , β = I ′(U)

In fact, this can also be seen from the following considerations. Function U(I)
is a proper concave function, and therefore it is the Legendre-Fenchel dual (see
[11,21]) of some proper concave function F (β−1):

U(I) = inf{β−1I − F (β−1)} ⇐⇒ I = F ′(β−1) ⇐⇒ β−1 = U ′(I)

Function I(U) is a proper convex function, and therefore it is the Legendre-
Fenchel dual of some proper convex function Γ (β):

I(U) = sup{βU − Γ (β)} ⇐⇒ U = Γ ′(β) ⇐⇒ β = I ′(U)

Convex function Γ (β) is the cumulant generating function of distribution (4). In
particular, U(β) = Γ ′(β) is the expected value EW (β){u(x, y)}. Concave function
F (β−1) is sometimes referred to as free energy, and I(β−1) = F ′(β−1) is equal
to Shannon's mutual information EW (β){lnW − ln(P ⊗Q)} of distribution (4).
Functions F and Γ have the following relation:

F (β−1) = −β−1Γ (β)

The following procedure can be used to obtain the dependencies U(I) or
I(U) and the value of Shannon's information V (I) = U(I) − U(0). Optimal
solution (4) is used to de�ne the expression for function Γ (β), which is then
used to derive two functions:

U(β) = Γ ′(β) , I(β) = β Γ ′(β)− Γ (β)

The dependency U(I) (or I(U)) is then obtained either parametrically from U(β)
and I(β) or explicitly by excluding β from one of the equations. Alternatively,
one can use free energy F (β−1) and de�ne U(I) from I(β−1) = F ′(β−1) and
U(β−1) = β−1I(β−1)− F (β−1).

Let us now consider function Γ (β) for distribution (4). Taking partial traces
of solution (4) and using the law of total probability leads to the following system
of integral equations:∫

X

dW (x, y) = dQ(y) =⇒
∫
X

eβ u(x,y)−γ(x;β) dP (x) = 1 (5)∫
Y

dW (x, y) = dP (x) =⇒
∫
Y

eβ u(x,y) dP (y) = eγ(x;β) (6)

If the linear transformation T (·) =
∫
X
eβ u(x,y)(·) has inverse, then from (5) we

have e−γ(x;β)dP (x) = T−1(1) or

γ(x;β) = − ln

∫
Y

b(x, y) dy + ln[dP (x)/dx] = γ0(x;β)− h(x)
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where b(x, y) is the kernel of the inverse linear transformation T−1, γ0(x;β) :=
− ln

∫
Y
b(x, y) dy, and h(x) = − ln[dP (x)/dx] is random entropy or surprise.

Integrating the above with respect to measure P (x) we obtain

Γ (β) :=

∫
X

γ(x;β) dP (x) = Γ0(β)−H(X)

where Γ0(β) :=
∫
X
γ0(x;β) dP (x). Notice that Γ ′(β) = Γ ′

0(β) = U(β), and
therefore

I(β) = β Γ ′(β)− Γ (β) = H(X)− [Γ0(β)− β Γ ′
0(β)]

Function Γ0(β) − β Γ ′
0(β) is clearly the conditional entropy H(X | Y ), because

I(X,Y ) = H(X)−H(X | Y ).
Further analysis is complicated by the dependency of solution (4) on marginal

distribution P (x). Generally, P (x) in�uences not only the output distribution
Q(y) (i.e. as dP (x) 7→

∫
X
dP (y | x) dP (x) = dQ(y)), but also the conditional

probability P (x | y) = P (x)eβ u(x,y)−γ(x;β). However, as was shown in [14], this
dependency on P (x) disappears, if the product e−γ(x;β)P (x) is independent of
x. Indeed, let e−Γ0(β) = e−γ(x;β) dP (x)/dx = const. Then from equation (5) we
obtain

e−Γ0(β)

∫
X

eβ u(x,y)dx = 1 =⇒ Γ0(β) = ln

∫
X

eβ u(x,y) dx

It turns out that e−γ(x;β) dP (x)/dx = const, if the objective function is trans-
lation invariant: u(x, y) = u(x + z, y + z). Indeed, using translation invariance
and equation (5) gives∫

X

eβ u(x+z,y+z)−γ(x+z;β) dP (x+ z) =

∫
X

eβ u(x,y)−γ(x+z;β) dP (x+ z) = 1

Combining this with equation (5) implies that

e−γ(x+z;β)dP (x+ z)/dx = e−γ(x;β)dP (x)/dx = const

Many objective functions u(x, y) are de�ned using the di�erence x − y, which
means they are translation invariant.

Example 2 (Squared error and Gaussian case). Let u(x, y) = − 1
2 (x− y)2. Then

u(x, y) = u(x+ z, y + z), and

Γ0(β) = ln

∫ ∞

−∞
e−

1
2 β (x−y)2 dx = ln

√
2π

β

U(β) = Γ ′
0(β) = − 1

2β

I(β) = −1

2
− Γ (β) = −1

2
+H(X)− Γ0(β) = H(X)− 1

2
[ln(2π) + 1− lnβ]
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The latter expression allows us to express β = 2πe2[I−H(X)]+1 and write explicit
dependency

U(I) = − 1

4π
e2[H(X)−I]−1 (7)

The value of information in this case is

V (I) = U(I)− U(0) =
1

4π
e2H(X)−1

(
1− e−2I

)
For Gaussian density dP (x)/dx = 1√

2πσ2
x

e
− x2

2σ2
x we have

H(X) =
1

2

[
ln(2πσ2

x) + 1
]
, e2H(X)−1 = 2πσ2

x

and in this case

U(I) = −1

2
σ2
xe

−2I , V (I) =
1

2
σ2
x(1− e−2I)

Example 3 (Root-mean-square error). The root-mean-square error (RMSE or
standard error) is one of the most important criteria to evaluate data-driven
models. The result from Example 2 can be used to compute the smallest RMSE
as a function of information. Indeed, RMSE(I) =

√
−2U(I), where U(I) is given

by equation (7):

RMSE(I) =
1√
2πe

eH(X)−I

If x is assumed to have normal distribution with variance σ2
x, then eH(X) =

σx

√
2πe and

RMSE(I) = σx e
−I (8)

If the amount of information I can be estimated from data (e.g. as mutual
information I(X,Z) between the predictors and response variables), then the
functions above de�ne the smallest possible standard error.

3 Application: Analysis of forecasts of cryptocurrency

log-returns

In this section, we illustrate how the value of information can facilitate the
analysis of performance of data-driven models. Here we use time-series forecasts
applied to daily log-returns of cryptocurrency exchange rates.

The dataset used contains daily prices s(t) of several cryptocurrency pairs
during the period between Jan 1, 2019 and Jan 11, 2021. Figure 1 shows an
example of prices of Bitcoin in US Dollars (BTC/USD) and the corresponding
log-returns, which are de�ned as

r(t+ 1) := ln

[
s(t+ 1)

s(t)

]
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Fig. 1. Close day prices of BTC/USD (left) and the corresponding log-returns (right).

Figure 2 shows the distribution of log-returns r(t) for BTC/USD. They are ap-
proximately zero-mean with r(t) > 0 corresponding to a price increase and vice
versa. Although it is quite common to model log-returns by a Gaussian distri-
bution, it is easy to see that the distribution has heavy tails (see the QQ-plot on
Figure 2 comparing the distribution with a Gaussian), and some extreme price
changes are not unusual (e.g. notice the signi�cant price decrease on March 12,
2020, which was caused by the announcements related to the COVID-19 pan-
demic).
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Fig. 2. Distribution of BTC/USD log-returns (left) and its comparison with normal
distribution (right).

Predicting price changes is very challenging. In fact, the existence of such
forecasts would create an arbitrage, which should quickly disappear in an open
market. The left chart on Figure 3 plots log-returns for two consecutive days: r(t)
(abscissa) and r(t+1) (ordinates). One can see that there is no obvious relation
between r(t) and r(t + 1), and they are often assumed to be independent (and
hence prices s(t) are often modelled by a Markov process).

On the other hand, in continuous time independence of log-returns would
mean that {r(t)} is a so-called δ-correlated stochastic process (i.e. its autocor-
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Fig. 3. Relation between log-returns on two consecutive days (left) and the autocorre-
lation function (right).

relation function is proportional to the Dirac δ-function). It is well-known that
such processes are unphysical, because any δ-correlated stochastic process must
have in�nite variance σ2 (indeed, one can show that σ2 is the integral of spec-
tral density, which is the Fourier transform of the autocorrelation function; the
Fourier image of the δ-function is a constant function [13]). Therefore, there
must be some small information about future log-return r(t + 1) contained in
the past values r(t), r(t− 1), . . . , r(t− n). This can be seen from the plot of the
autocorrelation function for BTC/USD shown on the right chart of Figure 3.

The idea of autoregressive models is to use the small amount of information
between the past and future values for forecasts. Here, we shall employ sev-
eral techniques to learn models y = f(z), where the predictor z = (r(t), r(t −
1), . . . , r(t − n)) is a vector of previous values of log-returns, and the model
output y(z) is the forecast of the unknown future log-return x = r(t + 1) (the
response). The hypothesis is that increasing the number n of lags should increase
the amount of information used for the forecasts.

In addition to autocorrelations (correlations between the values of {r(t)} at
di�erent times), information can be increased by using cross-correlations (corre-
lations between log-returns of di�erent symbols in the dataset). Thus, the vector
of predictors is an m × n-tuple, where m is the number of symbols used, and
n is the number of time lags. In this paper we report result of predicting log-
returns of BTC/USD using the range m ∈ {1, 2, . . . , 5} of symbols (BTC/USD,
ETH/USD, DAI/BTC, XRP/BTC, IOT/BTC) and n ∈ {2, 3, . . . , 20} of lags.
This means that the models used predictors (z1, . . . , zm×n), where m×n ranged
from 2 to 100.

In order to analyse the performance of models using the value of informa-
tion, one has to estimate the amount of information between the predictors
z1, . . . , zm×n and the response variable x. Here we employ the following Gaus-
sian formula for Shannon's mutual information [14]:

I(X,Z) ≈ 1

2
[ln detKz + ln detKx − ln detKz⊕x]
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Fig. 4. The average amount of mutual information between predictors and response in
the training sets (left) and test sets (right). Abscissa shows the number n of lags, and
di�erent curves correspond to di�erent numbers m of symbols used.

where Kz is the covariance matrix of predictors z ∈ Rm×n, Kx is the covariance
of response x (for one dimension detKx = σ2

x), and KZ⊕X is the covariance of
Z ⊕X. We use the approximate sign ≈, because the distributions of log-returns
are generally not Gaussian (in fact, the above formula gives a lower bound for
non-Gaussian random variables). Natural logarithm corresponds to measuring
information in `nats'; for `bits' one has to use log2.

For each collection of predictors (z1, . . . , zm×n) and response x, the data was
split into multiple training and testing subsets using the following rolling window
procedure. Here we used 100 and 25 days data windows for training and testing
respectively. After training and testing the models, the windows were moved
forward by 25 days. Thus, the data of approximately 700 days (Jan 2019 to Jan
2021) was split into (700− 100)/25 = 24 pairs of training and testing sets. The
results reported here are the average results from these 24 subsets.

Figure 4 shows the average amounts of information I(X,Z) in the training
sets (left) and testing sets (right). Information (ordinates) is plotted against the
number n of lags (abscissa) and for m ∈ {1, 2, . . . , 5} symbols (di�erent curves).
The data was used to train and test the following types of models:

1. Multiple mean-square linear regression (LM).

2. Partial least squares regression (PLS).

3. Feed-forward neural network (NN).

The �rst model has no hyperparameters; the PLS regression used here employed
SIMPLS algorithm [9] with 3 components; NN used here had just one hidden
layer with 3 logistic units and trained for 30 epochs. This is admitably not an
optimal choice of models, but �nding the best model or a set of hyperparameters
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was not the purpose of this study. The models were used to illustrate their
performance from the point of the value of information theory.
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Fig. 5. RMSE results of �tted values of three types of models on training data as
functions of information in the training data. Theoretical RMSE(I) curve (8) is plotted
for standard deviation of response σx ≈ .0386 estimated from the training sets.

0.0 0.5 1.0 1.5

0.
02

0.
04

0.
06

0.
08

0.
10

Multiple Linear Regression

Information (bits)

R
M

S
E

5
4
3
2
1

RMSE(I)

0.0 0.5 1.0 1.5

0.
02

0.
04

0.
06

0.
08

0.
10

Partial Least Squares

Information (bits)

R
M

S
E

5
4
3
2
1

RMSE(I)

0.0 0.5 1.0 1.5

0.
02

0.
04

0.
06

0.
08

0.
10

Neural Network

Information (bits)

R
M

S
E

5
4
3
2
1

RMSE(I)

Fig. 6. RMSE results of predicted values from three types of models on testing data as
functions of information in the training data. Theoretical RMSE(I) curve (8) is plotted
for standard deviation of response σx ≈ .0361 estimated from the testing sets.

Figures 5 and 6 show standard errors (RMSE) of the models as function
of the information amount I contained in the training data. Di�erent curves
are plotted for di�erent numbers of symbols m ∈ {1, . . . , 5}. Theoretical lower
bounds are shown by the RMSE(I) curves computed using formula (8) with
standard devition of response x estimated from the training and testing sets.
Figure 5 shows RMSE of the models �tting the training data after training,
while Figure 6 shows the errors of prediction on testing data. The following
observations can be made from the results shown on Figures 5 and 6:

1. Errors of �tting the training data closely follow theoretical curve RMSE(I).
One can see that LM and NN achieve errors on the training data close to



12 R. V. Belavkin et al.

theoretical. PLS has higher errors, which can be explained by the fact that
the aim of the PLS algorithm is not to minimize squared errors, but to
maximize covariance between predictors and reponse [9].

2. All models show higher errors on the testing data. PLS achieved smaller and
more stable errors in forecasts than LM or NN in this experiment.

3. Increasing information leads to decreasing errors on the training data, but
not necessarily on new data (testing or prediction).

4. Models using m > 1 symbols achieve smaller errors on the testing data
than models with just one symbol. We note also that when using m = 4
or 5 symbols, the amount of information of say I = .1 bits can be achieved
using only n ≤ 5 lags (see left chart on Figure 4). The same amount of
information in data with m = 1 symbol requires n > 20 lags. Thus, cross-
correlations potentially provide more valuable information for forecasts than
autocorrelations.

5. Linear models, and in particular PLS, appear to have more robust perfor-
mance than the simple neural network used here. The large variance of stan-
dard errors for NN shown on Figures 5 and 6 are potentially due to random
initialization and higher uncertainty in the setting of hyper-parameters (e.g.
hidden nodes, the number of epochs to train, activation functions).

Remark 1. RMSE can also be plotted against mutual information in the test set
shown on the right chart of Figure 4. However, this information was not used
to learn the models, and hence we do not report these plots here. One can also
notice from Figure 4 that mutual information in the test sets achieves higher
values (approaching 2 bits) than in the training sets. This can be explained by
random e�ects, as the test sets were four times smaller than the training sets.
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Fig. 7. Correlation between predicted values from models and desired response in the
test data as functions of information in the training sets.

Let us point out that RMSE is a general, but certainly not the only and
potentially not the most useful measure to assess model's performance. Figure 7
reports correlations between the predicted and the desired log-returns (i.e. cor-
relation between the model output y(z) and the desired response x). One may
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notice that the best linear models (LM and PLS) are those usingm ∈ {2, 3} sym-
bols, and the maximum correlations are generally achieved at higher amounts of
information than those achieving the minimums of RMSE.
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Fig. 8. Mean rates of return as functions of information for di�erent models.

Finally, we estimated the mean rates of return (MRR) from the model fore-
casts, if they were used for trading. Here, we used the following formula:

MRR := eE{sign(y(z)) sign(x)|x|} − 1

where y(z) is the predicted log-return, x is the `true' log-return from the test
data, and sign is the signum function. Thus, when the signs of y(z) and x co-
incide, then the log-return from trading is positive |x|; otherwise, the log-return
is −|x|. The expected value E{sign(y(z)) sign(x)|x|} is the mean log-return from
trading ⟨r⟩, which is converted into the e�ective rate of return by the formula
e⟨r⟩−1. Thus, the value of MRR = .01 means 1% return per day without taking
into account trading fees. Figure 8 reports the estimated mean rates of return
for the three types of models. Some models achieve mean rates of return .3%
and .4% per day, which is slightly higher than the average rate of return of .26%
from BTC / USD in the testing sets. Note also that the mean rate of return
from the models can also be as low as −.5% per day.

4 Discussion

We have reviewed the main mathematical ideas of the value of information the-
ory in the context of translation invariant objective functions. These functions
are important for data-driven models, such as the mean-square cost or stan-
dard error. We have derived simple expressions for the lower bound of RMSE
as a function of mutual information and applied it to the analysis of perfor-
mance of time-series forecasts using cryptocurrency data. We showed how these
information-theoretic ideas can enrich our understanding of data and the mod-
els and potentially lead to a more intelligent learning and optimization of model
parameters.
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